
Interfaces Free Bound. (Online first)
DOI 10.4171/IFB/521

© 2024 European Mathematical Society
Published by EMS Press

Time-global existence of generalized BV flow
via the Allen–Cahn equation

Kiichi Tashiro

Abstract. We show that a mean curvature flow obtained as the limit of the Allen–Cahn equation is
not only a Brakke flow but also a generalized BV flow proposed by Stuvard and Tonegawa (2024).

1. Introduction

One of the most important geometric flows, the mean curvature flow (henceforth referred
to as MCF), has been studied in the mathematical literature since the 1970s. The unknown
of MCF is a one-parameter family ¹Mtºt�0 of surfaces in the Euclidean space (or more
generally, some Riemannian manifold) such that the normal velocity vector v ofMt equals
its mean curvature vector h at each point for every time, that is, vD h onMt . Given a com-
pact smooth surface, a unique smooth solution exists until singularities such as shrinkage
and neck pinching occur. To consider the solutions that allow singularities, various frame-
works of weak solutions of the MCF have been proposed; we mention the Brakke flow [1],
the level set solution [2,3], the BV flow [17], theL2 flow [20], the De Giorgi-type flow [6],
and the generalized BV flow [24].

The Allen–Cahn equation is the following simple reaction-diffusion semilinear PDE
that can produce a MCF in the singular perturbation limit:´

@t'
" D �'" � W 0.'"/

"2
on Rn � .0;1/;

'".�; 0/ D '"0.�/ on Rn:
(AC)

Here " > 0 is a small parameter and W is a double-well potential with local minima
at ˙1, for example, W.s/ WD .1 � s2/2=2. We are interested in the characterization of
the limit problem as "! 0, where one expects that '" � ˙1 for a bulk region, and the
transition layer ¹'" � 0º moves by the mean curvature. It is known in the most general
setting of geometric measure theory that the limit energy concentration measure �t is a
Brakke flow [10, 30]. The purpose of this paper is to show that the MCF arising from the
Allen–Cahn equation is a generalized BV flow in addition to being a Brakke flow. It is
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natural to consider the relationship between the phase function ' and the Brakke flow �t ,
and we prove that ' satisfies the BV-type formula. More specifically, the main claim is
the following, roughly speaking:

Theorem. Let ¹�tºt�0 be the Brakke flow and '.x; t/ D �Et .x/ be the phase function
obtained as a limit of (AC). Then, for all test functions � 2 C 1c .R

n/ and 0� t1 < t2 <1,
we haveZ

Rn

�.x/'.x; t/ dx
ˇ̌̌t2
tDt1
D

Z t2

t1

Z
Rn

�.x/.h.x; t/ � �.x; t// d jr'.�; t /j.x/dt; (1.1)

where h.�; t / is the generalized mean curvature vector of �t , jr'.�; t /j is the perime-
ter measure of the phase function '.�; t /, and �.�; t / is the unit outer normal vector
of jr'.�; t /j.

Note that (1.1) gives an explicit formula for the volume change of the phase; assuming
that the initial datum E0 is bounded, we have

Ln.Et2/ �Ln.Et1/ D

Z t2

t1

Z
Rn

.h.x; t/ � �.x; t// d jr'.�; t /j.x/dt:

For smooth MCFs, the above formula holds naturally, while it is not obvious for gen-
eralized MCFs. Luckhaus and Sturzenhecker [17] introduced the notion of BV flow by
characterizing the motion law of the boundary using (1.1) and BV functions. More pre-
cisely, a family of sets of finite perimeter ¹Etºt�0 is a BV flow if the perimeter mea-
sures ¹jr�Et jºt�0 have the generalized mean curvature vector h.�; t / satisfying (1.1).
The generalized BV flow proposed by Stuvard and Tonegawa [24] is a pair consisting
of a phase function and Brakke flow, which allows possible higher-integer multiplici-
ties (� 2). They proved the existence under a very general setting (even with multi-phase
cases). If (1.1) holds, it is known by the work of Fischer et al. [4] that the BV flow is
unique until some topological changes occur, thus partially resolving the issue of super-
fluous non-uniqueness of Brakke flows. There are some existence results of BV flows,
such as [15–17], but these studies impose a reasonable (but non-trivial) assumption that
the approximate solutions converge to the limit without loss of surface energy. In contrast,
we prove the existence of (generalized) BV flows without any extra assumptions, with the
caveat that the accompanying Brakke flow may possess possible higher-integer multiplic-
ities. We mention that the similar conclusion can be derived [29] for flows obtained by the
elliptic regularization [11].

Next we give a detailed account of the related works on the MCFs using the Allen–
Cahn equation. As a pioneering work, Ilmanen [10] proved that the limit measure of (AC)
is a rectifiable Brakke flow by using Huisken’s monotonicity formula [8]. Additionally,
Tonegawa [30] proved that the limit measure is an integer multiple. By modifying equa-
tion (AC), varifold solutions with various additional terms are studied and we mention
[12,21,26–28]. As a conditional result, Laux and Simon [16] gave the time-local existence
of BV flow with forcing term in the multi-phase case. Hensel and Laux [6] proposed the
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new concept of weak solution, called the De Giorgi-type flow, and studied the existence
and the weak-strong uniqueness property. By using the relative entropy, the simplified
proof of the singular limit of (AC) is given in [5] and the case of coupling with the Navier–
Stokes equation [7] and volume preservation [14] have been studied.

