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Transversal family of non-autonomous conformal
iterated function systems

Yuto Nakajima

Abstract. We study Non-autonomous Iterated Function Systems (NIFSs) with overlaps. A NIFS

on a compact subsetX �Rm is a sequenceˆD .¹�.j/
i
ºi2I .j//

1
jD1

of collections of uniformly

contracting maps �.j/
i
WX ! X , where I .j/ is a finite set. In comparison to usual iterated func-

tion systems, we allow the contractions �.j/
i

applied at each step j to depend on j . In this
paper, we focus on a family of parameterized NIFSs on Rm. Here, we do not assume the open
set condition. We show that if a d -parameter family of such systems satisfies the transversality
condition, then for almost every parameter value the Hausdorff dimension of the limit set is the
minimum of m and the Bowen dimension. Moreover, we give an example of a family ¹ˆt ºt2U
of parameterized NIFSs such that ¹ˆt ºt2U satisfies the transversality condition but ˆt does
not satisfy the open set condition for any t 2 U .

1. Introduction

The aim of this paper is to develop the dimension theory of Iterated Function Systems
(IFSs). An IFS on a compact subsetX �Rm is a collection ¹�1; : : : ; �nº of uniformly
contracting maps �i WX ! X . It is well known that there uniquely exists a non-empty
compact subset A � X such that

A D

n[
iD1

�i .A/;

called the limit set of the IFS ([4]). In order to analyze the fine-scale structure of the
limit set, it is important to estimate the dimension of the limit set. If the conformal
IFS satisfies some separating condition, the Hausdorff dimension of the limit set is
the zero of the pressure function corresponding to the IFS (see e.g., [1, 9]).

It is natural to consider a non-autonomous version of the IFS as an application
for various problems (see e.g., [11, 13, 25]). A Non-autonomous Iterated Function
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System (NIFS) on a compact subset X � Rm is a sequence ˆ D .¹�.j /i ºi2I .j//
1
jD1

of collections of uniformly contracting maps �.j /i WX ! X , where I .j / is a finite set.
The system ˆ is called an IFS if the collections ¹�.j /i ºi2I .j/ are independent of j .
In comparison to usual IFSs, we allow the contractions �.j /i applied at each step j
to depend on j . As a remarkable result for NIFSs, we mention the theory of Non-
autonomous Conformal Iterated Function Systems (NCIFSs) which is introduced by
Rempe-Gillen and Urbański [16]. A NCIFS on a compact subset X � Rm is a NIFS
which consists of collections of conformal maps �.j /i WX ! X satisfying some mild
conditions containing the Open Set Condition (OSC) which is defined as follows. We
say that a NIFS .¹�.j /i ºi2I .j//

1
jD1 on a compact subset X with int.X/ ¤ ; satisfies

the OSC if for all j 2 N and all distinct indices a; b 2 I .j /,

�.j /a
�
int.X/

�
\ �

.j /

b

�
int.X/

�
D ;: (1.1)

Then the limit set of the NCIFSˆD .¹�.j /i ºi2I .j//
1
jD1 is defined as the set of possible

limit points of sequences �.1/!1 .�
.2/
!2 : : : .�

.i/
!i .x// : : :/, !j 2 I

.j / for all j 2 ¹1;2; : : : ; iº,
x 2 X . The condition (1.1) imposes restrictions on the overlaps in the limit set of the
NCIFS. Moreover, Rempe-Gillen and Urbański introduced the lower pressure func-
tion PˆW Œ0;1/! Œ�1;1� of the NCIFS ˆ. Then the Bowen dimension sˆ of the
NCIFS ˆ is defined by sˆ D sup¹s � 0 W Pˆ.s/ > 0º D inf¹s � 0 W Pˆ.s/ < 0º.
Rempe-Gillen and Urbański proved that the Hausdorff dimension of the limit set is
the Bowen dimension of the NCIFS ([16, 1.1 Theorem]). For related results for non-
autonomous systems satisfying some separating condition, see [3, 13].

In this paper, we consider NIFSs in the complicated overlapping case. Here, we do
not assume the OSC (1.1). To investigate NIFSs with overlaps, we focus on a family
of parameterized NIFSs on Rm by using the transversality method. The transversality
method is utilized for the dimension estimation of the limit sets of parameterized IFSs
involving some complicated overlaps (see [5,6,15,17,20]). This method also provides
a crucial tool for the absolute continuity of the invariant measures (e.g., Bernoulli
convolutions) of IFSs or some variations (see [14,18,19,23]). For some general family
of functions with the transversality condition, see [12, 17, 22]. One of the aims in this
paper is to provide a non-autonomous version of the classical transversality method
(Main Theorem A). Furthermore, we give a family of NIFSs for which we essentially
use Main Theorem A to estimate the Hausdorff dimension of limit sets of the NIFSs
(Main Theorem B).

The paper is organized as follows. In Section 2 we introduce transversal families
of non-autonomous conformal iterated function systems on Rm. In Section 3 we con-
sider some conditions for a deeper understanding of the system given in Section 2.
Section 4 is devoted to a proof of one of the main results. As preliminaries for the
proof, we give some lemma for conformal maps on Rm and construct a Gibbs-like
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measure on the symbolic space. Finally, we give the proof by using the transversal-
ity method. In Section 5 we give an example of a family ¹ˆtºt2U of parameterized
NIFSs such that ¹ˆtºt2U satisfies the transversality condition but ˆt does not satisfy
the open set condition (1.1) for any t 2 U .

2. Main results

In this section we present a framework of transversal families of non-autonomous con-
formal iterated function systems and give the main results on them. For each j 2 N,
let I .j / be a finite set. For any n; k 2 N with n � k, we introduce index sets

I kn WD

kY
jDn

I .j /; I1n WD

1Y
jDn

I .j /; I n WD

nY
jD1

I .j /; and I1 WD

1Y
jD1

I .j /:

Let U � Rd . For any t 2 U , let ˆt D .ˆ
.j /
t /1jD1 be a sequence of collections of

maps on a set X � Rm, where

ˆ
.j /
t D ¹�

.j /
i;t WX ! Xºi2I .j/ :

Let n; k 2 N with n � k. For any ! D !n!nC1 � � �!k 2 I kn , we set

�!;t WD �
.n/
!n;t
ı � � � ı �

.k/
!k ;t

:

Let n 2 N. For any ! D !n!nC1 � � � 2 I1n and any j 2 N, we set

!jj WD !n!nC1 � � �!nCj�1 2 I
nCj�1
n :

Let V � Rm be an open set and let �W V ! �.V / be a diffeomorphism. We denote
by D�.x/ the derivative of � evaluated at x. We say that � is conformal if for any
x 2 V ,D�.x/WRm! Rm is a similarity linear map, that is,D�.x/D cx �Ax , where
cx > 0 and Ax is an orthogonal matrix. For any conformal map �W V ! �.V /, we
denote by jD�.x/j its scaling factor at x, that is, if we set D�.x/ D cx � Ax we have
jD�.x/j D cx . For any set A � V , we set

kD�kA WD sup¹jD�.x/j W x 2 Aº:

We denote by Ld the d -dimensional Lebesgue measure on Rd . We introduce the
transversal family of non-autonomous conformal iterated function systems by em-
ploying the settings in [16] and [17].
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Definition 2.1 (Transversal family of non-autonomous conformal iterated function
systems). Letm 2N and letX �Rm be a non-empty compact convex set. Let d 2N

and let U � Rd be a non-empty open set. For each j 2 N, let I .j / be a finite set. Let
t 2 U . For any j 2 N, let ˆ.j /t be a collection ¹�.j /i;t WX ! Xºi2I .j/ of maps �.j /i;t
on X . Let ˆt D .ˆ

.j /
t /1jD1. We say that ¹ˆtºt2U is a Transversal family of Non-

autonomous Conformal Iterated Function Systems (TNCIFS) if ¹ˆtºt2U satisfies the
following six conditions.

