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Good labeling property of simple nested fractals

Mikołaj Nieradko and Mariusz Olszewski

Abstract. We show various criteria to verify if a given nested fractal has a good labeling prop-
erty, inter alia we present a characterization of GLP for fractals with an odd number of essential
fixed points. We show a convenient reduction of the area to be investigated in the verification
of GLP and give examples that further reduction is impossible. We prove that if the number
of essential fixed points is a power of two, then a fractal must have GLP and that there are no
values other than primes or powers of two guaranteeing GLP. For all other numbers of essential
fixed points, we are able to construct examples having and others not having GLP.

1. Introduction

Fractal sets are investigated by mathematicians for more than a hundred years. In
1915 Sierpiński constructed a curve, every point of which is a branching point later
known as the Sierpiński gasket [22]. Benoit Mandelbrot in the second half of the 20th
century developed a theory of self-similar sets, introduced a notion of a fractal, and
contributed to many fields of science. He found self-similarity in financial markets,
lung structure, leaf shapes, shorelines (asking the famous question: How long is the
coast of Britain? [17]), and even distribution of galaxy clusters.

In the late 20th century fractal sets became an object of rising interest for math-
ematicians specializing in analysis and probability theory, who found in them an
interesting domain for operators and a state space for stochastic processes. In 1987-88
Barlow and Perkins [6], Goldstein [9], and Kusuoka [15] independently constructed
the Brownian motion on the Sierpiński gasket. In 1989 the existence of an analogous
process on the Sierpiński carpet was proved [5] and in 1990 Lindstrøm carried out
a construction of the Brownian motion on a wide class of nested fractals [16]. The
corresponding Dirichlet form was given by Fukushima [8]. Kumagai [14] provided
estimates of transition densities for a free diffusion on nested fractals. Later, even
more general classes like P.C.F sets and affine nested fractals were considered [7,13].
We refer to [4] as the general source of information about processes on fractals.
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Stochastic processes on fractals are a useful tool in physical applications.
Pietruska-Pałuba [19] and Kaleta with Pietruska-Pałuba [11,12] proved existence and
analyzed properties of the integrated density of states (IDS) for Schrödinger pertur-
bations of a subordinate Brownian motion on the Sierpiński gasket. Later Balsam,
Kaleta, Olszewski, and Pietruska-Pałuba generalized a construction of IDS on nested
fractals having the good labeling property (GLP). This property is crucial in the con-
struction of the reflected Brownian motion on nested fractals [10, 18], which is a
relevant tool in proving the existence of IDS and analyzing its asymptotics [1–3].

GLP makes it possible to construct a continuous projection from an unbounded
fractal onto a single complex of a given size. It can be also used to define periodic
functions on nested fractals. Such objects on the Sierpiński gasket and its higher
dimension analogues were examined by Ruan and Strichartz [20, 23].

There may exist a connection between fractals with GLP and Julia sets of some
rational functions, but the nature of it is yet unknown to us.

The subclass of nested fractals having GLP is very broad. In [10] it was proved
that fractals with a prime number of essential fixed points always have GLP. It was
also shown that if a fractal does not have inessential fixed points, it must have GLP.
Finally, there was given characterization of GLP for fractals with an even number of
essential fixed points.

In this paper, we thoroughly investigate the good labeling property and generalize
the results from [10]. In Chapter 2 we give basic information about the nested fractals,
the good labeling property, and introduce the notation. In Chapter 3 we present new
results. Theorem 3.1 is a counterpart of [10, Theorem 3.4] and gives a characterization
of GLP for fractals with an odd number of essential fixed points. In the case of an odd
number of essential fixed points [10, Theorem 3.3] can be read as a simple conclusion
from our Theorem 3.1.

Theorems 3.2 and 3.3 allow to reduce the area needed to verify if a fractal has
GLP. We also show that further reduction is impossible. We prove that a nested fractal
can have a complex located in its center only in case of 3, 4, or 6 essential fixed points.
If complexes are triangular or square, we always have GLP regardless of the structure
of the complexes, but in the case of hexagonal complexes having a central complex
ensures that the fractal does not have GLP.

Next, we present Theorem 3.4 which generalizes Corollary 3.1 from [10] stating
that fractals with 4 essential fixed points must have GLP. In Theorem 3.4 we prove
that if the number of essential fixed points is a power of 2, then the fractal has GLP.
Finally, we show that primes and powers of 2 are the only numbers with that property.
For any other number of essential fixed points, we can construct examples having and
others not having GLP.
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2. Preliminaries

2.1. Simple nested fractals

We follow the preliminary section of [10].

Definition 2.1. Let ‰i WR2 ! R2 for i 2 ¹1; : : : ; N º be a collection of similitudes
given by a formula

‰i .x/ D
x

L
C �i ;

where L > 1 is a scaling factor and �i 2 R2. Then there exists a unique nonempty
compact set Kh0i (called the fractal generated by the system .‰i /

N
iD1) such that

Kh0i D
SN
iD1‰i

�
Kh0i

�
.

Definition 2.2. Let F be the collection of fixed points of the transformations‰1; : : : ;
‰N . A fixed point x 2 F is an essential fixed point if there exists another fixed point
y 2 F and two different similitudes ‰i , ‰j such that ‰i .x/ D ‰j .y/. The set of all
essential fixed points for transformations ‰1; : : : ; ‰N is denoted by V h0i0 . Moreover,
let k D #V h0i0 .