The key observation of the present paper is that the two properties—being an L2 flow
(which follows from being Brakke flow) and the absolute continuity of phase boundary
measure with respect to the Brakke flow (both as space-time measures)—lead to equal-
ity (1.1). To this end, we find the convergence of the velocity vector representing the
motion of phase boundaries using the concept of measure function pairs by Hutchin-
son [9]. More precisely, if ¹�tºt�0 is a Brakke flow arising from the Allen–Cahn
equation, by the existence of the velocity, we may obtain d j.r; @t /'j � d�tdt ,
where j.r; @t /'j is the space-time perimeter measure of '. Once this is done, we may
recover formula (1.1) using a suitable version of the co-area formula (see [18, Theo-
rem 13.4], for example) from geometric measure theory. The idea to prove the main results
of this paper is similar to [20,24,29], though there are some fine differences. We also point
out that similar conclusions can be derived for more general flows as in [12,21,25–28] by
the same strategy.

The paper is organized as follows: in Section 2, we set our notation and explain the
Allen–Cahn equation and the main result. In Section 3, we show that the absolute conti-
nuity between the perimeter measure of the phase function and the Brakke flow and the
boundary motion by the mean curvature is expressed in equality (1.1), and we then prove
that the Allen–Cahn equation gives a generalized BV flow in the limit.

2. Preliminaries and main results

2.1. Basic notation

We shall use the same notation for the most part adopted in [24, 29].
In particular, the ambient space we will be working in is the Euclidean space Rn,

and RC will denote the interval Œ0;1/. The coordinates .x; t/ are set in the product
space Rn �R, and t will be thought of and referred to as “time”. The symbols p and q will
denote the projections of Rn � R onto its factor, so that p.x; t/ D x and q.x; t/ D t . If
A � Rn is (Borel) measurable, Ln.A/ will denote the Lebesgue measure of A, where-
as Hk.A/ denotes the k-dimensional Hausdorff measure of A. When x 2 Rn and r > 0,
the closed ball centered at x with radius r is denoted by Br .x/. More generally, if k is an
integer, then Bkr .x/ will denote closed balls in Rk . The symbols r;r 0; �;r2 denote the
spatial gradient and the full gradient in Rn � R, the Laplacian, and the Hessian, respec-
tively. The symbol @t will denote the time derivative.

A positive Radon measure � on Rn (or “space-time” Rn �RC) is always regarded as
a positive linear functional on the space C 0c .R

n/ of continuous and compactly supported
functions, with the pairing denoted by �.�/ for � 2 C 0c .R

n/. The restriction of � to a
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Borel set A is denoted �xA, so that .�xA/.E/ WD �.A \ E/ for any Borel sets E � Rn.
The support of � is denoted supp�, and it is the closed set defined by

supp� WD
®
x 2 Rn j �.Br .x// > 0 for all r > 0

¯
:

For 1�p�1, the space of p-integrable functions with respect to� is denoted byLp.�/.
If�DLn,Lp.Ln/ is simply written asLp.Rn/. For a signed or vector-valued measure�,
its total variation is denoted by j�j. For two Radon measures� and�, when the measure�
is absolutely continuous with respect to �, we write �� �.

We say that a function f 2 L1.Rn/ has a bounded variation, written f 2 BV.Rn/, if

sup
°Z

Rn

f divX dx j X 2 C 1c .R
n
IRn/; kXkC 0 � 1

±
<1:

If f 2 BV.Rn/, then there exists an Rn-valued Radon measure (which we will call the
measure derivative of f , denoted by rf ) satisfyingZ

Rn

f divX dx D �
Z

Rn

X � drf for all X 2 C 1c .R
n
IRn/:

For a set E � Rn, �E is the characteristic function of E, defined by �E D 1 if x 2 E,
and �E D 0 otherwise. We say that E has a (locally) finite perimeter if �E 2 BV.Rn/
.2 BVloc.Rn//. When E is a set of (locally) finite perimeter, then the measure deriva-
tive r�E is the associated Gauss–Green measure, and its total variation jr�E j is the
perimeter measure; by De Giorgi’s structure theorem, jr�E j DHn�1x@�E , where @�E is
the reduced boundary of E, and r�E D ��E jr�E j D ��EHn�1x@�E , where �E is the
outer pointing unit normal vector field to @�E.

