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Internal aggregation models with multiple sources
and obstacle problems on Sierpiński gaskets

Uta Freiberg, Nico Heizmann, Robin Kaiser, and Ecaterina Sava-Huss

Abstract. We consider the doubly infinite Sierpiński gasket graph SG0, rescale it by factor
2�n, and on the rescaled graphs SGn D 2�nSG0, for every n 2 N, we investigate the limit
shape of three aggregation models with initial configuration �n of particles supported on mul-
tiple vertices. The models under consideration are: divisible sandpile in which the excess mass
is distributed among the vertices until each vertex is stable and has mass less or equal to one,
internal DLA in which particles do random walks until finding an empty site, and rotor aggre-
gation in which particles perform deterministic counterparts of random walks until finding an
empty site. We denote by SG D cl

�S1
nD0 SGn

�
the infinite Sierpiński gasket, which is a closed

subset of R2, for which SGn represents the level-n approximating graph, and we consider a
continuous function � W SG ! N. For � we solve the obstacle problem, and we describe the
noncoincidence set D � SG as the solution of a free boundary problem on the fractal SG. If the
discrete particle configurations �n on the approximating graphs SGn converge pointwise to the
continuous function � on the limit set SG, we prove that, as n!1, the scaling limits of the
three aforementioned models on SGn starting with initial particle configuration �n converge to
the deterministic solution D of the free boundary problem on the limit set SG � R2. For D we
also investigate boundary regularity properties.
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1. Introduction

Internal DLA (shortly IDLA) on Zd , as a special case of the Diaconis–Fulton smash
sum [7], was introduced in [18], and it is a random cluster growth model in which m
particles are initially located at the origin o 2 Zd , and each of them performs a simple
random walk until arriving at a site that has not been visited before, at which site the
particle stops and occupies that position forever. The resulting random subset of occu-
pied sites in Zd is called internal DLA cluster and has, for m!1, a deterministic
limit shape as shown in [18]. Divisible sandpile is a deterministic growth model intro-
duced in [21] as a potential theoretical tool to approach internal DLA, and relaxes the
integrability condition in the similar model, the Abelian sandpile. Divisible sandpile
uses a continuous amount of mass, and any site with mass more than one is unstable
and topples by keeping mass one for itself and distributing the rest equally among the
neighbors. As proved in [21], as time goes to infinity, the sequence of mass configu-
rations converges pointwise to a limit configuration in which each site has mass � 1.
By starting with mass m in o 2 Zd and zero everywhere else, the subset of toppled
sites in Zd in the limit configuration, called the divisible sandpile cluster, has as limit
shape a Euclidean ball, like in the internal DLA case. Finally, in the deterministic
counterpart of internal DLA, called rotor aggregation [20], m particles starting at the
origin o 2 Zd perform rotor walks (deterministic analogues of random walks) until
finding sites unvisited previously, where they settle forever. The set of occupied sites
is called rotor cluster and has on Zd the same limit shape as internal DLA and divis-
ible sandpile as shown in [21]. All three models are Abelian, in the sense that, for
the resulting final configuration or for the set of occupied sites, it does not matter in
which order particles move or in which order sites are being stabilized.

For single point sources ofm particles starting at a fixed vertex o in the underlying
state space, there has been intensive work that concerns mainly the limit shape and
the fluctuations of the cluster around the limit shape. While it is believed that the three
models share the same limit shape on any state space, so far the available limit results
rely very much on the geometry and the growth of those spaces and, in particular,
on the long term behavior of random and rotor walks on them. Other than Zd , we
mention here a few of the state spaces where the limit shapes for the above models and
particles starting at the same vertex have been investigated: on trees internal DLA [4]
and rotor aggregation [17]; on comb lattices [10,11]; internal DLA on cylinder graphs
in [13]; on Sierpiński gasket graphs internal DLA in [5], divisible sandpile in [12], and
rotor aggregation together with Abelian sandpile in [6]. In particular, the Sierpiński
gasket graph is the only non-trivial state space (other than Z) where even a fourth
model, the Abelian sandpile shares the same limit shape with the other three above
introduced models. We do not focus on this model, but we would like to emphasize
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that on Zd the scaling limit for the Abelian sandpile exists, but a precise description
is still an open problem.

While the above results focus on initial mass or particle configurations supported
on a single vertex, it is natural to extend these configurations to general functions
with bounded support, and to describe the limit shapes and fluctuations. A first step
in this direction has been done in [22], where the authors investigate scaling limits for
the aggregation models with multiple sources on lattices ınZd , with ın # 0, so the
processes are run on finer and finer lattices. Given a function � on Rd , there is a nat-
ural way to construct a corresponding obstacle 
 for � and to investigate its smallest
superharmonic majorant s. Then the noncoincidence set for the obstacle problemD is
the set D WD ¹x 2 Rd j s.x/ > 
.x/º; for more details on obstacle problems and free
boundary problems in Rd we refer the reader to [9]. In [22], the authors consider the
three models of cluster growth on lattices ınZd with starting initial configurations �n
on ınZd converging in an appropriate way to � on Rd , and they prove that the result-
ing sets of occupied sites converge in the Hausdorff metric to the noncoincidence set
D � Rd , for reasonable assumptions on the function � . Their approach is based on
potential theoretical analysis in Rd where most of the needed tools and estimates are
well understood.

Our contribution. While it is not clear how to extend such an analysis on any arbi-
trary state space and how to pass from discrete potential theory to its continuous
counterpart on some limiting object similar to Rd in order to get a precise under-
standing of the scaling limits for the aggregation models, the focus of this work is on
a particular class of fractals: Sierpiński gaskets SG as closed subsets of R2. On the dis-
crete graph approximations SGn of SG, we have a good understanding of the random
walk and its limiting process Brownian motion, and they are a rich source of objects
with scaling-invariance and self-similar properties on which potential theory is well
understood. The limiting object SG which takes the role of Rd from [22], is from the
potential analytical point of view also well understood, even if the analysis on fractals
is completely different from the case of Rd . In order to explore the scaling invariance
of the graphs SGn and the decimation invariance of random walks on them, unlike the
case of Zd , we cannot rescale the graphs by any arbitrary sequence ın converging to
0, and we take ın D 2�n; the choice of the scaling constant will be made clear below.
The main goal of the underlying work is to study obstacle problems for functions �
on the limit gasket SG and to describe the noncoincidence set D � SG and its main
properties, by a careful analysis on fractals. On the approximating graphs SGn with
discrete particle configurations �n that converge to � on SG in a way to be described
below we show that the divisible sandpile cluster, the internal DLA cluster, and the
rotor aggregation cluster share the same scaling limit that converges to the noncoinci-
dence set D � SG, similar to Zd and Rd from [22]. We would like to emphasize that
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the analysis from Rd does not immediately carry over to fractals, and there are several
differences and difficulties to deal with on SG; for instance, on the Sierpiński gasket,
there is no known globally defined Green function and this makes the investigation of
obstacle problems more subtle. One can overcome this issue on the gasket by defining
the solution of the obstacle problem as a limit of solutions of obstacle problems on
approximating graphs and showing that this is indeed well-defined.

Main results. In order to state our results, we first refer the reader to Section 2.2,
where the level-n approximations SGn (infinite graphs) as rescalings of the doubly
infinite Sierpiński gasket graph SG0 by the factor 2�n and the “continuous limit-
ing object” SG as a closed subset of R2 are introduced. Let B.0; 2l/ be the closed
Euclidean ball of radius 2l around 0 in SG, i.e., two compact triangles with side length
2l joined together at 0, where l 2 N, and set Trl D B.0; 2l/. If we define the Green
function GTrl on SG \ Trl as in (2.5), and for a function f W Trl ! R we set

G Trlf .x/ D
Z
Trl
GTrl .x; y/f .y/d�.y/;

where � is a multiple of the Hausdorff measure on Trl , then we first prove the follow-
ing.

Proposition 1.1. Let � WSG! Œ0;1/ be bounded and continuous almost everywhere,
such that supp.�/ is also bounded. We define the obstacles on Trl � SG by


Trl WD �G Trl .� � 1/;
and the superharmonic majorant of 
Trl by

sTrl WD inf¹f j f is continuous, superharmonic and f � 
Trl º:
Then for the functions uTrl D sTrl � 
Trl , the pointwise limit u D liml!1 uTrl exists
and is well-defined. Furthermore, the set D D ¹u > 0º � SG is bounded.

Starting with an almost everywhere continuous function � on SG as in Proposi-
tion 1.1, we consider discrete initial particle densities �n on SGn that converge to � ,
and for �n we perform divisible sandpile, internal DLA, and rotor aggregation on SGn.
We denote the respective clusters by Dn, 	n, and Rn, where the subscript n indicates
that we are on the approximating graph SGn (i.e., we perform divisible sandpile, IDLA
and rotor router aggregation with initial density �n on SGn). The next result shows that
the scaling limit of these three models converges in the Hausdorff metric to the non-
coincidence set zD D D [ ¹� � 1ºı, where D is the set from Proposition 1.1. We say
that the sequence .An/n2N of sets An � SGn converges to the set A � SG, if for every
" > 0, there exists n0 2 N such that for all n � n0 it holds that

A" \ SGn � An � A";
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x

441.x/

Figure 1. The double sided infinite Sierpiński gasket and441.x/ for x D .1; 0/.

whereA" andA" are the inner and outer "-neighborhoods ofA, respectively. A special
case of the densities �n is as in the result below, where �n.x/ can be obtained by
averaging � over a neighborhood of x in SG.

Theorem 1.1. Let � W SG ! N0 be bounded with compact support and continuous
almost everywhere, such that ¹� � 1º D ¹� � 1ºı. Let Dn, Rn and 	n be the final
set of occupied sites (resp. toppled sites in the sandpile) formed by divisible sandpile,
rotor aggregation and internal DLA, respectively, started from initial density

�n.x/ D
j
�.44nC1.x//�1

Z
44

nC1.x/

�.y/d�.y/
k

(1.1)

on SGn, for every n 2 N. Then Dn;Rn ! zD and 	n ! zD with probability one, as
n!1.

For the definition of44nC1.x/ see equation (2.3), and for an example of441.x/,
together with an illustration of SG, see Figure 1. Theorem 1.1 is a summary of Theo-
rem 3.1 (divisible sandpile scaling limit), Theorem 4.2 (rotor aggregation scaling) and
Theorem 5.1 (internal DLA scaling limit), for the choice (1.1) of the discrete particle
densities �n.

The structure of the paper. In Section 2 we introduce the three aggregation mod-
els (divisible sandpile, internal DLA, rotor aggregation), the Sierpiński gasket SG as
well as its discrete graph approximations SGn for n 2 N, and the potential theoretical
tools on fractals. In Section 3 we prove the limit shape result for the divisible sand-
pile model, by defining the limiting process on SG as a limit of processes on compact
subsets of SG. Section 4 investigates the limit shape for rotor aggregation while Sec-
tion 5 deals with the internal DLA model. Finally, in Appendices A and B we show
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Figure 2. Divisible sandpile for initial configuration � D 1B..�2;0/;1/ C 1B..�1=2;0/;2/

on SG2.

how to calculate the solution of the free boundary problem for a specific starting con-
figuration � . We also show here that the boundary of the noncoincidence set of the
free boundary problem is a null set with respect to the Hausdorff measure on SG, as is
needed in the proof of the scaling limit for internal DLA.

2. Preliminaries

2.1. Internal aggregation models

Let G D .V; E/ be an infinite, locally finite and regular graph, i.e., every vertex has
degree d 2N. If x and y are neighbors inG we write x � y, and we denote by d.x;y/
the graph distance in G.

Divisible sandpile. A function �0W V ! R is a sand distribution on G if �0 is non-
negative and has finite support. The toppling operator at x is

Tx�0 D �0 Cmax¹�0.x/ � 1; 0º�G1¹xº;

where 1¹xº.�/ is the function on V taking value 0 everywhere except a single 1 at
the vertex x, and �G is the graph Laplacian of G, i.e., the operator defined on real
functions on V given by

.�Gf /.x/ D 1

d

X
z�x

f .z/ � f .x/:

The toppling operator Tx takes the mass exceeding 1 at x and distributes it equally
among its neighbors. For a sequence of vertices .xk/k2N , define the associated top-
pling process by

�n D Txn : : : Tx1�0;
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where �n is the sand distribution after the first n topplings have been performed. We
remark that the total amount of mass is conserved during the toppling procedure. An
important tool that will be used in the sequel is the odometer function. For an initial
sand distribution �0 and a toppling sequence .xk/k2N we define the k-th odometer
function by

uk.y/ D
X

j�kIxjDy

�
�j .y/ � �j�1.y/

�
;

which keeps track of how much mass has been sent out of each vertex. If we topple
along any sequence of vertices that contains each vertex in V infinitely many times,
then the sand distributions .�k/k2N converge pointwise to some limit distribution �
with � � 1 on G. Also, the sequence of odometer functions .uk/k2N converges to a
limit function u called the odometer function of the divisible sandpile started from
initial configuration �0. It holds that � D �0 C �Gu and the so-called least action
principle states that u is actually the minimal non-negative function that satisfies

�0 C�Gu � 1:

See [21] for proofs of the pointwise convergence results for the odometer functions
and mass distributions, and [22, Lemma 3.2] for the least action principle. The divis-
ible sandpile cluster is defined as the set of toppled sites D WD ¹x 2 G j u.x/ > 0º.
In the literature, it is also common to define the divisible sandpile cluster as the set
D 0 WD ¹x 2 G j �.x/ D 1º of fully occupied sites. The sets D and D 0 are related
in that u.x/ > 0 implies �.x/ D 1 so D � D 0, and �.x/ D 1 implies u.x/ > 0 or
�0.x/ D 1 or there exists a neighboring vertex y � x with u.y/ > 0. Throughout this
paper we will use the definition D of the sandpile cluster, and the scaling limit of D 0

follows immediately from that of D by the above-mentioned relation between the two
sets. For an example of D on SG2 see Figure 2.

