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Incidence estimates for
˛-dimensional tubes and ˇ-dimensional balls in R2

Yuqiu Fu and Kevin Ren

Abstract. We prove essentially sharp incidence estimates for a collection of ı-tubes and ı-balls
in the plane, where the ı-tubes satisfy an ˛-dimensional spacing condition and the ı-balls satisfy
a ˇ-dimensional spacing condition. Our approach combines a combinatorial argument for small
˛; ˇ and a Fourier analytic argument for large ˛; ˇ. As an application, we prove a new lower
bound for the size of a .u; v/-Furstenberg set when v � 1, uC v=2 � 1, which is sharp when
uC v � 2. We also show a new lower bound for the discretized sum-product problem.

1. Introduction

Let 0 < ı � 1 be a small parameter. We will work with ı-tubes and ı-balls in the
plane R2. A ı-ball is a ball of radius ı. A ı-tube is a ı � 1 rectangle. The direction
of a rectangle is the vector pointing in the direction of its longest side. (This vector is
only determined up to˙1.)

Definition 1.1. Let P be a set of ı-balls and T be a set of ı-tubes. The number of
incidences I.P;T / is the number of pairs .p; t/ of ı-balls p 2 P and ı-tubes t 2 T

such that p intersects t : p \ t ¤ ;.

The basic problem we will consider is the following: Given a set of ı-balls P and
a set of ı-tubes T contained in the square Œ0; 1�2, what is the maximum number of
incidences I.P;T /?

We will impose a spacing condition on the set of ı-balls and the set of ı-tubes.
The spacing condition is standard, see e.g. [15].

Definition 1.2. For 0 � ˇ � 2 and K � 1, we call a set of ı-balls P contained in
Œ0; 1�2 a .ı; ˇ;K/-set of balls if for every w 2 Œı; 1� and every ball Bw of radius w,

j¹p 2 P W p � Bwºj � K �
�w
ı

�ˇ
: (1.1)
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In the definition of .ı; ˇ; K/-set, K may depend on ı. If K is constant, then we
dropK from the notation. By takingw D 3ı, any ı-ball in a .ı;ˇ;K/-set of balls may
intersect up to � 9K many other ı-balls in the set.

We will impose an analogous condition on the set of ı-tubes.

Definition 1.3. For 0 � ˛ � 2 and K � 1, we call a set of ı-tubes T contained in
Œ0; 1�2 a .ı; ˛;K/-set of tubes if for every w 2 Œı; 1� and every w � 2 tube Tw ,

j¹t 2 T W t � Twºj � K �
�w
ı

�˛
:

Remark. (1) For applications, one might take K D C"ı�" for some " > 0.
(2) Another common definition for .ı; ˇ; C /-sets of balls has the condition j¹p 2

P W p � Bwºj � C � jP j � w
ˇ . This is a special case of Definition 1.2 with K D

jP jıˇC .

We can rephrase the problem as follows: given a .ı; ˇ; Kˇ /-set of balls P and a
.ı; ˛;K˛/-set of tubes T , what is the maximum number of incidences I.P;T /?

In [11], incidence problems for ı-tubes with some spacing conditions were con-
sidered. They fix a parameter 1 � W � ı�1 and choose T to be a collection of W 2

well-spaced ı-tubes: eachW �1 � 1 rectangle in R2 contains at most one ı-tube in T .
They also consider another spacing condition, where each W �1 � 1 rectangle con-
tains � N1 many ı-tubes in each direction, for a fixed N1. Using a Fourier analytic
approach, [11] proved sharp incidence estimates for well-spaced ı-tubes. This Fourier
analytic method is also used in [4, 7, 8, 10, 12] to derive incidence estimates, decou-
pling estimates, and square function estimates.

Regarding our question, we will prove the following main theorem.

Theorem 1.4. Suppose ˛; ˇ satisfy 0 � ˛; ˇ � 2, and let K˛; Kˇ � 1. For every
" > 0, there exists C D C"K˛Kˇ with the following property: for every .ı;ˇ;Kˇ /-set
of ı-balls P and .ı; ˛;K˛/-set of ı-tubes T contained in Œ0; 1�2, the following bound
holds:

I.P;T / � C � ı�f .˛;ˇ/�";

where f .˛; ˇ/ is defined as in Figure 1. These bounds are sharp up to C � ı�".

For ˛; ˇ > 1, we have the following refined result.

Theorem 1.5. Fix " > 0 and 0 � ˛; ˇ � 2. Let c�1 D max.˛ C ˇ � 1; 2/. There
exists C" > 0 such that the following holds: for any .ı; ˇ; Kˇ /-set of ı-balls P and
.ı; ˛; K˛/-set of ı-tubes T contained in Œ0; 1�2, we have the following incidence
bound:

I.P;T / � C"ı
�c�".K˛Kˇ /

c
jP j1�cjT j1�c :



Incidence estimates for ˛-dimensional tubes and ˇ-dimensional balls in R2 3

1 2
𝛼

1

2

𝛽

1+𝛼 𝛼+𝛽−1

1+𝛽

𝛼2+𝛼𝛽+𝛽2
𝛼+𝛽

𝛼+𝛽+𝛼2
1+𝛼

𝛼+𝛽+𝛽2
1+𝛽

1+𝛼+𝛽
2

Figure 1. Values of f .˛; ˇ/

(This theorem is valid for all ˛; ˇ 2 Œ0; 2�, but a more elementary method gives
a better result when min.˛; ˇ/ � 1: see Theorems 3.1 and 3.2.) As an application
of Theorem 1.5, we prove a lower bound for the minimal Hausdorff dimension of a
.u; v/-Furstenberg set. There has been much study of .u; v/-Furstenberg sets; what
follows is an abbreviated exposition borrowing from [5]. A set A � R2 is called
a .u; v/-Furstenberg set if there exists a family of lines L with dimH L D v and
dimH .A\ `/�u for all `2L, where dimH K denotes the Hausdorff dimension ofK.
The .u; v/-Furstenberg set problem asks for bounds on 
.u; v/ WD inf¹dimH .A/ W
A is a .u; v/-Furstenberg setº. The case v D 1 has attracted considerable interest.
While it is conjectured that 
.u; 1/ D .1C 3u/=2 for u > 0, the best known bounds
are from Orponen–Shmerkin [21] and Shmerkin–Wang [24], whose work shows

.u; 1/ � max.uC 1=2; 2u/C ".u/ for some small constant ".u/ > 0 when u < 1

and ".u/ D 0 when u D 1. (The same bounds without the ".u/ were proved by
Wolff [26], who also popularized the conjecture.)

For more general v 2 Œ0; 2�, work of Molter and Rela [19], Héra [13], Héra, Keleti,
and Máthé [14], Lutz and Stull [17], Héra, Shmerkin, and Yavicoli [15], Orponen and
Shmerkin [21], and Shmerkin and Wang [24] show that


.u; v/ �

8̂̂<̂
:̂
uC v if v � u; u 2 .0; 1�;

2uC ".u; v/ if u < v � 2u; u 2 .0; 1�;

uC v
2
C ".u; v/ if 2u < v � 2; u 2 .0; 1�:

(1.2)

Recently, Dabrowski, Orponen, and Villa in [5] showed for u > 1=2, v > 1 that

.u; v/ � 2uC .v � 1/.1 � u/. Our result improves on (1.2) and [5] for .u; v/ pairs
satisfying v > 1C ".u; v/ and uC v=2 � 1C ".u; v/.
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Theorem 1.6. For 1� v � 2 and 0< u� 1, a .u;v/-Furstenberg setA has dimH A�
min.2uC v � 1; uC 1/. This result is sharp when uC v � 2.

Note that the bound dimH A � 2uC v � 1 was proved in [19] for 0 < u; v � 1.
As a quick corollary of Theorem 1.6, we obtain a refinement of a consequence

of Marstrand’s slicing theorem [18]. Marstrand proved that for any set A � R2 with
dimH .A/ D t for almost all directions � 2 S1, we have dimH .A \ `/ � t � 1 for
almost every line ` in direction � , and furthermore dimH .A\ `/D t � 1 for positively
many lines ` in direction � . (As a simple consequence, any v-dimensional set A is a
.v � 1; 2/-Furstenberg set, showing sharpness of Theorem 1.6 for u C v � 2.) We
refine Marstrand’s result by bounding the dimension of the exceptional set of lines for
which dimH .A \ `/ > t � 1.

Corollary 1.7. Let A � R2 be a set with dimH .A/ D t > 1, and let L be a set of
lines such that dimH .A \ `/ > t � 1 for all L 2 L. Then dimH .L/ � 3 � t .

Proof. Let Lu be the set of lines ` such that dimH .A\ `/ � u. Suppose dimH Lu �

3 � t for some u > t � 1. Then A is a .u; 3 � t /-Furstenberg set with uC 3 � t � 2.
Hence, by Theorem 1.6, we get dimH .A/� uC 1 > t , contradiction to dimH .A/ D t .
Thus, we actually have dimH .Lu/ < 3 � t for all u > t � 1. Let ¹uiº1iD1 be
a sequence tending to t � 1 from above. Then L �

S
i�1 Lui , so dimH .L/ �

supi�1 dimH .Lui / � 3 � t , as desired.

