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Cubic decomposition of a Laguerre–Hahn
linear functional I

Francisco Marcellán and Mohamed Khalfallah

Abstract. The aim of this contribution is to study orthogonal polynomials via cubic decomposi-
tion in the framework of the Laguerre–Hahn class. We consider two monic orthogonal polynomial
sequences ¹Wnºn�0 and ¹Pnºn�0, and we let w and u be, respectively, the corresponding reg-
ular linear functionals such that W3n.x/ D Pn.x

3/, n � 0. We prove that if either w or u is a
Laguerre–Hahn linear functional, then so is the other one. Based on this result, we deduce a com-
plete analysis of the class s of the Laguerre–Hahn linear functional w. More precisely, we show that
3s0 � s � 3s0 C 6, where s0 is the class of u. An illustrative example of class 1 is analyzed.

1. Introduction

Laguerre–Hahn orthogonal polynomials are related to Stieltjes functions, S , that satisfy a
Riccati differential equation with polynomial coefficients [17, 30, 34]

ˆS 0 D BS2 C CS CD; ˆ ¤ 0: (1.1)

To define the so-called Laguerre–Hahn linear functionals, the authors in [17, 20, 30] gave
a detailed formalism of the necessary operations, along with the suitable topological
framework. More precisely, in [17, Theorem 3.1], the equivalence between the Riccati
differential equation (1.1) for the Stieltjes function S.z/ D �

P
n�0.w/n=z

nC1, where
.w/n denotes the nth moment of the corresponding linear functional w, and the distribu-
tional equation

.ˆw/0 C‰w C B.x�1w2/ D 0; ‰ D �ˆ0 � C: (1.2)

is given. Moreover, ifw is a Laguerre–Hahn linear functional, then the class ofw, denoted
by s, is defined as

s WD min.max.deg‰ � 1;max.degˆ; degB/ � 2//;

where the minimum is taken over all triplets .ˆ;‰;B/ such that (1.2) holds.
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Looking back at the rich archive of orthogonal polynomials (OP), from a structural
and constructive point of view, the Laguerre–Hahn polynomials are indeed one of the
very remarkable families of OP, since most of the monic orthogonal polynomial sequences
(MOPS) considered in the literature belong to this family. Namely, either one of the equa-
tions (1.1) or (1.2) can be simplified to become semiclassical. Indeed, if B D 0, then
semiclassical case appears. However, the fact that B is not identically zero can also yield
the semiclassical case, which is the case with the Stieltjes functions related to second-
degree linear functionals [31]. In a more general context, the same thing can occur with
the third-degree class. Indeed, a third degree linear functional belongs to the Laguerre–
Hahn class [9], but the converse is not true in general.

As far as it concerns the techniques used to study the Laguerre–Hahn orthogonal poly-
nomials, there is actually a variety of them: the modifications of linear functionals and the
analysis of the corresponding perturbations on the sequences of orthogonal polynomials,
to name a few. Another technique deals with the problem of classification of families
of orthogonal polynomials in terms of classes of differential equations (1.1) whose goal
was to describe the systems of difference equations for the recurrence relation coefficients
of the corresponding sequence of orthogonal polynomials, the so-called Laguerre–Freud
equations [4, 5, 18, 23, 28]. Some of them have been studied in the framework of discrete
Painlevé equations (see [21, 22, 39]).

In general, the problem of determining in an explicit way the Laguerre–Hahn linear
functional becomes a very difficult task when the class is greater than or equal to one.
We should point out that several classes of Laguerre–Hahn linear functionals have been
described: the class s D 0 [10, 11]; the symmetric class s D 1 [1, 3]; the symmetric class
s D 2 when ˆ and B vanish at zero [36]. Some of the families of Laguerre–Hahn MOPSs
were also unfolded by using some processes or by solving some algebraic equations in the
dual space of polynomials [2,6,9,12,13,16,19,35]. One of these processes is the quadratic
decomposition [29, 33].

On the other hand, a very important topic of research, often encountered in the litera-
ture of orthogonal polynomials, deals with the so-called cubic decomposition [32]. Nev-
ertheless, questions related to cubic decompositions of orthogonal polynomial sequences
satisfying some extra conditions as their Laguerre–Hahn character have not been con-
sidered in the literature up to the recent contributions [7, 14, 37, 38] for particular cases
of semiclassical, second degree and third degree linear functionals of class one and two,
respectively, and [27] for Laguerre–Hahn linear functionals of class s D 1.

Our work is focused on presenting a generator system of the set of Laguerre–Hahn
linear functionals in a way that allows us to answer the following questions.

Consider two sequences of monic orthogonal polynomials

¹Wnºn�0 and ¹Pnºn�0;

let w and u be, respectively, the corresponding regular linear functionals such that

W3n.x/ D Pn.x
3/; n � 0: (1.3)
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Assuming that eitherw or u is a Laguerre–Hahn linear functional, the following questions
can be posed.

(i) Can the same be said about the remaining one?

(ii) If so, Can a connection between their classes be stated?