Internal DLA. For an infinite graphG D .V;E/, the initial configuration of particles
is a function �0W V ! N that is bounded and finitely supported. Denote by m WDP
v2V �0.v/ the total number of particles, and label the particles by integers i D

1; : : : ;m. Denote by xi the initial location of the particle labeled i , so #¹i j xi D vº D
�0.v/ represents the number of particles located at v. For each i D 1; : : : ; m, let
.Xt .i//t2N be a simple random walk on G starting at position xi , and we construct
inductively the internal DLA cluster as follows. We set the cluster at time 0 to be the
empty set, and for i � 1 if the cluster at time i � 1 has already been built, let the
particle labeled i start a random walk at its initial position xi and stop it after first
exiting the previous cluster at time i � 1. So the cluster at time i is the union between
the cluster at time i � 1 and ¹X�i .i/º, where �i denotes the first exit time of the
random walk .Xt .i//t2N from cluster at time i � 1. The stopping time �i represents
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the number of steps taken by particle labeled i , which is initially located at xi 2 G,
until stopping at random location X�i .i/. Proceeding in this way for all i D 1; : : : ;m,
we obtain the random subset of occupied sites in G that we call internal DLA cluster.
In the literature sometimes the notation 	n is used to denote the internal DLA cluster
after n particles settled, but throughout this paper, this notation is reserved for internal
DLA cluster on the discrete graphs SGn with particle configuration �n.

Rotor aggregation. This model is also called rotor-router aggregation is a determin-
istic counterpart of internal DLA and it is based on particles performing deterministic
walks (rotor walks) instead of random walks. Rotor walks, also called rotor-router
walks, were first studied by Priezzhev et al. in [24] under the name Eulerian Walkers,
and can be defined by means of a rotor configuration and a fixed cyclic ordering of
the neighbors for each vertex. Denote the set of neighbors of v 2 V by Av , and fix
for any v 2 V a cyclic ordering cyc.v/ of the neighbors of v. A rotor configuration
is a function �WV ! V such that for all v 2 V , �.v/ 2 Av , so one can think of �.v/
as an arrow or a rotor that points to one of the neighbors of v. A particle starting at v
performs a rotor walk as follows: first it turns the rotor at v from �.v/ to point to the
next neighbor in the cyclic ordering cyc.v/ of the neighbors of v, and then the particle
follows this new direction.

For rotor aggregation, we start with the same bounded and finitely supported par-
ticle configuration �0WV ! N as in the internal DLA. Denoting again by m the total
number of available particles and labeling the particles by i D 1; : : : ; m, and also
denoting the starting location of the particle labeled i by xi , we define rotor aggre-
gation recursively exactly in the same way as internal DLA, with the difference that
particles perform rotor walks instead of random walks until finding sites unvisited
previously, where they stop. After all m particles have found new sites, we obtain a
deterministic subset of occupied sites that we call the rotor cluster. While in internal
DLA particles perform independent random walks, in rotor aggregation the particle
movements are deterministic, but there is interaction between them. If one particle
passed through some vertex until finding its final position, on the way there it modi-
fied the direction of several rotors and subsequent particles passing through the same
vertex will use then the rotor direction left behind by previous visits. If .Yt .i//t2N is
a rotor walk starting from position xi , then the rotor cluster with m particles can be
defined as follows: let the rotor cluster at time 0 to be the empty set, and for i � 1 if the
cluster at time i � 1 has already been built, let the particle labeled i start a rotor walk
with rotor configuration left behind by the previous particles, at its initial position xi
and stop it after first exiting the previous rotor cluster at time i � 1. If �i denotes the
first exit time of the rotor walk .Yt .i//t2N from the previous rotor cluster, then the
rotor cluster at time i is the union between the rotor cluster at time i � 1with ¹Y�i .i/º.
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So �i represents the number of rotor steps taken by particle labeled i initially located
at xi 2 G, which stops at deterministic location Y�i .i/.

2.2. Sierpiński gasket

We recall the construction of the Sierpiński gasket as in [3]. Let a0 D .0; 0/, a1 D
.1; 0/ and a2 D .1=2;

p
3=2/ be the corners of an equilateral triangle with side length

1 and let F0 D ¹a0; a1; a2º. Further, let J0 be the closed convex equilateral triangle
with vertices F0. Inductively, for n � 1, we define

FnC1 WD Fn [ .2na1 C Fn/ [ .2na2 C Fn/;

so Fn � 2nJ0. Let SGC D
S1
nD0 Fn and denote by SG0 the union of SGC with its

reflection along the y-axis SG�. For n 2 Z, let

ın WD 2�n; SGn WD ınSG0; SG1 WD
1[
nD0

SGn; SG�1 D ¹0º; SG WD cl.SG1/:

SG is a closed connected subset of R2 called the double sided infinite Sierpiński gasket
and the graphs SGn represent the level-n approximating graphs of SG, where x; y 2
SGn are connected by an edge if and only if jx � yj D ın and the line connecting x to
y is contained in SG. For x 2 SG1, we define its level as

level.x/ WD inf¹n 2 Z j x 2 SGnº:

Clearly 0 is the only vertex with level.0/ D �1. We recall below several properties
of SG and the sequence of approximating graphs .SGn/n2N . The Hausdorff dimension
˛ and the walk dimension ˇ of SG are given by

˛ D log 3
log 2

� 1:58496 and ˇ D log 5
log 2

� 2:32193:

Laplacian on SGn. Recalling that by �SGn we have denoted the graph Laplacian of
the infinite graph SGn, we define the Laplacian on SGn as a scaled version of �SGn by

�n WD ı�ˇn �SGn :

We remark that by our choice of ın D 2�n, we have ı�ˇn D 5n, which is the scaling
used in [26]. We call a function hW SGn ! R harmonic if �nh D 0, superharmonic if
�nh � 0 and subharmonic if�nh � 0. For a function 
 WSGn! R its least superhar-
monic majorant sW SGn ! R is defined as

s.x/ WD inf¹f .x/ j f W SGn ! R is superharmonic and f � 
º:



U. Freiberg, N. Heizmann, R. Kaiser, and E. Sava-Huss 120

For n 2 N, denote by Bn.x; r/ WD ¹y 2 SGn j d.x; y/ � rº the ball of radius r � 0
around x 2 SGn in the graph metric d.�; �/ of SGn. If .Xnt /t2N is a simple random walk
on SGn, and B � SGn, denote by �nB.x/ its first exit time from B:

�nB WD inf¹t � 0 j Xnt … Bº: (2.1)

For simplicity of notation, if B D Bn.x; r/, then we write �nr .x/ instead of �n
Bn.x;r/

.
We will use for the rest absolute constants C; c > 0 that might change from line to
line.

Properties of SGn, n 2 N. We gather here several important features of SGn.

(i) [Volume growth] Bn.x; r/ has growth of order ˛: there exists C > 0 such
that

C�1r˛ � jBn.x; r/j � Cr˛: (V˛)

See [1] and [2] for a proof and more details.

(ii) [Elliptic Harnack inequality] There exists C > 0 such that for all x 2 SGn,
all r > 0, and all functions h > 0 with �nh D 0 on Bn.x; 2r/ we have

sup
y2Bn.x;r/

h.y/ � C inf
y2Bn.x;r/

h.y/: (EHI )

See [16] for details.

(iii) [Expected exit time] For every x 2 SGn and r � 0, there exists C > 0 such
that

C�1rˇ � Ey
�
�nr .x/

� � Crˇ ; (Eˇ )

for the random walk .Xnt /t2N starting at y 2 Bn.x; r/; see [2, Corollary
2.3a] for details.

Green functions and operators on SGn. For any finite subset T � SGn, we denote
its inner boundary by @T WD ¹v 2 T j 9z 2 TC with z � vº. Consider again the simple
random walk .Xnt /t2N on SGn, and for x;y 2 T, we define the rescaled stopped Green
function as

gnT .x; y/ WD
�3
5

�n
Ex
�
# of visits of Xnt to y before hitting @T

�
D ıˇ�˛n Ex

"�nTn@T�1X
kD0

1¹Xn
k
Dyº

#
;

(2.2)

where �nTn@T is defined as in (2.1) and Xn0 D x. Clearly, gnT .�; y/ D 0 for all y 2 @T.
For any function f W T! R we define the Green operator gnT as

gnTf .x/ WD ı˛n
X
y2T

gnT .x; y/f .y/:
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Since �SGn.g
n
T .�; y// D �ıˇ�˛n 1¹yº.�/, we have

�ng
n
Tf .x/ D gnT�nf .x/ D �f .x/; for all x 2 T n @T:

Green functions on the Sierpiński gasket SG. As for its approximating counterpart,
there is also no known globally defined Green function on SG. Denote the ball in SG of
radius r � 0 around x in the Euclidean distance by B.x; r/ WD ¹y 2 SG j jx�yj�rº.
We consider

Tr � SG as Tr D B.0; 2l/;
where the radius 2l of the ball will be specified later, with l 2 N. We want to empha-
size here that in introduction we kept the subscript Trl , indicating the dependence on
the radius 2l of the ball. As we shall see below, the radius will not be important as
long as it is big enough, reason for which we will mostly drop the subscript l . On
Tr we define an energy form, a Laplacian, and a corresponding Green function. We
first define on Tr a Laplacian weakly via the bilinear energy form ETr, which itself
is defined via Dirichlet forms on the approximating graphs SGn. More precisely, for
functions f , gW Tr \ SGn ! R let

EnTr.f; g/ WD
�
5

3

�n
1

2

X
x�ny

1

4

�
f .x/ � f .y/��g.x/ � g.y/�;

where x �n y indicates that x and y are neighbors in SGn. For the limiting object SG
we first define an energy form on the dense subset SG1 by

Dom.E1Tr / WD
®
v j SG1 \ Tr! R with lim

n!1
EnTr.vjSGn\Tr; vjSGn\Tr/ <1

¯
;

E1Tr .f; g/ WD lim
n!1

EnTr
�
f jSGn\Tr; gjSGn\Tr

�
for f; g 2 Dom.E1Tr /:

Note that Dom.E1Tr / � C.Tr/, where C.Tr/ is the set of continuous functions on Tr.
We extend this definition to an energy form ETr with domain Dom.ETr/D ¹v 2 C.Tr/ j
ETr.v; v/ <1º in a natural way.

Denote by

Dom0.ETr/ WD ¹f 2 Dom.ETr/ j f j@Tr D 0º

the set of all functions with finite energy and vanishing at the four boundary points
of Tr. We define the set of double sided neighboring triangles for v 2 .SG1 \ Tr/ n @Tr
of size 2�k by

44k.v/ WD B.v; 2�k/ for k � level.v/: (2.3)
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Let� be the rescaled ˛-dimensional Hausdorff measure on SG such that�.Tr/D3l.
For the existence see [3, Lemma 1.1], with a slightly different rescaling adapted to our
setup. The rescaling is chosen such that �.440.0// D 1 and therefore

�.44n.0// D ı˛n :

Definition 2.1. Let u 2 Dom.ETr/ and f W SG ! R be continuous. Then we define
u 2 Dom.�Tr/ with �Tru D f if and only if

ETr.u; v/ D �
Z
Tr
f v d� for all v 2 Dom0.ETr/:

We write u 2 DomL2.�Tr/ if we replace the assumption on the continuity of f by
f 2 L2.Tr; �/.

See [26, Def. 2.1.1] for more details on the definition of the weak Laplacian �Tr.

Lemma 2.1. Let u 2 Dom.�Tr/. Then the limit holds uniformly on .SG1 \ Tr/ n @Tr:

�Tru.x/ D 3

4
lim
n!1

�nu.x/: (2.4)

Conversely, if u is a continuous function and the right-hand side of (2.4) converges
uniformly to a continuous function on .SG1 \ Tr/ n @Tr, then u 2 Dom.�Tr/ and (2.4)
holds.

Proof. The claim follows from [26, Theorem 2.2.1], with the minor difference that in
our case we have the factor 3=4 instead of 3=2, due to our choice of �, which allocates
only half the mass on a unit copy of the gasket SG compared with the unit measure
on this copy. Notice that in our definition of ETr we have an additional factor of 1=4
compared to [26] which comes from the fact that we use the probabilistic Laplacian
throughout this paper, i.e., this factor is also resembled in �n.

For x;y 2 TrDB.0;2l/� SGwe define the Green function GTrWTr!R as in [26].
For n 2 N, define the level n Green approximation GnTr on SG \ Tr by

GnTr.x; y/ WD r�l .�l/0 .x/ 
.�l/
0 .y/

C
n�1X
mD�l

X
z;z02Tr\SGmC1nSGm

gm.z; z
0/ .mC1/z .x/ 

.mC1/
z0 .y/

for

gm.z; z
0/ D

8̂̂<̂
:̂
18
25
rm if z D z0 2 SGmC1 n SGm;

6
25
rm if z �mC1 z0 2 SGmC1 n SGm;

0 otherwise;
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and the Green function GTr on SG \ Tr as:

GTr.x; y/ WD lim
n!1

GnTr.x; y/; (2.5)

where r WD 3=5 is the energy scaling factor and  .m/z for z 2 SGm is called a harmonic
spline and defined by the unique piecewise harmonic function on SG given by

 .m/z .x/ D
´
1 if x D z;
0 if x 2 SGm n ¹zº:

Notice that the constants in g.z; z0/ slightly differ from the ones in [26] and [15], due
to us working with the probabilistic Laplacian and the corresponding factor 1=4 in the
definition of ETr.

