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Spectral representation of one-dimensional Liouville Brownian
motion and Liouville Brownian excursion

Xiong Jin

Abstract. In this paper we apply Krein’s spectral theory of linear diffusions to study the one-
dimensional Liouville Brownian motion and Liouville Brownian excursions from a given point.
As an application we estimate the fractal dimensions of level sets of one-dimensional Liouville
Brownian motion as well as various probabilistic asymptotic behaviours of Liouville Brownian
motion and Liouville Brownian excursions.

1. Introduction

Liouville Brownian motion (LBM) was introduced by Garban, Rhodes and Vargas
[15] and by Berestycki [6] as a way of understanding better the geometry of two-
dimensional Liouville quantum gravity (LQG). Roughly speaking, planar Liouville
Brownian motion is the time-change of a planar Brownian motion by the additive
functional whose Revuz measure with respect to Lebesgue is the so-called Liouville
measure

� .dz/ D eh.x/ dx; x 2 D;

where  � 0 is a given parameter, D is a regular planar domain, and h is a Gaus-
sian free field (GFF) on D with certain boundary conditions. As GFFs are defined
as random distributions or Gaussian processes on a certain space of measures which
does not contain Dirac masses, h.x/ is not well-defined for individual points x 2 D.
Therefore, certain smooth approximations of h are needed to define the measure �
rigorously. This was done by Duplantier and Sheffield in [10] for  2 Œ0; 2/ by using
circle averages around given points. The resulting measure � is a random measure
on D carried by a random fractal set whose fractal dimension is 2 � 2=2.

Such random fractal measures with “log-Gaussian” densities obtained via a limit-
ing procedure have a long history. The study was initiated by Mandelbrot [21] in the
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1970s to analyse the energy dissipation phenomenon in fully developed turbulence.
The mathematically rigorous foundation of these random measures was built later by
Kahane [18] in 1985, which now is referred to as the Gaussian multiplicative chaos
(GMC) theory. For a historical review of GMC and its relation to GFF and LQG, see,
for example, the survey paper [23] of Rhodes and Vargas and the lecture notes [7] of
Berestycki.

The study of planar Liouville Brownian motion was carried out in [1,14,23] with a
focus on the regularity of the transition density function of LBM (so-called Liouville
heat kernels). In this paper we shall continue the study but mainly focus on the case
of one-dimensional Liouville Brownian motion, defined as a generalized linear diffu-
sion process with natural scale function and speed measure �, where � is a boundary
Liouville measure on R obtained from a GFF on the upper half-plane with Neumann
boundary conditions.

The advantage of studying the one-dimensional case is that there exists in the lit-
erature a fully developed theory on the probabilistic interpretation of linear diffusions
in terms of their scale functions and speed measures, namely the spectral theory of
linear diffusions (see [11], for example). With the help of the spectral theory of lin-
ear diffusions, we are able to estimate various probabilistic asymptotic behaviours of
one-dimensional LBM as well as that of Liouville Brownian excursions (LBE) from a
given point. In fact, we shall study a more general family of time-changed Brownian
motion with speed measure � satisfying the following properties.

(A1) Regular support: � is a Borel measure on R with no atoms, 0<�.Œa; b�/<1
for all �1 < a < b <1, �.Œ0; x�/!1, and �.Œ�x; 0�/!1 as x!1.

(A2) Ergodicity: there exists a positive constant Z such that for every a 2 R,

lim
�!1

�Œa; aC ��

�
D lim
�!1

�Œa � �; a�

�
D Z: (1.1)

(A3) Multifractality: there exists an open interval I� , a family ¹�qW q 2 I�º of
Borel measures on R and a family ¹˛.q/W q 2 I�º of positive reals such that
for q 2 I� , for �q-almost every a 2 R,

lim
r!0

1

log r
log �.a � r; aC r/ D ˛.q/: (1.2)

Many stationary multifractal random measures satisfy these properties, for exam-
ple, the log-infinitely divisible cascade measures constructed in [2, 4]. In particu-
lar, an instance of the boundary Liouville measure constructed in Section 3.1 satis-
fies (A1), (A2), and (A3).

For w 2 W D C.RC;R/ let w� be the time change of w according to �, and let
Px� . � /D PxBM.w� 2 �/ denote the law of time-changed Brownian motion starting from
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x 2 R (see Section 2.2 for precise definition). As a particular application, we proved
the following theorem about the Hausdorff and packing dimension of the level sets of
the time-changed Brownian motion.

Theorem 1.1. Assume that � satisfies (A1) and (A3). For �q-almost every a 2 R, for
Pa� -almost every w 2 W ,

dimH ¹t � 0Ww.t/ D aº D dimP ¹t � 0Ww.t/ D aº D
1

1C ˛.q/
:

The rest of the paper is organized as follows. In Section 2 we give a brief review of
time-changed Brownian motion and Brownian excursions; in Section 3 we introduce
the boundary Liouville quantum gravity as a one-dimensional Gaussian multiplicat-
ive chaos and use it to define one-dimensional LBM and LBE; in Section 4 we give
a brief review of Krein’s spectral theory of strings and list the spectral representation
of time-changed BM and BE using the spectral theory of excursions of linear diffu-
sions developed in [25, 28]; in Section 5 we study various probabilistic asymptotic
behaviours of time-changed BM and BE.

2. One dimensional time-changed Brownian motion and Brownian
excursion

2.1. Brownian motion and Brownian excursion

LetW D C.RC;R/ denote the Wiener space consisting of continuous functions from
RC to R. We regard W as a complete separable metric space. Let W denote its Borel
� -field. Let P0BM be the Wiener measure on .W;W/, under which the canonical pro-
cesswD¹w.t/ºt�0 is a one-dimensional Brownian motion starting from 0. For x 2R,
let PxBM. � / denote the measure P0BM.� C x/, that is, the law of the one-dimensional
Brownian motion starting from x.

