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On maximal subgroups of Thompson’s group F

Gili Golan Polak

Abstract. We study subgroups of Thompson’s group F by means of an automaton associated with
them. We prove that every maximal subgroup of F of infinite index is closed, that is, it coincides
with the subgroup of F accepted by the automaton associated with it. It follows that every finitely
generated maximal subgroup of F is undistorted in F . We also prove that every finitely generated
subgroup of F is contained in a finitely generated maximal subgroup of F and construct an infinite
family of non-isomorphic maximal subgroups of infinite index in F .

1. Introduction

Recall that Thompson’s group F is the group of all piecewise-linear homeomorphisms
of the interval Œ0; 1�, where all breakpoints are dyadic fractions (i.e., elements of the
set ZŒ1

2
� \ .0; 1/) and all slopes are integer powers of 2. The group F is finitely pre-

sented, does not contain free non-abelian subgroups, and satisfies many other remarkable
properties.

In [22,23], Savchuk initiated the study of maximal subgroups of Thompson’s group F
by proving that for every number ˛ in .0; 1/, the stabilizer of ˛ in F (i.e., the subgroup
of F of all functions which fix ˛) is a maximal subgroup of F . He asked whether these
are all the maximal subgroups of infinite index in F (maximal subgroups of F of finite
index are in one-to-one correspondence with maximal subgroups of its abelianization Z2

and are well understood).
In answer to this problem, in [11], Sapir and the author constructed an explicit maximal

subgroup of infinite index in F which does not fix any number in .0; 1/. Recall that Jones
showed that elements of F encode in a natural way all links and knots and that elements
of a subgroup of F , denoted

�!
F , encode in a natural way all oriented links and knots [19]

(see also [1, 20]). The explicit maximal subgroup of F constructed in [11] was the image
of
�!
F under an injective endomorphism of F .
In addition to the explicit maximal subgroup of F constructed in [11], we also gave a

method for proving the existence of many other maximal subgroups of F (but the method
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did not yield explicit examples). Improving on that method, in [14], the author demon-
strated a method for constructing explicit examples of maximal subgroups of F . In that
paper, 3 new explicit examples of maximal subgroups of F were constructed. One of
the examples served as a strong counterexample to Savchuk’s problem. Indeed, one of the
maximal subgroups of F constructed in [14] acts transitively on the set of dyadic fractions
in the interval .0; 1/. In [3], Aiello and Nagnibeda constructed 3 more explicit examples
of maximal subgroups of F (relying on the method from [11] to a certain extent).

Note that the constructions of all known maximal subgroups of F of infinite index,
other than Savchuk’s subgroups and the first explicit example isomorphic to Jones’ sub-
group, relied on the construction of the Stallings 2-core of subgroups of F .

The Stallings 2-core (or the core, for short) of a subgroup H of F was defined in [11]
in an analogous way to the Stallings core of a subgroup of a free group. Recall that ele-
ments of Thompson’s group F can be viewed as diagrams over directed 2-complexes
(see [17, 18]) or as tree-diagrams (i.e., as pairs of finite binary trees; see Section 2.2
below). In [11, 14], we considered elements of F as diagrams over directed 2-complexes
and defined the core of a subgroup of F in those terms. In this paper, we prefer the more
standard approach to elements of F in terms of tree-diagrams. In these terms, the core
of a subgroup H of F , denoted C.H/, can be defined as a rooted tree-automaton (that
is, a directed edge-labeled graph with a distinguished “root” vertex which satisfies certain
properties; see Definition 2.4) associated with the subgroup. The core of a subgroup H
of F accepts some of the tree-diagrams in F (see Definition 2.5 below).

By construction, the core C.H/ accepts all tree-diagrams in H , but unlike in the case
of free groups, the core C.H/ can accept tree-diagrams not in H . We defined the closure
of H to be the subgroup of F of all tree-diagrams accepted by the core C.H/. The clo-
sure operation satisfies the usual properties of closure—namely, H � Cl.H/; Cl.Cl.H//
D Cl.H/; and if H1 � H2, then Cl.H1/ � Cl.H2/. We say that a subgroup H of F is
closed if H D Cl.H/. If H is finitely generated, then its core C.H/ is a finite automaton
and it is decidable whether a given tree-diagram in F is accepted by C.H/. Hence, if H
is finitely generated, then the membership problem in the closure of H is decidable. Note
that if H is finitely generated, then its closure Cl.H/ is also finitely generated [10]. Note
also that the closure of subgroups of F can also be described when F is viewed as a group
of homeomorphisms of the interval Œ0; 1�. Indeed, by [14, Theorem 5.6], the closure of
a subgroup H of F is the subgroup of F of all piecewise-H functions. In particular, a
subgroup H of F is closed if and only if every piecewise-H function in F belongs to H .

In this paper, we prove the following result:

Theorem 1.1. All maximal subgroups of F which have infinite index in F are closed.

Theorem 1.1 answers [11, Problem 5.11]. Note that Theorem 1.1 implies that the mem-
bership problem is decidable in every finitely generated maximal subgroup of F . In [10],
Sapir and the author proved that every finitely generated closed subgroup of F is undis-
torted in F . Hence, all finitely generated maximal subgroups of F are undistorted in F .
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Recall that in [14], we used the core of subgroups of F to give a solution to the
generation problem in F (i.e., to give an algorithm which, given a finite set of elements
in F , determines whether it generates F ). Indeed, in [14], we proved the following:

Theorem 1.2 ([14, Corollary 1.4]). Let H be a subgroup of F . Then, H D F if and only
if the following conditions hold:

(1) HŒF; F � D F .

(2) ŒF; F � � Cl.H/.

(3) There is a function h 2 H which fixes a dyadic fraction ˛ 2 .0; 1/ such that the
slope h0.˛�/ D 2 and the slope h0.˛C/ D 1.

Given a finite subset X of F , we let H be the subgroup generated by X . Then, it is
(easily) decidable if condition (1) holds for H (indeed, one only has to check the image
ofH in the abelianization F=ŒF;F �Š Z2). Checking if condition (2) holds is also simple
and amounts to constructing the core of H (see Lemma 2.28 below). In [14, Section 8],
we gave an algorithm for deciding if H satisfies condition (3), given that H satisfies
condition (2). Hence, we got a solution for the generation problem in F .

In this paper, we improve the solution. In particular, we prove that condition (3) in
Theorem 1.2 is superfluous (giving a positive solution to [11, Problem 5.12] and [14,
Problem 12.2]).

Theorem 1.3. Let H be a subgroup of F . Then, H D F if and only if the following
conditions hold:

(1) HŒF; F � D F .

(2) ŒF; F � � Cl.H/.

In addition to giving a better (linear-time) solution for the generation problem in F ,
Theorem 1.3 implies Theorem 1.1 (see the proof of Corollary 3.13 below). Note that
in [8], Gelander, Juschenko, and the author proved that Thomspon’s group F is invariably
generated by 3 elements (i.e., there are 3 elements f1; f2; f3 2 F such that regardless of
how each one of them is conjugated, together they generate F .) The proof relied on the
solution of the generation problem in F from [14]. The improved solution implies that,
in fact, Thompson’s group F is invariably generated by a set of two elements (see also
[13, Lemma 15]).

Theorem 1.1 and the study of morphisms of rooted tree-automata imply further results
regarding maximal subgroups of F . In [11], it was observed that since F is finitely gen-
erated, by Zorn’s lemma, every proper subgroup of F is contained in some maximal
subgroup of F (this observation was used in proving the existence of maximal subgroups
of F of infinite index which do not fix any number in .0; 1/). It was asked (see [11,
Problem 4.6]) whether every proper finitely generated subgroup of F is contained inside
some finitely generated maximal subgroup of F . In Section 5, we answer this problem in
the affirmative.
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Theorem 1.4. Let H be a finitely generated proper subgroup of F . Then, the following
assertions hold:

(1) There exists a finitely generated maximal subgroup M � F which contains H .

(2) If the action of H on the set of dyadic fractions D has finitely many orbits, then
every maximal subgroup of F which contains H is finitely generated. Moreover,
there are only finitely many maximal subgroups of infinite index in F which con-
tain H .

Recall that for each number ˛ 2 .0; 1/, the stabilizer of ˛ in F , denoted Stab.˛/, is
a maximal subgroup of F . It follows that there are uncountably many distinct maximal
subgroups of Thompson’s group F . However, in [12], Sapir and the author proved that
the subgroups Stab.˛/ for ˛ 2 .0; 1/ fall into three isomorphism classes, depending on
the type of ˛ (i.e., on whether ˛ is dyadic, rational non-dyadic, or irrational). Hence, until
now there were only finitely many known isomorphism classes of maximal subgroups of
infinite index in F . In this paper, we prove that there is an infinite family of pairwise non-
isomorphic maximal subgroups of infinite index in F . Indeed, in [9], we studied a family
of subgroups which we called Jones’ subgroups

�!
F n (for n � 2). These subgroups can be

defined in an analogous way to Jones’ subgroup
�!
F , where

�!
F 2 D

�!
F (for further details,

see [9, Section 5])1. In this paper, we prove that for every prime number p, Thompson’s
group F has a maximal subgroup isomorphic to Jones’ subgroup

�!
F p .

Organization. The paper is organized as follows: in Section 2, preliminaries about
Thompson’s group F , closed subgroups, and the core of subgroups of F are given. In
Section 3, we improve the solution of the generation problem from [14] and deduce that
all maximal subgroups of infinite index in F are closed. In Section 4, we study rooted
tree-automata and morphisms between them. In Section 5, we derive results about max-
imal subgroups of F , proving Theorem 1.4. In Section 6, we study and recall properties
of rooted tree-automata that are isomorphic to the core of a subgroup of F . In Section 7,
we prove that there is an infinite family of non-isomorphic maximal subgroups of infinite
index in F , and in Section 8, we give some final remarks and discuss some open problems.

2. Preliminaries on F

2.1. F as a group of homeomorphisms

Recall that F consists of all piecewise-linear increasing self-homeomorphisms of the unit
interval with slopes of all linear pieces powers of 2 and all break points of the derivative in

1There is a subgroup introduced by Jones in [20] and studied by Aiello and Nagnibeda in [2] that is
also denoted by

�!
F 3. This subgroup is different from the subgroup

�!
F 3 defined in [9] as part of the family

of subgroups
�!
F n.
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ZŒ1
2
�\ .0;1/. The group F is generated by two functions x0 and x1 defined as follows [7]:

x0.t/ D

8̂̂<̂
:̂
2t if 0 � t � 1

4
;

t C 1
4

if 1
4
� t � 1

2
;

t
2
C

1
2

if 1
2
� t � 1;

x1.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
t if 0 � t � 1

2
;

2t � 1
2

if 1
2
� t � 5

8
;

t C 1
8

if 5
8
� t � 3

4
;

t
2
C

1
2

if 3
4
� t � 1:

The composition in F is from left to right.
Every element of F is completely determined by how it acts on the set ZŒ1

2
� \ .0; 1/.

Every number in .0; 1/ can be described as :s, where s is an infinite word in ¹0; 1º. For
each element g 2 F , there exists a finite collection of pairs of (finite) words .ui ; vi / in the
alphabet ¹0; 1º such that every infinite word in ¹0; 1º starts with exactly one of the ui ’s.
The action of F on a number :s is the following: if s starts with ui , we replace ui by vi

(the procedure of associating the pairs of words .uivi / to an element of F is described on
page 6). For example, x0 and x1 are the following functions:

x0.t/ D

8̂̂<̂
:̂
:0˛ if t D :00˛;

:10˛ if t D :01˛;

:11˛ if t D :1˛;

x1.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
:0˛ if t D :0˛;

:10˛ if t D :100˛;

:110˛ if t D :101˛;

:111˛ if t D :11˛;

where ˛ is any infinite binary word. For the generators x0; x1 defined above, the group F
has the finite presentation [7]

F D hx0; x1 j Œx0x
�1
1 ; x

x0
1 � D 1; Œx0x

�1
1 ; x

x2
0

1 � D 1i;

where ab denotes b�1ab.
Sometimes, it is more convenient to consider an infinite presentation of F . For i � 1,

let xiC1 D x
�i
0 x1x

i
0. In these generators, the group F has the presentation [7]

hxi ; i � 0 j x
xj

i D xiC1 for every j < ii:

2.2. Elements of F as pairs of finite binary trees

Often, it is more convenient to describe elements of F using pairs of finite binary trees
drawn on a plane. Trees are considered up to isotopies of the plane. Elements of F are
pairs of full finite binary trees .TC; T�/ which have the same number of leaves. Such a
pair will sometimes be called a tree-diagram.

If T is a (finite or infinite) binary tree, a branch in T is a maximal simple path starting
from the root. Every vertex of T is either a leaf (i.e., a vertex with no outgoing edges)
or has exactly two outgoing edges: a left edge and a right edge. If every left edge of T is
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(a) (b)

Figure 1. (a) The tree-diagram of x0. (b) The tree-diagram of x1. In both figures, TC is on the left
and T� is on the right.

labeled by 0 and every right edge is labeled by 1, then every branch of T is labeled by a
(finite or infinite) binary word u. We will usually ignore the distinction between a branch
and its label.

Let .TC; T�/ be a tree-diagram where TC and T� have n leaves. Let u1; : : : ; un

(resp. v1; : : : ; vn) be the branches of TC (resp. T�), ordered from left to right. For each
i D 1; : : : ; n, we say that the tree-diagram .TC; T�/ has the pair of branches ui ! vi . The
function g from F corresponding to this tree-diagram takes binary fraction :ui˛ to :vi˛

for every i and every infinite binary word ˛. We will also say that the element g takes the
branch ui to the branch vi . The tree-diagrams of the generators of F , x0 and x1, appear
in Figure 1.

A caret is a binary tree which consists of a single vertex with two children. If .TC; T�/
is a tree-diagram, then attaching a caret to the i -th leaf of both TC and T� does not affect
the function in F represented by the tree-diagram .TC;T�/. The inverse action of reducing
common carets does not affect the function either (the pair .TC; T�/ has a common caret
if leaves number i and i C 1 have a common father in TC as well as in T�). Two pairs
of trees .TC; T�/ and .RC; R�/ are said to be equivalent if one results from the other
by a finite sequence of inserting and reducing common carets. If .TC; T�/ does not have
a common caret, then .TC; T�/ is said to be reduced. Every tree-diagram is equivalent
to a unique reduced tree-diagram. Thus, elements of F can be represented uniquely by
reduced tree-diagrams [7].

An alternative way of describing the function in F corresponding to a given tree-
diagram is the following: for each finite binary word u, we let the dyadic interval asso-
ciated with u, denoted by Œu�, be the interval Œ:u; :u1N �. If .TC; T�/ is a tree-diagram for
f 2 F , we let u1; : : : ; un be the branches of TC and v1; : : : ; vn be the branches of T�.
Then, the intervals Œu1�; : : : ; Œun� (resp. Œv1�; : : : ; Œvn�) form a subdivision of the inter-
val Œ0; 1�. The function f maps each interval Œui � linearly onto the interval Œvi �.

Below, when we say that a function f has a pair of branches ui ! vi , the meaning
is that some tree-diagram representing f has this pair of branches. This is equivalent to
saying that f maps Œui � linearly onto Œvi �. The following remark will be useful:
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Remark 2.1. Let f be a function in F and assume that u! v is a pair of branches of f .
Then, there exists a common (possibly empty) suffix w of both u and v and finite binary
words p and q such that u � pw2, v � qw and such that p ! q is a pair of branches of
the reduced tree-diagram of f .

Remark 2.2 (See [7]). The tree-diagram where both trees are just singletons plays the
role of identity in F . Given a tree-diagram .T 1

C; T
1
�/, the inverse tree-diagram is .T 1

� ; T
1
C/.

If .T 2
C; T

2
�/ is another tree-diagram, then the product of .T 1

C; T
1
�/ and .T 2

C; T
2
�/ is defined

as follows: there is a minimal finite binary tree S such that T 1
� and T 2

C are rooted subtrees
of S (in terms of subdivisions of Œ0; 1�, the subdivision corresponding to S is the intersec-
tion of the subdivisions corresponding to T 1

� and T 2
C). Clearly, .T 1

C; T
1
�/ is equivalent to

a tree-diagram .TC; S/ for some finite binary tree TC. Similarly, .T 2
C; T

2
�/ is equivalent

to a tree-diagram .S; T�/. The product .T 1
C; T

1
�/ � .T

2
C; T

2
�/ is (the reduced tree-diagram

equivalent to) .TC; T�/.

Obviously, the mapping of tree-diagrams to functions in F respects the operations
defined in Remark 2.2.

Now, let D be the set of dyadic fractions, that is, the set ZŒ1
2
� \ .0; 1/. We will often

be interested in dyadic fractions ˛ 2 D fixed by a function f 2 F . More generally, if
S � .0; 1/, we say that an element f 2 F fixes S if it fixes S pointwise. We say that an
element f 2 F stabilizes S if f .S/ D S .

The next lemma will be useful.

Lemma 2.3 ([14, Lemma 2.6]). Let f 2 F be an element which fixes some dyadic frac-
tion ˛ 2 D . Let u � u01 be the finite binary word such that ˛ D :u. Then, the following
assertions hold:

(1) f has a pair of branches u0m1 ! u0m2 for some m1; m2 � 0.

(2) f has a pair of branches u001n1 ! u001n2 for some n1; n2 � 0.

(3) If f 0.˛C/ D 2k for k ¤ 0, then every tree-diagram representing f has a pair of
branches u0m ! u0m�k for some m � max¹0; kº.

(4) If f 0.˛�/ D 2` for ` ¤ 0, then every tree-diagram representing f has a pair of
branches u001n ! u001n�` for some n � max¹0; `º.

2.3. Natural copies of F

Let f be a function in Thompson’s group F . The support of f , denoted Supp.f /, is the
closure in Œ0; 1� of the subset ¹x 2 .0; 1/ W f .x/ ¤ xº. We say that f is supported in an
interval J if the support of f is contained in J . Note that in this case the endpoints of J
are necessarily fixed by f . Hence, the set of all functions from F supported in J is a
subgroup of F . We denote this subgroup by FJ .

2Throughout this paper, for words u and v, u � v denotes letter-by-letter equality.
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(a) The tree diagram .TC; T�/ of x0. (b) The tree diagram .TC; T�/ of x1.

Figure 2

Thompson’s group F contains many copies of itself (see [5]). Let a and b be numbers
from ZŒ1

2
� and consider the subgroup FŒa;b�. This subgroup is isomorphic to F (we will

refer to such subgroups of F as natural copies of F ). Indeed, F can be viewed as a
subgroup of PL2.R/ of all piecewise-linear homeomorphisms of R with finitely many
dyadic break points and absolute values of all slopes powers of 2. Let f 2 PL2.R/ be a
function which maps 0 to a and 1 to b (such a function clearly exists). Then, F f is the
subgroup of PL2.R/ of all orientation preserving homeomorphisms with support in Œa; b�,
that is, F f D FŒa;b�.

Let u be a finite binary word and let Œu� be the dyadic interval associated with it. The
isomorphism between F and FŒu� can also be defined using tree-diagrams. Let g be an
element of F represented by a tree-diagram .TC; T�/. We map g to an element in FŒu�,
denoted by gŒu� and referred to as the Œu�-copy of g. To construct the element gŒu�, we
start with a minimal finite binary tree T which contains the branch u. We take two copies
of the tree T . To the first copy, we attach the tree TC at the end of the branch u. To the
second copy, we attach the tree T� at the end of the branch u. The resulting trees are
denoted by RC and R�, respectively. The element gŒu� is the one represented by the tree-
diagram .RC; R�/. Note that if g consists of pairs of branches vi ! wi ; i D 1; : : : ; k

and B is the set of branches of T which are not equal to u, then gŒu� consists of pairs of
branches uvi ! uwi ; i D 1; :::; k, and p ! p; p 2 B . Note also that if .TC; T�/ is the
reduced tree-diagram of g, then .RC; R�/ is the reduced tree-diagram of gŒu�.

For example, the copies of the generators x0; x1 of F in FŒ0� are depicted in Figure 2.
It is obvious that these copies generate the subgroup FŒ0�.