Lemma 2.2. For x; y 2 SGn \ Tr and for all m � n the following holds:

GnTr.x; y/ D GmTr .x; y/ D GTr.x; y/:

Proof. The key insight is that  .mC1/z .x/ 
.mC1/
z0 .y/ ¤ 0 only if x 2 44mC1.z/ and

y 2 44mC1.z0/. But this cannot hold for z; z0 2 SGmC1 n SGm, where m � n, and
this yields

GTr.x; y/ D GnTr.x; y/C
1X
mDn

X
z;z02SGmC1nSGm

gm.z; z
0/  .mC1/z .x/ 

.mC1/
z0 .y/„ ƒ‚ …

D0

:

Lemma 2.3. For any x; y 2 SGn \ Tr n @Tr and n 2 N the following holds:

�nGTr.x; �/.y/ D �ı�˛n 1¹xº.y/:

Proof. The rescaled discrete Laplacian�n is connected to the energy in the following
way. Since  .m/y is piecewise harmonic, we get

ETr.u;  
.m/
y / D EmTr .u;  

.m/
y / D �ı˛�ˇm

X
x2SGm\Tr

�SGmu.x/ 
.m/
y .x/ D �ı˛m�mu.y/;

which, together with [26, Equation (2.6.17)], implies

ETr.GnTr.x; �/; v/ D
X

z2SGn\Trn@Tr

v.z/ .n/z .x/ for any v 2 Dom0.ETr/:

Applying the above two equations to u D GTr.x; �/ and v D  .n/y we finally obtain

�nGTr.x; �/.y/ D �ı�˛n ETr
�
GTr.x; �/;  .n/y

�
D �ı�˛n

X
z2SGnn@Tr

 .n/y .z/ .n/z .x/ D �ı�˛n 1¹xº.y/:
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The last claim of this section relates the stopped Green function gnTr.x; y/ defined
in (2.2) with the Green functions defined in (2.5) in terms of harmonic splines.

Lemma 2.4. For any x; y 2 SGn the following holds:

gnTr.x; y/ D GTr.x; y/:

Proof. Since�ngnTr.x;y/D�ı�˛n 1¹xº.y/ for all x;y 2 SGn \ Tr n @Tr and gnTr.x; z/D
0 for z 2 @Tr, it follows that both functions solve the following Dirichlet problem´

�nu.y/ D �ı�˛n 1¹xº.y/ if y 2 SGn \ Tr n @Tr;
u.y/ D 0 if y 2 @Tr;

which, together with the uniqueness principle, implies gnTr.x; y/ D GTr.x; y/.

3. Scaling limit for the divisible sandpile

In this section we investigate odometer functions and obstacle problems on the limit-
ing fractal object SG. There are several difficulties appearing on SG. We could define
the pointwise Laplacian on SG and demand the odometer function uW SG! R to be
the smallest function that fulfills � C�u� 1, where � is the initial mass on SG. How-
ever, this definition is not very handy and it is not clear how to obtain any meaningful
properties of it. We choose a different way to define the continuous divisible sandpile
on the gasket SG and motivate our choice below.

Passing from SGn to SG and back: some useful notation. Recall that by 44k.x/
we have denoted the double sided triangles of length 2�k with midpoint x 2 SGn.
Similarly, the notations provided in Table 1 might be useful when working with points,
sets and functions. However, they will only be used when it is absolutely clear on
which approximating graph we are working. In the ambiguous case x 2 SGnC1 n SGn
we define x... to be rightmost neighbor.

SGn SG

points x... D B�x; 2�.nC1/� \ SGn x44 D 44nC1.x/
sets A... D A \ SGn A44 DSx2A x

44

functions f ... D f jSGn f 44.x/ D f .x.../

Table 1. Notation for transitioning between gasket SG and approximating graphs SGn.
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In order to motivate a meaningful definition, we would like to comment on what
is needed when solving the divisible sandpile and the corresponding obstacle prob-
lem on SGn, for any n 2 N. We consider initial configurations � W SG! Œ0;1/ and
�nW SGn ! Œ0;1/ that fulfill the following properties: for a number M � 0 and a
compact subset T � SG the following holds:

0 � �; �n �M; (3.1)

�.DC.�// D 0; (3.2)

�44n .x/! �.x/; 8x … DC.�/ pointwise; (3.3)

supp.�/; supp.�n/ � T; (3.4)

where by DC.�/ we denote the set of discontinuity points of � , and � is the (˛-
rescaled) Hausdorff measure on SG. For the rest of this section we denote the rescaled
odometer function un of the divisible sandpile on SGn from initial distribution �n by

un.x/ D ıˇn � .total mass emitted from x in the stabilization of �n/: (3.5)

We remark that the rescaled odometer function un fulfills the least action principle as
well, i.e., it is the smallest positive function such that �n C�nun � 1. The following
lemma provides a ball large enough containing the supports of all un, n 2 N.

Lemma 3.1. Let Dn D ¹un > 0º be the divisible sandpile cluster on SGn started from
initial density �n, for all n2N. Then there exists a triangle TrDB.0;2L/� SG;L2N

such that [
n�0

D44n � Tr:

Proof. Let B D B.0; 2l/ � SG and choose l 2 N large enough such that B contains
the supports of all �n. Let An be the divisible sandpile cluster on SGn from initial
density � 0n D 2jB \ SGnj1¹0º, which, by the inner bound of [12], contains B . Let Bn

be the divisible sandpile cluster on SGn resulting from initial density � D M1B . By
the Abelian property we have Dn � Bn, for all n 2 N and also that the clusters Cn

resulting from initial densityM� 0n contain Bn. Finally, choosing L 2N large enough
such that Tr D B.0; 2L/ has volume at least 3M�.B/, the outer bound of [12] yields
that Cn � Tr, for all n 2 N.

For the initial particle configuration �n on SGn, we denote by �n the limit
mass configuration obtained by stabilizing �n, and by un the corresponding rescaled
odometer function as defined in (3.5) on SGn. Let Tr be a double sided triangle
around 0 as in Lemma 3.1. We define the obstacle function 
nW SGn ! R and its
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least superharmonic majorant snW SGn ! R as


n.x/ WD �
X

y2SGn\Tr

gnTr.x; y/.�n.y/ � 1/; and (3.6)

sn.x/ WD inf¹fn.x/ j fnW SGn ! R is superharmonic on Tr and f � 
nº:

Then [12, Lemma 3.9] gives for the odometer function un on SGn, un WD sn � 
n, and
the sandpile cluster Dn on SGn starting from the initial configuration �n

Dn D ¹x 2 SGn j sn.x/ > 
n.x/º; for all n 2 N;

which motivates the following definition of divisible sandpile on the Sierpiński gas-
ket SG, by using the ball Tr (double sided triangle around 0) of radius big enough
containing all the divisible sandpile clusters Dn.

Definition 3.1 (continuous divisible sandpile on Tr). Let � W SG! Œ0;1/ be bounded
with compact support and continuous �-a.e. such that supp.�/ � Tr, where Tr is a
double sided triangle around 0. We define the obstacle 
TrW SG! R by


Tr.x/ WD �G Tr.�.x/ � 1/ D �
Z
Tr
GTr.x; y/.�.y/ � 1/d�.y/

and the corresponding odometer function uTrW SG! R by

uTr WD sTr � 
Tr; with

sTr.x/ WD inf¹f .x/ j f continuous, superharmonic on Tr and f � 
Trº

being the smallest superharmonic majorant of 
Tr. Furthermore, we define the nonco-
incidence set for the obstacle problem with obstacle 
Tr as the domain

DTr D ¹x 2 SG j sTr.x/ > 
Tr.x/º:

Remark. It is not a priori clear that the smallest superharmonic majorant sTr of 
Tr as
defined above is itself again superharmonic, or even in the domain of the Laplacian.
However, using the fact that Dom0.ETr/ can be equipped with an inner product such
that it becomes a Hilbert space (hu; viE D ETr.u; v/C hu; viL2.Tr/) together with the
Poincaré-type inequality

ju.x/ � u.y/j2 � CETr.u/jx � yjˇ=˛;

for some constant C > 0 as in [26], we can deduce the superharmonicity of the super-
harmonic majorant as on Rd . We can then use minimization theorems for coercive
functionals on Hilbert spaces in order to complete the claim, but since this is very
similar to the case of Rd , we have decided not to include it here. For more details we
refer the interested reader to [25] and [9].
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We aim at taking the limit u D limk!1 u
44
�k.0/

as the odometer function of the
divisible sandpile on the infinite gasket SG, but it is not straightforward why this limit
should be well-defined. We show below that this is indeed the case. We first need some
auxiliary results, the first one concerning the monotonicity of the model: by starting
with more mass, one obtains a larger odometer and a larger noncoincidence set.

Lemma 3.2. Let �1; �2W SG! Œ0;1/ be bounded with compact support and �1 �
�2. Let Tr be a double sided triangle with supp.�1/; supp.�2/ � Tr and, for i D 1; 2
consider the obstacle



.i/
Tr D �G Tr.�i � 1/:

Let s.i/Tr be the least superharmonic majorant of 
 .i/Tr and u.i/Tr D s
.i/
Tr � 
 .i/Tr . Then

u.1/Tr � u.2/Tr .

The proof is similar to [22, Lemma 2.8], applied to our choice of odometers.

Lemma 3.3. Let � W SG! Œ0;1/ as in Definition 3.1, and let Tr � eTr be double sided
triangles. Denote by u WD uTr, Qu WD u QTr the corresponding odometer functions as in
Definition 3.1. If there exists " > 0 such that D"

Tr ¨ Tr, then Qu D u.

Proof. Let us denote by 
 WD 
Tr and s WD sTr (resp. Q
 WD 
 QTr and Qs WD s QTr) the obstacle
and its superharmonic majorant on Tr (resp. eTr). We have �Tr Q
 D .1 � �/ D �Tr
 .
Notice that 
 and s vanish on eTr n Tr and the function s0 D sC Q
 � 
 is superharmonic
on eTr. Since, s0 � Q
 , we obtain that Qs � s0 on eTr. From D"

Tr � Tr, it then follows that
s0 D Q
 in eTr n Tr, which implies Qs D Q
 on eTr n Tr, which in turn gives QuD 0 on eTr n Tr.
Inside Tr we can define the harmonic function h D Q
 jTr � 
 jTr. By the definition of s
and Qs we have for x 2 Tr

Qs � h D Qs � Q
 C 
 � 
 and s C h D s C Q
 � 
 � Q
;

which implies Qs.x/ � s.x/C h.x/ � Qs.x/. Therefore, on Tr it holds that QuD Qs � Q
 D
s � 
 D u, and this proves the claim.

Lemma 3.4. Let � W SG! Œ0;1/ be a bounded function with compact support and
continuous �-almost everywhere. Denote by u

44
�k.0/

the odometer of � on the set

Tr D 44�k.0/ as in Definition 3.1. Then the following limit is well-defined:

u D lim
k!1

u
44
�k.0/

:

Proof. We choose l 2 N large enough such that supp.�/ � B.0; 2l/ and L 2 N

large enough such that �.x/ � 3L�l , for all x 2 SG. Defining the initial configura-
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tion � 0W SG! Œ0;1/ by

� 0 D �.B.0; 2L//

�.B.0; 2l//
1B.0;2l / D 3L�l1B.0;2l /;

we then have � � � 0. Let us denote by u
44
�k.0/

the odometer of � in 44�k.0/ and

by u0
44
�k.0/

the odometer of � 0 in 44�k.0/. Appendix A shows the existence of a

compact set Tr D B.0; 2LC1/ such that for all k 2 N with Tr � 44�k.0/ we have
u0
44
�k.0/

D 0 on 44�k.0/ n Tr, which together with Lemma 3.2 implies that also

u
44
�k.0/

D 0 on44�k.0/ n Tr. The claim now follows from Lemma 3.3.

We remark that Lemma 3.4 is actually a refined version of Proposition 1.1. We
now define the continuous divisible sandpile on SG � R2.

Definition 3.2 (Continuous divisible sandpile on SG). Let � W SG ! Œ0;1/ be a
bounded function with compact support and continuous �-a.e. Denote by u

44
�k.0/

D
s
44
�k.0/

� 

44
�k.0/

the odometer function of the continuous divisible sandpile in

44�k.0/ as in Definition 3.1. Then the odometer function of the global continuous
divisible sandpile is given by

u D lim
k!1

u
44
�k.0/

;

and we define the corresponding noncoincidence setD byD WD ¹x 2 SG j u.x/ > 0º.

3.1. Convergence of odometers in divisible sandpile

We now investigate the convergence of the odometer functions u and un with initial
distributions � WSG!R and �nWSGn!R, respectively, fulfilling the properties (3.1)–
(3.4). In view of Lemma 3.4 and Lemma 3.1, we can fix a large enough double sided
triangle Tr that contains the supports of the odometer functions u and un for all n 2N.
For the rest, in order to simplify the notation we drop the double sided triangle Tr and
write

G WD GTr; gn WD gnTr

for the Green function G on SG, and for the Green function g stopped when exiting the
set Tr in SGn, for all n 2 N.