Let ¹L.t; x/ºt�0;x2R denote the joint-continuous version of the local time of the
Brownian motion under P0BM. For any bounded continuous function f on R, one hasZ t

0

f .w.s// ds D 2
Z

R
f .y/L.t; x/ dx

for P0BM-almost every w 2 W . For ` � 0 let

�.`/ D inf¹t � 0WL.t; 0/ > `º
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be the right-continuous inverse of the local time at 0. For `� 0 such that �.`�/ < �.`/,
we may define the path of the excursion at ` as

e.`/.t/ D

´
jw.�.`�/C t /j if 0 � t � �.`/ � �.`�/;

0 if t > �.`/ � �.`�/:

The excursion e.`/ takes values in the subspace E � W consisting of continuous
paths eW Œ0;1/ 7! Œ0;1/ such that if e.t0/ D 0 for some t0 > 0, then e.t/ D 0 for all
t > t0. Let E denote its Borel � -field. By Ito’s excursion theory, there exists a � -finite
measure nBE on .E;E/ such that under P0BM, the point measureX

`�0W�.`�/<�.`/

ı`;e.`/.dsde/

is a Poisson measure on RC � E with intensity ds ˝ nBE.de). The measure nBE is
called Ito’s excursion measure of the Brownian motion. Here, we present the follow-
ing four descriptions of nBE listed in [13]. For more details on Brownian excursions,
see [22, Chapter XII], for example.

For x > 0, let Qx
BM denote the law of the one-dimensional Brownian motion start-

ing from x and absorbed at 0. For x � 0, let Px3B denote the law of the 3-dimensional
Bessel process starting from x. Let Wx

3B denote the law of the path obtained by
piecing together two independent P03B-processes up to their first hitting time to x (the
second one runs backwards in time). These measures may be all considered to be
defined on .E; E/. For e 2 E, let M.e/ D maxt�0 e.t/ denote the maximum of e,
and let �.e/ D inf¹t > 0W e.t/ D 0º denote the lifetime of e, with the convention that
inf; D 1.

(i) We have nBE.M D 0/ D 0, and for every bounded continuous functional F on
E supported by ¹M > xº for some x > 0,

nBE.F / D lim
"!0C

1

"
Q"

BM.F /:

(ii) Under nBE, the excursion process e D ¹e.t/ºt�0 is a strong Markov process with
transition kernel Qx

BM.e.t/ 2 dy/ and entrance law .1=x/P03B.e.t/ 2 dx/. In particular,
for each positive stopping time � and every measurable set � ,

nBE.e.� C �/ 2 �/ D

Z
.0;1/

1

x
P03B.e.�/ 2 dx/Qx

BM.�/:

(iii) For every measurable set � ,

nBE.�/ D

Z 1
0

Wx
3B.�/

dx
x2
:
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This means that nBE.M 2 dx/ D dx=x2 and the law of nBE conditioned on M D x
is Wx

3B.

(iv) For every measurable set � ,

nBE.�/ D

Z 1
0

P03B.et 2 � j e.t/ D 0/p3B.t; 0; 0/ dt:

Here et . � / D e.t ^ �/ is the path of e stopped at t , and p3B.t; 0; 0/ D .2�t/
�3=2 is

obtained from the transition probability density p3B.t; x; y/ of Px3B with respect to its
speed measure y2dy evaluated at x D y D 0. Since P03B.�.e/D t j e.t/D 0/D 1, this
description means that nBE.� 2 dt / D p3B.t; 0; 0/dt , and the law of nBE conditioned
on � D t is P03B.et 2 � j e.t/ D 0/.

2.2. Time-changed Brownian motion

Let � be a measure on R satisfying (A1). Define

A�.t/ D

Z
R
L.t; x/ �.dx/; t � 0:

Then A� D ¹A�.t/ºt�0 forms an additive functional of the Brownian motion. Let

��.t/ D inf¹s � 0WA�.s/ > tº; t � 0

be its right-continuous inverse. For w 2 W let

w�.t/ D w.��.t//; t � 0

denote the time-change of w by �� . Define a probability measure on W by

Px� . � / D PxBM.w� 2 � /:

Then Px� is the law of the time-changed Brownian motion w� . Its joint-continuous
transition density p�.t I x; y/ satisfies

Px� .w.t/ 2 B/ D
Z
B

p�.t I x; y/ �.dy/

for t > 0, x 2 R and B 2 B.R/. The process ¹L�.t; x/ D L.��.t/; x/ºt�0;x2R is the
joint-continuous local time of the time-changed BM under P0� , that is, for any bounded
continuous function f on R one hasZ t

0

f .w.s// ds D 2
Z

R
f .y/L�.t; x/ �.dx/

for P0�-almost every w 2 W .
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2.3. Time-changed Brownian excursion

Fix a 2 R. For x � 0, let us introduce the notations

m�;a;C.x/ D �.Œa; aC x�/ and m�;a;�.x/ D �.Œa � x; a�/:

Define
A�;a;˙.t/ D

Z
.0;1/

L.t; a˙ x/ dm�;a;˙.x/; t � 0:

Then A�;a;˙ forms an additive functional of the BM. Let

��;a;˙.t/ D inf¹s � 0WA�;a;˙.s/ > tº; t � 0

be the right-continuous inverse of A�;a;˙. For w 2 W , let

w�;a;˙.t/ D w.��;a;˙.t//; t � 0

be the time change of w by ��;a;˙. For x > 0, define a probability measure on W by

Px�;a;˙. � / D Pa˙xBM .˙.w�;a;˙ � a/ 2 �/:

We shall also use the same notation L.t; x/ to denote the joint-continuous version of
the local time of the Brownian motion/excursion under Qx

BM, Px3B, Wx
3B and nBE onE.

For e 2 E, let

A�;a;˙.t/ D

Z
.0;1/

L.t; x/ dm�;a;˙.x/; t � 0

and

��;a;˙.t/ D

´
inf¹s � 0WA�;a;˙.s/ > tº if 0 � t < A�;a;˙.�/;

� if t � A�;a;˙.�/;

as well as
e�;a;˙.t/ D e.��;a;˙.t//; t � 0:

Define the measures on E by

Qx
�;a;˙. � / D Qx

BM.e�;a;˙ 2 � /;

Qx
h-�;a;˙. � / D Px3B.e�;a;˙ 2 � /;

Wx
�;a;˙. � / DWx

BM.e�;a;˙ 2 � /;

n�;a;˙. � / D nBE.e�;a;˙ 2 � /:
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We have

(1) Px�;a;˙ is the law of the generalized linear diffusion with natural scale func-
tion and speed measure dm�;a;˙.x/ on RC starting from x and with 0 as an
instantaneously reflecting boundary.