The isomorphism above guarantees that if f; g 2 F , then fŒu�gŒu� D .fg/Œu�. Given a
subset S of F and a finite binary word u, we will denote by SŒu� the image of S in FŒu�

under the above isomorphism. Similarly, if G is a subgroup of F , we will denote by GŒu�

the copy of G in FŒu� (i.e., the image of G in FŒu� under the above isomorphism).
Using this isomorphism, we define an addition operation in Thompson’s group F as

follows: we denote by 1 the trivial element in F . We define the sum of an element g 2 F
with the trivial element 1, denoted by g ˚ 1, to be the copy of g in FŒ0�. Similarly, the
sum of 1 and g, denoted by 1 ˚ g, is the copy of g in FŒ1�. If g; h 2 F , we define the
sum of g and h, denoted by g ˚ h, to be the product .g ˚ 1/.1˚ h/; that is, g ˚ h is an
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element from Stab.¹1
2
º/ which acts as a copy of g on Œ0� and as a copy of h on Œ1�. It is

easy to see that, for g D 1 or h D 1, this definition coincides with the previous one. Note
that if f; g 2 F , the slope of f ˚ g at 0C coincides with f 0.0C/ and the slope of g at 1�

coincides with g0.1�/.

2.4. Closed subgroups of F

The original definition of closed subgroups of F was given in [11] (see also [14]) in
the language of diagram groups over directed 2-complexes. In this section, we adapt the
definition (or, rather, one of the equivalent definitions from [14]) to the language of tree-
diagrams and automata.

In this section, to define closed subgroups of F , we define diagram groups over rooted
tree-automata (see below). Diagram groups over rooted tree-automata are a special case
of the diagram groups studied by Guba and Sapir [17, 18].

We chose to give our somewhat narrow definitions in the language of tree-diagrams
(as opposed to the language of diagrams used in [10, 11, 14]) in the hope that the notions
of closed subgroups of F and the core of subgroups of F will be more easily accessible
to the wider community of researchers of Thompson’s group F . The terminology of trees
would also be convenient in Section 3.

Recall that an automaton A is a directed edge-labeled graph. Every automaton con-
sidered in this paper will have a distinguished vertex r called the initial vertex or the root.
We will usually denote such an automaton by Ar and call it a rooted automaton. In this
paper, a path in a rooted automaton Ar is a finite directed path which starts from the
root. More formally, if e is a directed edge in a rooted automaton Ar , we denote by e�
the initial vertex of e and by eC the terminal vertex of e. A path in Ar is a sequence of
edges e1; : : : ; en such that e1� D r and for each i D 1; : : : ; n� 1, we have eiC D eiC1�.

Definition 2.4. Let Ar be a rooted automaton with root r . The automaton Ar is called a
rooted tree-automaton, or a tree-automaton for short, if the following conditions hold:

(1) Every vertex in Ar has either zero or two outgoing edges.

(2) If a vertex x in Ar has two outgoing edges (in which case, we say x is a father),
then one of the outgoing edges (which we call a left edge) is labeled “0” and the
other one (which we call a right edge) is labeled “1”. The end vertices of these
edges are called the left and right children of x, respectively.

(3) If x1 and x2 are distinct fathers in Ar , then the left children of x1 and x2 are
distinct or the right children of x1 and x2 are distinct.

(4) For every vertex x in Ar , there is a directed path in Ar ending in x.

A vertex of a tree-automaton Ar which has no outgoing edges is called a leaf. A vertex
of Ar which has two outgoing edges is called an inner vertex (or a father vertex). Note
that if Ar is a tree-automaton, then every path in Ar is labeled by a finite binary word u.
We will rarely distinguish between a path and its label. Note that every finite binary word
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labels at most one path in Ar . If u is (the label of) a path in Ar , we will denote the end
vertex of the path by uC. We say that a finite binary word u is readable on Ar if u labels
a path in Ar . We say that a finite binary tree T is readable on Ar if every branch u of T
labels a path in Ar .

Definition 2.5. Let Ar be a tree-automaton. Let .TC; T�/ be a tree-diagram of an element
in F .

(1) We say that .TC; T�/ is readable on Ar if both TC and T� are readable on Ar .

(2) We say that .TC; T�/ is accepted by Ar if it is readable on Ar and for every
pair of branches u! v of .TC; T�/, we have that uC D vC in Ar (i.e., the end
vertices uC and vC of the paths u on v in Ar coincide).

Note that given a finite tree-automaton Ar (i.e., a tree-automaton which has finitely
many vertices) and a tree-diagram .TC; T�/, it is decidable if .TC; T�/ is accepted by Ar .
Indeed, one can check for each pair of branches u! v of .TC; T�/ whether u and v label
paths in Ar and, if so, whether they terminate on the same vertex of Ar .

Example 2.6. Consider the rooted tree-automaton Ar given in Figure 3.

(1) The reduced tree-diagram .TC; T�/ of .x1/Œ0� (see Figure 2.b/) is not readable
on Ar . Indeed, the tree T� is not readable on Ar since its branch 0111 does not
label a path in Ar .

(2) The reduced tree-diagram .RC;R�/ of x1 (see Figure 1.b/) is readable on Ar but
is not accepted by Ar . Indeed, since each branch of the trees RC and R� labels a
path in Ar , the tree-diagram .RC; R�/ is readable on Ar . Since 101! 110 is a
pair of branches of .RC;R�/ and in Ar we have .101/CD k whereas .110/CD h,
the tree-diagram .RC; R�/ is not accepted by Ar .

(3) The reduced tree-diagram .SC; S�/ of x0 (see Figure 1.a/) is accepted by Ar .
Indeed, for each pair of branches u! v of .SC; S�/, both u and v label paths
in Ar and uC D vC in Ar .

We make the following observation:

Lemma 2.7. Let Ar be a tree-automaton. Let .TC;T�/ be a tree-diagram accepted by Ar .
Then, the reduced tree-diagram equivalent to .TC; T�/ is also accepted by Ar .

Proof. Assume that .TC; T�/ is not reduced and let .RC; R�/ be a tree-diagram obtained
from .TC; T�/ by the reduction of a single common caret. It is sufficient to prove
that .RC; R�/ is accepted by Ar . To do so, consider the relation between the pairs of
branches of .RC; R�/ and the pairs of branches of .TC; T�/. There exists one pair of
branches u! v of .RC; R�/ such that .TC; T�/ has the pairs of branches u0! v0 and
u1! v1. All other pairs of branches of .RC; R�/ are also pairs of branches of .TC; T�/.
Hence, to prove that .RC; R�/ is accepted by Ar , it suffices to prove that u and v label
paths in Ar such that uCD vC. Since .TC;T�/ is accepted by Ar , u0, v0, u1, and v1 label
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r
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k

g

0
1

0

1

1

0

0

1

Figure 3. A rooted tree-automaton (we gave labels to the vertices in the figure so it would be easier
to refer to them).

paths in Ar such that .u0/C D .v0/C and .u1/C D .v1/C. It follows that u and v label
paths in Ar and that both uC and vC are fathers such that their left child is .u0/CD .v0/C

and their right child is .u1/C D .v1/C. Hence, by condition .3/ in the definition of a tree-
automaton, the vertices uC and vC in Ar must coincide. Hence, .RC; R�/ is accepted
by Ar .

More generally, we have the following:

Lemma 2.8. Let Ar be a tree-automaton and let .TC; T�/ be a tree-diagram accepted
by Ar . Let .RC;R�/ be a tree-diagram equivalent to .TC; T�/. Then, .RC;R�/ is accept-
ed by Ar if and only if RC (or equivalently, R�) is readable on Ar .

The proof of Lemma 2.8 is similar to the proof of Lemma 2.7, and follows easily from
conditions .2/ and .3/ in the definition of a tree-automaton.

Lemma 2.9. Let Ar be a tree-automaton. Let .TC; T�/ and .RC; R�/ be reduced tree-
diagrams accepted by Ar . Then, the product .TC; T�/ � .RC; R�/ is accepted by Ar .

Proof. By assumption, the trees T� and RC are readable on Ar . Let S be the minimal
finite binary tree such that T� and RC are rooted subtrees of S . Since every branch of S
is either a branch of T� or a branch of RC, the tree S is readable on Ar . One can insert
common carets into the tree-diagram .TC;T�/ until one gets an equivalent tree-diagram of
the form .T 0; S/. Similarly, one can insert common carets to the tree-diagram .RC; R�/

to get the equivalent tree-diagram .S; R0/. Since S is readable on Ar , by Lemma 2.8,
both .T 0; S/ and .S; R0/ are accepted by Ar . It follows easily that .T 0; R0/ is accepted
by Ar . But the product of .TC; T�/ and .RC; R�/ is the reduced tree-diagram equivalent
to .T 0; R0/. Hence, by Lemma 2.7, it is accepted by Ar .
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Lemma 2.9 implies that if Ar is a tree-automaton, then the set of all reduced tree-
diagrams in F accepted by Ar is a subgroup of F .

Definition 2.10. Let Ar be a tree-automaton. We define the diagram group over Ar ,
denoted by DG .Ar /, to be the subgroup of F of all (reduced) tree-diagrams .TC; T�/
accepted by Ar .

Note that the diagram groups defined in Definition 2.10 are a special case of the dia-
gram groups defined in [17] by Guba and Sapir.

Definition 2.11. A subgroup H of F is closed if it is a diagram group over some tree-
automaton, that is, if there exists a tree-automaton Ar such that H D DG .Ar /.

Example 2.12. Thompson’s group F is closed. Indeed, let Ar be the tree-automaton with
a unique vertex, the root r , and two directed loops from r to itself (one labeled “0” and
the other labeled “1”). Then, the diagram group DG .Ar / D F .

Note that if Ar is a finite tree-automaton, then the membership problem in the sub-
group DG .Ar / of Thompson’s group F is decidable. Indeed, as noted above, given a
reduced tree-diagram .TC; T�/ in F , it is decidable whether .TC; T�/ is accepted by Ar .

Let H be a subgroup of F . A function f 2 F is said to be a piecewise-H function if
there is a finite subdivision of the interval Œ0; 1� such that on each interval in the subdivi-
sion f coincides with some function in H . We note that since all breakpoints of elements
in F are dyadic fractions, a function f 2 F is a piecewise-H function if and only if there
is a dyadic subdivision of the interval Œ0; 1� into finitely many pieces such that on each
dyadic interval in the subdivision f coincides with some function in H . Equivalently, a
function f 2 F is a piecewise-H function if and only if it has a (not necessarily reduced)
tree-diagram .TC; T�/ such that each pair of branches u ! v of .TC; T�/ is a pair of
branches of some element in H . The following lemma was proved in [14]:

Lemma 2.13. Let H be a subgroup of F . Then, H is closed (i.e., there is a tree-autom-
aton Ar such that H D DG .Ar /) if and only if every function f 2 F which is a piece-
wise-H function belongs to H .

Remark 2.14. It follows from Lemma 2.13 that the intersection of closed subgroups of F
is a closed subgroup of F . One can also show it directly from Definition 2.10 using an
appropriately defined “pullback” of rooted tree-automata.

2.5. The core of subgroups of Thompson’s group F

Let H be a subgroup of F . We are interested in the smallest closed subgroup of F which
contains H (note that by Remark 2.14, such a subgroup exists). For this, we define the
core of the subgroup H of F . The following definition is an adaptation of the definition
from [11] to the language of tree-diagrams:
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Definition 2.15. LetH be a subgroup of F generated by the set � D ¹.T i
C; T

i
�/ W i 2 	º of

reduced tree-diagrams. The core ofH is the rooted tree-automaton denoted C.H/ defined
as follows:

For each i 2 	, we can consider the trees T i
C and T i

� as directed edge-labeled graphs,
where edges are directed away from the root and left edges are labeled by “0” and right
edges are labeled “1”. For each i 2 	, we “glue” each leaf of T i

C to the corresponding
leaf of T i

� (i.e., we identify each pair of corresponding leaves to a single vertex). We
also glue the root of T i

C to the root of T i
� and denote the oriented graph obtained by Si

(one can think of Si as drawn on a sphere.). The “root” of Si is the vertex formed by the
identification of the roots of T i

C and T i
�. Note that this is the only vertex in Si with no

incoming edges.
Next, we identify the roots of all the directed graphs Si to a single root vertex r . To

the directed edge-labeled graph obtained we apply foldings of two different types:

(1) If a vertex x has several outgoing edges labeled by the same label, we identify all
of these edges to a single edge and all of their end-vertices to a single vertex.
We repeat step .1/ as long as it is applicable. As a result (if S is infinite, then
in the limit state, after possibly infinitely many foldings) we get a directed edge
labeled-graph where every vertex x has either zero or two outgoing edges: one left
edge labeled “0” and one right edge labeled “1” (in which case we will refer to
their end vertices as the children of x).

(2) If x and y are distinct vertices in the directed graph obtained such that both x
and y have 2 outgoing edges and such that each child of x coincides with the
respective child of y, we identify the vertices x and y, their left outgoing edges,
and their right outgoing edges.
We repeat step .2/ as long as it is applicable (if S is infinite, we may have to apply
infinitely many foldings).

Note that at the end of this process, every vertex has either zero or two ougoing edges, one
labeled “0” and the other labeled “1”, and the unique vertex with no incoming edges is
the root r . The foldings guarantee that the resulting directed edge-labeled graph satisfies
conditions .2/ and .3/ from Definition 2.4. Condition (4) from the definition is also satis-
fied, since even before the application of foldings, for each vertex in the graph there was
a directed path from the root to the vertex. Hence, the directed graph obtained is a rooted
tree-automaton. It is called the core of H and denoted by C.H/.

Example 2.16. Let H D hx0x
�1
1 ; x2

0x1x
�1
3 i. We demonstrate the construction of the

core C.H/. First, we start with the reduced tree-diagrams .T 1
C; T

1
�/ and .T 2

C; T
2
�/ of the

generators x0x
�1
1 and x2

0x1x
�1
3 , where each tree is considered as a directed edge-labeled

graph (see Figure 4). Next, for i D 1;2, we identify each leaf of T i
C with the corresponding

leaf of T i
� and we identify the roots of the trees T 1

C; T
1
� ; T

2
C; T

2
� to a single root vertex as

depicted in Figure 5.
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In the figure, we labeled all the vertices, giving identified vertices the same label and
labeling the root by r . Next, we apply foldings, starting with foldings of type .1/; the
vertex r has 4 distinct outgoing edges labeled “0”. We identify all of them to a single edge
and identify their end vertices 11; 1; 15; 5 to a single vertex. Similarly, the vertex r has 4
distinct outgoing edges labeled “1”. We identify all of them to a single edge and identify
their end vertices 12; 13; 16; 19 to a single vertex. The result is depicted in Figure 6 (for
convenience, when edges are identified we color them to the same (non-black) color; and
when several vertices are identified, we label all of them (in every place they appear in the
figure) by the smallest of their labels).

Now, in Figure 6, the vertex 1 has two distinct outgoing edges labeled “0” and two
distinct outgoing edges labeled “1”. We identify the outgoing edges labeled “0” to a
single edge and identify their end vertices 1; 17 to a single vertex. Similarly, we identify
the outgoing edges labeled “1” to a single edge and their end vertices 2; 8 to a single
vertex. The result is depicted in Figure 7.

Now, In Figure 7, the vertex 1 has two distinct outgoing edges labeled “0” (a green
edge and a black edge). We identify them to a single edge (note that their end vertices are
already identified). Similarly, the vertex 1 has two distinct outgoing edges labeled “1” (an
orange edge and a black edge). We identify them to a single edge and we identify their end
vertices 2; 18 to a single vertex. The result is depicted in Figure 8.

Now, in Figure 8, the vertex 12 has four distinct outgoing edges labeled “0”. We
identify them to a single edge and their end vertices 3;14;9;6 to a single vertex . Similarly,
the vertex 12 has four distinct outgoing edges labeled “1”. We identify them to a single
edge and we identify their end vertices 4; 10; 20 to a single vertex. The result is depicted
in Figure 9. Notice that in Figure 9, there is no vertex with distinct outgoing edges labeled
by the same label. Hence, we are done applying foldings of type .1/ and we move on to
applying foldings of type .2/.

In Figure 9 the vertices 3 and 22 are distinct vertices, but their left children coincide
and their right children coincide. Hence, we identify these vertices, as well as their left
outgoing edges and their right outgoing edges. The result is depicted in Figure 10.

Now, in Figure 10, the vertices 12 and 21 are distinct vertices, but their left children
coincide and their right children coincide. Hence, we identify these vertices, as well as
their left outgoing edges and their right outgoing edges. The result is depicted in Fig-
ure 11. Notice that in Figure 11 there are no more applicable foldings. Hence, the process
is finished and the rooted tree-automaton in Figure 11 is the core of H (where all ver-
tices with the same label are identified and all non-black edges with the same color are
identified). The obtained core of H is also depicted in Figure 12.

As noted in [11], the core of H does not depend on the chosen generating set nor on
the order of foldings applied.

It follows from the definition of the core of H that the core C.H/ accepts the genera-
tors of H and hence, by Lemma 2.9, the entire subgroup H .
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Figure 4. The reduced tree-diagram .T 1
C
; T 1
�/ of x0x

�1
1 appears in the first row. The reduced tree-

diagram .T 2
C
; T 2
�/ of x2

0x1x
�1
3 appears in the second row.

Definition 2.17. Let H be a subgroup of F . Let C.H/ be the core of H . The closure
of H , denoted Cl.H/, is the subgroup of F of all (reduced) tree-diagrams accepted
by C.H/. In other words, the closure of H is the diagram group DG .C.H//.

LetH be a subgroup of F . Then, Cl.H/ is a closed subgroup of F which containsH .
By [14, Theorem 5.6], the closure ofH is the subgroup of F of all piecewise-H functions.
Hence, by Lemma 2.13, the closure of H is the minimal closed subgroup of F which
contains H . In particular, the subgroup H is closed if and only if H D Cl.H/.

2.6. On the core and closure of subgroups of F

Below, we recall some useful results about the core and the closure of subgroups of F .
But first, we will need the next lemma.
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Figure 5. For i D 1; 2, we identified each leaf of T i
C

with the corresponding leaf of T i
� and we

identified the roots of the trees T 1
C
; T 1
�; T

2
C
; T 2
� to a single root vertex r .

A trail in a tree-automaton Ar is a finite sequence of directed edges e1; : : : ; en such
that for each i D 1; : : : ; n� 1, we have eiC D eiC1� (that is, a trail is a “path” which does
not necessarily start from the root). Clearly, every trail has a finite binary label. Note that
if x is a vertex in Ar , then for every finite binary word u, there is at most one trail in Ar

labeled u with initial vertex x.

Lemma 2.18. Let Ar be a tree-automaton such that u and v label paths in Ar . Assume
that there is a function f in the diagram group DG .Ar / such that u! v is a pair of
branches of f . Then, uC D vC in Ar .

Proof. Let .TC; T�/ be the reduced tree-diagram of f . Since f belongs to DG .Ar /, the
tree-diagram .TC; T�/ is accepted by Ar . Hence, if u! v is a pair of branches of the



On maximal subgroups of Thompson’s group F 17

r

1

17

1

0

18

6

0

7

1

1

0

8

1

0

12

9

0

10

1

1
r

1

0

12

6

0

20

7

0

21

22

8

0

9

1

0

10

1

1

1

1

r

1

1

0

2

1

0

12

3

0

4

1

1
r

1

0

12

14

2

0

3

1

0

4

1

1

Figure 6. The red edges are now identified and their end vertices are also identified, and similarly
for the blue edges.

reduced tree-diagram .TC; T�/, we are done. Otherwise, by Remark 2.1, there are finite
binary words p;q;w such that u� pw, v � qw and such that p! q is a pair of branches
of the reduced tree-diagram of f . In that case, since .TC; T�/ is accepted by Ar , we have
that pC D qC in Ar . Since the word u� pw labels a path in the core, the wordw labels a
trail in the core with initial vertex pC D qC. This trail ends at the vertex .pw/C D .qw/C.
Hence, uC D .pw/C D .qw/C D vC, as required.

Let H be a subgroup of F and assume that u and v are paths in the core C.H/. By
Lemma 2.18, if there is a function in Cl.H/ with the pair of branches u! v, then in the
core, we have uC D vC. The following lemma says that the other direction is also true:
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Figure 7. The green edges are now identified and their end vertices are identified, and similarly for
the orange edges.

