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DHR bimodules of quasi-local algebras and symmetric
quantum cellular automata

Corey Jones

Abstract. For a net of C*-algebras on a discrete metric space, we introduce a bimodule ver-
sion of the DHR tensor category and show that it is an invariant of quasi-local algebras under
isomorphisms with bounded spread. For abstract spin systems on a lattice L � Rn satisfying a
weak version of Haag duality, we construct a braiding on these categories. Applying the gen-
eral theory to quasi-local algebras A of operators on a lattice invariant under a (categorical)
symmetry, we obtain a homomorphism from the group of symmetric QCA to Autbr.DHR.A//,
containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical
symmetry D , we show that the DHR category of the quasi-local algebra of symmetric operators
is equivalent to the Drinfeld center Z.D/. We use this to show that, for the double spin-flip
action Z=2Z � Z=2Z Õ C2 ˝ C2, the group of symmetric QCA modulo symmetric finite-
depth circuits in 1D contains a copy of S3; hence, it is non-abelian, in contrast to the case with
no symmetry.

1. Introduction

In the algebraic approach to quantum spin systems on a lattice, a fundamental role is
played by the quasi-local C*-algebra generated by local operators [13]. In ordinary
spin systems, this is an infinite tensor product of matrix algebras. Upon restricting
to operators invariant under a global (categorical) symmetry or when considering the
operators acting on the boundary of a topologically ordered spin system, the result-
ing quasi-local algebras can be more complicated approximately finite-dimensional
(AF) algebras. The work of Bratteli [11] and Elliott [31] gives a classification of AF
algebras up to isomorphism. However, arbitrary isomorphisms between quasi-local
algebras are not always physically relevant since, in general, they do not map local
Hamiltonians to local Hamiltonians. (Here, by local Hamiltonian we mean the terms
in the Hamiltonian have supports with uniformly bounded diameters [91, Chapter 4].)

A physically natural condition to impose on isomorphisms between quasi-local
algebras defined on the same metric space is bounded spread. For two nets of algebras
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defined on a discrete metric space L, an isomorphism ˛ between their quasi-local
algebras has bounded spread if there exists an R � 0 such that operators localized in
a finite region F � L are mapped to operators localized in the R neighborhood of
F by ˛ and ˛�1. Unlike generic isomorphisms between quasi-local algebras, isomor-
phisms with bounded spread map local Hamiltonians to local Hamiltonians, making
them more natural from a physical perspective. This raises the general problem of
classifying quasi-local algebras up to bounded spread isomorphism.

Bounded spread isomorphisms are also interesting as objects in their own right.
Automorphisms of the quasi-local algebra of a spin system (without symmetry) with
bounded spread are called quantum cellular automata (QCA) [84] and have been
extensively studied in the physics literature. (We refer the reader to the review arti-
cle [35] and references therein.) These can be viewed as not only a natural class of
symmetries of the moduli space of local Hamiltonians, but also as natural models for
discrete-time unitary dynamics. Finite-depth quantum circuits (FDQC) are a normal
subgroup of QCA which are implemented by local unitaries and are used as to oper-
ationally define equivalence for topologically ordered states [20]. There is significant
interest in understanding the quotient group QCA/FDQC, which can be interpreted as
the collection of topological phases of QCA1 [37, 38, 43, 47–49, 85]. While there has
been recent progress on studying symmetry protected QCA [21,42], relatively little is
known about the structure of topological phases of QCA defined only on symmetric
operators.

We can approach both the problems of finding bounded spread isomorphism in-
variants of quasi-local algebras and of finding invariants of QCA/FDQC simultane-
ously, by looking for functorial invariants of quasi-local algebras. To be more precise,
consider the groupoid NetL whose objects are general nets of C*-algebras on a dis-
crete metric space L (Definition 2.2) and whose morphisms are isomorphisms of
quasi-local algebras with bounded spread. Then, any functor from NetL to another
groupoid which contains finite-depth circuits in the kernel will yield algebraic invari-
ants of both general quasi-local algebras and topological phases of QCA.

An important component of an algebraic quantum field theory is its DHR category
of superselection sectors [25–27]. Motivated by finding functorial invariants for dis-
crete nets of C*-algebras, we develop a version of DHR theory suitable for our setting.
For a net of C*-algebras A over a discrete metric space L, we introduce the C*-tensor
category DHR.A/, which consists of localizable bimodules of the quasi-local algebra
(Definition 3.2). This is a direct generalization of localized, transportable endomor-
phisms from the usual DHR formalism [44, 50]. Our formalism extends the ideas
of [74], who consider the special case of 1D spin chains with Hopf algebra symmetry
and utilize the formalism of unital amplimorphisms rather than bimodules.

1See Section 2.2 for further discussion and references.
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To state the first main result of the paper, let C*-Tens denote the groupoid of
C*-tensor categories and unitary tensor equivalences (up to unitary monoidal natural
isomorphism). Then, we have the following theorem.

Theorem A. Let L be a countable metric space with bounded geometry. There is a
canonical functor DHR W NetL ! C*-Tens, containing finite-depth quantum circuit
in the kernel. In particular, we have the following.

(1) The monoidal equivalence class of DHR.A/ is an invariant of the quasi-local
algebra up to bounded spread isomorphism.

(2) We have a homomorphism

DHR W QCA.A/=FDQC.A/! Aut˝.DHR.A//:

The first item above allows us to distinguish quasi-local algebras that are isomor-
phic as C*-algebras but not by bounded spread isomorphisms, while the second gives
us a topological invariant of QCA. In particular, we can conclude that a QCA is not a
quantum circuit if it has a non-trivial image in Aut˝.DHR.A//. We will exploit both
of these consequences in the case of 1D symmetric spin systems (see Examples 4.21
and 4.24).

First, we address the issue of braidings. In the usual DHR theory, the resulting
categories are braided, which plays a significant role in many applications. In our
context, this additional structure provides a finer invariant for quasi-local algebras
and restricts the image of the DHR homomorphisms from QCA. Under some addi-
tional assumptions on the lattice (namely, that it is a discrete subspace of Rn) and
the net itself (weak algebraic Haag duality, Definition 2.7), our DHR categories admit
canonical braidings, and bounded spread isomorphisms induce braided equivalences
on DHR categories.

Theorem B. Suppose that L � Rn is a lattice. If a net A over L satisfies weak alge-
braic Haag duality, there exists a canonical braiding on DHR.A/. Furthermore, if A
and B are two such nets, then for any isomorphism ˛ W A! B with bounded spread,
DHR.˛/ is a braided equivalence. As a consequence, we obtain the following.

(1) The braided monoidal equivalence class of DHR.A/ is an invariant of the
quasi-local algebra up to bounded spread isomorphism.

(2) We have a homomorphism

DHR W QCA.A/=FDQC.A/! Autbr.DHR.A//:

We proceed to apply the general theory to the case of 1D spin systems with fusion
categorical symmetry. Categorical symmetry can be formalized either in terms of
matrix product operators (MPOs) or weak Hopf algebra actions. In either case, we
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can realize the quasi-local algebra of symmetric operators as a net over Z, where the
local algebras are endomorphisms of tensor powers of an objectX internal to a unitary
fusion category D . Recall that Z.D/ denotes the Drinfeld center of D .

Theorem C. Let D be a unitary fusion category, and suppose thatX 2D is strongly
tensor generating. Then, the net A over Z � R of tensor powers of X satisfies (weak)
algebraic Haag duality, and DHR.A/ Š Z.D/ as braided C*-tensor categories. In
particular, there exists a canonical homomorphism

DHR W QCA.A/=FQDC.A/! Autbr.Z.D// Š BrPic.D/:

Furthermore, if X is a characteristic object2, then the image of DHR contains the
subgroup Out.D/ � Autbr.Z.D//.

The equivalence of the DHR category with the Drinfeld center generalizes the
main result of [74] from the context of Hopf algebra symmetries to general fusion cat-
egorical symmetry. This family of categorical nets was recently studied from a phys-
ical perspective in [65, 66]. In these works, bounded spread isomorphisms between
nets are constructed from categorical data which implement duality transformations
on symmetric Hamiltonians using matrix product operators. A key role is played by
their notion of topological sector, which we expect to be closely related to our DHR
bimodules.

Our analysis of DHR.A/ makes heavy use of the techniques of subfactor theory
[34,56,58,82] recently translated to the C*-context [17,18] (see Section 4.1). We refer
the reader to [51, 61, 74] for a related analysis of 1D spin systems from a subfactor
point of view.

One of the most remarkable results in the theory of QCA is that the group QCA/
FDQC of an ordinary spin system is abelian, even without adding ancilla [37]. As a
corollary of our results, we will see that in the symmetric case this is not true. First,
consider an ordinary spin system, where the local Hilbert space is C2 with the Z=2Z

spin-flip symmetry. We partition the system into adjacent pairs and coarse grain so
that the local Hilbert space is

K WD C2
˝C2;

and the group is Z=2Z � Z=2Z acting on K by a “double spin-flip”.

Corollary D. For the double spin-flip Z=2Z �Z=2ZÕ C2 ˝C2 on-site symmetry,
the group of symmetric QCA modulo symmetric finite-depth circuits contains S3 and
in particular is non-abelian.

2We call an object characteristic if it is fixed up to isomorphism by any monoidal autoe-
quivalence.
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It is clear that DHR is not a complete invariant for QCA up to finite-depth circuits
even in 1D. Indeed, for the case of the trivial categorical symmetry, this is an ordinary
spin system and our invariant is trivial. However, the group QCA/FDQC is a highly
non-trivial subgroup of Q�, with isomorphism given by the GNVW index [43]. How-
ever, we believe the action on the DHR category will be the crucial component beyond
index theory for any general classification scheme for symmetric QCA.

Finally, while we have motivated our DHR theory with applications to understand-
ing isomorphisms between quasi-local algebras with bounded spread, we anticipate
many further applications. For example, for any state � on a quasi-local algebra A,
the superselection category of � is a module category over DHR.A/, opening the
door to an intrinsically categorical (rather than analytic) treatment of superselection
theory of states for symmetric nets. In another direction, we believe that discrete nets
of C*-algebras over a (sufficiently regular) fixed lattice in Rn should assemble into
a symmetric monoidal nC 2 category, with the n D 1 case being a discrete version
of the symmetric monoidal 3-category of coordinate-free CFTs [4–6]. The DHR cate-
gory of a net A we consider here should then arise as�nC1.A/ in the nC 2 category.

2. Discrete nets of C*-algebras

In this section, we introduce our general mathematical framework, which is a straight-
forward “AQFT-style” extension of the usual axioms for abstract spin systems as
found, for example, in [13]. These mathematical objects are meant to axiomatize the
algebras of local operators of any kind of discrete quantum field theory, which simul-
taneously encodes both local observables and local unitaries. The version of discrete
metric space that we found most appropriate for our framework is shown in the fol-
lowing.

Definition 2.1. We say a countably infinite metric space L has bounded geometry if,
for any R � 0, there exists an S with jBR.x/j � S for all x 2 L.

In the above definition, we use the notation BR.x/ to denote the (closed) ball of
radius R about the point x. Also, note that, in the above definition, we are assuming
our space to be countably infinite. Examples include Cayley graphs of infinite, finitely
generated groups (or more generally path metrics on graphs with bounded degree) and
discrete subsets of Riemannian manifolds with bounded sectional curvature. Bounded
geometry spaces play an important role in the study of large-scale geometry (see [75]).

We denote the poset of finite subsets ordered by inclusion in L by F .L/ and the
poset of balls ordered by inclusion by B.L/. These will be the fundamental “small
regions” in our discrete QFT.
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Definition 2.2. A discrete net of C*-algebras consists of an infinite bounded geome-
try metric space L, a unital C*-algebra A (called the quasi-local algebra), and a poset
homomorphism from F .L/ to the poset of unital C*-subalgebras of A ordered by
inclusion, denoted by F 7! AF , subject to the following conditions.

(1) If F \G D ¿, then ŒAF ; AG � D 0.

(2)
S
F 2F .L/AF is dense in A.

To simplify the notation, we will often simply denote a discrete net in terms of its
quasi-local algebra A, with the additional structure of the poset homomorphism from
finite subsets of L to unital subalgebras of A implicit additional structure.

We note that we can naturally extend our poset homomorphism from the poset of
finite subsets to P .L/, the collection of all subsets of L, as follows.

For any M � L, define

AM WD C*h¹x 2 AF W F 2 F .L/ and F �M ºi:

In other words, AM is the C* subalgebra of A generated by the algebras AF , where F
ranges over finite subsets of M . The two requirements in the definition for a discrete
net now hold when replacing F .L/ with P .L/.

We can also use other data to generate a net. For example, we may have a poset
homomorphism from the poset B.L/ of balls in L to subalgebras of A, and we can
extend this to be defined on P .L/ (and hence on F .L/) in the same way. In practice,
this is usually how we will do things, but there is nothing really special about balls,
and other types of standard regions (e.g., rectangles) work equally as well.

Example 2.3 (Spin systems). The fundamental family of examples are the nets of
spin observables. Let L be an arbitrary metric space with bounded geometry. Fix a
positive integer d and define Ad to be the UHF algebraMd1 Š˝x2LMd .C/, where
here Md .C/ denotes the algebra of d � d matrices. For each finite subset in F .L/,
we set AdF WD ˝x2FMd .C/ � A

d . This clearly satisfies the axioms of a discrete net.
For an extensive exposition on this class of examples, see [13].

Example 2.4 (Symmetric spin systems). Suppose that we start with a spin system A

over L equipped with a global, onsite symmetry G. More specifically, suppose that
we have a homomorphism G ! Aut.Md .C//, where d is the dimension of the on-
site Hilbert space. Then, by taking the infinite tensor product, this defines a global
symmetry on Ad which preserves the local subalgebras. We set AG to be the algebra
of operators invariant under the G action, and for any ball F 2 B.L/, we set AGF WD
.AdF /

G . This assembles into a discrete net over L as discussed above and serves as
the motivating example of a discrete net that is of physical interest but not an ordinary
spin system. By forcing invariance underG, we are implementing local superselection
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sectors. One of the goals of this paper is to give a model-independent formulation of
these superselection sectors via a DHR category.