(2) Qx
�;a;˙ is the law of the generalized linear diffusion with natural scale function

and speed measure dm�;a;˙.x/ on RC starting from x and absorbed at 0.

(3) Qx
h-�;a;˙ is the law of the generalized linear diffusion with natural scale func-

tion and speed measure dm�;a;˙.x/ on RC starting from x and conditioned
never hit 0. Indeed, Qx

h-�;a;˙ is Doob’s h-transform of Qx
�;a;˙ with h.x/ D x.

It is therefore the law of the generalized linear diffusion with speed measure
x2dm�;a;˙.x/ and scale function �1=x.

(4) Wx
�;a;˙ is the law of the following process: consider two independent

Q0
h-�;a;˙-processes until they first hit x, and splice the two paths together (the

second one runs backwards in time).

Finally, by applying [13, Theorem 2.5], we have the following descriptions of the
Ito’s excursion measure n�;a;˙.

Theorem 2.1. Let a 2 R be fixed.

(i) We have n�;a;˙.M D 0/ D 0 and for every bounded continuous functional
F on E supported by ¹M > xº for some x > 0,

n�;a;˙.F / D lim
"!0C

1

"
Q"
�;a;˙.F /:

(ii) Under n�;a;˙ the excursion process ¹e.t/ºt�0 is a strong Markov pro-
cess with the transition kernel Qx

�;a;˙.e.t/ 2 dy/ and the entrance law
.1=x/Q0

h-�;a;˙.e.t/ 2 dx/. In particular, for each positive stopping time �
and every measurable set � ,

n�;a;˙.e.� C �/ 2 �/ D
Z
.0;1/

1

x
Q0
h-�;a;˙.e.�/ 2 dx/Qx

�;a;˙.�/:

(iii) For every measurable set � ,

n�;a;˙.�/ D
Z 1
0

Wx
�;a;˙.�/

dx
x2
:

This means that n�;a;˙.M 2 dx/ D dx=x2, and the law of n�;a;˙ condi-
tioned on M D x is Wx

�;a;˙.
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3. One-dimensional Liouville Brownian motion

3.1. Gaussian multiplicative chaos and Liouville quantum gravity

Let D � Rk be a domain. Let K.x; y/ be a nonnegative definite kernel of the form

� log jx � yj C g.x; y/;

where g is continuous over D �D. Let

MC D

²
� -finite measure � on D with

Z
D

Z
D

K.x; y/ �.dx/�.dy/ <1
³
;

and let M be the set of the signed measures of the form �D �C � ��, where �C; �� 2
MC. Let h D ¹h.�/º�2M be a centered Gaussian process indexed by M with covari-
ance function

Cov.h.�/; h.�0// D
Z
D

Z
D

K.x; y/ �.dx/�0.dy/:

The process h is called a Gaussian field on D with covariance kernel K. Let � be a
smooth mollifier, and for " > 0 let �".x/ D "�k�.x="/. Let h".x/ D h � �".x/ be the
smooth approximation of h. Then, for " > 0, we may define a random measure

�;".dx/ D eh".x/�
2

2 E.h".x// dx; x 2 D;

where  � 0 is a given parameter. When  <
p
2k, the sequence of measures �;"

converges weakly in probability to a limiting measure � called a Gaussian multi-
plicative chaos measure onD introduced by Kahane [18] (see [8], for example, for an
elementary proof).

Here we shall focus on the case whenDDH is the upper half-plane, and consider
the boundary Liouville measures on R defined as follows. Let g.x;y/D� log jx � Nyj,
then hDhf is the Gaussian free field on H with Neumann boundary conditions. For
x2R and ">0 let �x;" denote the Lebesgue measure on the semicircle ¹y2HW jy � xj

D "º in H normalized to have mass 1. Let  2 Œ0;
p
2/ be fixed. For n � 1, define

�n.dx/ D 2�n
2

2 e
p
2

hf.�x;2�n / dx; x 2 R:

Then almost surely �n converge weakly to a non-trivial measure � as n!1. The
measure � is called the boundary Liouville measure on R with parameter  .
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3.2. Boundary Liouville measures as speed measures

Let � be an instance of the boundary Liouville measure on R with parameter  . We
may define one-dimensional Liouville Brownian motion as the time-changed BM w�

according to �. In other words, one-dimensional Liouville Brownian motion is a gen-
eralized linear diffusion process on R with natural scale function and speed measure �.
We have that � satisfies (A1), (A2), and (A3).

(1) The fact that � has no atoms is due to Kahane [18] since the measure � can not
give positive mass to a set of Hausdorff dimension less than or equal to 1� 2=2. The
measure � has full support by non-degeneracy that for any open interval I , �.I / > 0
almost surely.

(2) Since the boundary Liouville measure � is a stationary positive measure on R,
that is, nu.x C �/ has the same law as �. � / for any x 2 R and �.I / > 0 for any open
interval I , by Birkhoff ergodic theory there exists a positive random variable Z with
finite mean such that almost surely for every a 2 R,

lim
�!1

�Œa; aC ��

�
D lim
�!1

�Œa � �; a�

�
D Z:

(3) For q 2 .�
p
2=;
p
2=/ let �q be the boundary Liouville measure with para-

meter q defined via the same GFF h as �. In particular, �0 is the Lebesgue measure
on R, and �1 D �. By the multifractal analysis of � (see [5], see also [23, Theorem
4.1] for a direct proof for positive q), we have that almost surely for �q-almost every
a 2 R,

lim
r!0

1

log r
log �.a � r; aC r/ D 1C

�1
2
� q

�2
2
:

4. Spectral representation of time-changed Brownian motion and
time-changed Brownian excursion

We shall use Krein’s spectral theory to study the time-changed BM. This section is a
review of Krein’s theory based on [19].