Our approach allows us to obtain the following discretized sum-product estimate.

Corollary 1.8. Let 0 < ı � 1, u; v; v0 2 Œ0; 1� with vC v0 > 1, andKu;Kv;Kv0 � 1.
Let A; B; C � Œ1; 2� be sets of disjoint ı-balls such that A is a .ı; u; Ku/-set, B is
a .ı; v; Kv/ set, and C is a .ı; v0; Kv0/ set. For a set E � R, let jEjı denote the
minimum number of ı-balls needed to cover E. Then for c D max.uC v C v0; 2/�1,

max.jAC Bjı ; jA � C jı/

& K
� c
2.1�c/

u K
� c
2.1�c/

v K
� c
2.1�c/

v0 ı
c

2.1�c/
C"
jBj

c
2.1�c/ jC j

c
2.1�c/ jAj

1
2.1�c/ :

This corollary strengthens [5, Corollary 1.11] when A is a .ı; s; ı�"/-set with
jAj � ı�s . If we apply Corollary 1.8 for A D B D C , Ku D ı�", jAj � ı�s , and
s 2 .1=2; 1/, we get the non-trivial sum-product estimate

max.jAC Ajı ; jA � Ajı/ &

´
ı�2sC

1
2C2"; s < 2

3
;

ı�
sC1
2 C2"; s > 2

3
:

This improves on results of Chen [2] for every s 2 .1=2; 1/ and Guth, Katz, and
Zahl [9] for 1 > s > .

p
1169 � 21/=26 � 0:5073.
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Finally, we remark that Theorem 1.5 and Theorem 1.6 can be generalized to the
case of ı-balls and ı-flats (i.e., ı-neighborhoods of .n � 1/-planes) in Rn; we will
explore this generalization in a subsequent paper.

We conclude this introductory section by describing the organization of the paper.
In Section 2, we will show the estimates in Theorem 1.4 are sharp up to C"ı�", by
constructing suitable examples.

We will then prove the upper bound of Theorem 1.4 by proving three different
incidence estimates, each being strong for a certain range of ˛; ˇ parameters. In Sec-
tion 3, we will use a combinatorial argument (the L2 argument as in [3]) to prove
two incidence estimates which work best when ˛ � 1 or ˇ � 1. In Section 4, we will
induct on scale ı to prove Theorem 1.5, which gives a superior bound when ˛;ˇ > 1.
The starting point of this argument will be the Fourier-analytic Proposition 2.1 from
[11], which was inspired by ideas of Orponen [20] and Vinh [25]. Finally, we derive
Theorem 1.4, Theorem 1.6, and Corollary 1.8 in Section 5.

Updates added 10 October 2023. Very recently, the Furstenberg set conjecture was
fully resolved by the second author and Wang [23], building upon work of Orponen–
Shmerkin [22]. While Theorem 1.6 is superseded by both of these works, the theorem
(or the ideas in its proof) played a key role in their arguments. As a result, Corol-
lary 1.8 can also be improved, see [23, Theorem 1.5] for the special case AD B D C .

Notation. We will use A & B to represent A � CB for a constant C , and A . B to
represent A � CB . The constant C is independent of the scale ı and the dimension
parameters ˛;ˇ;K˛;Kˇ . We will use A � B to represent A & B and A . B . Finally,
we let A &" B to denote A � CB for a constant C which depends on ", and define
A ." B , A �" B similarly.

For a finite set A, typically a set of ı-tubes or ı-balls, let jAj denote its cardinality.
For a subset A � R2, let jAjı denote the least number of ı-balls needed to cover A.

For a set P of ı-balls and a subset A � R2, let P \ A WD ¹p 2 P W p � Aº.
The angle between two ı-tubes s and t , or†.s; t/, is the acute angle between their

directions.
For two sets A and B in R2, we say A and B intersect if A \ B ¤ ;.
For a ı-ball p and S � 1, define the S -thickening pS to be the Sı-ball concentric

with p. For a ı-tube t , let tS denote the Sı-tube coaxial with t . Finally, for a set
of ı-balls P (respectively set of ı-tubes T ), let P S WD ¹pS W p 2 P º (respectively
TS WD ¹tS W t 2 Tº).

We say two ı-tubes s; t are essentially identical if they intersect and their angle is
� ı. Otherwise, they are essentially distinct, and we say a collection T of ı-tubes is
essentially distinct if the tubes in T are pairwise essentially distinct.
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2. Constructions

We start with the sharpness part of Theorem 1.4. We will construct .ı; ˛/-sets of ı-
tubes and .ı; ˇ/-sets of ı-balls such that the number of incidences is at least ı�f .˛;ˇ/,
where f was defined as in Theorem 1.4. We divide the constructions into four cases.
Construction 1 is the main construction that works for most ˛ and ˇ. Constructions 2,
3, 4 can be considered as auxiliary constructions which take care of exceptional values
of ˛; ˇ not covered in Construction 1. The constructions will all take place inside a
1 � 1 square. In the constructions, some of the ı-tubes may not be fully contained
within the 1 � 1 square, but we will ignore this minor detail. For ease of notation, let
D D ı�1.

2.1. Construction 1

In this construction, we assume ˛ < ˇ C 1; ˇ < ˛ C 1, and ˛ C ˇ < 3. Let a D
min.˛; 1/ and b D min.ˇ; 1/. Our goal is to construct a .ı; ˇ/-set of ı-balls and a
.ı; ˛/-set of ı-tubes with at least ı.a˛CbˇCab/=.aCb/ incidences.

𝛿𝛾

1
𝛿1−𝛾+𝛾𝑏

𝛿1−𝛾

𝛿𝛾

𝛿𝛾+(1−𝛾)𝑎

𝛿 (1−𝜆) 𝜅

𝛿𝜆𝜅

1

𝛿𝜆𝜅

Figure 2. Construction 1.

To describe the construction, we need a few auxiliary variables. We will eventually
choose 
;�;� as parameters in Œ0;1�. Refer to Figure 2. The left picture depicts a single
bundle with D.1�
/a many ı-tubes and � D
b many ı-balls. The ı-tubes are rotates
of a single central ı-tube t , and the angle spacing between ı-tubes is ı
C.1�
/a, so that
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the maximal angle of two ı-tubes in the bundle is ı
 . By trigonometry, the intersection
of all the tubes contains a ı � .� ı1�
 / rectangle with the same center and direction as
the central ı-tube t . We may thus place�D
b many ı-balls in the rectangle, spaced a
distance of ı1�
C
b apart; then each ball of the bundle will intersect each tube in the
bundle. Furthermore, since the maximum angle between two ı-tubes in the bundle is
ı
 , we see that the bundle fits inside a ı
 � 1 rectangle.

It might be helpful to observe that the configuration of ı-balls is “dual” to the
configuration of ı-tubes in a bundle, in the sense that the ı-balls in a bundle are evenly
spaced along the central axis, while the ı-tubes are evenly spaced in direction.

On the right picture, there are D� bundles in Œ0; 1�2. The bundles are arranged in
a D.1��/� �D�� grid, with the horizontal spacing ı.1��/� and the vertical spacing
ı�� . The bundles in the same row are translates of each other; two adjacent bundles
in the same column are ı�� rotates of each other.

If T is the set of ı-tubes and P is the set of ı-balls in the configuration, then we
see that jT j � D.1�
/aC� and jP j � D
bC� .

Intuitively, we can regard � as controlling the “aspect ratio” of the bundle con-
figuration. If � D 1, then all the bundles are rotated copies of each other, arranged
vertically; if � D 0, then all the bundles are translated copies of each other, arranged
horizontally. For the right values of �, our constructed T will be a .ı;˛/-set of ı-tubes
and P will be a .ı; ˇ/-set of ı-balls.

Now, we choose suitable values for our parameters 
 , �, �. We first choose 
 D
.a � ˛ C ˇ/=.a C b/ and � D ˛ � .1 � 
/a D .aˇ C b˛ � ab/=.a C b/. Then, we
apply the following lemma to choose � and also check that 
; � 2 Œ0; 1�.

Lemma 2.1. (a) We have 0 � 
; � � 1.
(b) There exists 0 � � � 1 such that T is a .ı; ˛/-set of ı-tubes and P is a .ı; ˇ/-

set of ı-balls.

1

𝛿0.5

Figure 3. Construction 1 with ˛ D ˇ D 1.
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The proof is computational, and we defer it to the Appendix. Now with this choice
of parameters, we find jT j � D.1�
/aC� D D˛ and jP j � D
bC� D Dˇ . Finally,
since jT j � D˛ , and each ı-tube t 2 T intersects � D
b many ı-balls of the bundle
of t , we get I.P;T / & D˛D
b D D.a˛CbˇCab/=.aCb/.

The prototypical example is ˛ D 1; ˇ D 1, in which case 
 D � D 0:5. In this
case, the possible values for � are 0 � � � 1=2. If we choose � D 0, then we get a
series of D0:5 horizontally spaced, parallel bundles, as in Figure 3.

