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Abstract. We aim at giving a pedagogical introduction to the non-abelian Hodge correspon-
dence, a bridge between algebra, geometric structures, and complex geometry. The correspon-
dence links representations of a fundamental group, the character variety, to the theory of
holomorphic bundles.

We focus on motivations, key ideas, links between the concepts and applications. Among
others, we discuss the Riemann–Hilbert correspondence, Goldman’s symplectic structure via the
Atiyah–Bott reduction, the Narasimhan–Seshadri theorem, Higgs bundles, harmonic bundles,
and hyperkähler manifolds.
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1. Introduction

This paper is an introduction to the non-abelian Hodge correspondence, focusing
on the key principles, motivations and links to other areas. Technical details and
computations are mostly referred to references, while the ideas and concepts are
presented. No new results are presented, but the way of presentation is original.

We base our exposition on geometric and sometimes on physical intuition, with
some emphasis on symplectic geometry. The paper should be useful to get a first
glimpse on the topic or to step back from technical details to see the clear conceptual
picture. It should be accessible to a broad audience, in particular, to master students in
mathematics with interest in mathematical physics. Some knowledge of differential
geometry, Riemann surfaces and Lie groups are welcomed, but not a must have.

The non-abelian Hodge correspondence is the huge achievement due to many
mathematicians, above all Nigel Hitchin [20], Carlos Simpson [34], Kevin Corlette [7],
and Simon Donaldson [9]. It links three worlds together: the topological and algebraic
world of representations of fundamental groups, the differential geometry world of
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connections, and the complex geometry world of holomorphic bundles. It can be
interpreted as a diffeomorphism between moduli spaces, which play an important role
in theoretical physics. The correspondence is an incarnation of a very strong structure
on these moduli spaces, a hyperkähler structure.

The paper is structured as follows.
� Introduction and motivations: Section 2 presents the multiple facets of the character

variety. In Section 3, we review bundles and connections and describe the Riemann–
Hilbert correspondence between flat connections and the character variety.

� The toolbox: an important topic is how to define quotients. One way is the Hamil-
tonian reduction, which is presented together with a crash course in symplectic
geometry in Section 4. As an application, Section 5 constructs the Goldman sym-
plectic structure on the character variety. Another way uses stability conditions
exposed in Section 6 and applied to holomorphic bundles in Section 7.

� The core: Section 8 introduces the notion of a Higgs bundle and states the non-
abelian Hodge correspondence. The main ideas for the proof are given in Section 9
via harmonic map theory and the Hitchin–Simpson theorem. Section 10 gives a
deeper understanding coming from hyperkähler geometry.

� Applications and generalizations: in Section 11, we construct Hitchin components
as an application of the non-abelian Hodge correspondence. Finally, Section 12
exposes generalizations and research directions.

Some paragraphs are marked with an asterisk. They are more advanced and not
necessary for the other (non-advanced) topics. I used the material of this paper for a
master lecture at the University of Bonn in the summer semester 2022.

2. Starting point: character varieties

Character varieties are at the crossroad between many fields: representation theory,
geometry, theoretical physics, dynamics, number theory, etc. They form a playground
where techniques from various fields can be applied, and at the same time they have
deep connections to multiple research streams.

Motivation. Consider a group � which we want to understand. The natural way to
understand a group is to let it act. On the other hand, the theory we understand the
best in mathematics is probably linear algebra. So, we can try to let � act on a vector
space V , say, of dimension n defined over C. In other words, we try to find matrices
which mimic � . This is the basic idea of representation theory. Hence, we consider
Hom.�;GLn.C//.
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As usual, we are not really interested in the set of all representations, but only in
the isomorphism classes. For a linear action, any two representations into GLn.C/ are
isomorphic whenever we can obtain one from the other by a simple base change in V .
Hence, the space of isomorphism classes is

Hom.�;GLn.C//=GLn.C/ WD Rep.�;GLn.C//;

where we quotient by the conjugation action. Note that in order to get a nice topological
space (separable), we restrict to representations � ! GLn.C/ which are completely
reducible. We come to this in Section 6.

Now, we can consider vector spaces with more structure, for example equipped
with a hermitian product, a symplectic structure, etc. Then, we ask for representations
preserving this structure. Thus, we analyze the space Rep.�;G/ for some Lie group
G, typically a subgroup of GLn.C/.

In the specific case when � is the fundamental group of a manifold M , we call
Rep.�1M;G/ the character variety of M and G.

The case if a fundamental group of a manifold is interesting because the character
variety has several geometric meanings: it describes .G; X/-structures (geometric
structures where the manifold M is locally modeled on some space X with transition
functions in G) and flat G-connections. The link to flat connections is explained in
Section 3 via the Riemann–Hilbert correspondence.

For M D † a surface, the character variety appears in physics, especially in string
theory. It describes geometric structures on the world sheet, the surface traced out by
a string in time. In mathematics, representations of surface groups into real groups
(G D SLn.R/ for example) have interesting dynamical properties. This goes under the
name of higher Teichmüller theory (see Section 11 for more details).

Many viewpoints. Since the character variety sits at the intersection of many mathe-
matical areas, it allows many equivalent descriptions. The main goal of the paper is to
understand all these incarnations.

Topological interpretation. The character variety by its very definition is a space of
representations of �1† which does only depend on the topology of †.

Smooth interpretation. The character variety is also described as the space of all flat
connections (on a trivial bundle over†) modulo gauge equivalence. This description is
called the Riemann–Hilbert correspondence, which we will see at the end of Section 3.

Holomorphic interpretation. The character variety can be described by holomorphic
objects on a Riemann surface S whose underlying smooth surface is †. These objects
are stable Higgs bundles, which we introduce in Section 8. This description is the
content of the non-abelian Hodge correspondence.
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3. Bundles and connections

To study the character variety, its link to the space of flat connections, the “smooth
interpretation”, is fundamental. We motivate and recall the basic concepts of differential
geometry and show the link to character varieties. To deepen the subject, I highly
recommend the outstanding book of Baez and Muniain [3].

Dictionary. Most of modern physical theories, like Maxwell’s theory of electromag-
netism or the standard model of elementary particles, are using concepts of differential
geometry such as bundles and connections. Why are these concepts so fundamental?

To me, the reason comes from what I like to call the global-to-local heuristics, the
idea that our observations describe only local properties of our universe. When we try
to describe natural phenomena which surround us, we get the impression that we live in
a Euclidean space. Indeed, the forces applied to a same point add up in a vectorial way,
and even on a larger scale like our solar system, nature seems to be well described by
Newtonian mechanics in which the universe is an affine space modeled on R3. But our
perceptions and observations are always limited in space and time. Nothing prevents
nature to behave only locally like an affine space, but to bend and twist on a global
scale.

A good illustration is the surface of our Earth, which locally is well described by
a flat part of the plane R2 (although there are mountains and valleys, on average it
seems to be flat). Globally, of course, the Earth is a ball, since it bends far away from
the observation scales of our daily life.

The “global-to-local heuristics” can be summarized in the following dictionary:

Linear algebra/Classical mechanics Riemannian geometry/General relativity
Absolute space Rn Manifold

Functions Sections of a bundle
Differential equations Connections

To the global concept of absolute space corresponds a mathematical concept which
looks only locally like an open subset of Rn: the concept of a manifold.

In Newtonian mechanics, there are ingredients other than space: physical quantities
are described by functions (temperature, speed, electromagnetic field,. . .) whose evolu-
tion is described by differential equations. What is the local concept of a function? I.e.,
what is the mathematical concept which looks locally like a function, but which might
bend on large scales?

The reader who has never thought about that question should take a second to think
about it. The answer is a bit tricky: a “generalized function” is a section of a fiber
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Figure 3.1
Illustration of a bundle and a connection.

bundle! Consider a function f WM ! F , whereM is a manifold and F is some target
space (F D R for the temperature for example). An equivalent way to describe f is
through its graph gr.f / which is the subset of M � F given by all points of the form
.x; f .x//. We can also say that a function is the choice of an inverse to the projection
M � F !M .

To generalize the notion of a function, we first need a space E which locally looks
like U � F where U �M is a small open subset of M . This is precisely the notion
of a fiber bundle on M with fiber F . When F is a vector space, we speak of a vector
bundle. To be precise, a vector bundle with fiber V is a manifold E together with a
surjective map p WE!M such that there exists an atlas onM with chartsUi such that
p�1.Ui /D Ui � V and transition maps which are linear and linear, i.e., in GL.V /. You
can imagine to build up E by taking Ui � V and identifying them on .Ui \ Uj / � V
using the transition functions of M and a fiberwise element of GL.V /.

A “generalized function” is a section of p, i.e., a map s W M ! E such that
p ı s D idM (see Figure 3.1). The space of all sections is denoted by �.E/. For the
trivial bundle E DM � F , a section is nothing but a function onM with values in F .
For E D TM the tangent bundle, a section is a vector field.

Remark. The “global-to-local heuristics” should have a counterpart to the microscopic
level: what we observe in our daily life is only at a mesoscopic scale. Nothing prevents
Nature to be different on an atomic scale. The search for a mathematical concept which
gives a Euclidean structure at mesoscopic scales (and a manifold on the global scale) is
still open. Candidates exist, for example, discrete models or non-commutative geometry.
This concept should play a paramount role in a hypothetical future theory of quantum
gravity.
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Connections. What is the local concept of a linear differential equation? How to define
the derivative of a section of a vector bundle? The answer is given by the notion of a
connection.

In a first approximation, we can say that a connection is a generalization of a
directional derivative, i.e., it allows to derive a section s in a direction given by a vector
field X . We write the result as rX .s/, which is again a section.

In a second approximation, we can say that a connection is a matrix-valued 1-form.
Locally, it can be written as d C A, where A 2 �1.M;gln.C//. To see this, fix basis
vectors ei .x/ in each fiber, varying smoothly in x. Then, a section s can be written as
s D

P
i sie

i .x/. Locally, we can differentiate s in the direction X D
P
j Xj

@

@xj
in the

usual way:
dX .s/ D

X
i

dX .si /e
i .x/C

X
i;j

siXjdj .e
i .x//;

where dj denotes the derivative in direction xj . Since .ei .x// is a basis, there are
matrices Aj .x/ defined by

dj .e
i .x// D Aj .x/e

i .x/:

Putting A D
P
j Ajdx

j , we can write

dX .s/ D

�
d C

X
i

Aidx
i

�
X

.s/;

so the connection is d C A. Note that the matrix-valued 1-form A appears from the
fact that the basis .ei .x// depends on x.

To be precise, a connection (or covariant derivative) is a mapD W�.E/��.TM/!

�.E/, where E is a vector bundle, which satisfies 8s; t 2 �.E/; f; g 2 C1.M/ and
X; Y 2 �.TM/ the following:

(i) linearity for sections: DX .s C t / D DX .s/CDX .t/;

(ii) linearity for vector fields: DfXCgY .s/ D fDX .s/C gDY .s/;

(iii) Leibniz’s rule: DX .f s/ D df .X/s C fDX .s/.

The name “connection” comes from the fact that a connection allows to connect
different fibers of p W E ! M . A section s is said to be flat if DX .s/ D 0 for all
X 2 �.TM/.

To see the link to differential equations, consider first the case of a 1-dimensional
manifold, for example, M D R. A linear differential equation is given by

.dn C t1.x/d
n�1
C t2.x/d

n�2
C � � � C tn.x// .x/ D 0;

where d D d
dx

.
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This is equivalent to a matrix-valued differential equation of order 1: .d CA/s D 0,
where

A D

0BBB@
�1

: : :

�1

tn tn�1 � � � t1

1CCCA and s D

0BBB@
 

d 
:::

dn�1 

1CCCA :
In dimension 2, you get a system of two differential equations. You can write it as´

D1 .x; y/ D 0;

D2 .x; y/ D 0:

As in dimension 1, there is a standard form´
@x‰.x; y/ D Ax.x; y/‰.x; y/;

@y‰.x; y/ D Ay.x; y/‰.x; y/;

where ‰ is a vector whose entries are suitable derivatives of  .
A natural question then arises: under which conditions there is a full set of solutions?
A necessary condition, which turns out to be sufficient, is that @x@y‰ D @y@x‰,

which gives

(3.1) @xAy � @yAx C ŒAx; Ay � D 0:

This expression is the curvature of the connection d C A, as defined below. In
terms of the differential operators D1 and D2, if the curvature does not vanish, then
you can reduce the system to a smaller one1.

Exercise 3.1. Work through an explicit example. For instance, D1 D @2x � y@x and
D2 D @

2
y � x.

The curvature of a connection D measures the failure of the covariant derivatives
Di to commute. It is a 2-tensor FD given by

FD.X; Y / D ŒDX ;DY � �DŒX;Y � for X; Y 2 �.TM/:

The fact that it is a tensor means that

FD.X; Y /.f s/ D fFD.X; Y /.s/

for f 2 C1.M/. If the curvature vanishes, we call the connection flat.

1Explicitly toD1 D 0 and .ŒD1;D2� mod hD1;D2i/ D 0.
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Locally, we can write D D d C A and take for X - and Y -coordinate vector fields.
Then, we get

FD.@i ; @j / D ŒDi ;Dj � �DŒ@i ;@j � D ŒDi ;Dj � D Œ@i C Ai ; @j C Aj �

D @iAj � @jAi C ŒAi ; Aj �:

We get equation (3.1). This can be written concisely as

(3.2) F.A/ D dAC A ^ A;

which is a matrix-valued 2-form.

Gauge transformations and structure group. The natural symmetry group acting
on bundles are bundle automorphisms, also called gauge transformations.

When working with a vector bundle locally, we often fix a basis .e1.x/; : : : ; er.x//
in each fiber varying smoothly with x. Changing this basis by a matrix A.x/ is a gauge
transformation, or just gauge in short. It is a smooth map fromM to GL.V /, where V
is the fiber of the vector bundle E. Mathematically, a gauge transformation is nothing
but a bundle automorphism, i.e., an invertible map E ! E which preserves the fibers
where it acts linearly.

How do connections and the curvature behave under gauge transformations? Since
a gauge transformation acts fiberwise, we can work locally and write D D d C A.

Proposition 3.2. The gauge action on connections is given by

g � A D gAg�1 C gd.g�1/:

On the curvature tensor, we get

g � F.A/ D gF.A/g�1:

The first point simply comes from the conjugation action of a gauge on a connection:

g.d C A/g�1 D d C gAg�1 C gd.g�1/:

Hence, the action of g on A is given by g � A D gAg�1 C gd.g�1/ which is an
affine transformation. Indeed, the space of all connections A.E/ is an affine space,
whose underlying vector space is�1.M;gl.V //. This means that the difference of two
connections D �D0 is a matrix-valued 1-form A. Hence, while we can locally write
D D d C A, we can always globally write

D D D0 C A:
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Exercise 3.3. Check the gauge transformation of the curvature tensor using F.A/ D
dAC A ^ A.

In general, the transition functions of a bundle are any elements of GL.V /, but it
might happen that they all are in some subgroup G � GL.V /. In that case, we say that
V is a bundle with structure group G. For example, if our vector space V is equipped
with a scalar product, we might require the transition functions to respect this structure,
i.e., G D O.V /. Then, we have a well-defined scalar product in each fiber of E. The
structure group allows to put more structure on the bundle, hence its name. There is
also a more abstract notion, that of a principal bundle, which we will not treat in these
lectures.

For a more detailed treatment of bundles and connections and their links to physics,
we warmly recommend the book of John Baez and Javier Munian [3], in particular,
Chapter 2.

Parallel transport. We have already said that a connection allows to connect different
fibers. We make this precise.

Consider two points x; y 2 M and a path  W Œ0; 1�! M connecting them, i.e.,
.0/ D x; .1/ D y. Along  there is a unique flat section sp with given starting point
p 2 ��1.x/, i.e., sp.x/ D p.

The map p 7! sp.y/ is called parallel transport along  . It is a linear map (element
in the structure group G). In general, the parallel transport depends on the path. For a
flat connection, the parallel transport only depends on the homotopy class of the path
(i.e., you can change  by isotopies).

For flat connections, the parallel transport along loops is called the monodromy.
The monodromy is an element of the character variety Rep.�1M;G/. Indeed, for
loops based at x, we get a point in Hom.�1.M; x/;G/ and changing x conjugates the
monodromy.

Riemann–Hilbert correspondence. The first fundamental result about character
varieties is that they describe the moduli space of flat connections, i.e., the space of
flat connections modulo gauge equivalence. This gives a link between the topological
and the smooth interpretation of character varieties.

We have just seen how to associate a point in the character variety to a flat connec-
tion, simply by considering its monodromy. This map is a diffeomorphism.

Theorem 3.4 (Riemann–Hilbert correspondence). The character variety is the space
of flat G-connections on the trivial bundle on M modulo gauge:

Rep.�1M;G/ Š ¹flat G-connectionsº=gauge:
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The idea of the proof is to construct explicitly the inverse map: given a representation
� W �1M ! G, we can consider the diagonal action of �1M on zM � G, where zM
denotes the universal cover of M on which �1M acts by deck transformations. The
quotient

E� D . zM �G/=�1M

is a (principal) G-bundle over M and the trivial connection d on zM �G descends to
a flat G-connection. Finally, changing � by conjugation corresponds to changing the
connection by a gauge transformation.

4. A crash course in symplectic geometry

Grown out of modern treatments of classical mechanics in the early 19th century,
symplectic geometry is a very active mathematical domain today. We give motivations
and introduce basic concepts, in particular, the symplectic quotient called Hamiltonian
reduction. This will be used for the study of character varieties in the next section.

To deepen the subject, I warmly recommend the book of McDuff and Salamon [29]
(especially Sections 1, 3, and 5), and the book of Kirillov [26] (in particular, Chapter 1,
Section 4 and Appendix II, Section 3). For the physical interpretation, I advocate
Arnold’s classical book [1].