In this direction, we mention the work in [14], where the authors proved that w is a
semiclassical linear functional if and only if the linear functional u is a semiclassical lin-
ear functional. In addition, in [7] the authors prove that w is a second degree (resp., third
degree) linear functional if and only if the first component u D �$ .w/ is a second degree
(resp., third degree) linear functional. On the other hand, based either on spectral pertur-
bations of the linear form [8] or on a cubic decomposition of the corresponding sequences
of orthogonal polynomials (see [24–26], among others), a constructive approach to some
families of TDRF is presented therein.

The main purpose of this paper is fully answering the previously raised questions
which in their turn, constitute a generalization of all the results mentioned above. The
paper is organized as follows. In Section 2, we review some basic tools concerning the
general theory of OP’s, focusing our attention on the cubic decomposition (CD) and on
the theory of Laguerre–Hahn MOPS’s. In Section 3, we deal with the stability, i.e., the
preservation of the Laguerre–Hahn character. Indeed, if one of the two linear functionals
w and u, such that ¹Wnºn�0 and ¹Pnºn�0 are, respectively, the corresponding sequences of
orthogonal polynomials which are related by the cubic decomposition (1.3), is a Laguerre–
Hahn linear functional then it is the same for the other one. In Section 4, a complete
analysis of the class s of the Laguerre–Hahn linear functional w in terms of the class s0 of
the linear functional uD �$ .w/ is done. In particular, we show that 3s0 � s � 3s0C 6 and,
more precisely, an accurate description of all the possible situations is given. Finally, in
Section 5 we provide new examples of Laguerre–Hahn linear functionals of class 1. This
is done by analyzing the case when u D �$ .w/, the first component of linear functional
w in the cubic decomposition, is a singular Laguerre–Hahn linear functional of class zero.

2. Background

In this section, we summarize some basic ideas concerning Laguerre–Hahn OPS’s, but
first let us recall some basic tools about algebraic (topological) aspects in the theory of
OP’s and the cubic decomposition of sequences of orthogonal polynomials (CD, in short).

2.1. Basic tools

First of all, let us recall some basic notations from [30] that we will use throughout this
paper. Let P be the vector space of polynomials with complex coefficients, and let P 0 be
its algebraic dual. The elements of P 0 will be called linear functionals (linear forms). By
h�; �i we denote the duality brackets between P and P 0.
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Let us introduce some useful operations in P 0. For any linear functional w, any poly-
nomial g and any .a; b; c/ 2 .C � ¹0º/ � C2, let w0, gw, haw, �bw, .x � c/�1w and ıc
be the forms defined by duality as

hw0; f i WD �hw; f 0i; hgw; f i WD hw; gf i; f; g 2 P ;

hhaw; f i WD hw; haf i D hw; f .ax/i;

h�bw; f i WD hw; ��bf i D hw; f .x C b/i; f 2 P ;

h.x � c/�1w; f i WD hw; �cf i D

�
w;
f .x/ � f .c/

x � c

�
;

hıc ; f i WD f .c/ .ı0 D ı/; f 2 P :

For f 2 P and w 2 P 0, the product wf is the polynomial [30]

.wf /.x/ WD

�
w;
xf .x/ � �f .�/

x � �

�
D

nX
iD0

 
nX
jDi

.w/j�iaj

!
xi ; (2.1)

where

f .x/ D

nX
iD0

aix
i :

This allows us to define the Cauchy product of two linear functionals v and w as follows:

hvw; f i WD hv;wf i; w 2 P 0; f 2 P :

In particular, the moments of the above Cauchy product are

.vw/n D

nX
kD0

.v/k.w/n�k ; n � 0: (2.2)

The above product is commutative, associative and distributive with respect to the sum of
linear functionals.

Thus, we have the well-known formulas [30]

x.x�1w/ D w; x�1.xw/ D w � ı;

x�.nC2/w D x�1.x�.nC1/w/; w 2 P 0; n � 0; (2.3)

x�1.vw/ D .x�1v/w D v.x�1w/; v; w 2 P 0; (2.4)

where ı is the unit element for Cauchy product of two linear functionals, i.e., hı; p.x/i D
p.0/, p 2 P .

Now, we define the operator �$ W P 0 ! P 0 by

h�$ .w/; f i WD hw; �$ .f /i; w 2 P 0; f 2 P ; (2.5)

where the linear operator �$ W P ! P is defined by

�$ .f /.x/ WD f .x
3/

for every f 2 P .
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For any f 2 P and w 2 P 0, the following properties hold [37]:

f�$ .w/ D �$ ..f ı$/w/; (2.6)

�$ .w
0/ D .�$ .$

0w//0: (2.7)

We will also use the so-called formal Stieltjes function associated with w 2 P 0. It is
defined by [30]

S.w/.z/ D �
X
n�0

.w/n

znC1
:

In what follows, we will call polynomial sequence PS for any sequence ¹Wnºn�0 such
that degWn D n, n � 0. We will also call monic polynomial sequence MPS for any PS
such that all polynomials have a leading coefficient equal to one.