2.2. Construction 2

For this construction, we will assume ˛ � ˇ C 1. Our goal is to obtain ı�.ˇC1/ inci-
dences.

1

1
4

𝛿
1
4

1

1

0.5

𝛿𝛼−1

𝛿𝛽

Figure 4. Construction 2.

Refer to Figure 4. In each bundle, there are � D many ı-tubes, each separated by
angle ı. Thus, we can fit the bundle inside a .1=4/� 1 rectangle. We arrange�D˛�1

bundles as in the right figure, separated by distance � ı˛�1, such that the centers of
the bundles lie within a segment of length 1=2 centered at the unit square’s center.
Then, we place Dˇ many ı-balls at some of the centers of the bundles, such that the
ı-balls are ıˇ -separated. Thus, there are D˛ many ı-tubes and Dˇ many ı-balls in
the configuration.

Let T be the set of ı-tubes and P be the set of ı-balls. We will show that T is a
.ı; ˛/-set of tubes and P is a .ı; ˇ/-set of balls.
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Fix w 2 Œı; 1� and a w � 2 rectangle Rw ; we will count how many ı-tubes in T

are in Rw . There are two main contributions.

• Rw can contain tubes from . dw=ı˛�1e bundles of jT j.

• For each bundle, Rw can contain . w=ı ı-tubes.

Thus, Rw contains at most N ı-tubes in T , where (using w 2 Œı; 1� and ˛ � 1)

N .
� w

ı˛�1
C 1

�
�
w

ı
D
w2

ı˛
C
w

ı
� 2 �

�w
ı

�˛
:

This means T is a .ı; ˛/-set of tubes.
Now, we verify that P is a .ı; ˇ/-set of balls. Fix w 2 Œı; 1� and a ball Bw of

radius w; we will count how many ı-balls in P are in Bw . Note that Bw can intersect
at most N many ı-balls, where (using ˇ � ˛ � 1 � 1)

N .
l w
ıˇ

m
�
w

ıˇ
C 1 � 2

�w
ı

�ˇ
:

Thus, P is a .ı; ˇ/-set. Finally, each ı-ball in P intersects � D many ı-tubes of
T , so I.P;T / � Dˇ �D D DˇC1.

2.3. Construction 3

For this construction, we will assume ˇ � ˛ C 1. Our goal is to obtain ı�.˛C1/ inci-
dences.

1

𝛿𝛼

𝛿𝛽−1

Figure 5. Construction 3.

Refer to Figure 5. There are Dˇ�1 columns of D many ı-balls each. On D˛

of the columns, there is a ı-tube. The ı-tube-containing columns are separated by
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distance ı˛ . Thus, there are Dˇ ı-balls and D˛ ı-tubes. Note that Construction 3 is
“dual” to Construction 2, in the sense that a bundle of direction-separated ı-tubes is
replaced by a bundle of evenly-spaced ı-balls.

The ı-tubes are a .ı; ˛/-set of tubes and the ı-balls are a .ı; ˇ/-set of balls by a
similar argument to Construction 2. Finally, each ı-tube contains D many ı-balls, so
I.P;T / D D˛ �D D D˛C1.

2.4. Construction 4

For this construction, we will assume ˛ C ˇ � 3. Our goal is to obtain ı�.˛Cˇ�1/

incidences.

1

1

0.5

𝛿𝛽/2

𝛿𝛼−1

Figure 6. Construction 4.

Refer to Figure 6. The bundles of ı-tubes are the same as Construction 2. We
then arrange � Dˇ many ı-balls in a Dˇ=2 �Dˇ=2 grid, such that adjacent ı-balls
are separated by distance � ıˇ=2. We confine the ı-balls to a .1=2/ � .1=2/ square �

concentric with the large 1 � 1 square. Let T be the set of ı-tubes and P be the set of
ı-balls in this configuration.

From Construction 2, T is a .ı;˛/-set of tubes. We now show that P is a .ı;ˇ/-set
of balls.

Fix w 2 Œı; 1� and a ball Bw of radius w; we will count how many ı-balls in P
are in Bw . Note that Bw can intersect at most N many ı-balls in P , where

N .
�l w

ıˇ=2

m�2
�

� w

ıˇ=2
C 1

�2
� 2

�w2
ıˇ
C 1

�
� 4

�w
ı

�ˇ
:

Also, the ı-balls in P are essentially distinct, so P is a .ı; ˇ/-set of balls.
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Finally, we will count the number of incidences. For a bundle centered at some
pointO 2 � , the ı-tubes in the bundle cover a double cone with apexO and angle 1=4.
This double cone intersects square � in a polygonal region with positive area, so
it contains a positive fraction of the balls in P . Hence, the number of incidences
between a given bundle and P is & Dˇ . There are D˛�1 bundles in T , so I.P;T / &
DˇD˛�1 D D˛Cˇ�1.

3. Combinatorial upper bound

We will first prove the upper bound for ˛ � 1 or ˇ � 1. We further casework on
whether ˛ < ˇ or ˛ � ˇ, which are handled by Theorems 3.1 and 3.2 below.

Theorem 3.1. Let P be a .ı; ˇ; Kˇ /-set of ı-balls and T be a .ı; ˛; K˛/-set of ı-
tubes. Let D D ı�1. Let b D min.ˇ; 1/, and assume b � ˛. Then for any " > 0, there
exists C" > 0 such that

I.P;T /˛Cb � C"D
˛b.1C"/K˛ˇK

b
˛ jP j

b
jT j˛:

Theorem 3.2. Let P be a .ı; ˇ; Kˇ /-set of ı-balls and T be a .ı; ˛; K˛/-set of ı-
tubes. Let D D ı�1. Let a D min.˛; 1/ and assume a � ˇ. Then for any " > 0, there
exists C" > 0 such that

I.P;T /aCˇ � C"D
aˇ.1C"/KaˇK

ˇ
˛ jP j

ˇ
jT ja:

Proof. We will first prove Theorem 3.1. Then to prove Theorem 3.2, it suffices to
prove Theorem 3.1 and apply duality. For more details on duality, see [5, Section 6.1].
Hence, we will concentrate on proving Theorem 3.1.

Notation. For a ı-tube t and ı-ball p, we use p � t to denote p \ t ¤ ;.

If ˛ D 0, then the result follows from the trivial bound I.P; T / � jP jjT j .
jP j � K˛ , so we assume ˛ > 0. Recall that I.P;T / is the number of pairs .t; p/ 2
T � P such that p � t . Let T .p/ D ¹t 2 T W p � tº. Define

J.P;T / D
X
p2P

jT .p/j.bC˛/=˛:

We first relate J to I . By Hölder’s inequality, we have

J.P;T /˛ �
1

jP jb

�X
p2P

jT .p/j
�bC˛

D
I.P;T /bC˛

jP jb
: (3.1)
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Next, we estimate J.P;T /. For a given ı-tube t 2 T , let

j.t/ D
X
p�t

jT .p/jb=˛:

Then, we have

J.P;T / D
X
p2P

jT .p/j � jT .p/jb=˛ D
X
p2P

X
t�p

jT .p/jb=˛

D

X
t2T

X
p�t

jT .p/jb=˛ D
X
t2T

j.t/: (3.2)

The main claim is the following.

Lemma 3.3. There exists C" > 0 such that j.t/ . C"K
b=˛
˛ KˇD

bC"=˛ for any t 2 T .

To prove Lemma 3.3, we introduce some notation. Let Tı.t/D¹s 2T W s \ t ¤ ;;

†.s; t/ � 2ıº and for w � 2ı,

Tw.t/ D ¹s 2 T W s \ t ¤ ;; w � †.s; t/ � 2wº:

We will now prove two lemmas involving Tw.t/.

Lemma 3.4. The following statement holds:

jTw.t/j . K˛

�w
ı

�˛
:

Proof. Let R be the 200w � 2 rectangle with the same center as t such that the
length-2 side of R is parallel to the length-1 side of t . By trigonometry, we observe
that any ı-tube s � Œ0; 1�2 with s \ t ¤ ; and †.s; t/ � 2w must be contained in
R. Since T is a .ı; ˛; K˛/-set of tubes, there are at most K˛ � .200w=ı/˛ tubes
of T contained in R. Thus, since 200˛ � 2002 . 1, we obtain the desired bound
jTw.t/j . K˛ � .w=ı/

˛ .

Lemma 3.5. Fix t 2 T . For any ı < w < �=2, we haveX
p�t

jT .p/ \ Tw.t/j . jTw.t/j �
Kˇ

wb
:

Proof. We use a double counting argument. The left-hand side counts the number of
pairs .p; s/�P �Tw.t/with p � s and p � t . For each s 2Tw.t/, s \ t is contained
in a ı � .ı=w/ rectangle Rw . Finding the upper bound to the number of ı-balls of P
in Rw is split into two cases.

• If ˇ � 1, then cover Rw with � 1=w many 10ı-balls qi , such that any ı-ball that
intersectsRw must lie in some qi . By dimension, qi contains at most .Kˇ � 10ˇ .
Kˇ many ı-balls of P , so Rw intersects . .1=w/Kˇ many ı-balls of P .
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• If ˇ < 1, then Rw is contained in a ball of radius ı=w, so since P is a .ı; ˇ;Kˇ /-
set, we see that Rw intersects . Kˇ .1=w/

ˇ many ı-balls of P .