1. Conformality: There exists an open connected set V � X (independent of i , j
and t ) such that for any i; j and t 2 U , �.j /i;t extends to a C 1 conformal map on V

such that �.j /i;t .V / � V .

2. Uniform contraction: There is a constant 0 <  < 1 such that for any t 2 U , any
n 2 N, any ! 2 I1n and any j 2 N, jD�!jj ;t .x/j � 

j for any x 2 V � X .

3. Bounded distortion: There exists a continuous function KWU ! Œ1;1/ such that
for any t 2 U , any n 2 N, any ! 2 I1n , and any j 2 N,

jD�!jj ;t .x1/j � K.t/jD�!jj ;t .x2/j (2.1)

for any x1; x2 2 V .

4. Distortion continuity: For any � > 0 and t0 2 U , there exists ı D ı.�; t0/ > 0 such
that for any t 2 U with jt � t0j � ı, for any n; j 2 N, and for any ! 2 I1n ,

exp.�j�/ �
kD�!jj ;t0kX

kD�!jj ;tkX
� exp.j�/: (2.2)

We now define the address map as follows. Let t 2 U . For all n 2 N and all ! 2 I1n ,

1\
jD1

�!jj ;t .X/

is a singleton by the uniform contraction property. It is denoted by ¹x!;n;tº. The map

�n;t W I
1
n ! X

is defined by ! 7! x!;n;t . Then �n;t is called the n-th address map corresponding
to t . Note that for any t 2 U and n 2 N the map �n;t is continuous with respect to the
product topology on I1n .

5. Continuity: Let n 2 N. The function U � I1n 3 .t; !/ 7! �n;t .!/ is continuous.

6. Transversality condition: For any compact subset G � U there exists a sequence
¹Cnº

1
nD1 of positive constants with

lim
n!1

logCn
n
D 0
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such that for all !; � 2 I1n with !n ¤ �n and for all r > 0,

Ld

�
¹t 2 G W j�n;t .!/ � �n;t .�/j � rº

�
� Cnr

m:

Remark 2.2. We have the following remarks.

(i) If m � 2, the conformality condition implies the bounded distortion condi-
tion. For the details, see [16, page 1984, Remark].

(ii) Let n 2 N and let t 2 U . Then for any ! 2 I1n , we have

�n;t .!/ D lim
j!1

�!jj ;t .x/;

where x 2 X .

Proof. Since �!jjCk ;t .x/ D �!jj ;t .�!jC1���!jCk ;t .x// 2 �!jj ;t .X/ for any
j; k 2 N, we have limj!1 �!jj ;t .x/ D limk!1 �!jjCk ;t .x/ 2 �!jj ;t .X/

for any j 2 N. Hence, limj!1 �!jj ;t .x/ D �n;t .!/.

(iii) In the case of usual IFSs, the constants Cn in the transversality condition
are independent of n since the n-th address maps �n;t are independent of n.

Let ¹ˆtºt2U be a TNCIFS. For any t 2 U , we define the lower pressure function
P t W Œ0;1/! Œ�1;1� of ˆt as follows. For any s � 0 and n 2 N, we set

Zn;t .s/ WD
X
!2In

.kD�!;tkX /
s; (2.3)

and
P t .s/ WD lim inf

n!1

1

n
logZn;t .s/ 2 Œ�1;1�: (2.4)

By [16, Lemma 2.6], the lower pressure function has the following monotonicity. If
s1 < s2, then either both P t .s1/ and P t .s2/ are equal to1, both are equal to �1, or
P t .s1/ > P t .s2/. Then for any t 2 U , we set

s.t/ D s.ˆt / WD sup¹s � 0 W P t .s/ > 0º D inf¹s � 0 W P t .s/ < 0º; (2.5)

where we set sup; D 0 and inf; D1. The value s.t/ is called the Bowen dimension
of ˆt . We define the limit set Jt of ˆt by Jt WD �1;t .I1/.

Remark 2.3. The Hausdorff dimension function t 7! dimH .Jt / is Borel measurable
by the continuity condition. To see this, let t0 2 U;! 2 I1. By the continuity condi-
tion, for any " > 0, there exists a neighborhood Nt0;! � U of t0 and a neighborhood
Mt0;! � I

1 of ! such that for any .t; �/ 2 Nt0;! �Mt0;! , j�1;t .�/� �1;t0.!/j < ".
Since I1 is a compact set, we can find !1; : : : ; !k 2 I1 such that I1 D Mt0;!1 [
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� � � [Mt0;!k . Then for any t 2 U with t 2 Nt0;!1 \ � � � \Nt0;!k , any i 2 ¹1; : : : ; kº,
and any � 2Mt0;!i , j�1;t .�/ � �1;t0.!i /j < ", which implies that the map t 7! Jt is
continuous with respect to the Hausdorff metric. Furthermore, the Hausdorff dimen-
sion function on the space of compact subsets of Rm endowed with the Hausdorff met-
ric is Borel measurable (see [8, Theorem 2.1]). Hence, we obtain the desired property.

For A � Rm we denote by dimH .A/ the Hausdorff dimension of A. We now
present one of the main results of this paper.

Main Theorem A (Theorem 4.10). Let ¹ˆtºt2U be a TNCIFS. Then

(i) dimH .Jt / D min¹m; s.t/º for Ld -a.e. t 2 U ;

(ii) Lm.Jt / > 0 for Ld -a.e. t 2 ¹t 2 U W s.t/ > mº.

Main Theorem A is a generalization of [17, Theorem 3.1]. We illustrate Main
Theorem A by presenting the following important example. We set

X D

²
z 2 C W jzj �

1

1 � 2 � 5�5=8

³
; U D

®
t 2 C W jt j < 2 � 5�5=8; t … R

¯
:

Note that 2 � 5�5=8 � 0:73143 > 1=
p
2. Let t 2 U . For each j 2 N, we define the

maps �.j /1;t WX ! X and �.j /2;t WX ! X by

�
.j /
1;t .z/ D tz and �

.j /
2;t .z/ D tz C

1

j
;

respectively. For each j 2 N, we set

ˆ
.j /
t D ¹�

.j /
1;t ; �

.j /
2;t º D

²
z 7! tz; z 7! tz C

1

j

³
and ˆt D .ˆ

.j /
t /1jD1. We now present the following theorem, which is the second

main result of this paper.

Main Theorem B (Proposition 5.2 and Proposition 5.5). The family ¹ˆtºt2U of
parameterized systems is a TNCIFS but ˆt does not satisfy the open set condition
(1.1) for any t 2 U .

Note that we cannot apply the framework of Rempe-Gillen and Urbański [16] to
the study of the limit set Jt ofˆt sinceˆt does not satisfy the open set condition (1.1)
for any t 2 U . We calculate the lower pressure function P t of ˆt as follows. For any
s 2 Œ0;1/,

P t .s/ D lim inf
n!1

1

n
log

X
!2In

.kD�!;tkX /
s
D lim inf

n!1

1

n
log

X
!2In

jt jns

D lim inf
n!1

1

n
log.2njt jns/ D log 2C s log jt j:
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Hence, for each t 2 U , P t .s/ has the zero

s.t/ D
log 2
� log jt j

:

By Main Theorem A, we obtain the following.