A subset M � Rn is countably k-rectifiable if it admits a covering

M � Z [
[
i2N

fi .R
k/;

where Hk.Z/ D 0 and fk W Rk ! Rn is Lipschitz. If M is countably k-rectifiable,
Hk-measurable and Hk.M/ <1, M has a measure-theoretic tangent plane called the
approximate tangent plane for Hk-almost every x 2 M ([22, Theorem 11.6]), denoted
by TxM . We may simply refer to it as the tangent plane at x 2 M without fear of con-
fusion. A Radon measure � is said to be k-rectifiable if there is a countably k-rectifiable,
Hk-measurable set M and a positive function � 2 L1loc.H

kxM / such that � D �HkxM .
The function � is called multiplicity of �. The approximate tangent plane of M in this
case (which exists �-almost everywhere) is denoted by Tx�. When � is an integer for
�-almost everywhere, � is said to be integral. The first variation ı� W C 1c .R

nIRn/! R
of a rectifiable Radon measure � is defined by

ı�.X/ D

Z
Rn

divTx�X d�;
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where PTx� is the orthogonal projection from Rn to Tx�, and divTx�X D tr.PTx�rX/.
For an open set U � Rn, the total variation jı�j.U / of � is defined by

jı�j.U / D sup
®
ı�.X/ j X 2 C 1c .U IR

n/; kXkC 0 � 1
¯
:

If the total variation jı�j. zU/ is finite for any bounded subset zU of U , then ı� is called
locally bounded, and we can regard jı�j as a measure. If jı�j � �, then the Radon–
Nikodým derivative (times �1) is called the generalized mean curvature vector h of �,
and we have

ı�.X/ D �

Z
Rn

X � h d� for all X 2 C 1c .R
n
IRn/:

If � is integral, then h and Tx� are orthogonal for �-almost everywhere by Brakke’s
perpendicularity theorem [1, Chapter 5].

2.2. Weak notions of mean curvature flow

In this subsection, we introduce some weak solutions to the MCF as well as [24, 29]. We
briefly define and comment upon the three of interest in the present paper; we begin with
the notion of Brakke flow introduced by Brakke [1].

Definition 2.1. A family of Radon measures ¹�tºt2RC in Rn is an (n � 1)-dimensional
Brakke flow if the following four conditions are satisfied:

(1) For almost every t 2 RC, �t is integral and ı�t is locally bounded and absolutely
continuous with respect to �t (thus, the generalized mean curvature exists for
almost every t , denoted by h).

(2) For all s > 0 and all compact sets K � Rn, supt2Œ0;s� �t .K/ <1.

(3) The generalized mean curvature h satisfies h 2 L2.d�tdt/.

(4) For all 0 � t1 < t2 <1 and all test functions � 2 C 1c .R
n �RCIRC/,

�t2.�.�; t2// � �t1.�.�; t1//

�

Z t2

t1

Z
Rn

.r�.x; t/ � �.x; t/h.x; t// � h.x; t/

C @t�.x; t/ d�t .x/dt: (2.1)

Inequality (2.1) is motivated by the following identity:Z
Mt

�.x; t/ dHn�1
ˇ̌̌t2
tDt1
D

Z t2

t1

Z
Mt

.r� � �h/ � v C @t� dHn�1dt; (2.2)

where ¹Mtºt2Œ0;T / is a family of (n � 1)-dimensional smooth surfaces, h.�; t / is the mean
curvature vector of Mt , and v.�; t / is the normal velocity vector of Mt . In particular,
if ¹Mtºt2Œ0;T / is a smooth MCF (hence, v D h), setting �t WDHn�1xMt defines a Brakke
flow for which (2.1) is satisfied with equality. Conversely, if �t D Hn�1xMt with
smooth Mt satisfies (2.1), then one can prove that ¹Mtºt2Œ0;T / is a classical solution to
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the MCF. The notion of Brakke flow is equivalently (and originally, in [1]) formulated in
the framework of varifolds, but we use the above slightly less general formulation using
Radon measures, mainly for convenience.

The below definition of L2 flow (modified slightly for our purpose) was given by
Mugnai and Röger [20].

Definition 2.2 (L2 flow). A family of Radon measures ¹�tºt2RC in Rn is an (n � 1)-
dimensional L2 flow if it satisfies conditions (1)–(2) in Definition 2.1, as well as the
following:

(a) The generalized mean curvature h.�; t / (which exists for almost every t 2 RC, by
condition (1)) satisfies h.�; t / 2L2.�t IRn/, and d� WD d�tdt is a Radon measure
on Rn �RC.

(b) There exists a vector field v 2 L2.�IRn/ and a constant C D C.�/ > 0 such that

(b01) v.x; t/ ? Tx�t for �-almost everywhere .x; t/ 2 Rn �RC;

(b02) For every test function � 2 C 1c .R
n �RC/, it holds thatˇ̌̌Z 1

0

Z
Rn

@t�.x; t/Cr�.x; t/ � v.x; t/ d�t .x/dt
ˇ̌̌
� Ck�kC 0 : (2.3)

The vector field v satisfying (2.3) is called the generalized velocity vector in the sense
of L2 flow. This definition interprets equality (2.2) as a functional expression of the area
change.

Finally, we introduce the concept of generalized BV flow suggested by Stuvard and
Tonegawa [24].