Thus, for each s 2 Tw.t/, there are at most . Kˇ .1=w/
b many ı-balls p 2 P with

p � s and p � t , which proves the lemma.

Proof of Lemma 3.3. Now let K D
®
ı; 2ı; 4ı; : : : ; ı � 2dlog2 ı

�1e
¯
, C1 D jKjb=˛�1,

and C D C1jKj. Since jKj D logD, we have C ." D"=˛ . Now, we perform the
following calculation:

j.t/ D
X
p�t

�X
w2K

jT .p/ \ Tw.t/j
�b=˛

�

X
p�t

C1
X
w2K

jT .p/ \ Tw.t/j
b=˛

� C1
X
w2K

X
p�t

jT .p/ \ Tw.t/j � jTw.t/j
b=˛�1

. C1
X
w2K

jTw.t/j
b=˛
�
Kˇ

wb

. C �Kb=˛˛ Kˇ �D
b ." Kb=˛˛ Kˇ �D

bC"=˛:

The first line uses the fact that the sets Tw.t/ cover T .p/. The second line fol-
lows from Hölder’s inequality. The third line follows from jT .p/\Tw.t/j � jTw.t/j

and b=˛ � 1. The fourth line follows from Lemma 3.5. The fifth line follows from
Lemma 3.4.

Using equations (3.1), (3.2) and Lemma 3.3, we can finish the proof of Theo-
rem 3.1.

I.P;T /bC˛ � jP jbJ ˛ ." jP jb
�X
t2T

Kb=˛˛ Kˇ �D
bC"=˛

�˛
DK˛ˇK

b
˛ jP j

b
jT j˛Db˛C":

This is the desired result.

4. Fourier analytic upper bound

We will now prove a superior upper bound for I.P;T / when P is a .ı; ˛;K˛/-set and
T is a .ı; ˇ; Kˇ /-set of tubes, if ˛, ˇ > 1. The proof method is using the high-low
method in Fourier analysis.
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4.1. A Fourier analytic result

We will need a variant of [11, Proposition 2.1]. The version presented here is a modest
refinement of [1, Proposition 2.1]. First, we review some notation. We say two ı-tubes
s, t are essentially identical if they intersect and their angle is at most ı. Otherwise,
they are essentially distinct, and we say a collection T of ı-tubes is essentially distinct
if the tubes in T are pairwise essentially distinct.

For a ı-ball p and S � 1, define the S -thickening pS to be the Sı-ball concentric
with p. For a ı-tube t , let tS denote the Sı-tube coaxial with t . Finally, for a set
of ı-balls P (respectively set of ı-tubes T ), let P S WD ¹pS W p 2 P º (respectively
TS WD ¹tS W t 2 Tº).

Proposition 4.1. Fix a small " > 0, and ı � 1;D D ı�1. There exists a constant C"
with the following property. Suppose that P is a set of ı-balls and T is a set of ı-
tubes contained in Œ0; 1�2 such that every p 2 P intersects at most Kˇ many ı-balls
of P (including p itself) and every t 2 T is essentially identical to at most K˛ many
ı-tubes of T . If D"=20 � S � D, then we have the incidence estimate

I.P;T / ." S1=2 �D1=2K1=2˛ K
1=2

ˇ
jP j1=2jT j1=2 C S�1C"=2I.P S ;TS /: (4.1)

Proof. If K˛ D Kˇ D 1, then the ı-tubes in T are essentially distinct and the ı-balls
in P are pairwise non-intersecting. Thus, we can directly apply [1, Proposition 2.1]
with choice of parameters ˛ D "2=40 and weight function w � 1.

Now, we will tackle the general case. To do so, we will partition P intoKˇ groups
P1; P2; : : : ; PKˇ such that all the balls in Pi are disjoint. Consider a graph on the set
of ı-balls of P , with two balls connected by an edge if they intersect. Then each ball
has maximum degree Kˇ � 1 by assumption. To construct the desired partition of P ,
we employ the following well-known lemma from graph theory, which follows from,
for example, Brook’s theorem in [16].

Lemma 4.2. Any graph with maximum degree n admits a coloring of the vertices
with nC 1 colors such that no two adjacent vertices share the same color.

In other words, we may partition P intoKˇ many sets P1; P2; : : : ; PKˇ , such that
any two intersecting ı-balls in P must belong in different sets of the partition, so the
ı-balls in each Pi are disjoint.

Similarly, we may partition T into K˛ groups T1; T2; : : : ; TK˛ such that the
ı-tubes in each Ti are essentially distinct. Finally, by applying our K˛ D Kˇ D 1

incidence result to each Pi and Tj , we have

I.P;T / �
KX̨
iD1

KˇX
jD1

I.Pi ;Tj /
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."
KX̨
iD1

KˇX
jD1

�
S1=2 �D1=2

jPi j
1=2
jTj j

1=2
C S�1C"=2 � I.P Si ;T

S
j /
�

D

�
S1=2 �D1=2

KX̨
iD1

jPi j
1=2
�

KˇX
jD1

jTj j
1=2
�
C S�1C"=2 � I.P S ;TS /

� S1=2 �D1=2.K1=2˛ jP j
1=2/.K

1=2

ˇ
jT j1=2/C S�1C"=2 � I.P S ;TS /:

The last line followed from Cauchy–Schwarz and
PKˇ
iD1 jPi jD jP j,

PK˛
jD1 jTj jD jT j.

This proves the desired result (4.1) for general K˛ , Kˇ � 1.

4.2. Exploiting the dichotomy via induction on scales

Proposition 4.1 hints at an inductive approach to upper bound I.P;T /. If the first term
in (4.1) dominates, we get our desired upper bound. If the second term dominates,
then we need to estimate I.P S ;TS /, where P S is formed by thickening the ı-balls
in P to Sı-balls, and likewise TS is formed by thickening the ı-tubes in T to Sı-
tubes. (Here, S D D"=20.) We thus obtain an incidence problem at scale Sı, so we
can apply induction. The key idea is that if P is a .ı; ˇ;Kˇ /-set of balls, then P S is
an .Sı; ˇ; SˇKˇ /-set, and similarly for tubes TS . We now prove Theorem 1.5.

Theorem 4.3. Fix " > 0 and 0 � ˛; ˇ � 2. Let c�1 D max.˛ C ˇ � 1; 2/. There
exists C" > 0 such that the following holds. For any .ı; ˇ; Kˇ /-set of ı-balls P
and .ı; ˛;K˛/-set of ı-tubes T contained in Œ0; 1�2, we have the following incidence
bound:

I.P;T / � C"ı
�c�".K˛Kˇ /

c
jP j1�cjT j1�c : (4.2)

Remark. (1) If ˛ D ˇ D 2, which corresponds to the case where there are no con-
straints on the distribution of ı-tubes or ı-balls in Œ0;1�2, the result becomes I.P;T /�
C"ı
�.1=3C"/jP j2=3jT j2=3, which (up to a C"ı�" factor) recovers a result in [6].
(2) As mentioned in the introduction, Theorem 1.5 is valid for all ˛; ˇ 2 Œ0; 2� but

is only superior to Theorems 3.1 and 3.2 when min.˛; ˇ/ > 1. In other words, com-
binatorial methods seem to be preferable when the dimensions of the sets of balls and
tubes are small, while Fourier analytic methods perform better when the dimensions
are large.

Proof. Throughout the proof, we let D WD ı�1.
First, we can assume " < 1=2. The proof will be by induction on n D b� log2 ıc.

Let C1."/ � 1 be a constant to be chosen later, and let N D N."/ be such that
2C1 � 2

�N"2=40 < 1. Finally, we will choose C" D max.2C1; 23N /.
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The base case will be ı � 2�N . Then since P is a .ı; ˇ;Kˇ /-set, we have jP j �
KˇD

ˇ . Similarly, jT j � K˛D˛ . Finally, since ˛ C ˇ � 1 � 3 and D � 2N , we get

I.P;T / � jP jjT j � Dc.˛Cˇ/.K˛Kˇ /
c
jP j1�cjT j1�c

� 23N �Dc.K˛Kˇ /
c
jP j1�cjT j1�c

This gives the desired bound (4.2) since 23N � C".
For the inductive step, assume the result is true for ı > 2�n, for some n � N . We

will show the result for ı 2 .2�.nC1/; 2�n�.
We first take care of the case when jP jjT j is small. If jP jjT j � D �K˛Kˇ , then

I.P;T / � jP jjT j � Dc.K˛Kˇ /
cjP j1�cjT j1�c .