Lemma 3.5. Define

G�.x/ WD
Z
Tr
G.x; y/�.y/d�.y/ and gn�n.x/ WD ı˛n

X
y2SGn\Tr

gn.x; y/�n.y/:
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If �; �n satisfy equations (3.1)–(3.4), then

.gn�n/
44 ! G� uniformly as n!1:

Proof. By the triangle inequality we haveˇ̌
.gn�n/

44 �G� ˇ̌ � ˇ̌.gn�n/44 �G�44n ˇ̌C ˇ̌G�44n �G� ˇ̌:
The second term above converges uniformly to zero by the dominated convergence
theorem since G is bounded and by assumptions (3.2) and (3.3) �44n .x/ ! �.x/,
�-almost everywhere as n!1. The first term is at mostˇ̌
.gn�n/

44.x/ �G�44n .x/
ˇ̌ D ˇ̌̌̌ X

y2SGn\Tr

�n.y/

Z
y44

�
gn.x...; y/ � G.x; z/�d�.z/ˇ̌̌̌:

(3.7)

For y ¤ x... the function f .z/ WD gn.x...; y/ � G.x...; z/ is harmonic on y44, and
Lemma 2.4 gives f .y/ D 0 which yieldsZ

y44

�
gn.x...; y/ � G.x...; z/

�
d�.z/ D

Z
y44

f .z/d�.z/ D f .y/ D 0:

So the sum over all y ¤ x... in (3.7) can be bounded byˇ̌̌̌ X
y2SGn\Trn¹x...º

�n.y/

Z
y44

�
gn.x...; y/ � G.x; z/�d�.z/ˇ̌̌̌

D
ˇ̌̌̌ X
y2SGn\Trn¹x...º

�n.y/

Z
y44

.G.x...; z/ � G.x; z//d�.z/
ˇ̌̌̌
< M";

for any "> 0 and n2N large, where the last inequality is due to the uniform continuity
of G together with (3.1). Finally, for n large the summand y D x... in (3.7) can be
bounded byˇ̌̌̌

�n.x
.../
Z
.x.../44

�
gn.x...; x.../ � G.x; z/�d�.z/ˇ̌̌̌ � C�.y44/ � Cı˛n < c"

because G is bounded and gn.y; y/ � G.y; y/ by Lemma 2.4, and this completes the
proof.

Corollary 3.1. If �; �n satisfy (3.1)–(3.4), then 
44n ! 
 uniformly as n!1.

Lemma 3.6. If �; �n satisfy (3.1)–(3.4), then s44n ! s as n!1 uniformly on Tr.
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Proof. For x 2 SGn, denote by  .n/x the piecewise harmonic spline of level n which
is 1 at x. We then have for the superharmonic majorant s that

�ns.x/ D ETr.s;  
.n/
x / D �

Z
Tr
�Trs �  .n/x d� � 0;

where in the last inequality we have used the superharmonicity of s together with the
non-negativity of  .n/x . This shows that s restricted to SGn \ Tr is also superharmonic.
By Corollary 3.1 we can find for any " > 0 an n0 2 N such that for all n � n0 we
have


44n � " � 
:

We thus obtain that sjSGn C " is superharmonic and

sjSGn C " � 
 jSGn C " � 
n;

for all n � n0. Thus, by the definition of sn as the least superharmonic majorant of 
n
on SGn, we obtain for large enough n that

s C " � s44n :

For the reverse inequality consider �n the final sandpile distribution on SGn for the
initial density �n. Recall that

�nsn D �nun C�n
n D .�n � �n/C .�n � 1/ D �n � 1

and therefore 0��nsn � 1. By denoting 'n WD ��nsn and Qs DG'44n .x/, we obtain
for large enough n 2 N

jQs � s44n .x/j D jG'44n .x/ � gn'n.x.../j
�

X
y2SGn\Tr

j'n.y/j
ˇ̌̌Z
44

n.y/

�.44n.y//�1ı˛ng.x...; y/ � G.x; z/d�.z/
ˇ̌̌
< ";

where in the last step we have used the same arguments as in the proof of Lemma 3.5
in order to show that (3.7) goes to zero together with the fact 0 � 'n � 1. Thus,

Qs C 2" > s44n .x/C " > 
44n .x/C " > 


and by construction Qs is superharmonic, from which we can finally conclude that

s44n C 3" � Qs C 2" > s;

which finishes the proof.
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Lemma 3.7. Let un be the odometer function for the divisible sandpile on SGn with
initial density �n. If �; �n satisfy (3.1)–(3.4), then

u44n ! s � 
 D u uniformly on compacts, as n!1:

Proof. By Corollary 3.1 and Lemma 3.6 we have 
44n ! 
 and s44n ! s uniformly
on Tr, as n!1. Using un D sn � 
n and u D s � 
 gives the result.

3.2. Convergence of domains in divisible sandpile

Following [22], we assume additional conditions on the initial density � WSG! Œ0;1/:

For all x 2 SG either �.x/ � � or �.x/ � 1 for some � < 1, (3.8)

¹� � 1º D ¹� � 1ºı: (3.9)

Moreover, we assume that for any " > 0 there exists N."/ such that

if x 2 ¹� � 1º"; then �n.x/ � 1 for all n � N."/; (3.10)

if x … ¹� � 1º"; then �n.x/ � � for all n � N."/: (3.11)

We also write
zD WD D [ ¹x 2 SG j �.x/ � 1ºı:

In this section we will prove the scaling limit for the divisible sandpile cluster Dn.

Theorem 3.1. Let � and �n satisfy (3.1)–(3.4) and (3.8)–(3.11). For n � 1, let Dn be
the divisible sandpile cluster in SGn started from initial density �n. For any " > 0 and
n large enough, we have

zD" \ SGn � Dn � zD" \ SGn:

Lemma 3.8. Fix " > 0 and x 2Dn with x … zD". For n large enough, there is a vertex
y 2 SGn with jx � yj � "=2C ın, such that for some constant c > 0 the following
holds:

un.y/ � un.x/C c.1 � �/"ˇ :

Proof. From (3.9) we have ¹� � 1º � zD. Thus if x … zD", the ball B D B.x; "=2/...,
with B.x; "=2/ � SG is disjoint from ¹� � 1º"=2. Taking n � N."=2/ gives �n � �
on B by assumption (3.11). We define for y 2 SGn

'x;r.y/ WD ExŒ�nr .x/� � Ey Œ�nr .x/�: (3.12)
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We then have �SGn'x;r.y/ D 1 for y 2 Bn.x; r/ and 'x;r.x/ D 0. Since r is the
radius in the graph metric, when translating to B we have to rescale it by ın. Define
wW SGn ! R by

w.y/ D un.y/ � .1 � �/ıˇn'x;"=2ın.y/;
which is subharmonic on B \Dn and therefore attains its maximum on the boundary.
By the choice of 'x;"=2ın , w.x/ > 0, so the maximum cannot be attained at @Dn,
where un vanishes. Therefore, the maximum is attained at some y 2 @B and

un.y/ � w.y/C .1 � �/ıˇn'x;"=2ın.y/ � w.y/C .1 � �/cıˇn
� "
ın

�ˇ
;

where the last inequality follows from (Eˇ ) withEy Œ�nr .x/�D 0 for y 2 @Bn.x; r/.
Proof of Theorem 3.1. Fix " > 0. By the definition of zD" we have for some � > 0

zD" � D� [ ¹� � 1º�:

Since the closure of D� is compact and contained in D, we have u � m� on D� for
some m� > 0. From Lemma 3.7 we get

un > u
... � 1

2
m� > 0 on D� \ SGn for large enough n;

hence D� \ SGn �Dn, which together with (3.10) gives ¹� � 1º� \ SGn �Dn, and
this implies that zD" \ SGn � Dn. For the upper bound, fix x 2 SGn with x … zD".
Since u vanishes on B D B.x; "=2/ we get from the convergence of un in Lemma 3.7
that

un < c.1 � �/"ˇ on B \ SGn for large enough n;

which together with Lemma 3.8 yields x … Dn and therefore Dn � zD" \ SGn.

4. Scaling limit for rotor aggregation

For rotor aggregation, since particles are moving according to a rotor walk on SGn,
the initial densities have to be given as integer valued functions. Similar to [22], we
adapt the notion of convergence of densities, and we define the appropriate notions of
odometer functions.

Smoothing operation. For more details on the smoothing operation and why it is
appropriate to use it in order to define a notion of convergence, we refer the reader
to [22, Section 4]. For any n 2 N, denote in this section by .Y nt /t2N the lazy random
walk on SGn, which at each time step stays at the current position with probability
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1=2 and with probability 1=8 chooses one of the four possible neighbors and moves
there. For any function f W SGn ! R and k 2 N, we define its k-th smoothing by

Snkf .x/ D
X
y2SGn

PxŒY
n
k D y�f .y/ D ExŒf .Y

n
k /�;

so the smoothing operation fulfills SkSl D SkCl for all k; l 2 N due to the Markov
property of the lazy random walk. Furthermore, we have�n D 2ı�ˇn .S1 � S0/, which
implies that the Laplacian and the smoothing operator commute.

Lazy random walk on Sierpiński graphs SGn. According to [19, Proposition 5.7],
the total variation distance between the distribution P tC1 at time t C 1 and the distri-
bution P t at time t of the lazy random walk .Y nt /t2SGn can be bounded by:

P tC1.x; �/ � P t .x; �/

TV � 1=

p
t : (4.1)

Next we collect some properties of the lazy random walk on SGn.

Lemma 4.1. Let P be the transition matrix of the lazy random walk .Y nt /t2N on SGn.
Then

(1) �SGnP
t .x; y/ D 2P tC1.x; y/ � 2P t .x; y/.

(2) P t .x; y/ � C

t˛=ˇ
exp

��c.d.x; y/ˇ=t/1=.ˇ�1/�.
(3) P t .x; x/ � C 0

t˛=ˇ
.

Above C 0; C; c > 0 are suitable constants.

Proof. (1) Using

P t .x; y/ D 1

2
P t�1.x; y/C 1

8

X
y0�y

P t�1.x; y0/;

we get for the first claim:

�SGnP
t .x; y/ D 1

4

X
y0�y

P t .x; y0/ � P t .x; y/

D 2
�1
2
P t .x; y/C 1

8

X
y0�y

P t .x; y0/
�
� 2P t .x; y/ D 2P tC1.x; y/ � 2P t .x; y/:

(2) For the second and third claim we use the following bounds on the transition
probabilities for the simple random walk .Xnt /t2N from [14, Theorem 17]:

1¹xDyºC2
1

t˛=ˇ
� P ŒXnt D y j Xn0 D x� �

C1

t˛=ˇ
exp

�
�c1

�d.x; y/ˇ
t

�1=.ˇ�1/�
;
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for C1, c1, C2 > 0. The t -steps transition probabilities of the lazy random walk
.Y nt /t2N are then

P t .x; y/ D
tX

kD0

�
t

k

�
2�tPxŒX

n
k D y� D 2�t1¹xDyº C

tX
kD1

�
t

k

�
2�tPxŒX

n
k D y�

� 2�t C exp
�
�c1

�d.x; y/ˇ
t

�1=.ˇ�1/� tX
kD1

�
t

k

�
2�t

C1

k˛=ˇ
:

On the other hand

tX
kD1

�
t

k

�
2�t

t˛=ˇ

k˛=ˇ
D E

h t˛=ˇ
Z˛=ˇ

1¹Z�1º

i
� E

h t
Z
1¹Z�1º

i
� 2tE

h 1

Z C 1
i
D 2t 2.1 � 2

�tC1/

t C 1 � 4;

where Z � Binom.t; 1=2/, and this proves the second assertion.
(3) Using the lower bound on the transition probabilities PxŒXnt D x� we get

P t .x; x/ D PxŒY
n
t D x� D

tX
kD0

�
t

k

�
2�tPxŒX

n
k D x�

� C2 1

t˛=ˇ

tX
kD0

�
t

k

�
2�t D C2 1

t˛=ˇ
;

which proves the final assertion.

Proposition 4.1. For the lazy random walk .Y nt /t�0 on SGn, for every x 2 SGn and
0 < ı < 1=2˛, we haveX

y

X
y0�y

jP t .x; y/ � P t .x; y0/j � C

t1=4�ı˛=2
:

Proof. Fix any ı > 0with ı < 1=2˛. We bound the sum by considering it for elements
inside and outside the ball Bn.x; t1=ˇCı/ separately. We haveX

y2Bn.x;t1=ˇCı/

X
y0�y

jP t .x; y/ � P t .x; y0/j

� ˇ̌Bn�x; t1=ˇCı�ˇ̌1=2 X
y2B.x;t1=ˇCı/

X
y0�y

jP t .x; y/ � P t .x; y0/j2
!1=2

� ˇ̌Bn�x; t1=ˇCı�ˇ̌1=2�ESGn.P
t .x; �/; P t .x; �//�1=2;
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where the first inequality holds by Cauchy–Schwarz and the (unscaled) graph energy
form ESGn on SGn is defined as

ESGn.f; g/ D
1

2

X
x�ny

1

4
.f .x/ � f .y//.g.x/ � g.y//:

By equation (4.1) and Lemma 4.1 we get

jESGn.P
t .x; �/; P t .x; �//j D

ˇ̌̌X
y

P t .x; y/�SGnP
t .x; y/

ˇ̌̌
� 2C

t˛=ˇ

X
y

jP t .x; y/ � P tC1.x; y/j � 2C

t˛=ˇC1=2
:

Because jBn.x; r/j � cr˛ ,X
y2Bn.x;t1=ˇCı/

X
y0�y

jP t .x; y/�P t .x; y0/j � C 00

t�˛=2ˇC1=4C˛=2ˇ�ı˛=2
D C 00

t�ı˛=2C1=4
:

For the remaining terms we haveX
y…Bn.x;t1=ˇCı/

X
y0�y

jP t .x; y/ � P t .x; y0/j

� C 000
ˇ̌̌
Bn.x; t/ n Bn.x; t1=ˇCı/

ˇ̌̌ 1

t˛=ˇ
exp

��c.tıˇ /1=.ˇ�1/�:
Since jBn.x; t/ nBn.x; t1=ˇCı/j grows polynomially in t , the dominating term is the
exponential part in t , which goes to 0 for t large, and this completes the proof.