Definition 2.3 (Generalized BV flow). Let ¹�tºt2RC and ¹Etºt2RC be families of Radon
measures and sets of finite perimeter, respectively. The pair .¹�tºt2RC ; ¹Etºt2RC/ is a
generalized BV flow if all of the following hold:

(i) ¹�tºt2RC is a Brakke flow as in Definition 2.1.

(ii) For all t 2 RC, jr�Et j � �t .

(iii) For all 0 � t1 < t2 <1 and all test functions � 2 C 1c .R
n �RC/,Z

Et

�.x; t/ dx
ˇ̌̌t2
tDt1

D

Z t2

t1

Z
Et

@t�.x; t/ dxdtC

Z t2

t1

Z
@�Et

�.x; t/.h.x; t/ � �Et .x// dHn�1.x/dt:

If �t and Et satisfy the above definition, we say “v D h” in the sense of general-
ized BV flow. This definition expresses that the interface @�Et is driven by the mean
curvature of �t . If �t D jr�Et j for almost every t , the characterization (2.3) coincides
with the notion of BV flow considered by Luckhaus–Struzenhecker in [17], since the mean
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curvature of @�Et is naturally defined to be h.�; t / in this case. On the other hand, while
the original BV flow is characterized only by (2.3), here �t is additionally a Brakke flow
to which one can apply the local regularity theorems [13, 23, 31].

2.3. Assumptions and main result

First, we work under the following assumptions:

Assumption 2.4. Let E0 � Rn be a set of finite perimeter with

Ln.E0/C jr�E0 j.R
n/ <1:

With this E0 given, we can always have a sequence of good initial data for (AC), as
shown in the next lemma.

Lemma 2.5. There exist sequences of "i ! 0 and C1 functions '"i0 such that

� 1 � '
"i
0 � 1; lim

i!1

Z
Rn

ˇ̌̌'"i0 C 1
2

� �E0

ˇ̌̌
dLn

D 0;

1

�

�"i jr'"i0 j2
2

C
W.'

"i
0 /

"i

�
dLn * jr�E0 j as i !1:

(2.4)

Here � D
R 1
�1

p
2W.s/ ds is the surface energy constant.

Proof. By [18, Theorem 13.8], there exists a sequence of open sets E i
0 � Rn with smooth

boundary such that �E i
0
! �E0 in L1.Rn/ and jr�E i0 j ! jr�E0 j as measures. Let

‰ W R! .�1; 1/ be the unique ODE solution for ‰0 D
p
2W.‰/ and ‰.0/ D 0. Define

'
"i
0 .x/ WD ‰.

zdi .x/="i /, where zdi is the signed distance function from @Ei0 truncated so
that it is smooth on Rn. With suitably small choice of "i , one can show that all of the
properties in (2.4) are satisfied for this '"i0 (see [19]).

In fact, the particular form of '"i0 described in the proof is not required, and only the
properties in (2.4) matter in what follows. The following is extracted from [10, 30]:

Theorem 2.6. Let '"i0 (the index i being omitted in the following for simplicity) be a
sequence satisfying (2.4), and let '" be the solution of (AC). Define a time-parametrized
measure

�"t WD
1

�

�"jr'".�; t /j2
2

C
W.'".�; t //

"

�
dLn:

Then, there exists a further subsequence (denoted '") such that

(a) �"t * �t for all t 2 RC and ¹�tºt2RC is a Brakke flow;

(b) .1C '".�; t //=2! �Et in locally L1.Rn/ for all t 2 RC and jr�Et j � �t for
all t 2 RC.
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We note that the key element of the proof is the vanishing of the discrepancy measure
(see Lemma 3.3) which follows from the local point-wise estimate of [30, Lemma 3.3].
This gives a local Huisken’s monotonicity formula and the verbatim proof of [10, 30]
works to show the claim of Theorem 2.6. The following claim is the main result of the
present paper:

Theorem 2.7. The pair .¹�tºt2RC ; ¹Etºt2RC/ in Theorem 2.6 is a generalized BV flow
as described in Definition 2.3.

Remark 2.8. We comment here on the minimal properties for which formula (2.3) holds.
To prove (2.3) for the limit flow .¹�tºt2RC ; ¹Etºt2RC/, we only need the properties of
the L2 flow, the upper density bound, and the absolute continuity of the phase boundary
measure. More precisely, we prove the following in this paper: let ¹�tºt2RC be anL2 flow
with v D h and let ¹Etº be a family of sets of finite perimeter with jr�Et j � �t for all
t � 0. If the following hold for the pair (¹�tºt2RC ; ¹Etºt2RC ):

(a) ‚�n.�; x/ WD lim supr!C0
�.Bnr .x;t//

rn
<1 for any .x; t/ 2 Rn �RC;

(b) jr 0�E j � �;

where E WD ¹.x; t/ j x 2 Etº and d� WD d�tdt , then the pair (¹�tºt2RC ; ¹Etºt2RC )
satisfies formula (2.3).