4.1. Symplectic structures. The physical motivations for symplectic structures are
sometimes a bit obscure. We will describe how they naturally arise.

Consider a physical system, for example the motion of a particle which is restricted
to stay on some surface S . The first important idea is to consider the space of all
possible states of our system, which is called the phase space M . In our example the
system is uniquely given by knowing the position and the momentum of the particle,
so the phase space is the cotangent bundle2 M D T �S . The picture you might have in
mind is the following: we replace a complicated system by one point in a complicated
space, which describes all possible states. Then, the evolution of the system is nothing
but a path in the phase space (see left of Figure 4.1).

Now, in practice we never precisely know at which point of M our system is, since
for all quantities, we have some uncertainty in the measurement. What we know is
that our system is somewhere in an open set U � M . An important observation is
that when the system is isolated (i.e., does not exchange energy or information with
the environment), then the evolution of U through the time flow is volume-preserving.

2It turns out that while the velocity lives in the tangent bundle, the momentum lives in the cotangent
bundle.
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Figure 4.1
Phase space with volume preserving evolution.

This translates the fact that we will not gain (or lose) information about the system by
simply waiting some time!

It turns out that it is even better: the physical quantities come in pairs, to each
quantity we can associate a so-called conjugated quantity. For example, the conjugate
of the position in a direction is the momentum in that direction and vice versa. The
time evolution does not only preserve the total volume of U in the phase space, but
also the (induced) volume of all 2-dimensional slices given by a pair of conjugated
quantities. This means that we may gain information on the position, but we will lose
information on the momentum.

This property of “preserving volumes of special 2-dimensional slices” is captured
by the fact that the phase space has a symplectic structure and the time evolution
preserves that structure.

Definition 4.1. A symplectic structure on a manifold M is a two-form ! which is
closed and non-degenerate.

The notion of conjugated variables arises by some linear algebra of two forms.

Exercise 4.2. Let V be a vector space equipped with a antisymmetric bilinear form !

which is non-degenerate (i.e., !.x; y/ D 08y ) x D 0). Show that the dimension
of V is even and that V admits a basis .e1; : : : ; e2n/ such that !.e2i�1; e2i / D 1 D
�!.e2i ; e2i�1/ for all i D 1; : : : ; n and !.ei ; ej / D 0 for all other i; j .

The standard examples arise as the simplest phase spaces of physical systems.
� A free particle moving on R gives M D T �R. The symplectic form is nothing but

the area form, given by!0D dp ^ dx (where .p;x/ are coordinates on T �RŠR2).

� More generally, for a free particle moving in Rn, its phase space is R2n D T �Rn

(position and momentum) with !0 D
P
i dpi ^ dxi , called the standard symplectic

structure.
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� If the particle is constrained to stay on some manifold N , the phase space becomes
the cotangent bundle T �N . Again, we can write

(4.1) ! D
X
i

dpi ^ dxi :

This needs some explanation. We have

T.p;x/T
�N Š T �x N ˚ TxN:

In a coordinate independent manner, we have!..';X/; .'0;X 0//D '.X 0/� '0.X/
which can be identified with equation (4.1). Note that ! D d� is exact where
� D

P
i pidxi is called the Liouville form.

An important result in the local theory of symplectic manifolds is the following
theorem.

Theorem 4.3 (Darboux theorem). On any symplectic manifold .M; !/ there exists
local coordinates .pi ; xi / such that ! D

P
i dpi ^ dxi .

This means that there is no local invariant in symplectic geometry. Note that this
is not the case for Riemannian geometry where the curvature is a local invariant.
Coordinates with the property of the theorem are called Darboux coordinates.

Exercise 4.4. Show that a non-degenerate 2-form on a compact manifold without
boundary cannot be exact. Deduce that there is no symplectic embedding of a symplectic
manifold into .R2n; !0/. Which spheres admit symplectic structures?

Symplectic gradient. The definition of a symplectic structure is very similar to that
of a Riemannian structure, the main difference being that the 2-tensor is symmetric for
the Riemannian structure, and antisymmetric for a symplectic structure. One of the
key notions in Riemannian geometry, the gradient of a function, is still available in
symplectic geometry: the symplectic gradient of a function f is a vector field sgrad.f /
such that

!.sgrad.f /; X/ D �df .X/

for all X 2 �.TM/. This is exactly the same definition as for the gradient (we need
only non-degeneracy of ! to get a well-defined notion).

So, why is the geometry of a phase space symplectic and not Riemannian? One
reason is that a symplectic structure gives naturally the notion of conjugated variables.
Another reason is that it allows to treat the important issue of conserved quantities.
While the usual gradient of a function f points in the direction of biggest change of
f , the symplectic gradient points in the direction where f stays constant (the level
set). This allows to refine our picture from above: the physical evolution of a system is
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Figure 4.2
Height function generates rotation for a sphere.

described by a vector field on the phase space which is the symplectic gradient of a
special function, called the Hamiltonian of the system, which is conserved in time. For
isolated systems, the Hamiltonian is the total energy.

Example 4.5. ConsiderM D S2 �R3 the sphere with symplectic form being the area
form, and the height function h W S2 ! R given by the z-coordinate (see Figure 4.2).
Then, the Hamiltonian flow is the rotation around the z-axis. This of course preserves
the level-sets.

Proposition 4.6. The 1-parameter group of diffeomorphisms of M , obtained by inte-
grating the symplectic gradient of a function, preserve the symplectic structure of
M .

The proof uses Cartan’s magical formula and illustrates the importance of ! being
closed.

Proof. We want to show that f �t ! D ! for all t 2 RC, where ft denotes the flow
associated to a Hamiltonian H . For that, it is sufficient to show that the derivative of
f �t ! is zero. We restrict our attention to t D 0, the other values are similar.

By definition of the Lie derivative L, we have

d

dt

ˇ̌̌̌
tD0

f �t ! D LXH!;

where XH denotes the symplectic gradient of H . Using Cartan’s magical formula and
writing �X for the inner product, we get

LXH! D .d ı �XH C �XH ı d/! D d.!.XH ; �//C �XH d!:

Since ! is closed, the second term vanishes. The first term vanishes as well since by
definition !.XH ; �/ D �dH is exact.
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A diffeomorphism f of M preserving its symplectic structure (i.e., f �! D !)
is called a symplectomorphism. The special case coming from the time 1 flow of a
symplectic gradient is called a Hamiltonian diffeomorphism. Not all symplectomor-
phisms are Hamiltonian. This distinction can be seen on the “infinitesimal” level: the
Lie algebra of the diffeomorphism group is the space of vector fields. A vector field X
is called
� symplectic if !.X; :/ is a closed 1-form,
� Hamiltonian if !.X; :/ is exact.

A vector field associated to a symplectomorphism (resp., Hamiltonian diffeomorphism)
is symplectic (resp., Hamiltonian).

Note that there is no constraint on the Hamiltonian of a physical system: any
function in C1.M/ can in principle be used to generate time evolution, and it is the
physicists job to find out which function it is for a given system. Jürgen Jost [23] puts
it in these words:

“The aim of physics is to write down the Hamiltonian of the universe.
The rest is mathematics.”

Hence, we can give two physical meanings to a function: as observable quantity or as
infinitesimal generator of a transformation. This shows the importance of the space of
functions.

Poisson bracket. The space of smooth functions C1.M/ comes with an extra struc-
ture: a Poisson bracket. Concretely, the symplectic form ! allows to associate to two
functions f; g 2 C1.M/ a function denoted by ¹f; gº defined by

¹f; gº D !.sgrad.f /; sgrad.g//:

Abstractly, a Poisson bracket is a bilinear map C1.M/ � C1.M/! C1.M/ which
is symmetric, satisfying Leibniz’s rule ¹fg; hº D f ¹g; hº C ¹f; hºg and the Jacobi
identity

¹f; ¹g; hºº C ¹h; ¹f; gºº C ¹g; ¹h; f ºº D 0:

Roughly speaking, a Poisson bracket is a Lie bracket and a derivation.

Exercise 4.7. Show that the Jacobi identity of the Poisson bracket is equivalent to !
being closed.

In Darboux coordinates .xi ; pi /, the Poisson bracket has a simple expression:

(4.2) ¹ � ; � º D
X
i

@

@pi
^

@

@xi
:



A gentle introduction to the non-abelian Hodge correspondence 15

This means that
¹f; gº D

X
i

@f

@pi

@g

@xi
�
@f

@xi

@g

@pi
:

The important point is to know the interpretation of the Poisson bracket: ¹f; gº.x/
is the change of g at x along the flow line generated by the symplectic gradient of f . In
physical words: if H is the Hamiltonian of a physical system and g some observable,
then

(4.3)
dg

dt
.x/ D ¹H;gº;

where t is the parameter of the family of Hamiltonian diffeomorphisms generated by
H , and dg

dt
D dg.XH /. In particular, the Hamiltonian is preserved in time since for

g D H we get zero in equation (4.3). This is the well-known fact that the total energy
of an isolated system is conserved.

The strength of equation (4.3) is that we can recover, in a uniform way, all differential
equations from classical systems. All exercises from physics class in high school about
determination of the equation of motion become easy (at least systematic)!

Example 4.8. Consider a point particle with mass m moving on R in a potential V
with gravity g. The phase space is M D T �R with standard symplectic structure. The
total energy is H D p2

2m
CmgV.x/ (kinetic + potential energy). Therefore, we get

Px D ¹H; xº D
@H

@p
D p=m;

which is nothing new, since p D mv D m Px. Then,

Rx D ¹H; Pxº D ¹H;p=mº D �
1

m

@H

@x
D �gV 0.x/;

which is nothing but Newton’s law.

Example 4.9. Consider a pendulum: a massm turning around a fixed point at distance
` (see Figure 4.3). The phase space is M D T �S1 with Darboux coordinates .p; `�/.
The total energy is H D p2

2m
�mg` cos � . Hence,

P� D ¹H; �º D
1

`
¹H; xº D

1

`

@H

@p
D

p

m`
;

which is nothing new, since p D mv D m Px D m` P� . Then,

R� D ¹H; P�º D
1

m`
¹H;pº D �

1

m`2
@H

@�
D �

g

`
sin �;

which is the usual law for a pendulum.
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�
l

m

EF

Figure 4.3
Pendulum.

A manifold M with a Poisson bracket on its function space C1.M/ is called a
Poisson manifold. They are more general than symplectic manifolds.

Example 4.10. Using the cross product, we can construct a Poisson structure on R3,
without being symplectic (since the dimension is odd). The Poisson bracket for linear
functions (which can be represented by vectors) is given by the cross product. This
means that ¹x; yº D z; ¹y; zº D x and ¹z; xº D y.

Then, we extend the bracket to all functions using the Leibniz rule. As a bivector,
we can write

¹ � ; � º D z
@

@x
^
@

@y
C x

@

@y
^
@

@z
C y

@

@z
^
@

@x
:

The main thing to know about a Poisson manifold is that it is the disjoint union of
symplectic manifolds (in a unique way), called symplectic leaves. For .R3;�/ from
above, the symplectic leaves are all spheres with radius r � 0. Note, in particular, that
the various symplectic leaves might have different dimensions.

The following is a very important example. In some sense, it is the universal
G-Poisson manifold.

Example 4.11. A dual Lie algebra g� is always Poisson3. For linear functions, which
can be identified with g�� Š g, the Poisson bracket is given by the Lie bracket in g.
Then, we extend to all functions by the Leibniz rule. Concretely, for two functions
f; g 2 C1.g�/ and � 2 g�, we have

¹f; gº.�/ D h�; Œd�f; d�g�i;

where h � ; � i denotes the canonical pairing between g� and g.

3The dual is taken in the sense of linear algebra: g� is the vector space of all linear forms on g.
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The symplectic leaves of g� are the coadjoint orbits, i.e., the orbits under the action
of the Lie group G acting on � 2 g� by

hg:�; xi D h�;Adg�1.x/i 8 x 2 g;

where Ad denotes the adjoint action of G on g.

Exercise 4.12. For g D so.3/, show that g� is .R3;�/ from Example 4.10 above, and
deduce the symplectic leaves.

4.2. Hamiltonian reduction. One of the most important operations on spaces is the
quotient under a group action. For symplectic manifolds, this quotient is known as
the Hamiltonian reduction (sometimes called Marsden–Weinstein quotient). From the
physics perspective, given a phase space with some symmetry, this allows to define a
reduced phase space.

Let .M; !/ be a symplectic manifold and G be a Lie group acting on M . The
action is called symplectic if all g 2 G act by symplectomorphisms, i.e., g�! D ! for
all g.

The infinitesimal action of an element � 2 g gives a vector field X� . Explicitly, it
is given by

X�.x/ D
d

dt

ˇ̌̌̌
tD0

exp.t�/ � x;

where we write g:x for the action of g 2 G on x 2M . Note that for any group action,
we have

ŒX� ; X� � D XŒ�;��

for all �; � 2 g. In the case of a symplectic action, the vector fields X� are symplectic.
In order to define the quotient of M by G and to ensure to obtain a symplectic

manifold, the action has to satisfy some extra conditions.

Definition 4.13. The action of G on M is called weakly Hamiltonian if each g 2 G
acts by a Hamiltonian diffeomorphism.

For a weakly Hamiltonian action, X� is a Hamiltonian vector field, i.e., the sym-
plectic gradient of some function H� . The function H� is not uniquely defined from
the vector field, but only up to addition of an overall constant.

Definition 4.14. A weakly Hamiltonian action of G on M is called Hamiltonian if
there is a Lie algebra homomorphism H W g! C1.M/ such that H� generates the
Hamiltonian vector field associated to � 2 g. In particular, we have

(4.4) HŒ�;�� D ¹H� ;H�º:
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In more abstract terms, we can say that the action is
� weakly Hamiltonian if there is a Lie algebra homomorphism g! �H .TM/, where

�H .TM/ denotes the space of Hamiltonian vector fields,
� Hamiltonian if there is a Lie algebra homomorphism g! C1.M/.

As we will see below, the difference between a weakly Hamiltonian action and
a Hamiltonian action is some 2-cocycle in H2.g/. To see a bit clearer in this zoo of
symplectic, weakly Hamiltonian and Hamiltonian actions, there are some useful facts
from topology.
� If H 1.M/ D 0 or H 1.g/ D 0, then symplectic implies weakly Hamiltonian.
� If H 2.g/ D 0, then weakly Hamiltonian implies Hamiltonian.

From a general fact in Lie algebra cohomology, the Whitehead lemma, we know
that H 1.g/ D 0 D H 2.g/ for finite-dimensional semisimple g. Therefore, we have
the following proposition.

Proposition 4.15. If G is semisimple and finite-dimensional, then a symplectic action
is automatically Hamiltonian.

In the presence of a Hamiltonian action, we can define the moment map� WM ! g�

defined by
�.m/ � � D H�.m/:

The name “moment map” comes from some basic examples, where we recover
momenta.

Example 4.16. ConsiderM D T �R2 with translation symmetry by G D R acting by
r:.p; x/ D .p; x C r/. One checks that the action is Hamiltonian with moment map
� W T �R2 ! R� Š R given by the momentum p, i.e., �.p; x/ � t D pt .

We recommend to be careful when dealing with moment maps since they are not
very intuitive at the beginning (in particular, since the target is the dual Lie algebra).
Here is a general procedure to compute the moment map.
� Step 1. Determine the vector field X� for � 2 g by computing g � x for g D 1C "�

to first order in ". The result is of the form

.1 � "�/ � x D x C "X�.x/:

� Step 2. Compute !.X� ; ıx/ and put it into the form ı.something/, where ı denotes
the variation. The expression for “something” is the moment map.

Some explanations for the procedure: first, the mysterious ıx is a “variation around
x 2M ”. To be precise, given a path x W Œ0; 1�!M with x.0/ D x, the variation is
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defined to be
ıx D

d

dt

ˇ̌̌̌
tD0

x.t/:

It is a tangent vector in TxM . We can generalize and define the variation of a function
f around x

ıf .x/ D
d

dt

ˇ̌̌̌
tD0

f .x.t//:

The variation ı acts like a derivation, i.e., ı.fg/ D ı.f /g C f ı.g/.
Second, let us see why the procedure works. Since � WM ! g�, we have dx� W

TxM ! T�.x/g
�Š g�. Hence, dx�.�;X/D dxH�.X/D!x.X� ;X/. Let x W Œ0;1�!

M be a path with x.0/ D x. Then,

ı�.x; �/ D
d

dt

ˇ̌̌̌
tD0

�.x.t/; �/ D dx�.�; x
0.0// D !.X� ; ıx/:

This justification seems complicated, but in practice, the procedure is extremely
efficient. Let us see the following example.

Example 4.17. Take the phase space of a particle moving in three-space,M DT �R3Š
R3 �R3. Consider the diagonal action of G D SO.3/. Since the group is simple, we
only have to show that the action is weakly Hamiltonian. For that, we directly compute
the moment map.

Step 1. For � 2 so.3/, the vector field is simply given by X�.x; p/ D .�.x/; �.p//.

Step 2. We compute for X D .x; p/:

!..�.x/; �.p//; .ıx; ıp// D
X
i

.�.x/iıpi � �.p/iıxi /

D

X
i;j

.�ijxj ıpi � �ijpj ıxi /

D

X
i;j

.�ijxj ıpi C �j ipj ıxi / using antisymmetry of �

D ı

�X
i;j

�ijxipj

�
D ıhp; �.x/i:

Hence, the moment map is given by �.x; p/ � � D hp; �.x/i. Under some identi-
fication of R3 with so.3/ (see [29, Example 5.3.1]), we can write �.x; p/ D x � p.
Hence, the moment map is nothing but the angular momentum.
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Exercise 4.18. Show that the natural action of the linear symplectic group Sp2n.R/
on .R2n; !0/ is Hamiltonian with moment map �.x/:A D 1

2
!.x;Ax/.