4.1. Convergence of odometers in rotor aggregation

Consider � WSG! Œ0;1/ and �nWSGn!N that satisfy equations (3.1),(3.2) and (3.4).
As a replacement for (3.3), in order to define a suitable convergence of �n to � , sup-
pose there exist integers �.n/!1 with �.n/ � ın ! 0 such that�

Sn�.n/�n
�44

.x/! �.x/; (4.2)

for all x … DC.�/. Since we write �.n/ for the smoothing steps on SGn we drop the
superscript and write only S�.n/ D Sn

�.n/
. Similar to [22, Section 4], we define the

odometer function for the rotor aggregation on SGn starting from density �n as the
function unW SGn ! N0 with

un.x/ D ıˇn � #.particles emitted from x/; (4.3)

if �n.y/ particles start at each site y, and we remind that particles perform rotor walks
until each of them has found a previously unvisited site where it stops.
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Theorem 4.1. Let un be the odometer function for rotor aggregation on SGn with
initial density �n as defined in (4.3). If �; �n satisfy (3.1),(3.2), (3.4) and (4.2), then
un ! u uniformly as n!1, where u is the odometer for the divisible sandpile on
SG starting with � .

For a function f W SGn ! R and a directed edge .x; y/ we write rf .x; y/ D
ı
�ˇ=2
n .f .y/ � f .x// and for a function # defined on directed edges in SGn we write

div#.x/ D 1

4ı
ˇ=2
n

X
y�x

#.x; y/:

With this in mind, the rescaled discrete Laplacian on SGn is then given by

�nf .x/ D divrf .x/:

Lemma 4.2. Denote by #.x; y/ the net number of crossings from x to y performed
by particles during a sequence of rotor moves, where .x; y/ is some directed edge in
SGn, and let u be the odometer function for this sequence of rotor moves. Then

ru.x; y/ D ıˇ=2n .�4#.x; y/C �.x; y//;

for some function � on directed edges of SGn satisfying j�.x; y/j � 6 for all directed
edges.

Proof. If N.x; y/ is the number of particles routed over the edge .x; y/ in direction
y, we have for any y; z � x

#.x; y/ D N.x; y/ �N.y; x/ and jN.x; y/ �N.x; z/j � 1:

By definition u.x/ D ıˇn
P
y�x N.x; y/ and we obtain

ı�ˇn u.x/ � 3 � 4N.x; y/ � ı�ˇn u.x/C 3:

Finally, this yields

jru.x; y/C 4ıˇ=2n #.x; y/j D ıˇ=2n jı�ˇn .u.y/ � u.x//C 4N.x; y/ � 4N.y; x/j
� 6ıˇ=2n :

Let # as in Lemma 4.2 and denote by Rn the rotor cluster on SGn with initial
particle density �n. Clearly, since �n.x/ particles start and 1Rn.x/ particles end up in
x 2 SGn, we have

4ıˇ=2n div# D �n � 1Rn :
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Using Lemma 4.2 and taking the divergence of run gives

�nun D 1Rn � �n C ıˇ=2n div�:

Having in mind that 0 � �n �M and j�j � 6, we obtain

j�nunj �M C 6 on SGn: (4.4)

The next lemma gives an estimate on the Laplacian of the smoothed odometer Skun,
and it can be seen as the smoothed counterpart of the sandpile odometer having Lapla-
cian 1 � �n.

Lemma 4.3. For the lazy random walk .Y nt /t2N on SGn, there is a constant C0 > 0
such that for every n 2 N for any 0 < ı < 1=2˛ the following holds:

j�nSkun.x/ � PxŒY
n
k 2 Rn�C Sk�n.x/j �

C0

k1=4�ı˛=2
:

Proof. Let # and � as in Lemma 4.2. Since Sk and �n commute:

�nSkun.x/ D PxŒYk 2 Rn� � Sk�n.x/C ıˇ=2n Skdiv�.x/:

Because # and ru are antisymmetric, so is � by Lemma 4.2. For .Y nt / on SGn, we
have

ıˇ=2n Skdiv�.x/ D 1

4

X
y2SGn

X
z�y

PxŒY
n
k D y��.y; z/

D �1
4

X
y2SGn

X
z�y

PxŒY
n
k D z��.y; z/

D 1

8

X
y2SGn

X
z�y

.PxŒY
n
k D y� � PxŒY

n
k D z�/�.y; z/:

Taking the absolute value and using the triangle inequality as well as the fact that � is
bounded, together with the bound in Proposition 4.1, the claim follows.

Lemma 4.4. For 0 < ı < 1=2˛ and the odometer function un on SGn as in (4.3), we
have

jSkun � unj � ıˇn
�1
2
.M C 6/k C C0k3=4Cı˛=2

�
:

Proof. It holds that

jSkun � unj �
k�1X
jD0

jSjC1un � Sjunj D ı
ˇ
n

2

k�1X
jD0

j�nSjunj:
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Lemma 4.3 for 0 < ı < 1=2˛ and j � 1 gives

j�nSjunj �M C 1C C0

j 1=4�ı˛=2
;

and for j D 0 we have j�nSjunj D j�nunj � M C 6. Summing over j yields the
result.

Now let TrD B.0; 2L/ � SG be the double triangle from Lemma 3.1 that contains
the final domains of occupied sites for the divisible sandpiles started from S�.n/�n

on SGn. In the following, when referring to the Green function, we mean the Green
function stopped when exiting Tr.... Consider the following obstacle 
nW SGn ! R in
the rotor aggregation model, similar to (3.6) for the divisible sandpile model


n.x/ D �gn.S�.n/�n.x/ � 1/

and let sn be the least superharmonic majorant of 
n. Then the difference sn � 
n is
the odometer function for the divisible sandpile started from initial density S�.n/�n on
SGn. In what follows we compare the smoothed odometer for rotor aggregation started
from �n with the odometer for the divisible sandpile started from initial configuration
S�.n/�n.

Lemma 4.5. Let Tr D B.0; 2L/ � SG be a double triangle centered at the origin that
contains the divisible sandpile clusters started from initial density S�.n/�n on SGn.
Then there exists a constantmTr depending on Tr (or L resp.) such that for any n 2 N

S�.n/un � sn � 
n � C0mTr�.n/
�1=4Cı˛=2 on Tr...; for 0 < ı < 1=2˛:

Proof. LetˆTrWTr! Œ0;1/ be the unique function with�TrˆTrD 3=4 andˆTr.0/D 0.
Since ˆ is subharmonic, it attains its maximum in @Tr. One can construct ˆTr as in
Appendix A by inductively choosing values such that�nˆ...

TrD 1 for all n 2N. We set

mTr WD sup
x2Tr

ˆTr.x/ D 5L;

in view of Appendix A. On Tr... we have �n
n D �1C S�.n/�n, so by Lemma 4.3

f .x/ D S�.n/un.x/C 
n.x/C C0�.n/�1=4Cı˛=2.mTr �ˆTr.x//; x 2 Tr...

is superharmonic. Since f �
n, we have f �sn on Tr... and the claim holds on Tr....

Lemma 4.6. For n 2 N, let Rn � SGn be the rotor cluster in SGn with initial den-
sity �nW SGn ! N. Then there exists a double triangle Tr D B.0; 2L/ � SG such thatS
n�0 Rn � Tr.
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Proof. By assumption (3.4) there is a double triangle B D B.0; 2l/ � SG containing
the supports of all �n for all n. Let An be the rotor cluster in SGn resulting from initial
density �.x/DM1B....x/, whereM is the upper bound of �; �n from equation (3.1).
By the Abelian property of the rotor model Rn � An. By the inner bound [6, Theo-
rem 1], if we start b5ı�˛n �.B/c � jB ...j particles at the origin in SGn, then the resulting
cluster contains B .... So once again, in view of the Abelian property, if one starts
M b5ı�˛n �.B \ SGn/c particles at the origin, the resulting set Trn of fully occupied
sites contains An. Together with the outer bound [6, Theorem 1], Trn is contained in
a double triangle in SG of volume 6M�.B/. Now choose L large enough to deduce
the result. The last factor 6 comes from the fact that the outer bound is slightly bigger
than the initial radius (radiusC 1).

For k � 0, define

Rk
n D ¹x 2 Rn j Bn.x; k/ � Rnº:

Similar to [22, Lemma 2.7], we investigate the growth of the odometer function in
rotor aggregation near the boundary of the rotor cluster Rn.

Lemma 4.7. Let k � 0. There exists a constant c > 0 such that for all x 2 SGn nRk
n

un.x/ � c.M C 6/kˇ ıˇn :
Proof. Let x … Rk

n . The odometer un defined in (4.3) has Laplacian bounded by
M C 6 due to (4.4) and by the definition of Rk

n we know that there exists y 2Bn.x;k/
with un.y/ D 0. Define the functions f˙W SGn ! R as

f˙.z/ D un.z/˙ .M C 6/ıˇn'y;2k.z/;
where 'y;2k.z/ is as in (3.12). It is easy to check that �SGn'y;2k D 1 and �n'y;2k D
ı
�ˇ
n on Bn.y; 2k/. Therefore, fC � un is subharmonic, while f� � un is superhar-

monic. Let Bn D Bn.y; 2k/ and h˙ be functions defined on Bn agreeing with f˙ on
@Bn and harmonic on Bn n @Bn. Then by construction and (Eˇ ) it holds that

fC � hC � h� C 2.M C 6/ıˇn max
z2@Bn

'y;2k.z/

� h� C 2.M C 6/ıˇn c.2k/ˇ � f� C 2.M C 6/ıˇn c.2k/ˇ ;
which implies, for c0 D c2ˇC1

hC.y/ � f�.y/C c0.M C 6/ıˇn kˇ D c0.M C 6/ıˇn kˇ :
The Elliptic Harnack inequality (EHI ) implies the existence of c00 > 0 such that
hC.z/ � c00hC.y/ for all z 2 Bn.y; k/:

f .z/ � fC.z/ � hC.z/ � c00hC.y/ � c00c0.M C 6/ıˇn kˇ :
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Proof of Theorem 4.1. By Lemma 4.6, there exists a double triangle Tr � SG contain-
ing the cluster of occupied sites for the rotor aggregation started from �n and the
divisible sandpile cluster started from initial density S�.n/�n for all n. We enlarge Tr
to contain the support of S�.n/un for all n, and we define the function

 .x/ D S�.n/un.x/ � sn.x/C 
n.x/C C0�.n/�1=4Cı˛=2�n.x/;

which in view of Lemma 4.3 is subharmonic for 0 < ı < 1=2˛ on the set R
�.n/
n .

Above �n is the function with constant Laplacian 1 on Tr; see Appendix A for details
on how to calculate such a function. For y … R

�.n/
n , by Lemma 4.7 we have un.y/ �

c.M C 6/�.n/ˇ ıˇn , which together with Lemma 4.4 gives

S�.n/un.y/ � ıˇn
�
c.M C 6/�.n/ˇ C .M C 6/�.n/=2C C0�.n/3=4Cı˛=2

�
:

The RHS above is at most C1�.n/ˇ ı
ˇ
n for some C1 > 0. Since sn � 
n, we have

 .y/ � C1�.n/ˇ ıˇn C C0�.n/�1=4Cı˛=2r for all y 2 Tr nR�.n/
n ;

where r is a uniform bound for all �n on Tr, n 2 N. By the maximum principle, this
bound holds on Tr. Using Lemma 4.5 we finally get

�C0r�.n/�1=4Cı˛=2 � S�.n/un � sn C 
n � C1�.n/ˇ ıˇn C C0r�.n/�1=4Cı˛=2

on Tr � SG. By Corollary 3.1 and Lemma 3.6, 
n and sn converge uniformly to 
 and
s on Tr as n!1. Since �.n/!1 and �.n/ın! 0 as n!1, we can conclude that
S�.n/un converges uniformly to s � 
 on Tr. Because both S�.n/un and the odometer
function for the divisible sandpile vanish outside Tr, this implies that S�.n/un has the
same limit as the odometer functions of the divisible sandpile on SGn. Lemma 4.4
implies then that the odometer functions un for rotor aggregation as defined in (4.3)
converge uniformly to the same odometer u of the divisible sandpile on SGwith initial
mass � .

Once we have shown the uniform convergence of the odometer functions for rotor
aggregation on SGn to the odometer function u of the divisible sandpile on SG, it
remains to show that the same holds for the corresponding domains of occupied sites
by particles doing rotor walks.