There are many generalizations of group symmetry that are considered in the con-
text of spin systems. For example, in 1D we can have fusion categorical (or weak
Hopf algebra) symmetries, and taking invariant local operators gives us a new net.
We will study such examples in depth in Section 4. In the world of AQFT, taking the
net of operators invariant under a global symmetry is sometimes called gauging the
global symmetry, or applying the orbifold construction. We encourage the reader to
think of an abstract discrete net as a gauging of a spin system by some kind of (pos-
sibly generalized) global symmetry so that the elements in AF are the operators that
are invariant under a global symmetry.

Example 2.5 (Boundaries of commuting projector systems). Consider a commuting
projector Hamiltonian an on the regular lattice Zn. Consider the half-lattice Zn � 0,
which has a boundary lattice equivalent to Zn�1. Define a net of algebras on Zn�1

consisting of operators localized near the boundary and cut down by the projection
P onto the bulk ground state, similarly to [45]. Modulo some technical details, this
assembles into a net of “boundary algebras” which can have non-trivial local super-
selection sectors. Applying the DHR construction from Section 3 to the boundary
quasi-local algebra yields a braided tensor category, which should correspond to the
topological order of the bulk theory. This is a concrete manifestation of a “bulk-
boundary correspondence” in the setting of topological codes. We will clarify this
story in future work.

For any subset F 2 P .L/ and R � 0, we define its R-neighborhood as

NR.F / WD ¹x 2 L W d.x; F / � Rº:

A property that may be satisfied by discrete nets that will sometimes be useful is
the following.

Definition 2.6. A discrete net is boundedly generated if there exists a T � 0 such that
every AF is generated by its subalgebras ¹AG W G � F and diam.G/ < T º.

This condition guarantees that the algebra is generated “uniformly locally”. This
is a weak version of an additivity-type axiom in AQFT. We do not need to assume it
for any technical results, but it is a nice property that the nets in our examples will
always satisfy.

We now move on to define a technical condition that will be fundamental for
building a braiding on discrete DHR categories. Recall that if B � A is a subset of
the algebra A, the centralizer of B in A is defined as

ZA.B/ WD ¹x 2 A W Œx; y� D 0 for all y 2 Bº:
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Definition 2.7 (Cf. [74, Definition 2.3]). A discrete net A satisfies the following.

(1) Weak algebraic Haag duality if there exists R;D � 0 such that for any F 2
B.L/ of radius U � R about the point x 2 L, ZA.AF c / � AG , where G 2
B.L/ is the ball about x of radius U CD. Specific choices of R and D are
called duality constants.

(2) Algebraic Haag duality if it satisfies weak algebraic Haag duality withDD 0.
In this case, ZA.AF c / D AF .

Remark 2.8. Algebraic Haag duality is a version of the usual Haag duality from
AQFT [44], with the major difference that we are only asking for the relative com-
mutant of the AF c in A to be AF , rather than the commutant in a larger B.H/ for
some global Hilbert space H . Weak algebraic Haag duality is inspired by the weak
Haag duality of Ogata, used to derive braided categories in the context of topologi-
cally ordered spin systems [76]. All of our examples of interest satisfy algebraic Haag
duality, but the weaker version has the added theoretical advantage of being invariant
under isomorphisms with bounded spread, which we show below. We thank Pieter
Naaijkens, David Penneys, and Daniel Wallick for discussions on the related topic
of topologically ordered spin systems, where a similar version of weak Haag duality
emerged naturally.

Conceptually, weak algebraic Haag duality gives us a powerful tool to verify an
operator being localized in a finite region by checking that it commutes with all oper-
ators localized in the complement.

2.1. Bounded spread isomorphisms and QCA

Definition 2.9. For two discrete nets A and B over the metric space L, a �-isomor-
phism ˛ W A! B of quasi-local algebras has bounded spread if there exists an R � 0
such that for any F 2 F .L/, ˛.AF / � BNR.F /, and ˛�1.BF / � ANR.F /.

Definition 2.10. For a fixed infinite metric space L with bounded geometry, NetL is
the groupoid whose

(1) objects are discrete nets over L,

(2) morphisms NetL.A;B/ consist of �-isomorphisms ˛ WA! B such that ˛ has
bounded spread.

In many examples, ˛.AF /� BNR.F / for all F automatically implies ˛�1.BF /�
ANR.F / (for example, in ordinary spin systems [3]).

Proposition 2.11. The property of weak algebraic Haag duality is invariant under
bounded spread isomorphism.
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Proof. Suppose that A satisfies weak algebraic Haag duality, with constants R and
D, and suppose that ˛ W A! B is a *-isomorphism with spread at most T . We claim
that B satisfies weak algebraic Haag duality with constants R;D C 2T . Let F be a
ball of radius U � R about some point x. Then, set F 0 to be the corresponding ball of
radius U C T and F 00 the ball of radius U C T CD. Then, A.F 0/c � ˛�1.BF c /, so

˛�1.ZB.BF c // D ZA.˛
�1.BF c //

� ZA.A.F 0/c /

� AF 00 :

Therefore,
ZB.BF c / � ˛.AF 00/ � BG ;

where G is the ball of radius U C 2T CD about x, proving the claim.

Definition 2.12. The group of quantum cellular automata on a net A is defined to be
NetL.A;A/. We denote this group by QCA.A/.

Quantum cellular automata (QCA) of spin systems have recently been extensively
investigated in the physics literature. We will say some words about QCA from a phys-
ical viewpoint in the next section. The easiest examples of quantum cellular automata
are finite-depth quantum circuit. Let A be a discrete net of C*-algebras. A depth one
quantum circuit in A is a QCA constructed from the following data.

• ¹Fiºi2I is a partition of L by finite sets with uniformly bounded diameters.

• ¹ui 2 AFi º is a choice of unitaries.

From this data, we define an automorphism of the quasi-local algebra A. Identify I
with the natural numbers N (which is possible since we assumed that L is countably
infinite), and defineGn D

Sn
iD1Fn. Set vn WD

Qn
iD1 ui 2 AGn . Then, consider ˛n WD

Ad.vn/ 2 Aut.A/. For any finite subset F , let n0 be the smallest natural such that
F � Gn0 . Then, for every n � n0, if x 2 AF , we have ˛n.x/ D ˛n0.x/. We define
˛v.x/ WD limn ˛n.x/, which stabilizes pointwise, thus giving a �-automorphism on
the union of local algebras. Since there is a unique C*-norm on any increasing union
of finite-dimensional C*-algebras, this extends to a �-automorphism of the quasi-local
algebra. We call automorphisms constructed in this way depth one quantum circuits.

In practice, we can simply write

˛.x/ WD
�Y
i2I

vn

�
x
�Y
i2I

v�n

�
;

which makes sense for any local operator x 2 AF , since all but finitely many of the
vn will commute with x. Also, note that the spread of a depth one circuit is bounded
by the largest diameter of a set in the underlying partition.
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Definition 2.13. An automorphism ˛ 2 QCA.A/ is called a finite-depth quantum
circuit if ˛ D ˛1 ı ˛2 � � � ı ˛n, where each ˛i is a depth one circuit. We denote the set
of finite-depth circuits by FDQC.A/.

Proposition 2.14. If ˛ 2 NetL.A;B/ and ˇ 2 FDQC.A/, then

˛ ı ˇ ı ˛�1 2 FDQC.B/:

Proof. Let ˇ 2 FDQC.A/ be depth one, and ˛ 2 NetL.A;B/ with spread at most R.
Let F D ¹Fi 2 F .L/ºi2I be a collection of finite sets corresponding to ˇ and T � 0
such that diam.Fi / � T . Let ui 2 AFi the corresponding unitaries implementing ˇ.

Consider the graph G with vertex set I , defined by declaring i adjacent to j if
N3R.Fi / \ Fj ¤ ¿. This relation is symmetric. Clearly, the degree of each vertex
is finite. We claim that, in addition, the degree is uniformly bounded. Indeed, since
each N3R.Fi / is contained in a ball of radius T C 3R of any point in Fi , by the
bounded geometry assumption there exists an S depending only on T C 3R such that
jN3R.Fi /j � S for all i . Therefore, the number of distinct j such that

N3R.Fi / \ Fj ¤ ¿

is bounded by S . In particular, the degree of G is uniformly bounded by S .
We claim that there is a vertex coloring with a finite number of colors. Indeed,

for every finite subgraph G0 � G, the degree is also bounded by S , so utilizing the
greedy coloring algorithm, we can color G0 with S C 1 colors. By the De Bruijn–
Erdős theorem [24], this implies that G can be colored S C 1 colors. Choose such a
coloring.

For each color a 2 ¹1; 2; : : : ; S C 1º, define Ia as the set of vertices colored a.
Consider the family Ga D ¹Gi WD NR.Fi / 2 F W i 2 Iaº. We can extend this trivially
to a partition by adding singletons. Note that since adjacent vertices have different
colors, it is clearly the case that Gi \ Gj D ¿ for any Gi ; Gj 2 Ga. Hence, the
elements of each family are pairwise disjoint. For i 2 Ia, define wi WD ˛.ui / 2 BGi
(or wi D 1 for the added singletons), and let ˇa denote the corresponding depth one
circuit. Note that since ui commutes with uj , then ˛.ui / commutes with ˛.uj /. Then,
we see for any local operator x 2 BF that

˛ ı ˇ ı ˛�1.x/

D ˛
��Y

ui

�
˛�1.x/

�Y
u�i

��
D

�Y
˛.ui /

�
x
�Y

˛.ui /
�
�

D

� Y
i12I1

wi1

�
� � �

� Y
iSC12ISC1

wiSC1

�
x
� Y
iSC12ISC1

w�iSC1

�
� � �

� Y
i12I1

w�i1

�
D ˇ1 ı : : : ı ˇSC1.x/:
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The above proposition shows that FDQC behaves like a normal subgroup of the
groupoid NetL (and, in particular, is a normal subgroup of the automorphism group of
any object). We define the equivalence relation �FDQC on NetL.A;B/ by ˛ �FDQC ˇ

if ˇ�1˛ 2 FDQC.A/, or, equivalently, if ˛ˇ�1 2 FDQC.B/. By the previous lemma,
composition gives a well-defined associative operation on equivalence classes. This
leads to the following definition.

Definition 2.15. NetL=FDQC is the groupoid whose

• objects are nets of C*-algebras over L,

• morphisms are NetL.A;B/=�FDQC,

• composition is induced from NetL.A;B/.

If we have a groupoid homomorphism from NetL which contains FDQC in the
kernel of all the automorphism groups of all the objects, then this descends to a well-
defined groupoid morphism from NetL=FDQC. This restricts to a homomorphism
from QCA.A/=FDQC.A/ for any A.

Remark 2.16. It would be interesting to define a version of FDQC.A/, where the
elements are the actual sequence of unitaries rather than the resulting automorphisms.
One could imagine defining a unitary 2-group which could be characterized by an
anomaly Œ!� 2 H 3.QCA.A/=FDQC.A/; U.1// in the sense of [54].

2.2. Physical interpretation of QCA

In this subsection, we will discuss two physical interpretations of the group of QCA
and the group QCA/FDQC. These correspond to (at least) two natural ways to view
QCA of ordinary spin systems from a physical perspective.

The first arises from viewing the structure of a discrete net as a host for the moduli
space of local (symmetric) Hamiltonians. In particular, any local Hamiltonian is built
from terms living in finite regions with globally bounded diameter. Thus, an isomor-
phism between two nets

˛ W A! B

which has bounded spread maps local Hamiltonians to local Hamiltonians. In particu-
lar, the group QCA.A/ can be viewed as the group of symmetries of the moduli space
of local Hamiltonians, which have the potential to implement “dualities” between
a priori very different looking Hamiltonians [1, 2, 29, 65, 66]. This point of view
is particularly interesting in the context of symmetric nets. In this case, QCA are
symmetries of the space of local symmetric Hamiltonians and may implement equiv-
alence between symmetric Hamiltonians that have no non-symmetric counterpart;
i.e., the symmetric QCA cannot be extended to an ordinary QCA without sacrificing
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invertibility. We can use QCA to define a natural equivalence relation on local Hamil-
tonians. We declare two Hamiltonians equivalent if they are in the same orbit under
the action of QCA. Since states in the thermodynamic limit of a spin system are just
states on the quasi-local algebra, QCA can also be used to define equivalence relations
directly on states themselves without reference to a parent Hamiltonian.

A second perspective is to view a QCA as a discrete-time unitary dynamics [48].
This extends the standard viewpoint on classical cellular automata as discrete-time
updates of configurations to the quantum setting. This class of evolutions retains phys-
ical properties such as local causality and quantum reversibility while dispensing with
the differential equations and local Hamiltonian generator which usually give rise to
these properties. Interest in this perspective emerged alongside the rise of quantum
computing, where discrete-time evolutions are very natural. We note that QCA them-
selves are generally not realizable as time evolutions generated by local Hamiltonians
unless they are circuits but can nevertheless approximate arbitrary local Hamiltonian
evolutions in a certain sense [47]. This partly justifies the study of “strictly local”
QCA which we consider here, as opposed to more general versions of QCA which
have tails that arise from time evolutions of local Hamiltonians.

The role of finite-depth quantum circuits in phases of quantum matter was first
proposed in [20]. The authors argue that a natural way to consider two ground states
of gapped Hamiltonians equivalent is if they are related by a finite-depth circuit,
which gives a definition that is independent of a choice of parent Hamiltonian. This
equivalence relation gives a possible operational definition for “topological phase” of
ground states of gapped Hamiltonians. This can naturally be extended to an equiva-
lence relation on Hamiltonians themselves, where we declare two local Hamiltonians
equivalent if one is conjugate to the other by a finite-depth circuits, which we call cir-
cuit equivalence. Then, it is the group QCA/FDQC which acts by symmetries on the
moduli space of circuit equivalence classes of Hamiltonians. From the perspective of
discrete-time unitary dynamics, it makes sense to consider QCA/FDQC as the group
of topological phases of discrete-time unitary dynamics.

From both of these viewpoints, it makes sense to say two QCA are topologically
equivalent if they differ by a circuit. This leads to the following question.

Problem 2.17. For a given discrete net A, find topological invariants for QCA.A/
and apply them to compute QCA.A/=FDQC.A/.