Remark 2.9. In [27] and [26], the existence theorem for volume-preserving MCFs and
MCFs with transport and forcing term was proved in the L2 flow sense, not in the Brakke
sense. However, the argument of this paper to prove (2.3) can also be applied to [27]
and [26], since the property of Brakke flow is only used for the weak solution of the MCF
to become an L2 flow.

3. Proof of Theorem 2.7

The pair .¹�tºt2RC ; ¹Etºt2RC/ in Theorem 2.6 satisfies properties (i) and (ii) of the Defi-
nition 2.3, due to Theorem 2.6. Therefore, the goal of this section is to prove formula (2.3).
In what follows, let E � Rn �RC denote the set

E WD
®
.x; t/ j x 2 Et ; t � 0

¯
(3.1)

and note that .1C '"/=2! �E locally in L1.Rn � RC/ by the dominated convergence
theorem and Theorem 2.6(b).

3.1. Absolute continuity of phase boundary measure

Even if a family of perimeter measures ¹jr�Et jºt�0 is a Brakke flow, the pair

.¹jr�Et jºt�0; ¹Etºt�0/
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may not be a generalized BV flow. For example, define

Et D

´®
x 2 Rn j jxj2 � 1 � 2.n � 1/t

¯
0 � t < 1

4.n�1/
;

;
1

4.n�1/
� t I

this is a simple counterexample, that is, formula (2.3) fails at t D 1=.4.n � 1//. We can
expect such a phenomenon where formula (2.3) does not hold to occur due to a disconti-
nuity to time direction in the measure-theoretic sense. In this subsection, in order to ensure
that such examples do not occur, we prove jr 0�E j � �.

First, we recall the below upper density bound ([10, Section 5.1]), which follows from
Huisken’s monotonicity formula adapted for the Allen–Cahn equation. Note that Ilma-
nen’s result is for a “well-prepared” initial data, but the local discrepancy estimate of
[30, Lemma 3.3] allows one to obtain Huisken’s monotonicity formula with a small error
term on ŒT;1/ for any T > 0 as follows:

Lemma 3.1. For any T > 0, there exists D D D.T; jr�E0 j.R
n/; n/ > 0 such that

‚�.n�1/.�t ; x/ D lim sup
r!C0

�t .Br .x//

rn�1
� D

for any t 2 ŒT;1/. In particular, we have

‚�n.�; .x; t// D lim sup
r!C0

�.Bnr .x; t//

rn
<1

for any .x; t/ 2 Rn � .0;1/, where d� WD d�tdt .

Next, we list the following energy bound:

Lemma 3.2. Under the same assumptions of Theorem 2.6, we have

sup
t2Œ0;T �

�"t .R
n/C

1

�

Z T

0

Z
Rn

".@t'
"/2 dLndt � �"0.R

n/

for any 0 < " < 1 and 0 < T <1.

We also quote from [10, 30] the vanishing of discrepancy measure.

Lemma 3.3. Under the same assumptions of Theorem 2.6, for any T > 0, we have

lim
"!C0

Z T

0

Z
Rn

ˇ̌̌"jr'"j2
2

�
W.'"/

"

ˇ̌̌
dLndt D 0:

Finally, we prove the absolute continuity. Mugnai and Röger proved the following
proposition for the Allen–Cahn functional, and the proof which follows it is almost iden-
tical to [20, Proposition 8.4]:
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Proposition 3.4. For the Radon measures ¹�tºt2RC and ¹Etºt2RC as in Theorem 2.6, let
d� D d�tdt and let E be as in (3.1). Then, we have

jr
0�E j � �

and recall that r 0 is the gradient with respect to the time and space variables.

Proof. We define the function by

w.r/ WD

Z r

�1

p
2W.s/ ds

and recall that � D w.1/. For a point .x; t/ with jr'".x; t/j > 0, we have

jrw.'"/j D jr'"j
p
2W.'"/; j@tw.'

"/j D j@t'
"
j
p
2W.'"/;

so that

jr
0w.'"/j D

s
1C

� @t'"
jr'"j

�2
jrw.'"/j: (3.2)

By Lemma 3.2, for any T > 0, we haveZ T

0

Z
¹jr'".�;t/j>0º

�s
1C

� @t'"
jr'"j

�2�2
"jr'"j2 dLndt

D

Z T

0

Z
¹jr'".�;t/j>0º

"jr'"j2 C ".@t'
"/2 dLndt � �.2T C 1/�"0.R

n/: (3.3)

Due to Lemma 3.3, "jr'"j2 dLndt converges to �. Hence, according to the compact-
ness theorem of the measure-function pairs (Theorem A.3), there exists a �-measurable
function f � 0 such that

lim
"!C0

1

�

Z
¹jr'"j>0º

�

s
1C

� @t'"
jr'"j

�2
"jr'"j2 dLndt D

Z
Rn�RC

�f d� (3.4)

for all � 2 C 0c .R
n � .0;1//. On the other hand, we have�r2W.'"/

"
�
p
"jr'"j

�2
� 2

ˇ̌̌"jr'"j2
2

�
W.'"/

"