Corollary 2.4. Let Jt be the limit set corresponding to t . Then

dimH .Jt / D min¹2; s.t/º D s.t/

for a.e. t 2 ¹t 2 C W jt j � 1=
p
2; t … Rº.� U/ and

L2.Jt / > 0

for a.e. t 2 ¹t 2 C W 1=
p
2 < jt j < 2 � 5�5=8; t … Rº.� U/.

3. On the conditions of transversal families of non-autonomous
conformal iterated function systems

In this section, we give some further conditions under which conditions 3, 4, 5 in Def-
inition 2.1 hold. In the rest of this section, we are going to suppose that ¹ˆtºt2U D
¹.¹�

.j /
i;t WX ! Xºi2I .j//

1
jD1ºt2U is a family of parameterized NIFSs with the confor-

mality condition and the uniform contraction condition.

Proposition 3.1. If m D 1, suppose that there exist positive real valued continuous
functions ˛; ˇ, and C on U such that for any t 2 U , any j 2 N, any i 2 I .j /,ˇ̌̌

D�
.j /
i;t .x/ �D�

.j /
i;t .y/

ˇ̌̌
� C.t/jx � yj˛.t/

and
ˇ.t/ < jD�

.j /
i;t .x/j

for any points x; y in a bounded open interval V � X . Then the bounded distortion
condition holds.

Proof. Let t 2 U , let n; j 2 N and let ! 2 I nCj�1n . Then for any x; y 2 V ,ˇ̌̌̌
log
jD�!;t .x/j

jD�!;t .y/j

ˇ̌̌̌
D

ˇ̌̌̌nCj�1X
kDn

log
ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .x//
ˇ̌̌
� log

ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .y//
ˇ̌̌ˇ̌̌̌
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�

nCj�1X
kDn

ˇ̌̌̌
log
ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .x//
ˇ̌̌
� log

ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .y//
ˇ̌̌ˇ̌̌̌

� ˇ.t/�1
nCj�1X
kDn

ˇ̌̌̌ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .x//
ˇ̌̌
�

ˇ̌̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .y//
ˇ̌̌ˇ̌̌̌

� ˇ.t/�1
nCj�1X
kDn

C.t/
ˇ̌
�!kC1���!nCj�1;t .x/ � �!kC1���!nCj�1;t .y/

ˇ̌˛.t/
� ˇ.t/�1C.t/

nCj�1X
kDn

˛.t/.nCj�k�1/jx � yj˛.t/

�
C.t/

ˇ.t/
�
1 � ˛.t/

� sup
x;y2V

jx � yj˛.t/;

where  is the constant coming from the uniform contraction condition.

Let t1; t2 2 U . For any j 2 N and any i 2 I .j /, we set

k�
.j /
i;t1
� �

.j /
i;t2
k1 D sup¹j�.j /i;t1.x/ � �

.j /
i;t2
.x/j W x 2 Xº

and
kˆt1 �ˆt2k1 D sup

j2N
max
i2I .j/

k�
.j /
i;t1
� �

.j /
i;t2
k1:

Proposition 3.2. Suppose that ¹ˆtºt2U satisfies the following condition.

(a) For any " > 0 and t0 2 U , there exists ı > 0 such that for any t 2 U with
jt0 � t j < ı, kˆt0 �ˆtk1 < ".

Then the continuity condition holds.

Proof. Let n 2N. Fix " > 0 and .t0;!0/ 2U � I1n . Since the map �n;t0 is continuous
at !0 2 I1n , there exists a neighborhood Nt0;!0 � I

1
n of !0 such that for any � 2

Nt0;!0

j�n;t0.!0/ � �n;t0.�/j <
"

2
: (3.1)

Furthermore, we prove the following claim.

Claim 3.3. For any t 2U , any j 2N, any � D �n�nC1 � � � 2 I1n , and any point x 2X ,

j�� jj ;t0.x/ � �� jj ;t .x/j �
1

1 � 
kˆt0 �ˆtk1; (3.2)

where  is the constant coming from the uniform contraction condition.
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Proof of Claim 3.3.

j�� jj ;t0.x/��� jj ;t .x/j � j�� jj�1;t0.��nCj�1;t0.x// � �� jj�1;t0.��nCj�1;t .x//j

C j�� jj�1;t0.��nCj�1;t .x// � �� jj�1;t .��nCj�1;t .x//j

� j�1kˆt0 �ˆtk1 C j�� jj�1;t0.x
0/ � �� jj�1;t .x

0/j

(by the uniform contraction condition and setting x0 D ��nCj�1;t .x/)

� j�1kˆt0 �ˆtk1 C 
j�2
kˆt0 �ˆtk1 C � � � C kˆt0 �ˆtk1

�
1

1 � 
kˆt0 �ˆtk1:

Letting j !1 in (3.2), by Remark 2.2 (ii) we have for any � 2 I1n ,

j�n;t0.�/ � �n;t .�/j �
1

1 � 
kˆt0 �ˆtk1:

By (a), there exists a neighborhood Mt0 � U of t0 such that for any t 2Mt0 and any
� 2 I1n ,

j�n;t0.�/ � �n;t .�/j �
1

1 � 
�
.1 � /"

2
D
"

2
: (3.3)

By (3.1) and (3.3) we have for any .t; �/ 2Mt0 �Nt0;!0 � U � I
1
n ,

j�n;t0.!0/ � �n;t .�/j � j�n;t0.!0/ � �n;t0.�/j C j�n;t0.�/ � �n;t .�/j

� "=2C "=2 D ":

We show that the conditions introduced in [16, Section 10] imply the distortion
continuity condition and the continuity condition. Let t1; t2 2 U . For any j 2 N and
any i 2 I .j /, we set

kD�
.j /
i;t1
�D�

.j /
i;t2
k1 D sup¹jD�.j /i;t1.x/ �D�

.j /
i;t2
.x/j W x 2 Xº

and
kDˆt1 �Dˆt2k1 D sup

j2N
max
i2I .j/

kD�
.j /
i;t1
�D�

.j /
i;t2
k1:

Proposition 3.4. Suppose that ¹ˆtºt2U satisfies the following conditions.

(a) For any " > 0 and t0 2 U , there exists ı > 0 such that for any t 2 U with
jt0 � t j < ı, max¹kˆt0 �ˆtk1; kDˆt0 �Dˆtk1º < ";

(b) There is a constant 0 < � < 1 such that for any t 2 U , any j 2 N, and any
i 2 I .j /, jD�.j /i;t .x/j � � for any x 2 X ;

(c) For any " > 0, there exists ı > 0 such that for any t 2 U , any j 2 N, any
i 2 I .j /, and any x;y 2 X with jx � yj < ı,

ˇ̌
jD�

.j /
i;t .x/j � jD�

.j /
i;t .y/j

ˇ̌
< ".

Then the distortion continuity condition and the continuity condition hold.
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Note that the conditions (b) and (c) correspond to the conditions (Ka) and (Kb) in
[16, p. 2010], respectively.