4.1. Krein’s spectral theory of strings

Let M be the set of non-decreasing right-continuous functions mW Œ0;1� 7! Œ0;1�

with m.0�/ D 0 and m.1/ D1. Each m 2M represents the mass distribution of a
string. Form 2M, let l D sup¹x � 0Wm.x/ <1º denote the length ofm. For � 2 C,
let '.x; �/ and  .x; �/ be the unique solution of the following integral equations on
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Œ0; l/ respectively:

'.x; �/ D 1C �

Z
.0;x�

.x � y/'.y; �/ dm.y/;

 .x; �/ D x C �

Z
.0;x�

.x � y/ .y; �/ dm.y/:

The functions ' and  have the following explicit expressions. Let

'0.x/ D 1; 'nC1.x/ D

Z
.0;x�

.x � y/'n.y/ dm.y/ for n � 0;

 0.x/ D x;  nC1.x/ D

Z
.0;x�

.x � y/ n.y/ dm.y/ for n � 0;

then

'.x; �/ D

1X
nD0

'n.x/�
n;  .x; �/ D

1X
nD0

 n.x/�
n:

For each fixed x 2 Œ0; l/, �.x; �/, and  .x; �/ are real entire functions, i.e., they are
entire functions of �, and they take real values if � 2 R. Set

h.�/ D

Z l

0

dx
'.x; �/2

D lim
x"l

 .x; �/

'.x; �/
:

The function h is called Krein’s correspondence of the string m.
Let H be the set of functions hW .0;1/ 7! C such that h.�/ can be extended to a

homomorphic function on C n .�1; 0� such that Imh.�/� 0 for � 2C with Im� > 0
and h.�/ > 0 for � > 0. Introduce the topology on M such that mn 7! m if and only
if mn.x/ 7! m.x/ on every continuous point of m, and the topology on H such that
hn 7! h if and only if hn.�/ 7! h.�/ for every � > 0.

Theorem 4.1 (Krein’s correspondence). M and H are compact metric spaces and
Krein’s correspondencem2M$ h2H defines a homeomorphism. Moreover, h2H

has a unique representation

h.�/ D c C

Z
Œ0;1/

�.d�/
�C �

;

where c D inf¹x > 0Wm.x/ > 0º, and � is a non-negative Borel measure on Œ0;1/
with

R
.0;1/

�.d�/=.1C �/ <1.

The unique Borel measure � is called the spectral measure of m. From the func-
tional analysis point of view, � is the unique measure on Œ0;1/ such that for f 2
L2.Œ0; l/; dm/,

kf kL2.Œ0;l/;dm/ D k
Of kL2.Œ0;1/;�/;
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where
Of .�/ D

Z l

0

f .x/'.x; �/ dm.x/

is the generalized Fourier transform.
Note that the right-continuous inverse m�W t � 0 7! inf¹x > 0Wm.x/ > tº also

belongs to M with length l� D m.1�/. It is called the dual string of m. Its Krein’s
correspondence is given by h�.�/ D 1=.�h.�//, which also has a unique representa-
tion

h�.�/ D c� C

Z
Œ0;1/

��.d�/
�C �

;

where c� D m.0/, and �� is a non-negative Borel measure supported on Œ0;1/ withR
.0;1/

��.d�/=.1C �/ < 1. The measure �� is called the spectral measure of the
dual string of m.

4.2. Spectral representation of time-changed Brownian motion

Recall that � is a Borel measure on R satisfying (A1). Let Mc � M be the set of
functions mW Œ0;1� 7! Œ0;1� that are continuous, strictly increasing functions with
m.0/ D 0 and sup¹xWm.x/ <1º D 1. For x � 0, define m�;C.x/ D �.Œ0; 0C x�/
and m�;�.x/ D �.Œ�x; 0�/. Then by (A1), both m�;C and m�;� belong to Mc . Let
'�;˙.x; �/ and  �;˙.x; �/ be the unique solutions of the integral equations

'�;˙.x; �/ D 1C �

Z
.0;x�

.x � y/'�;˙.y; �/ dm�;˙.y/;

 �;˙.x; �/ D x C �

Z
.0;x�

.x � y/ �;˙.y; �/ dm�;˙.y/;

and let

h�;˙.�/ D

Z 1
0

dx
'�;˙.x; �/

D lim
x!1

 �;˙.x; �/

'�;˙.x; �/

be the Krein’s correspondence ofm�;˙. Let ��;˙ be the spectral measure ofm�;˙, that
is, the unique non-negative Borel measure on Œ0;1/ with

R
.0;1/

��;˙.d�/=.1C �/ <
1 such that

h�;˙.�/ D

Z 1
0

��;˙.d�/
�C �

:

Let h� be the Krein’s correspondence of m� D m�;C Cm�;�, which satisfies

1

h�.�/
D

1

h�;C.�/
C

1

h�;�.�/
:
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Let �� be the spectral measure of m� , that is, the unique non-negative Borel measure
on Œ0;1/ with

R
.0;1/

��.d�/=.1C �/ <1 such that

h�.�/ D

Z 1
0

��.d�/
�C �

:

Define

'�.x; �/ D

´
'�;C.x; �/ if x � 0;

'�;�.�x; �/ if x < 0;

 �.x; �/ D

´
 �;C.x; �/ if x � 0;

� �;�.�x; �/ if x < 0:

For � > 0, the �-resolvent operator G�� of the time-changed BM is defined as

G�� f .x/ D Ex�

�Z 1
0

e��tf .w.t// dt
�

for any bounded continuous function f on R. We have the following spectral repres-
entation:

G�� f .x/ D

Z
R
g�� .x; y/f .y/ �.dy/;

where the �-resolvent kernel g�� .x; y/ is given by

g�� .x; y/ D h�.�/.'�.x; �/C h�;C.�/
�1 �.x; �//.'�.y; �/ � h�;�.�/

�1 �.y; �//:

Many probabilistic quantities of the time-changed BM are related to the �-resolvent
kernel g�� .x; y/. For example,

(i) it is the Laplace transform of the transition density p�.t I x; y/,

g�� .x; y/ D

Z 1
0

e��tp�.t I x; y/ dt I

(ii) the right-continuous inverse of the local time `�;0.t/ D inf¹s � 0WL�.s; 0/ > tº
at 0 is a Lévy subordinator, whose Lévy exponent is given by

E0�
�
e��`�;0.t/

�
D e�t=g

�
� .0;0/ D e�t=h�.�/I

(iii) for a 2 R, let Ha D inf¹t > 0Ww.t/ D aº denote the first hitting time at a. Then
for a; b 2 R, we have

Ea�.e
��Hb / D

g�� .a; b/

g�� .b; b/
:
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4.3. Spectral representation of time-changed Brownian excursion

Fix a 2R. Recall the stringsm�;a;C.x/D �.Œa;aC x�/ andm�;a;�.x/D �.Œa� x;a�/
for x � 0. Note that both m�;a;C and m�;a;� belong to Mc . Let '�;a;˙.x; �/ and
 �;a;˙.x; �/ be the unique solutions of the integral equations

'�;a;˙.x; �/ D 1C �

Z
.0;x�

.x � y/'�;a;˙.y; �/ dm�;a;˙.y/;

 �;a;˙.x; �/ D x C �

Z
.0;x�

.x � y/ �;a;˙.y; �/ dm�;a;˙.y/;

and let

h�;a;˙.�/ D

Z 1
0

dx
'�;a;˙.x; �/

D lim
x!1

 �;a;˙.x; �/

'�;a;˙.x; �/

be the Krein’s correspondence ofm�;a;˙. Let ��;a;˙ be the spectral measure ofm�;a;˙.
Let m��;a;˙W t � 0 7! inf¹s � 0Wm�;a;˙.s/ > tº denote the dual string of m�;a;˙ and
let h��;a;˙ denote its Krein’s correspondence. We have

h��;a;˙.�/ D
1

�h�;a;˙.�/
:

Let ���;a;˙ be the spectral measure of m��;a;˙. We have the following spectral repres-
entations of time-changed BM with different boundary conditions.

(1) Let p�;a;˙.t I x; y/ be the joint-continuous transition density of the generalized
linear diffusion with natural scale function and speed measure dm�;a;˙.x/ on RC and
with 0 as an instantaneously reflecting boundary, that is, for t > 0, x; y 2 Œ0;1/, and
B 2 B.RC/,

Px�;a;˙.w.t/ 2 B/ D
Z
B

p�;a;˙.t I x; y/ dm�;a;˙.y/:

Then

p�;a;˙.t I x; y/ D

Z
.0;1/

e�t�'�;a;˙.x;��/'�;a;˙.y;��/ ��;a;˙.d�/:

The associated �-resolvent kernel g��;a;˙.x; y/ is given by

g��;a;˙.x; y/ D

Z
.0;1/

e�t�p�;a;˙.t I x; y/ dt

D

Z
.0;1/

'�;a;˙.x;��/'�;a;˙.y;��/

�C �
��;a;˙.d�/:
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(2) Let q�;a;˙.t I x; y/ be the joint-continuous transition density of the generalized
linear diffusion with natural scale function and speed measure dm�;a;˙.x/ on RC,
and with 0 as an absorbing boundary, that is, for t > 0, x;y 2 .0;1/ andB 2B.RC/,

Qx
�;a;˙.e.t/ 2 B/ D

Z
B

q�;a;˙.t I x; y/ dm�;a;˙.y/:

Then

q�;a;˙.t I x; y/ D

Z
.0;1/

e�t� �;a;˙.x;��/ �;a;˙.y;��/ ��
�
�;a;˙.d�/:

The associated �-resolvent kernel Og��;a;˙.x; y/ is given by

Og��;a;˙.x; y/ D

Z
.0;1/

e�t�q�;a;˙.t I x; y/ dt

D

Z
.0;1/

 �;a;˙.x;��/ �;a;˙.y;��/

�C �
����;a;˙.d�/:

(3) Let qh-�;a;˙.t I x; y/ be the joint-continuous transition density of the generalized
linear diffusion with natural scale function and speed measure dm�;a;˙.x/ on RC,
and conditioned to never hit 0, that is, for t > 0, x; y 2 .0;1/ and B 2 B.RC/,

Qx
h-�;a;˙.e.t/ 2 B/ D

Z
B

qh-�;a;˙.t I x; y/ dm�;a;˙.y/:

Then

qh-�;a;˙.t I x; y/ D
q�;a;˙.t I x; y/

xy

D

Z
.0;1/

e�t�
 �;a;˙.x;��/

x

 �;a;˙.y;��/

y
����;a;˙.d�/:

The associated �-resolvent kerneleg��;a;˙.x; y/ is given by

eg��;a;˙.x; y/ D Z
.0;1/

e�t�qh-�;a;˙.t I x; y/ dt

D

Z
.0;1/

 �;a;˙.x;��/ �;a;˙.y;��/

xy.�C �/
����;a;˙.d�/:

(4) The partial derivative of q�;a;˙.t I x; y/ at y D 0,

��;a;˙.t I x/ D lim
y!0C

q�;a;˙.t I ; x; y/

y
D

Z
.0;1/

e�t� �;a;˙.x;��/ ��
�
�;a;˙.d�/;

is the density of the first hitting timeH0 D inf¹t > 0Ww.t/ D 0º under Qx
�;a;˙, that is

Qx
�;a;˙.H0 2 dt / D ��;a;˙.t I x/ dt:
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In particular,

Qx
�;a;˙.H0 > t/ D

Z 1
0

e�t���;a;˙.t I x/ �
�
�;a;˙.d�/:

It also defines an entrance law: for t; s > 0 and y 2 .0;1/,Z
.0;1/

��;a;˙.t I x/q�;a;˙.sI x; y/ dm�;a;˙.x/ D ��;a;˙.t C sIy/:

(5) For t > 0, let Gt D sup¹s � t Ww.s/ D 0º and Dt D inf¹s � t Ww.s/ D 0º. Then
for u < t < v and x > 0,

P0�;a;˙.Gt 2 du;w.t/ 2 dx;Dt 2 dv/

D p�;a;˙.uI 0; 0/��;a;˙.t � uI x/��;a;˙.v � t I x/ dudvdm�;a;˙.x/:

(6) The partial derivative of ��;a;˙.t I x/ at x D 0,

n�;a;˙.t/ D lim
x!0C

��;a;˙.t I x/

x
D

Z
.0;1/

e�t� ����;a;˙.d�/;

is the density of the Lévy measure of the Lévy subordinator,

¹`�;a;˙.t/ WD inf¹s � 0WL.��;a;˙.s/; 0/ > tººt�0

under P0�;a;˙, that is,

E0�;a;˙.e
��`�;a;˙.t// D e�t=h�;a;˙.�/;

where the Lévy exponent 1=h�;a;˙.�/ takes the form

1

h�;a;˙.�/
D

Z 1
0

.1 � e�t�/n�;a;˙.t/ dt:

Let Q0;t;0
�;a;˙ denote the law of the Q0

h-�;a;˙-process pinned at 0 with lifetime t .

Alternatively, Q0;t;0
�;a;˙ is the weak limit of the law of the Markovian bridge Qx;t;y

�;a;˙ as
y ! 0C, x ! 0C (see [12], for example). By applying the results in [25, 28], we
have the following spectral representation of the Ito’s excursion measure n�;a;˙.

Theorem 4.2. The Ito’s excursion measure n�;a;˙ has the following representation:

n�;a;˙.de/ D
Z 1
0

n�;a;˙.� 2 dt /Q0;t;0
�;a;˙.de/;

where the law of the lifetime � under n�;a;˙ is equal to the Lévy measure of `�;a;˙:

n�;a;˙.� 2 dt/ D n�;a;˙.t/ dt:
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Moreover, we have the following finite dimensional distribution: for 0 < t1 < t2 <

� � � < tn and xi > 0, i D 1; : : : ; n,

n�;a;˙.e.t1/ 2 dx1; e.t2/ 2 dx2; : : : ; e.tn/ 2 dxn/

D ��;a;˙.t1I x1/dm�;a;˙.x1/q�;a;˙.t2 � t1I x1; x2/dm�;a;˙.x2/

� � � � � q�;a;˙.tn � tn�1I xn�1; xn/dm�;a;˙.xn/:

In particular,
n�;a;˙.e.t/ 2 dx/ D ��;a;˙.t I x/dm�;a;˙.x/;

and it holds that

n�;a;˙.� > t/ D
Z 1
0

n�;a;˙.e.t/ 2 dx/ D
Z 1
0

��;a;˙.t I x/ dm�;a;˙.x/:

Remark 4.1. Note that n�;a;˙.� > t/ also has the formZ 1
t

n�;a;˙.s/ ds D
Z 1
0

e��t���;a;˙.dt /:

This yields the identity (see [25, Proposition 3])Z t

0

p�;a;˙.uI 0; 0/ du
Z 1
t�u

n�;a;˙.v/ dv D 1:

Recall that Hx D inf¹t > 0Ww.t/ D xº is the first hitting time to x, and denote
by Hx D sup¹t > 0Ww.t/ D xº the last exit time from x. Let . � /_ denote the time
reverse operator on E0 D ¹e 2 EW e.0/ D 0º, that is, for e 2 E0,

e_.t/ D e..� � t /C/; t � 0:

Let E0 denote the Borel � -field of E0, and let E0
.0;Ha/

, E0
.Ha;Ha/

and E0
.Ha;�/

denote
the sub � -fields with respect to the corresponding time intervals (see [28] for more
precise definitions). Let �t .w/. � / D w.t C �/ denote the left-shift operator. We have
the following time reverse and first-entrance-last-exit decomposition of the excursion
measure n�;a;˙ from [28].

Theorem 4.3. Let a 2 R be fixed.

(i) For � 2 E0 one has

n�;a;˙.�_/ D n�;a;˙.�/:

(ii) For x > 0 and �1 2 E0
.0;Hx/

, �2 2 E0
.Hx ;Hx/

, �3 2 E0
.Hx ;�/

one has

n�;a;˙.�1 \ �2 \ �3/ D
1

x
P0h-�;a;˙.�1/Q

x
�;a;˙.�Hx .�2//P

0
h-�;a;˙.�

_
3 /:
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In particular,

n�;a;˙
�
¹Hx 2 dt1º \ ¹¹Hx

�Hxº 2 dt2º \ ¹� �Hx
º 2 dt3

�
D
1

x
P0h-�;a;˙.Hx 2 dt1/Qx

�;a;˙.H
a
2 dt2/P0h-�;a;˙.Hx 2 dt3/:

Consequently, n�;a;˙.Hx 2 dt / D .1=x/P0
h-�;a;˙.Hx 2 dt / and

n�;a;˙.e��Hx / D
1

x
P0h-�;a;˙.e

��Hx / D
1

 �;a;˙.x; �/
:

5. Probabilistic asymptotic behaviours of time-changed Brownian
motion and Brownian excursions

As an application of the spectral representation in Section 4.2 and 4.3, we shall study
the probabilistic asymptotic behaviours of time-changed BM and BE.