A complete solution to this problem is given for ordinary spin systems on a 1D
lattice [43]. This index has been extended to higher-dimensional manifolds, with a
complete classification given in 2D [38]. However, it is believed that this index is
insufficient in higher dimensions. Indeed, in three dimensions, there is intriguing evi-
dence that this group should be related to the Witt group of modular tensor categories,
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or, equivalently, invertible fully extended 3+1 D TQFTs [46, 48, 49, 85]. In general, it
is known that the group QCA=FDQC for ordinary spin systems is abelian [37] 3.

One of the main results of our paper is that even in 1D, in the symmetric case,
the group QCA.A/=FDQC.A/ of an arbitrary net is generally not abelian. Hence, we
will need invariants beyond a numerical index theory to classify these groups, which
is one motivation for the development of DHR theory for symmetric spin systems.

3. Discrete DHR theory

In this section, we develop a version of the DHR theory of superselection theory
suitable for abstract spin systems. We note that the usual DHR theory is based on a
distinguished Hilbert space representation (the “vacuum” or “ground state” represen-
tation) and proceeds to study superselection sectors as other representations which
“look like” the vacuum representation outside any small region. This approach has
been useful in the study of topologically ordered spin systems [16, 70, 71, 76, 89].
However, this approach is heavily state dependent and is not well suited for the study
of QCA, which depend only on the quasi-local algebra.

In this section, we introduce a version of DHR theory in which the role of states
is replaced by ucp (unital completely positive) maps on the quasi-local algebra, and
the role of Hilbert space representations is replaced by bimodules. Physically, we can
think of this as a superselection theory of quantum channels, rather than a superselec-
tion theory of states. The DHR category we define is then the category of superselec-
tion sectors of the identity channel. To motivate this conception, we first heuristically
review the connection between states, representations, and superselection theory.

In the study of quantum spin systems, we are interested in states in the thermody-
namic limit (see [13, 72]), which are modeled by states on the quasi-local algebra A.
Recall a state on the C*-algebra A is simply a positive linear functional � W A! C

such that �.1/D 1. In practice, these often arise as ground states or equilibrium states
of a local Hamiltonian, but from the quantum information perspective, it is desirable
to study these states independently of their origin.

Given a state on A, we can build a Hilbert space of local perturbations, sometimes
called a “sector”. This is achieved by applying the Gelfand–Naimark–Segal (GNS)
construction. We start by representing the state � formally as the vector state �� . We

3We caution the reader that many of the results beyond 1D use more general notions of
equivalence of QCA, in particular stable equivalence (adding ancilla locally) and blending. It
is not entirely clear what the right version of these notions is in the symmetric setting, since
abstract nets of C*-algebras are less flexible than ordinary spin systems.
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introduce other vectors to this Hilbert space by formally adding local perturbations of
�, yielding the vectors space ¹a�� W a 2 Aº. Intuitively, these are the states accessible
from � by the application of local operators. The inner product of any two of these is
defined to be

ha�� j b��i WD �.a
�b/:

We quotient out by the null vectors and complete this to obtain a Hilbert space
denoted L2.A; �/. This gives a concrete Hilbert space realization of all local pertur-
bations of �, which is acted upon by A.

We are thus led to extending the convex set of states to the W*-category Rep.A/,
whose objects are Hilbert space representations of A, and morphisms are bounded
linear operators intertwining the actions. The advantage of this approach is that it
allows us to consider all local perturbations of a state globally, as an object in the
category Rep.A/. Thus, macroscopic properties of states, which should be invariant
under local perturbations, should be expressible as properties of the corresponding
GNS representation, opening the door to applying category theory in the study of
quantum many-body systems.

Now, we recall the theory of superselection sectors from the perspective of alge-
braic quantum field theory (see [44]). Given a state � on the quasi-local C*-algebra
A, a representation H is localizable with respect to � if, for any (sufficiently large)
ball F ,

H jAFc � L
2.A; �/jAFc :

Here, � denotes quasi-equivalence of representations of a C*-algebra [12], but
morally it is useful to think of “equivalence”4. This condition is often called the
superselection criterion. We also note that we are using “balls” here primarily for
expository purposes, but this is not essential. For example, in applications to topo-
logically ordered spin systems in 2+1 dimensions, infinite cones are the appropriate
regions to use.

We interpret a localizable representation as a sector (or collection of states related
by local perturbations) that “looks like” the vacuum sector outside any small region.
In other words, the measurable difference from the ground state representation can be
localized in any small (but non-empty) region. By zooming out and squinting our eyes,
it is reasonable to consider these objects as topological point defects of the state �.
They are considered “topological” because the region F of localization can be chosen
arbitrarily, and “point” because balls of finite radius look like points from infinity.

We define the category of superselection sectors Rep�.A/ as the W * category of
representations satisfying the superselection criteria. In most applications of supers-
election theory, one proceeds to make some technical assumptions which allow for

4Indeed, in many cases, equivalence is automatically implied.
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the construction of a braided monoidal structure on this category. This plays a cru-
cial role in many aspects of chiral conformal field theory and topologically ordered
spin systems. Building these structures is highly non-trivial, and it is the study of the
braided monoidal structure that we refer to as DHR theory, after the seminal work of
Doplicher, Haag, and Roberts [25–27].

In most manifestations of this story, there is a basic state as a fundamental part
of the data: in AQFT, it is usually part of the definitions (the vacuum state), and in
topologically ordered spin systems, it arises as the ground state of a Hamiltonian.
Superselection theory is then considered relative to that state.

The idea will be to extend the above discussion by replacing states with quantum
channels. Suppose now that we have two discrete nets of algebras, A and B , over the
same metric space L. Conceptually, we make the following substitutions.

• States on A 7! ucp maps (i.e., quantum channels) from A to B .

• Representations of A 7! A-B bimodules (right correspondences).

This analogy is well known in the theory of operator algebras. Indeed, this is more
than an analogy: if we substitute B D C, we recover states and Hilbert space repre-
sentations on the nose. Recall that a ucp map � W A! A is a completely positive map
with �.1/ D 1. Thus, the state-Hilbert space picture is a special case of the ucp map-
bimodule correspondence. In quantum information theory, ucp are called “quantum
channels”, being the most general type of operation on a quantum system mapping
states to states (by composing).

Like states, ucp maps have an analog of the GNS construction obtained by taking
local perturbations, but instead of producing a Hilbert space representation of A, they
result in a rightA-B correspondence (which should be viewed as a C*-algebra version
of “bimodule”; for a detailed definition, see Section 3.1). This works as follows.

Let � W A! B be a ucp map. We build a vector space, starting with the channel
�, represented by the vector �� as in the GNS construction. Then, the vector space
will consist of local perturbations of this channel. We can perturb by operators from
A on the left and operators from B on the right so that we obtain vectors of the form
¹a��b W a 2 A; b 2 Bº.

Then, we consider a (right) B-valued inner product:

ha��b j c��d i WD b
��.a�c/d

Modding out by the kernel and completing, we obtain a right A-B correspon-
dence, which we call L2.A�B;�/, directly generalizing the GNS construction. This
strongly suggests that the analog of a Hilbert space representation for quantum chan-
nels should be a (right) A-B correspondence.

From this perspective, it seems plausible that we should be able to define a super-
selection category of a quantum channel rather than of a single state. Here, we have
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the added advantage that, unlike Hilbert space representations, correspondences nat-
urally have a monoidal product (or more precisely, C*-algebras and right correspon-
dences form a 2-category). Furthermore, on any given quasi-local algebra, there is
a canonical quantum channel: the identity map. This should then give a canonical,
state-independent superselection category for any net of C*-algebras, which naturally
has the structure of a C*-tensor category.

We proceed to give a formal definition of this superselection category for a net
A. This will consist of “localizable” bimodules and will naturally assemble into a
C*-tensor category. Since this is fairly close in spirit to the DHR perspective of endo-
morphisms on the quasi-local algebra, we will call this category DHR.A/. First, we
give some background definitions on bimodules of C*-algebras in the next section.

3.1. Bimodules of a C*-algebra

Let A be a (unital) C*-algebra. A (right) Hilbert A-module consists of a vector space
X , which is a right A module (algebraically), together with a sesquilinear map

h� j �i W X �X ! A

(conjugate linear in the first variable, linear in the second) satisfying the following.

(1) hx j yai D hx j yia.

(2) hx j xi � 0, with equality if and only if x D 0.

(3) hx j yi� D hy j xi.

(4) The norm kxk WD khx j xik
1
2 is complete.

Given two Hilbert A-modules X and Y , an adjointable operator from X to Y is
an A-module intertwiner T W X ! Y such that there exists an A-module intertwiner
T � W Y ! X with hT .x/ j yiY D hx j T �.y/iX . The space of adjointable operators
is denoted by L.X; Y /. L.X;X/ is a unital C*-algebra.

If A is a C*-algebra, an A-A bimodule is a Hilbert A-module X , together with
a unital *-homomorphism A! L.X; X/. We express this homomorphism as a left
action, either with standard left multiplication notation, e.g., ax, or with triangles,
e.g., a F x. In the literature, what we are calling bimodules are usually called (right)
correspondences, and we will use the terms interchangeably.

An intertwiner between bimodules X and Y is an element f 2 L.X; Y / such
that f .ax/ D af .x/. (Note that f 2 L.X; Y / already implies that f intertwines the
right A action.) The collection of all bimodules and intertwiners assembles into a
C*-category which we call Bim.A/.

In fact, Bim.A/ has the structure of a C*-tensor category. Recall that C*-tensor
categories are C*-categories (see, e.g., [41]) with a linear monoidal structure such
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that the � operation is compatible with ˝, and the unitors and associators are unitary
isomorphisms. For further details, see [18, 64] and references therein.

To define the tensor product on Bim.A/, we consider the A-valued sesquilinear
form

.X ˝ Y / � .X ˝ Y /! A

defined by
hx1 ˝ y1 j x2 ˝ y2iX�AY WD hy1 j hx1 j x2iX y2iY :

Taking the quotient by the kernel of this form and then completing gives a new A-A
bimodule denoted by X �A Y or simply X � Y if the A subscript is clear from
context. We will typically denote the image of the simple tensor x˝ y insideX �A Y
by x � y. Then, the left and right actions of A are simply given on simple tensors by

a.x � y/b WD ax � yb:

Similarly, if f W X1 ! X2, g W Y1 ! Y2 are bimodule intertwiners, then

f � g W X1 � Y1 ! X2 � Y2
.f � g/.x � y/ WD f .x/� g.y/

gives a well-defined bimodule intertwiner. The obvious “move the parentheses map”
from .X � Y /� Z Š X � .Y � Z/ is a natural bimodule intertwiner and satisfies
the pentagon identity. Thus, Bim.A/ is canonically equipped with the structure of a
C*-tensor category. For further details on the categorical structure, see [18, Section
2].

An important ingredient for us is projective bases for correspondences. In the
context of subfactors, these were first introduced by Pimsner and Popa [78], and for
inclusions of C*-algebras and bimodules by Watatani [90] and Kajiwara and Watatani
[59], to study the Jones index [57]. From an algebraic perspective, these are straight-
forward analytic extensions of projective bases for modules of associative algebras;
hence, for this reason, we will call them projective bases here.

Definition 3.1. LetX be a right HilbertA-module. A projective basis is a finite subset
¹biº

n
iD1 � X such that, for all x 2 X ,X

i

bi hbi j xi D x:

A bimodule is called right finite if there exists a projective basis.

It is easy to see that a right Hilbert module admits a projective basis if and only
if it is finitely generated and projective as an A module (hence the terminology).
A bimodule is right finite if and only if it has an amplimorphism model. These are built
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from (not necessarily unital) homomorphisms � W A!Mn.A/, with the bimodule X
given by �.1/An, with left action of � and right action diagonal. This correspondence
is described, for example, in the II1 factor context in [86] or more categorically in [19,
Remark 2.12]. Amplimorphisms are closer to the picture of endomorphisms typically
used in AQFT.

The collection of right finite bimodules is a full C*-tensor subcategory of Bim.A/,
since if ¹biº and ¹cj º are projective bases for X , Y , respectively, then ¹bi � cj º is a
projective basis for X � Y . If X has a projective basis¹biº, then X is the A-linear
span of the ¹biº. In particular, if Y is another right Hilbert A-module and f W X ! Y

is a right A-module homomorphism, then f is uniquely determined by its action on
basis elements.

3.2. DHR functor

Let A be a discrete net over the countable bounded geometry metric space L. Recall
that, for any finite region F ,AF c is the C*-subalgebra ofA generate by allAG , where
G 2 F .L/ and G \ F D ¿.

Definition 3.2. Let F 2 F .L/. We say that a right finite correspondence X is local-
izable in F if there exists a projective basis ¹biºniD1 such that for any a 2 AF c , for
each i ,

abi D bia:

Definition 3.3. Suppose that A is a discrete net. Then, we say that a right finite cor-
respondence X is localizable if there exists an R � 0 such that X is localizable in
all balls of radius at least R. We denote the full C*-tensor subcategory of localizable
right finite correspondences in Bim.A/ by DHR.A/

For a localizable bimodule, we say that the R in the definition is a localization
radius of X . Since we can replace R with any larger R, we can assume, without loss
of generality, that the localization radius is a positive integer.

Let C*-TensCat be the groupoid defined as follows.

• Objects are C*-tensor categories.

• Morphisms between C*-tensor categories are unitary equivalences between C*-
tensor categories up to unitary monoidal equivalence.

• Composition is induced from composition of equivalences.

Theorem 3.4 (Theorem A). The assignment A 7! DHR.A/ extends to a functor

DHR W NetL ! C*-TensCat:
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The corresponding homomorphism

DHR W QCA.A/! Aut˝.DHR.A//

contains FDQC.A/ in its kernel.

Proof. First, note that, for any isomorphism of C*-algebras ˛ W A! B , we have a
canonical equivalence ˛� W Bim.A/! Bim.B/. Here, the A-A bimodule X is sent to
˛�.X/2Bim.B/, where ˛�.X/DX as a Banach space, withB-B bimodule structure
defined for a; b 2 B , x; y 2 X by

a F˛ x G˛ b WD ˛
�1.a/x˛�1.b/;

hxjyi˛�.X/ WD ˛.hxjyiX /:

This extends to a �-functor by defining, for any f W X ! Y ,

˛�.f / W ˛�.X/ 3 x 7! f .x/ 2 ˛�.Y /:

There is an obvious unitary monoidal structure on ˛�, with tensorator

�˛X;Y W ˛
�.X/�B ˛�.Y / Š ˛�.X �A Y /
�˛X;Y .x �B y/ WD x �A y:

Also, it is clear from the definition that ˛� ı ˇ� Š .˛ ı ˇ/�.
Now, the claim is that if A and B are nets over L, X is a localizable bimodule

over A with localization radius R, and ˛ 2 NetL.A; B/ such that ˛�1 has spread at
most T , then ˛�.X/ is localizable in B , with localizable radius R C T . To see this,
suppose that F is a ball of radius greater thanRC T , and let ¹biº be a projective basis
inX localizing in the corresponding ball of radiusR. Then, since the spread is at most
T , clearly ¹biº is a projective basis for ˛�.X/ which is localizing in F , proving the
claim.