For example, let us look at the Vicsek Cross. Its vertices (denoted as vi ) are ver-
tices of square with side a. Here the similitudes ‰i are given by following formulas:

‰1.x/ D
1

3
x C

�
2

3
a;
2

3
a

�
;

‰2.x/ D
1

3
x C

�
0;
2

3
a

�
;

‰3.x/ D
1

3
x;

‰4.x/ D
1

3
x C

�
2

3
a; 0

�
;

‰5.x/ D
1

3
x C

�
1

3
a;
1

3
a

�
:

The point v1 is an essential fixed point, because ‰3.v1/ D ‰5.v3/. In Figure 1, their
image is denoted by w.

Definition 2.3 (Simple nested fractal). The fractal Kh0i generated by the system
.‰i /

N
iD1 is called a simple nested fractal (SNF) if the following conditions are met.

(1) #V h0i0 � 2.

(2) (Open Set Condition) There exists an open set U � R2 such that for i ¤ j
one has ‰i .U / \‰j .U / D ; and

SN
iD1‰i .U / � U .

(3) (Nesting) ‰i
�
Kh0i

�
\‰j

�
Kh0i

�
D ‰i

�
V
h0i
0

�
\‰j

�
V
h0i
0

�
for i ¤ j .
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v1v2
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w

v4

Figure 1. Vicsek Cross.

(4) (Symmetry) For x; y 2 V h0i0 , let Sx;y denote the symmetry with respect to the
line bisecting the segment Œx; y�. Then

8i 2 ¹1; : : : ;M º 8x;y 2 V
h0i
0 9j 2 ¹1; : : : ;M º Sx;y

�
‰i
�
V
h0i
0

��
D‰j

�
V
h0i
0

�
:

(5) (Connectivity) On the set V h0i�1 WD
S
i ‰i

�
V
h0i
0

�
we define the graph structure

E�1 as follows: .x; y/ 2 E�1 if and only if x; y 2 ‰i
�
Kh0i

�
for some i .

Then the graph .V h0i�1 ; E�1/ is required to be connected.

If Kh0i is a simple nested fractal, then we let

KhM i D LMKh0i; M 2 Z;

and

Kh1i D

1[
MD0

KhM i:

The set Kh1i is the unbounded simple nested fractal (USNF).
The remaining notions are collected in a single definition.

Definition 2.4. Let M 2 Z.

(1) M -complex: every set �M �Kh1i of the form

�M DKhM i C ��M
; (2.1)

where ��M
D
PJ
jDMC1L

j �ij , for some J �M C 1, �ij 2 ¹�1; : : : ; �N º, is
called an M -complex.
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(2) Vertices of the M -complex (2.1): the set

V.�M / D L
MV

h0i
0 C ��M

D LMV
h0i
0 C

JX
jDMC1

Lj �ij :

(3) Vertices of KhM i:

V
hM i
M D V

�
KhM i

�
D LMV

h0i
0 :

(4) Vertices of all M -complexes inside a .M Cm/-complex for m > 0:

V
hMCmi
M D

N[
iD1

V
hMCm�1i
M C LM�i :

(5) Vertices of all 0-complexes inside the unbounded nested fractal:

V
h1i

0 D

1[
MD0

V
hM i
0 :

(6) Vertices of M -complexes from the unbounded fractal:

V
h1i

M D LMV
h1i

0

(7) H .�M / D conv.V .�M // – the convex hull of the set of vertices of �M .
It is a regular polygon with vertices being the vertices of the complex (see
Proposition 2.1).

(8) BKhMi – the barycenter of KhM i. Analogously, we denote the barycenter of
�M by B�M

.

In Figure 2, we show KhM i for M 2 ¹0; 1; 2º in the case of the Sierpiński gasket.
We also show exemplary complexes �0 and �1.

We now recall the proposition, which is crucial for the next section.

Proposition 2.1 ([10], Proposition 2.1.). If k � 3, then points from V
h0i
0 are the ver-

tices of a regular polygon.
If k D 2, then Kh0i is just a segment connecting x1 and x2.

From now on, we assume that k � 3.

2.2. Good labeling property

In this section, we will present basic definitions and theorems related to the good
labeling property (GLP) of the USNF. The results are cited from [10].

Consider the alphabet of k symbols A WD ¹a1; a2; a3; : : : ; akº, where kD #V h0i0 �

3. The elements of A will be called labels.
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(0,0)

Kh1i

Kh0i �0 �1

Kh2i

Figure 2. The Sierpiński Gasket.

Definition 2.5. LetM 2Z. A labeling function of orderM is any map lM WV
h1i

M !A.

Since the vertices of every M -complex �M are the vertices of a regular poly-
gon with k vertices, there exist exactly k different rotations around the barycenter of
KhM i, mapping V hM iM onto V hM iM . They will be denoted by ¹R1; : : : ;Rkº DWRM (the
rotations are ordered in such a way that for i D 1; 2; : : : ; k, the rotation Ri rotates by
angle .2�i/=k).

Definition 2.6 (Good labeling function of orderM , [10, Definition 3.2]). LetM 2 Z.
A function `M W V

h1i

M ! A is called a good labeling function of order M if the fol-
lowing conditions are met.

(1) The restriction of `M to V hM iM is a bijection onto A.

(2) For every M -complex �M represented as

�M DKhM i C ��M
;

where ��M
D
PJ
jDMC1L

j �ij with some J �M C 1 and �ij 2 ¹�1; : : : ; �N º
(cf. (1) of Definition 2.4), there exists a rotation R�M

2 RM such that

`M .v/ D `M
�
R�M

.v � ��M
/
�
; v 2 V.�M /:

An USNF Kh1i is said to have the good labeling property of order M if a good
labeling function of order M exists.