Thus, we may assume jP jjT j � D �K˛Kˇ . Because P is a .ı; ˇ; Kˇ /-set, each
p 2 P intersects � 9Kˇ many ı-balls of P (see brief remarks after Definition 1.2).
Likewise, since T is a .ı; ˛; K˛/-set, each t 2 T is essentially identical with . K˛

many ı-tubes of T . Thus, we may apply Proposition 4.1 to obtain, for some constant
C1 D C1."/ > 0 and S D D"=20,

I.P;T / � C1S
1=2
� .K˛Kˇ /

1=2D1=2
jP j1=2jT j1=2 C C1S

�1C"=2I.P S ;TS /: (4.3)

To prove (4.2), we will show each term of (4.3) is bounded above by the quantity
.1=2/C"D

cC".K˛Kˇ /
cjP j1�cjT j1�c .

This is clear for the first term, since c � 1=2, jP jjT j �D �K˛Kˇ , and C" � 2C1.
For the second term, observe that P S is an .Sı; ˇ; SˇKˇ /-set of balls and TS is

an .Sı; ˛; S˛K˛/-set of tubes. Thus, by the inductive hypothesis and c.˛C ˇ � 1/ �
1, we have

I.P S ;TS / � C".Sı/
�c�".K˛Kˇ � S

˛Cˇ /cjP j1�cjT j1�c

� C"S
1�"
� ı�c�".K˛Kˇ /

c
jP j1�cjT j1�c :

Recall that ı�2�N, and by definition ofN and S , we get 2C1S�"=2D2C1D�"
2=40<1.

Thus, we getC1S�1C"=2I.P S;TS /�.1=2/C"D
cC".K˛Kˇ /

cjP j1�cjT j1�c . We have
showed that each term of (4.3) is bounded by .1=2/C"DcC".K˛Kˇ /

cjP j1�cjT j1�c

from above, completing the inductive step and thus the proof of Theorem 4.3.

5. Proof of Theorems 1.4, 1.6, and Corollary 1.8

We restate Theorem 1.4 here.

Theorem 5.1. Suppose ˛;ˇ satisfy 0� ˛;ˇ � 2, and letK˛;Kˇ � 1. For every " > 0,
there exists C D C"K˛Kˇ with the following property. For every .ı; ˇ;Kˇ /-set of ı-
balls P and .ı; ˛;K˛/-set of ı-tubes T , the following bound holds:

I.P;T / � C � ı�f .˛;ˇ/�";
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where f .˛; ˇ/ is defined as in Figure 1. These bounds are sharp up to C � ı�".

Proof. The sharpness of these bounds was proved in Section 2, with the constructed
examples. We turn to showing the desired upper bounds. In this proof, let D D ı�1.

First, we have jP j . Kˇ �D
ˇ and jT j . K˛ �D

˛ by dimension property (take
w D 2). We will split into cases.

• If 1 � ˛ � ˇ or ˛ � 1 � ˇ � ˛ � 1, then we use Theorem 3.2 to get

I.P;T /aCˇ . KaˇK
ˇ
˛D

aˇC"Dˇ2Da˛:

• If 1 � ˇ � ˛ or ˇ � 1 � ˛ � ˇ � 1, then we use Theorem 3.1 to get

I.P;T /˛Cb . K˛ˇK
b
˛D

˛bC"DbˇD˛2 :

• If ˛ � 1 and ˇ � 1, then we use Theorem 4.3 to get

I.P;T / . .K˛Kˇ /
cDcC"D˛.1�c/Dˇ.1�c/;

where c�1 D max.˛ C ˇ � 1; 2/.

• Suppose ˇ � ˛ C 1. By the short remark after Definition 1.2, each ı-ball in P
intersects � 9Kˇ other ı-balls in P . Thus, using Lemma 4.2, we can partition
P into P1; P2; : : : ; P9Kˇ such that the ı-balls in each Pi are disjoint. Using this
disjointness property, each ı-tube in T can only intersect . D many ı-balls of
any Pi . Thus, we get I.Pi ;T / . jT j �D . K˛ �D

˛C1 for each 1 � i � 9Kˇ , so
I.P;T / D

P9Kˇ
iD1 I.Pi ;T / . K˛KˇD

˛C1.

• If ˛ � ˇ C 1, then using a similar partitioning argument as in the previous bullet
point, we get I.P;T / . K˛KˇD

ˇC1.

Combining these results proves Theorem 1.4.

Now we move to the proof of Theorem 1.6 and Corollary 1.8. We will deduce
them from the following incidence estimate.

Theorem 5.2. Fix " > 0. Suppose T is a .ı; ˛;K˛/-set of ı-tubes contained in Œ0; 1�2.
For every t 2 T , let Pt be a .ı; ˇ; Kˇ /-set of ı-balls contained in Œ0; 1�2 such that
p \ t ¤ ; for each p 2 Pt . If c D max.˛ C ˇ; 2/�1 and P D

S
t2T Pt , thenX

t2T

jPt j ." DcC"KcˇK
c
˛jP j

1�c
jT j1�c : (5.1)

Remark. The LHS of (5.1) is less than I.P;T /, we only count incidences between
t and p 2 Pt , and discard “stray” incidences between t and p 2 P n Pt .
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5.1. Sharpness of Theorem 1.6 and idea for Theorem 5.2

We first give a concrete example to show the sharpness part of Theorem 1.6. Let C

be a Cantor set in Œ0; 1� with Hausdorff dimension ˇ, and consider the product set
A D C � Œ0; 1� � R2. Then A is a .ˇ; v/-Furstenberg set for any 0 � v � 2, since
lines with angle � 1=100 from vertical intersect A in an affine copy of C , which has
dimension ˇ. Also, dimH .A/ D ˇ C 1.

Moving onto the proof of Theorem 5.2, it would be nice to assume the set P is a
.ı; ˇ C 1;Kˇ /-set. With this assumption, we can apply Theorem 4.3 to P and T and
obtain the desired bound (5.1). Unfortunately, a priori P may not be a .ı; ˇC 1;Kˇ /-
set since it may contain heavy pockets, or balls Bw that fail the condition (1.1). To
remedy this, we can replace each heavy pocket with a discretized and scaled copy
of the .ˇ C 1/-dimensional set A from the previous paragraph. This operation will
decrease the number of balls inP , but increase the number of ı-balls ofP intersecting
a given tube t 2 T . In the end, we obtain a .ı; ˇ C 1;Kˇ /-set P 0 with jP 0j . jP j but
I.P 0;T / &

P
t2T jPt j, and then we apply Theorem 4.3 on P 0 and T to finish.

5.2. Proving Theorem 5.2 with extra assumptions

It is convenient to make some assumptions about our setup. Fortunately, these extra
assumptions are harmless, as we will show in Section 5.4.

Theorem 5.3. Fix " > 0. Suppose T is a .ı; ˛;K˛/-set of ı-tubes contained in Œ0; 1�2.
For every t 2 T , let Pt be a .ı; ˇ; Kˇ /-set of ı-balls contained in Œ0; 1�2 such that
p \ t ¤ ; for each p 2 Pt . Let P D

S
t2T Pt . Suppose we have the additional

simplifying assumptions,

(S1) ı D 2�n for some n � 1, and K˛; Kˇ � 1 are integers.

(S2) All the ı-tubes of T have angle Œ�=4; �=4C �=100� with the y-axis.

(S3) All the ı-balls in P are centered in the lattice .ı.2ZC 1//2.

If c D max.˛ C ˇ; 2/�1, thenX
t2T

jPt j ." DcC"KcˇK
c
˛jP j

1�c
jT j1�c : (5.2)

We prove Theorem 5.3 in the remainder of this subsection. As stated in the last
subsection, the main idea is to replace P with a .ı;ˇC 1;Kˇ /-set P 0 with jP 0j. jP j
but I.P 0;T / &

P
t2T jPt j. A priori, P may contain some heavy pockets, or balls Bw

that contain>Kˇ � .w=ı/ˇC1 many ı-balls in P . We would like to locally replace the
portion of P in each heavy pocket with a smaller “.ˇC 1/-dimensional” set of ı-balls
(to be constructed later) with cardinality � Kˇ � .w=ı/ˇC1; then the resulting set P 0

will not have heavy pockets and thus will be a .ı; ˇ C 1;Kˇ /-set. Unfortunately, this
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argument does not work because some of the heavy pockets may overlap. Instead, we
will apply the local replacements to a set of disjoint heavy dyadic squares, which we
define next.

Definition 5.4. Fix w D 2�n, n � 0. The dyadic squares Dw are the squares of side
length w whose vertices are in the lattice .wZ/2 \ Œ0; 1�2. If P is a set of ı-balls and
w D 2�n 2 Œ2ı; 1=2�, we say that a dyadic square Q 2Dw is heavy with respect to P
if jP \Qj > Kˇ � .w=ı/

ˇ .

Remark. A small issue is that the set R of heavy dyadic squares is not disjoint, there
can exist smaller dyadic squares contained in larger dyadic squares. However, if we
partially order the set of dyadic squares by inclusion, then the set R0 of maximal
elements in R with respect to inclusion will be pairwise disjoint.

We will also adopt the following convenient shorthand.

Notation. For a set of ı-balls P and a subset Q�R2, let P \Q WD ¹p 2P W p �Qº.

The next well-known lemma says that a set P with no heavy dyadic squares is a
.ı; ˇ C 1; CKˇ /-set of ı-balls.