Proof. We follow the proof of [16, 10.3 Theorem]. Fix � > 0 and t0 2 U . Then take
" > 0 such that

exp.2��1"/ � exp.�/; (3.4)

and take ı1 D ı1."/ such that the condition (c) holds. Furthermore, by the condition
(a) there exists ı D ı.ı1; t0/ such that for any t 2 U with jt0 � t j < ı,

max¹kˆt0 �ˆtk1; kDˆt0 �Dˆtk1º < .1 � /min¹"; ı1º:

Then by using the chain rule, the mean value theorem, the condition (b), and Claim 3.3,
we have for any t 2U with jt0 � t j<ı, any n;j 2N, any! 2 I nCj�1n , and any x 2X ,ˇ̌̌̌
log
jD�!;t0.x/j

jD�!;t .x/j

ˇ̌̌̌
D

ˇ̌̌̌nCj�1X
kDn

log
ˇ̌̌
D�

.k/
!k ;t0

�
�!kC1���!nCj�1;t0.x/

�ˇ̌̌
� log

ˇ̌̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t .x/

�ˇ̌̌ˇ̌̌̌

�

nCj�1X
kDn

ˇ̌̌
log
ˇ̌
D�

.k/
!k ;t0

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
� log

ˇ̌
D�

.k/
!k ;t

.�!kC1���!nCj�1;t .x//
ˇ̌ˇ̌̌

D

nCj�1X
kDn

ˇ̌̌�
log
ˇ̌
D�

.k/
!k ;t0

�
�!kC1���!nCj�1;t0.x/

�̌̌
�log

ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌̌�
C

�
log
ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
� log

ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t .x/

�ˇ̌�ˇ̌̌
�

nCj�1X
kDn

ˇ̌̌
log
ˇ̌
D�

.k/
!k ;t0

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
� log

ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌ˇ̌̌
C

nCj�1X
kDn

ˇ̌̌
log
ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
�log

ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t .x/

�ˇ̌ˇ̌̌
� ��1

nCj�1X
kDn

ˇ̌̌ˇ̌
D�

.k/
!k ;t0

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
�
ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌ˇ̌̌
C ��1

nCj�1X
kDn

ˇ̌̌ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t0.x/

�ˇ̌
�
ˇ̌
D�

.k/
!k ;t

�
�!kC1���!nCj�1;t .x/

�ˇ̌ˇ̌̌
� ��1j kDˆt0 �Dˆtk1 C �

�1j"

� 2��1j":
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Hence, we have

exp.�2��1j"/ �
kD�!jj ;t0kX

kD�!jj ;tkX
� exp.2��1j"/:

Then it follows from (3.4) that the distortion continuity condition holds. The continu-
ity condition also holds by Proposition 3.2.

4. Preliminaries and a proof of Main Theorem A

In this section we give some lemmas for conformal maps on Rm and give the proof
of Main Theorem A. Let ¹ˆtºt2U D

°�
¹�
.j /
i;t WX ! Xºi2I .j/

�1
jD1

±
t2U

be a TNCIFS.

4.1. Lemma for conformal maps

Let n; k 2 N with n � k. Below, we set kD�!;tk WD kD�!;tkX for any ! 2 I kn and
any t 2 U . We set I � WD

S
n�1 I

n. This subsection is devoted to the proof of the
following lemma.

Lemma 4.1. There exists L � 1 such that for any t 2 U , any ! 2 I �, and any
x, y 2 X ,

j�!;t .x/ � �!;t .y/j � L
�1K.t/�2kD�!;tk � jx � yj; (4.1)

where K.t/ comes from the bounded distortion condition (2.1).

We now prove Lemma 4.1 by imitating the argument in [10, pages 73–74] as
follows. We set jX j D supx;y2X jx � yj.<1/. For any set A � Rm, we denote by
@A the boundary ofA. Let V be an open set with V �X coming from the conformality
condition in Definition 2.1. We set

r D min
²
jX j;

inf¹jx � yj W x 2 X; y 2 @V º
2

³
:

In order to prove Lemma 4.1, we give the following lemma.

Lemma 4.2. Let t 2 U . For any ! 2 I � and x 2 X ,

�!;t .B.x; r// � B.�!;t .x/;K.t/
�1
kD�!;tkr/:

Proof. Let t 2 U . Fix x 2 X . For any ! 2 I �, we set

R! D sup¹u > 0 W B.�!;t .x/; u/ � �!;t .B.x; r//º:

Then
@B.�!;t .x/; R!/ \ @�!;t .B.x; r// ¤ ;: (4.2)
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Since B.�!;t .x/; R!/ � �!;t .B.x; r// � �!;t .V /, by applying the mean value
inequality to the map ��1!;t restricted to the convex set B.�!;t .x/; R!/ and using the
bounded distortion condition (2.1), we have

��1!;t .B.�!;t .x/; R!// � B.x; kD.�
�1
!;t /k�!;t .V /R!/ � B.x;K.t/kD�!;tk

�1R!/:

This implies

B.�!;t .x/; R!/ � �!;t .B.x;K.t/kD�!;tk
�1R!//: (4.3)

By (4.2) and (4.3), we haveK.t/kD�!;tk�1R! � r . By the definition ofR! , we have

�!;t .B.x; r// � B.�!;t .x/;K.t/
�1
kD�!;tkr/:

We now give a proof of Lemma 4.1.

Proof of Lemma 4.1. Let t 2 U , ! 2 I �, and x; y 2 X .

Case 1. jx � yj � K.t/�1r . By applying the mean value inequality to the map �!;t
restricted to the convex set B.x; K.t/�1r/ and using the bounded distortion condi-
tion (2.1), we have

�!;t .y/ 2 B.�!;t .x/;K.t/
�1
kD�!;tkr/:

Moreover, by Lemma 4.2 we have

�!;t .y/ 2 B.�!;t .x/;K.t/
�1
kD�!;tkr/ � �!;t .B.x; r// � �!;t .V /: (4.4)

By (4.4) and applying the mean value inequality to the map ��1!;t restricted to the
convex set B.�!;t .x/;K.t/�1kD�!;tkr/, we have

jx � yj D j.�!;t /
�1.�!;t .x// � .�!;t /

�1.�!;t .y//j

� kD.�!;t /
�1
k�!;t .V /j�!;t .x/ � �!;t .y/j:

By using the bounded distortion condition (2.1), we have

jx � yj � K.t/kD�!;tk
�1
� j�!;t .x/ � �!;t .y/j: (4.5)

Hence, we obtain (4.1).
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Case 2. jx � yj > K.t/�1r . Since �!;t .y/ … �!;t .B.x; K.t/�1r//, there exists z 2
@B.x; K.t/�1r/ such that �!;t .z/ belongs to the straight line path from �!;t .x/ to
�!;t .y/. Hence,

j�!;t .x/ � �!;t .y/j � j�!;t .x/ � �!;t .z/j: (4.6)

Since jx � zj D K.t/�1r , by (4.5) we have

j�!;t .x/ � �!;t .z/j � K.t/
�1
kD�!;tk � jx � zj D K.t/

�1
kD�!;tkK.t/

�1r: (4.7)

By (4.6) and (4.7), we have

j�!;t .x/��!;t .y/j �K.t/
�1
kD�!;tkK.t/

�1 jx�yjr

jx�yj
�

r

jX j
K.t/�2kD�!;tk � jx�yj:

If we setLD jX j=r.� 1/, then we obtain (4.1). Thus, we have proved our lemma.

4.2. Continuity of the map t 7! s.t/

We consider the continuity of the mapU 3 t 7! s.t/ 2 Œ0;1�, where s.t/ is the Bowen
dimension of the system ˆt (see (2.5) for the definition). We give the following.

Proposition 4.3. Let ¹ˆtºt2U be a TNCIFS. Then the map t 7! s.t/ is continu-
ous on U .

Proof. Fix t0 2 U . We now show that the map t 7! s.t/ is continuous at t0. By the
distortion continuity (2.2), for any � > 0, there exists ı D ı.�; t0/ > 0 such that for
any t 2 U with jt � t0j � ı, for any n 2 N and for any ! 2 I n,

exp.�n�/ �
kD�!;t0k

kD�!;tk
� exp.n�/:

Hence, we have for any n 2 N, any s 2 Œ0;1/, and any t 2 U with jt � t0j � ı,

�s�C
1

n
logZn;t .s/ �

1

n
logZn;t0.s/ � s�C

1

n
logZn;t .s/;

which implies that for any s 2 Œ0;1/ and any t 2 U with jt � t0j � ı,

�s�C P t .s/ � P t0
.s/ � s�C P t .s/ (4.8)

(see (2.3) and (2.4) for the definitions of Zn;t .s/ and P t .s/). We divide the argument
into three cases.
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Case 1. s.t0/ D1. Take s > 0. Then by the definition of s.t0/, we have P t0
.s/ > 0.