Good labeling property of simple nested fractals 37

Note that for everyM -complex�M , the restriction of a good labeling function to
V.�M / is a bijection onto A.

Thanks to the selfsimilar structure of Kh1i, the good labeling property of order
M for some M 2 Z is equivalent to this property of any other order fM 2 Z. This
gives rise to the following general definition.

Definition 2.7 (Good labeling property, [10, Definition 3.3]). An USNF Kh1i is said
to have the good labeling property (GLP in short) if it has the good labeling property
of order M for some M 2 Z.

Proposition 2.2 ([10, Proposition 3.1]). For USNF’s with the GLP, for any M 2 Z

the good labeling of order M is unique up to a permutation of the alphabet set A. In
particular, if Kh1i has the GLP and a bijection z̀M WV

hM i
M ! A is given, then there

exists a unique good labeling function `M WV
h1i

M ! A such that `M jV hMi

M

D èM .

Proposition 2.3 ([10, Proposition 3.2]). Let Kh1i be a planar USNF, M 2 Z, and
let `M;0W V

hM i
M ! A be a bijection. Then Kh1i has the GLP if and only if there

exists an extension of `M;0 to z̀M;0W V
hMC1i
M ! A such that for every M -complex

�M �KhMC1i represented as (cf. (1) of Definition 2.4),

�M DKhM i C LMC1�iMC1
; �iMC1

2 ¹�1; : : : ; �N º;

there exists a rotation R�M
2 RM such that

z̀
M;0

�
R�M

�
v � LMC1�iM C1

��
D z̀M;0.v/; v 2 V.�M /:

This proposition means that if a labeling on V hM iM can be extended in a ‘good’
way to V hMC1iM , then it can be extended as a good labeling also to V h1iM .

Equivalently, due to self-similarity, it is sufficient to show that the labeling on V h0i0

can be extended to V h1i0 . In order to simplify the proofs in the next section, we will
describe further results in terms of labeling of V h1i0 .

Checking manually if the fractal has GLP may not be easy. In [10] the following
theorems were proved.

Theorem 2.1 ([10, Theorems 3.1, 3.2]). If #V h0i0 Dp, where p� 3 is a prime number,
then Kh1i has the GLP.

In Figure 3 we show an example of good labeling of a fractal with k D 5, where
Kh1i contains ten pentagonal 0-complexes.

Theorem 2.2 ([10, Theorem 3.4]). If #V h0i0 D k, k � 3, is an even number, then
Kh1i has the GLP if and only if the 0-complexes inside the 1-complex Kh1i can be
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Figure 3. Well labeled Kh1i in case of pentagonal complexes.

split into two disjoint classes such that each complex from one of the classes intersects
only complexes from the other class.

The Sierpiński Hexagon has the GLP. Its vertices can be labeled A–F as in Fig-
ure 4 and its complexes can be divided into classes 1–2. The labeling of the Lindstrøm
Snowflake is impossible. In Figure 4, the middle complex cannot be in the first, nor
the second class. The vertex C /F can have only one label, hence the good labeling
function satisfying the Definition 2.6 does not exist.

Theorem 2.3 ([10, Theorem 3.3]). If k � 3 and there are no inessential fixed points
of the similitudes generating Kh0i, i.e., k D N , then Kh1i has the GLP.

Summing up, it was known that all fractals with k prime or k D N have GLP.
Moreover, we knew the characterization of GLP for fractals with k even.

We still have to analyze fractals with k odd, composite, andN > k. We will focus
on them in the next chapter.



Good labeling property of simple nested fractals 39

1
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1
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1 A
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1
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EF

A

B
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21
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1
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B

2

1
A

C

D

E F

1
C

2 D

E

C /F

B C

E

2

? D

EF

A

B

?
C /F

Figure 4. Example of labeling and division into classes of the Sierpiński Hexagon and an
attempt to label the Lindstrøm Snowflake.

3. New results

3.1. Characterization of GLP for fractals with odd k

Theorem 3.1 is the counterpart of Theorem 2.2 for fractals with odd k. It gives a
characterization of GLP and conditions this property on the geometric structure of
complexes. For odd k, we can get Theorem 2.3 as a special case of Theorem 3.1.

In the next theorem as a cycle of 0-complexes, we will understand a sequence of
adjacent 0-complexes�0;1;�0;2; : : : ;�0;j , for some j , (all distinct) such that the last
�0;j is adjacent to the first �0;1.

We say that a rotation by angle ˛ (counter-clockwise) occurs in a cycle if the
next complex arises from the previous one by rotation by the angle ˛ around their
common vertex (Figure 5). From [10, Fact 3.1] we know that for odd k, only rotations
by .k C 1/=k and ..k � 1/=k/� may occur in the cycle.

A

B

C

D E

E

B C

D4
5
�

A

B

C

D E

C

D

E

B

6
5
�

A

Figure 5. Rotation of 0-complex by two possible angles when k D 5.
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Theorem 3.1. For Kh1i with an odd number of essential fixed points k, the following
conditions are equivalent.

(A) The fractal Kh1i has GLP.

(B) Any cycle of complexes �0 in Kh1i, consisting of c rotations by the angle�
.k C 1/=k

�
� and d times by the angle

�
.k � 1/=k

�
� satisfies k j .c � d/.

Proof. (A)) (B) Since Kh1i has GLP, then of course Kh1i and any of its subset
can be well labeled. Hence, any cycle of rotation of labels “going back” to the starting
0-complex must coincide with it, otherwise Kh1i would not have GLP.