The first application is Theorem 1.1 on the fractal dimensions of the level sets.
Assume that � satisfies (A1) and (A3). We shall prove the following statement. For
�q-almost every a 2 R, for Pa� -almost every w 2 W ,

dimH ¹t � 0Ww.t/ D aº D dimP ¹t � 0Ww.t/ D aº D
1

1C ˛.q/
:

Proof of Theorem 1.1. For a 2 R, denote m�;a D m�;a;C Cm�;a;�, and let

V�;a.r/ D

Z r

0

m�;a.x/ dx; r � 0:

Let h�;a be the Krein’s correspondence of m�;a, which satisfies

1

h�;a.�/
D

1

h�;a;C.�/
C

1

h�;a;�.�/
:

From [19] we have for � > 0

1

4
h�;a.1=�/ � .V�;a/

�1.�/ � 64h�;a.1=�/: (5.1)

Recall the measure �q in (A3). By (1.2), for �q-almost every a 2R for every " > 0
there exists ra;" > 0 such that

r˛.q/C" � �.a � r; aC r/ � r˛.q/�"; 8r � ra;":

This implies that

1

1C ˛.q/C "
r1C˛.q/C" � V�;a.r/ �

1

1C ˛.q/ � "
r1C˛.q/�"; 8r � ra;": (5.2)
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Equivalently, for � > 0 small enough,

.1C ˛.q/� "/
1

1C˛.q/�" �
1

1C˛.q/�" � .V�;a/
�1.�/� .1C ˛.q/C "/

1
1C˛.q/C" �

1
1C˛.q/C" :

By (5.1), we deduce that there exist constants 0 < ca;";Ca;" <1 such that for � large
enough,

ca;"�
� 1
1C˛.q/�" � h�;a.�/ � Ca;"�

� 1
1C˛.q/C" : (5.3)

The local timeL�.t; a/DL.��.t/; a/ at a is carried by the level set ¹t � 0Ww.t/D
aº for Pa� -almost every w 2 W , and its right-continuous inverse `�;a.t/ WD inf¹s � 0W
L�.s; a/ > tº is a Lévy subordinator, whose Lévy exponent is given by

Ea�.e
�`�;a.t// D e�t=h�;a.�/:

By the general theory of fractal dimensions of images of Lévy subordinator (see [9,
Chapter 5], for example), we have for Pa� -almost every w 2 W ,

dimH ¹t � 0Ww.t/ D aº D lim inf
�!1

� log h�;a.�/
log�

;

dimP ¹t � 0Ww.t/ D aº D lim sup
�!1

� log h�;a.�/
log�

:

By (5.3), with "! 0 we get for Pa� -almost every w 2 W ,

dimH ¹t � 0Ww.t/ D aº D dimP ¹t � 0Ww.t/ D aº D
1

1C ˛.q/
:

Remark 5.1. Theorem 1.1 is linked to work [16] of Jackson on the Hausdorff dimen-
sion of the times that planar LBM spent on the thick points of the corresponding
Gaussian free field. Theorem 1.1 estimates the size of the times that one-dimensional
LBM spent at �q-almost every a, whereas [16] estimates the size of planar LBM spent
in the support of � . So, roughly speaking, Theorem 1.1 can be considered as a fiber
version of the result in [16] in dimension 1. Since in dimension 2 there does not exist
the local time of BM/LBM at a given point, it seems difficult to derive an analogue of
Theorem 1.1 in dimension two.

As the second application, we shall estimate the asymptotic behaviours of the
transition density p�.t Ia; a/ at a given point a 2 R. First note that p�.t Ia; a/ has the
following spectral representation:

p�.t I a; a/ D

Z 1
0

e�t� ��;a.d�/;
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where ��;a is the spectral measure of m�;a, that is, the unique non-negative Borel
measure on Œ0;1/ with

R
.0;1/

��;a.d�/=.1C �/ <1 such that

h�;a.�/ D

Z 1
0

��;a.d�/
�C �

:

This yields the following lemma of Tomisaki [26].

Lemma 5.1. Let � be a positive and non-increasing function on .0; ı/ for some ı > 0.
Then Z ı

0

�.t/p�.t I a; a/ dt <1,
Z .V�;a/

�1.ı/

0

�.V�;a.x// dx <1:

We have the following result on the short term behaviour of p�.t I a; a/.

Theorem 5.1. For �q-almost every a 2 R, for any ˇ > 1=.1C ˛.q//,Z
0C

t�ˇp�.t I a; a/ dt D1;

and for any ˇ < 1=.1C ˛.q//,Z
0C

t�ˇp�.t I a; a/ dt <1:

In particular,

lim inf
t!0

logp�.t I a; a/
� log t

� 1 �
1

1C ˛.q/
� lim sup

t!0

logp�.t I a; a/
� log t

: (5.4)

Proof. As a direct consequence of Lemma 5.1 and (5.2), we have that for any ˇ >
1=.1C ˛.q//, Z

0C

t�ˇp�.t I a; a/ dt D1;

and for any ˇ < 1=.1C ˛.q//,Z
0C

t�ˇp�.t I a; a/ dt <1;

which implies (5.4).

Remark 5.2. By using Tauberian theorem, it can be shown that if �.a � r; aC r/ is a
regular varying function of r as r! 0, then the inequalities in (5.4) become equalities,
see [3], for example for the case when � is a Bernoulli measure on Œ0; 1�. However,
due to the multifractal nature of GMC measures, it is the case that for �q almost every
a, �.a � r; aC r/ is not regular varying as r ! 0. So it is not clear whether the limit
in (5.4) exists.
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Remark 5.3. The short term behaviour (5.4) is quite different comparing to [24,
Corollary 2.1]. The reason is that in [24] the one-dimensional Liouville Brownian
motion is defined as a linear diffusion with scale function m� and speed measure dx,
and the corresponding transition density p�.t I x; x/ is defined with respect to �.dx/
rather than dx. Therefore, by change of variables, it is straightforward to verify that
for every x 2 R,

lim
t!0

� logp�.t I x; x/
log t

D
1

2
:

From now on, we assume that � satisfies (A1) and (A2). We have the following
long term behaviour of p�.t I a; a/.

Theorem 5.2. For every a 2 R,

lim
t!1

p
2�tp�.t I a; a/ D

1
p
Z
:

Proof. By the ergodicity (1.1), for each x � 0 we have

m
.�/
�;a;˙.x/ WD

1

�Z
m�;a;˙.�x/! x as �!1:

By change of variables, it is easy to see that for constants �; � > 0 one has the follow-
ing relation of the Krein’s correspondence:

�

�
m
�x
�

�
$ �h.��/:

Since Krein’s correspondence is a homeomorphism when m.�/�;a;˙.x/! x as �!1
for each x � 0, the corresponding generalized linear diffusion process converges in
law to one-dimensional Brownian motion. This implies that

lim
�!1

�Zp�.t�
2ZI a; a/ D pBM.t I a; a/ D

1
p
2�t

:

In other words,

lim
t!1

p
2�tp�.t I a; a/ D

1
p
Z
:

In the third application we shall study the first hitting/exit time of LBM. For a 2R,
recall that Ha D inf¹t > 0Ww.t/ D aº is the first hitting time at a. The following
statement holds.