We can define
DHR.˛/ WD ˛�jDHR.A/:

Now, to show the second part of the theorem, it suffices to show that for any depth
one circuit ˛ 2 NetL.A;A/DQCA.A/, DHR.˛/ is monoidally naturally isomorphic
to the identity. Suppose that F D ¹Fiºi2J is a partition of L with uniformly bounded
diameter T , and ui 2 AFi a choice of unitaries with

˛.a/ WD
�Y
i2J

ui

�
a
�Y
i2J

u�i

�
:

For any finite subset F � L, define XF WD ¹x 2 X W ax D xa for all a 2 AF c º.
Note that since X is localizable, the union

S
F is a ball XF � X is dense. (In fact, we
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can take the union over any increasing sequence of balls.) For any F � L, we set
JF D ¹i 2 J W Fi \ F ¤ ¿º.

We define the map
�X W ˛�.X/! X

by setting, for any x 2 XF ,

�X .x/ D
�Y

i

u�i

�
x
�Y

i

ui

�
D

� Y
i2JF

u�i

�
x
� Y
i2JF

ui

�
D

� Y
i2JG

u�i

�
x
� Y
i2JG

ui

�
for any F � G finite:

This is clearly a norm isometry on this dense subspace and thus extends to a uniquely
defined linear map. To check that it is a bimodule intertwiner, let a 2 AI , b 2 AK , and
x 2 XM . Set N D I [K [M :

�X .a F˛ x G˛ b/

D

� Y
i2JN

u�i

��� Y
i2JI

ui

�
a
� Y
i2JI

u�i

�
x
� Y
i2JK

ui

�
b
� Y
i2JK

u�i

��� Y
i2JN

ui

�
D

� Y
i2JN

u�i

��� Y
i2JN

ui

�
a Ad

� Y
i2JN

u�i

�
.x/b

� Y
i2JN

u�i

��� Y
i2JN

ui

�
D a

� Y
i2JN

u�i

�
x
� Y
i2JN

ui

�
b

D a �X .x/ b:

Note that the adjoint of �X is

��X .x/ D
�Y

i

ui

�
x
�Y

i

u�i

�
D ��1X .x/:

To see that the family � D ¹�XºX2DHR.A/ is a monoidal natural transformation, we
first check naturality. For any bimodule intertwiner f W X ! Y , note that, for any
finite set F , if x 2 XF , then f .x/ 2 YF . Then, we compute that

f .�X .x// D f
�� Y

i2JF

u�i

�
x
� Y
i2JF

ui

��
D

� Y
i2JF

u�i

�
f .x/

� Y
i2JF

ui

�
D �Y .f .x//

D �Y .˛�.f /.x//:
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In the above computation, we have used the fact that the finite product .
Q
i2JF

ui /2A

so is intertwined by f . Finally, for monoidality of �, let x 2 XF and y 2 YG . Choose
some H 2 B.L/ with F [G � H . Then,

�˛X;Y .�X � �Y /.x � y/ D �X .x/� �Y .y/

D

� Y
i2JH

u�i

�
x
� Y
i2JH

ui

�
�
� Y
i2JH

u�i

�
y
� Y
i2JH

ui

�
D

� Y
i2JH

u�i

��
x � y

�� Y
i2JH

ui

�
D �X�Y .�

˛
X;Y .x � y//:

Here, we have again used the fact that the finite product .
Q
i2JH

ui / 2 A and the
tensor product is A middle-linear.

3.3. Constructing the braiding

We now follow the usual DHR recipe to build a braiding on the HDR tensor category.
However, without additional assumptions, we run into problems: braidings may not
exist, or may not be unique. In order to avoid these technicalities, for this paper, we
restrict our attention to lattices in Rn.

Definition 3.5. An n-dimensional lattice is a uniformly discrete subset L � Rn such
that there is a C with d.x;L/ < C for all x 2 Rn. We call C a lattice constant.

For the rest of the section, we will let L be a lattice in Rn with lattice constant C
and A a discrete net on L satisfying weak algebraic Haag duality with duality con-
stants R;D (Definition 2.7). Set T0 WD 2C C 2D C 2R. We proceed to construct a
braiding on DHR.A/.

First, we note an immediate consequence of the definition of weak algebraic Haag
duality.

Corollary 3.6. Suppose that a net satisfies weak algebraic Haag duality with duality
constants R, D. If F 2 B.L/ is a ball of radius U � R about a point x 2 L, ¹biºniD1
is any F-localizing basis of a correspondence X and G is any ball of radius at least
U CD about x, then, for any a 2 AF , hbi j abj i 2 AG .

Proof. It suffices to show that hbi j abj i 2 ZA.AF c /. But for any b 2 AF c , we have
ab D ba, so

hbi j abj ib D hbi j abj bi D hbi j babj i D hb
�bi j abj i

D hbib
�
j abj i D bhbi j abj i:
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Lemma 3.7. Let X; Y 2 DHR.A/, and let .x; y/ 2 L � L with

d.x; y/ > T0 CRX CRY :

Let F DBRX .x/ andGDBRY .y/, and let ¹biº and ¹cj º be F andG localizing bases
for X and Y , respectively. Then, the assignment

P
bi �A cjaij 7!

P
cj �A biaij

gives a well-defined unitary (hence adjointable) operator of right Hilbert modules

u
F;G
X;Y W X �A Y ! Y �A X

independent of the choice of F and G localizing bases.

Proof. First, we check thatD
u
F;G
X;Y

�X
bi � cjaij

�
j u

F;G
X;Y

�X
bi � cjaij

�E
D

DX
cj �A bi aij j

X
cj �A biaij

E
D

X
a�ij hbi j hcj j ckiblialk

D

X
a�ij hbi j blihcj j ckialk

D

X
hcjaij j hbi j blickalki

D

DX
bi � cjaij j

X
bi � cjaij

E
:

In the above computation, we have used the fact that F 0 \G0 D ¿, where F 0 WD
BRXCD.x/ and G0 D BRYCD.y/D 0, together with Corollary 3.6. In particular, this
implies that our linear map uF;GX;Y preserves the kernel in the relative tensor product
and hence is well defined and an isometry of right A-modules.

Computing the adjoint, we see that .uF;GX;Y /
�.cj � bi /D bi � cj D .uF;GX;Y /

�1.cj �
bi /, and thus, uF;GX;Y is a unitary.

Now, suppose that ¹b0iº; ¹c
0
j º are alternative choices for F andG-localizing bases,

respectively, for X and Y . Then, we see that

u
F;G
X;Y .b

0
i � c

0
j / D u

F;G
X;Y

�X
l;k

blhbl j b
0
i i� ckhck j c

0
j i

�
D u

F;G
X;Y

�X
l;k

bl � ckhbl j b0i ihck j c
0
j i

�
D

X
l;k

ck � blhbl j b0i ihck j c
0
j i

D c0j � b
0
i :

Remark 3.8. We henceforth assume that RX � R for all X 2 DHR.A/; otherwise,
we simply replace RX by max¹R;RXº.
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Corollary 3.9. Suppose that U � RX , V � RY , and d.x; y/ > U C V C T0. If
F D BRX .x/, F

0 D BU .x/, G D BRY .y/, G
0 D BV .y/, then uF;GX;Y D u

F 0;G0

X;Y .

Proof. This follows from the previous lemma since bases localized in BRX .x/ are
also localized in BU .x/ (similarly for y, Y , and V ).

Lemma 3.10. Let .x1; y1/; .x2; y2/ 2 L�L satisfy d.xi ; yi / > RX CRY C T0 (and
if nD 1, xi < yi ). Let F DBRX .x1/,G DBRY .y1/, F

0 DBRX .x2/,G
0 DBRY .y2/.

Then,
u
F;G
X;Y D u

F 0;G0

X;Y :

Proof. First, suppose that .x1; y1/ and .x2; y2/ satisfy the property that there exist
ballsH andK of radius at leastRX andRY , respectively, such that the corresponding
ballsH 0 andK 0 with radii increased byD are disjoint, andF [F 0�H andG [G0�
K. Let ¹biº, ¹b0iº, ¹ciº, ¹c

0
iº be F;F 0; G;G0-localizing bases, respectively. Then,

u
F 0;G0

X;Y .bi � cj / D uF 0;G0
�X
l;k

b0lhb
0
l j bi i� c

0
khc
0
k j cj i

�
D

X
l;k

c0k � b
0
lhb
0
l j bi ihc

0
k j cj i

D cj � bi D uF;GX;Y .bi � cj /;

where we have used the fact that hb0
l
j bi i 2 AH 0 and hc0

k
j cj i 2 AK0 .

Now, we claim that, for any pair .x1; y1/ and .x2; y2/ as in the hypothesis of this
lemma, there exists a sequence of .x1; y1/ D .x01; y

0
1/; : : : ; .x

0
n; y
0
n/ D .x2; y2/ with

d.x0i ; y
0
i / > RX C RY C T0 and there exist disjoint balls Hi , Ki whose D exten-

sions H 0i and K 0i are disjoint, and with BRX .x
0
i / [ BRX .x

0
iC1/ � Hi and BRY .y

0
i / [

BRY .y
0
iC1/ � Ki . By the above argument, this will prove the claim. But the continu-

ous version of this claim in Rn is clear, and since our lattice L is C -close to any point
in Rn, the result follows from our assumption that

d.x; y/ > 2C C 2D CRX CRY :

Definition 3.11. For X; Y 2 DHR.A/, define uX;Y D u
F;G
X;Y , where F D BRX .x/,

G D BRY .y/, and d.x; y/ > RX CRY C T0. (In the 1-dimensional case, we assume
x < y.) By the above lemma, this is independent of the choice of .x; y/.

Lemma 3.12. For any X; Y 2 DHR.A/, uX;Y is a bimodule intertwiner.

Proof. Let a 2AF , where F is some ball of radiusU �RX about the point x. Choose
y sufficiently far away, i.e., d.x; y/� T0 C U CRY (and if n D 1, x < y). Set

G D BRY .y/:
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Then, choose ¹biº and ¹cj º F andG localizing bases forX and Y , respectively. Then,
by Corollary 3.6, hbj j abi i 2 AF 0 , where

F 0 D BUCD.x/ � G
c :

Thus,

uX;Y .abi � ck/ D uX;Y
�X

j

bj hbj j abi i� ck
�

D uX;Y

�X
j

bj � ckhbj j abi i
�

D u
F;G
X;Y

�X
j

bj � ck
�
hbj j abi i

D

X
j

ck � bj hbj j abi i

D ck � abi
D ack � bi
D auX;Y .bi � ck/:

Recall that a unitary braiding on a C*-tensor category is a family of natural iso-
morphisms

uX;Y W X � Y Š Y �X

satisfying coherences called the hexagon identities (see [32, Chapter 8] for an exten-
sive introduction). The next theorem shows that the unitary isomorphisms we have
built satisfy the coherences of a braiding.

Theorem 3.13 (Cf. Theorem B). The family ¹uX;Y W X �A Y ! Y �A Xº defines a
unitary braiding on DHR.A/.

Proof. First, we check naturality of uX;Y . Let f W X ! X 0 and g W Y ! Y 0. We need
to show that

uX 0;Y 0 ı .f � g/ D .g � f / ı uX;Y :

Then, pick .x; y/ such that

d.x; y/ > RX CRY CRX 0 CRY 0 C T0I

set H D BRXCRX0CD.x/ and K D BRYCRY 0CD.y/. Note that H \K D ¿, so AH
commutes with AK .

Let ¹biº, ¹b0iº be BRX .x/, BRX0 .x/-localizing bases for X and X 0, respectively,
and let ¹cj º, ¹c0j º be BRY .y/, BRY .y/-localizing bases for Y and Y 0, respectively.
Then, hb0

l
j f .bi /i 2 AH and hc0

k
j g.cj /i 2 AK by Corollary 3.6.
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It suffices to check naturality for morphisms evaluated on (any) projective basis
elements, and we compute that

uX 0;Y 0 ı .f � g/.bi � cj / D
X
l;k

uX 0;Y 0
�
b0lhb

0
l j f .bi /i� c

0
khc
0
k j g.cj /i

�
D

X
l;k

uX 0;Y 0.b
0
l � c

0
k/hb

0
l j f .bi /ihc

0
k j g.cj /i

D

X
l;k

c0khc
0
k j g.cj /i� b

0
lhb
0
l j f .bi /i

D g.cj /� f .bi /
D .g � f / ı uX;Y .bi � cj /:

Now, we check the hexagon identity. Let X; Y; Z 2 DHR.A/. Choose points
x; y; z 2 L with the distance between any two greater than RX C RY C RZ C T0
such that there is a ball K around z containing BRY .y/ [ BRZ .z/ � K with

K \ BRX .x/ D ¿:

Then, if ¹biº, ¹ciº, ¹diº localize X , Y , Z in BRX .x/, BRY .y/, BRZ .z/, respec-
tively, we have that ¹cj � dkº localizes Y � Z in K. Denoting F D BRX .x/, we
have

.1Y � uX;Z/ ı .uX;Y � 1Z/.bi � cj � dk/ D cj � dk � bi
D u

F;K
X;Y�Z

.bi � cj � dk/

D uX;Y�Z.bi � cj � dk/;

where the last equality follows from Corollary 3.9. This gives us one of the hexagon
identities. The other follows from a similar argument. In the above computation, we
have suppressed the associator, which acts on basis elements

.bi � cj /� dk 7! bi � .cj � dk/:

Corollary 3.14. For a net A over a lattice L � Rn with n � 2, the braiding on
DHR.A/ is symmetric.

Proof. Any pair of points in Rn can be connected to each other in the manner of the
proof of Lemma 3.10. We see that uX;Y D u

F;G
X;Y D u

G;F
X;Y D .uY;X /

�1, where the last

equality follows from the definition of uF;GX;Y .