That is, for any cycle with a fixed number of rotations c and d , there is an n such
that

c
k C 1

k
� C d

k � 1

k
� D 2�n:

After a few simple transformations, we get

c C d C
c � d

k
D 2n:

Since .c C d/ and 2n are integers, the left side is also an integer if and only if
k j .c � d/.

(B)) (A) Suppose the following condition holds for a given cycle of complexes:

c
k C 1

k
� C d

k � 1

k
� D 2�n:

This cycle can be well labeled – we label vertices of the complex �0;1 and then
recursively having labeled vertices of �0;i for some i we can rotate the labels to
�0;iC1 analogously to the rotation of the whole complex. Thanks to the assumption,
we know that the labels after the rotation of �0;j on �0;1 will match those originally
assigned to the vertices of �0;1. Thus, indeed, the complex vertices in the cycle can
be well labeled.

In the next step, we label the vertices of the remaining complexes as follows.
Select the complex �0 � Kh1i with unlabeled vertices, which is adjacent to some
labeled complex �00. �0 is created by rotating �00 by the angle

�
.k C 1/=k

�
� or�

.k � 1/=k
�
� , and analogously to this rotation, we rewrite the labels from�00 on�0.

Meeting the assumption guarantees that each vertex will receive exactly one label
(because whole cycles can be labeled in one way). Moreover, since the labels on each
cell are arranged in the same orientation, the condition of good labeling properties
will be met, that is the fractal has GLP.
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3.2. Reduction of the test area for GLP verification

For a larger number of 0-complexes in Kh1i, the verification of GLP on Kh1i using
the characterization theorems can be time-consuming. We will show that the area of
GLP verification can be reduced to “two k-th” of Kh1i.

Definition 3.1. Let Kh1i have k essential fixed points. The bounded area Ui of the
fractal Kh1i is the sum of sets
• the angle (without rays) of measure 2�=k and vertex BKh1i , where rays are the

half-lines included in axes of symmetry of Kh1i which pass through vertices of
the complex,

• the half-line without the initial point being the left edge (from BKh1i point of
view) of the angle above, that is half of one of two axes of symmetry bounding
that angle

intersected with Kh1i.
The area Ui does not contain BKh1i , therefore

Sk
jD1Uj DKh1inBKh1i , and that

sum is disjoint.
The fractal slice Wi is defined as the sum of those cells �0 �Kh1i which centers

B�0
lie in the area Ui .

Figure 6 depicts an example of the area U1 in Kh1i for k D 7.

U1

BKh1iBKh1i

Figure 6. Area U1 in Kh1i for k D 7.
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It can be shown that
Sk
jD1Wj DKh1i holds for k > 4 and k ¤ 6, because in this

case BKh1i does not belong to Kh1i. This fact results from Lemma 3.3 in the further
part of the work.

Theorem 3.2. If

(1) k ¤ 6
or

(2) k D 6, but BKh1i …Kh1i,

then Kh1i has GLP if and only if it is possible to well label vertices in two neighbor-
ing slices Wi , WiC1 of the fractal Kh1i.

For kD 6, we can construct Kh1i such that for some 0-complex�0, its center B�0

would be the point BKh1i , which would mean that the selected�0 would not be in any
sliceWi . In this case, Kh1i has no GLP because the connectivity condition forces the
0-complex in BKh1i to be adjacent to some other, and the symmetry condition forces
it to have exactly six neighbors. Using Theorem 2.2, we show that Kh1i cannot be
well labeled. Figure 7 shows our reasoning.

BKh1iBKh1i

11 2

1

21

2
??

Figure 7. Attaching a brown 0-complex to the one in BKh1i , in the left Figure, forces Kh1i to
be constructed as on the right.

Before we move on to the proof of Theorem 3.2, we will prove the following
lemmas.

Lemma 3.1. Let Kh1i be a fractal with k essential fixed points. Then it is invariant
under rotation by angle 2�=k.

Proof. It is enough to show that any point belonging to Kh1i after rotation by the
angle 2�=k coincides with another point from that set. Let us take the point x 2Kh1i



Good labeling property of simple nested fractals 43

being at distance r from BKh1i , at distance t1 from the axis of symmetry to the right
of x looking from BKh1i and t2 from the axis of symmetry on the left. We will denote
these axes of symmetry by L1 and L2, respectively, and the next one lying to the left
of L2 will be denoted by L3 (as in Figure 8). Due to the symmetry condition, there
is a point inside the fractal symmetric to x with respect to L2. Let us call it y. Just
like x, it is at a distance t2 from L2 and at a distance r from BKh1i . Moreover, since
the image ofL1 in symmetry with respect toL2 isL3, the distance of y toL3 is equal
to t1. Now let us take a look at the point symmetric to y with respect to L3, let us call
it z. Its distance from BKh1i is r , and its distance from L3 is t1. The angle between
consecutive fractal symmetry axes is �=k, so the angle between L1 and L3 is 2�=k.
The angle between xBKh1i and zBKh1i is the same because both segments form the
same angle  with the neighboring axes (here L1 and L3). So z 2 Kh1i is the image
of the point x by rotation around BKh1i by angle 2�=k.

L1

L3

BKh1i

L2

t1 r
x

2�
k



t1

r

y t1

r

z



t2

t2

2�
k

Figure 8. Illustration for the Lemma 3.1 proof.

The next two lemmas give us key information about the position of 0-complexes
in Kh1i.

Lemma 3.2. If k > 3, then there is no 0-complex �0 such that any of its vertices lie
at the meeting point of all Ui areas, i.e., in BKh1i .

Proof. Since Kh1i has k axes of symmetry, the acute angle between consecutive axes
is �=k.