In the two examples, we have seen that to a continuous symmetry, we can associate
a conserved quantity, which is described by the moment map. For translations, we get
the momenta, and for rotations, we get the angular momenta.

In general, the moment map behaves nicely under the action of G:

(4.5) �.g:m/ D Ad�g � �.m/:

It shows that for an abelian group G (a torus action for example), the moment map is
constant along the G-orbits. Thus, we can think of it as the collection of all preserved
quantities associated to the symmetry. For G not abelian, this is not exactly true, but
we precisely know how the moment map changes on the G-orbit.

Equation (4.5) can be seen as one way to formulate the famous Noether theorem,
stating that to each continuous symmetry in a physical system, there is an associated
conserved quantity.

Exercise 4.19. Show equation (4.5). Notice the importance of the requirementHŒ�;��D
¹H� ;H�º4.

Now, we can define the Hamiltonian reduction.

Definition 4.20. For a Hamiltonian action of G on .M;!/, suppose that 0 2 g� is a
regular value of the moment map �. Then, the Hamiltonian reduction ofM byG (over
0) is defined to be

M �0 G WD ��1.¹0º/=G:

More generally, for a coadjoint orbit O � g�, we define

M �O G WD �
�1.O/=G:

Note that by equation (4.5), the level surface ��1.O/ is invariant under G.

Theorem 4.21. The Hamiltonian reduction M �O G inherits a symplectic structure
from M . To be precise: if M �O G is a manifold, i.e., if the action of G on the level
set ��1.¹Oº/ is free and proper, then it is symplectic.

The situation is even more exciting: if we take the simple quotient M=G, we get a
Poisson manifold (which is not symplectic). Indeed, a function onM=G is nothing but

4Hint: for the infinitesimal action, check that �..1 C �/ � m/ � � � �.m/ � � D dH�
dt
.m/ D

¹H� ;H�º.m/ DHŒ�;��.m/ D ad���.m/ � �.
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a G-invariant function on M and the Poisson bracket of G-invariant functions stays
G-invariant. The natural question you should always ask when you have a Poisson
manifold is that of its symplectic leaves. Well, we have the following theorem.

Theorem 4.22. For a Hamiltonian action of G on M , the quotient M=G is a Poisson
manifold (potentially singular) whose symplectic leaves are given by M �O G, where
O describes all coadjoint orbits of g�.

Example 4.23. ConsiderM D T �G with the naturalG-action. Since T �G Š g� �G,
we haveM=G D g� which is Poisson. Further, � is simply the projection map. Hence,
the reduced space M �O G is nothing but O itself. We recover that the symplectic
leaves of g� are its coadjoint orbits.

Example 4.24. Consider the action of S1 D U.1/ acting on M D Cn via �:.zj / D
.�zj /. Since Cn Š T �Rn, we have the standard symplectic structure which in complex
coordinates is given by !0 D i

2

P
j dzj ^ d Nzj . Note that the action is symplectic since

�x� D 1.
Identifying u.1/ Š iR, step 1 gives the vector field Zir.zj / D .irzj / for r 2 R.

Then, step 2 gives

!.Zir ; ız/ D
i

2

X
j

r.izj ı Nzj C i Nzj ızj / D ı

�
�
1

2
rkzk2

�
:

Since S1 is abelian, every point of its dual Lie algebra is a coadjoint orbit. The Hamil-
tonian reduction over �2 gives

Cn �¹�2º S1 D ��1.¹�2º/=S1 Š CP n�1:

Hence, we have shown that complex projective spaces carry a natural symplectic
structure (called the Fubini–Study structure). Note that the coadjoint orbit of 0 is not a
regular value for � in this example.

An important fact which we will use quite often when computing the cotangent
bundle of moduli spaces is left as an exercise.

Exercise 4.25. For G acting on a manifold X , show that (under mild conditions)

T �.X=G/ Š T �X �G:

Exercise 4.26. Consider the diagonal action of G on T �g. Show that the action is
Hamiltonian and compute the moment map5.

5Using the Killing form to identify g� with g, you should find �.X;Y / D ŒX;Y �.
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Weakly Hamiltonian reduction*. Finally, without entering into too much details,
let us analyze the case of a weakly Hamiltonian action. For more details, we refer to
[26, Chapter 1, Section 4]. The slogan is as follows:

“You can always transform a weakly Hamiltonian action into a Hamiltonian one by
replacing the group G by a central extension.”

Consider a weakly Hamiltonian action of G on .M;!/. Since every g 2 G acts by
Hamiltonian diffeomorphisms, each vector field associated to � 2 g is the symplectic
gradient of some function H� . Define constants c.�; �/ by

¹H� ;H�º D HŒ�;�� C c.�; �/:

Exercise 4.27. Prove that c.�; �/ is a constant function6.

One checks that the Jacobi identity implies that c form a 2-cocycle in the cohomol-
ogy of g. This means that

c.ŒX; Y �; Z/C c.ŒY;Z�; X/C c.ŒZ;X�; Y / D 0 8X; Y;Z 2 g:

Changing the functions H� by constants changes c by a coboundary term. Hence, the
cohomology class Œc� 2 H 2.g/ is well defined.

Since elements inH 2.g/ describe central extensions, there is an associated central
extension Og D g˚Cc. The bracket is defined by

Œ.�1; a1/; .�2; a2/� D .Œ�1; �2�; c.�1; �2//:

Consider the group yG associated to Og. It is an extension of G by a one-dimensional
subgroup Z consisting in central elements

1! Z ! yG ! G ! 1:

Define the action of yG on M to be the one of G, with the subgroup Z acting trivially.
By construction, this action is Hamiltonian. Indeed, we can put H.�;a/ D H� C a and
then, we get

¹H.�1;a1/;H.�2;a2/º

D ¹H�1 ;H�2º D HŒ�1;�2� C c.�1; �2/ D H.Œ�1;�2�;c.�1;�2// D HŒ.�1;a1/;.�2;a2/�:

The only thing which changes is the structure of the dual Lie algebra, which is now Og�.
So, the moment map remembers one more extra information.

We will see a nice application of this construction in the Atiyah–Bott reduction for
surfaces with boundary in the next section.

6Hint: show that the symplectic gradient of ¹H� ;H�º andHŒ�;�� coincide.
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5. Atiyah–Bott reduction

We have seen in the Riemann–Hilbert correspondence that the character variety is
the moduli space of flat connections. In the special case where the manifoldM D † is
a closed surface, the character variety gets a symplectic structure, called the Goldman
symplectic structure. More precisely, the character variety is the Hamiltonian reduction
of a very simple, but infinite-dimensional space, the space of all connections. For a
surface with boundary, the character variety has a Poisson structure.

Let † be a surface and G be a subgroup of GLn.C/ with Lie algebra g (it can
easily be adapted to general semisimple Lie groups). Let E be a trivial G-bundle over
†. Denote by A the space of all g-connections on E. We have seen in Section 3 that
A is an affine space modeled over the vector space of g-valued 1-forms �1.†; g/.
Further, denote by G the space of all gauge transforms, i.e., bundle automorphisms.
We can identify the gauge group with G-valued functions: G D �0.†;G/.

On the space of all connections A, there is a natural symplectic structure given by

(5.1) y! D

Z
†

tr ıA ^ ıA;

where tr denotes an Ad-invariant non-degenerate form on the Lie algebra, which we
call the trace form. For matrix Lie algebras g � gln, we can simply choose the trace
(for semisimple Lie algebras, we can take the Killing form).

Let us explain this simple looking expression for y!. Since A is an affine space, its
tangent space at every point is canonically isomorphic to �1.†;g/. So, given A 2 A

and B; C 2 TAA Š �1.†; g/, we can write B D Bxdx C Bydy with Bx; By 2 g

and similar for C . Then, we have

y!A.B; C / D

Z
†

trB ^ C D
Z
†

tr.BxCy � ByCx/dx ^ dy:

Note that y! is independent of A so d y! D 0. Further, the 2-form y! is clearly antisym-
metric and non-degenerate (since the trace form is). Note that this construction only
works on a surface. Finally, if G is a complex Lie group, y! is a complex symplectic
structure.

Remark. When using the wedge product and commutator of g-valued 1-forms, some
intuitions from usual exterior calculus are not valid anymore. In particular, we have

(5.2) ŒA; B� D ŒB; A� and A ^ A D
1

2
ŒA;A�;

which is non-zero in general. Check these equalities by plugging inADAx dxCAy dy
and similar for B .
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On the space of connections, we have the natural action by the gauge transforms.
The surprising observation of Atiyah and Bott (see end of chapter 9 in [2] for unitary
case, see section 1.8 in Goldman’s paper [15] for the general case) is the following
theorem.

Theorem 5.1 (Atiyah & Bott, 1983). The action of gauge transforms on the space of
connections is Hamiltonian with moment map the curvature.

Let us explain the moment map in more detail: it is a map m W A! Lie.G /�. The
Lie algebra Lie.G / is equal to �0.†; g/, so its dual is isomorphic to �2.†; g/ via
the pairing hX; f i D

R
†

tr fX for f 2 �0.†; g/ and X 2 �2.†; g/. On the other
hand, given a connection A, its curvature F.A/ is a g-valued 2-form, i.e., an element
of �2.†;g/. Hence, the theorem asserts that the moment map � evaluated at A 2 A

and f 2 �0.†;g/ is given by

(5.3) �.A/ � f D

Z
†

tr fF.A/:

We give a sketch of the proof, a computation of the moment map which is the
curvature, neglecting all issues about infinite-dimensional spaces.

Sketch of proof. The action of a gauge transform g on a connection A is given by
g � A D gAg�1 C gdg�1 coming from expanding g.d C A/g�1. So, the action on a
tangent vector ıA is given by g � ıA D gıAg�1.

Step 1. Let us compute the infinitesimal action by an element g D 1C "� to show that
the action is weakly Hamiltonian. We get .1C "�/ � A D AC ".Œ�; A� � d�/. So, we
have a vector field A� D Œ�; A� � d� on A.

Step 2. Now, we compute

y!.A� ; ıA/ D

Z
†

trA� ^ ıA D
Z
†

tr.Œ�; A� � d�/ ^ ıA

D

Z
†

trŒıA;A�� C
Z
†

tr � dıA

D ı

�Z
†

tr.�.dAC A ^ A//
�
;

where we used integration by parts and the following facts.
� The so-called cyclicity property of the trace: trŒA; B�C D trŒB; C �A.
� By equation (5.2), we have ı.A ^ A/ D 1

2
ı.ŒA; A�/ D 1

2
.ŒıA; A� C ŒA; ıA�/ D

ŒıA;A�.

Therefore, using the identification by equation (5.3), we get �.A/ D dAC A ^ A D
F.A/ which is the curvature.
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Step 3. To show that the action is Hamiltonian, we compute

¹H�1 ;H�2º D y!.d�1 C ŒA; �1�; d�2 C ŒA; �2�/

D

Z
†

tr
�
d�1 ^ d�2Cd�1 ^ ŒA; �2�CŒA; �1� ^ d�2CŒA; �1� ^ ŒA; �2�

�
D

Z
†

tr
�
d.�1d�2/C Œ�1; �2�.dAC A ^ A/

�
D HŒ�1;�2�;

where we used integration by parts and cyclic properties of the trace.

The important consequence of the Atiyah–Bott theorem is the following corollary.

Corollary 5.2. We have

Rep.�1†;G/ Š ¹flat connectionsº=G D A � G :

In particular, for a closed surface†, the character variety Rep.�1†;G/ is a symplectic
manifold.

Proof. Carrying out the Hamiltonian reduction of the gauge action on the space of
connections A, we get

A � G D ¹flat connectionsº=G :

By the Riemann–Hilbert correspondence, the moduli space of flat connections is
diffeomorphic to the character variety.

Remark. Goldman [15] gives an explicit formula for this symplectic structure. This
is why it is called the Goldman symplectic structure. He computes the tangent space
to Rep.�1†;G/ at a point ' 2 Rep.�1†;G/ in terms of cohomology (group coho-
mology with coefficients in a twisted module): T' Rep.�1†;G/ D H1.�1†;gAd.'//.
Combining the cup-product with the trace form, he gets a map

H1.�1†;gAd.'//˝ H1.�1†;gAd.'//! H 2.�1S;R/ Š R;

which is nothing but the symplectic form.

Surface with boundary*. Consider now the case of a surface with boundary. In step
2 above, we get an extra boundary term from the integration by parts:

H�.A/ D

Z
†

tr �.dAC A ^ A/C
Z
@†

tr �A:

Since we can find these functions, the action is weakly Hamiltonian. In step 3, we
also get an extra term due to integration by parts

¹H�1 ;H�2º D HŒ�1;�2� C

Z
@†

�1d�2:

Thus, we have a non-trivial cocycle c.�1; �2/ D
R
@†
�1d�2.
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Theorem 5.3. For a surface with boundary, the character variety Rep.�1†;G/ is
a Poisson manifold whose symplectic leaves are flat connections with prescribed
conjugacy class for the monodromy around each boundary component.

The idea of the proof is to reduce the problem to the boundary @† which is a
disjoint union of circles. The remaining gauge group on the circle is the loop group.
Since the action is only weakly Hamiltonian, we have to consider a central extension
of the loop group, the famous affine Lie group. A good reference for loop groups is the
Pressley–Segal book [32], especially Chapter 4.

Proof. Consider G0 � G the subgroup of those gauge transformations which are the
identity on @†. For G0, the cocycle vanishes, so we can define the symplectic quotient
A � G0 D ¹flat connectionsº=G0. By some gymnastics, we get

Rep.�1†;G/ D ¹flat connectionsº=G D .¹flat connectionsº=G0/
ı
.G=G0/:

Hence, we obtain the character variety as the quotient of a symplectic manifold. By
theorem 4.22, it is a Poisson manifold whose symplectic leaves are given by all possible
Hamiltonian reductions.

To determine the symplectic leaves, note that the remaining gauge group is G=G0 Š

LGk , where LG D C1.S1;G/ denotes the loop group and k the number of boundary
components of †. Without loss of generality, we consider k D 1 in the sequel.

The action of LG on A � G0 is only weakly Hamiltonian, since we have the cocycle
c. Hence, we have to consider the central extension Og D Lg˚ C with Lie bracket
given by

Œ.A.z/; a/; .B.z/; b/� D

�
ŒA.z/; B.z/�;

I
trAdB

�
;

where z 2 S1 � C and
H

trAdB D
R

S1 trAdB represents the cocycle c. This is the
famous affine Kac–Moody algebra of type g.

Since the action of yG is only on the boundary circle, we can restrict our connection
to @†. Surprisingly, the moment map for the action of yG is nearly the identity (it is an
inclusion).

Lemma 5.4. The dual affine Lie algebra Og� can be identified with the space of all
k-connections of type G on the circle. The coadjoint action of yG is the gauge action.

A k-connection is a generalization of a connection where the Leibniz rule is replaced
byD.f s/D k df sC fD.s/. Locally, a k-connection is of the form kd CA. For kD 1,
we get usual connections and for k D 0, we get g-valued 1-forms. In particular, the
moment map of the action of yG on the space of connections on S1 is the inclusion
(with k D 1).
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Proof of lemma. Elements of Og� are pairs .X.z/; k/, where X is a g-valued 1-form on
S1 and k 2 C. The pairing with Og is given by

h.X.z/; k/; .A.z/; a/i D

I
trA.z/X.z/C ka:

We first show the infinitesimal version of the lemma by computing the Og-coadjoint
action

had�.A;a/.X; k/; .B; b/i D h.X; k/; Œ.�A;�a/; .B; b/�i

D �

I
trXŒA;B� � k

I
trAdB

D

I
trB.ŒA;X�C k dA/

D h.ŒA;X�C k dA; 0/; .B; b/i:

Hence, ad�.A;a/.X; k/ D ŒA;X�C k dA which can be identified with the action of an
infinitesimal gauge A on a k-connection �kd CX . After integration, the yG-coadjoint
action is given by the gauge action.

Finally, we can conclude on the symplectic leaves. The coadjoint orbits are the
gauge-equivalence classes of connections on the circle. Now, cut off the circle at a point.
Using the gauge, we can trivialize the connection. The only information we cannot
change is how to glue the two ends together. This is precisely the conjugacy class of
the monodromy. Therefore, the condition from the second moment map prescribes the
conjugacy class of the monodromy around @†.

6. GIT quotients and stability conditions

The geometric invariant theory (GIT) allows to define in a quite general setting a
quotient of a manifold M by some group action G. It introduces the notion of stable
and unstable points which are treated differently to define a well-behaved quotient
M=G. These stability conditions play a crucial role for defining moduli spaces, in
particular, for flat connections. We recommend [36] for more details.

Introduction. LetG be a group acting on some manifoldM . We wish to define a nice
space “M=G”. It should satisfy a universal property: whenever there is a G-invariant
map M ! X , it should factor through M=G.

If we take the set-theoretic quotient, i.e., the space of orbits, we often get a space
which is not Hausdorff. This happens for example whenever two orbits O1 and O2

get arbitrarily close, i.e., if xO1 \ xO2 ¤ ;. Indeed, any open sets around the points
representing O1 and O2 in M=G intersect.
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Figure 6.1
Example of non-Hausdorff quotient.

Example 6.1. Consider the action of G D C� on M D C2 given by � � .x; y/ D
.�x; ��1y/. The orbits are shown in Figure 6.1. Note that the only non-closed orbits
are .x D 0; y ¤ 0/ and .x ¤ 0; y D 0/ whose closures intersect. The set-theoretic
quotient gives C with three points at the origin.