By the Doplicher–Roberts theorem, any symmetric C*-tensor category with sim-
ple unit is equivalent to Rep.G;z/, where .G;z/ is a supergroup [28]. In particular, the
pair .G; z/ is interpreted as the (global) gauge (super)-group of the theory. In general,
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when we have an abstract net of C*-algebras, we should think of the braided tensor
category DHR.A/ as the representation category of some generalized symmetry G
acting on an ordinary spin system, with A the net of local symmetric operators.

Theorem 3.15 (Cf. Theorem B). If A, B are nets on L satisfying weak algebraic
Haag duality, then, for any ˛ 2 NetL.A;B/, the unitary monoidal equivalence

DHR.˛/ W DHR.A/ Š DHR.B/

is braided.

Proof. Let X;Y 2 DHR.A/. Suppose that ˛ has spread at most S . Choose balls F;G
such that NS .F / \ NS .G/ D ¿. Then, pick F and G localizing bases ¹biº, ¹cj º,
respectively, for X and Y , respectively. Let F 0 D NS .F /, G0 D NS .G/. Then, ¹biº
and ¹ciº are F 0 and G0 localizing bases, respectively, of ˛�.X/ and ˛�.Y /, respec-
tively. Here, we are using the notation ˛� for DHR.˛/ as in the proof of Theorem 3.4.
We compute that

.�˛X;Y /
�
ı ˛�.uX;Y / ı �

˛
X;Y .bi �B cj / D .�

˛
X;Y /

�.u
F;G
X;Y .bi �A cj //

D .�˛X;Y /
�.cj �A bi /

D cj �B bi
D u

F 0;G0

˛�.X/;˛�.Y /
.bi �B cj /

D u˛�.X/;˛�.Y /.bi �B cj /:

Since module maps are determined on projective basis elements, this proves the
claim.

4. 1D spin systems with categorical symmetries

Recall that a unitary fusion category is a semisimple C*-tensor category with simple
unit, duals, and finitely many isomorphism classes of simple objects. Fusion cate-
gories simultaneously generalize finite groups and their representation categories and
have become important tools for understanding generalized symmetries in mathe-
matics and physics [32, 33]. Recently, there has been significant interest in fusion
categorical symmetries on spin chains, part of a larger interest in non-invertible sym-
metry [36]. One motivation is the search for exotic conformal field theories [52, 87].

There are (at least) two equivalent pictures to describe categorical symmetries.

(1) The first way is to have fusion categories act by matrix product operators
(MPOs) [14,15,40,60,61,83]. Mathematically, the data that characterize this
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are described by a module category M for C and an object X 2 C�.M/ in the
dual category [40, 67]. The operators localized on n-sites invariant under this
symmetry are isomorphic to EndC�.M/.X

˝n/.

(2) Equivalently, we can consider a weak C*-Hopf algebra H [10] acting on a
physical on-site Hilbert spaceK of spins [53,68,74], which is a more straight-
forward generalization of on-site group symmetry. Then, K 2 Rep.H/, and
we can consider the n-site Hilbert space K�n, which is equipped with an
action of H using the coproduct. We note that K�n � K˝n, but if H is
not a Hopf algebra, these are not equal. There is a distinguished subalge-
bra S � H , and any module K becomes a bimodule over S . Then, K�n Š

K ˝S K ˝S � � �K. The local observable is given by theH intertwining endo-
morphisms, EndH .K�n/.

In both of these situations, the resulting nets of algebras are described by abstract
nets of algebras built directly in terms of abstract fusion categories. This allows us
to analyze the theory without worrying about the physical realization of the original
spin system. This will also cover Example 2.5, which we will discuss in detail in the
sequel. For any unitary fusion category D (which we assume is strict for convenience)
and any object X 2 D , we can define a net of finite-dimensional C*-algebras on the
lattice Z � R. For any interval I with n-sites, we set

AI WD D.Xn; Xn/:

Here, we use the notation D.X; Y / as shorthand for the morphism space Hom.X; Y /
in the category D , and Xn is shorthand for the n-fold tensor power X˝n in D .

Now, suppose I D Œa; b� and J D Œc; d � with I � J (so c � a and b � d ). Then,
we can define the inclusion AI � AJ by identifying

f 7! 1Xa�c ˝ f ˝ 1Xd�b :

We then take the colimit over the directed set of intervals in the category of C*-
algebras to obtain the quasi-local algebra

A WD lim
�!

AI :

For any interval, we denote the inclusion ia;b W AŒa;b� ,! A and identify AŒa;b�
with its image.

Proposition 4.1. The assignment F 7! AF constructed above defines a discrete net
of C*-algebras over Z � R. We call the nets constructed this way fusion spin chains.

The goal of this section is to characterize the DHR category of a fusion spin chain.
We will see that, under some mild assumptions on the tensor generator, the DHR
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category of a fusion spin chain is equivalent to the Drinfeld center of the underlying
fusion category. To prove this, we will apply ideas and results from subfactor theory.
The next section is mostly expository and will include a summary of the machinery
we will utilize to obtain the main results of this section.

4.1. Quantum symmetries: Definitions and results

We will now review some concepts and results originating from the theory of subfac-
tors. We discuss their modern manifestation in terms of fusion category theory and
their recent extension from the W*-setting to the C*-setting.

4.1.1. Actions of fusion categories on C*-algebras.

Definition 4.2. If C is a unitary fusion category and A is a (unital) C*-algebra, an
action of C on A is a C*-tensor functor F W C ! Bim.A/.

Unpacking this definition slightly further, the data of an action of C on A is as
follows: for every object X 2 C , a bimodule F.X/ 2 Bim.A/; for f 2 C.X; Y /, a
bimodule intertwiner F.f / W F.X/! F.Y /; and for every pair of objects X;Y 2 C ,
a unitary isomorphism F 2X;Y W F.X/�A F.Y /! F.X ˝ Y /. This data is required to
satisfy coherences: F should be �-functor, F 2X;Y should be natural in X and Y , and
the family ¹F 2X;Y º should satisfy associativity constraint with respect to the bimodule
associator (see [32, Chapter 2.4]).

Actions of unitary fusion categories on finite-dimensional C*-algebras are well
understood in terms of module categories for C (for example, see Corollary 3.6 in
[17] and the discussion therein). Note, however, that any action of a non-trivial fusion
category on a finite-dimensional algebra is never fully faithful. An AF-action is an
action on an AF C*-algebra built out of these finite-dimensional pieces, and these can
be fully faithful. AF-actions are the actions that are relevant for analyzing the DHR
category of fusion spin chains. To give a proper account of AF-actions, we include
the following definition for the sake of completeness.

Definition 4.3 (Cf. [17, Lemma 3.8]). Let A;B be unital C*-algebras and � W A! B

a unital �-homomorphism. Let C be a unitary fusion category, and suppose that we
have actions F W C ! Bim.A/ and G W C ! Bim.B/. An equivariant structure on �
with respect to F and G is a family of linear maps ¹kX W F.X/! G.X/ W X 2 Cº

satisfying the following conditions.

(1) For a; b 2 A, ax 2 X , kX .a F x G b/ D �.a/ F kX .x/ G �.b/.

(2) For f 2 C.X; Y /, x 2 X , kY ı F.f /.x/ D G.f / ı kX .x/.

(3) hkX .x/ j kX .y/iB D �.hx j yiA/.

(4) G.X/ D kX .F.X// G B .
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(5) The following diagram commutes:

F.X/˝ F.Y / F.c/�A F.d/ F.X ˝ Y /

G.X/˝G.Y / G.X/�B G.Y / G.X ˝ Y /

kX˝kY

F 2
X;Y

kX˝Y

G2
X;Y

Let C be a (strict) unitary fusion category. Suppose that we have

(1) a sequence of finite-dimensional C*-algebras An and unital, injective �-in-
clusions �n W An ! AnC1,

(2) a sequence of actions Fn W C ! Bim.An/,

(3) a family ¹kXn º of equivariant structures on �n with respect to Fn and FnC1.

Then, if we let A WD lim
�!

An be the inductive limit of the sequence An in the
category of C*-algebras, there exists a canonical action F W C ! Bim.A/ called the
inductive limit action of the Fn (for a detailed construction, see [17, Proposition 4.4]).
Any action of C on an AF C*-algebra equivalent (in the sense of [17, Definition 3.9])
to the one constructed as above is called an AF-action.

Before we go into our main examples, we recall the following definition.

Definition 4.4. A self-dual object X 2D is called strongly tensor generating if there
exists some n such that every simple object Y is a summand of Xn.

The canonical example of a strong tensor generator is simply the direct sum over
all simple objects with multiplicity 1. For any tensor generator X , the object X ˚ 1

will be strongly tensor generating. The self-duality condition we use in the defini-
tion is not strictly necessary and implies a kind of spatial reflection symmetry on the
fusion spin chain built from X . For us, it is a matter of convenience, since we can
use this assumption to compare our C*-algebra constructions with subfactor theory.
In particular, it allows us to use Ocneanu compactness directly (see Remark 4.7).

Remark 4.5. If Xn contains all isomorphism classes of simple objects, then so does
Xm for any m � n. More generally, suppose that Y is some object such that every
isomorphism class of simple object appears as a summand. Then, for any object Z,
Y ˝ Z also satisfies this property. Indeed, by semisimplicity, for a simple W , W
appears as a summand of Y ˝ Z if and only if C.W; Y ˝ Z/ ¤ 0. But by Frobe-
nius reciprocity, C.W; Y ˝ Z/ Š C.W ˝ xZ; Y /, where xZ denotes the dual object.
But the latter space is non-zero since Y contains a copy of all simple objects (up to
isomorphism).

Example 4.6 (Standard AF-actions). We recall the “standard AF-actions” of fusion
categories that have historically played an important role in subfactor theory.
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Now, given a strong tensor generator X , we construct an AF-action as follows.
First, by replacing X with a sufficiently large tensor power, we can assume that X
itself contains every isomorphism class of simple object, which by Remark 4.5 implies
that every power of X will as well.

Set An WD C.Xn; Xn/. This is a finite-dimensional C*-algebra, whose matrix
summands are indexed by isomorphism classes of simple objects. There is a natu-
ral unital inclusion �n W An ! AnC1 given by

a 7! 1X ˝ a:

The inductive limit algebra A WD limAn is an AF C*-algebra. A is a simple AF-
algebra with a unique tracial state since it has a simple stationary Bratteli diagram
(see, for example, [11] and [30, Chapter 6]). We will now build an AF-action of C

on A.
For any Y 2 C , set Fn.Y / WD C.Xn; Xn ˝ Y /. This has the structure of an An-

bimodule with
a F � G y WD .x ˝ 1Y / ı � ı b

for a; b 2 An; � 2 Fn.Y /. The right An-valued inner product is

h� j �iAn WD �
�
ı �:

For f 2 C.Y;Z/, Fn.f /.�/ WD .1Xn ˝ f / ı � , which is clearly a bimodule inter-
twiner. It is straightforward to check that Fn W C ! Bim.An/ is a C*-functor.

The monoidal structure .Fn/2Y;Z W Fn.Y /�An Fn.Z/! Fn.Y ˝ Z/ is induced
by the linear map

.Fn/
2
Y;Z.� ˝ �/ WD .� ˝ 1Z/ ı � 2 C.Xn; Xn ˝ Y ˝Z/ D Fn.Y ˝Z/:

It is easy to check that these extend to natural unitary isomorphisms satisfying the
required associativity constraints. (It is here where we use the strong tensor genera-
tor assumption, i.e., that all simple objects appear as summands of all tensor powers
of X .)

Now, we define kYn W Fn.Y /! FnC1.Y / by

kYn .�/ WD 1X ˝ �:

It is straightforward to verify that this defines an equivariant structure on �n with
respect to Fn and FnC1. Taking the limit, we obtain an AF-action F W C ! Bim.A/
which we call a standard AF-action.

Remark 4.7. Standard actions have the nice property of being fully faithful; namely,
for any objects Y;Z 2 C , F W C.Y;Z/! Bim.A/.F.Y /; F.Z// is an isomorphism.
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Indeed, this follows from a standard application of Ocneanu compactness [79], [56,
Chapter 5] to the subfactor N � M , where M is the II1 factor obtained from com-
pleting A in the GNS representation of its unique trace and N is the completion of
the “shifted” subalgebra 1X ˝ A � A (see [7, Theorem 5.1 and Section 6.1]). This is
the only place where we will need self-duality of the tensor generator X so that we
can directly apply Ocneanu compactness. If X were not self-dual, our tower of alge-
bras would not be a standard �-lattice (in the sense of [81]) since it would lack Jones
projections. In this case, we would not be able to apply the theorems of subfactor
theory directly and instead would need to apply a more general version of Ocneanu
compactness (for example, see [22]).

4.1.2. Module categories and Q-systems. If C is a unitary fusion category, recall
that a unitary module category M is a finitely semisimple C*-category, together with
a C*-bifunctor C �M !M and a coherent natural associator (see [32, Chapter 7]
for definitions). By MacLane’s coherence theorem, without loss of generality, we can
assume that our module category has trivial associator (i.e., is strict). To set some
notation, for Y 2 C , m 2 M, we denote the image of the bifunctor by Y F m, and
for f 2 C.Y; Z/, g 2M.m; n/, we denote the image under the functor by f F g 2
M.Y Fm;Z F n/. Strictness of the module category is expressed in this notation by

Y F .Z Fm/ D .Y ˝Z/ Fm

and
f F .g F h/ D .f ˝ g/ F h:

Associated to a C -module category M is the unitary multifusion category of C -
module endofunctors EndC .M/ (see [32, Chapter 7] or [73]). This is fusion precisely
when M is indecomposable. In this case, we define the dual fusion category C�

M
WD

EndC .M/mp, where the superscript mp denotes the monoidal opposite category.

Remark 4.8. For a unitary fusion category D , we recall that Dmp denotes the
monoidal opposite category. The objects of Dmp are the same as the objects of D ,
but we denote the version in Dmp by an mp superscript. Then, Dmp.Xmp; Y mp/ WD

D.X; Y /, and the composition, �-structure, and norm are the same as in D . The dif-
ference from D is the monoidal product. The monoidal product is given by

Xmp
˝ Y mp

WD .Y ˝X/mp;

with the obvious extension to morphisms and the choice of associator.