It is known that the angle in the convex hull H .�0/, which is a regular polygon
with k vertices, is equal to

�
.k � 2/=k

�
� , for k 2 ¹4; 5; 6; : : : º (by assumption we

exclude equilateral triangles).
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If any of the sides of H .�0/were on the axes of symmetry of Kh1i, we would find
two neighbor 0-complexes with common sides (but we know that they can only have
joint vertices). Similarly, if the interior of H .�0/ is crossed by an axis of symmetry of
Kh1i, then that axis must also be the axis of symmetry of H .�0/ (that is the bisector
of the angle of the polygon H .�0/ at the vertex BKh1i).

Thus, H .�0/ can be intersected by at most one axis of symmetry of Kh1i, and
the internal angle of H .�0/ must be less than 2�=k.

It means that the following inequality holds:

k � 2

k
� <

2�

k
;

and equivalently k < 4.

BKh1iBKh1i BKh1iBKh1i BKh1iBKh1i

Figure 9. Example of overlapping H .�0/ on other axes, looking from the left for k D 4, 5 and
6, respectively.

Now, we will show that for almost all values of k, a 0-complex cannot be located
in the Kh1i barycenter.

Lemma 3.3. For k > 4 and k ¤ 6, we have BKh1i …Kh1i.

Proof. On the contrary, let us suppose that there exists�0 �Kh1i containing BKh1i .
Let us denote it by �B . We know from Lemma 3.2 that BKh1i cannot be a vertex
of �B . The symmetry condition forces BKh1i to be also the barycenter of �B .

We will show that such �B cannot be adjacent to any other �0. At first, we will
prove this for an odd k > 4, and later for even k > 6.

For odd k, note that any 0-complex adjacent to �B must overlap it after rotation
by the angle

�
.k � 1/=k

�
� or

�
.k C 1/=k

�
� around the common vertex (cf. Fact 3.1

in [10]). Then the axis of symmetry of Kh1i, passing through the common vertex of
�0 and �B , will intersect �0, but it will not be �0’s axis of symmetry.

The axis of symmetry of Kh1i would be �0’s axis of symmetry only when �0
originated from the rotation of �B by angle � , which is not allowed for odd k (see
Figure 10).
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BKh1i

4
5
�

BKh1i

6
5
�

BKh1i

�

Figure 10. Example for k D 5. From the left side, two possible rotations and the impossible one
forced by the symmetry.

If k > 6 is even, we will show that even though any 0-complex�0 adjacent to�B

does not violate the symmetry with respect to the axis passing through the common
vertex of �B and �0, at least two other symmetry axes of Kh1i intersect �0, what
contradicts the symmetry condition.

We know that the internal angle of convex hulls H .�B/ and H .�0/ is�
.k�2/=k

�
� . They are regular polygons, and let us denote the length of their sides

as 2a. Let us denote the vertices as shown in the Figure 11. Let B be the common
vertex of H .�B/ and H .�0/. Let us also denote the axis of symmetry of Kh1i pass-
ing through B by L2. Let A and C be the midpoints of the sides of H .�B/ sides
emanating from B , and let the axes of symmetry passing through them be L1; L3
respectively. Then AB D BC D a.

Let D and E be the intersection points of L3 and L1 with the sides of H .�0/

emanating from B . Let us denote the length of BD by b. We will prove that b < 2a,
and hence the vertex of �0 lying on the extension of AD is not in the area between
the axes denoted as L2 and L3.

After simple calculations, we get †BDC D
�
.k � 4/=.2k/

�
� . From the depen-

dences in the right triangle BCD we get

b D
a

sin
�
k�4
2k
�
� :

We want to prove that b < 2a. We make further transformations to our inequality.
a

sin
�
k�4
2k
�
� < 2a;

1

sin
�
k�4
2k
�
� < 2;
1 < 2 sin

�
k � 4

2k
�

�
:
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BKh1i

L1

L2

L3

A C

D

aa

DE

k�2
k
�
2
k
�

B

k�4
2k
�

b b

Figure 11. We get b < 2a, so the vertices of �0 lie outside the axes L1 and L3.

It is easy to see that sin
��
.k � 4/=.2k/

�
�
�

is increasing for k � 4. Hence, for k � 8
we have 2 sin

��
.7 � 4/=.2 � 7/

�
�
�
< 2 sin

��
.k � 4/=.2 � k/

�
�
�
, and since 1 < 1:24 <

2 sin
�
.3=14/�

�
, we have proved the lemma.

After this presentation of all the necessary tools, we can finally move on to the
actual proof of Theorem 3.2.

Proof of Theorem 3.2. .)/ If Kh1i can be well labeled, then any subset of Kh1i can
also be well labeled.

.(/ If k 2 ¹3; 4; 5º, then Theorem 2.1 and [10, Corollary 3.1] tell that the fractal
has the GLP. Let us assume that k � 6 (but if k D 6, then BKh1i …Kh1i).

Let A D ¹1; 2; 3; : : : ; kº be the set of labels. From Lemma 3.1 we know that the
areas Ui are 2�=k-rotationally invariant, therefore theWi ’s are as well. Let us denote
one of them by W1 and the following ones by W2; : : : ; Wk counter-clockwise. Let us
label vertices of all 0-complexes inW1 [W2 in a “good” way, i.e., each 0-complex has
the complete set of labels in the same order. We will expand this labeling to vertices
of all other 0-complexes in Kh1i.
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Let us consider vertices of 0-complexes �0 from W1 being simultaneously ver-
tices of another complex �00 from

1. Wk – we denote them by w1;i , i 2 I1 and their collection as V1.

2. W2 – we denote them by w2;i , i 2 I2, and their collection as V2.

From Lemma 3.2, we know that no vertex belongs to both categories. Lemma 3.3
implies that each complex belongs to some slice.