We would like to define a quotient such that in the example, the result is C. For
that, two options seem to be reasonable.

(1) Only keep the close orbits.

(2) Identify orbits whenever their closure intersect.

In the first case, we would “throw away” the two non-closed orbits, and in the second
case, we would identify all three points above the origin to a single point. The GIT
quotient construction takes the second case, but as we will see is equivalent to the first
one in the affine case.

Affine GIT quotient. We will use the very basic idea of algebraic geometry: the
dictionary between geometry and algebra. Consider a smooth affine variety M , i.e.,
the zero-set of a set of polynomials. Replacing these polynomials by the ideal I they
generate (which does not change M , but gives more structure) we can write

M D
®
x 2 Cn

j P.x/ D 08x 2 I
¯
:

To M we associate the space of all polynomial functions on M . Such a function is a
restriction of any element of CŒx1; : : : ; xn� to M . Since any element of I is zero on
M (by definition), we get

Fun.M/ D CŒx1; : : : ; xn�=I:

Finally, from the quotient Fun.M/ D CŒx1; : : : ; xn�=I , we can directly get M : every
point ofM corresponds to a unique maximal ideal in Fun.M/. The algebraic procedure
of taking all maximal ideals of a ring A is called the spectrum Spec.A/.
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The idea of the GIT quotient is now simple to explain: the functions onM=G have
to be the G-invariant functions on M . By the correspondence between geometry and
algebra, we can define the quotient this way:

(6.1) M=GITG WD Spec.Fun.M/G/:

In Example 6.1 above, where C� acts on C2, we get

Spec.Fun.C2/C
�

/ D Spec.CŒxy�/ D C:

Note that the function xy does not distinguish between the three orbits .0; 0/; .x D
0; y ¤ 0/ and .x ¤ 0; y D 0/.

We see that two orbits O1 and O2 get identified if xO1 \ xO2 ¤ ;: indeed, any
smooth G-invariant function is constant on xO1 and xO2. Since their closures intersect,
the function takes the same value on them. Since noG-invariant function can distinguish
the two orbits, they get identified in the GIT quotient.

Finally, notice that in the closure of any orbit xO, there is a unique closed orbit. That
is why we can also say that the affine GIT quotient keeps only the closed orbits.

Exercise 6.2. (a) Consider the action of GLn.C/ on gln.C/ by conjugation. Show
that the orbit of a matrix M is closed if and only if M is diagonalizable and that its
orbit is of maximal dimension if the eigenvalues are pairwise distinct.

(b) Compute the GIT quotient7.
(c) Show that the invariant functions are generated by the coefficients of the char-

acteristic polynomial8.

Remark. The exercise generalizes to any semisimple complex Lie group G, the
notion of diagonalizable being replaced by regular elements. The Chevalley restriction
theorem gives greg=G D h=W , where h denotes the Cartan subalgebra (the diagonal
matrices above) and W the Weyl group (the permutation group above). In addition
Fun.h=W / D CŒp1; : : : ; pr � is a free algebra generated by invariant polynomials,
which play an important role in Lie theory.

Let us now turn to the character variety. The space Hom.�1S; G/ is an affine
variety if G is an affine algebraic group. This can be seen from an explicit presentation
of �1S :

�1S D

�
.ai ; bi /1�i�g

ˇ̌̌̌ Y
i

Œai ; bi � D 1

�
:

7Hint: use the fact that the diagonalization is unique up to permutation, and that the ring of symmetric
polynomial functions is free.

8Hint: use the Frobenius form of the matrix.
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X

zX

Figure 6.2
Projective cone over X .

This presentation comes from the fact that a surface of genus g can be obtained by a
special gluing of a 4g-gon. Since the only relation is algebraic, the space Hom.�1S;G/
is an algebraic subset of G2g .

To go to the character variety, we have to quotient by the conjugation action by G.
To get a nice quotient, we have to take the GIT quotient. In the case G D GLn.C/, we
have the following theorem.

Theorem 6.3. A point � 2 Hom.�1S;GLn.C// is polystable if and only if � is com-
pletely reducible, i.e., all �-invariant subspaces of Cn admit an invariant supplement.
If � is irreducible (there are no non-trivial �-invariant subspaces of Cn), then it is a
stable point.

For the proof, which is quite delicate, we refer to [33, Section 7]. From the algebraic
geometric perspective, a point � 2Hom.�1S;G/ is regular if and only if � is irreducible,
see [18, Theorem 26].

Projective GIT quotient. The construction of an affine GIT quotient does not always
give a satisfactory answer. Consider the following example.

Example 6.4. Let C� act on C2 via � � .x; y/ D .�x; �y/. Then, all orbit closures
intersect and the GIT quotient would give just one point. Of course, we would like to
get CP 1 as quotient.

The idea is to slightly modify the functors Fun and Spec in the defining equation
(6.1) above. For that, we consider a projective variety X � CP n, and we suppose
that G acts via G ! SLnC1.C/ (see Figure 6.2). Then, the action lifts to the cone
zX � CnC1 � ¹0º.
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The main difference with the affine case is that on zX we have a C�-action, which
induces a grading of its function space into homogeneous parts. We define

(6.2) M=G D Proj.Projfun. zX/G/;

where Projfun is the direct sum of all homogeneous polynomial function of degree
k � 1 on zX , and Proj associates a projective variety to a ring (by taking its maximal
essential ideals).

In Example 6.4 above, the action extends to C3 via � � .x; y; z/ D .�x; �y; ��2z/
(since the action takes values in SL3.C/). The invariant homogeneous polynomials
are generated by monomials xaybz.aCb/=2 with aC b even. Taking z D 1 gives

Projfun. zX/C
�

D

M
k�1

C2kŒx; y�;

whose associated projective variety is CP 1 (with structure bundle O.2/).
The good news is that you do not have to know much about the functors Projfun

and Proj since there is a simple geometric recipe to compute the projective GIT quotient.
For that, we define types of points and treat each type differently: a point x 2 X is
� unstable, if for all non-constant homogeneous G-invariant polynomial f , we have

f .x/ D 0,
� semistable, if it is not unstable,
� polystable, if it is semistable and has a closed orbit in zX ,
� stable, if it is semistable and its orbit in zX is closed and of maximal dimension.

The recipe of the projective GIT quotient can then be given as follows: Throw away
all unstable points and identify semistable points if their orbit closures in zX intersect.

The explanation is that unstable points are not seen by G-invariant homogeneous
functions. The same argument as for the affine GIT quotient explains why to identify
orbits whose closure intersect.

In addition to the simple recipe, there is a nice geometric characterization of
unstable points.

Proposition 6.5. A point x is unstable if and only if 0 is in the orbit closure of Qx (any
preimage of x of zX ! X ).

The so-called Hilbert–Mumford criterion states that it is sufficient to check that
property for all 1-parameter subgroups of G.

In Example 6.4, the point .0; 0/ is unstable since � � .0; 0; 1/ D .0; 0; ��2/! 0

for �! 1. Any other point .x; y/ is semistable since x2z or y2z is an invariant
homogeneous function not vanishing on the point. They are even stable since the orbit
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in C3 is closed and the stabilizer is trivial. Hence, we throw away the origin and take
the set-theoretic quotient of the rest: we get precisely CP 1.

The projective GIT quotient is summarized in the following table.

Type Algebraic Geometric GIT quotient
Unstable f .x/ D 08f 2 Fun. zX/G 0 2 G � Qx throw away

Semistable Not unstable 0 … G � Qx O1 � O2 if xO1 \ xO2 ¤ ;
Polystable Semistable, closed orbit G � Qx is closed Keep

Stable Maximal polystable CStab. Qx/ finite Keep

Note that, in the affine case, all orbits are semistable (since we do not exclude the
constant functions) and in every orbit closure, there is a unique polystable orbit. This
is not always true in the projective case.

Link to symplectic quotient. The link between the GIT quotient and the symplectic
quotient is given by the Kempf–Ness theorem. Roughly, it tells that

X �K Š X=GITK
C
D Xps=KC:

To be more precise, we have the following theorem.

Theorem 6.6 (Kempf–Ness). Let V be a complex vector space with hermitian inner
product,K � U.V / a closed subgroup and putG DKC . LetX � V be aG-invariant
affine variety. Then, the action ofK onX is Hamiltonian and the Hamiltonian reduction
X �K equals the GIT quotient X=G.

Denoting by � the moment map, one can show that Xps D G:��1.0/, i.e., that a
G-orbit intersects ��1.0/ if and only if it is closed. We refer to the original article [25]
for the proof.

To give an example, let us reconsider the case of projective space, already seen in
Example 4.24.

Example 6.7. Consider G D U.1/ � C acting on Cn by scaling all coordinates by
some factor (of module 1). We have seen in Example 4.24 that the symplectic reduction
over the coadjoint orbit ¹�2º gives CP n�1. This coincides with the projective GIT
quotient (see Example 6.4).

7. Stable bundles and the Narasimhan–Seshadri theorem

The goal of this section is to characterize flat bundles with unitary monodromy,
i.e., understand Rep.�1†;U.n//. We will see that the corresponding bundles carry a
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holomorphic structure and satisfy some stability condition (in the GIT sense). Before,
we will see some basic theory about bundles.

Different types of bundles. Up to now, we were a bit sloppy when speaking about
bundles. In fact, there are three different types of bundles: real (or topological), complex
and holomorphic bundles.

Before, we always treated real bundles, where the transition functions are smooth.
If the fiber is a complex vector space, we speak about a complex vector bundle. If in
addition the base manifold X is complex, we can define a holomorphic bundle to be a
complex bundle with holomorphic transition functions. A summary is provided in the
following table.

Real Complex Holomorphic
Smooth transitions Complex structure on fiber Holomorphic transitions
{H1.X;C1.GLn.R/// {H1.X;C1.GLn.C/// {H1.X;Hol.GLn.C///

If you know about sheaf cohomology, the last line indicates how to characterize
the different types of bundles in topological terms. The set of all transition functions
form a 1-cocycle in sheaf cohomology, and the isomorphism class of the bundle is
described by the associated cohomology class.

The case of line bundles is particularly interesting since they form a group under
tensor product. The transition functions simply get multiplied when you tensor line
bundles. Since GL1.C/ŠC�, the transition function vanish nowhere, so are invertible.

Remark. Again, for the reader who is familiar with algebraic topology, below are
some remarks on the classification of line bundles.
� Using 0! Z=2Z! C1.R�/! C1.R>0/! 0 given by f 7! f 2, one can

show that {H1.X;C1.R�// Š H1.X;Z=2Z/, so real line bundles are classified by
the first Stiefel–Whitney class.

� Using 0! Z! C1.C/! C1.C�/! 0 given by f 7! exp.f /, one can show
that {H1.X;C1.C�// Š H2.X;Z/, so complex line bundles are classified by the
first Chern class. For X D † a surface, we haveH 2.X;Z/ Š Z, so the first Chern
class equals the degree of the bundle.

� Holomorphic line bundles are much more abundant. On a Riemann surface S of
genus at least 2, there are smooth families of them. The space of all line bundles is
called the Picard variety Pic.S/ and is given by Pic.S/ Š Z � Jac.S/ where the
first factor gives the degree and the second factor is the Jacobian variety.

Let us give some examples of line bundles over X D CP 1.
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Example 7.1. The Riemann sphere CP 1 is given by two charts U0 D C and U1 D C

with transition map U0 \ U1 D C� ! C� given by z 7! 1=z. Define the line bundle
O.k/ in the following way: it is made of two pieces, U0 �C and U1 �C, which are
glued together via ´

.U0 \ U1/ �C ! .U0 \ U1/ �C;

.z; v/ 7! .1=z; zkv/:

It turns out that the O.k/ describe all holomorphic line bundles: Pic.CP 1/ Š Z.

To any vector bundle E ! M we can associate a line bundle in the following
way. There is an open covering of M by open sets U˛ where E is trivial and with
transition maps f˛ˇ . Define the determinant line bundle det.E/ to be the line bundle
which is trivial over the U˛ with transition functions det.f˛ˇ /. The first Chern class is
preserved: c1.E/ D c1.detE/.

To understand a bundle, we can try to decompose it into simpler pieces, to write it as
a direct sum. On real or complex line bundles, we can put a scalar or hermitian product
on the fibers (varying smoothly) which allows to construct canonically a complement
to any subbundle. This means that whenever we have a subbundle F � E, we can write
E D F ˚ F 0. We say that a bundle is irreducible if it has no non-trivial subbundles.

This is not true for holomorphic bundles since there might be no hermitian structure
varying holomorphically with the point. We speak about an indecomposable holomor-
phic bundle whenever it cannot be written as a direct sum of two other bundles.

Since line subbundles are nothing but non-vanishing sections, we can look for these
to decompose the bundle.

Proposition 7.2. Let E ! M be a vector bundle with M a real m-dimensional
manifold.
� If E is real of rank more than m, then there is a non-vanishing section.
� If E is complex of (complex) rank more than m=2, then there is a non-vanishing

section.

The proof is simple: a generic perturbation of any section works.

Corollary 7.3. A complex bundle E ! † of rank k over a surface is isomorphic to
det.V /˚Ck�1 (as complex bundle).

Proof. By the previous proposition, we find k � 1 non-vanishing independent sections.
So, V Š L˚Ck�1 where L is some line bundle. Then, det.V / D det.L/ D L.

Now, we can give an example illustrating the difference between the three kinds of
bundles.
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Example 7.4. On CP 1, consider the holomorphic bundle O.1/˚ O.1/. Its under-
lying complex vector bundle is C ˚ TCP 1, since it can be easily checked that
det.˚O.ai // D O.

P
ai / and O.2/ is the tangent bundle of CP 1. Note that C ˚

TCP 1 is not trivial, since there is no non-vanishing section of TCP 1 (the “hairy ball
theorem”).

Finally, its underlying real bundle is trivial. You can check that T .S2/˚ R is a
trivial bundle. You just take the unit sphere S2 � R3 and consider its normal bundle,
which is trivial (there is a constant section). Hence, its direct sum with the tangent bundle
gives the tangent bundle of R3, which is trivial, restricted to the sphere. Therefore,
T .S2/˚R2 Š R4.

Remark. A theorem of Grothendieck asserts that the set of all holomorphic bundles
on CP 1 are the˚O.ai /. This can be proven using methods from loop groups.

Flat bundles. Now, we have seen that the different kinds of bundles, we may ask
which bundles arise in the Riemann–Hilbert correspondence.

Recall that to a representation � W �1M ! GLn.C/, we associate the bundle E� D
. zM � Cn/=�1M . This is a complex vector bundle which is trivial, since �1M acts
faithfully on zM . On a surface, complex bundles are classified by their degree. We have
the following proposition.

Proposition 7.5. A complex vector bundleE over a surface† admits a flat connection
if and only if deg.E/ D 0 (if and only if E is trivial).

Over a general manifold, a complex vector bundle is trivial if and only if all its
Chern classes vanish.

Remark. More generally, there is a beautiful link between characteristic classes and
the curvature of a connection, described by Chern–Weil theory. For the degree of a
bundle E over M , the link is

deg.E/ D c1.E/ D
�
i

2�
tr F.A/

�
2 H 2.M;Z/:

Since trivial complex bundles can have non-trivial holomorphic structures, we can
ask which holomorphic bundles can arise through the Riemann–Hilbert correspon-
dence? For this to make sense, we have to equip the smooth surface † with a complex
structure. The resulting Riemann surface is denoted by S .

We have seen the notion of indecomposable holomorphic bundles (not the direct
sum of others). By definition, they form the building blocks for all holomorphic bundles.

Proposition 7.6. Every holomorphic bundle over a compact Riemann surface is the
direct sum of indecomposable bundle in a unique way (up to permutation of the factors).
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For holomorphic bundles, we have the following theorem due to Weyl.

Theorem 7.7 (Weyl). A holomorphic bundle E D ˚Ei which is a direct sum of
indecomposable bundles Ei admits a flat connection if and only if c1.Ei / D 08 i .

A proof can be found in [18, Theorem 16].

Cauchy–Riemann operator. On a holomorphic bundle E, there is a natural connec-
tion x@E generalizing the Cauchy–Riemann operator (which defines what a holomorphic
function is). It turns out that holomorphic structures are in bijection with these opera-
tors.

A Cauchy–Riemann operator x@E (also called Dolbeault operator) on a complex
bundle E over a complex manifoldM is a connection, i.e., a map �.E/˝ �.TM/!

�.E/, such that x@2E D 0 and

(7.1) x@E .f s/ D .x@f /s C f x@E .s/

for all sections s 2 �.E/ and functions f 2 C1.M/. Note that x@ is the usual Cauchy–
Riemann operator, which is well defined since M is a complex manifold.

Proposition 7.8. A holomorphic structure on a complex vector bundle E is equivalent
to the existence of a Cauchy–Riemann operator x@E .

We refer to the thesis of McCarthy [28, Theorem 3.3.3] and [2, page 555] for a
proof. The delicate point is to construct holomorphic transition functions from x@E
which leads to an elliptic system to solve.

On a Riemann surfaceS , a complex bundle admits plenty of holomorphic structures:
any connection gives one. Indeed we can decompose a connection r D r1;0 Cr0;1

into the dz and d Nz-part. Then, r0;1 is a Cauchy–Riemann operator (since d D @C x@).
Consider now a trivial complex bundle E over S . Using the differential d as canon-

ical base point, we can identify the space of G-connections with �1.S;g/. Hence, we
can describe holomorphic structures by �0;1.S;g/. Then, two holomorphic structures
are equivalent (under some bundle automorphism) if and only if the corresponding
operators are gauge-equivalent. Note that this action is given by

g � B D gBg�1 C gx@.g�1/:

Denote by Hol.S; GLn.C// the moduli space of holomorphic structures on E D
S �Cn and by G C D G .GLn.C// the gauge group. Since the trivial complex bundle
has degree 0, we have

(7.2) HoldegD0.S;GLn.C// Š �0;1.S;gln.C//=G
C:
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Stability for bundles. The space of holomorphic structures is given by the quotient
(7.2). To get a nice space, we have to interpret this quotient in the GIT sense. The
associated stability condition is described now.