ˇ̌̌
:

Therefore, we haveˇ̌̌Z
¹jr'"j>0º

�jr 0w.'"/j �

Z
¹jr'"j>0º

�

s
1C

� @t'"
jr'"j

�2
"jr'"j2

ˇ̌̌
D

ˇ̌̌Z
¹jr'"j>0º

�

s
1C

� @t'"
jr'"j

�2�r2W.'"/

"
�
p
"jr'"j

�p
"jr'"j

ˇ̌̌
�
p
2
�Z
¹jr'"j>0º

�2
�
1C

� @t'"
jr'"j

�2�
"jr'"j2

� 1
2

�

�Z
¹jr'"j>0º

ˇ̌̌"jr'"j2
2

�
W.'"/

"

ˇ̌̌� 1
2
; (3.5)
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where we used the Hölder inequality. Thanks to (3.2)–(3.5) and Lemma 3.3, we conclude
that

lim
"!C0

1

�

Z
¹jr'"j>0º

�jr 0w.'"/j dLndt D

Z
Rn�RC

�f d�: (3.6)

On the other hand, by using the Hölder inequality, we haveZ
¹jr'"jD0º

jr
0w.'"/j D

Z
¹jr'"jD0º

j@t'
"
j
p
2W.'"/

�
p
2
�Z

Rn�RC
".@t'

"/2
� 1
2
�Z
¹jr'"jD0º

W.'"/

"

� 1
2

�
p
2
�Z

Rn�RC
".@t'

"/2
� 1
2
�Z

Rn�RC

ˇ̌̌"jr'"j2
2

�
W.'"/

"

ˇ̌̌� 1
2
:

Letting "! 0, again by Lemmas 3.2 and 3.3, we have
R
B"
jr 0w.'"/jdLndt ! 0. There-

fore, in general, equality (3.6) is valid even if we replace ¹jr'"j > 0º by Rn � .0;1/.
Thus, by [19, Proposition 1], the lower semi-continuity of the total variation measure,
and (3.6), we obtain

�

Z
Rn�RC

� d jr 0�E j D

Z
Rn�RC

� d jr 0w.'/j dLndt

� lim inf
"!C0

Z
Rn�RC

�jr 0w.'"/j dLndt D �

Z
Rn�RC

�f d�

for � � 0. This completes the proof of jr 0�E j � �.

3.2. Basic properties of L2 flow and sets of finite perimeter

In this subsection, we state some properties of L2 flow and sets of finite perimeter. The
proof of Theorem 2.7 will follow from those properties. The arguments in this subsection
are mostly contained in [20,24,29] and we include them for the convenience of the reader.

Proposition 3.5. Let ¹�tºt2RC and ¹Etºt2RC be as in Theorem 2.6. We set d� D d�tdt
and E as in (3.1). Then, �x@�E is an n-dimensional rectifiable Radon measure and we
have the following for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º:

(1) the tangent space T.x;t/� exists, and T.x;t/� D T.x;t/.@�E/,

(2)
�
h.x; t/

1

�
2 T.x;t/�,

(3) x 2 @�Et , and Tx�t D Tx.@�Et /,

(4) p.�E .x; t// ¤ 0, and �Et .x/ D jp.�E .x; t//j�1p.�E .x; t//,
(5) Tx.@�Et / � ¹0º is linear subspace of T.x;t/�.

The key step of the proof of Theorem 2.7 is to prove the above proposition, for which
the property of L2 flow plays a central role, and this proposition is proved in detail by
[24, Lemma 4.7]. In this paper, we will give a brief outline of the proof of Proposition 3.5.
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First, we introduce the below property for Brakke flows [24, Theorem 4.3]. Note that
the following claim holds for the generalized Brakke flows of [28] and [12] with a slight
modification of the proof:

Proposition 3.6. Let ¹�tºt2RC be a Brakke flow as in Definition 2.1. Then, ¹�tºt2RC is
an L2 flow with the velocity v D h, that is, there exists C D C.�/ > 0 such thatˇ̌̌Z

RC

Z
Rn

@t� Cr� � h d�tdt
ˇ̌̌
� Ck�kC 0 ;

for all � 2 C 1c .R
n � .0;1//.

The following is a simple property of L2 flow ([20, Proposition 3.3]):

Proposition 3.7. Let ¹�tºt2RC be an L2 flow with the velocity v as in Definition 2.2.
Let � be the space-time measure d� D d�tdt . Then,�

v.x; t/

1

�
2 T.x;t/�

at �-almost every .x; t/ wherever the tangent space T.x;t/� exists.

For the proof of Proposition 3.5, we need the following general facts about sets of
finite perimeter ([18, Theorem 18.11]):

Lemma 3.8. If E � Rn � R is a set of locally finite perimeter, then the horizontal sec-
tion Et is a set of locally finite perimeter in Rn for almost every t 2 R, and the following
properties hold:

(1) Hn�1.@�Et�.@
�E/t / D 0,

(2) p.�E .x; t// ¤ 0 for Hn�1-almost every x 2 .@�E/t ,

(3) r�Et D jp.�E .x; t//j�1p.�E .x; t//Hn�1x.@�E/t ,
where .@�E/t WD ¹x 2 Rn j .x; t/ 2 @�Eº.