Let M be an indecomposable module category over the unitary fusion category
C . If we pick any m 2M, then we can take the internal end construction to obtain an
algebra object End.m/ 2 C , called the internal endomorphism of the object m. This
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algebra object is technically only defined up to isomorphism, but there is a choice of
representation which is aQ-system. AQ-system is a unital, associative algebra object
Q such that the adjoint of the multiplication map is a right inverse for multiplication
(or in other words, is an isometry) as well as a Q-Q bimodule intertwiner from Q

to Q˝Q. Q-systems are C*-Frobenius algebra object in C (for detailed definitions
and discussions, we refer the reader to the comprehensive references [9, 18, 73, 88]).
We will describe the internal endomorphism as an associative algebra object follow-
ing [55] and refer the readers to the above-mentioned references forQ-system details.
As an object,

End.m/ Š
M

Y2Irr.C/

M.Y Fm;m/˝ Y:

Here, if V is a finite-dimensional Hilbert space5 and Y is a simple object in C ,
V ˝ Y represents the object Y ˚ dim.V /, where we explicitly identify the multiplicity
space C.Y; V ˝ Y / with V . Irr.C/ represents a fixed set of representatives of isomor-
phism classes of simple objects. Using this notation, for any (not necessarily simple)
object Z, we have

Z Š
M

Y2Irr.C/

C.Y;Z/˝ Y

by semisimplicity, where C.Y;Z/ is equipped with the composition inner product,

hf j gi1Y D f
�
ı g:

In particular, for the object Z WD V ˝ Y , V is identified with C.Y;Z/. Thus,

C.Y;End.m// ŠM.Y Fm;m/

for any simple Y . We call this notation and perspective on expressing objects the
Yoneda representation. In the Yoneda representation,

Z1 ˝Z2 Š
M

Y2Irr.C/

C.Y;Z1 ˝Z2/˝ Y

Š

M
Y;U;W

.C.U;Z1/˝ C.Y; U ˝W /˝ C.W;Z2//˝ Y:

One advantage of the Yoneda representation is that it makes morphisms in the cat-
egory C expressible purely in terms of (ordinary) linear transformations. Indeed, if
W Š

L
Y2Irr.C/ C.Y;W /˝ Y , then by semisimplicity any morphism f 2 C.Z;W /

is uniquely determined by a family of linear transformations

f � ¹fY W C.Y;Z/! C.Y;W / j Y 2 Irr.C/º:

5We have intentionally not yet specified an inner product on M.Y Fm;m/; see Remark 4.9.
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Given f 2 C.Z;W / and g 2 C.Y;Z/, fY .g/ WD f ı g 2 C.Y;W /. That fact that the
correspondence f � ¹fY ºY2Irr.C/ uniquely determines f follows immediately from
the Yoneda lemma, hence the origin of the terminology for this picture.

Now, returning to internal end objects to define a multiplication morphism � W

End.m/˝ End.m/! End.m/, observe that

End.m/˝ End.m/

Š

M
Y;W;Z2Irr.C/

.M.Y Fm;m/˝ C.W; Y ˝Z/˝M.Z Fm;m//˝W:

Thus, for W 2 Irr.C/, we define

�W W
M

Y;Z2Irr.C/

M.Y Fm;m/˝ C.W; Y ˝Z/˝M.Z Fm;m/!M.W Fm;m/

on homogeneous tensors �˝f ˝� 2M.Y Fm;m/˝C.W; Y ˝Z/˝M.Z Fm;m/

by
�W .� ˝ f ˝ �/ WD � ı .1Y ˝ �/ ı .f F 1m/:

Then, � WD ¹�W º equips End.m/ with the structure of an associative algebra object,
in fact, a Q-system (see Remark below).

Remark 4.9. There is one subtlety that we are sweeping under the rug in this discus-
sion; namely, we have not specified the Hilbert space structures on the M.Y Fm;m/.
We need to do this to actually pin down a morphism for the object in C rather than
the version of C that forgets the dagger structure. For specifying an algebra structure
on End.m/, this is not relevant, since we can apply the definitions above to obtain
isomorphic algebra structures for any choice. However, the definition of Q-system
requires constraints on the adjoint of the multiplication map, and this is sensitive to
which Hilbert space structures we put on the multiplicity spaces. A choice can always
be made making this into a Q-system (see [17, Theorem 4.6] for this level of gener-
ality) that is essentially a choice of a unitary module trace, but an in-depth discussion
would take us too far afield. We have chosen to not include this discussion since we are
satisfied considering only the algebra structure on End.m/, which are all isomorphic
independently of the Hilbert space structures we put on the multiplicity spaces.

We have the following unitary version of Ostrik’s theorem.

Theorem 4.10 ([88, Theorem 4.6], cf. [73, 77]). Let C be a unitary fusion category
and M an indecomposable unitary module category. Let m 2M and Q WD End.m/.

(1) The module category M is equivalent to the category CQ of right Q-modules
internal to C .
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(2) The dual category C�
M

is equivalent to the unitary fusion category QCQ of
Q-Q bimodules internal to C .

Example 4.11 (The canonical module and Z.C/). Let C be a unitary fusion cate-
gory, and consider E WD C � Cmp, where � denotes the Deligne product of fusion
categories [32]. Then, the C*-category C canonical carries the structure of a left E-
module category, with action

X � Y mp
FZ WD X ˝Z ˝ Y:

It is well known that the dual category E�
C
Š Z.C/, where Z.C/ denotes the

Drinfeld center of C [32, 69].
Recall that if C is a unitary fusion category, its Drinfeld center Z.C/ is a braided

unitary fusion category that controls C ’s Morita theory [32]. We will follow the def-
inition conventions of [69], to which we refer the reader for further details on Z.C/.
Briefly, objects in Z.C/ consist of pairs .Z; �/, where Z 2 Obj.C/ and

� D ¹�Z;X W Z ˝X Š X ˝Z j X 2 Obj.C/º

is a family of unitary isomorphisms, natural in X , satisfying the hexagon relation (in
X ). The family � is called a unitary half-braiding. Morphisms .Z; �/! .W; ı/ are
morphisms f W Z ! W in D that intertwine the half-braidings.

As a consequence of the unitary version of Ostrik’s theorem mentioned above, for
any object Y 2 C , we obtain a Q-system QY WD End.Y / 2 E D C � Cmp such that

Z.C/ ŠQY EQY :

The object Q1 is sometimes called the symmetric enveloping algebra object, or the
Longo–Rehren algebra.

4.1.3. Realization. In this section, we tie together actions and Q-systems via the
realization construction. For the rest of this section, let C be a unitary fusion category,
A a unital simple separable C*-algebra, and suppose that we are given a fully faithful
action F W C ! Bim.A/. Then, for any Q-system, we can construct the realization
C*-algebra jQj [18, Section 4.1]. This is a unital C*-algebra containing A and comes
equipped with a faithful conditional expectation EA W jQj ! A with finite Watatani
index. This is simply a reflection of the fact that if A is a simple separable C*-algebra,
then Q-systems in the C*-tensor category Bim.A/ simply are finite Watatani index
extensions of A; thus, any Q-system in C can simply be “pushed forward” to obtain
a finite-index extension.

In particular, for Q Š
L
Y2Irr.C/ C.Y;Q/˝ Y , then

jQj D F.Q/ Š
M

Y2Irr.C/

C.Y;Q/˝ F.Y /;
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where now the ˝ is literally the ˝ of vector spaces. The associative product on the
C*-algebra jQj is the pushforward under F of the algebra multiplication morphism
for Q.

In this situation, we have a linear restriction functor (which is not monoidal in
general) Res W Bim.jQj/! Bim.A/ defined as follows.

(1) For X 2 Bim.jQj/, consider X as a vector space, where left and right A-
actions just the restrictions of jQj actions. The right A-valued inner product
is given as h� j �iA WD EA.h� j �ijQj/.

(2) For a bimodule intertwiner f , Res.f /D f is the same linear map thought of
as an A-bimodule intertwiner.

We note that even though h� j �iA ¤ h� j �ijQj, sinceEA has finite Watatani index,
these inner products induce the same topology on X , so Res.X/ is indeed a Hilbert
module without needing to complete. As a direct corollary of the main result of [18]
(that the 2-category of C*-algebras is Q-system complete), we have the following
theorem.

Theorem 4.12. Let Bim.jQj;C/ be the full tensor subcategory of Bim.jQj/ spanned
by objects X such that Res.X/Š F.Y / for some Y 2 C . Then, Bim.jQj;C/Š QCQ

as C*-tensor categories.

4.2. DHR categories for fusion spin chains

In this section, let D be a unitary fusion category, and let X be a strongly tensor
generating self-dual object. Let F 7! AF be the net of algebras on Z as in Proposi-
tion 4.1. Our goal in this section is to analyze DHR.A/. We will use the machinery
of quantum symmetries described in the previous three subsections to prove that
DHR.A/ Š Z.D/ as unitary braided tensor categories.

First, fix any interval Œa; b� � Z. Notice that the algebra A.1;a/ by definition is
precisely the algebra from the standard action of D built from X (Example 4.6). This
gives us a fully faithful unitary tensor functor La W D ! Bim.A.�1;a//. Similarly,
we see that A.b;1/ is precisely the algebra obtained from the standard action of Dmp

with object Xmp. Thus, we have a fully faithful unitary tensor functor Rb W Dmp !

Bim.A.b;1//. Putting these together, we obtain a fully faithful unitary tensor functor

La �Rb W D �Dmp
! Bim.A.�1;a/ ˝ A.b;1//:

Here, La � Rb.Y � Zmp/ D La.Y / ˝ Rb.Zmp/, where the tensor product is
simply a linear tensor product, and this space is equipped with the obvious structure
of an A.�1;a/ ˝ A.b;1/ algebraic bimodule. We then complete this with respect to
the natural A.�1;a/ ˝ A.b;1/-valued inner product. We also remark that the symbol
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˝ inA.�1;a/˝A.b;1/ is unambiguous, since the two algebras are AF, hence nuclear,
as C*-algebras. Since La and Rb are fully faithful, so is La �Rb .

Now, consider the indecomposable D �Dmp-module category D as described
in Example 4.11. Pick the object m WD Xb�aC1, and set Qa;b WD End.m/ as in Sec-
tion 4.1.2. Note that inside A, we have a canonical embedding

�a;b W A.�1;a/ ˝ A.b;1/ ,! A;

given by
�a;b.f ˝ g/ WD f ˝ 1Xb�aC1 ˝ g 2 A:

One of the primary purposes of Section 4.1 is to clearly state the following theo-
rem. It is a version of standard results on the symmetric enveloping inclusion/asymp-
totic inclusion/Longo–Rehren inclusion from subfactor theory (see [34, 63, 80], re-
spectively). This result is certainly well known to experts, but we could not find it
precisely stated in the literature in the form we need. The closest statement to the
following that we know of is in [19, Section 6].

Theorem 4.13. For any interval Œa; b�, there is an isomorphism of C*-algebras

jQa;bj Š A

which restricts to �a;b on A.�1;a/ ˝ A.b;1/. In particular, we have a fully faithful
action

Fa;b W Z.D/! Bim.A/

whose image is characterized as the bimodules of A whose restriction to the subalge-
bra A.�1;a/ ˝ A.b;1/ lies in the image La �Rb.D �Dmp/.

Proof. It suffices to construct the isomorphism jQa;bj Š A. The rest follows imme-
diately from Theorems 4.10 and 4.12, where Fa;b is the identification of Z.D/ with
Bim.jQa;bj;D �Dmp/.

Now, using the description of internal endomorphisms and realizations from Sec-
tions 4.1.2 and 4.1.3, we see that

jQa;bj Š
M

Y;Z2Irr.D/

D.Y ˝Xb�aC1 ˝Z;Xb�aC1/˝ La.Y /˝Rb.Zmp/:

But, by construction of standard actions, La �Rb is an inductive limit of the actions

Lan �R
b
n W D �Dmp

! Bim.AŒa�n;a/ ˝ A.b;bCn�/:

By [17, Theorem 4.6], jQa;bj Š lim
�!
jQa;bjn, where the latter denotes the realization

with respect to the Lan �Rbn functors.
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To build the desired isomorphism, we will construct an isomorphism

�n W jQa;bjn Š AŒa�n;bCn�:

Note that
Lan.Y / D D.Xn; Xn ˝ Y /

and

Rbn.Z
mp/ D Dmp..Xmp/˝n; .Xmp/˝n ˝Zmp/ D D.Xn; Z ˝Xn/:

For f ˝ g ˝ h 2 D.Y ˝ Xb�aC1 ˝ Z;Xb�aC1/˝ Lan.Y /˝ R
b
n.Z

mp/, define �n
by

�n.f ˝ g ˝ h/ WD .1Xn ˝ f ˝ 1Xn/ ı .g ˝ 1Xb�aC1 ˝ h/:

Tracking through the definitions, it is easy to see that this is an isomorphism
of C*-algebras which is compatible with the local inclusions in the inductive limit.
Therefore, it extends to the desired � . Clearly, this restricts to �a;b on A.�1;a/ ˝
A.b;1/.

We note that the above theorem furnishes us with a conditional expectation

EA.�1;a/˝A.b;1/ W A! A.�1;a/ ˝ A.b;1/

by transporting the conditional expectation from the realization jQa;bj. Another im-
mediate consequence of the above theorem is algebraic Haag duality for fusion cate-
gorical spin chains.

Proposition 4.14. If X strongly tensor generates the fusion category D , the net A
constructed above satisfies algebraic Haag duality and uniformly bounded genera-
tion.

Proof. To see algebraic Haag duality, let n be the smallest positive integer n such that
Xn contains a copy of every simple. Fix any interval Œa; b� with b � a > n.

The relative commutant ZA.A.�1;a/ ˝ A.b;1// corresponds to the central vec-
tors in A as an A.�1;a/ ˝ A.b;1/ bimodule. But since A.�1;a/ ˝ A.b;1/ is simple
and D �Dmp ! Bim.A.�1;a/ ˝ A.b;1// is fully faithful, the central vectors must
lie in the summand isomorphic to copies A.�1;a/ ˝ A.b;1/. From the description
of Q-system realization from above, this is precisely isomorphic to �.A.�1;a/ ˝
AŒa;b� ˝ A.b;1/ � A/, where � is the isomorphism from the previous theorem. But
A.�1;a/ ˝ A.b;1/ has trivial center and thus the central vectors are of the form
1.�1;a/ ˝ AŒa;b� ˝ 1.b;1/ as desired.