Lemma 2.19 ([14, Lemma 6.1]). Let H be a subgroup of F and let C.H/ be the core
of H . Let u and v be paths in the core C.H/. Then, uC D vC if an only if there is an
element h 2 Cl.H/ such that h has the pair of branches u! v.

Intuitively, Lemma 2.19 says that two paths in the core of H terminate on the same
vertex if and only if they “have to” in order for the core to accept the subgroup Cl.H/.

The following lemma follows from Lemma 2.19 and the fact the closure of H is the
subgroup of F of all piecewise-H functions:

Lemma 2.20 ([14, Lemma 4.6]). Let H be a subgroup of F and let C.H/ be the core
of H . Let u and v be finite binary words which label paths in C.H/. Then, uC D vC if
and only if there is k 2 N such that for any finite binary word w of length � k, there is an
element h 2 H with the pair of branches uw ! vw.
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Figure 8. All the green edges are now identified, all the orange edges are now identified, and their
end vertices are identified as well.

Recall that if C.H/ is the core of a subgroup H of F , then for every vertex x of the
core, there is a directed path in the core from the root to x.

Definition 2.21. Let H be a subgroup of F and let C.H/ be the core of H . Let x be a
vertex of C.H/.

(1) If there is n 2 N such that u � 0n is a path in the core such that uC D x, then the
vertex x is called a left vertex of the core.

(2) If there is n 2 N such that u � 1n is a path in the core such that uC D x, then the
vertex x is a right vertex of the core.

(3) If there is a path u in the core which contains both digits 0 and 1 such that uC D x,
then x is a middle vertex of the core.

Remark 2.22. Let C.H/ be the core of a subgroup H of F . Then, each vertex of C.H/

is exactly one of the following: .1/ the root, .2/ a left vertex, .3/ a right vertex, or .4/ a
middle vertex.

Indeed, since each vertex in the core of H is the end-vertex of some directed path in
the core, each vertex in the core is of one of the four mentioned types. Lemma 2.19 implies
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Figure 9. All the violet edges are now identified and their end vertices are identified, and similarly
for the cyan edges.

that a vertex cannot be of two different types (for example, a vertex cannot be both a left
vertex and a right vertex because that would imply that there is an element in Cl.H/ with
a pair of branches of the form, 0n ! 1m for some n; m 2 N). Note also that if x is a
middle vertex of the core of H and x has two outgoing edges, then its children are also
middle vertices of the core.

Example 2.23. The core of Thompson’s group F is given in Figure 13. Note that it has
exactly four vertices: the root, a unique left vertex, a unique right vertex, and a unique
middle vertex.

One can verify that this is the core of F using the construction in Definition 2.15
(for example, starting with the generating set ¹x0; x1º). Alternatively, it follows from
Lemma 2.19. Indeed, since the core of F accepts every reduced tree-diagram in F , every
finite binary word u labels a path in the core of F . Then, the fact that there is a unique
middle vertex in the core follows from Lemma 2.19, since for every pair of finite binary
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Figure 10. The olive edges are now identified, the teal edges are now identified, and their initial
vertices are also identified.

words u and v which contain both digits 0 and 1, there is an element in F with the pair
of branches u! v. Similarly, Lemma 2.19 implies that there is a unique left vertex and a
unique right vertex in the core of F .

Now, let H be a subgroup of F . Since the closure of H is the subgroup of F of all
piecewise-H functions, the orbits of the action of H on the set of dyadic fractions D

coincide with the orbits of the action of Cl.H/. The next lemma follows from (the more
general) [14, Theorem 6.5]. Recall that an inner vertex of a tree-automaton is a vertex
which has two outgoing edges.

Lemma 2.24. Let H be a subgroup of F and assume that the core C.H/ is finite (i.e,
that there are finitely many vertices in C.H/). Then, the action of H on the set of dyadic
fractions D has finitely many orbits if and only if every vertex in C.H/ is an inner vertex.
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Figure 11. All the violet edges are now identified, all the cyan edges are now identified, and their
initial vertices are also identified.

2.7. The derived subgroup of F

The derived subgroup of F is an infinite simple group [7]. It can be characterized as
the subgroup of F of all functions f with slope 1 both at 0C and at 1� (see [7]). In other
words, it is the subgroup of all functions in F supported in the interval .0; 1/. In particular,
the derived subgroup of F acts transitively on the set of dyadic fraction D . (Indeed, for
every pair of dyadic fractions ˛; ˇ 2 D , there is a function f 2 F such that f .˛/ D ˇ
and such that f is supported in .0; 1/.)

Since ŒF; F � is infinite and simple, every finite index subgroup of F contains the
derived subgroup of F . Hence, there is a one-to-one correspondence between finite index
subgroups of F and finite index subgroups of the abelianization F=ŒF; F �.

Recall that the abelianization of F is isomorphic to Z2. The standard map from F to
its abelianization �ab WF ! Z2 sends an element f 2 F to .log2.f

0.0C//; log2.f
0.1�///

(see, for example, [7]). Below, when we refer to the image of a subgroup H of F in the
abelianization of F , we refer to its image in Z2 under �ab . The following remark will be
useful:
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Figure 12. The core of H .

Remark 2.25. Let H be a subgroup of F . Then, H is contained in a proper finite index
subgroup of F if and only ifHŒF;F � < F (in other words, if and only if �ab.H/ is a strict
subgroup of Z2).

Proof. The claim follows from the fact that every finite index subgroup of F contains the
derived subgroup of F and the fact that every strict subgroup of Z2 is contained in a finite
index subgroup of Z2.

As noted, there is a one-to-one correspondence between finite index subgroups of Z2

and finite index subgroups of F . More generally, there is a one-to-one correspondence
between subgroups of Z2 and subgroups of F which contain the derived subgroup of F .
We will be particularly interested in subgroups of Z2 whose preimage under �ab is a
closed subgroup of F .

Definition 2.26. Let K be a subgroup of Z2. We say that K is a closed subgroup of Z2 if
its preimage under �ab is a closed subgroup of F .

The next lemma follows easily from the characterization of closed subgroups of F as
subgroups H which are closed under taking piecewise-H functions.

Lemma 2.27. Let K be a subgroup of Z2. Then, K is closed if and only if there exist
integers p; q � 0 such that K D pZ � qZ.

Proof. Assume that there exist p; q � 0 such that K D pZ � qZ. We denote by Fp;q the
preimage in F of pZ � qZ. In other words, Fp;q is the subgroup of F of all functions f
such that log2.f

0.0C// is an integer multiple of p and log2.f
0.1�// is an integer multiple
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Figure 13. The core of Thompson’s group F . The root of the core is labeled r . There is a unique
left vertex, unique right vertex, and unique middle vertex in the core.

of q. The subgroup Fp;q clearly contains every piecewise-Fp;q function. Hence, it is a
closed subgroup of F . Hence, by definition, K is a closed subgroup of F .

In the opposite direction, assume that K is a closed subgroup of Z2. We let p D
gcd¹a > 0 j .a; b/ 2 Kº and q D gcd¹b > 0 j .a; b/ 2 Kº (where gcd.;/ is taken to be
zero). Clearly, K � pZ � qZ. We claim that the inverse inclusion also holds. Indeed,
let H be the preimage of K under �ab and note that H is a closed subgroup of F . By
the choice of p, there exists b such that .p; b/ 2 K. Let f D x

p
0 ˚ x

�b
0 and note that

f 0.0C/ D 2p and f 0.1�/ D 2b (since the slope of x0 at 0C is 2 and at 1� is 2�1). Since
�ab.f / D .p; b/ 2 K, the function f 2 H . Let g D xp

0 ˚ 1 and note that g is a piece-
wise-H function. Since H is closed, the function g 2 H . Hence, �ab.g/ D .p; 0/ 2 K.
In a similar way, one can show that .0; q/ 2 K. Hence, pZ � qZ � K, as required.

Let p; q � 0. As in the proof of Lemma 2.27, we denote by Fp;q the preimage in F
of pZ � qZ. Note that Fp;q is of finite index in F if and only if p; q � 1. In [4], Bleak
and Wassink proved that for every p; q � 1, the subgroup Fp;q of F (which they denote
by K.p;q/ and call a rectangular subgroup of F ) is isomorphic to F . They also prove that
every finite index subgroup of F which is not of this form is not isomorphic to F .

2.8. Subgroups of F whose closure contains ŒF; F �

In this paper, we will be interested in subgroups of F whose closure contains the derived
subgroup ofF . In [14], we gave a characterization of such subgroups in terms of their core.

Lemma 2.28 ([14, Lemma 7.1]). Let H be a subgroup of F . Then, Cl.H/ contains the
derived subgroup of F if and only if the core C.H/ has a unique middle vertex and that
middle vertex is an inner vertex (i.e., it has two outgoing edges, necessarily to itself).

It is not difficult to check that if the core of H is as described in Lemma 2.28, then
it accepts every tree-diagram in ŒF; F � and, thus, the closure of H contains ŒF; F �. The
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opposite direction in the lemma follows from Lemma 2.19 and the fact that for every pair
of finite binary words u; v which contain both digits 0 and 1, there is an element in ŒF; F �
with the pair of branches u! v.

In [14], we proved that if the closure of a subgroup H of F contains the derived
subgroup of F , then the subgroup H must be “big” in the sense that for any pair of
branches of an element of ŒF; F �, if the branches in the pair are “extended” a little, then
there must be an element in H with that pair of branches. More accurately, the following
was proved in [14]:

Lemma 2.29 ([14, Corollary 7.8]). Let H be a subgroup of F such that Cl.H/ contains
the derived subgroup of F . Let v1 and v2 be a pair of finite binary words which con-
tain both digits 0 and 1. Then, there exists k 2 N such that for any pair of finite binary
words w1; w2 of length � k, there is an element h 2 H with the pair of branches v1w1

! v2w2.

As a corollary from Lemma 2.29, we have the following:

Corollary 2.30. Let H be a subgroup of F such that Cl.H/ contains the derived sub-
group of F . Then, there is a finite binary word u which contains both digits 0 and 1
such that for every finite binary word w, there is an element h 2 H with the pair of
branches u! uw.

Proof. Let v1 be a finite binary word which contains both digits 0 and 1 and let v2 � v1.
By Lemma 2.29, there exists k 2 N such that for every pair of finite binary words w1; w2

of length � k, there is an element in H with the pair of branches v1w1 ! v2w2. Then,
the finite binary word u� v10

k satisfies the result. Indeed, for any finite binary wordw, if
one lets w1 � 0

k and w2 � 0
kw, then there is an element in H with the pair of branches

v1w1 ! v2w2, that is, with the pair of branches u! uw, as required.

The next lemma also shows that if the closure of H contains the derived subgroup
of F , then H is “big” in the sense that it must contain elements with certain properties.

Lemma 2.31 ([14, Lemma 7.12]). Let H be a subgroup of F such that Cl.H/ contains
the derived subgroup of F . Let a < b in .0; 1/ be finite dyadic fractions. Let u be a finite
binary word which contains both digits 0 and 1. Then, there is an element g 2 H such
that g maps the interval Œa; b� into the dyadic interval Œu�.

2.9. The generation problem in Thompson’s group F

Recall that in [14], we gave a solution for the generation problem in F , that is, we gave
an algorithm such that given a finite subset X of F determines whether X generates F .
In fact, we gave an algorithm which, given a finite subset X of F , determines whether the
subgroup it generates contains the derived subgroup of F (or equivalently, whether the
subgroup it generates is a normal subgroup of F [7]).
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Theorem 2.32 ([14, Theorem 1.3]). Let H be a subgroup of F . Then, H contains the
derived subgroup of F if and only if the following conditions hold:

(1) ŒF; F � � Cl.H/.

(2) There is an element h 2 H which fixes a dyadic fraction ˛ 2 .0; 1/ such that the
slope h0.˛�/ D 2 and the slope h0.˛C/ D 1.

Given a finite subset X of F , we let H be the subgroup generated by X . Then, it is
decidable if condition .1/ holds for H (see Lemma 2.28). In [14, Section 8], we gave an
algorithm for deciding if H satisfies condition .2/, given that H satisfies condition .1/.
Hence, Theorem 2.32 gives an algorithm for determining if H contains ŒF; F �.

Now, given a finite subset X of F , let H be the subgroup of F generated by X .
Clearly, if HŒF; F � ¤ F , then H is a strict subgroup of F . If HŒF; F � D F (which can
be checked easily using the abelianization map), then to determine if H D F , it suffices
to check ifH contains the derived subgroup ŒF;F �. Hence, Theorem 2.32 gives a solution
to the generation problem in F .

Corollary 2.33. Let H be a subgroup of F . Then, H D F if and only if the following
conditions hold:

(1) HŒF; F � D F .

(2) ŒF; F � � Cl.H/.

(3) There is a function h 2 H which fixes a finite dyadic fraction ˛ 2D such that the
slope h0.˛�/ D 2 and the slope h0.˛C/ D 1.

3. Improved solution to the generation problem in F

In this section, we prove that if the image of H in the abelianization of F is closed,
then the second condition in Theorem 2.32 is superfluous. More specifically, we prove the
following:

Proposition 3.1. Let H be a subgroup of F such that the following conditions hold:

(1) The image of H in the abelianization of F is a closed subgroup of Z2.

(2) ŒF; F � � Cl.H/.

Then, there is an element h 2 H which fixes a dyadic fraction ˛ 2 .0; 1/ such that the
slope h0.˛�/ D 2 and the slope h0.˛C/ D 1.

The proof of Proposition 3.1 relies on some ideas from [14]. Recall that in [14, Sec-
tion 8], we give an algorithm for determining if a subgroupH of F whose closure contains
the derived subgroup of F satisfies condition .2/ of Theorem 2.32. Proposition 3.1 claims
that if the image of H in the abelianization of F is closed, then the algorithm from [14,
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Section 8] necessarily returns “Yes”. While we are not going to consider the algorithm
itself, we will use the “setting" of the algorithm from [14] with some modifications. Until
Lemma 3.6, we follow [14, Section 8] with small modifications.

Definition 3.2. Let H be a subgroup of F . We let

�H D
®
.a; b/ 2 Z2

j 9h 2 H W 9˛ 2 D W h.˛/ D ˛; h0.˛�/ D 2a; h0.˛C/ D 2b
¯
;

that is, we denote by �H the subset of Z2 of all vectors .a; b/ such that there is an element
h 2 H and a finite dyadic fraction ˛ 2 .0; 1/ such that h fixes ˛, and such that the slope
h0.˛�/ D 2a and the slope h0.˛C/ D 2b .

Recall that if H is a subgroup of F such that Cl.H/ contains the derived subgroup
of F , then H acts transitively on the set of dyadic fractions D (since Cl.H/ acts transi-
tively on D). Hence, we have the following:

Lemma 3.3. Let H be a subgroup of F such that Cl.H/ contains the derived subgroup
of F . Then, �H is a subgroup of Z2.

Proof. Let .a1;b1/; .a2;b2/2 �H . We claim that .a1C a2;b1C b2/2 �H . By assumption,
there exist h1; h2 2 H and ˛1; ˛2 2 D such that for i D 1; 2, hi .˛i / D ˛i , h0i .˛

�
i / D 2

ai

and h0i .˛
C

i / D 2
bi . Since H acts transitively on D , there is an element h 2 H such that

h.˛1/ D ˛2. Consider the element g D hh
1 2 H . The element g fixes ˛2 and g0.˛�2 / D

h01.˛
�
1 /D 2

a1 , g0.˛C2 /D h
0
1.˛
C
1 /D 2

b1 . Hence, the element kD h2g 2H fixes the dyadic
fraction ˛2, has slope 2a1Ca2 at ˛�2 , and slope 2b1Cb2 at ˛C2 . Hence, we have that .a1C a2;

b1 C b2/ 2 �H .

Let u be a finite binary word. We define `0.u/ to be the length of the longest suffix of
zeros of u and `1.u/ to be the length of the longest suffix of ones of u. Note that for every
finite binary word u, `0.u/ D 0 or `1.u/ D 0. We have the following definition:

Definition 3.4. Let .TC; T�/ be a tree-diagram of an element in F . Let u1 and u2 be a
pair of consecutive branches of TC and v1 and v2 be the corresponding pair of consecutive
branches of T�, so that u1 ! v1 and u2 ! v2 are pairs of branches of .TC; T�/. Then,
the 2-tuple associated with these consecutive pairs of branches of .TC; T�/ is defined as

t D .`1.u1/ � `1.v1/; `0.u2/ � `0.v2//:

Remark 3.5. Let .TC; T�/ be a tree-diagram of an element in F and let u1 ! v1 and
u2 ! v2 be two consecutive pairs of branches of .TC; T�/. Let u be the longest common
prefix of u1 and u2. Then,

u1 � u01
m1 and u2 � u10

n1 for some m1; n1 � 0:

Let v be the longest common prefix of v1 and v2. Then,

v1 � v01
m2 and v2 � v10

n2 for some m2; n2 � 0:
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Then, the 2-tuple associated with this consecutive pair of branches of .TC; T�/ is

t D .m1 �m2; n1 � n2/:

Lemma 3.6. Let .TC; T�/ be a tree-diagram of an element h 2H . Assume that .TC; T�/
has two consecutive pairs of branches u1 ! v1 and u2 ! v2 and let t be the 2-tuple
associated with these pairs of branches. Let u be the longest common prefix of u1 and u2

and let v be the longest common prefix of v1 and v2. If there is an element g 2H with the
pair of branches v ! u, then the 2-tuple t 2 �H .

Proof. Since u is the longest common prefix of u1 and u2 and they are consecutive
branches of the tree TC,

u1 � u01
m1 and u2 � u10

n1 for some m1; n1 � 0:

Similarly,
v1 � v01

m2 and v2 � v10
n2 for some m2; n2 � 0:

As noted in Remark 3.5, the 2-tuple t D .m1 �m2; n1 � n2/. Consider the element f D
hg 2 H . The element f has the pairs of branches

u01m1 ! u01m2 and u10n1 ! u10n2 :

(Indeed, h has the pair of branches u01m1 ! v01m2 and g has the pair of branches
v01m2 ! u01m2 . Hence, f D hg has the pair of branches u01m1 ! u01m2 . The same
applies to the second pair of branches.) Let ˛D :u01N D :u1. The above pairs of branches
of f imply that f fixes ˛. In addition, they imply that the slope of f at ˛� is 2m1�m2 and
the slope of f at ˛C is 2n1�n2 . Hence,

t D .m1 �m2; n1 � n2/ 2 �H :

Lemma 3.7. Let T be a finite binary tree with branches u1; : : : ; un. Then, the sumPn
iD1 `1.ui / is equal to the number of carets in T . In other words,

nX
iD1

`1.ui / D n � 1:

Proof. The proof is by induction on the number n of leaves of the tree (where a tree with
no edges has one leaf). For n D 1, the claim is obvious. Now, assume that the claim holds
for some n � 1 and let T be a finite binary tree with nC 1 leaves. Let u1; : : : ; unC1 be
the branches of T and let i 2 ¹1; : : : ; nº be such that the leaves at the end of branch-
es ui ; uiC1 have a common father (note that such an i must exist). Removing the caret
formed by the i and i C 1 leaves and their father results in a tree T 0 with branches
u1; : : : ; ui�1; v; uiC2; : : : ; un, where the finite binary word v is such that ui � v0 and
uiC1 � v1. In particular, `1.ui /D 0 and `1.uiC1/D `1.v/C 1. By the induction hypoth-
esis, the sum of `1.w/, where w runs over all the branches of T 0, is n� 1. Hence, the sum
of `1.w/, where w runs over all the branches of T , is .n � 1/C 1 D n, as required.
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Similarly, we have the following right-left analogue:

Lemma 3.8. Let T be a finite binary tree with branches u1; : : : ; un. Then, the sumPn
iD1 `0.ui / is equal to the number of carets in T . In other words,

nX
iD1

`0.ui / D n � 1:

Corollary 3.9. Let .TC;T�/ be a tree-diagram of an element h2F with pairs of branches
ui ! vi , i D 1; : : : ;n. Let ti , i D 1; : : : ;n� 1 be the tuples associated with the consecutive
pairs of branches of .TC; T�/. Then,

n�1X
iD1

ti D .� log2.h
0.1�//;� log2.h

0.0C///:

Proof. By definition, for each i D 1; : : : ; n � 1,

ti D .`1.ui / � `1.vi /; `0.uiC1/ � `0.viC1//

Hence,
n�1X
iD1

ti D
�n�1X

iD1

`1.ui / �

n�1X
iD1

`1.vi /;

nX
iD2

`0.ui / �

nX
iD2

`0.vi /
�
:

We note that by Lemma 3.7,

n�1X
iD1

`1.ui / D

nX
iD1

`1.ui / � `1.un/ D .n � 1/ � `1.un/:

Similarly, by Lemma 3.7,

n�1X
iD1

`1.vi / D .n � 1/ � `1.vn/:

Hence,
n�1X
iD1

`1.ui / �

n�1X
iD1

`1.vi / D `1.vn/ � `1.un/:

Note that un � 1
`1.un/ and vn � 1

`1.vn/. Since h has the pair of branches un � 1
`1.un/!

vn � 1
`1.vn/, the slope of h at 1 (from the left) satisfies

log2.h
0.1�// D `1.un/ � `1.vn/:

Hence,
n�1X
iD1

`1.ui / �

n�1X
iD1

`1.vi / D � log2.h
0.1�//:
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Similarly, using Lemma 3.8, one can get that

nX
iD2

`0.ui / �

nX
iD2

`0.vi / D � log2.h
0.0C//:

Hence,
n�1X
iD1

ti D .� log2.h
0.1�//;� log2.h

0.0C///;

as required.