Lemma 5.5. Let ı D 2�N for some N � 1. Let P be a set of ı-balls contained in
Œ0; 1�2 whose centers lie in .ı.2ZC 1//2. Suppose for each w D 2�n, 2ı � w � 1=2,
we have for all Q 2 Dw ,

jP \Qj � K �
�w
ı

�ˇ
: (5.3)

Then P is a .ı; ˇ; 64K/-set of ı-balls.

Proof. Pick an r-ball Br with r 2 Œı; 1�; we want to show jP \ Br j � 64K � .r=ı/ˇ .
Suppose r � 1=4. Let D1; D2; D3; D4 be the four dyadic squares in D1=2; their

union is Œ0; 1�2. Furthermore, for each p 2 P \ Œ0; 1�2, we know that the center of p
lies in .ı.2ZC 1//2, so p must lie inside some Di . By applying (5.3) to each Di , we
have (since r � 1=4 and ˇ � 2)

jP \ Br j � jP j D

4X
iD1

jP \Di j � 4K �
� 1
2ı

�ˇ
� 64K �

�r
ı

�ˇ
:

Suppose ı � r < 1=4. Letw D 2�n satisfy r < w � 2r . Let Bw be thew-ball concen-
tric withBr , and letA be the point in .2wZ/2 closest to the center ofBw . There are (at
most) four dyadic squaresD1;D2;D3;D4 in D2w with A as a vertex. Using geomet-
ric intuition, we see the union

S4
iD1Di contains Bw \ Œ0; 1�2, and hence Br \ Œ0; 1�2.

Furthermore, since w=ı D 2N�n is an even integer, a ı-ball p 2 P that lies insideS4
iD1 Di must lie inside some Di . By applying (5.3) to each Di with side length
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2w � 4r < 1, we have (since ˇ � 2)

jP \ Br j �

4X
iD1

jP \Di j � 4K �
�2w
ı

�ˇ
� 4K �

�4r
ı

�ˇ
� 64K �

�r
ı

�ˇ
:

Hence, P is a .ı; ˇ; 64K/-set by Definition 1.2.

As a final preparation for the proof of Theorem 5.3, we describe the smaller
“.ˇ C 1/-dimensional” sets of ı-balls that will replace the portion of P inside our
collection of disjoint heavy squares. Let w 2 Œ2ı; 1=2� be a dyadic number. We claim
there exists a set of ı-balls Pw contained in Œ0; w�2 with the following two properties
(where the implicit constants are absolute):

(P1) jPw \Qj WD j¹p 2Pw W p �Qºj. .d=ı/ˇC1 for any d � d squareQ with
sides parallel to the coordinate axes and d 2 Œı; 1�.

(P2) Let t be a ı-tube that forms angle �=4˙ �=100 with the y-axis. Suppose
Pt is a .ı; ˇ; Kˇ /-set satisfying p \ t ¤ ; for all p 2 Pt , and each ı-ball
in Pt is centered in the lattice .ı.2ZC 1//2. Then we have Kˇ j¹p 2 Pw W

p \ t ¤ ;ºj & jPt \ Œ0; w�2j.
Informally, Pw is the Cartesian product of a ˇ-dimensional Cantor set with the

unit interval, scaled to fit inside the square Œ0;w�2. We defer the exact construction of
Pw and verification of the claims to Section 5.3. Now, we will formalize our previous
ideas and prove Theorem 5.3 assuming the existence of Pw .

Proof of Theorem 5.3. Let R be the set of heavy dyadic squares of P as in Defini-
tion 5.4. Let R0 be the maximal elements of R, i.e., the squares Q 2 R such that no
square of R properly contains Q. Since two elements of R are either disjoint or one
lies inside the other, we see that the elements of R0 are disjoint. We emphasize that
the side lengths of squares in R and R0 are dyadic numbers in Œ2ı; 1=2�.

As a notational convenience in this proof, for any subsetA�R2, we let P \A WD
¹p 2 P W p � Aº to be the set of ı-balls in P that lie in A. Similarly, define P nA WD
¹p 2 P W p 6� Aº. We will also define the set

S
R0 � R2 to be the union of the

squares in R0.
Using this notation, we observe an important fact (already noticed in the proof of

Lemma 5.5). Since the ı-balls in P are centered in .ı.2ZC 1//2 (by (S3)), and since
the dyadic squares in R0 have side length being multiples of 2ı, we have that any
ı-ball in P is either contained in some Q 2 R0 or contained in Œ0; 1�2 n

S
R0. This

fact will be used throughout the argument without further mention, but let us mention
a particular example: we have P D .P n

S
R0/ [

F
Q2R0.P \Q/.

We now construct a new set of balls P 0 that has fewer ı-balls than P in the heavy
squares R (and equalsP outside the set of heavy squares), yet I.P 0;T /&

P
p2P jPt j.
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For each Q 2 R0 with side length w, we let P 0.Q/ be a superposition of Kˇ copies
of Pw placed inside Q. Finally, define P 0 WD .P n

S
R0/ [

F
Q2R0 P

0.Q/, which
replaces the ı-balls in P \Q with P 0.Q/ for each Q 2 R0. Then for each t 2 T , we
have

j¹p 2 P 0 W p \ t ¤ ;ºj D j¹p 2 P 0 n [R0 W p \ t ¤ ;ºj

C

X
Q2R0

j¹p 2 P 0.Q/ W p \ t ¤ ;ºj

&
ˇ̌̌
Pt n

[
R0
ˇ̌̌
C

X
Q2R0

jPt \Qj

D jPt j:

(To get from the first to the second line, we used P n
S

R0 D P 0 n
S

R0 and p 2
Pt H) p \ t ¤ ; to lower bound the first term, and property (P2) with our assump-
tions (S2), (S3) to lower bound the summation term.) Summing over all t 2 T gives

I.P 0;T / WD
X
t2T

j¹p 2 P 0 W p \ t ¤ ;ºj &
X
t2T

jPt j: (5.4)

Similarly, by (P1) and the definition of heavy square, jP 0.Q/j . Kˇ � .w=ı/
ˇC1<

jP \Qj for each Q 2 R0, so

jP 0j D
ˇ̌̌
P 0 n

[
R0
ˇ̌̌
C

X
Q2R0

jP 0.Q/j .
ˇ̌̌
P n

[
R0
ˇ̌̌
C

X
Q2R0

jP \Qj D jP j: (5.5)

We now check that P 0 satisfies the conditions of Lemma 5.5 with ˇ C 1 for ˇ.
Pick Q 2 Dw with w 2 .ı; 1/ dyadic; if Q 2 R, then by definition, Q � Q0 for
some maximal element Q0 2 R0. Then by estimate (P1) applied to P 0.Q0/, we get
jP 0 \Qj . Kˇ .w=ı/

ˇC1. If Q …R, then by definition of P 0 and (un-)heavy square,
we have jP 0 \ Qj D jP \ Qj � Kˇ � .w=ı/

ˇC1. In either case, we get jP 0 \ Qj .
Kˇ .w=ı/

ˇC1.
By assumption, T is a .ı; ˛; K˛/-set of tubes, and, according to Lemma 5.5, P 0

is a .ı; ˇ C 1; CKˇ /-set of balls (here C > 0 is an absolute constant). Hence, we can
apply Theorem 4.3, (5.4), and (5.5) to get (with c D 1=max.˛ C ˇ; 2/)X
t2T

jPt j . I.P 0;T / ." DcC"Kc˛K
c
ˇ jP

0
j
1�c
jT j1�c . DcC"Kc˛K

c
ˇ jP j

1�c
jT j1�c :

This completes the proof of Theorem 5.3.
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5.3. Constructing the set Pw

Let ı < w � 1=2 such that w=ı is an even integer. Recall that we want to construct a
set Pw contained in Œ0;w�2 with the following properties (where the implicit constants
are absolute):

(P1) jPw \Qj WD j¹p 2Pw W p �Qºj. .d=ı/ˇC1 for any d � d squareQ with
sides parallel to the coordinate axes and d 2 Œı; 1�.

(P2) Let t be a ı-tube that forms angle �=4˙ �=100 with the y-axis. Suppose
Pt is a .ı; ˇ; Kˇ /-set satisfying p \ t ¤ ; for all p 2 Pt , and each ı-ball
in Pt is centered in the lattice .ı.2ZC 1//2. Then we have Kˇ j¹p 2 Pw W

p \ t ¤ ;ºj & jPt \ Œ0; w�2j.
Let C be a Cantor set with Hausdorff dimension ˇ that contains 0 and w, and

let Cı WD C .ı/ \ ıZ be a discretization of C at scale ı. (Recall that C .ı/ is the ı-
neighborhood of C .) Now let Pw be the set of ı-balls centered at .mı; nı/, for all
m; n 2 Z satisfying 1 � m; n < ı�1 and at least one of mı or nı belong to Cı . (One
should view Pw as the ı-discretization of the set .C � Œ0; 1�/ [ .Œ0; 1� � C/ scaled to
fit inside Œ0; w�2.)