From Lemma 3.1, we obtain that for eachw1;i 2 V1 there exists exactly onew2;i 2
V2 such that after a rotation by angle 2�=k (counterclockwise) it will coincide with
w2;i . In particular, the sets I1 and I2 have the same cardinality. The number of their
elements will be denoted as n.

We will now pair the points w1;i and w2;i , which coincide after rotation. We
can renumber them in a such way that in each pair, the second indexes are the same
.w1;1; w2;1/; : : : ; .w1;n; w2;n/. For each pair .w1;i ; w2;i /, we introduce the difference
of labels

ri D `.w1;i / � `.w2;i /:

We will show that
r1 � r2 � � � � � rn mod k;

and that it is sufficient to prove that the whole Kh1i can be well labeled.
Firstly, we show that it is sufficient.
Since labels in pairs differ by r mod k, then the vertices of complexes in W2

have labels increased by r mod k from the labels of respective vertices from W1.
Analogously, the labels of vertices in W3 are increased by 2r mod k from respective
vertices from W1, . . . and in Wk are increased by .k � 1/r mod k. By continuing this
operation on complexes inW1, we would not change the labels of its vertices because
they would be increased by kr � 0 mod k. Therefore, each vertex is given exactly
one label, and the orientation of the labels on each complex is preserved. This means
that the labeling is good.

Secondly, we show that ri � rj mod k for each i and j .
If all differences ri are equivalent mod k, then the proof is over. Therefore, let us

assume that there exist at least two differences.
We pick pairs .w1;1; w2;1/; .w1;2; w2;2/ of vertices such that the differences of

labels r1 and r2 are distinct. We introduce r21 WD `.w2;1/ � `.w1;2/.
The points w2;1; w2;2 are vertices of 0-complexes from W2. After rotation by

angle 2�=k (counterclockwise), w2;1 and w2;2 will coincide with vertices which will
be denoted as w3;1 and w3;2. Analogously, w1;1 and w1;2 will coincide after rotation
with w2;1 and w2;2, as can be seen in Figure 12.

We assumed that vertices of all complexes �0 � W1 [W2 are well labeled, so in
particular w1;1; w1;2; w2;1; w2;2; w3;1; w3;2 have assigned labels.
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BKh1i

Wk

W1

W2

w1;2

w1;1

w2;1

w2;2

w3;1 w3;2

r1

r1

r2

r2r21

r21

Figure 12. Slices W1, W2, and Wk in Kh1i for k D 6. The slice W1 is colored brown. Vertices
bordering slices are marked red. Lines connecting red vertices are denoted with differences ri
between labels.

Due to rotation invariance `.w3;1/ � `.w2;1/ � r1 mod k, as well as `.w3;2/ �
`.w2;2/ � r2 mod k and `.w3;1/ � `.w2;2/ � r21 mod k.

Therefore,

r1 C r21 D .`.w3;1/ � `.w2;1//C .`.w2;1/ � `.w1;2// D `.w3;1/ � `.w1;2/

D .`.w3;1/ � `.w2;2//C .`.w2;2/ � `.w1;2// � r21 C r2 mod k;

which gives r1 � r2 mod k contrary to our assumption.

The natural question arises. Why did we need to assume good labeling of “two
k-th” of the fractal, not only “one k-th”? The answer for odd k is given by [10, Exam-
ple 3.5], where one can label “one k-th” of Kh1i, but the fractal does not have GLP.

In the case of even k, further reduction is possible.
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Definition 3.2. The closed slice Wi is the sum of 0-complexes �0, which centers lie
in the closure of area Ui , but still without the barycenter Kh1i.

Naturally, in this case, intersections of neighbor Wj ’s are nonempty.
The necessity of considering closed slices is shown in Figure 13. We can see that

good labeling of W1 is possible because we can divide complexes �0 � W1 into
two classes. The closed slice W1 consisting of additional brown complexes cannot be
labeled well, and the whole fractal does not have GLP.

2 1

2

1

2

BKh1i

W1

Figure 13. Example of a fractal with k D 10 not having GLP. Complexes in the closed sliceW1

cannot be divided into two separate classes according to Theorem 2.2.
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Theorem 3.3. If

• k > 7 is even
or

• k D 6 and BKh1i …Kh1i,

then Kh1i has GLP if and only if vertices of complexes in a closed slice Wi can be
well labeled.

Proof. We will show that good labeling of a closed slice Wi implies good labeling of
a neighbor slice WiC1.

At first, notice that complexes �0 � Wi adjacent to complexes �00 � WiC1 must
intersect the symmetry axis of Kh1i. They cannot be tangent to the axis because it
would imply that two complexes meet at two vertices (and have a common edge).

Since Wi can be well labeled, we use Theorem 2.2 to divide complexes �0 � Wi
into two separate classes. Then we “reflect” these classes onto WiC1 by symmetry
with respect to axis between Wi and WiC1. We have now well labeled Wi [ WiC1.
And since Wi [WiC1 � Wi [WiC1, we have also well labeled Wi [WiC1. We then
follow the steps of the proof of Theorem 3.2.

3.3. GLP for fractals with k D 2n

We know that if a fractal has a prime number of essential fixed points, then it has
GLP. In [10], it was also proved that if k D 4, then the fractal has GLP. There was a
conjecture that for k being higher powers of 2 GLP is certain.