Proof of Proposition 3.5. First of all, we will prove that �x@�E is a rectifiable Radon
measure. It is not difficult to see that � � Hn. Indeed, let A � Rn � R be a set with
Hn.A/ D 0, and let the set Dk WD ¹.x; t/ 2 Rn � RC j ‚�n.�; .x; t// � kº for each
k 2 N. By [22, Theorem 3.2], we have

�.A \Dk/ � 2
nkHn.A \Dk/ D 0

for all k 2 N. Furthermore, by the upper bound of mass density ratio (Lemma 3.1), we
see that �.A n

S1
kD1Dk/ D 0. Thus, we obtain �.A/ D 0, that is, �� Hn holds. Since

�� Hn, jr 0�E j D Hnx@�E , by Proposition 3.4, we see that

�x@�E� jr 0�E j; jr 0�E j � �x@�E :
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By Radon–Nikodým theorem, there exists an L1loc.jr
0�E j/-measurable function

f D
d�x@�E
d jr 0�E j

with 0<f <1 for jr 0�E j-almost everywhere and�x@�ED f jr 0�E j D fHnx@�E . This
shows that �x@�E is a rectifiable Radon measure and the tangent space T.x;t/.�x@�E /with
multiplicity f exists for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º. For the next step, we
prove that T.x;t/� D T.x;t/.@�E/ for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º. Now, by
[22, Theorem 3.5], we see that

lim sup
r!C0

�.BnC1r .x; t/ n @�E/

rn
D 0 for Hn-a.e. .x; t/ 2 @�E \ ¹t > 0º:

Let then � 2 C 0c .B
nC1
1 .0// be arbitrary. We have

lim
r!C0

ˇ̌̌Z
Rn�.0;1/n@�E

1

rn
�
�1
r
.y � x; s � t /

�
d�.y; s/

ˇ̌̌
� k�kC 0 lim sup

r!C0

�.BnC1r .x; t/ n @�E/

rn
D 0

for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º. Thus, by f 2 L1loc.jr
0�E j/, we obtain at

each Lebesgue point of f

lim
r!C0

Z
Rn�.0;1/

1

rn
�
�1
r
.y � x; s � t /

�
d�.y; s/

D lim
r!C0

Z
@�E

1

rn
�
�1
r
.y � x; s � t /

� d�

d jr 0�E j
.y; s/ dHn.y; s/

D f .x; t/

Z
T.x;t/.@

�E/

�.y; s/ dHn.y; s/

for all � 2 C 0c .R
n �R/ and Hn-almost every .x; t/ 2 @�E \ ¹t > 0º. This completes the

proof of T.x;t/� D T.x;t/.@�E/.
By Propositions 3.6 and 3.7 and the above argument, parts (1) and (2) are proved.

Next, we prove parts (3) and (4). By Lemma 3.8, we see that the following holds for
almost every t > 0 and Hn�1-almost every x 2 .@�E/t :

Hn�1.@�Et�.@
�E/t / D 0; (3.7)

p.�E .x; t// ¤ 0; (3.8)

�Et .x/ D
p.�E .x; t//
jp.�E .x; t//j

: (3.9)
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Let I WD ¹t > 0 j (3.7) failsº and set At WD ¹x 2 .@�E/t j x … @�Et or (3.8)–(3.9) failº
for every t > 0, so that L1.I /D 0 and Hn�1.At /D 0 for every t 2 .0;1/ n I . Consider
then the characteristic function �.x; t/ WD �At .x/ on Rn � .0;1/; since L1.I / D 0 and
Hn�1.At / D 0 for every t 2 .0;1/ n I , we haveZ
@�E

�.x; t/jr@
�E .q.x; t//j dHn.x; t/ D

Z 1
0

Z
.@�E/t

�.x; t/ dHn�1dt

D

Z 1
0

Hn�1.At / dt D

Z
I

Hn�1.At / dt D 0;

where we used the co-area formula in the first line, and where r@
�E is the gradient on the

tangent plane of @�E, that is,

r
@�Eq.x; t/ D PT.x;t/.@�E/.rq.x; t//:

Here, combining parts (1) and (2), we see that�
h.x; t/

1

�
2 T.x;t/.@

�E/ at Hn-a.e. .x; t/ 2 @�E \ ¹t > 0º;

which implies jr@
�E .q.x; t//j > 0 for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º. Hence,

it must be that �.x; t/D 0 for Hn-almost every .x; t/ 2 @�E \ ¹t > 0º; thus, the first part
of (3) and (4) is proved. For the proof of the identity Tx�t D Tx.@�Et /, it is obtained by
Proposition 3.4, Definition 2.1(2), and repeating the argument of part (1) at fixed t .