For a holomorphic bundle E !M , we define its slope �.E/ by

�.E/ D
deg.E/
rk.E/

:

To memorize: the degree can be zero, so it cannot be in the denominator.

Definition 7.9 (Mumford). A holomorphic bundle E is stable if for all holomorphic
subbundles F � E we have �.F / < �.E/. The bundle is semistable if the inequality
is not strict.

Let us see two properties of stable bundles.

Proposition 7.10. Let E be a stable holomorphic bundle. Then, we have the following.
(1) E cannot be a direct sum E1 ˚E2.
(2) E has only trivial holomorphic automorphisms (of the form � id for some constant

�).

Proof. Part (1) is simply proved by contradiction: if E D E1 ˚ E2, then deg.E/ D
deg.E1/Cdeg.E2/ and rk.E/Drk.E1/Crk.E2/. SinceE is stable, we have�.E1/ <
�.E/ and �.E2/ < �.E/ which leads to a contradiction:

deg.E/ D deg.E1/C deg.E2/ < deg.E/
�

rk.E1/
rk.E/

C
rk.E2/
rk.E/

�
D deg.E/:

For part (2), consider a holomorphic automorphism ' W E ! E. Then, its charac-
teristic polynomial is constant, since its coefficients are holomorphic functions on a
compact manifold. If there are at least two different eigenvalues, we can decompose E
into a direct sum which is impossible by (1). So, there is a constant � 2 C� such that
' D � idC where  is nilpotent. Suppose  ¤ 0. Since  is still a holomorphic
automorphism of E, we have �.E/ > �.Im. // and �.E/ > �.ker. // by stability.
Since Im. / D E=ker. /, we also get �.E/ < �.Im. //, a contradiction. Hence,
' D � id.

The second property gives a hint why Mumford’s stability is the appropriate notion,
since stable objects have usually a small automorphism group.

Unitary character varieties. We are now ready to characterize the holomorphic
bundles arising through unitary representations of the fundamental group.
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Theorem 7.11 (Narasimhan–Seshadri [31]). The character variety for the unitary
group is in bijection with semistable holomorphic bundles of degree 0:

Rep.�1†;U.n// Š HolssdegD0.S;GLn.C//:

Moreover, the stable points correspond to irreducible representations.

In other words: a holomorphic bundle E D ˚Ei with Ei indecomposable, comes
from a unitary representation if and only if all Ei are stable and of degree 0. Note that
we can generalize Narasimhan–Seshadri theorem to any group K � U.n/:

Rep.�1†;K/ Š HolssdegD0.S;K
C/;

where the holomorphic bundles have structure group KC .
Let us try to understand the profound meaning of the theorem. One direction is

less surprising: given a representation coming from a flat connection r, its .0; 1/-part
defines a holomorphic structure. The theorem asserts that this holomorphic bundle is
semistable.

The other direction is much more surprising: given a stable holomorphic bundle,
there is preferred flat unitary connection on it! This is surprising since a holomorphic
structure is given by a .0; 1/-part of a connection. Looking for unitary connections,
we can complete this .0; 1/-part into a full connection, but there is no reason for that
connection to be flat! The point is that we work on the level of moduli spaces, so within
gauge equivalence classes. The theorem asserts that in the complex gauge-orbit of a
stable holomorphic structure, there is a representative, given by a Cauchy–Riemann
operator x@E , whose associated unitary connection is flat.

We present the idea of the proof in layers, like peeling an onion. The proof strategy
presented here is due to Donaldson [8] which uses the ideas of the Kempf–Ness
theorem.

Idea of proof. We start by the Atiyah–Bott reduction which gives

Rep.�1†;U.n// Š A.u.n// � G ;

where A.u.n// denotes the space of all unitary connections on a trivial complex bundle
V over † equipped with a hermitian structure h. G D G .U.n// denotes the unitary
gauge group.

By the principle of the Kempf–Ness theorem, we have

A.u.n// � G Š Ass.u.n//=G C;

where G C denotes the complex gauge group. An element g 2 G C acts on a unitary
connection d C A in two steps: first act only on A.0;1/ by a gauge transformation,
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i.e., g:A.0;1/ D gA.0;1/g�1 C gx@.g�1/, and second complete the result to a unitary
connection. Note that the total action is not a gauge action (unless g 2 G ) which allows
to modify the curvature.

Since a unitary connection is uniquely determined by its .0; 1/-part,

Ass.u.n//=G C
Š �ss;.0;1/.gln.C//=G

C:

Finally, since a Cauchy–Riemann operator determines a holomorphic structure, we
get from equation (7.2)

�ss;.0;1/.gln.C//=G
C
Š HolssdegD0.S;GLn.C//:

This elegant proof, combining nicely all the material we have seen before, is only
the first layer, lacking lots of important details. In a second layer, one has to prove two
things: the stability condition appearing in the proof idea is identical with the Mumford
slope-stability, and the Kempf–Ness theorem can be adapted to the infinite-dimensional
setting.

To carry out the latter, Donaldson imitates the proof strategy of the Kempf–Ness
theorem. The rough idea is to show that the complex gauge orbit of a unitary connection
intersects the zero-set of the moment map (the flatness condition) if and only if the
connection is semistable. To achieve this, one uses a gradient descent method. The
function we consider for that is simply the norm of the moment map (for some adapted
L2-norm):

A 7! kF.A/k2:

This is called the Yang–Mills functional. The absolute minima of this function are
obviously given by flat connections.

So, you start with a point, apply the gradient flow to get a sequence of connections
in the same complex gauge orbit. What you have to show is that you converge to an
absolute minimum if and only if your starting point is semistable.

This can be done in a third layer using the Uhlenbeck–Yau compactness theorem.
See Donaldson’s paper [8] for details.

We might ask, what is so special about bundles coming from unitary represen-
tations? One aspect is the following: since the transition functions are unitary, they
are, in particular, bounded. Hence, any holomorphic section of E is constant, by the
maximum principle (S is compact and transitions are bounded).

To understand character varieties for non-unitary groups, especially non-compact
groups, we need the notion of Higgs bundles.

8. Higgs bundles and the non-abelian Hodge correspondence

In this section, we will see how the notion of a Higgs bundle naturally arises. We
then state the main theorem of our lecture, the non-abelian Hodge correspondence.
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Cotangent space to Hol.S; GLn.C//. The Narasimhan–Seshadri theorem has told
us that stable holomorphic bundles correspond to irreducible unitary representations of
�1†. In some sense, the holomorphic structure of a bundle is encoded in a .0; 1/-form
which can be uniquely completed to a unitary connection.

To describe representations �1†! GLn.C/, we need more than holomorphic
bundles: something which is encoded both in a .0; 1/-form and a .1; 0/-form. Put
g D gln.C/. We remark that

(8.1) T ��0;1.S;g/ Š �0;1.S;g/˚�1;0.S;g/:

Indeed, the tangent space at any point is given by �0;1.S;g/ itself (since it is a vector
space). For ˛ 2 �1;0.S;g/ and ˇ 2 �0;1.S;g/, the map

h˛; ˇi D

Z
S

tr ˛ ^ ˇ

is a non-degenerate pairing, which explains equation (8.1).
This leads to the idea to consider the cotangent bundle of Hol.S;GLn.C//.

Proposition 8.1. We have

T �Hol.S;GLn.C// Š
®
. xA;ˆ/ 2 �0;1 ��1;0 j x@ˆC Œ xA;ˆ� D 0

¯ı
G ;

where the gauge group G acts by g � xA D gAg�1 C gd.g�1/ and g �ˆ D gˆg�1.

The gauge action is explained by the idea that ˆ is a cotangent vector, so gives a
small deformation x@C "ˆC xA. Since the gauge parameter does not involve ", it acts
on ˆ simply by conjugation.

The main ingredient to prove the proposition is the formula T �.X=G/D T �X �G
seen in Exercise 4.25.

Proof. Since Hol.S;GLn.C// D �0;1.S;g/=G , we have

T �Hol.S;GLn.C// D T ��0;1.S;g/ � G D .�0;1.S;g/˚�1;0.S;g// � G

by equation (8.1). The symplectic form is given by

! D

Z
S

tr ı xA ^ ıˆ:

To compute the moment map, we first compute the infinitesimal gauge action by
g D 1C ". We easily get the vector fields representing an infinitesimal change

xA" D �x@"C Œ"; xA�
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and
ˆ" D Œ"; ˆ�:

By the usual procedure, we compute

�. xA";ˆ"/!.ı
xA; ıˆ/ D

Z
S

tr. xA"ıˆ � ı xAˆ"/

D

Z
S

tr..�x@"C Œ"; xA�/ıˆ � ı xAŒ";ˆ�/

D

Z
S

tr ".x@ıˆC Œ xA; ıˆ�C Œı xA;ˆ�/

D ı

�Z
S

tr ".x@ˆC Œ xA;ˆ�/
�
:

Hence, the moment map is given by �. xA; ˆ/ D x@ˆ C Œ xA; ˆ�, which gives the
proposition.

We can understand the proposition in more conceptual terms: xA defines a Cauchy–
Riemann operator on E, which induces a holomorphic structure on End.E/ given by
a Cauchy–Riemann operator x@End.E/. On a section ˆ of End.E/ it acts via

x@End.E/ˆ D x@ˆC Œ xA;ˆ�:

If ˆ is the End.E/-valued .1; 0/-form from above, the proposition tells us that
x@End.E/ˆ D 0; hence, ˆ is holomorphic. Such an object is called a Higgs field. In
technical terms, we have

ˆ 2 H0.S;End.E/˝K/;

where K denotes the canonical bundle (holomorphic .1; 0/-forms), but you really
should think of a Higgs field as a cotangent vector to the moduli space of holomophic
structures.

Definition 8.2. A Higgs bundle is a holomorphic bundle E equipped with a Higgs
field ˆ 2 H0.S;End.E/˝K/.

Moduli space. We want to define the moduli space of Higgs bundles by

MH .S;GLn.C// D ¹Higgs bundlesº=G :

As usual, we have to take the GIT quotient to get a nice topological space (in fact, we
get a manifold).

The appropriate stability condition is the following definition.
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Definition 8.3. A Higgs bundle .E;ˆ/ is stable, if for all ˆ-invariant holomorphic
subbundles F � E we have �.F / < �.E/. It is called semistable if the inequality is
not necessarily strict.

Note that ˆ-invariant means that for all vector fields X 2 �.TS/, we have ˆ.X/ �
F � F .

Example 8.4. If E is a stable holomorphic bundle, then .E; ˆ/ is a stable Higgs
bundle for all Higgs fields ˆ.

Example 8.5. Fix a so-called spin structure on S , i.e., a line bundle denoted by K1=2

whose square is the canonical bundle K. Then, consider 
E D K1=2 ˚K�1=2; ˆ D

 
0 0

1 0

!!
:

Note that the non-zero entry in ˆ makes sense since it is an element of

Hom.K1=2; K�1=2/˝K Š K�1 ˝K Š O;

which is the trivial line bundle. It is easy to check that the only non-trivial ˆ-invariant
subbundle is K�1=2. Since deg.K�1=2/ < 0 D deg.E/, we get that .E;ˆ/ is a stable
Higgs bundle.

Note that in the last example, E is not stable as holomorphic bundle since it has
K1=2 as holomorphic subbundle.

From the two examples, we see that

(8.2) T �Hols.S;SLn.C// �MH � T
�Hol.S;SLn.C//;

i.e., the moduli space of Higgs bundle sits between two cotangent bundles of holomor-
phic structures.

Proposition 8.6. Stability is an open condition, i.e., if .E;ˆ/ is a stable Higgs bundle,
then any Higgs bundle sufficiently close to it is also stable.

Non-abelian Hodge correspondence. We are now ready to state the main theorem of
our lectures.

Theorem 8.7 (non-abelian Hodge correspondence). The moduli space of polystable
Higgs bundles of degree 0 is diffeomorphic to the GLn.C/-character variety:

M
ps
H;degD0.S;GLn.C// Š Repc:r:.�1†;GLn.C//:
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The non-abelian Hodge correspondence gives a remarkable link between purely
topological objects, completely reducible representations of the fundamental group, and
holomorphic objects, polystable Higgs bundles. Irreducible representations correspond
to stable Higgs bundles.

It generalizes the Narasimhan–Seshadri theorem: we will see that an irreducible
unitary representation corresponds to a stable Higgs bundle .E; ˆ/ with vanishing
Higgs field ˆ D 0. So, necessarily E is stable.

This deep theorem is due to many people, above all Hitchin [20], Simpson [34],
Corlette [7] and Donaldson [9]. A nice and concise account for the main proof ideas
together with crucial steps are given in [39].

Why is it called “non-abelian Hodge correspondence”? The answer here is inspired
by the introduction of Simpson’s paper [34].

A basic motto in algebraic topology is that all cohomology theories are (more or
less) equivalent. This is why there is an axiomatization of cohomology (by Eilenberg–
Steenrod). One instance of this motto is the Hodge correspondence, which gives a link
between de Rham cohomology (defined using differential geometry) and Dolbeault
cohomology (defined using holomorphic objects):

H k
dR.X;C/ Š

M
pCqDk

H
p;q

Dol
.X/:

For k D 1, we get

H 1.S;C/ Š H 0;1.S/˚H 1;0.S/ Š H 1.S;OS /˚H
0.S;�1.S//;

where we used sheaf cohomology in the last term.
Replacing C by GLn.C/, which is non-abelian for n> 1, we can interpret Rep.�1S;

GLn.C// as H 1.S;GLn.C// since for n D 1:

H 1.S;GL1.C// D H 1.S;C�/ Š Hom.�1S;C�/ D Rep.�1S;C�/;

where we used in the last equality that C� is abelian.
The generalization of H 1.S;OS / is {H 1.S;Hol.GLn.C/// which describes holo-

morphic bundles of rank n. Finally, H 0.S; �1.S// becomes H 0.S;GLn.C/˝K/
giving the Higgs field.

The analogy can even be enlarged: the most basic cohomology theories (simplicial,
singular or cellular) are purely topological. They are sometimes called Betti cohomol-
ogy. By the basic motto, they all coincide with the de Rham or Dolbeault cohomology.

The non-abelian analogs are (names were given by Simpson)
� Betti moduli space: space of representations of the fundamental group, i.e., the

character variety Rep.�1†;GLn.C//.



A. Thomas 44

� de Rham moduli space: space of flat connections.
� Dolbeault moduli space: space of Higgs bundles.

The Betti and de Rham moduli space are equivalent by the Riemann–Hilbert
correspondence. They are equivalent to the Dolbeault moduli space by the non-abelian
Hodge correspondence.

We will see even more analogies: in the presence of a metric there is a preferred
representative in each de Rham cohomology class, a harmonic form. The analog leads
to the notion of harmonic bundles which are the key ingredient to prove the non-abelian
Hodge correspondence.

9. The proof strategy: harmonic bundles

In this section, we will see two notions of harmonic bundles, giving representatives
for flat bundles and Higgs bundles, respectively. The existence of harmonic representa-
tives is described by the theorems of Corlette–Donaldson and Hitchin–Simpson, which
together give the non-abelian Hodge correspondence.

Hermitian bundles. The basic ingredient to harmonic theory is the notion of a hermi-
tian bundle, which is a complex bundle with a hermitian product . � ; � / in each fiber,
varying in a smooth manner.

In a holomorphic bundleE, a hermitian structure determines a preferred connection,
similar to the Levi–Civita connection for a Riemannian manifold.

Proposition 9.1. In a hermitian holomorphic bundle E, there is a unique connection
r, called the Chern connection, which is compatible with
(1) the holomorphic structure: r0;1 D x@E ,
(2) the hermitian structure: d.s1; s2/ D .rs1; s2/C .s1;rs2/ for all sections s1; s2.

Let us analyze the space of all hermitian structures on a given flat bundle E D E�,
where � W �1†! G D GLn.C/ is the monodromy. At one point it is described by

HermCC D
®
H 2 gln j H

�
D H; positive definite

¯
:

Indeed, a matrix H 2 HermCC determines a Hermitian product by .x; y/H D x�Hy.
On HermCC, there is an action of G D GLn.C/ by .x; y/g:H D .gx; gy/H (where
g 2 GLn.C/). Hence, it is given by g:H D g�Hg. The action is transitive and the
stabilizer of id 2 HermCC is K D U.n/. Therefore,

HermCC Š GLn.C/=U.n/ D G=K:
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Note that U.n/ is not a normal subgroup, so the quotient is merely a set.
Locally, in a given trivialization of E, a hermitian structure is given by a map

U � †! G=K. Globally over †, the map is not well defined since taking a non-
trivial loop  2 �1† results in a conjugated G=g�Kg, where g D �./.

To get a well-defined map, we have to consider the universal cover z† and maps
z†! G=K, which are equivariant with respect to �1†, which acts on the universal
cover by deck transformations and on G=K via �.

Proposition 9.2. The space of hermitian structures on E D E� can be identified with
the space of �1†-equivariant functions u W z†! G=K.

For more details, we refer to [37, Proposition 2].

Harmonic flat bundles and Corlette–Donaldson theorem. For a point in the moduli
space of flat connections (a flat connection modulo gauge equivalence), we wish to
define a nice representative, a harmonic flat bundle. This representative should exist
whenever the point in the de Rham moduli space is semistable. We have seen in
Section 6 that this is the case whenever the monodromy is completely reducible.