Theorem 5.3. For a ¤ 0 we have

lim
t!1

p
2�tP0�.Ha � t / D jajZ:
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Proof. Since

lim
�!1

�Œ0; ��

�
D lim
�!1

�Œ��; 0�

�
D Z;

the result is a direct application of [27, Theorem 4] with ˛ D 1=2 and K.x/ D Z.

Remark 5.4. Theorem 5.2 and 5.3 suggest that in long term one-dimensional LBM
behaves exactly like one-dimensional Brownian motion.

For a < 0 < b, let

Ha;b D inf¹t > 0Ww.t/ 62 .a; b/º D Ha ^Hb

denote the first exit time from .a; b/. Define

C�;a;b D
1

b � a

Z b

a

.b � x/.x � a/ �.dx/:

Then we have the following statement.

Theorem 5.4. If � < 1=C�;a;b , then E0�.e�Ha;b / <1.

Proof. This can be easily deduced by using the Kac’s moment formula: for n � 1,

E0�.H
n
a;b/ D n

Z b

a

.b � x _ 0/.x ^ 0 � a/

b � a
Ex� .H

n�1
a;b / �.dx/ D nŠG

n
� 1.0/;

where G� is the Green operator

G�f .x/ D

Z b

a

.b � y _ x/.y ^ x � a/

b � a
f .y/ �.dy/:

See [20, Lemma 1.3], for example.

Theorem 5.4 indicates that A D �.d=d�/.d=dx/, as a self-adjoint, non-negative
definite operator on the Hilbert space L2..a; b/; �/, has a spectra gap. Indeed, let
��;a;b denote the smallest eigenvalue of A on L2..a; b/; �/, and denote byeC �;a;b D sup

x2.a;0�

.x � a/�..x; 0�/ _ sup
x2Œ0;b/

.b � x/�.Œ0; x//:

Then we have the following result of Katoni [19, Theorem 3, Appendix I] as an exten-
sion of the theorem of Kac and Krein [17].

Theorem 5.5. For a < 0 < b,eC �;a;b � ��1�;a;b � 4eC �;a;b:
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In the last application we study the asymptotic behaviours of the lifetime of LBE.
Recall that n�;a;˙.t/ is the density of the inverse local time `�;a;˙, which is also the
density of the lifetime � under the excursion measure n�;a;˙, that is,

n�;a;˙.� 2 dt / D n�;a;˙.t/ dt:

First we present the asymptotic behaviour of n�;a;˙.� > t/ as t !1.

Theorem 5.6. For a 2 R, we have

lim
t!1

2
p

2�t3n�;a;˙.t/ D
1
p
Z
:

Consequently,

lim
t!1

p
2�tn�;a;˙.� > t/ D

1
p
Z
:

Proof. Similar to the proof of Theorem 5.2, for each x � 0,

m
.�/
�;a;˙.x/ WD

1

�Z
m�;a;˙.�x/! x as �!1:

This implies that the generalized diffusion process on RC with natural scale function
and speed measure dm.�/�;a;˙.x/, and with 0 as an instantaneously reflecting bound-
ary converges in law to the one-dimensional reflected Brownian motion as �!1.
Therefore, the corresponding local time

`
.�/
�;a;˙.t/ WD

1

�2Z
`�;a;˙.t�/

converges in law to the .1=2/-stable Lévy subordinator as �!1. Since

E0�;a;˙
�
e
�� 1

�2Z
`�;a;˙.t�/

�
D exp

�
�t�

Z 1
0

.1 � e
�s� 1

�2Z /n�;a;˙.s/ ds
�

D exp
�
�t

Z 1
0

.1 � e�u�/�3Zn�;a;˙.u�
2Z/ du

�
;

we get that

�3Z � n�;a;˙.u�
2Z/!

1

2
p
2�u3

as �!1:

In other words,

lim
t!1

2
p

2�t3 � n�;a;˙.t/ D
1
p
Z
:

Consequently,

lim
t!1

p
2�tn�;a;˙.� > t/ D

1
p
Z
:
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Now we present the asymptotic behaviour of n�;a;˙.� > t/ as t ! 0.

Theorem 5.7. For �q-almost every a 2 R, for any ˇ > 1=.1C ˛.q//,Z
0C

tˇ�1n�;a;˙.� > t/ dt <1;

and for any ˇ < 1=.1C ˛.q//,Z
0C

tˇ�1n�;a;˙.� > t/ dt D1:

In particular,

lim inf
t!0C

log n�;a;˙.� > t/
� log t

�
1

1C ˛.q/
� lim sup

t!0C

log n�;a;˙.� > t/
� log t

: (5.5)

Proof. We have for � > 0,

1

�h�;a;˙.�/
D

Z 1
0

e��tn�;a;˙.� > t/ dt:

Therefore, for any ı > 0 and ˇ > 0Z 1
ı

1

�ˇC1h�;a;˙.�/
d� D

Z 1
ı

��ˇ
Z 1
0

e��tn�;a;˙.� > t/ dtd�

D

Z 1
ıt

��ˇe�� d�
Z 1
0

tˇ�1n�;a;˙.� > t/ dt:

This implies thatZ 1� 1

�ˇC1h�;a;˙.�/
d� <1 ,

Z
0C

tˇ�1n�;a;˙.� > t/ dt <1:

By (5.3), this yields that for any ˇ > 1=.1C ˛.q//,Z
0C

tˇ�1n�;a;˙.� > t/ dt <1;

and for any ˇ < 1=.1C ˛.q//,Z
0C

tˇ�1n�;a;˙.� > t/ dt D1;

which implies (5.5).
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