Theorem 3.4. If the fractal has 2n essential fixed points, n 2 N, n > 1, then it has
GLP.

The main idea of the proof is to show that any cycle of adjacent complexes
�0�Kh1ihas even length.

Lemma 3.4. Fractal Kh1i with even k has GLP if and only if any closed path con-
sisting of vectors connecting centers of adjacent complexes �0 � Kh1i has even
length.

Proof. We consider a graph with vertices in barycenters of complexes �0 � Kh1i.
We connect vertices with an edge if respective complexes are adjacent.

By Theorem 2.2, we know that Kh1i with even k has GLP if and only if com-
plexes�0 �Kh1i can be divided into two classes such that complexes from one class
are adjacent only to complexes from the other. Considering the given graph, it means
that the fractal has GLP if and only if that graph is bipartite.
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From general graph theory, we know that the bipartiteness of the graph is equiv-
alent to the fact that each cycle in that graph has an even length. We obtain the
statement.

We follow the definitions of [21] and [24].

Definition 3.3. The minimal polynomial of an algebraic number x is the monic poly-
nomial with rational coefficients of the lowest possible degree such that x is a root of
the polynomial.

For example, for
p
2 one can easily see that the minimal polynomial is x2 � 2. In

our proof, we will consider numbers of form e2�ip=q for p=q 2Q. They are algebraic
numbers.

Definition 3.4. The primitive root of unity is a number e�2�ip`=n, where ` and n are
natural and coprime.

Definition 3.5. The cyclotomic polynomial is a monic polynomial of the form

ˆn.x/ D
Y
1�`�n

GCD.`;n/D1

�
x � e2�i

`
n

�
:

Proposition 3.1 ([24]). Function ˆn.x/ is a polynomial of degree �.n/ with integer
coefficients. Here, �.n/ is an Euler totient function. The function ˆn.x/ is a minimal
polynomial for n-th primitive roots of unity.

We may now proceed to the proof of Theorem 3.4.

Proof of Theorem 3.4. Assume that k D 2n for some n 2N, n > 1. We will show that
every cycle of complexes �0 �Kh1i is of even length. By Lemma 3.4, it means that
the fractal has GLP.

We denote the elements of V h0i0 (i.e., vertices of a complex Kh0i) asA0; : : : ;Ak�1
counterclockwise. In order to simplify further calculations, we scale and rotate the
complex so that A0 D .�1; 0/ and Ak=2 D .1; 0/. Then the barycenter of the complex
is at .0; 0/, and the sides of the polygon H

�
Kh0i

�
have length sk D 2 sin.�=k/.

From Fact 3.1 in [10], we know that the vector connecting centers of adjacent
complexes has a length equal to the longest diagonal of a regular k-gon and is parallel
to one of these diagonals.

Let us consider the family of vectors corresponding to the longest diagonals of
a regular k-gon: ej D

�������!
AjAjCk=2 for j 2 ¹0; : : : ; k � 1º (we set AkCj D Aj ). We

consider also the family of vectors vj D
�
cos.2�j=k/; sin.2�j=k/

�
corresponding to

k-th roots of unity on a complex plane.
We have .1=2/ej D vj for j D 0; : : : ; k � 1 because vj are just halves of the

longest diagonals of a regular k-gon with vertices in roots of unity.
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We consider a cycleC of 0-complexes. The sum of vectors connecting barycenters
of subsequent complexes must be equal to zero. Therefore, for some dj 2N (meaning
the number of vectors in the cycle), we obtain

k�1X
jD0

dj ej D 0:

Since ejCk=2 D �ej for j D 0; : : : ; k=2 � 1, we can simplify the sum. Let zdj D
dj � djCk=2 2 Z. Then

k=2�1X
jD0

zdj ej D 0:

Equivalently
k=2�1X
jD0

zdj vj D 0;

so
k=2�1X
jD0

zdj
�
e2�i

1
k

�j
D 0:

Clearly, e2�i=k is a primitive root of unity. We define a polynomial

P.z/ WD

k=2�1X
jD0

zdj z
j :

Then P.e2�i=k/ D 0. But for e2�i=k , a minimal polynomial is of degree �.k/ D
�.2n/ D 2n�1, and degP.z/ � 2n�1 � 1 < 2n�1.

Hence P must be a zero polynomial, i.e., zdj D 0 for j D 0; : : : ; k=2 � 1, what
gives

dj D djCk=2 for j D 0; : : : ;
k

2
� 1:

It means that
Pk�1
iD0 di is an even number, and it is exactly the number of com-

plexes in cycle C .
Since every cycle of complexes �0 � Kh1i has an even length, these complexes

form a bipartite structure, and by Lemma 3.4 the fractal has GLP.

One can now ask: are there any other values of k (composite and not powers of 2)
such that every fractal with k essential fixed points always has GLP? The answer is
negative.

Theorem 3.5. For each k being composite and not a power of two we can construct
fractal with k essential fixed points not having GLP.
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At first, we prove a simple corollary based on Theorem 3.1.

Corollary 3.1. For odd k, a fractal cannot have cycles of complexes whose length is
odd and less than k.

This corollary may serve as a simple necessary condition used to verify GLP on
fractals with odd k. It cannot be generalized for cycles of even length (cf. Figure 14).
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Figure 14. An example of well labeled six complex cycle for k D 9.

Proof. We know that the number of all rotations in a cycle is equal to c C d , which
is odd and less than k. The following inequalities hold:

0 < jc � d j < k:

The left inequality is due to the fact that we subtract two numbers of different parity.
The right one is obvious.