Set

� D �.s/ WD

´
P t0

.s/

2s
.P t0

.s/ <1/

1 .P t0
.s/ D1/:

By (4.8), we have for any t 2 U with jt � t0j � ı D ı.�; t0/,

P t .s/ � P t0
.s/ � s� > 0:

Then by the definition of s.t/, we have for any t 2 U with jt � t0j � ı D ı.�; t0/,

s.t/ � s:

Since s is arbitrary, we have limt!t0 s.t/ D1 D s.t0/.

Case 2. s.t0/ 2 .0;1/. Take " > 0 with s.t0/� " > 0. Then by the definition of s.t0/,
we have P t0

.s.t0/C "/ < 0 and P t0
.s.t0/ � "/ > 0. Set

�1."/ WD

´
�P t0

.s.t0/C"/

2.s.t0/C"/
.P t0

.s.t0/C "/ > �1/

1 .P t0
.s.t0/C "/ D �1/;

�2."/ WD

´
P t0

.s.t0/�"/

2.s.t0/�"/
.P t0

.s.t0/ � "/ <1/

1 .P t0
.s.t0/ � "/ D1/;

and � WD min¹�1."/; �2."/º. By (4.8), we have for any t 2 U with jt � t0j � ı D
ı.�; t0/,

P t .s.t0/C "/ � P t0
.s.t0/C "/C .s.t0/C "/� < 0;

and
P t .s.t0/ � "/ � P t0

.s.t0/ � "/ � .s.t0/ � "/� > 0:

Then by the definition of s.t/, we have for any t 2 U with jt � t0j � ı D ı.�; t0/,

s.t0/ � " � s.t/ � s.t0/C ": (4.9)

Then by (4.9), we have the map t 7! s.t/ is continuous at t0.

Case 3. s.t0/ D 0. Take " > 0. By the definition of s.t0/, we have P t0
."/ < 0. Set

� D �."/ WD

´
�P t0

."/

2"
.P t0

."/ > �1/

1 .P t0
."/ D �1/:

Then by the same argument as in the case 2, we have that there exists ı D ı.�; t0/ > 0
such that for any t 2 U with jt � t0j � ı,

0 � s.t/ � ":

Hence, we have the map t 7! s.t/ is continuous at t0.
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4.3. Transversality argument

For ! 2 I �, let j!j be the length of !. We prove the following two lemmas by imitat-
ing the proofs of Lemmas 3.2 and 3.3 in [17].

Lemma 4.4. Let "; a > 0 and t0 2 U . We set � D .�" log /=.4a C "/ and take
ı D ı.�; t0/ coming from the distortion continuity (2.2) ascribed to � and t0, where 
is the constant coming from the uniform contraction condition. Then for all ! 2 I �

and t 2 U with jt0 � t j � ı, kD�!;t0k
aC "4 � kD�!;tk

a.

Proof. By the distortion continuity (2.2), we have

kD�!;t0k
aC "4 � exp

�
j!j�

�
aC

"

4

��
� kD�!;tk

aC "4

� exp
�
j!j�

�
aC

"

4

��
 j!j

"
4 kD�!;tk

a

(by the uniform contraction condition)

D exp
�
j!j
�
�
�
aC

"

4

�
C
"

4
log 

��
� kD�!;tk

a:

Lemma 4.5. For any compact subset G � U and any ˛ with 0 < ˛ < m, there exists
a sequence ¹ QCnº1nD1 of positive constants such that

lim
n!1

log QCn
n
D 0

and for any !; � 2 I1n with !n ¤ �n,Z
G

1

j�n;t .!/ � �n;t .�/j˛
dLd .t/ � QCn:

Proof. Let n 2 N. By the transversality condition we have thatZ
G

1

j�n;t .!/��n;t .�/j˛
dLd .t/ D

Z 1
0

Ld

�°
t 2G W

1

j�n;t .!/��n;t .�/j˛
�x

±�
dx

D

Z 1
0

Ld

�°
t 2G W j�n;t .!/��n;t .�/j�

1

x1=˛

±�
dx

D

Z jX j�˛
0

Ld .G/ dx C

Z 1
jX j�˛

Cn
1

xm=˛
dx

D jX j�˛Ld .G/C Cn

h 1

1 �m=˛
x1�m=˛

i1
jX j�˛

D jX j�˛Ld .G/C Cn
1

m=˛ � 1
jX jm�˛ DW QCn:

Since 1
n

logCn ! 0 as n!1, we have 1
n

log QCn ! 0 as n!1.
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For any! 2 I �, we define a cylinder set Œ!� as Œ!�D¹� 2 I1 W �1D!1; : : : ; �j!jD
!j!jº. We denote by ı! the Dirac measure at ! 2 I1. We give a Gibbs-like measure
by employing the proof of Claim in the proof of [16, Theorem 3.2] and the argument
in [3, page 232].

Lemma 4.6 (The existence of a Gibbs-like measure). Let t 2 U and let s � 0. Then
there exists a Borel probability measure �t;s on I1 such that for any ! 2 I �,

�t;s.Œ!�/ � K.t/
s kD�!;tk

s

Zn;t .s/
; (4.10)

where K.t/ is the constant coming from the bounded distortion (2.1) and Zn;t .s/ DP
!2In kD�!;tk

s .

Proof. Let n 2 N. For any ! 2 I n, take an element �! 2 Œ!�. For any t 2 U , s � 0
and n 2 N, we define a Borel probability measure �t;s;n on I1 as

�t;s;n D
1

Zn;t .s/

X
!2In

kD�!;tk
sı�! :

Then

�t;s;n.Œ!�/ D
kD�!;tk

s

Zn;t .s/

for any ! 2 I n.
If ! 2 I n, � 2 I nCjnC1 and � D !� 2 I nCj , then by the bounded distortion (2.1),

kD�!;tk � kD��;tk � K.t/kD��;tk. Hence, for any j 2 N,

ZnCj;t .s/ �
1

K.t/s
Zn;t .s/

X
�2I

nCj
nC1

kD��;tk
s: (4.11)

Thus, we have that for any j 2 N and for any ! 2 I n,

�t;s;nCj .Œ!�/ D �t;s;nCj

 [
�2I

nCj
nC1

Œ!��

!
D

P
�2I

nCj
nC1

kD�!�;tk
s

ZnCj;t .s/

� kD�!;tk
s

P
�2I

nCj
nC1

kD��;tk
s

ZnCj;t .s/
� K.t/s

kD�!;tk
s

Zn;t .s/
(by (4.11)).

Let �t;s be a weak�-limit of a subsequence of ¹�t;s;j º1jD1 in the space of Borel prob-
ability measures on I1 (see e.g. [24, Theorem 6.5]). The above inequality implies

�t;s.Œ!�/ � K.t/
s kD�!;tk

s

Zn;t .s/
:



Transversal family of non-autonomous conformal iterated function systems 73

For any n 2 N, we define the map �nW I1 ! I1nC1 by

�n.!1!2 � � � / D !nC1!nC2 � � � :

This is a continuous map with respect to the product topology. We give the following
simple lemma.