We first verify (P1). Let d 2 Œı; 1� and Q be a d � d square with sides parallel
to the coordinate axes, and I be the projection of Q onto the x-axis. Since C is a
ˇ-dimensional Cantor set and I has length d , we have jCı \ I j . .d=ı/ˇ . For any
mı 2 Cı \ I , there are d=ı many values of n such that .mı; nı/ 2Q. Thus, there are
. .d=ı/ˇC1 many values for .m; n/ 2 Z2 such that .mı; nı/ 2 Q and mı 2 Cı . A
similar bound applies to those .m; n/ 2 Z2 satisfying .mı; nı/ 2 Q and nı 2 Cı , so
we conclude that jPw \Qj . 2.d=ı/ˇC1. This proves (P1).

Now, we show (P2). We may assume that t intersects Œ0;w�2 (otherwise the right-
hand side of (P2) is zero). Since t is a ı � 1 rectangle and Œ0; w�2 has diagonal length
p
2w < 1, we see that t must intersect one of the sides of Œ0; w�2. By rotating the

configuration if necessary, we may assume without loss of generality that t intersects
the edge L between .0; 0/ and .0; w/.

If Pt \ Œ0;w�2D;we are done; thus, assume there exists q 2Pt with q � Œ0;w�2.
In particular, q \ t ¤ ;. Let d be the length of the projection of t \ Œ0; w�2 onto the
x-axis. We claim j¹p 2 Pw W p \ t ¤ ;ºj � max.1; .d=ı/ˇ /. To prove the claim, we
divide into cases.

Case 1. d � ı. Then t intersects some ball .mı;nı/ 2Pw for everymı 2 Cı \ Œ0;d �.
Since C is a ˇ-dimensional Cantor set containing 0, we have j¹m 2 Z W mı 2 Cı \

Œ0; d �ºj & .d=ı/ˇ . Thus, j¹p 2 Pw W p \ t ¤ ;ºj & .d=ı/ˇ .

Case 2. d < ı. We know q D .mı;nı/ for some 1�m;n < w=ı,m;n 2 2ZC 1. We
show that q must have x-coordinate ı. Indeed, suppose q has x-coordinate at least 3ı.
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Then choosing a point B in q \ t , we see that B has x-coordinate at least 2ı. Since t
is convex and also intersects L, the projection of t onto the x-axis contains Œ0; 2ı�, so
d > 2ı, contradiction. Thus, q D .ı; nı/, which means q 2Pw (since ı 2 Cı ). Hence,
j¹p 2 Pw W p \ t ¤ ;ºj � 1.

Thus, we have showed j¹p 2Pw Wp\ t ¤;ºj �max.1;d=ı/ˇ . On the other hand,
since the ı-tube t has angle �=3˙�=100with the y-axis and t \ Œ0;w�2 projects onto
a length d interval on the x-axis, we see that t \ Œ0; w�2 is contained in a ball with
radius � .d C ı/. Thus, Pt \ Œ0; w�2 is contained in a ball with radius � .d C 2ı/.
Since Pt is a .ı; ˇ;Kˇ /-set and ˇ 2 Œ0; 2�, we have

jPt \ Œ0;w�
2
j . Kˇ

�d C ı
ı

�ˇ
. Kˇ max

�
1;
�d
ı

�ˇ�
. Kˇ j¹p 2 Pw W p \ t ¤ ;ºj:

This verifies (P2).

5.4. The simplifying assumptions are harmless

We will show how to use Theorem 5.3 to prove Theorem 5.2; it is largely an exercise
in pigeonholing.

Proof of Theorem 5.2. First, partition the ı-tubes of T into 100 groups T1; : : : ;T100,
where Ti consists of the tubes in T with angle in Œ2�i=100;2�.iC1/=100�with the y-
axis. By the pigeonhole principle, there exists i with

P
t2Ti
jPt j�.1=100/

P
t2T jPt j.

Henceforth, we work only with the tubes in Ti . By rotating the configuration appro-
priately, we may assume the tubes in Ti have angle in Œ�=4; �=4C �=100� with the
y-axis.

LetwD 2�n satisfy 4ı �w < 8ı. We first show that every ı-ball inP is contained
in a w-ball centered at some point in .wZ/2. Indeed, let p 2 P , and let x be the
point in .wZ/2 closest to p. Then d.x; p/ � .

p
2=2/w < .3=4/w and ı C d.x; p/ <

ı C .3=4/w < w, so p � Bw.x/.
Now we replace the ı-balls in P D

S
t2T Pt with w-balls centered in .wZ/2

containing the respective ı-balls, forming P 0 D
S
t2T P

0
t . Likewise, we thicken the

ı-tubes in Ti to w-tubes, forming T 0i . Then the resulting sets P 0t and T 0i will be
.w; ˇ; d64Kˇe/ and .w; ˛; d64K˛e/-sets, respectively.

We would further like P 0 to have centers in ..2w C 1/Z/2. To ensure this, for
a; b 2 ¹0; 1º, let P 0t .a; b/ be the elements in P centered at some .mw; nw/ with
m � a; n � b .mod 2/. Then by the pigeonhole principle, there exist a; b such thatP
t2T 0

i
jP 0t .a; b/j � .1=4/

P
t2T 0

i
jP 0t j. By translating the configuration appropriately,

we may assume that a D b D 1.
Let us summarize our achievements. We have found a .w;ˇ; d64Kˇe/-set of tubes

T 0i , each forming an angle in Œ�=4;�=4C �=100� with the y-axis, and for each t 2 T 0i
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we have a .w; ˛; d64K˛e/ set P 0t .1; 1/ centered in the lattice .w.2ZC 1//2, such that
p \ t ¤ ; for each p 2 P 0t .1; 1/ andX

t2T

jPt j � 400
X
t2T 0

i

jP 0t .1; 1/j: (5.6)

Now T 0i andP 0t .1;1/ satisfy the assumptions of Theorem 5.3 with parameterswD2�n,
d64K˛e, d64Kˇe, so (5.2) holds for these parameters. Combine this with (5.6) to
obtain the desired bound (5.1) (with a worse implicit constant).

5.5. Proof of Theorem 1.6 and Corollary 1.8

We now define a ı-discretized Furstenberg set. Let D D ı�1.

Definition 5.6. For 0 < v � 2 and 0 < u � 1, we call a collection P of essentially
distinct ı-balls a .ı; u; v; Ku; Kv/-Furstenberg set if there exists a .ı; v; Kv/-set of
tubes T with jT j � K�1v �D

v such that for each t 2 T , the set Pt D ¹p 2 P W p \
t¤ ;º is a .ı; u;Ku/-set of balls with jPt j � K�1u �D

u.

Then by [15, Lemma 3.3] withKu DKv D C.log.ı�1//C < C"ı�" for any " > 0,
the bound in Theorem 1.6 follows from the corresponding discretized version.

Theorem 5.7. For 1 � v � 2 and 0 < u � 1, a .ı; u; v;Ku; Kv/-Furstenberg set P
satisfies jP j � c"K�3u K�2v Dmin.2uCv�1;uC1/�", for every "> 0. (Here, c" >0 depends
only on ".)

Proof. By Theorem 5.2, we have, for c D max.uC v; 2/�1,

K�1u Du
jT j � C"D

cC".1�c/KcuK
c
v jP j

1�c
jT j1�c :

Using jT j & K�1v �D
v and c D 1=max.uC v; 2/ � 1=2, we get

jP j � C
� 1
1�c

" K
�
1Cc
1�c

u K
� 2c
1�c

v D
uC.v�1/c�".1�c/

1�c � C�2" K�3u K�2v Dmin.2uCv�1;uC1/�";

as desired.

Finally, we prove Corollary 1.8.

Corollary 5.8. Let 0 < ı � 1, u; v; v0 2 Œ0; 1� with vC v0 > 1, andKu;Kv;Kv0 � 1.
Let A; B; C � Œ1; 2� be sets of disjoint ı-balls such that A is a .ı; u; Ku/-set, B is
a .ı; v; Kv/ set, and C is a .ı; v0; Kv0/ set. For a set E � R, let jEjı denote the
minimum number of ı-balls to cover E. Then for c D max.uC v C v0; 2/�1,

max.jAC Bjı ; jA � C jı/

& K
� c
2.1�c/

u K
� c
2.1�c/

v K
� c
2.1�c/

v0 ı
c

2.1�c/
C"
jBj

c
2.1�c/ jC j

c
2.1�c/ jAj

1
2.1�c/ :
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Proof. The proof is a very slight modification of [5, Section 6.3], using our The-
orem 5.2. We provide full technical details below. Let X be a minimal (disjoint)
covering of A C B by ı-balls, and let Y be a minimal covering of AC by ı-balls.
Let zX denote the set of centers of the ı-balls in X , and define zY ; zA; zB; zC analo-
gously. Finally, for x 2 AC B , let zX.x/ be the center of the ı-ball in X containing
x, and similarly for zY .x/. Let

F D ¹.x; y/.ı/ W x 2 zX; y 2 zY º is a set of ı-balls;

Fbc D ¹. zX.aC b/; zY .ac//
.ı/
W a 2 zAº � F;

tbc D ı-tube with midline y D cx � bc; for b 2 zB; c 2 zC ;

T D ¹tbc W b 2 zB; c 2 zC º is a set of ı-tubes:

(Here, X .ı/ is the ı-neighborhood of X .)
We make the following observations.