Thus, to find the appropriate notion of a harmonic flat bundle, we have to translate
the property of being completely reducible from the Betti moduli space to the de Rham
moduli space, i.e., in terms of flat bundles.

Recall the Riemann–Hilbert correspondence:

� 2 Rep.�1†;GL.V // 7! .E�;r/ flat bundle given by E� D .z† � V /=�1†:

Clearly, a subrepresentation corresponds to a r-invariant subbundle. Thus, com-
pletely reducible representations correspond to completely reducible flat bundles.

Consider, for example, a hermitian structure h on the vector space V such that
Im.�/ � U.V; h/. If F is a r-invariant subbundle, then F?h as well and r D rF C
rF? since r is unitary.

Goal. Find a condition on r, where .E;r/ is a flat bundle, which ensures complete
reducibility of E.

For a fixed hermitian structure h, we can decompose r D dA C‰, where dA is a
unitary connection and‰ is the hermitian part of r. Locally, this is nothing but writing
a matrix as a sum of a hermitian and an anti-hermitian matrix.

Consider F � E a r-invariant subbundle. As complex bundles, we have E D
F ˚ F?. So, we can write

r D

 
r1 �

0 r2

!
with � 2 �1.†;Hom.F?; F //:
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Being reducible means that � D 0, so we look for a condition which forces � to
vanish. For that, the idea due to Corlette is to consider End.E/with induced connection
dA and the section s D � idF ˚ idF? . Decompose ri D dAi C‰i into unitary and
hermitian parts; hence,

r D

 
r1 �

0 r2

!
D

 
dA1 �=2

���=2 dA2

!
C

 
‰1 �=2

��=2 ‰2

!
:

Then, compute dAs:

dAs D

 
dA1 0

0 dA2

! 
� idF 0

0 idF?

!
C

" 
0 �=2

���=2 0

!
;

 
� idF 0

0 idF?

!�
D

 
0 �

�� 0

!
:

Hence,

h‰; dAsiL2 D

Z
†

.‰; dAs/h D

Z
†

tr

 
‰1 �=2

��=2 ‰2

! 
0 �

�� 0

!
D h�; �iL2 :

We also have h‰;dAsi D hd�A‰;si using the adjoint. So, to get �D 0, it is sufficient
to require

d�A‰ D 0:

Definition 9.3. A metric h on .E;r/ is harmonic if d�A‰ D 0, where r D dA C‰.

A flat bundle equipped with a harmonic hermitian metric is called harmonic flat
bundle.

Proposition 9.4. A bundle .E;r D dA C‰; h/ is a harmonic flat bundle if and only
if F.A/C‰ ^‰ D 0 and dA‰ D 0 D d�A‰.

Proof. The only thing to check is that r is flat. The curvature of r is F.A/C ‰ ^
‰C dA‰. The unitary part F.A/C‰ ^‰ and the hermitian part dA‰ have to vanish
both.

The main theorem which will give half of the non-abelian Hodge correspondence
is the Corlette–Donaldson theorem [7,9].

Theorem 9.5 (Corlette–Donaldson). A flat bundle .E;r/ admits a harmonic metric if
and only if it is completely reducible, i.e., if and only if its monodromy is completely
reducible. In addition, this harmonic metric is unique up to an overall positive constant
factor.
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In other words,

Repc:r:.�1†;G/ Š ¹flat G-bundlesº=gauge Š ¹harmonic G-bundlesº=constants:

This is the analog of the harmonic representative in each de Rham cohomology class.
Let us see how to prove one direction of the non-abelian Hodge correspondence

from the Corlette–Donaldson theorem: we can associate a Higgs bundle to a given flat
bundle .E;r/. Use a harmonic metric to decompose r D dA C‰.

Using a complex structure on†, we can further decompose‰DˆCˆ�h , whereˆ
is the .1; 0/-part of‰. The .0; 1/-part of the unitary connection dA gives a holomorphic
structure on E. Since dA‰ D 0, we also have d0;1A ˆ D 0. Hence, ˆ is a Higgs field.
So, to .E;r; h/ we can associate .E; d0;1A ; ‰1;0/ which is a Higgs bundle. The fact
that it is semistable comes from the second half, the Hitchin–Simpson theorem.

Harmonic map theory. To get an idea of the proof of the Corlette–Donaldson theorem,
we give a brief introduction to harmonic maps.

The general setting is as follows: consider two Riemannian manifolds .M; g/ and
.N;G/. To a smooth map f WM ! N we associate the so-called Dirichlet energy:

(9.1) E.f / D

Z
M

kdf 2kdvol.g/ D
Z
M

@f i

@x˛
@f j

@xˇ
Gijg

˛ˇ
p
jdet.g/jdx;

where we use the Einstein sum convention, x˛ are coordinates on M and .g˛ˇ / is the
inverse of the matrix .g˛ˇ /.

A map f is called harmonic if it is a critical point of E. This is the case if and only
if �g;Gf D 0, where �g;G is some generalization of the Laplacian, which explains
the name “harmonic”.

Some examples are as follows.
� For dimM D 1, a harmonic map f W M ! N is the same as a geodesic in N

parametrized by M .

� For dim N D 1, being harmonic is equivalent to �Mf D 0 where �M is the
Laplace–Beltrami operator.

� For dimM D 2, the energy only depends on a conformal class of g, i.e., the metrics
g and e'g for ' a function onM gives the same. In dimension 2, a conformal class
of a metric is the same as a complex structure, so we can do harmonic map theory
with M being a Riemann surface.

The main result of harmonic map theory is the following theorem due to Eells and
Sampson [10].
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Theorem 9.6 (Eells–Sampson). If .M; g/ and .N;G/ are compact Riemannian mani-
folds where N has a non-positive sectional curvature, then there is a unique harmonic
map in each homotopy class of functions ŒM;N �.

The main idea for the proof is to start with any function in a given class and to
apply a heat flow (some kind of steepest descent flow). One has to show that the flow
exists for a short time, then for all times and that when time goes to infinity, we get a
well-defined limit which is harmonic.

Now, we are ready to see the proof idea of the Corlette–Donaldson theorem. It
reduces nearly to the Eells–Sampson theorem, in an equivariant setting.

Remember that we wish to show that in the gauge-orbit of a flat connection (with
completely reducible monodromy) there is a harmonic representative. So, we have a
flat bundle .E;r/ with fixed hermitian metric h and we vary r in its gauge-orbit.

The first important idea is to notice that we can fix r and vary h instead. To
determine the action of a gauge transformation g on h, just note that ‰ is hermitian
with respect to h, i.e., ‰�h D ‰. So, g �‰ has to be hermitian with respect to g � h.
Locally, we can write ‰�h D h‰�h�1. Hence,

g‰g�1 D g �‰ D .g �‰/�g�h D .g � h/.g‰g�1/�.g � h/�1:

Using ‰ D ‰�h D h‰�h�1, we deduce that

g � h D ghg�;

which is the usual action on hermitian structures.
We have now a flat bundle .E;r/ with varying hermitian metric h. We have seen

in Proposition 9.2 that a hermitian metric is a �1†-equivariant map u W z†! G=K.
The second important observation is that h is harmonic if and only if u is harmonic

in the sense of harmonic map theory. Note that z† is the hyperbolic plane and G=K is
a symmetric space, so both carry a natural Riemannian structure. One can check that
changing u by a homotopy is equivalent to changing h by a gauge transform.

SinceK is the maximal compact subgroup ofG, the symmetric spaceG=K has non-
positive sectional curvature. Thus, we are almost in the setting of the Eells–Sampson
theorem. The only problem is that z† and G=K are not compact. But our map u is
equivariant and the fundamental domain is † which is compact. In his paper [7],
Corlette imitates the proof strategy of the Eells–Sampson theorem in the given setting.
I recommend his paper to find more details.

Finally, note that the Dirichlet energy for a flat connection r D dAh C‰h decom-
posed using a hermitian metric h is given by

Er.h/ D

Z
†

k‰hk
2
L2
dvol†:
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Harmonic Higgs bundles and the Hitchin–Simpson theorem. We present the notion
of a harmonic Higgs bundle, giving a link between Higgs bundles and flat connections.
The existence of harmonic representatives, the Hitchin–Simpson theorem, completes
the proof of the non-abelian Hodge correspondence.

To a stable Higgs bundle .E;ˆ/, we wish to associate a flat connection. The idea
is to fix a hermitian structure h on E. Since E is holomorphic, we get the Chern
connection rA. Then, we consider

A D ˆCrA Cˆ
�h :

The appearance of ˆCˆ�h is not surprising since we wish to get an equivalence with
harmonic flat bundles .E;r D dA C‰; h/. Since ˆ D ‰1;0, we have ‰ D ˆCˆ�h .

The strategy is to find a point in the gauge-orbit of .E; ˆ/, i.e., a point in the
moduli space MH , such that A is flat. There is one important observation to be made:
a C�-action on MH simplifying the flatness condition.

The flatness of A is a priori one complicated equation. The trick is to split this into
five much simpler equations. The fact which allows this decomposition is a C�-action
on MH given by

� � Œ.E;ˆ/� D Œ.E; �ˆ/�;

i.e., we simply scale the Higgs field. This is well defined since the scaling commutes
with the gauge action (where ˆ simply gets conjugated) and one easily checks that
.E; �ˆ/ stays stable.

Using this action, we are looking actually at a whole family of connections:

(9.2) A.�/ D �ˆCrA C �
�1ˆ�h :

The reason why to considerˆ�h with weight ��1 comes from twistor theory, explained
in Section 10.

The curvature of A.�/, which is a Laurent polynomial in�, is flat for all� if and only
if all its coefficients are zero. In a local chart where A.�/ D d C �ˆC AC ��1ˆ�h ,
we get

(1) ˆ ^ˆ D 0 and ˆ� ^ˆ� D 0 (coefficients of �2 and ��2),

(2) x@ˆC ŒA0;1; ˆ� D 0 and @ˆ� C ŒA1;0; ˆ�� D 0 (coefficients of � and ��1),

(3) F.A/C Œˆ;ˆ�� D 0 (coefficient for constant term).

Note that the couples of equations on the same line are equivalent (by taking the
Hermitian conjugate). Equation (1) is automatic since ˆ is of type .1; 0/ and we are
on a surface9. Equation (2) is also automatic since ˆ is a Higgs field, so holomorphic
(see Proposition 8.1).

9For the notion of a Higgs bundle on a higher-dimensional manifold, one requiresˆ^ˆ D 0 in the
definition. We see here why.
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The only remaining equation is the so-called Hitchin equation:

(9.3) F.A/C Œˆ;ˆ�� D 0:

Remark. One can obtain this equation as a dimensional reduction of the Yang–Mills
equation in dimension 4.

Definition 9.7. A harmonic Higgs bundle is a Higgs bundle .E;ˆ/ equipped with a
hermitian metric h such that Hitchin’s equation (9.3) holds.

The main result is the theorem of Hitchin [20] and Simpson [34].

Theorem 9.8 (Hitchin–Simpson). In the complex gauge orbit of a stable Higgs bundle
.E;ˆ/ with deg.E/ D 0, there is a unique (up to unitary gauge) harmonic representa-
tive if and only if .E;ˆ/ is polystable.

Note that for ˆ D 0, the Hitchin–Simpson theorem reduces to the Narasimhan–
Seshadri theorem, since the Hitchin equation becomes F.A/ D 0, giving a flat unitary
connection and .E; 0/ is polystable if and only if E is.

The proof is similar in spirit to the one of the Narasimhan–Seshadri theorem. If
there is a harmonic representative, one shows polystability by a direct argument, see,
for example, [38, Section 3.2].

For the converse, one defines a gradient flow using the functional

f .ˆ; h/ D

Z
S

F.A/C Œˆ;ˆ�h �2
L2
:

Note that the integrand is nothing but some L2-norm of the term from the Hitchin
equation. One has to show that the flow stays inside the gauge-orbit, that a minimizing
sequence .An; ˆn/ converges (for stable .E;ˆ/) and that the limit solves the Hitchin
equation. Again, details can be found in [38, Section 3.2] and the original papers by
Hitchin [20] and Simpson [34].

We will see another proof sketch, similar to our proof sketch of the Narasimhan–
Seshadri theorem, by interpreting the Hitchin equation as a moment map. To do so,
we will introduce the notion of hyperkähler geometry and the hyperkähler quotient in
Section 10.

Non-abelian Hodge correspondence. Now, we have the notions of harmonic represen-
tatives for both, flat bundles and Higgs bundles, the non-abelian Hodge correspondence
reduces to a simple observation, the equivalence of harmonic flat bundles and harmonic
Higgs bundles.

To a harmonic flat bundle .E;r D dA C ‰; h/, we associate the Higgs bundle
.E; x@E D d

0;1
A ; ˆ D ‰1;0/. Together with the hermitian metric h, we actually get a
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M
ps
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Figure 9.1
Proof scheme of non-abelian Hodge correspondence via harmonic representatives.

harmonic Higgs bundle since the flatness

F.A/C‰ ^‰ D 0

is equivalent to Hitchin’s equation

F.A/C Œˆ;ˆ�h � D 0

since ‰ D ˆCˆ�h .
In the reverse direction, to a harmonic Higgs bundle .E; x@E ; ˆ; h/, we associate

.E; dA C ˆC ˆ
�h ; h/, where dA is the Chern connection. This is a harmonic flat

bundle. Both constructions are inverse to each other.
This finishes the proof sketch of the non-abelian Hodge correspondence, which we

summarized in Figure 9.1.
Taking a step back, we can say that from a flat connectionr D dAC‰ decomposed

into a unitary and hermitian part, we can easily get a holomorphic structure d0;1A and a
Higgs field ‰1;0 (by forgetting half of the information). The difficulty lies in finding a
preferred decomposition, which is achieved by using a harmonic hermitian structure.

The more surprising part of the non-abelian Hodge correspondence is that from
half of the data, a holomorphic structure and a Higgs field, we can recover the flat
connection by choosing an appropriate hermitian structure. The flatness condition
reduces to solving Hitchin’s equation.

To get a better and deeper understanding of the correspondence, we introduce
hyperkähler geometry. The hyperkähler structure is the strongest possible geometric



A. Thomas 52

structure on a manifold (in a certain sense). This viewpoint will unify the character
variety and the moduli space of Higgs bundles into one big picture.

10. Hyperkähler geometry

We give an overview on hyperkähler manifolds, in particular, the quotient and
twistor construction. This allows to understand the non-abelian Hodge correspondence
as a natural diffeomorphism in the twistor space of the moduli space of Higgs bundles.
A nice reference is Hitchin’s paper [19].

Kähler trilogy. A Kähler structure on a manifold is a Riemannian, symplectic and
complex structure which interact nicely such that any two structures determine the
third.

To start, let us see what happens at one point, i.e., we reduce to linear algebra.
Consider R2n. We have the following correspondences between geometric structures
and their symmetry groups.
� Riemannian structure ! O2n.R/.
� Symplectic structure ! Sp2n.R/.
� Complex structure ! GLn.C/.

Proposition 10.1. The intersection of any two of these three groups is U.n/. See
Figure 10.1.

The group U.n/ corresponds to hermitian structures on R2n ŠCn. Our convention
is that a hermitian product h.X; Y / is C-linear in Y and anti-C-linear in X .

Proposition 10.2. If h 2 HermCC, then h D g C i!, where g is a Riemannian and
! a symplectic structure.

This realizes the Kähler trilogy in one equation. In addition, we have

!.X; iY / D Im.h.X; iY // D Im.ih.X; Y // D Re.h.X; Y // D g.X; Y /:

On a manifold, we gather these three structures together, which gives the following
definition.

Definition 10.3. A Kähler manifold is .M; g; !; I /, where g is a Riemannian, ! a
symplectic and I a complex structure such that

g.X; Y / D !.X; IY / 8X; Y 2 �.TM/:
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Sp2n.R/ O.2n/

U.n/

GLn.C/

Figure 10.1
Kähler trilogy for linear groups.

Note that in this definition, we consider the endomorphism I 2End.TM/ satisfying
I 2 D �id, which mimics the multiplication by i . Such a structure is called an almost-
complex structure. Any complex structure induces an almost-complex structure, but
the converse is not true. An almost-complex structure which comes from a complex
structure is called integrable. The symplectic form ! is usually called the Kähler form.

Using the fact that any two structures determine the third, we can equivalently
define a Kähler manifold in the following ways.
� Riemannian viewpoint: Riemannian manifold with almost-complex structure J

which is orthogonal (g.X; Y / D g.IX; IY /) and with vanishing covariant deriva-
tive (using the Levi–Civita connection).

� Complex viewpoint: Complex manifold with hermitian structure h such that Im.h/
is closed.

Example 10.4. Consider the simplest caseM DC with hermitian metric hD dz˝ d Nz.
Using real coordinates z D x C iy, we see that

h D .dx C idy/˝ .dx � idy/ D .dx2 C dy2/ � i.dx ^ dy/:

Hence, the real part of h is the standard Riemannian structure, and the negative imagi-
nary part is the standard symplectic structure on R2.

Other examples include the following.
� CP n is Kähler since the Hamiltonian reduction of CnC1 by S1 gives not only a

symplectic, but also a complex structure10.
� Complex submanifolds of Kähler manifolds are again Kähler, so, in particular, any

complex projective variety. In particular, all Riemann surfaces are Kähler.

10There is the notion of Kähler reduction as for symplectic manifolds.
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Proposition 10.5. The holonomy of a Kähler manifolds (the monodromy of the Levi–
Civita connection) is in U.n/.

This comes from the fact that the unitary group is the structure group of hermitian
products.

Remark. Two more important properties of Kähler manifolds from [16, Chapter 0,
Section 7].
� A metric is Kähler if and only if it is Euclidean up to order 2.
� The two possible Laplacians �g (from the Riemannian structure) and �@ (from

the complex structure) coincide up to a factor 2. This has many consequences, for
example the Hodge identities and the Lefschetz decomposition.