Lemma 3.10. Let .TC; T�/ be a tree-diagram of an element h 2 F and let ui ! vi ,
i D 1; : : : ; n be the pairs of branches of .TC; T�/. Let ti , i D 1; : : : ; n � 1 be the tuple
associated with the i and i C 1 pairs of branches of .TC; T�/. Assume that there are finite
binary words u, w1, and w2 and indexes k < ` in ¹1; : : : ; n � 1º for which the k-th and
`-th pairs of branches of .TC; T�/ are the pairs

uw1 ! uw1 and uw2 ! uw21;

respectively. Then,
`�1X
iDk

ti D .1; 0/:

Proof. Let a D :uw1 and b D :uw21
N and note that h fixes the dyadic fractions a and b.

Hence, the element

g.t/ D

´
t if t 2 Œ0; a� [ Œb; 1�;

h.t/ if t 2 Œa; b�

belongs to F . Let .T 0C; T
0
�/ be a tree-diagram of g with pairs of branches u0i ! v0i ,

i D 1; : : : ; m. We can assume (by passing to an equivalent tree-diagram, if necessary)
that m D n and that the k to ` pairs of branches of .T 0C; T

0
�/ coincide with the k to `

pairs of branches of .TC; T�/. Note that all other pairs of branches of .T 0C; T
0
�/ are pairs

of branches of the identity, that is, pairs of branches of the form w ! w for some finite
binary words w.

We let t 0i , i D 1; : : : ; n� 1 be the tuples associated with the tree-diagram .T 0C; T
0
�/ and

note that for i D k : : : ; ` � 1, we have t 0i D ti . Indeed, for each i D k; : : : ; ` � 1, the i -th
and .i C 1/-th pairs of branches of .TC; T�/ and .T 0C; T

0
�/ coincide.

We note also that for each i 2 ¹1; : : : ; k � 1º [ ¹`C 1; : : : ; n� 1º, we have t 0i D .0; 0/.
Indeed, for each such i , the i -th and .i C 1/-th pairs of branches of .T 0C; T

0
�/ are pairs of

branches of the formw!w for finite binary wordsw. It follows easily from the definition
that the corresponding tuple is .0; 0/.

Finally, we consider the tuple t 0
`

t 0` D .`1.u2w2/ � `1.u2w11/; `0.u
0
`C1/ � `0.v

0
`C1// D .�1; 0/:
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We note that by the previous corollary, since the slope of g at 0C and at 1� is 1,

n�1X
iD1

t 0i D .0; 0/:

Hence,

`�1X
iDk

ti D

`�1X
iDk

t 0i D

n�1X
iD1

t 0i �

k�1X
iD1

t 0i � t
0
` �

n�1X
iD`C1

t 0i

D .0; 0/ � .0; 0/ � .�1; 0/ � .0; 0/ D .1; 0/;

as required.

Lemma 3.11. LetH be a subgroup of F . Let u be a finite binary word such that for every
finite binary word w, there is an element in H with the pair of branches uw ! u. Let
h 2 H be an element supported in the interval Œu01�. Then, for every tuple t associated
with consecutive pairs of branches of h, we have t 2 �H .

Proof. Let ui ! vi , i D 1; : : : ; n be the pairs of branches of h. Let i 2 ¹1; : : : ; n� 1º and
consider the tuple t associated with the i and i C 1 pairs of branches. We consider two
cases.

Case .1/: Neither intervals Œui � and ŒuiC1� intersect the interior of the support of h.
In that case, ui � vi and uiC1 � viC1 and t D .0; 0/ 2 �H , as required.

Case .2/: At least one of the intervals Œui � or ŒuiC1� intersects the interior of the
support of h. We consider the case where Œui �, and hence Œvi �, intersects the interior of the
support of h (the other case being similar). In that case, u01 must be a prefix of ui and
of vi . Since ui and uiC1 are consecutive branches in a full finite binary tree and u01 is
a prefix of ui , the word u must also be a prefix of uiC1. Similarly, the word u must be
a prefix of viC1 as well. Hence, the word u is a prefix of ui ; uiC1; vi ; viC1. Let w1 be
such that uw1 is the longest common prefix of ui and uiC1 and let w2 be such that uw2

is the longest common prefix of vi and viC1. By assumption, there is an element h1 2 H

with the pair of branches uw1 ! u and an element h2 2 H with the pair of branches
uw2 ! u. Then, the element h2h

�1
1 2 H has the pair of branches uw2 ! uw1. Hence,

by Lemma 3.6, the tuple t 2 SH .

Now, we are ready to give the proof of Proposition 3.1.

Proof of Proposition 3.1. Let H be a subgroup of F such that the closure of H contains
the derived subgroup of F . Assume also that �ab.H/ is a closed subgroup of Z2 and let
p; q 2 Z be such that �ab.H/ D pZ � qZ. We need to prove that .1; 0/ 2 �H . Indeed, in
that case, condition (2) of Theorem 2.32 holds for H .
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Since Cl.H/ contains ŒF; F �, by Corollary 2.30, there exists a finite binary word u
such that for every finite binary wordw, there is an element inH with the pair of branches
u! uw. In particular, there is an element h 2 H with the pair of branches u! u1. Let
˛ D :u1N and note that h fixes ˛ and that h0.˛�/ D 1

2
.

Since �ab.H/ D pZ � qZ, there is an element f1 2 H such that �ab.f1/ D .p; 0/.
Note that f 01.0

C/ D 2p and that f1 fixes pointwise a right neighborhood of 1, that is, for
some dyadic number c 2 .0; 1/, the element f1 fixes the interval Œc; 1� pointwise. Since
Cl.H/� ŒF;F �, the subgroupH acts transitively on the set of dyadic fractions D . Hence,
conjugating f1 by an element of H if necessary, we can assume that c < ˛.

Recall that the element h fixes ˛ and has slope 1
2

at ˛�. Let m1 be such that
h0.0C/ D 2m1 and note that pjm1. Hence, the element

h1 D hf
�

m1
p

1 2 H:

Note that h1 has slope 1 at 0C and, as such, it fixes a right neighborhood of 0. It also
coincides with h on Œc; 1�. In particular, h1 fixes ˛ and has slope 1

2
at ˛�.

Let m2 be the slope of h1 at 1�. Since �ab.H/ D pZ � qZ, qjm2. In addition, there
must exist an element f2 2 H which fixes a right neighborhood of 0 and has slope 2q

at 1�. Using conjugation if necessary, we can assume that f2 fixes the interval Œ0; d � for
some d > ˛. Now, consider the element

h2 D h1f
�

m2
q

2 2 H:

The element h2 fixes some left neighborhood of 1. Since it coincides with h1 on Œ0; d �, it
also fixes a right neighborhood of 0. In addition, h2.˛/ D ˛ and h02.˛

�/ D 1
2

.
Let a < b be dyadic fractions in .0; 1/ such that h2 is supported in the interval Œa; b�.

By Lemma 2.31, there is an element g 2 H such that g.Œa; b�/ � Œu01�. We consider the
element f D hg

2 . First, we note that f belongs toH and is supported in Œu01�. In addition,
for ˇ D g.˛/, we have that f fixes ˇ and f 0.ˇ�/ D 1

2
.

Let .TC; T�/ be the reduced tree diagram of f . Since f is supported in the inter-
val Œu01�, by Lemma 3.11, every tuple t associated with the tree-diagram .TC;T�/ belongs
to �H .

Since f fixes the interval Œu00� pointwise but does not fix the interval Œu01� point-
wise, the tree-diagram .TC; T�/ must have the pair of branches u00! u00. Recall that
f .ˇ/ D ˇ and let v be the finite binary word such that ˇ D :v1 D :v01N . Since f fixes ˇ
and f 0.ˇ�/ D 1

2
, by Lemma 2.3, the tree-diagram .TC; T�/ must have a pair of branches

of the form v01n! v01nC1 for some n� 0. Since ˇ D :v1 is in Œu01�, the word u01must
be a prefix of v1. Since ˇ ¤ :u01 (because f does not fix a left neighborhood of ˇ), the
word u01 must be a strict prefix of v1 and, as such, it is a prefix of v. Let w3 be such that
v � u01w3. Then, for w4 � w301

n, the tree-diagram .TC; T�/ has the pair of branches
u01w4! u01w41. In particular, for some k < `, the k and ` pairs of branches of .TC;T�/
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are
.�/u00! u00 and u01w4 ! u01w41;

respectively.
Hence, by Lemma 3.10, and the fact that every tuple associated with .TC; T�/ belongs

to the additive group �H , it follows from .�/ that .1; 0/ 2 �H , as required. This completes
the proof of the proposition.

Proposition 3.1 implies the next result.

Theorem 3.12. Let H be a subgroup of F which satisfies the following conditions:

(1) The image of H in the abelianization of F is closed.

(2) Cl.H/ contains the derived subgroup of F .

Then, H D Cl.H/ D HŒF; F �.

Proof. Let H be a subgroup of F which satisfies conditions .1/ and .2/ from the theo-
rem. Then, by Theorem 2.32 and Proposition 3.1, the subgroup H contains the derived
subgroup of F . Hence, HŒF; F � D H . Similarly, Cl.H/ŒF; F � D Cl.H/. Thus, it suf-
fices to prove that HŒF; F � D Cl.H/ŒF; F �, or equivalently, that the image of H in the
abelianization of F coincides with the image of Cl.H/. It is clear that the image of H
is contained in the image of Cl.H/. In the other direction, let p; q � 0 be such that the
image of H in the abelianization of F is pZ � qZ. Let f 2 Cl.H/. It suffices to prove
that its image in the abelianization of F belongs to pZ� qZ. But, since f 2 Cl.H/, it is a
piecewise-H function. Hence, its slope at 0C coincides with the slope at 0C of some ele-
ment h1 2 H and its slope at 1� coincides with the slope at 1� of some element h2 2 H .
Since h1; h2 2 H , we have that log2 f

0.0C/ D log2 h
0
1.0
C/ is an integer multiple of p

and log2 f
0.1�/ D log2 h2.1

�/ is an integer multiple of q. Hence, the image of f in the
abelianization of F is in pZ � qZ, as required.

As a corollary from Theorem 3.12, we get the following:

Corollary 3.13. Let H be a subgroup of F . Then, H D F if and only if the following
conditions hold:

(1) HŒF; F � D F .

(2) ŒF; F � � Cl.H/.

Proof. One direction is obvious. In the other direction, note that if HŒF; F � D F , then
the image of H in the abelianization of F is Z2 and, in particular, it is a closed sub-
group. Hence, if conditions .1/ and .2/ hold forH , then by Theorem 3.12,H DHŒF;F �
D F .

Note that Corollary 3.13 gives a simple solution for the generation problem in F .
Indeed, given a finite set X of elements in F , to determine if X generates F one has
to .1/ find the image of X in the abelianization of F and check whether it generates Z2,
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and .2/ construct the core of the subgroup H generated by X and use Lemma 2.28 to
check if Cl.H/ contains ŒF; F �. This gives us a linear-time algorithm in the sum of sizes
of elements in X (where the size of an element in X is the number of carets in its reduced
tree-diagram).

Corollary 3.13 implies that every maximal subgroup of F which has infinite index
in F is closed.

Corollary 3.14. LetM be a maximal subgroup of F and assume thatM has infinite index
in F . Then, M is a closed subgroup of F .

Proof. Assume by contradiction that M is not closed. Then, Cl.M/ strictly contains M .
Since M is maximal, Cl.M/ D F . Since M is maximal and has infinite index in F ,
it is not contained in any proper finite index subgroup of F . Hence, by Remark 2.25,
MŒF; F � D F . Therefore, M satisfies conditions .1/ and .2/ of Corollary 3.13, which
implies that M D F , in contradiction to M being a maximal subgroup of F .

In Section 5, we derive more results regarding maximal subgroups of F . But first, in
Section 4, we study tree-automata and morphisms between tree-automata.

4. Reduced tree-automata and morphisms of tree-automata

Let T be a finite or infinite planar binary tree. Then, T can be naturally viewed as a
rooted tree-automaton, where the root of the automaton is the root of T , all edges are
directed away from the root, and every left edge is labeled “0” while every right edge is
labeled “1”. Below, we will often consider a binary tree T as a rooted tree-automaton
without explicitly saying so. Clearly, the diagram group DG .T / is the trivial subgroup
of F .

Definition 4.1. Let Ar be a rooted tree-automaton. An extention of Ar is a rooted tree-
automaton obtained from Ar as follows: let L D ¹`i j i 2 	º be the set of leaves of Ar .
For each i 2 	, let Ti be a finite or infinite binary tree viewed as a rooted tree-automaton.
Then, the rooted tree-automaton A0r obtained from Ar by identifying the root of Ti with
the leaf `i of Ar , for each i , is called an extension of Ar .

It is easy to check that if Ar is a rooted tree-automaton and A0r is an extension of Ar ,
then Ar and A0r accept the same reduced tree-diagrams in F .

A rooted tree-automaton is said to be full if it has no leaves. In that case, every finite
binary word u labels a unique path in Ar . Note that every rooted tree-automaton can be
extended to a full rooted tree-automaton, by attaching a distinct copy of the complete
infinite binary tree T to each leaf of Ar .

If A0r is an extension of Ar , we will also say that Ar is a reduction of A0r . A tree-
automaton is said to be reduced if it has no reduction other than itself. In other words, Ar

is reduced if it is not the extension of any tree-automaton other than itself.
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Let Ar be a rooted tree-automaton and let x and y be vertices of Ar . We say that y
is a descendant of x if there is a non-empty trail in Ar with initial vertex x and termi-
nal vertex y. Notice that in a rooted tree-automaton, it is possible for two vertices to be
descendants of each other and for a vertex to be a descendant of itself. We make the fol-
lowing observation:

Lemma 4.2. Let Ar be a rooted tree-automaton. Then, Ar is reduced if and only if every
vertex x in Ar satisfies at least one of the following conditions:

(1) x is a leaf (that is, x has no outgoing edges).

(2) x is a descendant of itself.

(3) x has a descendant y which has two distinct incoming edges in Ar .

Proof. Assume first that Ar is a tree-automaton such that every vertex in Ar satisfies at
least one of conditions .1/–.3/. We claim that Ar must be reduced. Indeed, if Ar is not
reduced, then it is the extension of some tree-automaton other than itself. In that case,
there exists some tree-automaton Br which has a leaf ` and a non-empty binary tree T ,
such that Ar can be obtained from Br by identifying the root of T with the leaf `. Then,
the vertex `, viewed as a vertex of Ar , does not satisfy any of conditions .1/–.3/. Indeed,
in Ar the vertex ` is not a leaf and, thus, does not satisfy condition .1/. In addition, the
descendants of ` in Ar are the vertices of T , other than its root. As each of them has
a unique incoming edge in Ar and none of them coincide with `, the vertex ` does not
satisfy conditions .2/ and .3/. Hence, ` does not satisfy any of the three conditions in the
lemma, in contradiction to the assumption.

In the other direction, assume that Ar is reduced, but that there is a vertex x in Ar

which does not satisfy any of the conditions in the lemma. Let Tx be the tree-automaton
with root x obtained from Ar as follows: the vertex set of Tx consists of the vertex x
as well as all of its descendants in Ar . The labeled directed edges in Tx are the edges
of Ar whose end-vertices belong to the vertex set of Tx . It is easy to check that Tx is a
tree-automaton with root x. We claim that Tx is a binary tree. Indeed, its root x has no
incoming edges in Tx as it is not a descendant of itself in Ar . In addition, every other
vertex in Tx has exactly one incoming edge (as it is a descendant of x it has an incoming
edge and by assumption, it cannot have more than one). Every non-leaf vertex in Tx also
has two outgoing edges, since it has two outgoing edges in Ar and their end-vertices are
clearly vertices in Tx . Hence, Tx is a rooted binary-tree. Now, let Cr be the rooted tree-
automaton obtained from Ar be removing from Ar all the edges of Tx as well as all of the
descendants of x. One can verify that Cr is a rooted tree-automaton with root r . Clearly,
the vertex x is a leaf of Cr . Note also that Ar is an extension of Cr , where the leaf x
of Cr is identified with the root of Tx . Hence, Ar is not reduced, in contradiction to the
assumption.
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Note that Lemma 4.2 can be simplified in the case where the tree-automaton Ar is
such that the root r is not a descendant of itself (as is always the case in the core of a
subgroup of F ). Indeed, we have the following:

Remark 4.3. Let Ar be a rooted tree-automaton and assume that the root r is not a
descendant of itself. Let x be a vertex of Ar and assume that x is a descendant of itself.
Then, x has a descendant y which has two distinct incoming edges in Ar .

Proof. Let x be a vertex in Ar which is a descendant of itself. Let B be the set of all
vertices in Ar which are descendants of x. Note that B is not empty, since x 2 B, and
that r … B . Note also that every vertex in B has a father which also belongs to B. For
every vertex in B, there is at least one path in Ar from the root to the vertex. Let u be
a finite binary word of minimal length which labels a path in Ar which starts from the
root and terminates in a vertex belonging to B. Clearly, u is not empty. Let v be a finite
binary word such that u � va for a letter a 2 ¹0; 1º and consider the vertex vC. From
the minimality of u, it follows that the vertex vC is not a descendant of x. Hence, the
vertex uC has a father vC which does not belong to B. Since uC 2 B, it also has a father
which belongs to B. Hence, uC (which is a descendant of x) has at least two distinct
fathers in Ar and, in particular, at least two distinct incoming edges.

Lemma 4.2 and Remark 4.3 imply the next result.

Corollary 4.4. Let Ar be a tree-automaton such that the root r is not a descendant of
itself. Then, Ar is reduced if and only if every inner vertex x in Ar has a descendant y
with at least two distinct incoming edges.

It follows from [14, Lemma 10.9] that ifH is a subgroup of F , then every inner vertex
of the core C.H/ has a descendant with two distinct incoming edges. Hence, we have the
following:

Lemma 4.5. LetH be a subgroup of F . Then, the core ofH is a reduced tree-automaton.

Let H be a subgroup of F . Since the core of H accepts the subgroup H , it accepts
any reduced tree-diagram inH . In particular, for every reduced tree-diagram inH , all the
branches in the tree-diagram are readable on C.H/. The fact that C.H/ is reduced implies
that the only finite binary words readable on C.H/ are branches of reduced tree-diagrams
in H and prefixes of such branches. Indeed, we have the following result:

Lemma 4.6. Let H be a subgroup of F and let C.H/ be the core of H . Let u be a finite
binary word. Then, u labels a path in C.H/ if and only if there is an element in H with
reduced tree-diagram .TC; T�/ such that u is the prefix of some branch of TC.