The linear functional w is called regular (or quasi-definite) if there exists a MPS
¹Wnºn�0 such that [15]

hw;WnWmi D rnın;m; n � 0;

where ¹rnºn�0 is a sequence of nonzero complex numbers and ın;m is Kronecker symbol.
The sequence ¹Wnºn�0 is then said to be orthogonal with respect to w. Henceforth,

a monic orthogonal polynomial sequence ¹Wnºn�0 will be indicated as MOPS. It is well
known (see [15]) that an MOPS is characterized by a three-term recurrence relation of the
form

WnC2.x/ D .x � ˇnC1/WnC1.x/ � nC1Wn.x/; n � 0; (2.8)

with initial conditions W0.x/ D 1 and W1.x/ D x � ˇ0, being ¹ˇnºn�0 and ¹nC1ºn�0
sequences of complex numbers such that nC1 ¤ 0 for all n � 0.

2.2. Laguerre–Hahn linear functionals

Now, let us recall some features about the Laguerre–Hahn linear functionals.

Definition 2.1 ([3, 11, 34]). A linear functional w is said to be of Laguerre–Hahn class if
its Stieltjes function satisfies a Riccati equation

ˆ.z/S 0.w/.z/ D B.z/S2.w/.z/C C.z/S.w/.z/CD.z/; (2.9)

where ˆ.z/ ¤ 0, B.z/, C.z/ are polynomials with

D.z/ D �.w�0ˆ/
0.z/ � .w�0‰/.z/ � .w

2�20B/.z/: (2.10)

Remark 2.1. In particular, if B D 0, then the linear functional is said to be Laguerre–
Hahn affine or semiclassical.

Proposition 2.1 ([3, 11, 34]). Let w be a quasi-definite and normalized linear functional,
i.e., .w/0 D 1, and let ¹Wnºn�0 be its corresponding MOPS. The following statements are
equivalent.

(i) w is a Laguerre–Hahn functional.
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(ii) w satisfies the functional equation

.ˆw/0 C‰w C B.x�1w2/ D 0; (2.11)

where ˆ.x/, B.x/, C.x/ are the polynomials in (2.9) and

‰.x/ D �Œˆ0.x/C C.x/�:

Notice that the above equation is not unique. Indeed, if w is Laguerre–Hahn and � is
an arbitrary polynomial, then w also satisfies the functional equation

.�ˆw/0 C .�‰ � �0�/w C .�B/.x�1w2/ D 0:

With this in mind, we give the following definition.

Definition 2.2 ([3,11,34]). The class of a Laguerre–Hahn functionalw is the non-negative
integer number defined as

s WD min max
®

deg‰.x/ � 1;max¹degˆ.x/ � 1; degB.x/ � 1º � 2
¯
;

where the minimum is taken among all polynomials ˆ.x/, ‰.x/, and B.x/ such that w
satisfies (2.11).

Taking into account that the class of a Laguerre–Hahn linear functional is very useful
in order to state a hierarchy of such families, we need to give a simple way to character-
ize it.

Proposition 2.2 ([3, 34]). Let w be a Laguerre–Hahn linear functional and let ˆ.x/ and
‰.x/ be non-zero polynomials with degˆ.x/ DW r , deg‰.x/ DW t and degB.x/ DW m,
such that (2.11) holds. Let s D max .t � 1; d � 2/ with d D max¹r; mº. Then, s is the
class of w if and only ifY

c2Zˆ

.jˆ0.c/C‰.c/j C jB.c/j C jhw; �2cˆC �c‰ C w�0�cBij/ ¤ 0; (2.12)

where Zˆ denotes the set of zeros of ˆ.

With regard to the latter proposition, to show that whether or not, can the functional
equation (2.11) can be simplified by x � c, where c is a zero of ˆ, one must find ˆ0.c/C
‰.c/,B.c/ and hw;�2cˆC �c‰Cw�0�cBi. The computational work will indeed become
more delicate due to the recurrence of the simplification process. As a matter of fact, the
following lemma elucidates the simplification procedures.

Lemma 2.1 ([13]). Let c1 2 C be a zero of ˆ such that

jˆ0.c1/C‰.c1/j C jB.c1/j C jhw; �
2
c1
ˆC �c1‰ C w�0�c1Bij D 0:

Then, (2.11) can be simplified dividing by x � c1 and it becomes

.ˆ1w/
0
C‰1w C B1.x

�1w2/ D 0;
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where
ˆ1 D �c1ˆ; ‰1 D �

2
c1
ˆC �c1‰; B1 D �c1B:

Moreover, for all c 2 C, we have

.ˆ1/
0.c/C‰1.c/ D

ˆ0.c/C‰.c/

c � c1
; (2.13)

hw; �c‰1 C �
2
cˆ1 C w�0�cB1i D

hw; �c‰ C �
2
cˆC w�0�cBi

c � c1
: (2.14)

From Proposition 2.2, there is an alternative way to find the class in terms of the poly-
nomials involved in the Riccati equation (2.9). Indeed, we have the following corollary.