4.2. Convergence of domains in rotor aggregation

In addition to the assumptions from Section 4.1, we require for � W SG! R that for all
x 2 SG either �.x/ � 1 or �.x/ D 0 and

¹� � 1º D ¹� � 1ºı: (4.5)



Internal aggregation models with multiple sources and obstacle problems on Sierpiński gaskets 141

Moreover, we assume that for any " > 0 there exists N."/ such that

if x 2 ¹� � 1º"; then �n.x/ � 1 for all n � N."/; (4.6)

and

if x … ¹� � 1º"; then �n.x/ D 0 for all n � N."/: (4.7)

Theorem 4.2. Let � and �n fulfill (4.2) and (4.5)–(4.7) as well as (3.1), (3.2), and
(3.4). For n � 1, let Rn be the cluster of occupied sites by rotor particles started from
initial particle configuration �nW SGn ! N. Then for any " > 0 and n large enough

zD" \ SGn � Rn � zD";

where D is the noncoincidence set started from � W SG! R and zD D D [ ¹� � 1ºı.
For the rest of this section, we fix again a ball Tr D B.0; 2l/ � SG of radius 2l big

enough, which contains all rotor clusters Rn � SGn started with particle configura-
tions �nW SGn ! N, for all n, as well as all the divisible sandpile clusters Dn � SGn
started from initial density S�.n/�n and its limit shape. Then on Tr � SG we can write

zD D ¹s > 
º [ ¹� � 1ºı;

where 
 W SG! R is the obstacle associated with � on Tr as in Definition 3.1 and s its
superharmonic majorant. We also assume that Tr is chosen large enough such that it
contains any of the inflations of sets used in the upcoming proofs.

Lemma 4.8. Take x … zD"=2, and fix " > 0 and n � N."=4/. Denote by Nr.x/ the
number of sites in Rn which are contained in the ball Bn.x; r/ of radius r around
x in SGn for 1 � r � "=.4ın/. If m � ı�ˇn un.x/ for every x 2 Bn.x; r/, then the
following holds:

Nr.x/ � .1C 1=m/Nr�1.x/:

Proof. It is first easy to deduce ¹� � 1º"=4 � zD"=4 from ¹� � 1º D ¹� � 1ºı. Also,
Bn.x; r/ \ zD"=4 D ;, which results in �n.y/ D 0 for all y 2 Bn.x; r/. By the defi-
nition of Nr.x/, at least Nr�1.x/ particles have to enter Bn.x; r � 1/, which implies
that for every n 2 N: X

y2@Bn.x;r/

un.y/ � ıˇnNr�1.x/:

There are at most Nr.x/� Nr�1.x/ nonzero terms in the LHS of the sum above, each
of them being not bigger than ıˇnm, thus

m.Nr.x/ � Nr�1.x// � Nr�1.x/:
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Lemma 4.9. Let " > 0, then for n large enough and any x 2Rn with x … zD"=2 there
exists y 2 Bn.x; "=.4ın// \Rn such that

un.y/ � "ı
ˇ�1
n

16 log.C. "
4ın
/˛/
:

Proof. Let n � N."=4/ be large enough and Bn D Bn.x; "=.4ın// giving �n.z/ D 0
for all z 2 Bn. Set m D ı�ˇn maxz2Bn un.z/ and notice that N0.z/ D 1Rn.z/ for all
z 2 SGn. Due to Lemma 4.8, we can bound

N"=.4ın/.x/ � .1C 1=m/b"=4ıncN0.x/ � exp
� "

16mın

�
:

Finally, by (V˛) we have N"=.4ın/.x/�jBnj�C."=.4ın//˛ , which yields "=.16mın/�
log
�
C."=.4ın//

˛
�
.

The next result tells us that, whenever x 2 Rn but x … zD" with large Skun.x/
there has to be a y close to x with even larger Skun.y/.

Lemma 4.10. Let C0 be the constant from Lemma 4.3 and 0 < ı < 1=2˛ and let
" > 0 and k large enough such that C0k�1=4Cı˛=2<1/2. There exist c; C1 > 0 such
that for n large enough and any x 2Rn n zD3"=4 with Skun.x/ > C1kˇ ı

ˇ
n , there exists

y 2 Bn.x; "=.2ın/C 1/ with

Skun.y/ � Skun.x/C c"ˇ :

Proof. Lemma 4.4 gives

un.x/ � Skun.x/ � ıˇn .k.M C 6/=2C C0k3=4Cı˛=2/ > c.M C 6/kˇ ıˇn
for the choice C1 D c.M C 6/C .M C 6/=2C C0. Hence, x 2 Rk

n by Lemma 4.7,
and together with Lemma 4.3, we obtain for any y 2 Rk

n

�nSkun.y/ � 1 � Sk�n.y/ � C0k�1=4Cı˛=2:

By our choice of k, we have C0k�1=4Cı˛=2<1/2. Taking n large enough such that
kın < "=8 and n > N."=8/, Sk�n vanishes on Bn.x; "=.2ın// and therefore

f .z/ D Skun.z/C
ı
ˇ
n

2
Ez
�
�n"=.2ın/.x/

�
is subharmonic on Rk

n \ Bn.x; "=.2ın// and attains its maximum on the boundary.
For z 2 @Rk

n , Lemma 4.7 gives un.z/� c.M C 6/kˇ ıˇn . But un.x/ > c.M C 6/kˇ ıˇn
so the maximum cannot be attained on @Rk

n and instead the maximum has to be
attained in some y 2 @Bn.x; "=.2ın//. By (Eˇ ) it holds Ey Œ�n"=.2ın/.x/� � c."=ın/ˇ ,
which implies the desired inequality.
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Now we can finally prove the scaling limit for the rotor aggregation cluster Rn.

Proof of Theorem 4.2. Take " > 0 and recall that uD s � 
 ,D D ¹u > 0º and finally
zD D D [ ¹� � 1ºı. Choose � > 0 such that zD" � D� [ ¹� � 1º� and m� > 0 such

that u � m� on D� , which is possible since D� ¨ D. By Theorem 4.1, we get for n
large enough

un.x/ > u.x/ �m�=2 > 0 for all x 2 D� \ SGn:

On the other hand, ¹� � 1º� \ SGn � Rn for large n by (4.6), which concludes the
lower bound. For the upper bound, we fix x 2 SGn with x … zD". As a consequence,
u D 0 on B.x; "/ � SG. Again, by Theorem 4.1 it holds for large enough n

un.z/ < c"
ˇ=2 for all z 2 B.x; "/ \ SGn;

where c is the constant from Lemma 4.10. Let k � .2C0/1=.1=4�ı˛=2/ as in Lem-
ma 4.10, where C0 is the constant from Lemma 4.3. Taking n large enough such that
jSkun � unj � c"ˇ=2, which is possible in view of Lemma 4.4, yields Skun < c"ˇ

on Bn.x; "=ın/ \ SGn. Lemma 4.10 shows that Skun � C1kˇ ıˇn on Bn.x; "=.4ın//
or x … Rn. In the former case for some constant C2 > 0

un.y/ � Skun.y/

Py ŒY nk D y�
< C2k

ˇC˛=ˇ ıˇn for all y 2 Bn.x; "=.4ın//;

where the first inequality holds in view of the definition of Sk and the last inequality is
due to Lemma 4.1(3). The RHS decreases faster than "ıˇ�1n =.16 log.C"˛=.4ın/˛//,
so by Lemma 4.9, x … Rn and therefore Rn � zD".

5. Scaling limit for internal DLA

We investigate here internal DLA. While the proofs follow mostly the lines of [22]
and [5] and are based on the ideas introduced in [18], we include some details here
since we also have to take care of the fractal structure of the Sierpiński gasket. We
follow the usual approach, and we split the proof into two parts. For the inner estimate,
we show that for any " > 0 the internal DLA cluster 	n will eventually contain the
"-deflation of the set D D ¹u > 0º, where u is the limit of the odometer for divisible
sandpiles started from our smoothed densities. For the outer estimate we show that
the "-inflation of D will eventually contain the internal DLA cluster. For the outer
estimate it is important that the shells D nD" do not grow too fast, which is the case
in SG. We prove the following.
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Theorem 5.1. Let � and �n initial configurations on SG and SGn, respectively that
fulfill (4.2), and (4.5)–(4.7) as well as (3.1), (3.2) and (3.4). Then, for every " > 0 with
probability 1 we have

zD" \ SGn � 	n � zD"

for n large enough, where 	n is the internal DLA cluster started from configuration
�n on SGn and zD D ¹s > 
º [ ¹� � 1ºı.
Inner estimate. Since we are using the standard approach from [18] and [22], we
will not motivate the random variables below. We fix n 2 N and the initial con-
figuration �n on SGn. We label the particles that generate 	n by 1; : : : ; mn, with
mn D

P
x2SGn �n.x/ being the total number of particles. Denote by xi the starting

position of particle i such that #¹i j xi D xº D �n.x/, and for i D 1; : : : ; mn let
.Xnt .i//t2N be a sequence ofmn simple independent random walks in SGn starting in
xi . For z 2 SGn and " > 0 consider the stopping times

� iz WD inf¹t � 0 j Xnt .i/ D zº;
� i" WD inf¹t � 0 j Xnt .i/ … D" \ SGnº;
�i WD inf¹t � 0 j Xnt .i/ … ¹Xn�j .j /ºi�1jD1º;

and we also set �1 WD 0, and we remark that all three above stopping times depend
on the iteration n, but we omit n and write only � iz (resp. � i" and �i ) instead of � iz.n/
(resp. � i".n/ and �i .n/). If 	

j
n denotes the cluster after j particles settled, then 	

j
n D

	
j�1
n [ ¹Xn

�j
.j /º. Fix z 2 D" \ SGn and consider the random variables

M" WD
mnX
iD1

1
¹� iz<�

i
"º

and L" WD
mnX
iD1

1
¹�i�� iz<�

i
"º
:

IfL"<M", then z 2	n.L" being a sum of non-independent random variables, we use
another random variable to upper bound it. For each y 2 D" \ SGn, let .Y nt .y//t2N

be a simple random walk on SGn starting at y, with Y nt .x/ and Y nt .y/ independent if
x ¤ y, and

zL" WD
X

y2D"\SGn

1¹�yz <�
y
" º
;

where �yz D inf¹t � 0 j Y nt .y/ D zº and �y" D inf¹t � 0 j Y nt .y/ … D" \ SGnº. Then
indeed L" � zL", and zL" is a sum of independent indicators. Define now

gn;".y; z/ WD E
�
#¹t < �y" j Y nt .y/ D zº

�
and f n;".z/ WD gn;".z; z/EŒM" � zL"�:
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Be aware that gn;" is the unscaled version of the Green function defined in (2.2), which
is handier for internal DLA. By definition, f n;" solves the Dirichlet problem

�nf
n;" D ı�ˇn .1 � �n/; on D" \ SGn;

f n;" D 0; on DC
" \ SGn;

and note that the unscaled divisible sandpile odometer ı�ˇn un solves the same Dirich-
let problem on the set Dn D ¹un > 0º.
Lemma 5.1. Suppose �n is bounded by M and has finite support. Let un; Qun be the
odometer functions of the divisible sandpile with initial densities �n; Sk�n, respec-
tively. Then

jun � Qunj � 1

2
kMıˇn for all k 2 N:

Proof. In view of S1f D f C .ıˇn =2/�nf and SiCl D SiSl we obtain by induction
over k

Sk�n D �n C�nwk; with wk D
ı
ˇ
n

2

k�1X
jD0

Sj�n:

We remark that wk is non-negative and bounded from above by .1=2/Mkı
ˇ
n due to

the boundedness of �n and thus also Sj�n for all j 2 N. Let us now denote by �n
(resp. Q�n) the limit mass configuration on SGn for the divisible sandpile started from
�n (resp. Sk�n). The sum wk C Qun, where Qun is the odometer for divisible sandpile
started from Sk�n, solves the inequality

�n C�nv � 1 and v � 0 (5.1)

in view of

Q�n D Sk�n C�n Qun D �n C�n. Qun C wk/;

and the fact that Q�n � 1. Thus, by the least action principle as introduced in Section 3
(which states that the odometer function is the smallest solution to (5.1)) we obtain
un � Qun C wk . In a similar manner we can see

�n D �n C�nun D Sk�n C�n.un � wk C
1

2
Mkıˇn /;

where again �n � 1 and un � wk C .1=2/Mkı
ˇ
n � 0, thus again by the least action

principle we obtain Qun � un � wk C .1=2/Mkı
ˇ
n .
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Lemma 5.2. Suppose �; �n fulfill the assumptions in Theorem 5.1 and let un be the
odometer function for the divisible sandpile on SGn with initial density �n and Dn D
¹un > 0º. Then

u44n ! s � 
 uniformly as n!1:
In particular, for all " > 0 it holds D" \ SGn � Dn for n large enough.

Proof. For the odometer function Qun of the divisible sandpile with initial density
S�.n/�n as in (4.2), in view of Theorem 3.7 we have Qu44n ! u uniformly, as n!1.
Together with Lemma 5.1 this gives u44n ! u uniformly as n!1. Finally, let b > 0
be the minimum value of u onD". For n large enough, we get un > b=2 onD" \ SGn
which yields D" \ SGn � Dn.