(1) jF j D j zX jj zY j D jAC Bjı jA � C jı .

(2) Since B is a .ı; v;Kv/-set and C is a .ı; v0; Kv0/ set, we have that T must be
a .ı; v C v0; 100KvKv0/-set of ı-tubes. Furthermore, jT j D jBjjC j.

(3) Since the point .aC b;ac/ lies on the line `bc WyD cx � bc and d..aC b;ac/;
. zX.aC b/; zY .ac/// �

p
2ı < .3=2/ı, we see that tbc (the ı=2-neighborhood

of `bc) intersects every ı-ball in Fbc .

(4) We want to show Fbc is a .ı;u;4Ku/-set of balls. Consider aw-ballBw �R2.
For each ı-ball p 2 Fbc that lies in Bw , we can find an element .a C b; ac/
with a 2 zA such that p D . zX.a C b/; zY .ac//.ı/. Let L0 be the projection of
Bw onto the x-axis, and L D ¹x � b W x 2 L0º; then a 2 L, so a.ı/ � L.ı/.
We know jLj � 2w, so jL.ı/j � w C 2ı � 4w. In other words, L.ı/ is a 1-
dimensional ball with radius � 2w. Thus, since A is a .ı; u;Ku/-set, we get

¹p 2 Fbc W p � Bwº � ¹a
.ı/
2 A W a.ı/ � L.ı/º � Ku �

�2w
ı

�u
:

This shows Fbc is a .ı; u; 4Ku/-set of balls.

Thus, by Theorem 5.2, we have

jT jjAj �
X
t2T

jFt j . DcC".1�c/Kcu.KvKv0/
c
jT j1�cjF j1�c :

Since jT j D jBjjC j, we get

jAC Bjı jA � C jı D jF j & K
� c
1�c

u K
� c
1�c

v K
� c
1�c

v0 D�
c
1�c�"jBj

c
1�c jC j

c
1�c jAj

1
1�c ;

which implies the desired result.
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6. Appendix

In this Appendix, we will verify Lemma 2.1 for Construction 1, which is the case

˛ C ˇ < 3; ˛ < ˇ C 1; and ˇ < ˛ C 1: (6.1)

Recall that D D ı�1, a D min.˛; 1/, b D min.ˇ; 1/, 
 D .a � ˛ C ˇ/=.a C b/,
� D ˛ � .1 � 
/a D .aˇ C b˛ � ab/=.aC b/.

Lemma 6.1. (a) We have 0 � 
 � 1 and 0 � � � 1.
(b) Suppose � is a parameter satisfying the defining condition

• .1 � 
/a.aC 1 � ˛/Cmax.�; 1 � �/� � a;

• .1 � 
/b.b C 1 � ˇ/Cmax.�; 1 � �/� � b;

• 
 C .1 � 
/min.a; b/ � max.�; 1 � �/;

• 0 � � � min.
; 1 � 
/ � 1.

Then T is a .ı; ˛/-set of tubes and P is a .ı; ˇ/-set of balls.
(c) � D min.
; 1 � 
/ satisfies the defining condition.

Proof. We will show four facts.

(1) 0 � 
 � 1.

(2) 0 � � � min.a; b/.

(3) The ı-tubes are a .ı; ˛/-set of tubes.

(4) The ı-balls are a .ı; ˇ/-set of balls.

These facts allow us to verify � D min.
; 1 � 
/ satisfies the defining condition.
We perform the following computation using Facts (1)–(2) and .a � 1/.a � ˛/ D 0:

.1 � 
/a.aC 1 � ˛/C 
� � a.1 � 
/C 
a D a;

.1 � 
/a.aC 1 � ˛/C .1 � 
/� D .1 � 
/.a.aC 1 � ˛/C .˛ � .1 � 
/a//

D .1 � 
/.a.a � ˛/C ˛ C 
a/

D .1 � 
/.a � ˛ C ˛ C 
a/

D .1 � 
/.1C 
/a � a:


 C .1 � 
/min.a; b/ � 
 � 
�;


 C .1 � 
/min.a; b/ � .1 � 
/min.a; b/ � .1 � 
/�;

Now, we turn to proving the facts. From Table 1 and the conditions in equation
(6.1), we can easily show Facts (1) and (2). Now, we will verify the ı-tubes are a
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˛ ˇ 
 �

� 1 � 1
ˇ

˛ C ˇ

˛ˇ

˛ C ˇ

� 1 � 1
ˇ

˛ C 1

˛ˇ

˛ C 1

� 1 � 1
1 � ˛ C ˇ

1C ˇ

˛ˇ

1C ˇ

� 1 � 1
1 � ˛ C ˇ

2

˛ C ˇ � 1

2

Table 1. Computing 
; � in terms of ˛; ˇ.

.ı; ˛/-set of tubes. Fix w 2 Œı; 1� and a w � 2 rectangle Rw ; we will count how
many ı-tubes are in Rw . Recall that the bundles in the construction are arranged in
a rectangular grid, with bundles in the same row being translates of each other, and
bundles in the same column being rotates of each other. We will estimate the number
of bundles per row and column that Rw intersects (where Rw intersects a bundle if
it contains a tube from that bundle), as well as the number of tubes Rw can contain
from each bundle.

• Rw can intersect bundles of . dw=ı��e different rows. This is because the angle
between bundles of adjacent rows is ı�� , which is at least the angle ı
 of a single
bundle (since 
 � � � ��).

• Rw can intersect bundles of . dw=ı.1��/�e different columns. This is because the
horizontal spacing between two adjacent columns is ı.1��/� .

• For each bundle, Rw can contain . min.dw=ı
C.1�
/ae; D.1�
/a/ ı-tubes. This
is because the angle separation between adjacent ı-tubes of the same bundle is
ı
C.1�
/a.

Thus, Rw contains exactly N many ı-tubes from T , for

N . min
�l w

ı
C.1�
/a

m
;D.1�
/a

�
�

� w

ı.1��/�
C 1

�� w
ı��
C 1

�
:

Suppose w < ı
C.1�
/a. From property of �, we get w < ı�� and w < ı.1��/� .
Hence,

N . 2 � 2 � 2 D 8 < 8
�w
ı

�˛
:
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Thus, we may assume w > ı
C.1�
/a. In this case, we can use dxe � x C 1 � 2x to
write

n . min
� w

ı
C.1�
/a
;D.1�
/a

�
�

� w

ı.1��/�
C 1

�� w
ı��
C 1

�
:

Let m D min.w=ı
C.1�
/a; D.1�
/a/. We expand the product and bound each
term separately. We will use the fact min.x; y/ � xcy1�c for any 0 � c � 1, as well
as a � min.˛; 1/, ı � w � 1, � D ˛ � .1 � 
/a, and the defining relation of �.

m �
� w

ı
C.1�
/a

�a�
D.1�
/a

�1�a
D

�w
ı

�a
�

�w
ı

�˛
;

m �
w

ı.1��/�
�

�w
ı

�˛�a�
D.1�
/a

�aC1�˛
�

w

ı.1��/�
�
w˛�aC1

ı˛
�

�w
ı

�˛
;

m �
w

ı��
�

�w
ı

�˛�a�
D.1�
/a

�aC1�˛
�
w

ı��
�
w˛�aC1

ı˛
�

�w
ı

�˛
;

m �
w

ı��
�

w

ı.1��/�
� D.1�
/a

�
w

ı��
�

w

ı.1��/�
D
w2

ı˛
�

�w
ı

�˛
:

Hence, we get j¹t 2 T W t � Rwºj D N . .w=ı/˛ for all w 2 Œı; 1� and w � 2 rect-
angles Rw . This means T is a .ı; ˛/-set of tubes, proving Fact (3).

Now, we verify the ı-balls are a .ı; ˇ/-set of balls. Fix w 2 Œı; 1� and a ball Bw
of radius w; we will count how many ı-balls from P are in Bw . As before, we will
count the number of bundles per row and column that Bw intersects, as well as the
number of ı-balls Bw can contain from each bundle.

• Bw can intersect bundles of . dw=ı
�e different rows. This is because the vertical
spacing between two adjacent rows is ı�� , which is at least the height ı1�
 of a
single bundle (since 1 � 
 � � � ��).

• Bw can intersect bundles of . dw=ı.1��/�e different columns. This is because the
horizontal spacing between two adjacent columns is ı.1��/� , which is at least the
width ı
 of a single bundle (since 
 � 1 � � � .1 � �/�).

• For each bundle, Bw can contain . min.dw=ı1�
C
be;D
b/ ı-balls.

Thus, Bw contains at most N ı-balls, for

N . min
�l w

ı1�
C
b

m
;D
b

�
�

� w

ı.1��/�
C 1

�� w
ı��
C 1

�
:

Using a similar method to the ı-tubes case, we get the desired bound j¹p 2 P W p �
Bwºj D N . .w=ı/ˇ . Thus, P is a .ı; ˇ/-set of balls, proving Fact (4). The lemma is
proved.
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