Corollary 2.1 ([3, 34]). Let w be a Laguerre–Hahn functional satisfying (2.9) such that
degˆ.x/ D r , deg B.x/ D m and deg‰.x/ D t with ‰.x/ D �Œˆ0.x/ C C.x/�. Let
s D max .t � 1; d � 2/ with d D max¹r; mº. Then, s is the class of w if and only if the
polynomials ˆ.x/, B.x/, C.x/ and D.x/ are coprime or, equivalently,Y

c2Zˆ

.jB.c/j C jC.c/j C jD.c/j/ ¤ 0:

Next, the concept of displacement is considered. Given a 2 C � ¹0º, b 2 C, if a linear
functional w of class s satisfies (2.11), then the linear functional Ow D .ha�1 ı ��b/w is of
class s, and it satisfies

. ŷ Ow/0 C y‰ Ow C yB.x�1 Ow2/ D 0; (2.15)

where

ŷ .x/D a� degˆˆ.axC b/; y‰.x/D a1�degˆ‰.axC b/; yB.x/D a� degˆB.axC b/:

(2.16)
Hence, a displacement does not change neither the Laguerre–Hahn character nor the class
of a Laguerre–Hahn linear functional [30]. Therefore, we can take canonical functional
equations by re-situating the zeros of ˆ in equation (2.11). This will be put in evidence in
the sequel.

2.3. Cubic decomposition

In what follows, we are concerned with the following cubic decomposition (CD, in short)
defined in [32]. Let us consider $.x/ D x3.

For any MPS ¹Wnºn�0 there are three MPSs, ¹Pnºn�0, ¹Qnºn�0 and ¹Rnºn�0, so that

W3n.x/ D Pn.x
3/C xa1n�1.x

3/C x2a2n�1.x
3/; n � 0; (2.17)

W3nC1.x/ D b
1
n.x

3/C xQn.x
3/C x2b2n�1.x

3/; n � 0; (2.18)

W3nC2.x/ D c
1
n.x

3/C xc2n.x
3/C x2Rn.x

3/; n � 0; (2.19)
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with deg a1n�1 � n � 1, deg a2n�1 � n � 1, deg b1n � n, deg b2n�1 � n � 1, deg c1n �
n deg c2n � n and a1�1.x/ D a

2
�1.x/ D b

2
�1.x/ D 0. This is a particular case of the gen-

eral cubic decomposition of any MPS presented in [32], where all the parameters involved
are equal to zero. In this cubic decomposition (2.17)–(2.19) of ¹Wnºn�0, the sequences:
¹Pnºn�0, ¹Qnºn�0, ¹Rnºn�0 are called the principal components; ¹a1n�1ºn�0, ¹a2n�1ºn�0,
¹b1nºn�0, ¹b2n�1ºn�0, ¹c1nºn�0, ¹c2nºn�0 are called the secondary components, since they
are sequences of polynomials, although not necessarily bases for the vector space of poly-
nomials P .

The next result is a particular scenery of [32, Theorem 5.4] characterizing the orthogo-
nality case such thatW3n.x/DPn.$.x//, n� 0, with$.x/D x3 (i.e., the two secondary
components ¹a1nºn�0 and ¹a2nºn�0 vanish).

Proposition 2.3 ([32]). Let ¹Wnºn�0 be a MOPS with respect to the linear functional w
defined by (2.17)–(2.19). The following statements are equivalent.

(a) a1n D a
2
n D 0, n � 0.

(b) The recurrence coefficients of ¹Wnºn�0 satisfy

ˇ3n D ˇ0; ˇ3nC1 C ˇ3nC2 D �ˇ0; n � 0;

3nC2 D �1 � ˇ0.ˇ3nC1 C ˇ0/ � ˇ
2
3nC1; n � 0;

3n C 3nC1 D 1; n � 0; with 0 D 0:

Moreover, ¹Pnºn�0 is orthogonal with respect to the linear functional uD�$ .w/.

Let us conclude this subsection with the following result that will be required in the
sequel.

Proposition 2.4 ([37]). Let ¹Wnºn�0 be a MOPS with respect to the linear functional w
defined by (2.17)–(2.19) and such that a1n D a

2
n D 0, n � 0. Then,

�$ ..x � ˇ0/w/ D 0; (2.20)

�$ ..x
2
� 1 � ˇ

2
0/w/ D 0: (2.21)

Furthermore, the formal Stieltjes functions S.w/ and S.�$ .w// associated with the linear
functionals w and u D �$ .w/, respectively, are related by [7]

S.w/.z/ D �.z/S.�$ .w//.z
3/; (2.22)

where �.z/ D z2 C ˇ0z C 1 C ˇ20 .

3. Stability of Laguerre–Hahn character via cubic decomposition
In this section, we deal with a stability problem, i.e., we show that w is a Laguerre–Hahn
linear functional if and only if the first component u D �$ .w/ is also a Laguerre–Hahn
linear functional. We start by stating some preliminary lemmas.