Hyperkähler trilogy. We get the same trilogy as for Kähler manifolds by shifting R

to C and C to the quaternions H.
Consider the vector space C2n which we can equip with the following geometric

structures.
� Complex symplectic structure$ Sp2n.C/.
� Quaternionic structure$ GLn.H/.
� Hermitian structure$ U2n.C/.

The starting point for hyperkähler geometry is the analog of Proposition 10.1.

Proposition 10.6. The intersection of any two of these three groups is Un.H/. See
Figure 10.2

The group Un.H/ corresponds to quaternionic scalar products. We will see below
that a quaternionic scalar product Q can be written as

Q D h � !CJ;

where h is a hermitian, !C a complex symplectic structure (both with respect to I )
and J a complex structure (from the quaternionic structure). This equation illustrates
the hyperkähler trilogy.

As for Kähler manifolds, we could give three equivalent definitions for hyperkähler
manifolds, but we restrict to the Riemannian viewpoint.

Definition 10.7. A hyperkähler manifold, HK manifold for short, is a Riemannian
manifold .M; g/ with three orthogonal covariant constant automorphisms I; J;K 2
End.TM/ satisfying the quaternionic relations I 2 D J 2 D K2 D IJK D � id.

We see that a hyperkähler manifold has several Kähler structures which together
equip the tangent space with a quaternionic structure. From the definition we get
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Sp2n.C/ U2n.C/

Un.H/

GLn.H/

Figure 10.2
Hyperkähler trilogy for linear groups.

three Kähler structures .g; I /, .g; J /, and .g;K/, but there are much more: a linear
combination ˛I C ˇJ C K is a complex structure if and only if .˛I C ˇJ C K/2 D
� id which is equivalent to ˛2 C ˇ2 C 2 D 1, which defines a sphere.

Therefore, a hyperkähler manifold has a 1-parameter family of Kähler structures,
indexed by CP 1.

Exercise 10.8. Formulate the equivalent ways to define a hyperkähler manifold from
the trilogy of groups.

We mentioned earlier that hyperkähler structures are the “strongest” geometric
structures on manifolds. This is true in the following sense: the Berger classification
gives a complete list of all possible holonomies of Riemannian manifolds. Recall
that the holonomy is the monodromy of the Levi–Civita connection in the tangent
bundle. In general, the holonomy group is O.n/. Any reduction of this structure group
corresponds to some geometric structure.
� SO.n/ corresponds to an orientation.
� U.n/ corresponds to a Kähler structure.

The smallest of all groups in Berger’s list is Un.H/ which corresponds, as you can
guess, to hyperkähler manifolds.

Example 10.9. The simplest example is the linear case M D H. The three complex
structures given by i; j , and k can be seen by the different identifications between H

and C2:

q D x0 C ix1 C jx2 C kx3 D .x0 C ix1/C .x2 C ix3/j

D .x0 C jx2/C .x3 C jx1/k

D .x0 C kx3/C .x1 C kx2/i:
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The corresponding symplectic structures !I ; !J , and !K can be computed from these
expressions. For example, we get

!I D dx0 ^ dx1 C dx2 ^ dx3:

We can consider the quaternionic scalar productQD dq˝ d Nq, where Nq D x0 � ix1 �
jx2 � kx3 is the conjugate. One can compute that

Q D dq ˝ d Nq D g � i!I � j!J � k!K D h � !Cj;

where h D g � i!I is hermitian (with respect to i ) and !C D !J C i!K is a complex
symplectic form. This illustrates the hyperkähler trilogy from Proposition 10.6.

From this example, we can extract some general facts: the form !C D !J C i!K

is a holomorphic symplectic structure (with respect to I ). In this context, we write !R

for !I . On an HK manifold, we have a quaternionic scalar product Q satisfying

Q D h � !CJ;

where h is the hermitian structure associated to I .
Since all the complex structures are on the same footing, you can change I to any

other and redefine !C and h. The only structure which will not move is Q. A change
of the basic complex structure is called a hyperkähler rotation (having the sphere of
complex structures in mind).

Other examples of HK manifolds are Hn and T �CP n (see Example 10.11 below).
Hyperkähler manifolds are much more rigid and rare than Kähler manifolds, in partic-
ular, no submanifold of HP n (including the whole quaternionic projective space) is
HK.

There are two general methods to construct HK manifolds: the hyperkähler quotient
and the twistor space construction.

Hyperkähler quotient construction. The hyperkähler quotient is very much modeled
on the symplectic quotient, i.e., the Hamiltonian reduction.

Consider a groupG with an action on a HK manifold .M;!I ;!J ;!K/, Hamiltonian
with respect to all three symplectic forms. From Section 4.2, we get three moment
maps �1; �2, and �3 which we can put together into a vector-valued moment map:

� WM ! g� ˝R3:

Theorem 10.10. For coadjoint orbits O1;O2;O3 which represent a regular value of
�, the quotient

M===G WD ��1.O1;O2;O3/=G

is a hyperkähler manifold.
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Concentrating on one complex structure I , we can split up � into �R D �1 and
�C D �2 C i�3:

� D .�R; �C/ WM ! g� ˚ g� ˝C:

The map �C is in fact holomorphic and corresponds to the moment map of the action
of the complexified group GC on .M;!C/. The HK quotient can then be computed in
two steps.

(1) Compute ��1C .OC/ which is Kähler (complex submanifold of a Kähler manifold).

(2) Perform the Hamiltonian reduction with respect to the G-action:

��1C .OC/ �G D
�
��1R .O1/ \ �

�1
C .OC/

�
=G DM===G:

By the Kempf–Ness theorem (which works also in the Kähler setting), we get

(10.1) M===G D ��1C .OC/ �G D ��1C .OC/=GITG
C
DM �GC;

where the last quotient is the holomorphic Hamiltonian reduction. All these equalities
are very helpful to compute HK quotients as we will see below.

Example 10.11. Consider the action of G D S1 on Cn ˚ .Cn/� D T �.Cn/ given by
�:.z; �/D .�z;��1�/. One checks, using for example an identification Hn Š T �.Cn/,
that

!R D
i

2
.dz ^ d Nz C d� ^ dx�/ and !C D dz ^ d�;

where we use the shorthand notation dz ^ d Nz for
P
i dzi ^ d Nzi and similar for � .

To � 2 R D Lie.S1/, the associated vector field is X� .z; �/ D
�
i�z
�i��

�
. Hence,

iX�!1.ız; ı�/ D
i

2

�
.i�zı Nz C i� Nzız/C .�i��ıx� � i�x�ı�/

�
D ı

�
�
�

2
.jzj2 � j�j2/

�
:

So, �R.z; �/ D �.
1
2
.jzj2 � j�j2//. Further, we have

iX�!C.ız; ı�/ D i�zı� C i��ız D ı.i�z�/;

so �C.z; �/ D iz� D i�.z/.
Finally, the reduction over .�1=2; 0/ gives

T �Cn===S1 D ¹.z; �/ j �.z/ D 0; jzj2 � j�j2 D 1º=S1 Š T �.CP n�1/:

The last identification needs some reflection. For � D 0, we simply get CP n�1. For
� ¤ 0, the condition �.z/ D 0 shows that � is a cotangent vector to z considered as a
point in the projective space.
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Without any precise computation, we could also compute

T �Cn===S1 D T �Cn � C� D T �.Cn=GIT C�/ D T �.CP n�1/;

where we used equation (10.1) and the equality T �.X=GITG/ D T
�X �G (see Exer-

cise 4.25).
One Kähler structure of T �.CP n�1/ comes from ��1C .0/ � S1. To get all the

others, we have to consider ��1C .˛/ � S1 with ˛ 2 C�. These Hamiltonian reductions
are affine bundles over CP n�1 with associated vector bundle T �.CP n�1/.

Twistor construction. Another way to construct HK manifolds and to get a pictorial
approach to them is the twistor space construction. The basic idea is to gather all Kähler
structures together in one slightly larger space.

We have seen that on a HK manifold M , there is a 1-parameter family of Kähler
structures indexed by CP 1. Consider

Z DM �CP 1;

equipped with the almost-complex structure I.m; �/ D I�.m/˚ I0, where I0 is the
(unique) standard complex structure on CP 1 and I� the complex structure on M
associated to � 2 CP 1.

It turns out that .Z; I /, the so-called twistor space, is a complex manifold (i.e.,
that I is integrable). Further, the map to the second factor Z ! CP 1 is holomorphic.
Note that as complex manifold, Z is not a direct product between M and CP 1 (only
as smooth manifolds).

We draw the following picture for the twistor space Z: it is a M -bundle over CP 1

where all fibers are diffeomorphic (to M ), but not biholomorphic (since the complex
structure may change). Diametrical opposite points correspond to conjugated complex
structures (I becomes �I D xI ).

.M; I /

.M;�I /

.M; J /

On Z, there is a real structure, i.e., an involution given by

r.m; �/ D .m;�1=x�/:

Note that �1= N� is the diametral opposite point to � 2 CP 1.
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We wish to recover the HK manifold M from Z. Any fiber of p W Z ! CP 1 is
diffeomorphic to M , but this does not recover the hyperkähler structure. For this, we
need the information of all fibers. The idea is simply thatM is embedded into the space
of sections via the constant section .m; �/ with m 2M fixed and � 2 CP 1 varying.

An important observation is the following proposition.

Proposition 10.12. The holomorphic sections ofZ!CP 1 which are invariant under
the real structure r are the constant ones.

This allows us to recover M from the twistor space. The real and holomorphic
sections are called twistor lines.

We can revert the whole procedure to construct HK manifolds from twistor spaces.
This goes as follows (see [22, Theorem 3.3]).

Theorem 10.13. Let Z be a complex .2nC 1/-dimensional manifold with a holomor-
phic map � W Z ! CP 1 such that the following hold.
(1) � allows a family of holomorphic sections with normal bundle O.1/˝C2n.
(2) There is a holomorphic symplectic structure in each fiber, depending quadrati-

cally11 on � 2 CP 1.
(3) There is a compatible real structure on Z inducing the antipodal map on CP 1.
Then, the space of real and holomorphic sections is a hyperkähler manifold with twistor
space Z.

Below are some remarks on the following conditions.
� The requirement to have normal bundle O.1/˝ C2n roughly means that any 2

points (not in the same fiber) define a unique holomorphic section, since sections
of O.1/ are just affine functions. Hence, any point P 2 Z defines a unique real
holomorphic section, passing through P and r.P /.

� The holomorphic symplectic form can be written as!.�/D �!C C i!RC �
�1 x!C ,

which satisfies !.�1=x�/ D !.�/, the compatibility condition between the real
structure and !.

Example 10.14. Let us analyze the twistor space of M D H.
We claim that Z is the total space of the bundle O.1/˚O.1/ over CP 1. The fiber

has complex dimension 2 and condition (1) above is trivially satisfied.
A section is of the form s.�/ D .a�C b; c�C d/. Using these coordinates, the

real structure is given by r.�; a; b; c; d/ D .�1=x�; Nd;�Nc;�Nb; Na/. You can check that

11Abstractly, it is a section ofƒ2T �F ˝O.2/, where F denotes the fiber.
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r2 D id. Another way to understand r is to compose the antipodal map � 7! �1=x�
with the anti-involution .z;w/ 7! . Nw;�Nz/, where z;w are the coordinates of the fibers.
Indeed, we get

r.s/ D r.a�C b; c�C d/ D .�Nc��1 C Nd; Na��1 � Nb/ D . Nd� � Nc;�Nb�C Na/;

where we used the transition function � 7! ��1 between the two charts of CP 1.
Hence, a section is r-invariant if and only if a D Nd and b D �Nc. So, the twistor

lines are given by
s.�/ D .a�C b;�Nb�C Na/:

This corresponds to the matrix representation of quaternions, where a quaternion
x0 C ix1 C jx2 C kx3 with a D x0 C ix1 and b D x2 C ix3 is represented by

q 7!

 
a �Nb

b Na

!
:

Below are two other examples without details, presented only through their twistor
space picture.
� The twistor space of T �.CP n/: all fibers, apart from˙i , are biholomorphic to an

affine bundle over CP n with associated vector bundle T �.CP n/.
� Coadjoint orbits of complex simple Lie groups are hyperkähler. The maximal

coadjoint orbit can be identified with G=H , where H is the Cartan group of G.
Again, all fibers are biholomorphic, apart from the fibers over˙i where we see the
cotangent bundle to the flag variety T �.Gc=B/ (where Gc denotes the compact
form of G and B a Borel subgroup of Gc).

A source for HK structures with a twistor space where all fibers, apart over two
opposite points, are biholomorphic is the following (see [11, 24]).

Theorem 10.15 (Feix–Kaledin). If M is a Kähler manifold, then there is a neighbor-
hood of the zero-section M � T �M which has a C�-invariant hyperkähler structure,
where the C�-action on T �M is given by �.m; v/ D .m; �v/.

Character varieties and Higgs bundles again. We will show that the moduli space
of Higgs bundles MH is hyperkähler by a quotient construction and describe its twistor
space.

Consider A, the space of all G-connections (G D GLn.C/) on a trivial complex
bundle E over a Riemann surface S with fixed hermitian structure. The space A has a
holomorphic symplectic form given by

!C D

Z
S

tr ıA ^ ıA:
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It has also a Riemannian metric given by

kAk D

Z
S

tr.A1;0 ^ A1;0�/ � tr.A0;1 ^ A0;1�/;

where we used the complex structure on S to decompose A. Hence, A is an infinite-
dimensional (flat) hyperkähler manifold.

Consider further the space of unitary gauge transformations G which acts on A,
preserving the HK structure. From [19, Section 6.3], we have the following proposition.

Proposition 10.16. The moment maps are given by �C.A/ D F.A/ the curvature
(Atiyah–Bott) and�R.A/DF

0 �F 00 whereF 0 andF 00 are the curvatures of the unique
unitary connections r 0 and r 00 with .r 0/1;0 D A1;0, respectively, .r 00/0;1 D A0;1.

Further, we have F 0 D F 00 if and only if the metric h is harmonic.

In the last statement, instead of varying A in its gauge orbit, we vary the hermitian
structure h, a trick we have already seen for proving the Corlette–Donaldson theorem.

Therefore, the HK quotient over the zero coadjoint orbit is12

A===G D ¹flat harmonic bundlesº=G D Rep.�1†;G/;

where we used the Corlette–Donaldson theorem 9.5, stating that in each G C-orbit of
a flat connection, there is a unique (up to G -gauge) harmonic representative. We can
also use the multiple ways to compute the HK quotient (see equation (10.1)):

A===G D ��1C .0/=G C
D Rep.�1†;G/;

where we used the Atiyah–Bott theorem 5.1.
Anyway, we see that the character variety Rep.�1†;GLn.C// is a hyperkähler

manifold.
Still another way to do the quotient, which is not completely rigorous, is the

following. Start from

A===G D A � G C (equation (10.1)):

Then, notice that A D �1.S;g/ D T ��0;1.S;g/ (see equation (8.1)). Modulo some
stability conditions, we then get

A===G D T ��0;1.S;g/ � G C
� T �.�0;1.S;g/=G / D T �Hol.S;G/:

Note that the moment map of the G C-action on T ��0;1.S;g/ is nothing but the Hitchin
equation!

12We neglect all difficulties due to the fact that A is infinite-dimensional.
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Figure 10.3
Twistor space of moduli space of Higgs bundles.

Finally, we know that the moduli space of Higgs bundles MH is an open dense
subset of T �Hol.S;G/ (see equation (8.2)). It turns out that the stability conditions
we have neglected precisely describe MH .S;G/:

A===G DMH .S;G/:

In particular, the moduli space of Higgs bundles is a hyperkähler manifold, the same
as the character variety!

The twistor picture of this hyperkähler manifold looks like this in Figure 10.3.
All the fibers are diffeomorphic, but only the fibers for � 2 C� are also biholo-

morphic (to the character variety). Over the points � D 0 and � D 1, we see the
moduli space of Higgs bundles MH .S;G/ and its conjugate. A twistor line is given
by a quadratic expression

A.�/ D �ˆCrA C �
�1ˆ�h ;

which is the form we considered in equation (9.2) to prove Hitchin–Simpson theorem.
The reality constraint is given by

�A.�1=x�/�h D A.�/;

which explains the quadratic depends in � of A and the appearance of the term ��1ˆ�h .

Theorem 10.17. The moduli space of Higgs bundles and the character variety are two
incarnation of the same hyperkähler manifold. The twistor lines are connections of the
form

A.�/ D �ˆCrA C �
�1ˆ�h :
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Note that the complex structure on MH .S;G/ comes from the complex structure
of the surface, while the complex structure on Rep.�1†;G/ comes from the complex
Lie group G.

The twistor space approach explains several phenomena in a concise way.
� The need for a real structure leads to the consideration of a hermitian structure h

on the bundle.
� The fact that a twistor line is determined by a point P (here ˆ) and its conjugate

r.P / (here ˆ�h) partially explains the form of A.�/.
� All fibers are canonically diffeomorphic via the twistor lines, which gives the

diffeomorphism between �D 0 and �D 1: the non-abelian Hodge correspondence!
� The C�-action on MH .S; G/ explains why all fibers over � 2 C� are the same

Kähler manifold. Indeed applying the non-abelian Hodge correspondence to `ˆ
instead of ˆ is equivalent to choosing � D ` instead of � D 1.

11. Application: Hitchin components

We have analyzed character varieties Rep.�1†;G/ for unitary groups and complex
groups. What about other real forms of SLn.C/, in particular, the split real form
SLn.R/?

The question turns out to be quite difficult. For a complex simple Lie group, the
character variety is connected, but this is not true any longer for real groups, where many
components can appear. Already, the count of these component is highly non-trivial.