Lemma 5.3. For any " > 0 let b D min¹u.x/ j x 2 D"º > 0. There exists 0 < � < "
such that for all large enough n and all z 2 D" \ SGn

f n;�.z/ � 1

2
bı�ˇn :

Proof. Let � > 0 be chosen such that u< b=6 outside ofD� , which is possible since u
is uniformly continuous onD. Then � < " since u � b onD" by the definition of b as
the minimum of u onD". Let un be the odometer function for the divisible sandpile on
SGn started from initial density �n and let Dn be the corresponding divisible sandpile
cluster. We can now choose n0 2 N large enough such that for all n > n0 we have
jun � uj < b=6 onD� \ SGn, and this is possible in view of the uniform convergence
from Lemma 5.2, hence un � b=3 on @.D� \ SGn/. Again by Lemma 5.2 we can
adjust n0 such that we also have D� \ SGn � Dn for all n > n0. We thus obtain
that the function ıˇnf n;� � un is harmonic on D� \ SGn, and it therefore attains its
minimum on the outer boundary. However, the function f n;� vanishes outside of
D� \ SGn by definition, hence we obtain for any z 2 D� \ SGn

ıˇnf
n;�.z/ � un.z/ � b=3 � u.z/ � b=2:

By our choice of b, we have u� b inD" \ SGn, and since �< " the previous inequality
gives ıˇnf n;� � b=2 on D" \ SGn.

Let z	n WD ¹Xn�i .i/ j �i < Q� iº � 	n with Q� i WD inf¹t � 0 j Xnt .i/ … zD \ SGnº.
The inner estimate follows from the next lemma. Although it suffices to prove the
inner estimate for 	n instead of z	n, we use this stronger estimate in the proof of the
outer estimate.

Lemma 5.4. For any " > 0, P
� zD" \ SGn � z	n for all but finitely many n

� D 1.
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Proof. For z 2 SGn, let Ez.n/ be the event that z is not contained in the internal DLA
cluster on SGn with initial density �n. Using condition (3.10), it suffices to prove that
for "0 > 0 X

n�1

X
z2D"0\SGn

P ŒEz.n/� <1:

Let b WD infz2D"0 u.z/ > 0 and 0 < � < "0 as in Lemma 5.3 such that f n;�.z/ �
bı
�ˇ
n =2 for z 2 D"0 \ SGn and sufficiently large n. We fix z 2 D"0 \ SGn and choose

R > 0 such that D � B.z;R/ giving

B.z; "0 � �/ � D� � B.z;R/:
Notice that R depends on the size of supp.�/ and the supremum over all values of � .
Since L� � zL� we have

P ŒEz.n/� � P ŒM� D L�� � P ŒM� � zL�� � P ŒM� � a�C P ŒzL� � a�
for any a 2 R. We need an a such that both summands are small. By [18, Lemma 4]

P
�zL� � EŒzL��C EŒzL��1=2C


�
< 2 exp

�
�1
4

EŒzL��2

�
; (5.2)

P
�
M� � EŒM�� � EŒM��

1=2C

�
< 2 exp

�
�1
4

EŒM��
2

�

(5.3)

for any 0 < 
 < 1=2. So we find an appropriate a if the interval

I WD �EŒzL��C EŒzL��1=2C
 ;EŒM�� � EŒM��
1=2C


�
is non-empty.

For this, note the lower bound

EŒM�� � EŒzL�� D f n;�.z/

gn;�.z; z/
� b

2ı
ˇ
n gn;�.z; z/

;

which immediately gives EŒM�� � EŒzL��. So, by choosing 
; 
 0 > 0 such that

EŒM��
1=2C
 WD c

� b

Rˇ�˛ı˛n

�3=4
� b

4ı
ˇ
n gn;�.z; z/

;

EŒzL��1=2C
 0 WD c
� b

Rˇ�˛ı˛n

�3=4
� b

4ı
ˇ
n gn;�.z; z/

;

the interval I is non-empty, where the last inequality is due to [5, Lemma 2.10] which
states that gn;�.z; z/ � C.R=ın/ˇ�˛ . It is not immediately clear that with this choice
the condition on 
; 
 0 < 1=2 is satisfied. Standard theory for Markov chains gives

EŒzL�� D
X

y2D�\SGn

P Œ�yz < �
y
� � D

1

gn;�.z; z/

X
y2D�\SGn

gn;�.z; y/ D EŒ�z� �

gn;�.z; z/
:
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Applying the lower bounds for expected exit times (Eˇ ) and the upper bound for the
stopped Green function [5, Lemma 2.10] yields that 
; 
 0 < 1=2 since

EŒzL�� D
EzŒ�D�\SGn �

gn;�.z; z/
� C 0

�"0 � �
ın

�ˇ 1

.R=ın/ˇ�˛
D C 0 ."

0 � �/ˇ
Rˇ�˛

ı�˛n :

Ultimately our choice of 
 and 
 0 also gives that the probabilities in (5.2) and (5.3)
are exponentially decreasing, becauseM� is bounded by M

P
y2D�\SGn P Œ�yz < �

y
� �,

which gives EŒM�� �MRˇ=ıˇn gn;�.z; z/ �MCR˛ı�˛n . Therefore, we have

EŒzL��2
 0 D c
� b

Rˇ�˛ı˛n

�6=4
EŒzL���1 � c0M

� b

Rˇ�˛

�6=4
R�˛ı�˛=2n :

Finally, we obtainX
n�1

X
z2D"0\SGn

P ŒEz.n/� �
X
n�1

C 00R˛ı�˛n � 4 exp
��c0Mb3=2R

˛�ˇ
2 ı�˛=2n

�
<1;

which together with the first Borel–Cantelli lemma proves the claim.

Outer estimate. For the outer estimate we rely on [5]. The idea is to argue based on
the inner estimate and the fact that the boundary of D is a null set, that not too many
particles can leave D. We will then show that the remaining particles will not be able
to leave the "-inflation D" of D. For the remainder we use the notation for deflation
and inflation for sets A � SGn:

Ar D ¹x 2 A j Bn.x; r/ � Aº and Ar D ¹x 2 SGn j A \ Bn.x; r/ ¤ ;º:

Recall [5, Lemma 3.5, Lemma 3.6]. We first prove the following.

Lemma 5.5. Let n 2 N, then there exist �; � 2 .0; 1� such that for any D � SGn and
r > 0 the following holds. For all S �Dr nD with jS j � �r˛ and all x 2D we have

Px
�
�nS[D < �

n
Dr

� � �:
Proof. Let us introduce the notation Y WD @Dr=2 as the set of all vertices of distance
br=2c C 1 from D. By the Markov property it is sufficient to prove the statement for
starting points y 2 Y , since every trajectory of a random walk started inside D hits
the set Y . Let AD Bn.y; r=3/ n S , then, in view of (V˛) with corresponding constant
C � 1, by setting � D 4�˛=C 2 .0; 1�, we obtain

jAj � jBn.y; r=3/j � jS j � 1

C

�r
3

�˛
� �r˛ � 1

C 2

�
1 �

�3
4

�˛�
jBn.y; r=3/j:

The choice "D .1=C 2/.1� .3=4/˛/ [5, Lemma 3.5] gives the existence of � > 0 such
that Py Œ�nA < �

n
r=3
.y/� � �.
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Next, for � as in Lemma 5.5 we estimate the number of particles leaving a given
set during the internal DLA process.

Lemma 5.6. For a bounded setD � SGn and r 2N, letN be the number of particles
that leave Dr during the internal DLA process when starting with all sites in D
occupied and k additional particles that start at sites y1; : : : ; yk 2 D. If k � �r˛
where � is as in Lemma 5.5, then N � Binom.k; p/ for some constant p < 1.

Proof. Label the additional k particles with 1; : : : ; k. By 	
j
n we denote the cluster

after the first j particles have been settled. By the inductive way of building 	
j
n it

holds j	jn nDj � j � k � �r˛ . Denoting by Aj the event that the j -th particle ever
leaves Dr , in view of Lemma 5.5 it holds P ŒAj j 	j�1n � � 1� �, for some � 2 .0; 1/.
For p D 1� �, by coupling the indicators 1Aj with i.i.d indicators Ij � 1Aj of mean
p yields N DPk

jD1 1Aj �
Pk
jD1 Ij D Binom.k; p/.

The next lemma shows that if too few particles start inside the given set D, then
only very few particles can ever reach the outside of D2r .

Lemma 5.7. For n 2 N, let D be a bounded subset of SGn and let k; r 2 N with
k � �.1 � p1=2˛/˛r˛ , where �; p < 1 as in Lemma 5.6. Let N be the number of
particles that ever reach the outside of D2r when starting with all sites inside D
already occupied and k additional particles that start at sites y1; : : : ; yk 2 D. Then,
for constant c0; c1 > 0 we have

P ŒN > 0� � c0e�c1r :

Proof. For j 2 N let rj WD .1 � pj=2˛/r , Nj the number of particles that ever leave
Drj and kj WD pj=2k. Taking hj WD rjC1 � rj , we have

kj � pj=2�.1 � p1=2˛/˛r˛ D �h˛j :

We now apply Lemma 5.6 which conditioned on Nj implies NjC1 � Binom.Nj ; p/.
Letting Aj WD ¹Nj � kj º yields

P ŒAjC1 j Aj � � P ŒBinom.kj ; p/ � kjC1� � 1 � 2e�ckj ;

where the last inequality follows from [22, Lemma 5.8]. Let J be the minimal integer
such that p1=2r � kJ < r . On the event AJ , at most r particles ever leave Dr , hence
there are not enough particles left to ever leave D2r . Thus, P ŒN D 0� � P ŒAJ � and

P ŒN D 0� � P ŒA1�P ŒA2 j A1� : : :P ŒAJ j AJ�1� � 1 � 2Je�cr ;

and the right-hand side is at least 1 � c0e�c1r for suitable constants c0; c1 > 0.
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Proof of Theorem 5.1. Lemma 5.4 gives the inner estimate. For the outer estimate, let
" > 0 and

Nn WD j¹1 � i � mn j �i � Q� iºj D mn � j z	nj

be the number of particles leaving zD \ SGn before aggregating to the cluster, where
mn is the number of particles initially in SGn. Let p < 1 as in Lemma 5.6 and set
K0 WD �

�
.1 � p1=2˛/�˛ . Since by Proposition B.2, �.@ zD/ D 0, for sufficiently small

� > 0 we obtain

�. zD n zD2�/ � 1

2
K0"

˛:

Clearly, for large enough n the construction gives

ı˛n j zD� \ SGnj D �
�
. zD� \ SGn/44

� � �. zD2�/ � �. zD/ � 1
2
K0"

˛;

and Proposition B.2 implies

jı˛nmn � �. zD/j <
1

2
K0"

˛ for n large enough;

such that, on the event ¹ zD� \ SGn � z	nº, we have for n large enough

Nn � mn � j zD� \ SGnj � mn � ı�˛n �. zD/C 1

2
K0"

˛ı�˛n � K0"˛ı�˛n :

So for the event An D ¹Nn � K0"˛ı�˛n º by Lemma 5.4 it clearly holds that

P
�
lim sup
n!1

An
� � P Œ zD� \ SGn � z	n for all but finitely many� D 1:

When considering the probability that, conditioned on An, 	n has vertices outside the
inflation . zD \ SGn/"=ın , Lemma 5.7 then gives

P
�¹	n \ �. zD \ SGn/"=ın�C ¤ ;º \ An� � c0e�c1."=ın/;

and the claim follows from Borel–Cantelli lemma.

A. Odometer of the continuous divisible sandpile on SG

We give below a recipe on how to calculate the odometer function of the continuous
divisible sandpile on SG as introduced in Section 3, for a concrete choice of the initial
configuration � W SG! Œ0;1/. More precisely, we take � to be constant in the ball of
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radius r D 2l for some l 2 N and zero outside, that is, for N D 2L > r and L 2 N

we consider

� WD �.B.0;N //

�.B.0; r//
1B.0;r/ D 3L�l1B.0;r/;

where we further assume that L > l . We take Tr D B.0; 2N / and calculate the obsta-
cle 
 , its superharmonic majorant s, and show that the corresponding noncoincidence
set D for this obstacle is D D B.0; N / ¨ Tr. We summarize first the steps we take
when calculating the odometer, in order to make the section easier to follow.

(1) First, we calculate functions fi WB.0; 2i /! R that have constant Laplacian 1,
i.e., �fi D 1 and are zero on the boundary, i.e., f j@B.0;2i / D 0.

(2) In the second step, we construct a function �W Tr! R with �� D 1B.0;r/. In
order to do so, we will take the function fl (a function with constant Laplacian
1 on B.0; r/ and zero on the boundary) and construct a harmonic function
hWB.0; 2N / n B.0; r/! R that matches the normal derivative of fl on the
boundary of B.0; r/. By then gluing together fl and h, we obtain the desired
function �.

(3) Next, we construct the obstacle 
 by taking a function � with constant Lapla-
cian 1 on B.0; 2N / (we can take � D fLC1) and setting 
 D 3L�l� � � .

(4) Finally, we show that the function s defined by

s.x/ WD
´

.x/ if x 2 B.0; 2N / n B.0;N /;

.y/ if x 2 B.0;N /;

where y 2 @B.0;N / and x 2 B.0; 2N /, is superharmonic and dominates 
 .

This shows that for the odometer function u we have u � s � 
 . Since ¹s � 
 > 0º D
B.0;N /, the conservation of mass in Proposition B.2 yields that s � 
 has the correct
support. Since s is constant on the support of s � 
 , there is no smaller superharmonic
function and we have u D s � 
 . Now we follow the steps in the above summary.

The construction of fi . To construct fi we use that .3=4/ � 5n�SGn !� as n!1,
in order to calculate fi on SGn. The generalized .1=5/ � .2=5/ rule [12, Theorem
A.1] gives f .0/ D �.4=3/ � 5i , and we can calculate the normal derivatives at the
boundary of B.0; 2i /. For this, we calculate the values of fi at positions aj ; bj as
shown in Figure 3.