After that, we will give some properties related to the operator �$ which will be
needed later.
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Lemma 3.1. Let ¹Wnºn�0 be a MOPS with respect to the linear functional w defined
by (2.17)–(2.19) and such that a1n D a

2
n D 0, n � 0. For any f 2 P , we have

�$ .xw/ D ˇ0�$ .w/; (3.1)

�$ .x
2w/ D .1 C ˇ

2
0/�$ .w/; (3.2)

�$ .f .x
3/w/ D f .x/�$ .w/; (3.3)

�$ .xf .x
3/w/ D ˇ0f .x/�$ .w/; (3.4)

�$ .x
2f .x3/w/ D .1 C ˇ

2
0/f .x/�$ .w/: (3.5)

Proof. Equations (3.1) and (3.2) follow immediately from (2.20) and (2.21). Equation
(3.3) was stated in [37, Lemma 2.1]. Equations (3.4) and (3.5) can be computed similarly
taking into account (3.1) and (3.2).

Relying on Lemma 3.1, we prove the following results.

Lemma 3.2. Under the hypotheses of Lemma 3.1, the following formulas hold:

�$ .w
2/ D .�$ .w//

2
C 2x�1�$ .xw/�$ .x

2w/; (3.6)

�$ .xw
2/ D 2�$ .w/�$ .xw/C x

�1.�$ .x
2w//2; (3.7)

�$ .x
�1w2/ D x�1

�
2�$ .w/�$ .x

2w/C .�$ .xw//
2
�
: (3.8)

Proof. For each n � 2,

h�$ .w
2/; xni

by (2.2)
D

3nX
kD0

.w/k.w/3n�k D

nX
kD0

.w/3k.w/3n�3k C

n�1X
kD0

.w/3kC1.w/3n�3k�1

C

n�2X
kD0

.w/3kC2.w/3n�3k�2

D

nX
kD0

.�$ .w//k.�$ .w//n�k C

n�1X
kD0

.�$ .xw//k.�$ .x
2w//n�1�k

C

n�2X
kD0

.�$ .x
2w//k.�$ .x

4w//n�2�k

by (2.2)
D h.�$ .w//

2; xni C h�$ .xw/�$ .x
2w/; xn�1i C h�$ .x

2w/�$ .x
4w/; xn�2i

D h.�$ .w//
2
Cx�1�$ .xw/�$ .x

2w/Cx�2�$ .x
2w/�$ .x

4w/; xni

D h.�$ .w//
2
C x�1�$ .xw/�$ .x

2w/C x�2�$ .x
2w/.x�$ .xw//; x

n
i

by (2.3)–(2.4)
D h.�$ .w//

2
C x�1�$ .xw/�$ .x

2w/C x�1�$ .x
2w/Œ�$ .xw/ � ı�; x

n
i

D .�$ .w//
2
C 2x�1.�$ .xw//.�$ .x

2w//:
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Notice that this equality is also true for n D 0. Indeed, using (2.2) we obtain

h.�$ .w//
2
C 2x�1�$ .xw/�$ .x

2w/; 1i D 1 D h�$ .w
2/; 1i:

Finally, it is easy to check that

h�$ .w
2/; xi D 2..w/0.w/3 C .w/1.w/2/:

On the other hand, from (2.2), we easily obtain

h.�$ .w//
2; xi D 2.w/0.w/3 and hx�1�$ .xw/�$ .x

2w/; xi D 2.w/1.w/2;

which correspond to (3.6) for nD 1. Thus, we have proved (3.6). Equations (3.7) and (3.8)
follow in a similar way.

We give now the following lemma for further use in the paper.

Lemma 3.3. Let Qu be a linear functional and let ẑ , z‰ and zB be three polynomials. If we
deal with the cubic decompositions

ẑ .x/ D ẑ 1.x
3/C x ẑ 2.x

3/C x2 ẑ 3.x
3/; (3.9)

z‰.x/ D z‰1.x
3/C x z‰2.x

3/C x2 z‰3.x
3/; (3.10)

zB.x/ D zB1.x
3/C x zB2.x

3/C x2 zB3.x
3/; (3.11)

then one has

�$
�
. ẑ Qu/0 C z‰ QuC zB.x�1 Qu2/

�
D
�
3x ẑ 2.x/�$ . Qu/

�0
C z‰1.x/�$ . Qu/C x zB2.x/.x

�1.�$ . Qu//
2/

C
�
3x ẑ 3.x/�$ .x Qu/

�0
C z‰2.x/�$ .x Qu/C zB1.x/.x

�1.�$ .x Qu//
2/

C
�
3 ẑ 1.x/�$ .x

2
Qu/
�0
C z‰3.x/�$ .x

2
Qu/C zB3.x/.x

�1.�$ .x
2
Qu//2/

C 2
�
zB1.x/.x

�1�$ . Qu/�$ .x
2
Qu//C zB2.x/.x

�1�$ .x Qu/�$ .x
2
Qu//

C x zB3.x/.x
�1�$ . Qu/�$ .x Qu//

�
:

Proof. From the linearity of the operator �$ , we have

�$
�
. ẑ Qu/0 C z‰ QuC zB.x�1 Qu2/

�
D �$

�
. ẑ Qu/0

�
C �$ .z‰ Qu/C �$

�
zB.x�1 Qu2/

�
:

On the one hand, we use (2.7) to obtain

�$
�
. ẑ Qu/0

�
D 3

�
�$
�
x2 ẑ .x/ Qu

��0
D 3

�
�$
��
x2 ẑ 1.x

3/C x3 ẑ 2.x
3/C x4 ẑ 3.x

3/
�
Qu
��0

D 3
�
ẑ
1.x/�$ .x

2
Qu/
�0
C 3

�
x ẑ 2.x/�$ . Qu/

�0
C 3

�
x ẑ 3.x/�$ .x Qu/

�0
:
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On the other hand, from (3.3) and according to (3.10), we deduce

�$ .z‰ Qu/ D �$
��
z‰1.x

3/C x z‰2.x
3/C x2 z‰3.x

3/
�
Qu
�

D z‰1.x/�$ . Qu/C z‰2.x/�$ .x Qu/C z‰3.x/�$ .x
2
Qu/:

Similarly,

�$
�
zB.x�1 Qu2/

�
D �$

�
zB1.x

3/.x�1 Qu2/C zB2.x
3/u2 C x zB3.x

3/ Qu2
�

D zB1.x/�$ .x
�1
Qu2/C zB2.x/�$ . Qu

2/C zB3.x/�$ .x Qu
2/

D zB1.x/.x
�1.�$ .x Qu//

2/C x zB2.x/.x
�1.�$ . Qu//

2/

C zB3.x/.x
�1.�$ .x

2
Qu//2/

C 2
�
zB1.x/.x

�1�$ . Qu/�$ .x
2
Qu//C zB2.x/.x

�1�$ .x Qu/�$ .x
2
Qu//

C x zB3.x/.x
�1�$ . Qu/�$ .x Qu//

�
:

Hence, the desired statement follows.

Proposition 3.1. Let ¹Wnºn�0 be a MOPS with respect to the linear functional w ful-
filling (2.17)–(2.19) with a1n D a

2
n D 0, n � 0. Let u D �$ .w/ be the regular functional

associated with ¹Pnºn�0. If u D �$ .w/ is a Laguerre–Hahn linear functional of class
s0, then w is a Laguerre–Hahn linear functional of class s � 3s0 C 6. Furthermore, if u
satisfies

.ˆPu/0 C‰PuC BP .x�1u2/ D 0; (3.12)

then w satisfies (2.11) with

ˆ.x/ D �.x/ˆP .x3/; (3.13)

‰.x/ D 3x2�.x/‰P .x3/ � 2�0.x/ˆP .x3/; (3.14)

B.x/ D 3x2BP .x3/; (3.15)

where
�.x/ D x2 C ˇ0x C 1 C ˇ

2
0 : (3.16)

Proof. Set Qw WD .ˆw/0 C ‰w C B.x�1w2/. To prove that Qw D 0, it is enough to show
that �$ . Qw/ D 0, �$ .x Qw/ D 0 and �$ .x2 Qw/ D 0.

The components of the polynomials ˆ, ‰, and B in (3.13)–(3.15) are

ˆ1.x/ D .1 C ˇ
2
0/ˆ

P .x/; ˆ2.x/ D ˇ0ˆ
P .x/; ˆ3.x/ D ˆ

P .x/;

‰1.x/ D 3ˇ0x‰
P .x/ � 2ˇ0ˆ

P .x/; ‰2.x/ D 3x‰
P .x/ � 4ˆP .x/;

‰3.x/ D 3.1 C ˇ
2
0/‰

P .x/;

B1.x/ D 0; B2.x/ D 0; B3.x/ D 3B
P .x/:
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Then, from Lemma 3.3, we get

�$ . Qw/ D 3ˇ0.xˆ
P .x/�$ .w//

0
C .3ˇ0x‰

P .x/ � 2ˇ0ˆ
P .x//�$ .w/

C 3.xˆP .x/�$ .xw//
0
C .3x‰P .x/ � 4ˆP .x//�$ .xw/

C 6xBP .x/.x�1�$ .w/�$ .xw//

C 3.1 C ˇ
2
0/.ˆ

P .x/�$ .x
2w//0 C 3.1 C ˇ

2
0/‰

P .x/�$ .x
2w/

C 3BP .x/.x�1.�$ .x
2w//2/:

Taking into account (3.1) and (3.2), we obtain

�$ . Qw/ D 3.2ˇ0x C .1 C ˇ
2
0/
2/Œ.ˆPu/0 C‰PuC BP .x�1u2/� D 0: (3.17)

Following the same approach used to obtain (3.17), together with some straightforward
computations, we get

�$ .x Qw/ D 3.21 C 3ˇ
2
0/xŒ.ˆ

Pu/0 C‰PuC BP .x�1u2/� D 0; (3.18)

�$ .x
2
Qw/ D 3.x C 2ˇ0.1 C ˇ

2
0//xŒ.ˆ

Pu/0 C‰PuC BP .x�1u2/� D 0: (3.19)

Summing up (3.17), (3.18) and (3.19), we get QwD 0. Hence,w satisfies (2.11) with (3.13),
(3.14) and (3.15). As a consequence, w is a Laguerre–Hahn linear functional.