Hence, k − .c � d/, so the condition (B) of Theorem 3.1 is not satisfied.

We can notice that Theorem 2.1 and Corollary 3.1 imply that for prime k, there
exist no cycles of odd length smaller than k.

We now return to the proof of the theorem.

Proof of Theorem 3.5. We fix k. Our aim is to arrange several 0-complexes in a cycle,
and show that they cannot be well labeled.

For a given 0-complex any of its neighbor is its copy translated by a vector e2�ij=k

for some j 2 ¹0; 1; : : : ; k � 1º. We consider two cases.
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Case 1. k D 2nr for n � 1 and odd r > 1.

We consider a set of vectors E D ¹e2�ij=.2
nr/W j D 2nh; h 2 ¹0; 1; : : : ; r � 1ºº.

Notice that
r�1X
hD0

e2�i
2nh
2nr D

r�1X
hD0

e2�i
h
r D 0

because we sum all r-th roots of unity.
Now we produce a cycle of length r . The barycenter of the q-th complex �0 for

q 2 ¹1; : : : ; rº will be placed at
q�1X
hD0

e2�i
h
r :

Since this cycle has an odd number of elements, due to Theorem 2.2, it cannot be well
labeled.

Case 2. k D nr for any odd n > 1 and r > 1.

As previously, we consider a set E D ¹e2�ij=.nr/W j D hn; h 2 ¹0; 1; : : : ; r � 1ºº.
We may notice that again

r�1X
hD0

e2�i
hn
nr D

r�1X
hD0

e2�i
h
r D 0:

We produce a cycle of length r . The barycenter of the q-th complex �0 for q 2
¹1; : : : ; rº will be placed at

q�1X
hD0

e2�i
h
r :

Since the number of rotations in this cycle is equal to r < k, due to Corollary 3.1, it
cannot be well labeled.

In both cases, we can take k neighboring cycles (forming one big cycle) to con-
struct a 1-complex Kh1i. In some cases, it may be needed to add some complexes to
the structure to separate these cycles and ensure that they do not cover any other.
Either way, such a structure cannot be well labeled; therefore, a fractal does not
have GLP.

For every k � 3, one can, of course, construct an example of a nested fractal
having GLP. If 4 − k, it is enough to take N D k, so the fractal Kh1i would consist of
k 0-complexes creating one cycle (as in Sierpiński hexagon).

If 4 j k, then in such a construction, neighboring complexes would share whole
edges, therefore, the set would not be a nested fractal. We can takeN D 2k. We place
k 0-complexes in vertices of Kh1i and additionally, between each pair of complexes
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in neighboring vertices we place another 0-complex in such a way that it shares one
vertex with both adjacent complexes.

Summing up, for each k � 3, there exist fractals having GLP. If k is prime or
k D 2n, then the fractal surely has GLP. If k is composite and has nontrivial odd
divisor, then it is possible that it does not have that property.

Acknowledgments. We thank the anonymous referee for their remarks and sugges-
tions.

References

[1] H. Balsam, Transition density estimates for subordinated reflected Brownian motion on
simple nested fractals. 2021, arXiv:2106.00081v1

[2] H. Balsam, K. Kaleta, M. Olszewski, K. Pietruska-Pałuba, IDS for subordinate Brownian
motions in Poisson random environment on nested fractals. Preprint, 2024

[3] H. Balsam, K. Kaleta, M. Olszewski, and K. Pietruska-Pałuba, Density of states for the
Anderson model on nested fractals. Anal. Math. Phys. 14 (2024), no. 2, article no. 23
Zbl 07830203 MR 4715305

[4] M. T. Barlow, Diffusions on fractals. In Lectures on probability theory and statistics
(Saint-Flour, 1995), pp. 1–121, Lecture Notes in Math. 1690, Springer, Berlin, 1998
MR 1668115

[5] M. T. Barlow and R. F. Bass, Random walks on graphical Sierpiński carpets. In Random
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ory Related Fields 79 (1988), no. 4, 543–623 Zbl 0635.60090 MR 0966175

[7] P. J. Fitzsimmons, B. M. Hambly, and T. Kumagai, Transition density estimates for Brow-
nian motion on affine nested fractals. Comm. Math. Phys. 165 (1994), no. 3, 595–620
Zbl 0853.60062 MR 1301625

[8] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested
fractals. In Ideas and methods in mathematical analysis, stochastics, and applications
(Oslo, 1988), pp. 151–161, Cambridge Univ. Press, Cambridge, 1992 Zbl 0764.60081
MR 1190496

[9] S. Goldstein, Random walks and diffusions on fractals. In Percolation theory and ergodic
theory of infinite particle systems (Minneapolis, Minn., 1984–1985), pp. 121–129, IMA
Vol. Math. Appl. 8, Springer, New York, 1987 MR 0894545

[10] K. Kaleta, M. Olszewski, and K. Pietruska-Pałuba, Reflected Brownian motion on simple
nested fractals. Fractals 27 (2019), no 6, article no. 1950104 Zbl 1434.60117
MR 4020776

[11] K. Kaleta and K. Pietruska-Pałuba, Integrated density of states for Poisson–Schrödinger
perturbations of subordinate Brownian motions on the Sierpiński gasket. Stochastic Pro-
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sional Sierpiński gaskets. Canad. J. Math. 61 (2009), no. 5, 1151–1181 Zbl 1176.28008
MR 2554236

[21] M. R. Schroeder, Number theory in science and communication. Springer Series in Infor-
mation Sciences 7, Springer, Berlin, 1984 Zbl 1152.11001 MR 0733635
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