Lemma 4.7. Let t 2 U . Then for any n 2 N and ! 2 I1,

�1;t .!/ D �!jn;t .�nC1;t .�
n.!///:

Proof. Let t 2 U . For any n 2 N and ! 2 I1, we have

¹�1;t .!/º D

1\
jD1

�!jj ;t .X/ D

1\
jDnC1

�!jj ;t .X/

D �!jn;t

� 1\
jD1

��n.!/jj ;t .X/

�
D �!jn;t

�
¹�nC1;t .�

n.!//º
�
:

For any ! D !1!2 � � � ; � D �1�2 � � � 2 I1 with ! ¤ � and !1 D �1, we denote by
! ^ �.2 I �/ the largest common initial segment of ! and � . In order to prove Main
Theorem A, we need the following which is the key lemma for the proof.

Lemma 4.8. Let ¹ˆtºt2U be a TNCIFS. Then for any t0 2 U and any " > 0, there
exists ı D ı.t0; "/ > 0 such that

dimH .Jt / � min¹m; s.t0/º �
"

2

for Ld - a.e. t 2 B.t0; ı/.

Proof. For any t0 2 U , we set s WD min¹m; s.t0/º. We assume s > 0, otherwise the
statement holds. For any 0 < " < 2s, we set

� D
�" log 

4
�
s � "

2

�
C "

;

where  is the constant coming from the uniform contraction condition. Take ı D
ı.�; t0/ coming from the distortion continuity (2.2) ascribed to � and t0. By Lemma
4.4, for any ! 2 I � and t 2 B.t0; ı/,

kD�!;t0k
s� "4 � kD�!;tk

s� "2 : (4.12)

Let n 2 N. For any � 2 I n, we set

F WD ¹.!; �/ 2 I1 � I1 W !1 ¤ �1º;
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A� WD ¹.!; �/ 2 I
1
� I1 W ! ^ � D �º;

H WD ¹.!; �/ 2 I1 � I1 W ! D �º:

Then we have I1 � I1 D H t F t
F
n�1

F
�2In A� (disjoint union). Let � 2 I n.

By Lemma 4.7 and Lemma 4.1, there exists L � 1 such that for any .!; �/ 2 A� and
t 2 U ,

j�1;t .!/ � �1;t .�/j D j��;t .�nC1;t .�
n!// � ��;t .�nC1;t .�

n�//j

� L�1K.t/�2kD��;tk � j�nC1;t .�
n!/ � �nC1;t .�

n�/j: (4.13)

Let �D �t0;s�"=4 be the Borel probability measure coming from Lemma 4.6 ascribed
to t0 2 U and s � "=4� 0. Since lim infn!1.1=n/ logZn;t0.s � "=4/ > 0, there exist
b > 0 and n0 2 N such that for all n � n0,

Zn;t0

�
s �

"

4

�
> exp.bn/: (4.14)

By (4.10) and (4.14), we have �.¹!º/ D 0 for any ! 2 I1. Hence, we obtain that

.� � �/.H/ D

Z
I1

�
�
¹! 2 I1 W .!; �/ 2 H º

�
d�.�/

D

Z
I1

�.¹�º/ d�.�/ D 0: (4.15)

We set �2 D � � � and

R.t/ WD

“
I1�I1

1

j�1;t .!/ � �1;t .�/js�"=2
d�2:

For simplicity, we use the convention that

I 0 D ¹;º; A; D F; Œ;� D I1; �;;t D idRm ; and �0 D idI1 ;

where idA is the identity map on the set A. ThenZ
B.t0;ı/

R.t/ dLd .t/

D

X
n�0

X
�2In

“
A�

�Z
B.t0;ı/

1

j�1;t .!/ � �1;t .�/js�"=2
dt

�
d�2.!; �/

(by Fubini’s Theorem and (4.15))
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�

X
n�0

X
�2In

“
A�

�Z
B.t0;ı/

Ls�"=2K.t/2.s�"=2/kD��;tk
�sC"=2

j�nC1;t .�n!/ � �nC1;t .�n�/js�"=2
dt

�
d�2.!; �/

(by (4.13))

� Ls�"=2
�

sup
t2B.t0;ı/

K.t/2.s�"=2/
�X
n�0

QCnC1
X
�2In

“
A�

kD��;t0k
�sC"=4 d�2.!; �/

(by (4.12) and Lemma 4.5)

� Ls�"=2
�

sup
t2B.t0;ı/

K.t/2.s�"=2/
�X
n�0

QCnC1
X
�2In

“
A�

K.t0/
s�"=4

�.Œ��/Zn;t0.s � "=4/
d�2.!; �/

(by Lemma 4.6)

D Const.
X
n�0

QCnC1

Zn;t0.s � "=4/

X
�2In

1

�.Œ��/

“
A�

d�2.!; �/

(we set Const. D Ls�"=2.supt2B.t0;ı/K.t/
2.s�"=2//K.t0/

s�"=4)

� Const.
X
n�0

QCnC1

Zn;t0.s � "=4/

(since �2.A�/ � �.Œ��/2).

Since .1=n/ log QCnC1 ! 0 as n!1, it follows from (4.14) thatZ
B.t0;ı/

R.t/Ld .t/ � Const.
X
n�0

QCnC1

Zn;t0.s � "=4/
<1:

Hence, we have that for Ld -a.e. t 2 B.t0; ı/,

R.t/ D

Z Z
Rm�Rm

1

jx � yjs�"=2
d
�
�1;t .�/ � �1;t .�/

�
<1;

where �1;t .�/ is the push forward measure of � by �1;t . Since �1;t .�/.Jt / D 1, by
[2, Theorem 4.13 (a)], we have

dimH .Jt / � min¹m; s.t0/º �
"

2

for Ld - a.e. t 2 B.t0; ı/.
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In order to obtain deeper results about Jt corresponding to the parameter t with
s.t/ > m, we need the following. Note that the set ¹t 2 U W s.t/ > mº is open by the
continuity of s.t/ (see Proposition 4.3).

Lemma 4.9. Let ¹ˆtºt2U be a TNCIFS. Then for any t0 2 ¹t 2 U W s.t/ > mº, there
exists ı D ı.t0/ > 0 such that

Lm.Jt / > 0

for Ld - a.e. t 2 B.t0; ı/.

Proof. Fix t0 2 ¹t 2 U W s.t/ > mº. Take " > 0 such that s.t0/ > m.1C "=4/ and set

� D
�" log 
4C "

:

Take ı D ı.�; t0/ coming from the distortion continuity (2.2) ascribed to � and t0. By
Lemma 4.4, for any ! 2 I � and t 2 B.t0; ı/,

kD�!;t0k
1C"=4

� kD�!;tk: (4.16)

Let � D �t0;m.1C"=4/ be the Borel probability measure coming from Lemma 4.6
ascribed to t0 2 U and m.1C "=4/. It suffices to show that the push forward mea-
sure �1;t .�/ of � by �1;t is absolutely continuous with respect to Lm for Ld - a.e.
t 2 B.t0; ı/. In order to do that we set

� WD

Z
B.t0;ı/

Z
Rm

lim inf
r!0

�1;t .�/.B.x; r//

Lm.B.x; r//
d�1;t .�/.x/dLd .t/:

We remark that if � <1, then by [7, 2.12 Theorem] we have �1;t .�/ is absolutely
continuous with respect to Lm for Ld - a.e. t 2B.t0; ı/. We set�2D��� and denote
them-dimensional Lebesgue measure of the unit ball by bm. We use the notations and
convention introduced in the proof of Lemma 4.8. Then

� � lim inf
r!0

b�1m r�m
“
I1�I1

Ld

�®
t 2B.t0; ı/ W j�1;t .!/��1;t .�/j<r

¯�
d�2.!; �/

(by Fatou’s Lemma and Fubini’s Theorem)