To end the proof, it remains to prove that the class s of w is at most 3s0 C 6. Indeed,
if degˆ D r , deg‰ D t , degB D m, degˆP D r 0, deg‰P D t 0, and degBP D m0,
then from (3.13), (3.14), and (3.15) it follows that t D 3t 0 C 2, m D 3m0 C 2, and r �
max .3r 0 C 4; 3t 0 C 1/. As a consequence, we have the following cases.

(i) If either t 0 D s0 C 2 or m0 D s0 C 2 and p0 � s0 C 1, then t D 3s0 C 8 or m D
3s0 C 8 and r � 3s0 C 7.

(ii) If t 0 � s0 C 1, m0 � s0 C 1 and r 0 D s0 C 1, then t � 3s0 C 8 or m � 3s0 C 8
and r D 3s0 C 7.

One than can deduce that, in any case, s � 3s0 C 6, which completes the proof of the
proposition.

Remark 3.1. Note that the above proposition provides only an upper bound to the class s
of the linear functional w. In the sequel, a thorough investigation of the class of the linear
functional w in terms of the class of the linear functional u D �$ .w/ will be carried out.

The following proposition states a result which is, in fact, the converse of the previous
one. Indeed, we consider the Laguerre–Hahn linear functional w and we show that the
first component u D �$ .w/ of the cubic decomposition is also a Laguerre–Hahn linear
functional.

Proposition 3.2. Let ¹Wnºn�0 be a MOPS with respect to the linear functional w ful-
filling (2.17)–(2.19) with a1n D a

2
n D 0, n � 0. Let u D �$ .w/ be the regular functional
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associated with ¹Pnºn�0. Ifw is a Laguerre–Hahn linear functional satisfying (2.11), then
u D �$ .w/ is a Laguerre–Hahn linear functional and satisfies

.ˆPk u/
0
C‰Pk uC B

P
k .x

�1u2/ D 0; k 2 ¹1; 2; 3º; (3.20)

where

ˆP1 .x/D3..1 C ˇ
2
0/ˆ1.x/C xˆ2.x/C ˇ0xˆ3.x//;

‰P1 .x/D‰1.x/C ˇ0‰2.x/C .1 C ˇ
2
0/‰3.x/;

BP1 .x/D.21C3ˇ
2
0/B1.x/C.x C 2ˇ0.1 C ˇ

2
0//B2.x/C.2ˇ0xC.1 C ˇ

2
0/
2/B3.x/

(3.21)

and

ˆP2 .x/D3..1 C ˇ
2
0/xˆ3.x/C xˆ1.x/C ˇ0xˆ2.x//;

‰P2 .x/Dx‰3.x/ �ˆ1.x/C ˇ0.‰1.x/ �ˆ2.x//C .1 C ˇ
2
0/.‰2.x/ �ˆ3.x//;

BP2 .x/D.21C3ˇ
2
0/xB3.x/C.x C 2ˇ0.1 C ˇ

2
0//B1.x/C.2ˇ0xC.1 C ˇ

2
0/
2/B2.x/;

(3.22)

and finally,

ˆP3 .x/D3..1 C ˇ
2
0/xˆ2.x/C x

2ˆ3.x/C ˇ0xˆ1.x//;

‰P3 .x/Dx‰2.x/ � 2xˆ3.x/C ˇ0.x‰3.x/ � 2ˆ1.x//C .1 C ˇ
2
0/.‰1.x/ � 2ˆ2.x//;

BP3 .x/D.21C3ˇ
2
0/xB2.x/C.xC2ˇ0.1Cˇ

2
0//xB3.x/C.2ˇ0xC.1Cˇ

2
0/
2/B1.x/:

(3.23)

Proof. Applying Lemma 3.3 to (2.11) and using (3.1) and (3.2) we get (3.20) and (3.21)
with k D 1. Next, multiplying both sides of (2.11) by x (resp., by x2) gives, respectively,

.xˆ.x/w/0 C .x‰.x/ �ˆ.x//w C xB.x/.x�1w2/ D 0; (3.24)

.x2ˆ.x/w/0 C .x2‰.x/ � 2xˆ.x//w C x2B.x/.x�1w2/ D 0: (3.25)

In the same way, applying Lemma 3.3 to (3.24) (resp., to (3.25)) and using (3.1) and (3.2)
one gets (3.20) and (3.22) with k D 2 (resp., (3.23) with k D 3).

Finally, notice that from (3.20)–(3.23) we cannot conclude that u is a Laguerre–Hahn
linear functional since we have not proved that at least one of the polynomials ˆP

k
, ‰P

k
,

and BP
k

, k 2 ¹1; 2; 3º is not equal to zero, a fact that is not always true. As a matter of fact,
let us suppose thatˆP1 D‰

P
1 DB

P
1 D 0,ˆP2 D‰

P
2 DB

P
2 D 0 andˆP3 D‰

P
3 DB

P
3 D 0.