Using once again the generalized .1=5/ � .2=5/ rule, we obtain 
f .aj /

f .bj /

!
D 1

2

 �
3
5

�j C �1
5

�j �
3
5

�j � �1
5

�j�
3
5

�j � �1
5

�j �
3
5

�j C �1
5

�j! f .a0/f .b0/

!
� 4
3
5i�j .3j � 1/;



U. Freiberg, N. Heizmann, R. Kaiser, and E. Sava-Huss 152

a0b0

0

a1

a2

...
aj

b1

b2

...
bj

2i

Figure 3. The vertices used in the calculations of the normal derivative of fi .

which together with fi .a0/ D �4=3�5i and fi .b0/ D 0 gives

f .aj / D �2
�3
5

�j�i
3i C 2

3

�1
5

�j
; f .bj / D �2

�3
5

�j�i
3i C 2

�1
5

�j
;

which can be used to compute the normal derivative @n as below:

@nfi .x/ D lim
j!1

�5
3

�j X
y�jx

.fi .x/ � fi .y// D lim
j!1

.4 � 3i � 8 � 3�j�1/ D 4 � 3i :

The construction of �. We construct the function �W B.0; 2N / ! R with �� D
1B.0;r/. For this we take �jB.0;r/ D fl C c for some constant c 2 R to be deter-
mined. We extend � to the ball B.0; 2N / such that it is harmonic on the annulus
B.0; 2N / nB.0; r/. For this, we glue a harmonic function hWB.0; 2N / nB.0; r/!R

and fl at @B.0; r/ such that the resulting function � is in DomL2.�/. Following [26,
Section 5.1] this results in the two necessary and sufficient conditions

fl j@B.0;r/ C c D hj@B.0;r/ and .@nf /j@B.0;r/ D �.@nh/j@B.0;r/:

So it remains to compute .@nh/j@B.0;r/ which depends on hj@B.0;r/ D c and to set the
constant c accordingly. For the values of h in ui ; vi for i D 0; : : : ;L� l (see Figure 4)
we have:

h.uj / D h.uL�l/
1 � �3

5

�jC1
1 � �3

5

�L�lC1 and h.vj / D h.uL�l/
1 � 4

5

�
3
5

�j
1 � �3

5

�L�lC1 :
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0

0

u0

u1

...

u0 u1
...

v1

v2

2LC1

uL�l

uL�l

vL�l

Figure 4. Vertices used in the calculation of the normal derivative of the function h.

The normal derivative of a harmonic function on a triangle of size 2l is given by

@nh.uL�l/ D
�3
5

�l�
2h.uL�l/ � h.uL�lC1/ � h.vL�l/

�
D h.uL�l/

�3
5

�l 1�
5
3

�L�lC1 � 1:
By the gluing condition we have @nh.uL�l/ D �@nfl.uL�l/, and we choose

c D 4 � 5l
��5
3

�L�lC1
� 1

�
:

We define � 2 DomL2.�/ as follows:

�.x/ WD
´
fl.x/C c if x 2 B.0; r/;
h.x/ if x 2 B.0; 2N / n B.0; r/:

Calculating the odometer. Define the obstacle 
 and its superharmonic majorant
s as


.x/ D 3L�l�.x/ � fLC1.x/; s.x/ D
´

.x/ if x 2 B.0; 2N / n B.0;N /;
8=3 � 5L if x 2 B.0;N /:
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Notice that s is constant on B.0;N / taking the value 8=3 � 5L, which is the value of 

on @B.0;N /. Clearly, s is superharmonic onB.0;2N /, since�sD1B.0;2N/nB.0;N/. It
remains to show that s � 
 . For x 2 B.0; 2N / nB.0;N / this is obvious by definition,
so it is sufficient to show 8=3 � 5L � 
.x/ for all x 2 B.0;N /. Since 
 is subharmonic
on B.0; r/ it attains its maximum on the boundary and


 j@B.0;r/ D
4

3
5l.3L�lC1 � 1/ < 8

3
� 5L;

it suffices to investigate the values of 
 in the annulus B.0; N / n B.0; r/. The fol-
lowing result states that it suffices to consider only the junction points approaching
@B.0;N /.

Lemma A.1. Let T n D T n.A; B; C / � SGn, for some n 2 N be the discrete trian-
gle with boundary points A; B; C and a; b; c be the midpoints opposing A; B; C ,
respectively. Furthermore, let f WT n! R be a function with�nf D�1 and f .A/ �
f .B/ � f .C /. If

f .A/ � max¹f .a/; f .b/; f .c/º and f .A/ D max¹f .x/ j x 2 T n.A; b; c/º;

then maxx2T.A;B;C/ f .x/ D f .A/.
Proof. Let h be the unique harmonic function on T n taking boundary values hj@T n D
f j@T n . Since �nf D �1, we have the decomposition

f .x/ D h.x/C
X
y2T n

gnT n.x; y/;

where gnT n is the discrete Green function from (2.2). Note that s0 DPy2T n g
n
T n.x; y/

is rotationally symmetric, i.e., s0 takes the same values on subtriangles T n.A; b; c/,
T n.a;B; c/, and T n.a; b;C /. Since h.A/ � h.B/ � h.C /, after appropriate rotations
'B ; 'C we get

hjT n.A;b;c/ � hjT n.a;B;c/ ı 'B � hjT n.a;b;C/ ı 'C ;

from which we can conclude f jT n.A;b;c/ � f jT n.a;B;c/ ı 'B � f jT n.a;b;C/ ı 'C .

We finally calculate 
 for all xj
k
; y
j

k
; z
j

k
, for k 2 N and j D 1; : : : ; L � l � 1, as

in Figure 5.


.x
j
0 / D

4

3
5L�j .3jC1 � 1/ � 
.xj�10 /; 
.y

j
0 / D

4

3
5L�j .4 � 3j � 2/ � 
.xj�10 /
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x0
0

x1
0

...

x0
0

x1
0

...

y1
0

y2
0

2LC1

x
j

0
y
j

0

x
j�1

0

x
j

1

x
j

2

...
x
j

k

y
j

1

y
j

2

...
y
j

k

z
j

1

z
j

2

z
j

k

2L�1�j

Figure 5. Points needed to show that 8=3 � 5L � 
.x/ for all x 2 B.0;N / n B.0; n/.

and



�
x
j

k

� D 
�xj�10

� � 2
3

�
3jC1 � 9��3

5

�k
5L�j � 2

3

�
3j C 1��1

5

�k
5L�j ;



�
y
j

k

� D 
�xj�10

� � 2
3

�
3jC1 � 9��3

5

�k
5L�j C 2

3

�
3j � 3��1

5

�k
5L�j ;



�
z
j

k

� D 
�xj�10

� � 8

15

�
3jC1 � 9��3

5

�k
5L�j C 8

15

�1
5

�k
5L�j ;

which together with Lemma A.1 implies that on all triangles T n.xj�10 ; x
j
0 ; y

j
0 /� SGn

the obstacle 
 attains its maximum in xj�10 for all n 2 N. Since 
.xj0 / � 
.xj�10 /, 

attains its maximum in

�
B.0;N / n B.0; r/� \ SGn at x00 for any n 2 N. Because 
 is

continuous, we get

8

3
� 5L D 
.x00/ � 
.x/ for all x 2 B.0;N / n B.0; r/:

B. Boundary regularity

This final part focuses on properties of the boundary of the noncoincidence setD� SG
obtained as the solution of the obstacle problem on the Sierpiński gasket SG � R2.
We will use a generalization of Lebesgue’s density theorem for SG.

We first consider the case when the density function � WSG! Œ0;1/ is continuous.
Recall that by Lemma 3.7 for � , the odometer function of the obstacle problem is the
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limit of odometer functions un for the divisible sandpile on SGn started from initial
densities �n that fulfill (4.2) and (4.5)–(4.7) as well as the standard assumptions on
initial configurations (3.1)–(3.4). A suitable and canonical choice would be to choose
�n.y/ as the average value of � in a double triangle around y as in Theorem 1.1. We
will always fix �n to be defined this way in the following proofs.

Proposition B.1. Let � W SG! Œ0;1/ be continuous with compact support such that
�.��1.1// D 0 and D D ¹u > 0º, where u is the odometer function of the obstacle
problem for � . Then

(1) �.@D/ D 0,

(2)
R
D
�d� D �.D/.

Proof. (1) Fix � with 0 < � < 1, and let x 2 @D with �.x/ � �. We can then find
" > 0 such that � is less than .1C �/=2 on B.x; "/. We choose �n on SGn converging
to � as discussed above and denote by un the odometer function of the divisible
sandpile started from �n and by Dn the corresponding divisible sandpile cluster. By
Theorem 3.7, un converges to u uniformly, so for n large enough, �n.y/ � .1C �/=2
for all y 2 B.x; "/ \ SGn. Next we choose a point x0n 2 @Dn that is at a distance of
less than "=3 from x (which we can do for large enough n, since we know that the
sets Dn converge to D) and we then choose xn 2 SGn of distance less than "=3 from
x0n such that xn 2 Dn (and hence un.xn/ > 0). Define the function

wn.y/ D un.y/C 1

2
.1 � �/ıˇnEy

�
�n
ı�1n "=3

.xn/
�
;

where, as before, EyŒ�n
ı�1n "=3

.xn/� is the expected exit time from the ballBn.xn;"=3ın/
of a simple random walk on SGn started at y 2 SGn. Since wn is subharmonic on
Dn \ Bn.xn; ı�1n "=3/, it attains its maximum on the boundary, but for y 2 @Dn, we
also havewn.y/�wn.xn/, hence the maximum is attained in @Bn.xn; ı�1n "=3/. Thus,
there exists yn 2 @Bn.xn; ı�1n "=3/ with

un.yn/ � 1

2
C.1 � �/"ˇ

for some constant C > 0. We remark that the Laplacian of un is bounded by some
constant M > 0 and un D 0 on @Dn, hence, similar to the proof of Lemma 4.7, we
conclude

un.yn/ � cMd.yn; @Dn/
ˇ ıˇn for some c > 0:

By the two previous inequalities and with the choice C 0 WD .C.1� �/=.2cM//1=ˇ we
obtain d.yn; @Dn/ � C 0"ı�1n . Thus, Bn.yn; C 0"ı�1n / � Dn, and for any x 2 @D \
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¹� � �º and suitable C 00 > 0 we get

�.B.x; .1C C 0/"/ \ .@D/C / � C 00"˛:

By Lebesgue’s density theorem [8] for the Hausdorff measure on the gasket we have

�.@D \ ¹� � �º/ D 0;

and by letting �! 1 and using the fact that �.¹� D 1º/D 0 we obtain the first claim.
(2) For the sandpile clusters Dn � SGn with initial density �n converging to � we

have

jDnj �
X

z2Dn[@Dn

�n.z/ � jDnj C j@Dnj:

For given " > 0 and n large enough it holds that

D" \ SGn � Dn � Dn [ @Dn � D";

hence, Z
D"

�d� � lim inf
n!1

Z
D"

�44n d� � �..Dn [ @Dn/44/ � �.D"/;

and similarly, Z
D"
�d� � �.D"/:

Putting together the previous two inequalities we obtainZ
D

�d� D
Z
D"

�d�C
Z
DnD"

�d� � �.D/C �.D" nD/CM�.D nD"/;

and Z
D

�d� � �.D/ � �.D nD"/ �M�.D" nD/;

where M > 0 is as in (3.1). Using �.@D/ D 0 and letting "! 0 gives the claim.

We also consider densities � that are not necessarily continuous everywhere, and
we investigate the corresponding noncoincidence set D.

Proposition B.2. Let � W SG! Œ0;1/ be continuous almost everywhere and assume
that there exists � > 0 such that for all x 2 SG we have either �.x/ � � or �.x/ � 1.
IfD D ¹u > 0º is the solution to the obstacle problem for � and zD DD [ ¹� � 1ºı,
we then have
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(1) �.@ zD/ D 0,

(2) �. zD/ D R zD �d�.

Proof. (1) We choose x 2 @ zD. Since the discontinuity points of � are a null set, we
can assume that � is continuous at x. If �.x/ � �, we can choose " > 0 small enough
such that � � .1C �/=2 inB.x;"/. If we define the discrete particle configurations �n
as in (1.1) by taking the average of � around a given point y, then �n also eventually
are less than .1C �/=2 in B.x; "/, and from here we can then proceed as in the proof
of Proposition B.1 (1). If �.x/ � 1, since � is continuous at x we can find an " > 0
such that � � 1 on B.x; "/, but this would imply that x 2 ¹� � 1ºı, hence x cannot
be a point on the boundary, thus completing the proof of the first claim. The second
claim works as in the proof of Proposition B.1 (2).

Comments and other direction of work. An interesting question to consider is the
scaling limit of the Abelian sandpile model, where instead of a continuous amount of
mass we only allow whole particles to be distributed among the vertices. In [23], the
authors prove that on Zd , when starting with n particles at the origin and stabilizing
until each site has less than 2d particles, as n!1, the set of occupied sites admits
a weak* scaling limit on Rd . The method can by no means be extended to fractal
objects, and a completely different approach that makes use of the recursive structure
of the gasket should be used in order to prove that also the scaling limit for the Abelian
sandpile model with multiple sources is the same as for the other three aggregation
models. The method used in the current work can be extended to other nested fractals,
but due to the technicalities already appearing on the gasket, we have chosen not to
work on the most general case of such self-similar sets.
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