D lim inf
r!0

b�1m r�m
X
n�0

X
�2In

“
A�

Ld .¹t 2 B.t0; ı/ W j�1;t .!/��1;t .�/j<rº/ d�2.!; �/

(by (4.15))

� lim inf
r!0

b�1m r�m
X
n�0

X
�2In

“
A�

Ld

�®
t 2 B.t0; ı/ W j�nC1;t .�

n!/ � �nC1;t .�
n�/j

< rLK.t/2kD��;tk
�1
¯�
d�2.!; �/
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(by (4.13))

� lim inf
r!0

b�1m r�m
X
n�0

X
�2In

CnC1r
mLm

�
sup

t2B.t0;ı/

K.t/
�2m
kD��;t0k

�m.1C"=4/�2.A�/

(by (4.16) and the transversality condition)

� lim inf
r!0

b�1m r�m
X
n�0

X
�2In

CnC1r
mLm

�
sup

t2B.t0;ı/

K.t/
�2m K.t0/

m.1C"=4/

�.Œ��/Zn;t0.m.1C"=4//
�2.A�/

(by Lemma 4.6)

� Const.
X
n�0

CnC1

Zn;t0.m.1C "=4//

(we set Const. D b�1m Lm
�
supt2B.t0;ı/K.t/

�2m
K.t0/

m.1C"=4/).

Since .1=n/ logCnC1 ! 0 as n!1, it follows from (4.14) that

� � Const.
X
n�0

CnC1

Zn;t0.m.1C "=4//
<1:

4.4. Proof of Main Theorem A

The following is Main Theorem A.

Theorem 4.10. Let ¹ˆtºt2U be a TNCIFS. Then

(i) dimH .Jt / D min¹m; s.t/º for Ld � a.e. t 2 U ;

(ii) Lm.Jt / > 0 for Ld -a.e. t 2 ¹t 2 U W s.t/ > mº.

Proof. By [16, 2.8 Lemma], for any t 2 U we have

dimH .Jt / � Qs.t/ WD min¹m; s.t/º:

Hence, it suffices to prove that

dimH .Jt / � Qs.t/

for Ld - a.e. t 2U . Suppose that this is not true. Then there exist " > 0 and a Lebesgue
density point t0 2 U of the set

¹t 2 U W dimH .Jt / < Qs.t/ � "º:

Then there exists ı0 > 0 such that for each 0 < ı < ı0,

Ld .¹t 2 B.t0; ı/ W dimH .Jt / < Qs.t/ � "º/ > 0: (4.17)
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By the continuity of the function Qs.t/ (see Proposition 4.3), if ı is small enough, then
Qs.t/ < Qs.t0/ C "=2 for all t 2 B.t0; ı/. Thus, for all ı sufficiently small we obtain
from (4.17) that

Ld .¹t 2 B.t0; ı/ W dimH .Jt / < Qs.t0/ � "=2º/ > 0:

This contradicts Lemma 4.8 and completes the proof of the first part of our theorem.
The second part follows from Lemma 4.9 in a similar way.

5. Example

In this section, we give a proof of Main Theorem B. We set D WD ¹z 2 C W jzj < 1º.
For any holomorphic function f on D, we denote by f 0.z/ the complex derivative of
f evaluated at z 2 D. For the transversality condition, we now give a slight variation
of [20, Lemma 5.2]. For the reader’s convenience we include the proof in Appendix.

Lemma 5.1. Let H be a compact subset of the space of holomorphic functions on D

endowed with the compact open topology. We set

QMH WD ¹� 2 D W there exists f 2 H such that f .�/ D f 0.�/ D 0º:

Let G be a compact subset of D n QMH . Then there exists K D K.H ; G/ > 0 such
that for any f 2 H and any r > 0,

L2

�
¹� 2 G W jf .�/j � rº

�
� Kr2: (5.1)

We now give a family ¹ˆtºt2U of parameterized systems such that ¹ˆtºt2U is a
TNCIFS but ˆt does not satisfy the open set condition (1.1) for any t 2 U . In order
to do that, we set

U WD ¹t 2 C W jt j < 2 � 5�5=8; t … Rº:

Note that 2 � 5�5=8 � 0:73143 > 1=
p
2. Let t 2 U . For each j 2 N, we define

ˆ
.j /
t D ¹z 7! �

.j /
1;t .z/; z 7! �

.j /
2;t .z/º WD

²
z 7! tz; z 7! tz C

1

j

³
:

Proposition 5.2. For any t 2 U , the system ¹ˆ.j /t º
1
jD1 does not satisfy the open set

condition.

Proof. Suppose that the system ¹ˆ.j /t º
1
jD1 satisfies the open set condition (1.1). Then

there exists a compact subset X � C with int.X/ ¤ ; such that �.j /1;t .int.X// \

�
.j /
2;t .int.X// D ;. Hence, there exist x 2 X and r > 0 such that

�
.j /
1;t .B.x; r// \ �

.j /
2;t .B.x; r// D B.tx; jt jr/ \ B.tx C 1=j; jt jr/ D ;:
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In particular, we have for all j 2 N,

2jt jr <
1

j
:

This is a contradiction.

We set

X WD

²
z 2 C W jzj �

1

1 � 2 � 5�5=8

³
:

Then we have that for any t 2 U , for any j 2 N and for any i 2 I .j / WD ¹1; 2º,
�
.j /
i;t .X/ � X . We set b.j /1 D 0 and b.j /2 D 1=j for each j . Let n; j 2 N. We give the

following lemma.

Lemma 5.3. Let t 2 U . For any ! D !n � � �!nCj�1 2 I
nCj�1
n and any z 2 X we

have

�!;t .z/ D �
.n/
!n;t
ı � � � ı �

.nCj�1/
!nCj�1;t

.z/ D tj z C

jX
iD1

b.nCi�1/!nCi�1
t i�1;

where b.nCi�1/!nCi�1 2 ¹0;1=.nC i � 1/º. In particular, for any!D!n � � �!nCj�1 � � �2I1n ,

�n;t .!/ D

1X
iD1

b.nCi�1/!nCi�1
t i�1:

Proof. This can be shown by induction on j and Remark 2.2 (ii).

We can show that the family ¹ˆtºt2U of systems is a TNCIFS as follows.

1. Conformality: Let t 2 U . For any j 2 N and any i 2 I .j /, �.j /i;t .z/ D tz C b
.j /
i is

a similarity map on C.

2. Uniform Contraction: We set  D 2� 5�5=8. Then for any ! 2 I nCj�1n and z 2X ,

jD�!;t .z/j D jt j
j
� j

by Lemma 5.3.

3. Bounded distortion: By Lemma 5.3, for any ! D !n � � � !nCj�1 2 I
nCj�1
n and

z 2 C, jD�!;t .z/j D jt jj . We define the Borel measurable locally bounded function
KWU ! Œ1;1/ by K.t/ D 1. Then for any ! 2 I nCj�1n ,

jD�!;t .z1/j � K.t/jD�!;t .z2/j

for all z1; z2 2 C.



Y. Nakajima 80

4. Distortion continuity: Fix t0 2U . Since the map t 7! log jt j is continuous at t0 2U ,
for any � > 0 there exists ı D ı.�; t0/ > 0 such that for any t 2 U with jt0 � t j < ı,ˇ̌

log jt0j � log jt j
ˇ̌
< �:

Hence, we have
j log jt0jj =jt jj j < j�:

Thus, we have that for any ! 2 I nCj�1n ,

exp.�j�/ <
kD�!;t0k

kD�!;tk
D exp.log jt0jj =jt jj / < exp.j�/:

5. Continuity: By Lemma 5.3, we have for any t 2 U and any ! 2 I1n ,

�n;t .!/ D

1X
iD1

b.nCi�1/!nCi�1
t i�1:

Hence, the map .t; !/ 7! �n;t .!/ is continuous on U � I1n .