Proof. If there exists an element in H with reduced tree-diagram .TC; T�/ such that u
is a prefix of some branch v of TC, then the branch v (and, in particular, its prefix u) is
readable on C.H/.
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In the other direction, let u be a finite binary word which labels a path in the core
of H . We can assume that u is non-empty. Let u1 be the prefix of u such that u � u1a,
where a 2 ¹0; 1º. Note that it suffices to prove that there is an element in H with reduced
tree-diagram .TC; T�/ such that u1 is a strict prefix of some branch of TC. Indeed, in that
case, both u10 and u11 are prefixes of branches of TC. Let x be the vertex uC1 of C.H/

and note that x is an inner vertex of C.H/. Since the core C.H/ is reduced, the vertex x
has a descendant y with two distinct incoming edges. Since y is a descendant of x, there
is a non-empty finite binary word w which labels a trail from x to y. Then, u1w labels a
path in the core such that .u1w/

C D y. Let w1 be the prefix of w such that w � w1b1 for
a letter b1 2 ¹0; 1º and let v1 � u1w1. Then, v1 labels a path in the core which terminates
in a vertex z1 D v

C
1 . Note that the vertex z1 is a father of the vertex y and that there is an

edge e1 labeled b1 from the vertex z1 to the vertex y.
Since y has at least two distinct incoming edges in Ar , it has an incoming edge e2¤ e1

in Ar . Let b2 be the label of e2, let z2 D e2�, and let v2 be a path in the core C.H/ such
that vC2 D z2. Note that v2b2 labels a path in Ar such that .v2b2/

C D y. Since v1b1 also
labels a path in Ar such that .v1b1/

CD y, by Lemma 2.20, there exists k 2N such that for
every finite binary wordw of length� k, there is an element inH with the pair of branches
v1b1w! v2b2w. In particular, forw� 0k , there is an element h2H which has the pair of
branches v1b10

k ! v2b20
k . Hence, h has a (not necessarily reduced) tree-diagram which

has the pair of branches v1b10
k ! v2b20

k . Let .TC; T�/ be the reduced tree-diagram
of h. By Remark 2.1, there are finite binary words p; q; s such that v1b10

k � ps and
v2b20

k � qs and such that p ! q is a pair of branches of .TC; T�/. We claim that the
word s is of length at most k. In other words, we claim that s is a suffix of 0k . Indeed,
assume by contradiction that the length of s is greater than k. Then, b10

k and b20
k are

suffixes of s and, in particular, b1 � b2. In that case, the vertices z1 D e1� and z2 D e2�

must be distinct (otherwise, the edges e1 and e2 coincide, since they have the same initial
vertex and the same label). Now, since b10

k is a suffix of s, there exists a finite binary
word s1 such that s � s1b10

k . Note that

v1b10
k
� ps � ps1b10

k and v2b20
k
� qs � qs1b20

k :

Hence, ps1 � v1 and qs1 � v2. By assumption, the reduced tree-diagram of h has the pair
of branches p ! q. Hence, since H is accepted by C.H/, we have pC D qC in C.H/.
But, that implies that .ps1/C D .qs1/C in the core (indeed, the word s1 labels a unique
trail in the core with initial vertex pCD qC). Hence, vC1 D v

C
2 , in contradiction to vC1 D z1

and vC2 D z2 being distinct vertices of the core. Hence, the suffix s is a suffix of 0k . Since
ps � v1b10

k , we get that v1b1 is a prefix of p. Recall that u1 is a prefix of v1. Hence, u1

is a strict prefix of p which is a branch of the tree TC of the reduced tree-diagram .TC;T�/

of h 2 H , as required.

Intuitively, Lemma 4.6 says that the only finite binary words readable on C.H/ are
those that must be readable on the core, for it to accept the subgroup H .
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Definition 4.7. Let Ar and A0s be two rooted tree-automata. A morphism of rooted tree-
automata from Ar to A0s is a mapping from Ar to A0s which maps the root r of Ar to the
root s of A0s , maps each vertex of Ar to a vertex of A0s , and each edge of Ar to an edge
of A0s , while preserving adjacency of vertices and edges as well as the labels and direction
of the edges.

Lemma 4.8. Let Ar and A0s be rooted tree-automata. Then, there is a morphism of rooted
tree-automata from Ar to A0s if and only if the following conditions hold:

.1/ Every finite binary word u readable on Ar is also readable on A0s .

.2/ If u and v are readable on Ar such that uC D vC in Ar , then (u and v are
readable on A0s and) uC D vC in A0s as well.

If conditions .1/ and .2/ hold, then there is a unique morphism � from Ar to A0s . In
addition, the morphism � is surjective if and only if every finite binary word readable
on A0s is also readable on Ar .

Proof. Assume that there is a morphism � from Ar to A0s . We claim that conditions .1/
and .2/ hold. Let u be a word readable on Ar . Then, u labels a path e1; : : : ; en in Ar . The
morphism � maps the directed edges e1; : : : ; en to directed edges e01; : : : ; e

0
n in A0s . Note

that since � is a morphism, the directed edges e01; : : : ; e
0
n form a path in A0s whose label

is u. Hence, u is readable on A0s and condition .1/ holds.
Now, assume that u and v are finite binary words readable on Ar such that uC D vC

on Ar . By condition .1/, u and v are also readable on A0s . Since � is a morphism, it must
map the end vertex of the path u (resp. v) in Ar to the end vertex of the path u (resp. v)
in A0s . Hence, since uC D vC in Ar and � is well-defined, we have that uC D vC in A0s
and condition .2/ holds.

Now, assume that conditions .1/ and .2/ hold. We claim that there is a morphism �

from Ar to A0s . Indeed, one can define the action of � on vertices of Ar as follows: let x
be a vertex of Ar . Then, there exists a path u in Ar such that uC D x. By condition .1/,
the word u also labels a path in A0s . Hence, we can define �.x/ to be the vertex uC

of A0s . Condition .2/ guarantees that the action of � on vertices is well-defined (note that
this definition also guarantees that the root r D ;C of Ar is mapped to the root s D ;C

of A0s). Next, we define the action of � on edges. Let e be an edge of Ar and let b be its
label. The end-vertices e� and eC of e are mapped by � onto vertices �.e�/ and �.eC/.
We claim that in A0s there is a (necessarily unique) directed edge from �.e�/ to �.eC/
labeled b. Indeed, let w be a path in Ar such that wC D e� and note that wb labels a
path in Ar such that .wb/C D eC. By the definition of the action of � on vertices of Ar ,
in the tree-automaton A0s we have wC D �.e�/ and .wb/C D �.eC/. Hence, b labels a
directed edge e0 from �.e�/ to �.eC/ in A0s . We define �.e/ to be e0. Clearly, � preserves
adjacency of edges and vertices, as well as the direction and label of edges. Hence, � is a
morphism of rooted tree-automata. It is easy to see that � is the unique morphism from Ar

to A0s . Indeed, if �1 is a morphism from Ar to A0s , it must map a vertex uC of Ar to the
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vertex uC of A0s . Hence, its action on vertices of Ar coincides with the action of �. But,
the action of a morphism on vertices of Ar determines uniquely its action on the edges
of Ar and, thus, � and �1 must coincide.

Finally, we note that if every finite binary word readable on A0s is readable on Ar , then
the morphism � is surjective. Indeed, to show that � is surjective on vertices, let y be a
vertex of A0s . Then, there is a path u is A0s such that uC D y. By assumption, the word u is
readable on Ar . Then, by definition, � maps the vertex uC of Ar onto the vertex y of Ar .
Similarly, let e0 be an edge of A0s labeled b. Let v be a path in A0s such that vC D e0� and
note that vb labels a path in A0s such that .vb/C D eC. Then, vb also labels a path in Ar .
Let e be the last edge in that path. Then, e is labeled b, its initial vertex is the vertex vC,
and its terminal vertex is the vertex .vb/C. The morphism � maps e onto e0. In the other
direction, assume that � is surjective and let u be a finite binary word readable on A0s .
Then, u labels a path e01; : : : ; e

0
n in A0s . Surjectivity implies that the path is the image of a

path in Ar with the same label. Hence, u is readable on Ar as well.

Lemma 4.9. Let H be a subgroup of F and let Ar be a rooted tree-automaton which
accepts H . Then, the following assertions hold:

.1/ There is a unique morphism of rooted tree-automata from C.H/ to Ar .

.2/ If the core of H has no leaves, then the unique morphism from C.H/ to Ar is
surjective.

Proof. Proof of .1/: We claim that conditions .1/ and .2/ from Lemma 4.8 hold for the
tree-automata C.H/ and Ar . Assume that u labels a path in the core C.H/. Then, by
Lemma 4.6, there is a reduced tree-diagram .TC; T�/ of an element in H such that u
is a prefix of some branch of TC. Since the automaton Ar accepts H , the tree TC is
readable on Ar and, as such, u labels a directed path in Ar . Hence, condition .1/ from
Lemma 4.8 holds. Now, let u and v be two finite binary words readable on C.H/ such
that uC D vC in C.H/. Hence, by Lemma 2.19, there is an element h in Cl.H/ with the
pair of branches u! v. We claim that h 2 DG .Ar /. Indeed, since Ar accepts H , the
diagram group DG .Ar / is a closed subgroup of F which contains H . Hence, DG .Ar /

contains the closure ofH and, in particular, the element h. Then, by Lemma 2.18, since h
has the pair of branches u! v and u and v label paths in Ar (since condition .1/ holds)
we have uC D vC in Ar . Hence, condition .2/ from Lemma 4.8 holds as well. Therefore,
by Lemma 4.8, there is a unique morphism from C.H/ to Ar .

Proof of .2/: This follows immediately from Lemma 4.8, since by assumption, every
finite binary word is readable on C.H/.

Corollary 4.10. Let H and G be subgroups of F such that H is contained in G. Then,
the following assertions hold:

(1) There is a unique morphism from C.H/ to C.G/.

(2) If there are no leaves in C.H/, then the unique morphism from C.H/ to C.G/ is
surjective.
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5. Maximal subgroups of Thompson’s group F

Let u be a finite binary word. Recall that FŒu� is the subgroup of F of all functions
supported in the interval Œu�. The subgroup F is isomorphic to FŒu� and there is a nat-
ural isomorphism from F to FŒu� mapping each element g 2 F to the Œu�-copy of g,
denoted gŒu� (see Section 2.3). We will need the following simple remark:

Remark 5.1. Let u be a finite binary word readable on a rooted tree-automaton Ar . Let Tu

be the minimal finite binary tree with branch u. Then, Tu is readable on Ar .

Proof. Let v be a branch of Tu. It suffices to prove that v is readable on Tu. If v � u, we
are done. Otherwise, the word v0 obtained from v by changing its last letter is a prefix of u
and, as such, readable on Ar . But, this implies that v is also readable on Ar (indeed, if
two words differ only in their last letter and one of them is readable on Ar , the other one
is also readable on Ar ).

Lemma 5.2. Let H and G be subgroups of F . Assume that in the core of H there is a
leaf ` and let u be a finite binary word which labels a path in the core C.H/ such that
uC D `. Let G be a subgroup of F and consider its Œu�-copy GŒu�. Let K be the subgroup
of F generated by H and GŒu�. Then, the core of the subgroup K can be obtained from
the core C.H/ and the core C.G/ by identifying the root of C.G/ with the leaf ` of C.H/

(where the root of the obtained automaton is taken to be the root of C.H/).

Proof. Let Ar be the rooted tree-automaton obtained by identifying the root of C.G/with
the leaf ` of C.H/ (where the root of Ar is taken to be the root of C.H/). It suffices to
prove that Ar is isomorphic to the core C.K/.

First, note that the automaton Ar accepts every element accepted by C.H/ and, as
such, every element of H . We claim that it also accepts every element in GŒu�. Indeed,
let g 2 G and consider its Œu�-copy gŒu� 2 GŒu�. We claim that gŒu� is accepted by Ar .
Indeed, let .TC; T�/ be the reduced tree-diagram of g and note that .TC; T�/ is accepted
by C.G/. Let ui ! vi , i D 1; : : : ; n be the pairs of branches of .TC; T�/, and let Tu

be the minimal finite binary tree with branch u. Note that by Remark 5.1, the tree Tu

is readable on C.H/ and, as such, on Ar . Now, the pairs of branches of the reduced
tree-diagram of gŒu� are pairs of branches of the form b ! b for every branch b of Tu,
other than the branch u, as well as the pairs of branches uui ! uvi for i D 1; : : : ; n. It
suffices to prove that for each of these pairs of branches, the branches in the pair label
paths in Ar which terminate on the same vertex. For the branches of the form b ! b,
where b is a branch of Tu distinct from u, this is clear. For each i D 1; : : : ; n, it follows
from the construction of Ar that uui and uvi label paths in Ar whose end vertex is
the vertex uCi and vCi of C.G/, respectively. Since .TC; T�/ is accepted by C.G/, the
vertices uCi and vCi of C.G/ coincide, as required.
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Since Ar accepts the subgroup H as well as the subgroup GŒu�, it accepts the sub-
groupK generated byH [GŒu�. Therefore, by Lemma 4.9, there is a unique morphism �

from the core C.K/ to Ar . For every path v in C.K/, the morphism � maps the vertex vC

of C.K/ onto the vertex vC of Ar (see the proof of Lemma 4.8). It suffices to prove that �
is bijective.

First, we prove that � is surjective. Let v be a path in Ar . By Lemma 4.8, it suffices
to prove that v labels a path in C.K/. First, we consider the case where the vertex vC

in Ar is a vertex of C.H/. In that case, the path v must be a path in C.H/ (indeed, if
the path v passes through a vertex in Ar which does not belong to C.H/, it cannot return
later to vertices of C.H/). Hence, by Lemma 4.6, there is an element h 2 H such that v
is the prefix of one of the branches of its reduced tree-diagram. Then, since H � K, v
must also label a path in C.K/, as required. Now, assume that the vertex vC in Ar is
a vertex y of the copy of C.G/, other than its root. Then, the path v divides into two
subpaths v � v1v2 such that v1 is a path in C.H/ from the root r to ` and v2 labels a
path in C.G/ from its root to the vertex y. Note that by the previous case, v1 labels a
path in C.K/. Since v2 labels a path in C.G/, by Lemma 4.6, there is an element g 2 G
such that v2 is a prefix of some branch of its reduced tree-diagram. Then, uv2 is a prefix of
some branch of the reduced tree-diagram of the element gŒu�. Since gŒu� 2K, the word uv2

labels a path in C.K/. Since v1 and u are both paths in C.H/ such that vC1 D ` D u
C,

there is an element h 2 Cl.H/ with the pair of branches v1 ! u. But the element h also
belongs to Cl.K/ and u and v1 label paths in C.K/. Hence, by Lemma 2.19, in C.K/, we
also have vC1 D u

C. Since uv2 labels a path in C.K/ and uC D vC1 in C.K/, the word
v1v2 � v is also readable on C.K/, as required.

Next, we prove that � is injective on vertices (injectivity of � on edges follows easily
from that). Let v1 and v2 be two paths in the core C.K/ such that �.vC1 / D �.v

C
2 /. We

need to prove that in C.K/, we also have vC1 D v
C
2 . Let us denote by z the vertex �.vC1 /.

Again, we consider two cases.
Case .1/: The vertex z belongs to C.H/. In that case, any path in Ar which terminates

in z passes only through vertices of C.H/. Hence, v1 and v2 label paths in C.H/ which
terminate in the same vertex z. Hence, by Lemma 2.19, there is an element f in Cl.H/
with the pair of branches v1 ! v2. Note that Cl.H/ � Cl.K/, since H � K. Hence,
f 2 Cl.K/. Then, since f has the pair of branches v1 ! v2 and v1 and v2 are readable
on C.K/, by Lemma 2.19, we have vC1 D v

C
2 in C.K/, as required.

Case .2/: The vertex z does not belong to C.H/. In that case, it is a vertex of the copy
of C.G/ in Ar , distinct from its root. As noted above, every path in Ar which terminates
in such a vertex can be divided into two subpaths w1; w2 such that w1 is a path in C.H/

from r to ` and w2 labels a path in C.G/ from its root to the vertex. Hence, there are finite
binary words p1; p2, q1; q2 such that v1 � p1p2 and v2 � q1q2 and such that p1 and q1

label paths in C.H/ from the root to ` and q1 and q2 label paths in C.G/ from its root to
the vertex z. Note that in C.H/ we have uC D pC1 D q

C
1 . Hence, by Lemma 2.19, there



G. Golan Polak 42

are elements h1; h2 2 Cl.H/ such that h1 has the pair of branches p1! u and h2 has the
pair of branches u! q1. Similarly, since qC1 D q

C
2 in C.G/, there is an element g 2Cl.G/

such that g has the pair of branches p2 ! q2. Then, the element k D gŒu� has the pair of
branches up2 ! uq2. Note that the elements k; h1; h2 all belong to the closure of K.
Hence, h1kh2 2 Cl.K/. But, the element h1kh2 has the pair of branches p1p2 ! q1q2

(indeed, h1 takes the branch p1p2 to the branch up2, then k takes the branch up2 to the
branch uq2 and h2 takes the branch uq2 to the branch q1q2). Hence, the paths p1p2 � v1

and q1q2 � v2 terminate on the same vertex of C.K/, as required.

Lemma 5.3. Let H be a finitely generated proper subgroup of F . Then, H is contained
in a finitely generated proper subgroup G of F such that the core of G has no leaves.

Proof. Since H is finitely generated, its core is finite. If the core of H has no leaves, we
are done. Hence, assume that H has n � 1 leaves `1; : : : ; `n, and for each i D 1; : : : ; n,
let ui be a finite binary word which labels a path in C.H/ from the root to `i . Let Ar

be the tree-automaton obtained from C.H/, by identifying each leaf `i with the root of a
distinct copy of the core of Thompson’s group F , C.F / (where the root of Ar is taken to
be the root of C.H/). Repeated applications of Lemma 5.2 show that Ar is isomorphic
to the core of the subgroup G generated by H [ FŒu1� [ : : : [ FŒun�. Since each of these
subgroups is finitely generated, the subgroupG is finitely generated. In addition, since the
core of Thompson’s group F has no leaves, the core C.G/ŠAr has no leaves. Therefore,
the subgroupG is as required (note thatG ¤ F since its core is not isomorphic to the core
of F ; indeed, in the core of F there is a unique middle vertex and it is easy to see that in
the core of G there is more than one middle vertex).

Theorem 5.4. Let H be a finitely generated proper subgroup of F . Then, the following
assertions hold:

.1/ There exists a finitely generated maximal subgroup M � F which contains H .

.2/ If the action of H on the set of dyadic fractions D has finitely many orbits, then
every maximal subgroup of F which contains H is finitely generated. Moreover,
there are only finitely many maximal subgroups of infinite index in F which con-
tain H .

Proof. We begin by proving (2). Since H is finitely generated, its core is finite. Hence,
by Lemma 2.24, the fact that the action of H on the set of dyadic fractions D has finitely
many orbits implies that C.H/ has no leaves. We claim that every maximal subgroup
of F which contains H is finitely generated. Indeed, let M be a maximal subgroup of F
which contains H . If M has finite index in F , then it is finitely generated and we are
done. Hence, we can assume thatM has infinite index in F . Hence, by Corollary 3.14,M
is closed. Let C.M/ be the core of M . Since H � M and since C.H/ has no leaves, by
Corollary 4.10, there is a surjective morphism from C.H/ to C.M/. Since the core of H
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is finite, its surjective image C.M/ must also be finite. In [10, Corollary 5.14], we proved
that the core of a closed subgroup of F is finite if and only if the subgroup is finitely
generated. Hence, the closed subgroup M is finitely generated, as required.

Note that the above argument shows that every maximal subgroupM of infinite index
in F which contains H is a closed subgroup whose core C.M/ is a surjective image
of C.H/. Since C.H/ is finite, it only has finitely many non-isomorphic surjective images.
Hence, there are only finitely many maximal subgroups of F of infinite index which con-
tainH (note that ifG1 andG2 are distinct closed subgroups of F , then C.G1/ and C.G2/

are not isomorphic, since G1 D DG .C.G1// and G2 D DG .C.G2//).
Now, we are ready to prove .1/. By Lemma 5.3, there exists a finitely generated proper

subgroup G � F which contains H such that the core C.G/ has no leaves. It suffices to
show that G is contained in some finitely generated maximal subgroup of F . Note that
by Zorn’s lemma, G must be contained inside some maximal subgroup of F . We claim
that every such subgroup is finitely generated. Indeed, since G is finitely generated, its
core C.G/ is finite. Since in addition C.G/ has no leaves, by Lemma 2.24, the action
of G on the set of dyadic fractions D has finitely many orbits. Hence, by part (2), every
maximal subgroup of F which contains G is finitely generated.