We claim that uniformly bounded generation holds with constant nC 1, where n
is again the smallest positive integer with Xn containing copies of all simples.
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We will show that if k � n C 1, then the algebra AŒa;aCk� Š D.XkC1; XkC1/

is generated by the subalgebras AŒa;aCk�1� Š D.Xk; Xk/˝ 1X and AŒaC1;aCk� Š
1X ˝D.Xk; Xk/. This will imply our desired result inductively.

Since Xn contains all simple objects as summands, X l will contain all simple
objects as summands for l � n by Remark 4.5. By semisimplicity, if we pick, for each
triple of isomorphism classes of simple objects Y;Z;W , bases ¹eY

Xk ;i
º of D.Xk; Y /,

a basis ¹f XZY;j º of D.Y; X ˝ Z/, and a basis gW
ZX;l

of D.Z ˝ X;W /, then we have
the set®�

1X ˝ ..e
W
Xk ;s

/� ı gWZX;l /
�
ı
�
.f XZY;j ı e

Y
Xk ;i

/˝ 1X
�
W Y;Z;W 2 Irr.C/º;

where the indices s; l; j; i range over all possible values is a basis for D.XkC1; XkC1/.
Therefore, it suffices to show that any such element is a product .1X ˝ ˛/ ı .ˇ ˝
1X / with ˛; ˇ 2 D.Xk; Xk/. Since k � nC 1, Xk�1 contains all simple objects as
summands, there is a non-zero morphism h 2 D.Z;Xk�1/ with h� ı h D 1Z .

Then, choosing a specific basis element from above, if we set

˛ WD ..1X ˝ h/ ı f
XZ
Y;j ı e

Y
Xk ;i

/˝ 1X 2 D.Xk; Xk/

and
ˇ WD 1X ˝ ..e

W
Xk ;l

/� ı .gWZX;k ı h
�
˝ 1X // 2 D.Xk; Xk/;

then

.1X ˝ ˛/ ı .ˇ ˝ 1X / D
�
1X ˝ ..e

W
Xk ;l

/� ı gWZX;k/
�
ı
�
.f XZY;j ı e

Y
Xn;i /˝ 1X

�
;

as desired.

We return to the actions Fa;b of Z.D/ built in Theorem 4.13 Fa;b . Using the AF
model for the Qa;b realization, we can explicitly write down an AF model for the
functor Fa;b , by considering the dual actions of Z.D/ to D � Dmp on the finite-
dimensional algebras AŒa�k;bCk�. This has essentially been done in [19, Section 6]
with slightly different conventions (and in the II1 factor framework), but we include
details here for the convenience of the reader.

Let .Z; �/ 2 Z.D/, where Z 2 D and � D ¹�Z;Y W Y 2 Dº is a unitary half-
braiding. Then, for each interval Ik WD Œa � k; b C k�, we have the AIk bimodule

F ka;b.Z; �/ WD D.X2kCb�aC1; XkCb�aC1 ˝Z ˝Xk/

with right AIk Hilbert module structure

hf j giAIk D f
�
ı g:
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The right action is the obvious (pre-composition), while the left action is given by

x F f WD .1XkCb�aC1 ˝ �
�

Z;Xk
/ ı x ı .1XkCb�aC1 ˝ �Z;Xk / ı f:

If � 2 Z.D/..Z; �/; .W; ı//, then F k
a;b
.�/ W F k

a;b
.Z; �/! F k

a;b
.W; ı/ is defined

by
F ka;b.�/.f / WD .1Xb�aCkC1 ˝ � ˝ 1Xk / ı f:

We have tensorators

.F ka;b/
2
.Z;�/;.W;ı/ W F

k
a;b.Z; �/�AIk F

k
a;b.W; ı/ Š F

k
a;b.Z ˝W; � ˝ ı/

given by

.F ka;b/
2
.Z;�/;.W;ı/.f � g/ WD .1XkCb�aC1˝Z ˝ ı

�

W;Xk
/ ı .f ˝ 1W /

ı .1XkCb�aC1 ˝ ıW;Xk / ı g:

These assemble into a unitary tensor functor F k
a;b
W Z.D/! Bim.AIk /.

We have a natural inclusion F k
a;b
.Z;�/!F kC1

a;b
.Z;�/ given by f 7!1X˝f ˝1X .

This is an isometry of Hilbert modules and is compatible with the AIk and AIkC1
actions and bimodule structure in the sense of Definition 4.3. (We denote these bimod-
ule inclusions �k if the object .Z; �/ 2 Z.D/ is clear from context.) The resulting
inductive limit action lim

�!k
F k
a;b

is an action on A, which is canonically monoidally
equivalent to the action Fa;b , so we identify these actions. We will denote the resulting
inclusions ja�k;bCk W F ka;b.Z; �/ ,! Fa;b.Z; �/.

Lemma 4.15. If b � a � n, then Fa;b.Z; �/ has a projective basis localized in Œa; b�
for any .Z; �/ 2 Z.D/.

Proof. If b � a � n, then all simple objects occur as a summand of Xb�aC1. Thus,
there is a projective basis for F 0

a;b
.Z;�/ as a rightAŒa;b� correspondence. Indeed, pick

any finite collection of morphisms ¹biº � F 0a;b.Z; �/ D D.Xb�aC1; Xb�aC1 ˝ Z/

with X
i

jbi iAŒa;b� hbi j D
X
i

bi ı b
�
i D 1Xb�aC1˝Z D idF 0

Œa;b�
:

But since the inclusion F 0
a;b
.Z; �/ ,! F k

a;b
.Z; �/ is a Hilbert module isometry,

the image of bi satisfiesX
i

j1Xk ˝ bi ˝ 1Xk iAŒa�k;bCk�h1Xk ˝ bi ˝ 1Xk j

D

X
i

.1Xk ˝ bi ˝ 1Xk / ı .1Xk ˝ b
�
i ˝ 1Xk /

D 1X2kCb�aC1˝Z D idF k
Œa;b�

.Z;�/
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Since this is true for all k, the image ja;b.bi / in the inductive limit Fa;b.Z; �/
is also a projective basis. Now, to see if it satisfies the localization condition, let x 2
AŒc;d� Š D.Xd�cC1; Xd�cC1/ with d < a. Then, to see its action on ja;b.bi /, set
k D a � c. Then, the inclusion of x into AŒa�k;bCk� is given by x ˝ 1XbCa�c�d 2
AŒc;bCa�c� D AŒa�k;bCk�. We compute

ic;d .x/ F ja;b.bi / D ja�k;bCk.x ˝ 1Xb�dCk F 1Xk ˝ bi ˝ 1Xk /

D ja�k;bCk.x ˝ 1Xa�d ˝ 1Xb�c F 1Xk ˝ bi ˝ 1Xk /

D ja�k;bCk..x ˝ 1Xa�d ˝ 1Xb�c / ı .1Xk ˝ bi ˝ 1Xk //

D ja�k;bCk..1Xk ˝ bi ˝ 1Xk / ı .x ˝ 1Xa�d ˝ 1Xb�cı//

D ja;b.bi / G ic;d .x/:

Now, we check the case for b < c, and we set k D d � b. Then, Œa � k; b C k�
contains both Œa; b� and Œc; d �. We obtain

ic;d .x/ F ja;b.bi / D ja�k;bCk.1Xc�aCk ˝ x F 1Xk ˝ bi ˝ 1Xk /

D ja�k;bCk.1Xc�aCk ˝ x F 1Xd�b ˝ bi ˝ 1Xd�b�c /

D .1XkCb�a ˝ �
�

Z;Xk
/ ı .1Xc�aCk ˝ x/ ı .1XkCb�a ˝ �Z;Xk /

ı .1Xk ˝ bi ˝ 1Xk /

D ja�k;bCk..1Xk ˝ bi ˝ 1Xk / ı .x ˝ 1Xc�aCk //

D ja;b.bi / G ic;d .x/:

In the second to last step, we have crucially used naturality of the half-braiding.

Lemma 4.16. For any two intervals Œa; b� and Œc; d � of length greater than n and any
object .Z; �/ 2 Z.D/, Fa;b.Z; �/ Š Fc;d .Z; �/.

Proof. First, assume b� d . We recall the building blocks of the inductive limit model:

F ka;b.Z; �/ WD D.X2kCb�aC1; XkCb�aC1 ˝Z ˝Xk/:

For a given k, choosem such that Œa� k;bC k�� Œc �m;d Cm�. Then, we consider
the map �k W F ka;b.Z; �/! Fc;d .Z; �/ by

�k.x/ WD jcCm;d�m..1Xb�cCm˝�Z;Xd�b˝1Xm/ ı .1Xa�k�cCm˝x˝1Xd�b�kCm//:

Note that this does not depend on the choice of m. Furthermore, by construction, this
isAŒa�k;bCk� bimodular. In order to show that this extends to a well-defined bimodule
intertwiner from Fa;b.Z; �/, we have to show that, for every k, it is compatible with
the inclusions �k W F ka;b.Z; �/! F k

a;b
.Z; �/ in the sense the �kC1 ı �k D �k . Choose
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m such that Œa � k � 1; b C k C 1� � Œc � m; d C m�. Let x 2 AŒa�k;bCk�; recall
�k.x/ D 1X ˝ x ˝ 1X . Then, we have

�kC1 ı �k.x/ D jcCm;d�m..1Xb�cCm ˝ �Z;Xd�b ˝ 1Xm/

ı .1Xa�k�1�cCm ˝ �k.x/˝ 1Xd�b�k�1Cm//

D jcCm;d�m..1Xb�cCm ˝ �Z;Xd�b ˝ 1Xm/

ı ..1Xa�k�cCm ˝ x/˝ 1Xd�b�kCm//

D �k.x/:

Thus, by [17, Proposition 4.4], the family of �k extend to a bimodule intertwiner

v W Fa;b.Z; �/ Š Fc;d .Z; �/:

Since each �k is an isometry, so is the extension.
We can see that v is a unitary explicitly by exchanging the roles of the intervals

Œa; b� and Œc; d � and using ��1 D �� in place of � . Incidentally, this is also how we
build the unitary in the case d < b.

Alternatively, if we first assume that .Z; �/ is a simple object in Z.D/, then
Fa;b.Z; �/ and Fc;d .Z; �/ are both simple objects in the C*-category of correspon-
dences, since bothFa;b andFc;d are fully faithful. Thus, any isometry between them is
a unitary, and we obtain the desired result for simple objects. Since Z.D/ is semisim-
ple and Fa;b and Fc;d respect direct sums, the general result follows.

Corollary 4.17. For any interval Œa; b� with b � a � n, Fa;b.Z.D// � DHR.A/.

Proof. Let Œc; d � be any other interval with b � a � n and

v W Fa;b.Z; �/ Š FŒc;d�.Z; �/

the unitary bimodule isomorphism from the previous lemma. Then, there exists a
projective basis ¹biº localized in Œc; d �. Then, ¹v�.bi /º � Fa;b.Z; �/. Then,X

v�.bi /hv
�.bi /jaiFa;b.Z;�/ D

X
v�.bi /hbi jv.a/iFc;d .Z;�/

D

X
v�.bi hbi jv.a/iFc;d .Z;�//

D v�.v.a// D a:

Thus, ¹v�.bi /º is a projective basis. Now, it is also localized in Œc; d � since for any
a 2 AŒc;d�c we have

av�.bi / D v
�.abi / D v

�.bia/ D v
�.bi /a:

Lemma 4.18. For any Œa; b�, the functor Fa;b W Z.D/! DHR.A/ is braided.
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Proof. We present an argument which is essentially the same as [19, Proposition
6.15]. Fix I WD Œa; b� with b � a � n, and let

¹eiº � F
0
a;b.Z; �/ D D.Xb�aC1; Xb�aC1 ˝Z/

and ¹fj º � F 0a;b.W; d/ D D.Xb�aC1; Xb�aC1 ˝ W / be projective bases so that
¹ja;b.ei /º and ¹ja;b.fj /º are projective bases for Fa;b.Z; �/ and Fa;b.W; d/ by
Lemma 4.15.

Then, it suffices to show that

.Fa;b/
2
.W;d/;.Z;�/ ı uFa;b.Z;�/;Fa;b.W;d/.ja;b.ei /� ja;b.fj //

D ja;b.1Xb�aC1 ˝ �Z;W / ı .ei ˝ 1W / ı fj /: (4.1)

We compute the left-hand side. First, pick an interval Œc; d � with b � c, and con-
sider a projective basis ¹f 0j º of the corresponding AŒc;d� module F 0

c;d
.W; d/ so that

¹v�.jc;d .f
0
j //º is a projective base of Fa;b.W; d/ localized in Œc; d � as in the proof of

Lemma 4.16.
Then,

uFa;b.Z;�/;Fa;b.W;d/.ja;b.ei /� ja;b.fj //

D uFa;b.Z;�/;Fa;b.W;d/

�X
l

ja;b.ei /� v�.jc;d .f 0j //hv
�.jc;d .f

0
j // j ja;b.fj //i

�
D

X
l

v�.jc;d .f
0
j //� ja;b.ei /hv

�.jc;d .f
0
j // j ja;b.fj //i

D

X
l;s

ja;b.fs/hja;b.fs/ j v
�.jc;d .f

0
j //i� ja;b.ei /hv

�.jc;d .f
0
j // j ja;b.fj //i

D

X
s;l

ja;b.fs/� hja;b.fs/ j v�.jc;d .f 0j //ija;b.ei /hv
�.jc;d .f

0
j // j ja;b.fj //i:

Using the definitions, we see the termX
l

hja;b.fs/ j v
�.jc;d .f

0
j //ija;b.ei /hv

�.jc;d .f
0
j // j ja;b.fj /i

D ja;b..f
�
s ˝ 1Z/ ı 1Xb�aC1 ˝ �Z;W / ı .ei ˝ 1W / ı fj /:

Therefore, we can evaluate the left-hand side of equation (4.1) to get

.Fa;b/
2
.W;d/;.Z;�/ ı uFa;b.Z;�/;Fa;b.W;d/.ja;b.ei /� ja;b.fj //

Dja;bı.F
0
Œa;b�/

2
.W;d/;.Z;�/

�X
s

fs�.f �s ˝1Z/ı1Xb�aC1˝�Z;W /ı.ei˝1W /ıfj
�

D ja;b..1Xb�aC1 ˝ �Z;W / ı .ei ˝ 1W / ı fj /:
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Theorem 4.19 (Cf. Theorem C). For any interval Œa; b� with b � a � n,

Fa;b W Z.D/! DHR.A/

is a braided equivalence.