6. Transversality condition: We introduce a set G of holomorphic functions on D and
the set QMG of double zeros in D for functions belonging to G .

G WD

²
f .t/ D ˙1C

1X
jD1

aj t
j
W aj 2 Œ�1; 1�

³
;

QMG WD ¹t 2 D W there exists f 2 G such that f .t/ D f 0.t/ D 0º:

Note that G is a compact subset of the space of holomorphic functions on D endowed
with the compact open topology. Let n 2 N. Then we have for any t 2 U and any
!; � 2 I1n with !n ¤ �n,

�n;t .!/ � �n;t .�/ D

1X
iD1

b.nCi�1/!nCi�1
t i�1 �

1X
iD1

b.nCi�1/�nCi�1
t i�1

D b.n/!n � b
.n/
�n
C

1X
iD2

�
b.nCi�1/!nCi�1

� b.nCi�1/�nCi�1

�
t i�1

D
1

n

�
˙1C

1X
iD2

n
�
b.nCi�1/!nCi�1

� b.nCi�1/�nCi�1

�
t i�1

�
:

Then the function t 7! ˙1 C
P1
iD2 n.b

.nCi�1/
!nCi�1 � b

.nCi�1/
�nCi�1 /t

i�1 is a holomorphic
function which belongs to G . Let G � D n QMG be a compact subset. By Lemma 5.1,
there exists K D K.G ; G/ > 0 such that for any !; � 2 I1n with !n ¤ �n and any
r > 0,

L2

�
¹t 2 G W j�n;t .!/ � �n;t .�/j � rº

�
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D L2

�²
t 2 G W j ˙ 1C

1X
iD2

n
�
b.nCi�1/!nCi�1

� b.nCi�1/�nCi�1

�
t i�1j � nr

³�
� K.nr/2:

If we set Cn WD Kn2 for any n 2 N, we have

L2.¹t 2 G W j�n;t .!/ � �n;t .�/j � rº/ � Cnr
2

and
1

n
logCn D

1

n
logK C

2

n
logn! 0

as n!1.
Finally, we use the following theorem.

Theorem 5.4 ([21, Proposition 2.7]). A power series of the form 1 C
P1
jD1 aj z

j ,
with aj 2 Œ�1; 1�, cannot have a non-real double zero of modulus less than 2� 5�5=8.

By using the above theorem, we have that U D ¹t 2 C W jt j < 2� 5�5=8; t … Rº �

D n QMG . Hence, the family ¹ˆtºt2U satisfies the transversality condition.

By the above arguments, we obtain the following.

Proposition 5.5. The family ¹ˆtºt2U of parameterized systems is a TNCIFS.

Appendix

In order to prove Lemma 5.1, we give some definition and remark.

Definition 5.6. LetG be a compact subset of Rd . We say that a family ¹B.xi ; ri /ºkiD1
of balls in Rd is packing for G if for each i 2 ¹1; : : : ; kº, xi 2 G and for each i; j 2
¹1; : : : ; kº with i ¤ j , B.xi ; ri / \ B.xj ; rj / D ;.

Remark 5.7. Let G be a compact subset of Rd , let r > 0 and let ¹B.xi ; r/ºkiD1 be
a family of balls in Rd . If ¹B.xi ; r/ºkiD1 is packing for G, then there exists N 2 N

which depends only on G and r such that k � N .

Proof. There exists a finite covering ¹B.yj ; r=2/ºNjD1 forG sinceG is compact. Here,
N depends only on G and r . Since xi 2 G for each i , there exists ji such that xi 2
B.yji ; r=2/. Since ¹B.xi ; r/ºkiD1 is a disjoint family, if i ¤ l 2 ¹1; : : : ;kº, then ji ¤ jl .
Thus k � N .

We give a proof of Lemma 5.1.
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Proof of Lemma 5.1. Since H is compact and the set QMH is the set of possible double
zeros, we have that there exists ı D ıG > 0 such that for any f 2 H ,

jf .�/j < ı) jf 0.�/j > ı for � 2 G: (5.2)

We assume that r < ı, otherwise (5.1) holds with K D L2.G/=ı
2. Let

�r WD ¹� 2 G W jf .�/j � rº:

Let Co.G/ be the convex hull of G. We set M DMG WD sup¹jg00.�/j 2 Œ0;1/ W � 2
Co.G/; g 2 Hº. Since Co.G/ is compact and H is compact, M <1. Fix z0 2 �r .
By Taylor’s formula, for z 2 G,

jf .z/ � f .z0/j D jf
0.z0/.z � z0/C

Z z

z0

.z � �/f 00.�/d�j;

where the integration is performed along the straight line path from z0 to z. Then
jf 0.z0/j > ı by (5.2). Hence,

jf .z/ � f .z0/j �
ˇ̌
f 0.z0/

ˇ̌
jz � z0j �M jz � z0j

2 > ıjz � z0j �M jz � z0j
2:

Now if we set

Az0;r WD

²
z 2 D� W

4r

ı
< jz � z0j <

ı

2M

³
;

then for any z 2 Az0;r ,

ıjz � z0j �M jz � z0j
2
D jz � z0j.ı �M jz � z0j/ >

4r

ı

ı

2
D 2r;

and jf .z/j � jf .z/� f .z0/j � jf .z0/j > r . It follows that the annulus Az0;r does not
intersect �r .

Assume that 4r=ı � ı=4M , otherwise (5.1) holds with K D L2.G/.16M=ı
2/2.

Then the disc B.z0; ı=4M/ centered at z0 with the radius ı=4M covers �r \
¹z W jz � z0j < ı=2M º. Then fix z1 2 �r n ¹z W jz � z0j < ı=2M º. Since the annulus
Az1;r does not intersect �r , B.z1; ı=4M/ covers .�r n ¹z W jz � z0j < ı=2M º/ \

¹z W jz � z1j < ı=2M º and B.z0; ı=4M/ \ B.z1; ı=4M/ D ;. If we repeat the pro-
cedure, we get a finite covering ¹B.zi ; ı=4M/ºkiD0 for �r since �r is compact.
Then ¹B.zi ; ı=4M/ºkiD0 is packing for G. By Remark 5.7, there exists N 2 N which
depends only on H and G such that k � N . Since the annulus Azi ;r does not inter-
sect �r for each i 2 ¹0; : : : ; kº, ¹B.zi ; 4r=ı/ºkiD0 is also a covering for �r . Hence,
we have

L2.�r/ � L2

� k[
iD0

¹B.zi ; 4r=ı/º

�
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D

kX
iD0

L2

�®
B.zi ; 4r=ı/

¯�
� NC

�
4r

ı

�2
D NC

�
4

ı

�2
r2;

where the constant C does not depend on H and G. If we set K WD NC.4=ı/2, we
get the desired inequality.
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[5] T. Jordan, Dimension of fat Sierpiński gaskets. Real Anal. Exchange 31 (2005/06), no. 1,
97–110 Zbl 1105.28004 MR 2218191

[6] T. Jordan and M. Pollicott, Properties of measures supported on fat Sierpinski carpets.
Ergodic Theory Dynam. Systems 26 (2006), no. 3, 739–754 Zbl 1114.28006
MR 2237467

[7] P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv.
Math. 44, Cambridge University Press, Cambridge, 1995 Zbl 0819.28004 MR 1333890

[8] P. Mattila and R. D. Mauldin, Measure and dimension functions: measurability and densi-
ties. Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 81–100 Zbl 0885.28005
MR 1418362
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