We finish this section by giving a characterization of maximal subgroups of F of
infinite index. Note that by Corollary 3.14, we only need to consider closed subgroups
of F .

Definition 5.5. Let Ar be a rooted tree-automaton. We say that Ar is a core automaton
if there is a subgroupH of F such that Ar is isomorphic to the core C.H/ (i.e., such that
there exists a bijective morphism of rooted tree-automata from Ar to C.H/).

Lemma 5.6. LetH be a closed subgroup of F . Then,H is a maximal subgroup of infinite
index in F if and only if the following conditions hold:

.1/ HŒF; F � D F .

.2/ The core C.H/ is full.

.3/ There is more than one middle vertex in the core C.H/.

.4/ Each core-automaton Ar which is a surjective image of C.H/ but is non-iso-
morphic to C.H/ is isomorphic to C.F /.

Proof. Assume that H is a maximal subgroup of infinite index in F ; then, it cannot be
contained in any proper finite index subgroup of F . Hence, by Remark 2.25, HŒF; F �
D F . We claim that the core of H has no leaves. Otherwise, let ` be a leaf of H and let u
be a path in the core C.H/ such that uC D `. As in the proof of Lemma 5.3, one can show
that the subgroup K of F generated by H and FŒu� is a strict subgroup of F . It strictly
contains H (indeed, no non-trivial element of FŒu� is accepted by C.H/ and, as such,
H \ FŒu� is trivial). Hence, H is not a maximal subgroup of F ; this is a contradiction.
Now, we claim that there is more than one middle vertex in C.H/. Otherwise, there is a
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unique middle vertex in C.H/. Since C.H/ is full, the unique middle vertex is an inner
vertex. In that case, by Lemma 2.28, the closed subgroupH D Cl.H/ contains the derived
subgroup of F . But then H D HŒF; F � D F , in contradiction to H being a maximal
subgroup of F . Finally, let Ar be a core-automaton which is a surjective image of C.H/

but not isomorphic to C.H/. Since Ar is a core-automaton, there exists a subgroup G
of F such that Ar is isomorphic to C.G/. The surjective morphism from C.H/ to C.G/

implies that every tree-diagram accepted by C.H/ is accepted by C.G/. Hence, H D
Cl.H/ � Cl.G/. If H D Cl.G/, then the core C.H/ is isomorphic to the core C.G/

(indeed, for every subgroup K of F , the core of K coincides with the core of Cl.K/;
see [14]). Since by assumption Ar Š C.G/ is not isomorphic to C.H/, we have that
H < Cl.G/. Since H is a maximal subgroup of F , it follows that Cl.G/ D F . Hence,
Ar Š C.G/ Š C.F /, as required.

In the other direction, assume that H is a closed subgroup of F which satisfies con-
ditions .1/–.4/. We claim that H is a maximal subgroup of infinite index in F . First note
that condition (3) and Lemma 2.28 imply that H does not contain the derived subgroup
of F . Hence, H has infinite index in F . Now, let G be a subgroup of F which strictly
containsH . It suffices to prove thatGDF . Condition .1/ implies thatGŒF;F �DF . Con-
dition .2/ and Corollary 4.10 imply that there is a unique surjective morphism from C.H/

to C.G/. Since G strictly contains H D Cl.H/, there is an element in G that is not
accepted by the core of H . Hence, the core C.G/ is not isomorphic to C.H/. Therefore,
by condition .4/, the core C.G/ is isomorphic to C.F /. In particular, Cl.G/ D Cl.F / D
F � ŒF; F �. Hence, by Corollary 3.13, G D F , as required.

Note that if K is a finitely generated subgroup of F , then, given a finite generating set
ofK, one can construct its core C.K/. By [10, Corollary 5.14], the subgroupH D Cl.K/
is also finitely generated. Moreover, in [10], we give an algorithm for finding a finite
generating set of H D Cl.K/ (given the core C.K/). Now, in order to determine if the
closed subgroupH is a maximal subgroup of F of infinite index, one can attempt to verify
if conditions .1/–.4/ of Lemma 5.6 hold for H . Note that the first 3 conditions are simple
to verify (indeed, to check if condition .1/ holds for H , one can consider the image of
its finite generating set in the abelianization of F ; and in order to check if conditions .2/
and .3/ hold, one only has to consider the core ofH , which coincides with the core ofK).
The only condition we do not have an algorithm for verifying is condition .4/. Note that
condition .4/ can also be formulated as follows: every rooted tree-automaton Ar that is
a surjective image of C.H/ is either isomorphic to C.H/ or to C.F / or is not a core-
automaton. In the next section, we give a characterization of rooted tree-automata which
are core-automata. The characterization relies on results of [14, Section 10]. While the
characterization does not yield a complete algorithm for verifying if a finitely generated
closed subgroupH of F satisfies condition (4) of Lemma 5.6, it often enables us to check
if the condition holds or not (see Remarks 6.5 and 6.7 at the end of the next section) and,
thus, to verify if H is a maximal subgroup of infinite index in F .
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6. Core Automata

The next lemma gives a characterization of rooted tree-automata which are core-automata.
It follows from [14, Lemmas 10.9 and 10.6] and from Corollary 4.4 and Lemma 2.19, but
we prefer to give a self-contained proof.

Lemma 6.1. Let Ar be a rooted tree-automaton. Then, Ar is a core automaton if and
only if the following conditions hold:

.1/ Ar is reduced.

.2/ For every pair of finite binary words u and v which label paths in Ar such that
uC D vC, there is an element in the diagram group DG .Ar / with the pair of
branches u! v.

Proof. For every subgroup H of F , the core C.H/ satisfies conditions .1/ and .2/ by
Lemmas 4.5 and 2.19. Hence, if Ar is a core automaton, it satisfies conditions .1/ and .2/.

In the opposite direction, let Ar be a rooted tree-automaton which satisfies condi-
tions .1/ and .2/. Let H be the subgroup of F accepted by Ar (i.e., H D DG .Ar /). We
claim that there is a bijective morphism from C.H/ to Ar . First, by Lemma 4.9, there is a
unique morphism � from C.H/ to Ar . For each finite binary word u which labels a path
in C.H/, the morphism � maps the vertex uC of C.H/ to the vertex uC of Ar . It suffices
to prove that � is bijective.

First, we claim that � is injective on vertices (from that, it follows that it is also injec-
tive on edges). Indeed, let u and v be two paths in the core C.H/ and assume that �
maps uC and vC onto the same vertex in Ar . It suffices to show that in C.H/ we have
uC D vC. But, since �.uC/ D �.vC/, the paths u and v on Ar terminate on the same
vertex. Hence, it follows from condition .2/ that there is an element h in the subgroup
H DDG .Ar /with the pair of branches u! v. Since u and v label paths in the core ofH ,
the existence of the element h implies by Lemma 2.19 that uC D vC in the core C.H/,
as required.

Hence, it suffices to show that � is surjective. To do so, we first note that in Ar

the root r is not a descendant of itself. Otherwise, there is a non-empty finite binary
word u which labels a path in Ar such that uC D r D ;C. Hence, by condition .2/,
there is an element inH (and, in particular, in F ) with the pair of branches u! ;, which
is impossible.

Now, to prove that � is surjective, it suffices to show that for any path u in Ar , the
word u labels a path in C.H/. Assume by contradiction that this is not the case, and let u
be a finite binary word of minimal length such that u labels a path in Ar but does not label
a path in C.H/. Let v be a finite binary word such that u � va for a letter a 2 ¹0; 1º. By
assumption, the word v labels a path in the core C.H/. The vertex vC is necessarily a leaf
of C.H/, since va does not label a path in C.H/. Let us consider the vertex vC in Ar .
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The vertex is not a leaf of Ar . Hence, by Corollary 4.4, the vertex vC has a descendant
in Ar with two distinct incoming edges. Hence, there exists a non-empty finite binary
word w such that the vertex y D .vw/C has two distinct incoming edges in Ar .

Let p be the prefix of w such that w � pb for some letter b 2 ¹0; 1º and note that vpb
is a path in Ar such that .vpb/C D y. Let e1 be the last edge of the path vpb in Ar .
By assumption, the vertex y has an incoming edge e2 ¤ e1 in Ar . Let q be a path in Ar

such that qC D e2� and let c be the label of e2. Then, qc labels a path in Ar such that
.qc/C D y. Since .vpb/C D .qc/C in Ar , by condition .2/, there is an element h in H
with the pair of branches vpb ! qc. We claim that the reduced tree-diagram of H also
has this pair of branches. Indeed, assume by contradiction that this is not the case; then,
the letters b and c must coincide. In addition, by reducing one relevant common caret, we
get that h has the pair of branches vp! q. But, since H is accepted by Ar and vp and q
label paths in Ar , we must have .vp/C D qC in Ar . Hence, the edges e1 and e2 have
the same initial vertex (since e1� D .vp/

C D qC D e2�) and the same label. Hence, the
edges e1 and e2 coincide, in contradiction to the assumption. Hence, vpb ! qc is a pair
of branches of the reduced tree-diagram of h. Therefore, vpb labels a path in C.H/, in
contradiction to vC being a leaf of C.H/. Hence, � is bijective on vertices.

Note that even if Ar is a finite tree-automaton, if some vertex in Ar is a descendant
of itself (or equivalently, if there is a directed cycle in Ar ), then there are infinitely many
finite binary words which label paths in Ar and there are infinitely many pairs of words u
and v which label paths in Ar such that uC D vC. However, it turns out [14] that to verify
if condition .2/ of Lemma 6.1 holds for a finite tree-automaton Ar , it suffices to consider
only finitely many pairs of finite binary words.

Indeed, following [14, Section 10.2], given a rooted tree-automaton Ar , we associate
labeled binary trees TAr

and T min
Ar

with the tree-automaton Ar .
Given a labeled binary tree T , a path p in T is always a simple path starting from the

root. Every path is labeled by a finite binary word u. As for paths in tree-automata, we
rarely distinguish between the path p and its label u. Similarly, we denote by pC or uC

the terminal vertex of the path p in T and by lab.uC/ or lab.pC/ the label of this terminal
vertex. An inner vertex of T is a vertex which is not a leaf.

Now, let Ar be a rooted tree-automaton. The labeled binary tree TAr
associated

with Ar is defined as follows: the labels of vertices in TAr
are the vertices of Ar . Recall

that each finite binary word u labels at most one path in Ar . We let TAr
be the maximal

binary tree such that for every finite path u in TAr
, the finite binary word u labels a path

in Ar . For example, if there are no leaves in Ar , then TAr
is the complete infinite binary

tree. The label of each vertex uC of TAr
is the vertex uC of Ar .

Notice that every caret in TAr
is labeled in accordance with some father and his chil-

dren (sometimes called a caret) in the tree-automaton Ar . In fact, TAr
can be constructed

inductively as follows: one starts with a root labeled by the root r of Ar . Whenever there
is a leaf in the tree whose label is a father x in Ar , one attaches a caret to the leaf and
labels the left (resp. right) leaf of the caret by the left (resp. right) child of x.
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Now, let T be a rooted subtree of TAr
, maximal with respect to the property that there

is no pair of distinct inner vertices in T which have the same label. If ` is a leaf of T and `
does not share a label with any inner vertex in T , then ` must be a leaf of TAr

. Indeed,
otherwise one could attach the caret of TAr

with root ` to the subtree T and get a larger
subtree where no pair of distinct inner vertices share a label.

If the leaf ` shares a label with some inner vertex x of T , then in TAr
, ` has two

children. Each child of ` is labeled as the respective child of x. Continuing in this manner,
we see that it is possible to get TAr

from T by inductively attaching carets to leaves which
share their label with inner vertices of T and labeling the new leaves appropriately. It
follows that T and TAr

have the same set of labeled carets. Since no labeled caret appears
in T more than once, T is a minimal subtree of TAr

with respect to the property that the
sets of labeled carets of T and TAr

coincide.
We let a minimal tree associated with Ar , denoted by T min

Ar
, be a tree T as described

in the preceding paragraph. We note that a minimal tree associated with Ar is not unique.
However, the label of the root of T min

Ar
(which is r) and the set of labeled carets of T min

Ar

are determined uniquely by Ar . Thus, we can consider different minimal trees associated
with Ar to be equivalent. Clearly, a minimal tree associated with Ar also determines Ar

uniquely.
The following lemma follows immediately from [14, Lemma 10.6]:

Lemma 6.2. Let Ar be a rooted tree-automaton and let T min
Ar

be an associated minimal
tree. Assume that for every pair of finite binary words u and v which label paths in T min

Ar

such that uC and vC share a label in T min
Ar

, there is a tree-diagram .TC; T�/ which has
the pair of branches u! v and is accepted by Ar . Then, for every pair of finite binary
words u1 and v1 which label paths in Ar such that uC1 D vC1 , there is a tree-diagram
accepted by Ar which has the pair of branches u1 ! v1.

Note that Lemma 6.2 shows that if Ar is a finite rooted tree-automaton, then to check
if condition (2) from Lemma 6.1 holds for Ar , it suffices to check finitely many pairs of
finite binary words. Following [14], we make the below definition.

Definition 6.3. Let Ar be a tree-automaton. We define a semigroup presentation P Ar

associated with Ar as follows: the alphabet of P Ar is the vertex set V of Ar . The set of
relations R is the set of all relations of the form a D bc, where a; b; c 2 V and b and c
are the left and right child of a, respectively. The semigroup presentation P Ar D hV j Ri

is the presentation associated with Ar .

Note that if Ar is a rooted tree-automaton, then the associated semigroup presentation
together with the root r completely determines Ar .

Let Ar be a rooted tree-automaton and let V be the vertex set of Ar . Let u be a
finite binary word which labels a path in Ar and let Tu be the minimal binary tree with
branch u. Note that by Remark 5.1, Tu must be readable on Ar , so in particular, Tu is a
rooted subtree of TAr

. Let us label each vertex of Tu by its label when it is viewed as a
rooted subtree of TAr

and note that if u1; : : : ; un are the branches of Tu, then the labels of
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Figure 14. A rooted tree-automaton which is not a core automaton.

the leaves of Tu, read from left to right, are the vertices uC1 ; : : : ; u
C
n of Ar . Now, assume

that u is the k-th branch of Tu. The words pu � u
C
1 � � �u

C

k�1
and qu � u

C

kC1
� � �uCn (where

for each i , uCi is the end vertex of the path ui in Ar ) are words over the alphabet V . Note
that pu or qu might be empty (note also that the labels of the leaves of Tu read from left
to right spell the word puu

Cqu). The pair .pu; qu/ is called the pair of words associated
with the path u in Ar . Note that (if they are not empty) pu and qu represent elements of
the semigroup SAr represented by the semigroup presentation P Ar .

The following lemma is a slight modification of [14, Lemma 10.10] (and follows
immediately from the proof in [14]):

Lemma 6.4. Let Ar be a rooted tree-automaton and letH be the subgroup of F accepted
by Ar . Let u;v be finite binary words which label paths in Ar and let .pu;qu/ and .pv;qv/

be the associated pairs of words. Then, there is an element h2H with the pair of branches
u! v if and only if the following assertions hold:

.1/ uC D vC in Ar .

.2/ pu D qu and pv D qv in the semigroup SAr defined by the presentation P Ar

associated with the automaton Ar .

Note that when we write pu D pv in the semigroup SAr defined by the presenta-
tion P Ar , the meaning is that either both pu and pv are empty or that they are both
non-empty and pu D pv in SAr . Similar meanings apply to qu and qv .

Remark 6.5. Let Ar be a finite rooted tree-automaton. To check if Ar is a core automa-
ton, one has to check whether it is reduced (which can be easily done) and whether it
satisfies condition (2) from Lemma 6.1. For that, one can construct the (finite) tree T min

Ar
.

Then, one has to check for each pair of finite binary words u and v which label paths
on T min

Ar
such that uC and vC share a label in T min

Ar
whether condition (2) from Lemma 6.1
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holds for u and v. Lemma 6.4 shows that to check if condition (2) from Lemma 6.1 holds
for u and v, one has to check equality of words in the semigroup SAr given by the presen-
tation P Ar . Hence, if the word problem for P Ar is decidable (for example, if P Ar has a
finite completion), we get a method for checking if Ar is a core automaton. Note that in
general, the word problem for finite semigroup presentations is undecidable. However, not
every semigroup presentation is associated with a rooted tree-automaton and to verify if
condition (2) from Lemma 6.4 holds for every relevant pair of finite binary words, we do
not need a complete solution for the word problem over the presentation P Ar . Hence, it is
possible that the problem of deciding if a given rooted tree-automaton is a core automaton
is decidable.

Example 6.6. The rooted tree-automaton Ar from Figure 14 is not a core automaton.

Proof. Note that the following is a minimal tree associated with Ar :
r

f

f h

h k

g

h g

The semigroup presentation associated with Ar is:

P Ar D
˝
r; f; g; h; k j r D fg; f D f h; g D hg; h D hk

˛
Now, consider the words u � 01 and v � 010. Note that uC D vC in Ar and let .pu; qu/

and .pv; qv/ be the pairs of words associated with the paths u and v in Ar , respectively.
Then, qu � g and qv � kg. Since no relation in P Ar has k as its first letter (on either
side of the relation), every word over the alphabet of P Ar that is equal to the word
qv � kg in SAr must start with k. Hence, qu ¤ qv in the semigroup SAr . Hence, by
Lemma 6.4, there is no element in DG .Ar / with the pair of branches u! v and there-
fore, by Lemma 6.1, Ar is not a core automaton.

Remark 6.7. Let H be a finitely generated closed subgroup of F with core C.H/.
Recall that H satisfies condition (4) from Lemma 5.6 if and only if for every rooted
tree-automaton Ar that is a surjective image of C.H/, the tree-automaton Ar is either
isomorphic to C.H/ or to C.F / or is not a rooted tree-automaton. Hence, to check if con-
dition (4) from Lemma 5.6 holds for H , it suffices to consider all surjective images Ar

of C.H/ which are not isomorphic to C.H/ nor to C.F / and check whether any of them
is a core-automaton. This is often doable using Remark 6.5.

Example 6.8. The subgroup H D hx0; x
2
1x
�1
3 x�1

2 x�1
1 ; x1x

2
2x
�1
3 x�2

1 i is a maximal sub-
group of infinite index in F .

Proof. First, we note that H is a closed subgroup of F . Indeed, the core of H is given in
Figure 15.
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Figure 15. The core of H .

If one applies the algorithm from [10] for finding a generating set of Cl.H/, one
gets the given generating set of H 3. Hence, Cl.H/ D H . Therefore, to show that H is
a maximal subgroup of infinite index in F , it suffices to verify that it satisfies condi-
tions .1/–.4/ from Lemma 5.6. Computing the images of the generators of H in the
abelianization of F shows that �ab.H/ D Z2. Hence, condition (1) from Lemma 5.6
holds. Conditions (2) and (3) are clear from the above core. Hence, it suffices to check
that condition (4) from the lemma holds. Let Ar be a rooted tree-automaton that is a
surjective image of C.H/ but non-isomorphic to C.H/. It suffices to prove that Ar is
either not a core automaton or is isomorphic to C.F /. Let � be the (unique) surjective
morphism from C.H/ to Ar . Since � is not injective, there are at least two distinct ver-
tices x ¤ y in C.H/ such that �.x/ D �.y/. We note that if x or y is not a middle
vertex of C.H/ (i.e., if x or y belong to ¹r; f; gº), then by Remark 2.22, the rooted
tree-automaton Ar is not a core-automaton, and we are done. Hence, we can assume
that �.r/; �.f /, and �.g/ are all distinct vertices of Ar and that for every vertex z
of C.H/ such that z … ¹r; f; gº, we have �.z/ … ¹�.r/; �.f /; �.g/º. In particular, the
vertices x and y must both be middle vertices of C.H/. It is not difficult to check that if
¹x; yº ¤ ¹a; cº, then the rooted tree-automaton Ar must be isomorphic to C.F /. Indeed,
assume for example that ¹x; yº D ¹b; cº, so that �.b/D �.c/. Then, since d and c are the
right children of b and c, respectively, we must have �.d/D �.c/. Similarly, since h and c

3More accurately, the algorithm gives a generating set which, after a few elementary Nielsen transfor-
mations, coincides with the given generating set of H .
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Figure 16. The rooted tree-automaton Ar .

are the right children of d and c, respectively, we have �.h/ D �.c/. Continuing in this
manner, we get that �.h/D �.a/D �.b/D �.c/D �.d/. This clearly implies that Ar is
isomorphic to C.F / (recall that C.F / appears in Figure 13). Hence, it suffices to consider
the case where ¹x; yº D ¹a; cº, so that �.a/ D �.c/. Moreover, we can assume that � is
injective on the vertices h, b, and d and that �.c/ … ¹�.h/;�.b/;�.d/º (otherwise, we are
done, by the previous case). It follows that Ar is the rooted tree-automaton in Figure 16.