Finally, we prove part (5). Taking the .x; t/ 2 @�E as satisfying (1)–(4) of this propo-
sition, we can calculate

t .z; 0/ � �E .x; t/ D z � p.�E .x; t// D jp.�E .x; t//j.z � �Et .x// D 0

for all z 2 Tx.@�Et /. This completes the proof of part (5).

3.3. Boundaries move by mean curvature

In this subsection, we prove Theorem 2.7 by rephrasing the velocity v as the mean cur-
vature, and by using geometric measure theory. The argument for this rephrasing corre-
sponds to the proof of the area formula (see (2.3)).

Proof of Theorem 2.7. Let us fix a test function � 2 C 1c .R
n � .0;1// arbitrarily. Then,

by using Gauss–Green’s theorem for sets of finite perimeter, we haveZ
Rn�.0;1/

@t��E dxdt D

Z
@�E

�q.�E / dHn: (3.10)
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Let G be the set satisfying Proposition 3.5(1)–(5). Then, for all .x; t/ 2 G, we have

T.x;t/� D .Tx.@
�Et / � ¹0º/˚ span

�
h.x; t/

1

�
.by Proposition 3.5(2)/: (3.11)

By h.x; t/ ? Tx�t , (3.11), and Proposition 3.5(1) and (4), we have

�E .x; t/ D
1p

1C jh.x; t/j2

�
�Et .x/

�h.x; t/ � �Et .x/

�
: (3.12)

By (3.12) and h.x; t/ ? Tx�t again, for all .x; t/ 2 G, we can calculate the i � .nC 1/
component of the matrix InC1 � �E ˝ �E for i D 1; : : : ; nC 1 as

.InC1 � �E ˝ �E /i;.nC1/.x; t/ D

´
�.�Et .x//i .h.x;t/��Et .x//

1Cjh.x;t/j2
i D 1; : : : ; n;

1
1Cjh.x;t/j2

i D nC 1;

where InC1 is the .nC 1/-identity matrix and .�Et /i is the i -th component of �Et . Accord-
ing to this calculation and the facts that rq D enC1 and T.x;t/� D T.x;t/.@�E/ on G, we
obtain that the co-area factor of the projection q satisfies

jr
@�Eq.�E .x; t//j D

1p
1C jh.x; t/j2

: (3.13)

Due to (3.10)–(3.13) and the co-area formula, we computeZ
Rn�.0;1/

@t��E dxdt D �

Z
G

�h � �Et
1p

1C jhj2
dHn

D �

Z
@�E

�h � �Et jr
@�Eq.�E /j dHn

D �

Z 1
0

Z
@�E\¹qDtº

�h � �Et dHn�1dt

D �

Z 1
0

Z
@�Et

�h � �Et dHn�1dt; (3.14)

where we used Hn.@�E nG/D 0. By a suitable approximation of � in (3.14), we deduceZ
Et2

�.x; t2/ dx �

Z
Et1

�.x; t1/ dx

D

Z t2

t1

Z
Et

@t� dxdt C

Z t2

t1

Z
@�Et

�h � �Et dHn�1dt (3.15)

for almost every 0 < t1 < t2 < 1. By (3.15) and the facts that jr�Et j � �t and
h 2 L2.d�tdt/, we have 1=2-Hölder continuity of �Et in L1 for almost every t 2 RC.
Thus, if necessary, we may re-define E so that �Et is 1=2-Hölder continuous in L1 for
all t 2 RC. Using the continuity of k�Et kL1.Rn/, we obtain the above equality for all
0 � t1 < t2 <1 and all � 2 C 1c .R

n �RC/. This completes the proof.
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A. Measure-function pairs

Here, we recall the notion of measure-function pairs introduced by Hutchinson in [9].

Definition A.1. Let E � Rn be an open set and let � be a Radon measure on E. Suppose
f 2 L1.�IRd /. Then, we say that .�; f / is an Rd -valued measure-function pair over E.

Next, we define the notion of convergence for a sequence of Rd -valued measure-
function pairs over E.

Definition A.2. Let ¹.�i ; fi /º1iD1 and let .�; f / be Rd -valued measure-function pairs
over E. Suppose

�i * �

as Radon measures on E. Then, we say .�i ; fi / converges to .�; f / in the weak sense ifZ
E

fi � � d�i !

Z
E

f � � d�

for all � 2 C 0c .EIR
d /.

We present a less general version of [9, Theorem 4.4.2] to the extent that it can be used
in this paper.

Theorem A.3. Suppose that Rd -valued measure-function pairs ¹.�i ; fi /º1iD1 satisfy

sup
i

Z
E

jfi j
2 d�i <1:

Then, the following hold:

(1) There exists a subsequence ¹.�ij ; fij /º
1
jD1 and an Rd -value measure-function

pair .�; f / such that .�ij ; fij / converges to .�; f / as a measure-function pair.

(2) If .�ij ; fij / converges to .�; f /, thenZ
E

jf j2 d� � lim inf
j!1

Z
E

jfij j
2 d�ij <1:
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