The main tool we have to analyze any kind of character variety is the non-abelian
Hodge correspondence, sinceG �GC allows to go to the complex group. The question
above becomes: What kind of Higgs bundle corresponds to SLn.R/? We have seen
that the unitary group corresponds simply to ˆ D 0 (vanishing Higgs field), since the
non-abelian Hodge correspondence reduces to the Narasimhan–Seshadri Theorem 7.11
in the unitary case.

Motivation. The main motivation for studying character varieties for split real forms
is the link to geometric structures. ForG D SL2.R/ (or more precisely for PSL2.R/D
SL2.R/=˙ id) and † a surface of genus at least 2, there is a connected component
of the character variety, called the Teichmüller space, describing several geometric
structures of the surface:

Teich.†/ D ¹complex structuresº=Diff0.†/
D ¹hyperbolic structuresº=Diff0.†/
D connected component of Rep.�1†;PSL2.R//;
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where Diff0.†/ denotes the identity component of the diffeomorphism group of †. A
hyperbolic structure is a Riemannian metric with constant curvature equal to �1.

The link between the character variety, hyperbolic and complex structures goes as
follows: equip a surface † with a complex structure, so it becomes a Riemann surface
S . Then, its universal cover z† also gets a complex structures (since a complex structure
is a local property). The famous Poincaré uniformisation theorem asserts that any
simply connected Riemann surface is either CP 1;C or the hyperbolic plane H2. For
† of genus at least 2, the universal cover has the topological type of H2, so by the
uniformisation theorem it is biholomorphic to H2.

The fundamental group �1† acts on z† by deck transformations which are isome-
tries. Since the isometry group of H2 is PSL2.R/, we get a representation � W �1†!
PSL2.R/. It is this representation which allows to recover S from H2 since S D
H2=�.�1†/. It turns out that two complex structures obtained by this quotient are
equivalent under Diff0.†/ if and only if the representations are conjugated. Therefore,
we get an inclusion of Teich.†/ into the character variety. It is then easy to check that
it is a connected component. Even better: it is the connected component of discrete
and faithful representations (since the quotient of H2 by � is a manifold).

Hitchin components. In the seminal paper [21], Nigel Hitchin constructs a connected
component in Rep.�1†; PSLn.R// (in fact, more generally for split real groups G)
with similar properties to Teichmüller space. In particular, all representations of the
so-called Hitchin component are discrete and faithful.

Consider a Riemann surface S and fix a spin structure K1=2 (a line bundle with
square the canonical bundle K D T �S ). We have seen in Example 8.5 that 

V D K1=2 ˚K�1=2; ˆ D

 
0 0

1 0

!!
is a stable Higgs bundle.

To get a bundle of rank n, take the symmetric productE D Symn.V /DK.n�1/=2˚

K.n�3/=2 ˚ � � � ˚K�.n�1/=2. For the Higgs field, we choose a matrix with identical
entries along the parallel lines to the main diagonal:

(11.1) ˆ D

0BBBBBB@
0 t2 t3 � � � tn

1 0 t2 � � � tn�1

0 1 0
: : :

:::
:::
: : :

: : :
: : : t2

0 � � � 0 1 0

1CCCCCCA :

The entry ti is a holomorphic section of Hom.Kn�.2i�1/=2; Kn�.2i�3/=2 ˝K/ Š
Ki . To show stability, notice that for ti D 0 for all i , we get a stable Higgs bundle by the
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same argument as for the case n D 2. Then, there is a diagonal gauge transformation
which transforms tk to �k�1tk for � 2 C�. Hence, we can get arbitrarily close to
tk D 0 8 k. Since stability is an open condition, we see that our .E;ˆ/ is stable.

Theorem 11.1 (Hitchin). The flat connections associated to .E;ˆ/ in equation (11.1)
via the non-abelian Hodge correspondence to describe a connected component of
Rep.�1†;PSLn.R//.

Since ti 2H 0.S;Ki /, we get a parametrization of the Hitchin component Hit.n;†/
by
Ln
iD2H

0.S;Ki /. For n D 2, the Hitchin component coincides with Teichmüller
space. Notice that all these components are contractible.

Remark. The Hitchin component contains all the representations of the form

(11.2) �1† ����!
fuchsian

PSL2.R/ �����!
principal

PSLn.R/;

where the first map is a discrete and faithful representation (a point in Teichmüller
space) and the second is a canonical map which corresponds to the unique irreducible
representation of dimension n of PSL2.R/.

To strategy of the proof is to construct an involution on the Lie algebra g with fixed
points the split real form. Using the uniqueness of the non-abelian Hodge correspon-
dence, we can conclude that the monodromy is fixed by the involution.

Proof. Let h be the harmonic metric on E associated to .E; ˆ/. Denote by � the
compact real form associated to h, i.e., �.M/ D �M �h . Let � be minus the “skew-
transpose”, i.e., which sends ei;j to �enC1�j;nC1�i (where ei;j denote the standard
matrix entries).

Lemma 11.2. The map � D �� D �� is an involution corresponding to the split real
form sln.R/.

In a chart where M �h D M �, the map � turns a matrix by 180 degree and con-
jugates all the entries. It is interesting to directly check that this is an Lie algebra
anti-homomorphism (i.e., that �.ŒA;B� D �Œ�.A/; �.B/�/). We refer to [21, Proposi-
tion 6.1] for a proof of the lemma.

By definition of ˆ, we have �.ˆ/ D �ˆ. Hence,

�.ˆCˆ�h/ D �.ˆ � �.ˆ// D ��.ˆ/Cˆ D ˆCˆ�h :

Let .ˆ;A/ be the flat connection which solves Hitchin’s equation. Then, .�ˆ;A/ is also
a solution. Further, .�.ˆ/; �.A// D .�ˆ; �.A// is again a solution. By uniqueness of
the non-abelian Hodge correspondence, we get �.A/ D A. Thus,

�.A/ D �.�.A// D �.A/ D A:
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MH

xMH

Rep.�1†;PSLn.C//
[

Hit.n;†/

non-abelian Hodge
correspondence

#Ln
iD2H

0.Ki /

Hitchin
fibration

Hitchin
section

Figure 11.1
Hitchin component via non-abelian Hodge correspondence.

Therefore, the flat connection ˆCrA Cˆ�h is invariant under � , so its monodromy
is in the split real form PSLn.R/. A topological argument (dimension count and open-
closed property) shows that we get a component of Rep.�1†;PSLn.R//.

We can describe Hitchin’s construction in the twistor picture (see Figure 11.1): there
is a map, the so-called Hitchin fibration, MH !

Ln
iD2H

0.S;Ki / given by Œ.E;ˆ/� 7!
det.ˆ� t id/, i.e., the characteristic polynomial of the Higgs field. The coefficients are
holomorphic differentials. The .E;ˆ/ considered above in equation (11.1) is a section
of the Hitchin fibration.

The image of the Hitchin section in the character variety under the non-abelian
Hodge correspondence is inside the PSLn.R/-character variety and forms the Hitchin
component.

12. Generalizations and research directions

There are various generalizations, some very active research projects, of the non-
abelian Hodge correspondence. We present a selection here.

Reductive groups G . We restricted mostly attention to G D GLn.C/ in the previous
chapters. Nearly all can be generalized to reductive groups (direct sum of simple and
abelian Lie groups), typically subgroups of GLn.C/. For the bundles, this means that
its structure group is G, so the fibers carry some extra geometric structures, invariant
under parallel transport. Below are some examples:
� G D SLn.C/: the fiber carries a fixed volume form,
� G D SOn.R/: the fiber carries a scalar product,
� G D Sp2n.R/: the fiber carries a symplectic structure.



A gentle introduction to the non-abelian Hodge correspondence 67

For general G, the notion of a principal G-bundle has to be used.
On the Higgs bundle side, there is the notion of a G-Higgs bundle for a complex

Lie group G. The non-abelian Hodge correspondence reads

MH .S;G/ Š Rep.�1†;G/:

For real forms GR, there is an appropriate notion of a GR-Higgs bundle (which is
still a holomorphic object!), developed in [14], giving

MH .S;G
R/ Š Rep.�1†;GR/:

This generalizes Hitchin’s construction in the split real case.
With these techniques, the number of components of character varieties can be

counted. The study of components consisting entirely of discrete and faithful represen-
tations (called higher Teichmüller components) is called higher Teichmüller theory. I
recommend the nice introduction of Anna Wienhard [40].

Some active research tasks include the following.
� Determine the topology (Betti numbers, Hilbert–Poincaré polynomial) of the com-

ponents of the character variety for real groups GR.
� Find geometric structures whose moduli spaces are these components. In particular,

find a geometric interpretation of the Hitchin components.
� Characterize and classify all higher Teichmüller components. A recent breakthrough

is the notion of ‚-positivity in [17]. See also [6] for the Higgs bundle analog.

Non-trivial complex bundles. In the case where the underlying complex vector bundle
E is not trivial, we cannot hope for the existence of flat connections. But we can get as
close as possible: we can get projectively flat connections.

A flat connection allows to restrict the transition functions of the bundle to be con-
stant. A projectively flat connection allows to restrict to homotheties (so the transition
functions of the projectivized bundle are constant). The curvature of a projectively flat
connection is a central element of�2.S;g/, i.e., a constant multiple of the identity. To
be more precise, on a holomorphic bundle E over a Riemann surface with Kähler form
! (simply an area form in this case), the curvature of a projectively flat connection r is

(12.1) F.r/ D �2i��.E/! id :

On the side of character varieties, a projectively flat connection on E corresponds
to a representation of a central extension of �1†, or equivalently to a twisted represen-
tation of �1†. The central extension b�1† is defined by

1! Z! b�1†! �1†! 1;
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or in terms of a presentation by

b�1† D
�
ai ; bi ; c

ˇ̌̌̌
1 � i � g; c central;

Y
i

Œai ; bi � D c

�
:

A twisted representation is a map � W �1†!G such that �.
Q
i Œai ; bi �/D �

d
n id, where

�n is an nth root of unity and n D rk.E/ and d D deg.E/. We then have

MH;deg.E/Dd .S;G/

Š Rep.b�1†;G/ D
²
.ai ; bi / 2 G

2g

ˇ̌̌̌ Y
i

Œai ; bi � D �
d
n id

³�
G

D ¹projectively flat connectionsº=G :

Compact Kähler manifolds. The non-abelian Hodge correspondence can be gen-
eralized from compact Riemann surfaces to compact Kähler manifolds X . For this,
Simpson [34] generalized the notion of a Higgs bundle. Roughly speaking a Higgs
fieldˆ is still a holomorphic section of End.E/˝K (whereK is the canonical bundle
of X , i.e., the determinant bundle of T �X ), such that ˆ ^ˆ D 0.

A first step is the generalized Narasimhan–Seshadri theorem, giving the equivalence
between polystable holomorphic bundles and certain connections called hermitian
Einstein connections. These are connections r satisfying

F.r/ ^ !n�1 D �.E/!n id;

where ! is the Kähler form on X and �.E/ is some constant depending on E. Note
the similarity to equation (12.1).

The Hitchin–Kobayashi correspondence asserts that a holomorphic bundle over a
compact Kähler manifold allows a hermitian Einstein connection if and only if it is
polystable. In terms of moduli spaces:

Holps.X/ Š ¹hermitian Einstein connectionsº=G :

The second step is to add the Higgs field. The connections now have to satisfy

.F.rA/C Œˆ;ˆ
��/ ^ !n�1 D �.E/!n id :

These are called Hermitian Yang–Mills connections. In the case where the underlying
complex vector bundle E is trivial, we get the non-abelian Hodge correspondence for
Kähler manifolds:

MH .X;G/ Š Repc:r:.�1X;G/:

The moduli space of stable Higgs bundles is still hyperkähler under mild assumptions,
see, for example, [4].
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Parabolic Higgs bundles. Let Sg;n be a Riemann surface of genus g with n marked
points with underlying surface †g;n. We can consider meromorphic connections with
simple poles at the marked points. When these marked points are considered as bound-
ary components, we have seen that it is natural to fix the monodromy of a flat connection
around each boundary component (to get a symplectic moduli space).

The corresponding notion for holomorphic bundles is called a parabolic structure,
which roughly speaking is a bundle with fixed (partial) flags in the fibers over the
marked points. The stable parabolic bundles correspond to unitary representations
of �1†g;n (see [30]). Going further to the non-compact group GLn.C/, there is the
notion of a parabolic Higgs bundle and harmonic metrics with singularities at the
marked points such that

(12.2) M
para
H .Sg;n;GLn.C// Š Rep.�1†g;n;GLn.C//:

Current research directions consist in the following.
� Find the correct notion of a parabolic principal G-Higgs bundle generalizing

the diffeomorphism (12.2). To get an overview on different approaches, see, for
example, the introduction of [27].

Wild character varieties. In the same setting, one might consider meromorphic con-
nections onSg;n with higher-order poles at the marked points. For a pole of order at least
2, the monodromy around the marked point is not sufficient anymore to characterize
the gauge class of the meromorphic connection.

The extra data you need is called the Stokes data. The corresponding character
varieties of meromorphic connections and fixed Stokes data are called wild character
varieties. They are studied by Philip Boalch [5] and give surprising links to quantum
groups and integrable systems. In particular, there is a generalized Atiyah–Bott reduc-
tion, showing that the space of generalized monodromies (including the Stokes data) is
a symplectic space.

Non-holomorphic setting. Many deep results on the character variety, which depends
only on the topology of the surface, are proven using holomorphic techniques by fixing
a complex structure on †, turning it into a Riemann surface S . Often, it turns out
that the final results are independent of the complex structure chosen, but it is highly
non-trivial to prove it.

One instance is the “quantization” of character varieties. We have seen that the
character variety is symplectic. Fixing a complex structure on † gives a compatible
complex structure on Rep.�1†; G/, so it becomes a Kähler manifold. For Kähler
manifolds, there is a procedure to quantize them, called geometric quantization. This
quantization does not depend on the complex structure, but this is not at all obvious.



A. Thomas 70

Another situation where the rigidity of holomorphic structures is an obstacle
is the following: there is a natural action of the mapping class group MCG.†/ D
Diff.†/=Diff0.†/ on Teichmüller space, and also on Hitchin components (considered
as deformations of representation of the form �1S ! PSL2.R/! PSLn.R/). This
action is impossible to see in Hitchin’s parametrization since the mapping class group
changes the complex structure.

Open question 12.1. Is there a non-holomorphic approach to character varieties,
linking them to geometric structures on smooth bundles or the surface itself?

In particular, this includes the question formulated earlier about the existence of a
geometric structure on the surface whose moduli space is the Hitchin component.

Here is where my own research comes into play. In [12], together with Vladimir
Fock, we introduced the notion of a higher complex structure, a geometric structure on
a surface generalizing the complex structure. The main conjecture is that the moduli
space of higher complex structures T n is canonically diffeomorphic to the Hitchin
component. Moreover, the cotangent bundle T �T n should be diffeomorphic to an
open subset of Rep.�1†;SLn.C// which looks very similar to the non-abelian Hodge
correspondence.

Let me give a flavor of this conjectural landscape: a higher complex structure (of
order n) induces a bundle V of rank n over † together with a matrix-valued 1-form
ˆ D ˆ1dx Cˆ2dy where ˆ1 and ˆ2 are two commuting nilpotent matrices. This
looks a bit similar to a Higgs bundle, but ˆ is not holomorphic here, but nilpotent. A
point in the cotangent bundle T �T n corresponds to a deformation of ˆ away from the
nilpotent locus.

Conjecture 12.2. The space T �T n has a hyperkähler structure near the zero-section.
All fibers in the twistor space, apart from two, are diffeomorphic to an open subset U
of Rep.�1†;SLn.C// and the zero-section corresponds to the Hitchin component.

The twistor picture can be drawn as follows (see [35, Chapter 10]):

T �T n

xT �T n

U � Rep.�1†;PSLn.C//
[

Hit.n;†/

#

T n

canonical
projection

zero-
section
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Notice the similarities with Figure 11.1, the twistor picture which constructs the
Hitchin component. In particular, the analog of the Hitchin fibration is much simpler: it
is just the projection map, and the Hitchin section is the natural inclusion T n � T �T n.
The conjecture that the zero-section corresponds to the Hitchin component can be seen
as an analog of the Narasimhan–Seshadri theorem: for vanishing cotangent vector, the
monodromy of the flat connection reduces to a real form. In our case, we get the split
real form, while for Higgs bundles, we get the compact real form.

Remark. A good reason to believe in the conjecture is the following: Hitchin’s com-
ponent has Goldman’s symplectic structure and the moduli space of higher complex
structure carries a natural complex structure. If both combine to a Kähler structure,
then there is an HK structure near the zero-section of T �T n by the Feix–Kaledin
Theorem 10.15.

For n D 2, the situation is well understood: higher complex structures of order 2
are nothing but usual complex structures, so

T 2
D Teich.†/:

Further, T �T 2 is the space of complex projective structures and the map to Rep.�1†;
SL2.C// is given by the monodromy of the CP 1-structure. Its image is an open dense
subset proven in [13].

The question about what kind of geometric structures represent points in T �T n, a
generalization of complex projective structures, is open.

Other directions. A non-exhaustive list.
� Quantization of character varieties: the celebrated Verlinde formula gives the

dimension of the Hilbert spaces associated to the geometric quantization. The link
to quantum gravity is lurking.

� p-adic non-abelian Hodge correspondence: finding an analog in the p-adic world
is very challenging and linked to the geometric Langlands program. To give one
example, Ngô’s proof of the fundamental lemma uses the Hitchin fibration.

Acknowledgments. I warmly thanks Vladimir Fock, from whom I learned most of the
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for helpful discussions.
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