This rooted tree-automaton is not a core automaton. Indeed, let u � 010 and
v � 0101 and note that uC D vC D �.c/ in Ar . Let .pu; qu/ and .pv; qv/ be the pairs of
words associated with the paths u and v in Ar . Then, pu � �.f / and pv � �.f /�.c/. It
is easy to check that pu ¤ pv in the semigroup SAr represented by the semigroup presen-
tation P Ar (indeed, in every relation of P Ar , the last letter on the right-hand side of the
relation is �.c/ if and only if the last letter on the left-hand side of the relation is �.c/).
Hence, Ar is not a core automaton and we are done.

7. An infinite family of non-isomorphic maximal subgroups of
Thompson’s group F

7.1. Jones’ subgroups of Thompson’s group F

Vaughan Jones [19] defined a family of unitary representations of Thompson’s group F
using planar algebras. These representations give rise to interesting subgroups of F (the
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stabilizers of the vacuum vector in these representations). Jones’ subgroup
�!
F , defined

in [19] is particularly interesting. Indeed, Jones proved that elements of F encode in a
natural way all knots and links and elements of

�!
F encode all oriented links and knots.

In [9], we proved that Jones’ subgroup
�!
F is isomorphic to the “brother group” F3

of F (recall that for every n � 2, one can define a “brother group” Fn of F D F2 as the
group of all piecewise-linear increasing homeomorphisms of the unit interval where all
slopes are powers of n and all breaks of the derivative occur at n-adic fractions, i.e., points
of the form a

nk where a; k are positive integers [6]. It is well known that Fn is finitely
presented for every n (a concrete and easy presentation can be found in [17])). We also
showed that

�!
F is the stabilizer of the set S of all dyadic fractions such that the sum of

digits in their finite binary representation is odd.
In [11], we proved that the only subgroups of F strictly containing Jones’ subgroup

�!
F

are F1;2 and F (recall that F1;2 is the subgroup of F of index 2 of all functions whose
slope at 1� is an even power of 2). In particular,

�!
F is a maximal subgroup of F1;2. Since,

by [4], F1;2 is isomorphic to F , it followed that F has a maximal subgroup isomorphic to
Jones’ subgroup

�!
F . This was the first example of a maximal subgroup of F which is not

the stabilizer of any number in .0; 1/.
In [9], we also studied a family of subgroups, which we called Jones’ subgroups

�!
F n,

which can be defined in an analogous way to
�!
F , where

�!
F 2 D

�!
F (for further details, see

[9, Section 5]). We showed that like
�!
F , for each n, Jones’ subgroup

�!
F n is isomorphic to

the brother group FnC1 of F . We also showed that for each n,
�!
F n is the intersection of

stabilizers of certain sets of dyadic fractions.

Lemma 7.1 ([9, Theorem 5.11]). Let n � 2. For each i D 0; : : : ; n � 1, let Si be the set
of all dyadic fractions such that the sum of digits in their finite binary representation is i
modulo n. Then,

�!
F n D

n�1\
iD0

Stab.Si /;

that is, Jones’ subgroup
�!
F n is the intersection of the stabilizers of Si , i D 0; : : : ; n � 1

under the natural action of F on the interval Œ0; 1�.

It follows from Lemma 7.1 that for each n,
�!
F n is a closed subgroup of Thompson’s

group F . Indeed, Lemma 7.1 implies that every piecewise-
�!
F n function belongs to

�!
F n.

The following was also proved in [9]:

Lemma 7.2 (See [9, Section 5.2]). For every n 2 N, Jones’ subgroup
�!
F n is the minimal

subgroup of F which contains the element x0x1 � � � xn�1 and is closed under addition.
Moreover, the subgroup

�!
F n is generated by the set ¹xixiC1 � � � xiCn�1 j i D 0; : : : ; nº.

7.2. Maximality of Jones’ subgroup
�!
F p inside F1;p

As noted above, in [11], we proved that the only subgroups of F which strictly contain
Jones’ subgroup

�!
F are F1;2 and F . In this section, we generalize this result for every
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Figure 17. The rooted tree-automaton Asum.

prime number p. More specifically, we show that the only subgroups of F which strictly
contain Jones’ subgroup

�!
F p are F1;p and F .

For the remainder of this section, let us fix a prime number p. We start by defining a
rooted tree-automaton which we denote by Asum such that DG .Asum/ D

�!
F p .

Definition 7.3. The rooted tree-automaton Asum (see Figure 17) is defined to be the rooted
tree-automaton with vertices a0; : : : ;ap�1 such that each vertex ai has two outgoing edges:
a directed edge labeled “0" from the vertex to itself and a directed edge labeled “1" from
the vertex to aiC1, where i C 1 is taken modulo p. The root of Asum is the vertex a0.

Note that Asum is a full rooted tree-automaton. In particular, every finite binary word u
is readable on Asum. Let u be a finite binary word. We denote by sump.u/ the number
in ¹0; : : : ; p � 1º that is equal to the sum of digits of u modulo p (i.e., the number of
appearances of the digit 1 in u modulo p). Similarly, if ˛ is a dyadic fraction and u is a
finite binary word such that ˛ D :u, we let sump.˛/ D sump.u/. It is easy to prove by
induction that for every finite binary word u, the vertex uC in Asum is the vertex asump.u/.

Lemma 7.1 implies the following:

Lemma 7.4. The diagram group DG .Asum/ D
�!
F p .

Proof. Let .TC; T�/ be a reduced tree-diagram of some element f 2 F . It suffices to
prove that .TC; T�/ is accepted by Asum if and only if f 2

�!
F p .

Let ui ! vi , i D 1; : : : ; n be the pairs of branches of .TC; T�/ and assume first
that .TC; T�/ is accepted by Asum. Then, for each i D 1; : : : ; n, we have uCi D v

C

i in Asum.
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By the remarks preceding the lemma, this implies that for each i D 1; : : : ; n, we have
sump.ui /D sump.vi /. We claim that f 2

�!
F p . By Lemma 7.1, it suffices to prove that for

each dyadic fraction ˛ 2 .0; 1/, the function f preserves the sum of digits modulo p in the
binary representation of ˛. Let ˛ 2 .0; 1/ be a dyadic fraction. Then, ˛ has a finite binary
representation of the form :uis for some i 2 ¹1; : : : ; nº and some finite binary word s.
Then, f .˛/ D :vis. Since sump.ui / D sump.vi /, we have sump.f .˛// D sump.:vis/ D

sump.:uis/ D sump.˛/, as required.
In the other direction, assume that f 2

�!
F p . It suffices to prove that for each i D

1; : : : ; n, ui
C D vi

C in Asum, or equivalently, that for each i , we have sump.ui / D

sump.vi /. But for each i , we have f .:ui / D :vi . Hence, by Lemma 7.1, sump.:ui / D

sump.:vi /, as required.

Let P sum be the semigroup presentation associated with the rooted tree-automa-
ton Asum, that is,

P sum
D
˝
a0; a1; : : : ; ap�1 j ai D aiaiC1; i 2 ¹0; : : : ; p � 1º

˛
;

where i C 1 is taken modulo p. The following is verified easily:

Lemma 7.5. The semigroup S sum represented by P sum is a left-zero semigroup of order p
such that a0; : : : ; ap�1 are the distinct elements of S sum.

Let u be a finite binary word. We denote by sufp.u/ 2 ¹0; : : : ; p � 1º the length mod-
ulo p of the longest suffix of u where only ones appear.

Lemma 7.6. Let u and v be paths in the automaton Asum and let .pu; qu/ and .pv; qv/

be the pairs of words associated with the paths u and v in Asum, respectively. Let S sum be
the semigroup represented by P sum. Then, the following assertions hold:

(1) If u and v contain the digit 1, then pu D pv in S sum.

(2) If u and v contain the digit 0, then qu D qv in S sum if and only if

sump.u/ � sufp.u/ �p sump.v/ � sufp.v/:

Proof. Let Tu (resp. Tv) be the minimal finite binary tree with branch u (resp. v).
Proof of .1/: Assume that u and v contain the digit 1. In that case, u (resp. v) is not

the left-most branch of Tu (resp. Tv). Hence, the word pu (resp. pv) is not empty. Let u1

(resp. v1) be the first branch of Tu (resp. Tv). Clearly, the words u1 and v1 only contain
the digit 0. Hence, sump.u1/ D sump.v1/ D 0. Therefore, the paths u1 and v1 in Asum

terminate in the vertex uC1 D a0 D vC1 . But, the vertex uC1 (resp. vC1 ) is the first letter
of pu (resp. pv). Therefore, a0 is the first letter of both pu and pv . Since S sum is a left-
zero semigroup, it follows that pu D a0 in S sum and pv D a0 in S sum. Hence, pu D pv

in S sum.
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Proof of .2/: Assume that u and v contain the digit 0. Then, the words qu and qv are not
empty. Let u0 and v0 be finite binary words such that u � u001sufp.u/ and v � v001sufp.v/

and note that the first branch in Tu following the branch u is the branch u01. Hence, the
first letter of qu is the vertex .u01/C of Asum. Similarly, the vertex .v01/C of Asum is the
first letter of qv . Since S sum is a left-zero semigroup, we have qu D .u

01/C D asump.u01/

and qv D .v
01/C D asump.v01/. Note that

sump.u
01/ �p sump.u/ � sufp.u/C 1;

sump.v
01/ �p sump.v/ � sufp.v/C 1:

Hence, qu D qv in S sum if and only if

sump.u/ � sufp.u/ �p sump.v/ � sufp.v/:

Lemma 7.7. Let u and v be finite binary words. Then, there is an element h 2
�!
F p with

the pair of branches u! v if and only if the following conditions hold:

(1) Both u and v contain the digit 0, or both u and v do not contain the digit 0.

(2) Both u and v contain the digit 1, or both u and v do not contain the digit 1.

(3) sump.u/ D sump.v/.

(4) sufp.u/ D sufp.v/.

Proof. Consider the words u and v as paths in the automaton Asum and let .pu; qu/

and .pv; qv/ be the associated pairs of words. Let S sum be the semigroup represented
by P sum.

Assume first that there is an element h 2
�!
F p with the pair of branches u! v. Then,

conditions .1/ and .2/must hold (since they hold for every pair of branches of any element
in F ). Since

�!
F p is the subgroup of F accepted by Asum, it follows from Lemma 6.4 that

uCD vC in Asum and that puD pv and quD qv in S sum. Since uCD vC in Asum, we have
sump.u/ D sump.v/, so condition .3/ holds. Finally, if u and v contain the digit 0, then
since qu D qv in S sum and sump.u/ D sump.v/, Lemma 7.6.2/ implies that sufp.u/ D
sufp.v/. If both u and v do not contain the digit 0, then for some m; n � 0, we have
u � 1m and v � 1n. Then, sufp.u/ D sump.u/ �p m and sufp.v/ D sump.v/ �p n.
Since sump.u/ D sump.v/, we have that sufp.u/ D sufp.v/. Hence, condition (4) holds
as well.

In the other direction, assume that conditions .1/–.4/ are satisfied and note that condi-
tion .3/ implies that uC D vC in Asum. We claim that pu D pv and qu D qv in the semi-
group S sum. Then, by Lemma 6.4, we would have that there is an element h 2 DG .Asum/

D
�!
F p with the pair of branches u! v.
First, we show that pu D pv in S sum. Indeed, if u and v both contain the digit 1, then

by Lemma 7.6.1/, pu D pv in S sum. Otherwise, since u and v satisfy condition .2/, both u
and v do not contain the digit 1. In that case, u and v are both (possibly empty) powers
of 0 and pu � ; � pv .
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Now, we prove that qu D qv in S sum. If both u and v contain the digit 0, then it follows
immediately from Lemma 7.6.2/, since conditions .3/ and .4/ hold for u and v. Hence,
assume that both u and v are (possibly empty) powers of 1. In that case, qu � qv � ; and
we are done.

Next, we want to consider the core of
�!
F p . First, we make the following simple obser-

vation:

Lemma 7.8. Every finite binary word labels a path in the core C.
�!
F p/.

Proof. The lemma follows from the fact that
�!
F p is closed under addition. Indeed, if u

labels a path in the core C.
�!
F p/, then by Lemma 4.6, there exists an element f 2

�!
F p

such that u is a prefix of some branch of its reduced tree-diagram. But then 0u and 1u are
prefixes of branches of the reduced tree-diagrams of f ˚ 1 and 1˚ f , respectively. As
such, by Lemma 4.6, they label paths in C.

�!
F p/.

Recall that there are 4 types of vertices in the core of a subgroup of F : the root, left
vertices, right vertices, and middle vertices.

Lemma 7.9. Let u and v be two finite binary words. Then, uC D vC in C.
�!
F p/ if and

only if the following assertions hold:

(1) uC and vC are vertices of the same type.

(2) sump.u/ D sump.v/.

(3) sufp.u/ D sufp.v/.

Proof. By Lemma 2.19, the vertices uC and vC coincide in C.
�!
F p/ if and only if there is

an element h 2 Cl.
�!
F p/ D

�!
F p which has the pair of branches u! v. Hence, the result

follows from Lemma 7.7 (note that conditions .1/ and .2/ from Lemma 7.7 are equivalent
to uC and vC being vertices of the same type).

Note that Lemma 7.9 gives a complete characterization of the core C.
�!
F p/.

Corollary 7.10. The core C.
�!
F p/ has p2 C p C 2 vertices. It has a unqiue left vertex, p

distinct right vertices, p2 distinct middle vertices, and a root.

Proof. Clearly, the core has a unique root. We claim that there is a unique left vertex
in the core. It suffices to show that for every m; n 2 N, the vertices .0m/C and .0n/C

in C.
�!
F p/ coincide. But, sump.0

n/D 0D sump.0
m/ and sufp.0n/D 0D sufp.0m/. Hence,

by Lemma 7.9, the left vertices .0n/C and .0m/C of the core coincide.
Next, we claim that there are exactly p distinct right vertices in the core. It suffices to

prove that for every m; n 2 N, the vertices .1m/C and .1n/C in C.
�!
F p/ coincide if and

only if m �p n. Note that sump.1
m/ D sufp.1m/ �p m and sump.1

n/ D sufp.1n/ �p n.
Hence, by Lemma 7.9, the right vertices .1m/C and .1n/C coincide in

�!
F p if and only

if m �p n.
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Figure 18. The rooted tree-automaton Asuf.

Finally, we claim that there are exactly p2 distinct middle vertices in the core. Let u
and v be finite binary words which contain both digits 0 and 1. By Lemma 7.9, the
middle vertices uC and vC coincide if and only if sump.u/ D sump.v/ and sufp.u/ D
sufp.v/. Hence, there are exactly p2 distinct middle vertices in the core (note that for
each pair of i; j 2 ¹0; : : : ; p � 1º, there is a finite binary word w with sump.w/ D i and
sufp.w/ D j ).

To prove that the only subgroups of F which strictly contain
�!
F p are F1;p and F , we

will consider homomorphic images of the core C.
�!
F p/. One such homomorphic image

is the tree-automaton Asum. Another one is the rooted tree-automaton Asuf defined as
follows:

Definition 7.11. The rooted tree-automaton Asuf (see Figure 18) is defined to be the
rooted tree-automaton with vertices b0; : : : ; bp�1 such that each vertex bi has two out-
going edges: a directed edge labeled “0" to the vertex b0 and a directed edge labeled “1"
from the vertex to biC1, where i C 1 is taken modulo p. The root of Asuf is the vertex b0.

Note that Asuf is a full rooted tree-automaton. In particular, every finite binary word u
is readable on Asuf. It is easy to prove by induction that for every finite binary word u, the
vertex uC in Asuf is the vertex bsufp.u/. It follows from Lemma 7.7 that for every pair of
branches u! v of a function in

�!
F p , we have uC D vC in Asuf. Hence, the subgroup

�!
F p
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is accepted by Asuf. In fact, below we prove that DG .Asuf/ D
�!
F p . To do so, we consider

the semigroup presentation P suf associated with the rooted tree-automaton Asuf. Note that

P suf
D
˝
b0; b1; : : : ; bp�1 j bi D b0biC1; i 2 ¹0; : : : ; p � 1º

˛
;

where i C 1 is taken modulo p. Note that the semigroup S suf represented by P suf is a
cyclic group of order p, where b0; : : : ; bp�1 are its distinct elements (b1 is the identity
element of the group).

Lemma 7.12. Let u be a path in the rooted tree-automaton Asuf and let .pu; qu/ be the
pair of words associated with the path u in Asuf. Let S suf be the semigroup represented
by P suf. Assume that u contains the digit 1; then, pu D b

sump.u/

0 in S suf.

Proof. Consider the structure of the minimal tree Tu with branch u. The number of
branches in Tu to the left of the branch u is equal to the number of digits 1 in u (i.e.,
to the sum of digits in u). Each branch v of Tu to the left of the branch u terminates
with the digit 0 and therefore satisfies vC D b0 in Asuf. Hence, the word pu � b

s.u/
0 ,

where s.u/ is the sum of digits in u. Since S suf is a group of order p generated by b0 and
sump.u/ �p s.u/, we have pu D b

sump.u/

0 in S suf.

Lemma 7.13. The diagram group DG .Asuf/ D
�!
F p .

Proof. As noted above,
�!
F p is contained in DG .Asuf/. In the other direction, let .TC; T�/

be a tree-diagram in DG .Asuf/. We claim that .TC; T�/ belongs to
�!
F p . Let u! v be a

pair of branches of .TC; T�/. It suffices to show that u and v satisfy conditions .1/–.3/
from Lemma 7.9. Indeed, this would imply that .TC; T�/ is accepted by the core of

�!
F p

and, as such, belongs to the closed subgroup
�!
F p .

Since u! v is a pair of branches of the tree-diagram .TC;T�/, the vertices uC and vC

of C.
�!
F p/ must be vertices of the same type. Let .pu; qu/ and .pv; qv/ be the pairs of

words associated with the paths u and v in Asuf. Since .TC; T�/ is accepted by Asuf,
it follows from Lemma 4.9 that uC D vC in Asuf and that pu D pv in S suf. Now, the
fact that uC D vC in Asuf implies that sufp.u/ D sufp.v/. By Lemma 7.12, the fact that
pu D pv implies that sump.u/ D sump.v/ (if u and v do not contain the digit 1, then
sump.u/D sump.v/D 0). Hence, u and v satisfy conditions .1/–.3/ from Lemma 7.9, as
required.

Remark 7.14. Lemma 7.13 can also be derived from [9, Section 5.3], where the isomor-
phism from Thompson’s group FnC1 to Jones’ subgroup

�!
F n is described explicitly.

Proposition 7.15. Let G be a subgroup of F which strictly contains
�!
F p . Then, there is a

unique middle vertex in the core of G.

Proof. Let us consider the automaton C.
�!
F p/. It has p2 middle vertices, which can be

referred to as xi;j , i; j 2 ¹0; : : : ; p � 1º, where xi;j is the end vertex of all paths u
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in C.
�!
F p/ such that sump.u/ D i and sufp.v/ D j . Since G contains

�!
F p , by Corol-

lary 4.10, there is a surjective morphism � from C.
�!
F p/ to C.G/. Note that for each

finite binary word u, the morphism � maps the vertex uC of C.
�!
F p/ onto the vertex uC

of C.G/. It suffices to prove that for every .i; j / 2 ¹0; : : : ; p � 1º � ¹0; : : : ; p � 1º, we
have

�.xi;j / D �.x0;0/:

We do it in several steps. In all of the steps below, when we write xi;j for some inte-
gers i; j , the integers are taken modulo p.