Proof. The only thing left to prove is that Fa;b is essential surjectivity onto DHR.A/.
But since the replete image of Fa;b is the same as Fc;d in Bim.A/, it suffices to
show that any bimodule W 2 DHR.A/ is in the image of Fc;d for some sufficiently
large interval Œc; d �. Let W 2 DHR.A/, and choose a basis ¹biº localized in Œc; d �.
By Theorem 4.13, it suffices to show that W lies in the image Lc � Rd .D �Dmp/

when considered as a A.�1;c/ ˝ A.d;1/ bimodule.
Note that A decomposes as an A.�1;c/ ˝ A.d;1/ bimodule via

A Š
M

i;j2Irr.D/

.Lc.Yi /�Rd .Y mp
j //˚Ni;j

for some non-negative integers Ni;j . Now, note that since each Œc; d �-localized basis
element bk 2W isA.�1;c/˝A.d;1/-central, the space bk G ..La�Rb/.Yi � Y

mp
j //

for each of the Ni;j copies of .La �Rb/.Yi � Y mp
j / in A is a sub A.�1;c/ ˝ A.d;1/

bimodule of W , and the span as these range over all localized basis elements bk and
all i; j is all of W .

But the map

.La �Rb/.Yi � Y mp
j / 7! bk G

�
.La �Rb/.Yi � Y mp

j /
�

is a bounded algebraic bimodule intertwiner; hence, it is an intertwiner of correspon-
dences .La � Rb/.Yi � Y mp

j / ! W . But .La � Rb/.Yi � Y mp
j / is irreducible by

fully faithfulness of La � Rb , so the above map is either a scalar multiple of an
isometry (in which case .La � Rb/.Yi � Y mp

j / is isomorphic to its image) or 0. But
the images of these maps span X , and since X itself is semisimple, the images of
.La �Rb/.Yi � Y mp

j / exhaust possible simple summands of W .
Thus, when we restrict W to an A.�1;c/ ˝ A.d;1/ bimodule, then W is a direct

sum of the .La �Rb/.Yi � Y mp
j /, hence in the image of FŒc;d� as claimed.

We can immediately use this to approach the problem described in the introduc-
tion of distinguishing quasi-local algebras up to bounded spread isomorphism. The
following example is the standard example of global symmetry: spin flips.

Example 4.20 (Ordinary spin system). Let d 2 N and consider the onsite Hilbert
space Cd , which we view as having a trivial onsite categorical symmetry. The fusion
category is Hilbf:d:, and the object X D Cd is clearly strongly tensor generating.
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The resulting net Ad over Z is then the usual net of all local operators, and
the quasi-local algebra is the UHF C*-algebra Md1 . By Theorem 4.19, we have
DHR.Ad / Š Z.Hilbf:d:/ Š Hilbf:d: as braided tensor categories.

Example 4.21 (Generalized spin-flip). Let G be an abelian finite group. Consider
the onsite Hilbert space K WD CjGj, and the action of G on K which permutes the
standard basis vectors, i.e., the left regular representation.K, as an object in Rep.G/,
contains all isomorphism classes of simples; hence, it is a strongly tensor generating
object in Rep.G/ (with n D 1).

Then, we consider the net of symmetric observables constructed as above, which
we denote by AG . It is easy to see that the resulting UHF algebra isMjG1j. In partic-
ular, as C*-algebras, we have an isomorphism of the quasi-local algebras AG Š AjGj.
In particular, for any groups G and H of the same order, AG Š AH .

However, by Theorem 4.19, DHR.AG/ Š Z.Rep.G//. This implies that even
though AZ=2Z Š A2 as C*-algebras, there is no isomorphism with bounded spread
between these. Similarly, at the level of algebras, AZ=4Z Š AZ=2Z�Z=2Z, but there is
no bounded spread isomorphism between these because the underlying fusion cate-
gories Hilbf:d:.Z=4Z/ and Hilbf:d .Z=2Z � Z=2Z/ are not Morita equivalent.

4.3. Examples of QCA

Recall that if C is a braided C*-tensor category, Autbr.C/ is the group of unitary
isomorphism monoidal natural isomorphism classes of braided (unitary) monoidal
equivalences of C . We have the following corollary to the previous section.

Corollary 4.22 (Cf. Theorem C). Let A denote the fusion spin chain constructed
from a fusion category D and strongly tensor generating object X . Then, there is a
homomorphism DHR W QCA.A/=FDQC.A/! Autbr.Z.D//.

The goal in this section is to find examples of QCA that map onto specific braided
autoequivalences of the center. Let D be a unitary fusion category and X a strongly
tensor generating object, and let A denote the net over Z. Note that any unitary
autoequivalence of C induces a braided unitary autoequivalence of the center z̨ 2
Autbr.Z.D// [32]. More specifically, if .Z;�/ 2Z.D/ and ˛ 2Aut˝.C/, then define

.˛.Z/; �˛/;

where �˛
˛.Z/;X

W ˛.Z/˝X Š X ˝ ˛.Z/ is defined as the composition

˛.Z/˝X
can
��! ˛.Z ˝ ˛�1.X//

˛.�
Z;˛�1.X/

/

���������! ˛.˛�1.X/˝Z/
can
��! X ˝ ˛.Z/:

Here, can denotes the canonical isomorphisms built from the monoidal structure on
the functor ˛. It is easy to check that the assignment z̨.Z; �/ WD .˛.Z/; �˛/ extends
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naturally to a braided monoidal equivalence of Z.D/. Then, ˛ 7! z̨ gives a homo-
morphism from Aut˝.D/! Autbr.Z.D//, whose image is denoted by Out.D/.

Let Stab.X/ be the group whose objects are monoidal equivalence classes of uni-
tary monoidal autoequivalences of D such that ˛.X/ Š X . For any ˛ 2 Stab.X/, we
will build a QCA on A with spread 0, whose induced action on Z.D/ is given by z̨.
Recall that AŒa;b� WDD.Xb�aC1;Xb�aC1/. Then, applying ˛ to the morphisms in D

and conjugating by the tensorator of ˛, we get the map

y̨ W D.Xb�aC1; Xb�aC1/ 7! D.˛.X/b�aC1; ˛.X/b�aC1/:

Choose an isomorphism � W ˛.X/ Š X , and define the homomorphism

QŒa;b�
˛ W AŒa;b� Š D.Xb�aC1; Xb�aC1/! D.Xb�aC1; Xb�aC1/ Š AŒa;b�

by
QŒa;b�
˛ .f / WD .�˝b�a/ ı y̨.f / ı ..��/˝b�aC1/:

These isomorphisms are clearly compatible with inclusions and thus assemble into
a QCA with 0-spread:

Q˛ W A! A:

By construction, the assignment only depends on the choice of � up to a depth one
circuit. Furthermore, from our analysis in the previous section, it is clear that

DHR.Qa/ Š z̨ 2 Out.D/ � Z.D/:

Corollary 4.23 (Cf. Theorem C). Suppose that the tensor generating object X is
stable under any monoidal autoequivalence of C . Then, the image of the DHR homo-
morphism QCA.A/=FDQC.A/! Autbr.Z.D// contains the subgroup Out.D/. In
particular, if Out.D/ is non-abelian, then so is QCA.A/=FDQC.A/.

Example 4.24 (Non-abelian Z=2Z � Z=2Z-symmetric QCA (cf. Corollary D)). We
now give a concrete example. We consider on ordinary spin system, coarse-grained
so that the on-site Hilbert space consists of two qubits

K WD C2
˝C2:

Let G WD Z=2Z � Z=2Z act on K, where each copy of Z=2Z acts by a spin-flip
on the corresponding tensor factor. This defines a global, on-site symmetry. Viewing
K 2 Rep.Z=2Z � Z=2Z/, we see that K is in fact the regular representation and
thus is characteristic (since it decomposes as a direct sum of all simple objects with
multiplicity 1).

Thus, the image of DHR for the resulting net contains

Out.Rep.Z=2Z � Z=2Z// � Out.Z=2Z � Z=2Z/ Š S3:
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In this case, we can implement this S3 action explicitly on the original Hilbert
space. Using the standard qubit basis, we consider the basis for C2 ˝ C2; i.e., we
consider the vectors in C2:

jCi WD
1
p
2
.j0i C j1i/;

j�i WD
1
p
2
.j0i � j1i/

and define the orthonormal basis of C2 ˝C2 as follows.

jai WD jCi ˝ jCi;

j1i WD jCi ˝ j�i;

j2i WD j�i ˝ jCi;

j3i WD j�i ˝ j�i:

Then, for any g 2 S3, consider the unitary Ug on C2 ˝ C2, which fixes jai and
permutes ¹j1i; j2i; j3iº accordingly.

Then, conjugation by the product of Ad.Ug/ over all sites gives a spread 0 QCA
on the algebra of Z=2Z � Z=2Z symmetric operators, which cannot be disentangled
by a symmetric finite circuit. Note that even though this QCA is defined on the full
spin system and preserves the symmetric subalgebra, it does not commute with the
group action.

4.4. 2+1D topological boundaries theories

Let C be a unitary modular tensor category. Recall that a Lagrangian algebra is a
commutative, connected separable algebra object (or Q-system) A 2 C such that
dim.A/2 D dim.C/. Equivalently, the category of local modules C locA Š Hilbf:d . In
this case, the category CA of right A-modules is a fusion category, and the central
functor C ! Z.CA/ is a braided equivalence. We can view Lagrangian algebras as
parameterizing “ways C can be realized as a Drinfeld center of a fusion category”,
and the fusion category in question is CA.

From a physical perspective, if we view C as the topological order of a 2+1D the-
ory, then topological (gapped) boundaries are characterized by Lagrangian algebras
A 2 C [39,62]. The fusion category CA is the fusion category of topological boundary
excitations.

We define the groupoid TopBound2C1 as follows.

• Objects are pairs .C ; A/, where C is a unitary modular tensor category and A is a
Lagrangian algebra.
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• Morphisms .C ;A/! .D ;B/ are pairs .˛;�/, where ˛ WC ŠD is a unitary braided
equivalence and � W ˛.A/ Š B is a unitary isomorphism of algebra objects. These
morphisms are taken up to the equivalence relation .˛; �/ � .ˇ; �/ if there is a
monoidal natural isomorphism ı W ˛ Š ˇ such that � ı ıA D � (see [8, Definition
4.1]). Composition is induced from the natural composition of autoequivalences.

In this section, we will give a construction of a 1D net of algebras from the data
of the pair .C ; A/ which is functorial from TopBound2C1 ! NetZ=�FDQC. Recall
that there is a forgetful functor Forget W TopBound2C1! BrTens that simply forgets
the choice of Lagrangian algebra. We have the following theorem, which allows us to
realize many examples of braided equivalences between concrete quasi-local algebras.

Theorem 4.25. There exists a functor B W TopBound2C1 ! NetZ such that DHR ı
B Š Forget as functors TopBound2C1 ! BrTens.

Proof. To build G, let .C ; A/ 2 TopBound2C1. Choose the object

XC D

M
Z2Irr.C/

Z 2 C :

Then, as described above: C Š Z.CA/, and we have a forgetful functor FA W C ! CA,
which is equivalent to the free module functor Z 7! Z ˝ A. We consider fusion spin
chain net as in Proposition 4.1 with fusion category CA and generator FA.XC /. This
is a strong tensor generator for CA since the forgetful functor FA from the center is
always dominant, so all simple objects in CA are already summands of FA.XC /.

We denote this net over Z by B.C ; A/. For an interval with n points, the local
algebra is

CA.FA.XC /
n; FA.XC /

n/ Š C.XnC ; X
n
C ˝ A/

(see, e.g., [55]). In the latter model, composition is given by

f � g D .1Xn
C
˝m/ ı .f ˝ 1A/ ı g;

where m W A˝ A! A is the multiplication. The inclusions

CA.FA.XC /
n; FA.XC /

n/ ,! CA.FA.XC /
nC1; FA.XC /

nC1/

given by tensoring 1FA.XC / on the left and right are given in our alternate model by
sending, for f 2 C.X n

C
; Xn

C
˝ A/,

f 7! 1XC
˝ f

and
f 7! .1Xn

C
˝ �A;XC

/ ı .f ˝ 1XC
/;

respectively, where �A;XC
W A˝XC Š XC ˝ A is the braiding in C .
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We will now extend the assignment .C ; A/ 7! B.C ; A/ to a functor. Suppose that

.C ; A/; .D ; B/ 2 TopBound2C1;

and let ˛ W C ŠD be a braided equivalence with ˛.A/ŠB as algebra objects. Choose
a specific (unitary) algebra isomorphism

� W ˛.A/ Š B:

Then, ˛.XC / Š XD since both are simply a direct sum of all the simple objects. Pick
such a unitary and call it �.

Then, using the monoidal structure on ˛, we get an algebra homomorphism

y̨ W C.XnC ; X
n
C ˝ A/ 7! D.˛.XC /

n; ˛.XC /
n
˝ ˛.A//:

Then, for f 2 C.Xn
C
; Xn

C
˝ A/B.C ; A/Œa;aCn�, we define

B.˛/.f / WD ..��/˝n ˝ �/ ı y̨.f / ı ..��/˝n/ 2 D.XnD ; X
n
D ˝ B/:

Since � is an algebra isomorphism, it is easy to see that this is an isomorphism of
local algebras. Since ˛ is a braided monoidal equivalence, this is compatible with the
left and right inclusions and thus extends to an isomorphism of quasi-local algebras
with spread 0. This gives us a morphism B.˛/ 2 NetZ.B.C ; A/;B.D ; B//. By con-
struction, this only depends on the choice of � up to a finite depth (in fact, depth one)
circuit.

Now, consider DHR ı B W TopBound2C1 ! BrTens. But since FA W C ! CA

factors through an equivalence with the center zFA W C ! Z.CA/ [23], thus, from
the previous section, we have an equivalence DHR.B.C ; A// Š C , and under this
identification, DHR.B.˛// D Œ˛�.
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