Step 1: There exist some i1 < i2 in ¹0; : : : ; p � 1º such that �.xi1;0/ D �.xi2;0/.
Indeed, since G strictly contains

�!
F p , there is an element g 2 G n

�!
F p . Since g …

�!
F p ,

by Lemma 7.4, it is not accepted by the automaton Asum. Hence, g has a pair of branches
u! v such that sump.u/¤ sump.v/. Let i1D sump.u/ and i2D sump.v/. We can assume
that i1 < i2 by replacing g by g�1, if necessary. Note that u0 ! v0 is also a pair of
branches of g and that in C.

�!
F p/we have .u0/CD xi1;0 and .v0/CD xi2;0. Since u0! v0

is a pair of branches of g 2 G, we must have .u0/C D .v0/C in C.G/. Hence,

�.xi1;0/ D �.xi2;0/;

as required.
Step 2: For every j; k 2 ¹0; : : : ; p � 1º, we have �.xj;k/ D �.xjC.i2�i1/;k/.
Indeed, recall that g has the pair of branches u ! v such that i1 D sump.u/ and

i2 D sump.v/. Let j; k 2 ¹0; : : : ; p � 1º and note that g has the pair of branches u1! v1,
where

u1 � u1
2p�i1�kCj 01k and v1 � v1

2p�i1�kCj 01k :

Note also that sump.u1/ D j , sump.v1/ �p i2 � i1 C j and sufp.u1/ D sufp.v1/ D k.
As in Step 1, the pair of branches u1 ! v1 of g implies that in C.G/ we have �.xj;k/ D

�.xjC.i2�i1/;k/, as required.
Step 3: For every j; k 2 ¹0; : : : ; p � 1º, we have �.xj;k/ D �.x0;k/.
Indeed, let ` D i2 � i1 and note that ` 2 ¹1; : : : ; p � 1º is co-prime to p. Let d 2

¹1; : : : ; p � 1º be such that d` �p 1 and let k 2 ¹0; : : : ; p � 1º. By Step 2, we have that
for all j ,

�.xj;k/ D �.xjC`;k/:

It follows that for every j , we have

�.xj;k/ D �.xjC.p�j /d`;k/

Hence, for every j , we have
�.xj;k/ D �.x0;k/:

Step 4: There exists `1 2 ¹1; : : : ; p � 1º such that for every k � 0 we have �.x0;`1Ck/

D �.x0;k/.
Indeed, since g …

�!
F p , by Lemma 7.13, the element g is not accepted by Asuf. Hence, it

must have a pair of branchesw1!w2 such that sufp.w1/¤ sufp.w2/. Letm1D sufp.w1/
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and m2 D sufp.w2/. We can assume without loss of generality that m1 < m2 and let
`1Dm2 �m1. Now, let k � 0 and note that g also has the pair of branchesw11

p�m1Ck!

w21
p�m1Ck . Hence, in C.G/, we have .w11

p�m1Ck/C D .w21
p�m1Ck/C. Note also

that sufp.w11
p�m1Ck/ �p k and sufp.w

p�m1Ck
2 / �p m2 � m1 C k �p `1 C k. Let

j1 D sump.w11
p�m1Ck/ and j2 D sump.w21

p�m1Ck/. Then, since .w11
p�m1Ck/C D

.w21
p�m1Ck/C in C.G/, we have

�.xj1;k/ D �.xj2;`1Ck/:

Now, by Step 3 and the last equation, we have

�.x0;k/ D �.xj1;k/ D �.xj2;`1Ck/ D �.x0;`1Ck/;

as required.
Step 5: For every k 2 ¹0; : : : ; p � 1º, we have �.x0;k/ D �.x0;0/.
Indeed, since `1 2 ¹1; : : : ; p � 1º, it is co-prime to p. Let d1 2 ¹1; : : : ; p � 1º be such

that d1`1 �p 1. By Step 4, we have that for all k,

�.x0;k/ D �.x0;kC`1
/:

It follows that for every k, we have

�.x0;k/ D �.x0;kC.p�k/d1`1
/:

Hence, for every k, we have
�.x0;k/ D �.x0;0/:

Step 6: For every j; k 2 ¹0; : : : ; p � 1º, we have �.xj;k/ D �.x0;0/.
Indeed, this follows immediately from Steps 3 and 5.
Hence, there is a unique middle vertex in the core of G, as required.

Theorem 7.16. The only subgroups of Thompson’s group F which strictly contain
�!
F p

are F1;p and F .

Proof. First, we note that the image of
�!
F p in the abelianization of F is Z � pZ. One can

verify it, for example, by computing the image in the abelianization of the generating set
of
�!
F p from Lemma 7.2.
Now, let G be a subgroup of F which strictly contains H . Then, by Proposition 7.15,

the core of G has a unique middle vertex. Clearly, this vertex has two outgoing edges.
Hence, by Lemma 2.28, Cl.G/ contains the derived subgroup of F . In addition, since
H �G, it follows that �ab.H/� �ab.G/. Since �ab.H/DZ�pZ is a maximal subgroup
of Z2, there are two options for �ab.G/: either �ab.G/ D Z � pZ or �ab.G/ D Z2. Note
that in either case, �ab.G/ is a closed subgroup of Z2. Hence, by Theorem 3.12, in either
case, G D GŒF; F � D ��1

ab .G/. Hence, either G D F1;p or G D F , as required.
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It follows from Theorem 7.16 that
�!
F p is a maximal subgroup of F1;p . Since F1;p is

isomorphic to F , we have the following:

Corollary 7.17. For every prime number p, Thompson’s group F has a maximal sub-
group isomorphic to Jones’ subgroup

�!
F p .

8. Final remarks and open problems

Let p be a prime number. For each i D 0; : : : ;p � 1, let Si be the set of all dyadic fractions
such that the sum of digits in their finite binary representation is i modulo p.

Remark 8.1. It follows from Theorem 7.16 that for each i D 0; : : : ; p � 1, Jones’ sub-
group

�!
F p D Stab.Si /. Indeed, by Lemma 7.1, for each i D 0; : : : ; p � 1, Jones’ sub-

group
�!
F p is contained in Stab.Si / and, clearly, Stab.Si / … ¹F1;p; F º.

Lemma 8.2. The number of orbits of the action of
�!
F p on the set of dyadic fractions D

is p.

Proof. As D is the disjoint union of the sets Si for i D 0; : : : ; p � 1, it suffices to prove
that for each i , the set Si is an orbit of the action of

�!
F p on D . Let i 2 ¹0; : : : ; p � 1º and

let ˛ 2 Si . By Lemma 7.1, the orbit of ˛ is contained in Si . Hence, it suffices to prove
that if ˇ 2 Si , then ˇ is in the orbit of ˛. Let u and v be finite binary words such that
˛ D :u and ˇ D :v and such that the last digit of both u and v is zero. We claim that
there is an element in

�!
F p with the pair of branches u! v. To prove this, it suffices to

show that u and v satisfy conditions .1/–.4/ from Lemma 7.7. First, note that since ˛
and ˇ are in D � .0; 1/, the finite binary words u and v must also contain the digit 1.
Hence, conditions (1) and (2) from the lemma are satisfied. In addition, since ˛ and ˇ
belong to Si , we have sump.u/ D i D sump.v/. Finally, sufp.u/ D 0 D sufp.v/. Hence,
conditions .3/ and .4/ of Lemma 7.7 also hold and there is an element h 2

�!
F p with the

pair of branches u! v. In particular, h.˛/ D h.:u/ D :v D ˇ. Hence, ˇ is in the orbit
of ˛.

Let �WF1;p! F be an isomorphism. Then, �.
�!
F p/ is a maximal subgroup of F which

is isomorphic to
�!
F p . We claim that the action of �.

�!
F p/ on the set of dyadic fractions D

also has exactly p orbits. Indeed, since the action of F1;p on the interval .0; 1/ is locally
dense (see, for example, [4, Lemma 7.2]), Rubin’s theorem (see [6, Section 9]) implies
that there exists a homeomorphism �W .0; 1/! .0; 1/ such that �.f / D ��1f � for every
f 2 F1;p . The homeomorphism � must map the set of dyadic fractions D onto itself
(indeed, that follows from consideration of the groups of germs of F1;p and F (see, for
example [21]) at dyadic fractions, rational non-dyadic fractions, and irrational numbers
in .0;1/). It follows that �.D/DD is the disjoint union of the sets �.Si /, i D 0; : : : ;p� 1.
But, these sets are orbits of the action of �.

�!
F p/ on the interval .0; 1/. Hence, the action

of �.
�!
F p/ on D has exactly p orbits.
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Corollary 8.3. For every prime number p, Thompson’s group F has a maximal subgroup
whose action on the set of dyadic fractions D has exactly p orbits.

We believe the answer to the following problem is positive:

Problem 8.4. Is it true that for every n 2 N, Thompson’s group F has a maximal sub-
group whose action on the set of dyadic fractions D has exactly n orbits?

Remark 8.5 (Added in revision). Problem 8.4 was recently solved in the affirmative by
the author [16].

Corollary 7.17 shows that there are at least countably many distinct isomorphism
classes of maximal subgroups of infinite index in Thompson’s group F . However, the
following problem remains open:

Problem 8.6. Are there uncountably many distinct isomorphism classes of maximal sub-
groups of Thompson’s group F ?

Clearly, in order to answer Problem 8.6, one has to consider infinitely generated max-
imal subgroups of Thompson’s group F . Recall that Stab.˛/ for ˛ 2 .0; 1/ is not finitely
generated if and only if ˛ is irrational (see [12]). Hence, Thompson’s group F has max-
imal subgroups which are not finitely generated. However, the stabilizers Stab.˛/ for
˛ 2 .0; 1/ nQ are all isomorphic [12]. Hence, up to isomorphism, there is only one known
maximal subgroup of F which is not finitely generated.

Problem 8.7. Is there a maximal subgroup of F which is not finitely generated and does
not fix any number in .0; 1/?

Note that for every n2N, the rank of Jones’ subgroup
�!
F n Š FnC1 is nC 1 (see [17]).

Hence, Thompson’s group F has finitely generated maximal subgroups of arbitrarily
large rank. Note also that all known finitely generated maximal subgroups of Thompson’s
group F are finitely presented. Indeed, all brother groups Fn of Thompson’s group F are
finitely presented [17]. For every ˛ 2 Q, the stabilizer Stab.˛/ is finitely presented [12].
Using results for diagram groups from [17, Section 9], one can also prove that the maxi-
mal subgroups from [15], from [3], and from Example 6.8 above are all finitely presented
(the algorithm from [17, Section 9] can also be used to find explicit finite presentations
for these subgroups).

Problem 8.8. Are all finitely generated maximal subgroups of Thompson’s group F fin-
itely presented?

Acknowledgments. The author would like to thank Mark Sapir for helpful conversations.
The author would also like to thank the anonymous referee for helpful comments and
suggestions.



On maximal subgroups of Thompson’s group F 63

Funding. The research was supported by the Israel Science Foundation (grant no.
2322/19).

References

[1] V. Aiello, On the Alexander theorem for the oriented Thompson group
�!
F . Algebr. Geom.

Topol. 20 (2020), no. 1, 429–438 Zbl 1436.57001 MR 4071378
[2] V. Aiello and T. Nagnibeda, On the oriented Thompson subgroup

�!
F 3 and its relatives in higher

Brown-Thompson groups. J. Algebra Appl. 21 (2022), no. 7, article no. 2250139
Zbl 07559649 MR 4448422

[3] V. Aiello and T. Nagnibeda, On the 3-colorable subgroup F and maximal subgroups of
Thompson’s group F . Ann. Inst. Fourier (Grenoble) 73 (2023), no. 2, 783–828
Zbl 07559649 MR 4588965

[4] C. Bleak and B. Wassink, Finite index subgroups of R. Thompson’s group F. 2007,
arXiv:0711.1014 Zbl 0711.1014

[5] M. G. Brin, The ubiquity of Thompson’s group F in groups of piecewise linear homeomor-
phisms of the unit interval. J. London Math. Soc. (2) 60 (1999), no. 2, 449–460
Zbl 0957.20025 MR 1724861

[6] K. S. Brown, Finiteness properties of groups. J. Pure Appl. Algebra 44 (1987), 45–75,
Zbl 0613.20033 MR 885095

[7] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups.
Enseign. Math. (2) 42 (1996), no. 3–4, 215–256 Zbl 0880.20027 MR 1426438

[8] T. Gelander, G. Golan, and K. Juschenko, Invariable generation of Thompson groups. J. Alge-
bra 478 (2017), 261–270 Zbl 1390.20035 MR 3621672

[9] G. Golan and M. Sapir, On Jones’ subgroup of R. Thompson group F . J. Algebra 470 (2017),
122–159 Zbl 1400.20037 MR 3565428

[10] G. Golan-Polak and M. Sapir, On closed subgroups of R. Thompson group F .
arXiv:2105.00531, to appear in Isr. J. Math.

[11] G. Golan and M. Sapir, On subgroups of R. Thompson’s group F . Trans. Amer. Math. Soc.
369 (2017), no. 12, 8857–8878 Zbl 1400.20037 MR 3710646

[12] G. Golan and M. Sapir, On the stabilizers of finite sets of numbers in the R. Thompson group
F . Algebra i Analiz 29 (2017), no. 1, 70–110 Zbl 1400.20036 MR 3660685

[13] G. Golan-Polak and M. Sapir, On some generating set of Thompson’s group F . São Paulo J.
Math. Sci. Memorial Volume for Sasha Anan’in (2023).

[14] G. Golan Polak, Random generation of Thompson group F . J. Algebra 593 (2022), 507–524
Zbl 1514.20231 MR 4349287

[15] G. Golan Polak, The generation problem in Thompson group F . Mem. Amer. Math. Soc. 292
(2023), no. 1451 Zbl 07807553 MR 4679704

[16] G. Golan-Polak, Some results on Maximal subgroups of Thompson’s group F . In preparation.
[17] V. Guba and M. Sapir, Diagram groups. Mem. Amer. Math. Soc. 130 (1997), no. 620

Zbl 0930.20033 MR 1396957
[18] V. S. Guba and M. V. Sapir, On subgroups of the R. Thompson group F and other diagram

groups. (Russian) Mat. Sb. 190 (1999), no. 8, 3–60; translation in Sb. Math. 190 (1999), no.
7–8, 1077–1130. Zbl 1095.20021 MR 1725439

[19] V. Jones, Some unitary representations of Thompson’s groups F and T . J. Comb. Algebra 1
(2017), no. 1, 1–44 Zbl 1472.57014 MR 3589908

https://doi.org/10.2140/agt.2020.20.429
https://zbmath.org/?q=an:1436.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=4071378
https://doi.org/10.1142/S0219498822501390
https://doi.org/10.1142/S0219498822501390
https://zbmath.org/?q=an:07559649
https://mathscinet.ams.org/mathscinet-getitem?mr=4448422
https://doi.org/10.5802/aif.3555
https://doi.org/10.5802/aif.3555
https://zbmath.org/?q=an:07559649
https://mathscinet.ams.org/mathscinet-getitem?mr=4588965
https://arxiv.org/abs/0711.1014
https://zbmath.org/?q=an:0711.1014
https://doi.org/10.1112/S0024610799007905
https://doi.org/10.1112/S0024610799007905
https://zbmath.org/?q=an:0957.20025
https://mathscinet.ams.org/mathscinet-getitem?mr=1724861
https://doi.org/10.1016/0022-4049(87)90015-6
https://zbmath.org/?q=an:0613.20033
https://mathscinet.ams.org/mathscinet-getitem?mr=885095
https://zbmath.org/?q=an:0880.20027
https://mathscinet.ams.org/mathscinet-getitem?mr=1426438
https://doi.org/10.1016/j.jalgebra.2017.01.019
https://zbmath.org/?q=an:1390.20035
https://mathscinet.ams.org/mathscinet-getitem?mr=3621672
https://doi.org/10.1016/j.jalgebra.2016.09.001
https://zbmath.org/?q=an:1400.20037
https://mathscinet.ams.org/mathscinet-getitem?mr=3565428
https://arxiv.org/abs/2105.00531
https://doi.org/10.1090/tran/6982
https://zbmath.org/?q=an:1400.20037
https://mathscinet.ams.org/mathscinet-getitem?mr=3710646
https://doi.org/10.1090/spmj/1482
https://doi.org/10.1090/spmj/1482
https://zbmath.org/?q=an:1400.20036
https://mathscinet.ams.org/mathscinet-getitem?mr=3660685
https://doi.org/10.1007/s40863-023-00360-0
https://doi.org/10.1016/j.jalgebra.2021.11.024
https://zbmath.org/?q=an:1514.20231
https://mathscinet.ams.org/mathscinet-getitem?mr=4349287
https://doi.org/10.1090/memo/1451
https://zbmath.org/?q=an:07807553
https://mathscinet.ams.org/mathscinet-getitem?mr=4679704
https://doi.org/10.1090/memo/0620
https://zbmath.org/?q=an:0930.20033
https://mathscinet.ams.org/mathscinet-getitem?mr=1396957
https://doi.org/10.1070/SM1999v190n08ABEH000419
https://doi.org/10.1070/SM1999v190n08ABEH000419
https://zbmath.org/?q=an:1095.20021
https://mathscinet.ams.org/mathscinet-getitem?mr=1725439
https://doi.org/10.4171/JCA/1-1-1
https://zbmath.org/?q=an:1472.57014
https://mathscinet.ams.org/mathscinet-getitem?mr=3589908


G. Golan Polak 64

[20] V. F. R. Jones, On the construction of knots and links from Thompson’s groups. In Knots, low-
dimensional topology and applications, pp. 43–66, Springer Proc. Math. Stat. 284, Springer,
Cham, 2019 Zbl 1423.57013 MR 3986040

[21] Y. Lodha, Coherent actions by homeomorphisms on the real line or an interval. Israel J. Math.
235 (2020), no. 1, 183–212 Zbl 1487.57042 MR 4068782

[22] D. Savchuk, Some graphs related to Thompson’s group F . In Combinatorial and geometric
group theory, pp. 279–296, Trends Math., Birkhäuser, Basel, 2010 Zbl 1201.20039
MR 2744025

[23] D. Savchuk, Schreier graphs of actions of Thompson’s group F on the unit interval and on the
Cantor set. Geom. Dedicata 175 (2015), 355–372 Zbl 1309.05094 MR 3323646

Received 25 October 2022.

Gili Golan Polak
Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, 8410501 Be’er
Sheva, Israel; gilgula.g@gmail.com

https://doi.org/10.1007/978-3-030-16031-9_3
https://zbmath.org/?q=an:1423.57013
https://mathscinet.ams.org/mathscinet-getitem?mr=3986040
https://doi.org/10.1007/s11856-019-1954-7
https://zbmath.org/?q=an:1487.57042
https://mathscinet.ams.org/mathscinet-getitem?mr=4068782
https://doi.org/10.1007/978-3-7643-9911-5_12
https://zbmath.org/?q=an:1201.20039
https://mathscinet.ams.org/mathscinet-getitem?mr=2744025
https://doi.org/10.1007/s10711-014-9951-9
https://doi.org/10.1007/s10711-014-9951-9
https://zbmath.org/?q=an:1309.05094
https://mathscinet.ams.org/mathscinet-getitem?mr=3323646
mailto:gilgula.g@gmail.com

	1. Introduction
	2. Preliminaries on F
	2.1. F as a group of homeomorphisms
	2.2. Elements of F as pairs of finite binary trees
	2.3. Natural copies of F
	2.4. Closed subgroups of F
	2.5. The core of subgroups of Thompson's group F
	2.6. On the core and closure of subgroups of F
	2.7. The derived subgroup of F
	2.8. Subgroups of F whose closure contains [F,F]
	2.9. The generation problem in Thompson's group F

	3. Improved solution to the generation problem in F
	4. Reduced tree-automata and morphisms of tree-automata
	5. Maximal subgroups of Thompson's group F
	6. Core Automata
	7. An infinite family of non-isomorphic maximal subgroups of Thompson's group F
	7.1. Jones' subgroups of Thompson's group F
	7.2. Maximality of Jones' subgroup Fp inside F1p

	8. Final remarks and open problems
	References