Then, one has from (3.21), (3.22), and (3.23)8̂̂<̂
:̂
.1 C ˇ

2
0/ˆ1.x/C xˆ2.x/C ˇ0xˆ3.x/ D 0;

.1 C ˇ
2
0/xˆ3.x/C xˆ1.x/C ˇ0xˆ2.x/ D 0;

.1 C ˇ
2
0/xˆ2.x/C x

2ˆ3.x/C ˇ0xˆ1.x/ D 0;

(3.26)
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which readily gives, by simple computations,

ˆ1.x/ D ˆ2.x/ D ˆ3.x/ D 0:

Then, it is clear that ˆ.x/ D 0. Similarly, we use (3.21), (3.22), and (3.23), and proceed
as above to deduce that

‰.x/ D B.x/ D 0;

which yields a contradiction. As a consequence, at least one of the polynomials

ˆP1 ; ˆ
P
2 ; ˆ

P
3 ; ‰

P
1 ; ‰

P
2 ; ‰

P
3 ; B

P
1 ; B

P
2 ; B

P
3

is not identically zero. Hence, u is a Laguerre–Hahn linear functional.

To end this section, the polynomial coefficients A, B , C , and D of the Riccati equa-
tion (2.9) satisfied by the Stieltjes function corresponding to the linear functional w will
be given in terms of those of the linear functional u D �$ .w/ which we denote by AP ,
BP , CP , and DP .

Proposition 3.3. If S.u/.z/ satisfies

AP .z/S 0.u/.z/ D BP .z/S2.u/.z/C CP .z/S.u/.z/CDP .z/; (3.27)

then S.w/.z/ satisfies (2.9) with

A.z/ D �.z/AP .z3/; (3.28)

B.z/ D 3z2BP .z3/; (3.29)

C.z/ D �0.z/AP .z3/C 3z2�.z/CP .z3/; (3.30)

D.z/ D 3z2�2.z/DP .z3/: (3.31)

Proof. Taking formal derivatives in (2.22), we get

S 0.u/.z3/ D
�.z/S 0.w/.z/ � �0.z/S.w/.z/

3z2�2.z/
: (3.32)

In (3.27), the change of variable z  z3 yields

AP .z3/S 0.u/.z3/ D BP .z3/S2.u/.z3/C CP .z3/S.u/.z3/CDP .z3/: (3.33)

Substituting (2.22) and (3.32) in (3.33) multiplying both sides of the resulting equation by
3z2�2.z/, one obtains

�.z/AP .z3/S 0.w/.z/ D 3z2BP .z3/S2.w/.z/C .3z2�.z/CP .z3/

C �0.z/AP .z3//S.w/.z/C 3z2�2.z/DP .z3/;

which is what we wanted to prove.
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4. The class of the linear functional w

The aim of this section is to optimize the results already established. As shown before,
Proposition 3.1 does not specify the class s of the linear functional w. We focus our
attention on the analysis of the class of the linear functional w in terms of the class of the
linear functional u D �$ .w/. Thus, an accurate description of all the possible situations
is given.

Henceforth, we will assume that (3.12) satisfied by the linear functional w cannot be
simplified. In other words, denoting by s0 D max¹degˆP � 2; deg‰P � 1; degBP � 2º,
in order to find s, condition (2.12) is in play.

We begin by stating the auxiliary lemmas that are crucial to our remaining results.

Lemma 4.1. For each c 2 C, f 2 P and all v 2 P 0, we have

.�c�$ .f //.x/ D .x
2
C cx C c2/.�$ .�c3f //.x/; (4.1)

hv; �cf � �0f i D chv; �0�cf i: (4.2)

Proof. The proof of this lemma is straightforward and will be omitted.

Lemma 4.2. For all f 2 P , we have

hw; f .x3/i D hu; f .x/i; (4.3)

hw; xf .x3/i D ˇ0hu; f .x/i; (4.4)

hw; x2f .x3/i D .1 C ˇ
2
0/hu; f .x/i; (4.5)

.w�$ .f //.x/ D .uf /.x
3/C ..1 C ˇ

2
0/x C ˇ0x

2/.u�0f /.x
3/; (4.6)

.wx�$ .f //.x/ D .x C ˇ0/.uf /.x
3/C .1 C ˇ

2
0/x

2.u�0f /.x
3/; (4.7)

.wx2�$ .f //.x/ D �.x/.uf /.x
3/: (4.8)

Proof. Equations (4.3), (4.4), and (4.5) follow immediately from (2.5), (2.20), and (2.21).
Equations (4.6), (4.7), and (4.8) are deduced in a straightforward way using (2.1).

The following lemma contains properties that will be used throughout the sequel.

Lemma 4.3. For every c 2 C, we have

‰.c/Cˆ0.c/ D ��0.c/ˆP .c3/C 3c2�.c/.‰P .c3/C .ˆP /0.c3//; (4.9)

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2�2.c/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
: (4.10)

Proof. Equation (4.9) follows in a straightforward way from (3.13) and (3.14).
Observe that, from (3.13)–(3.15), we have

hw; �c‰ C �
2
cˆC w�0�cBi D hw; �c.3x

2�.x/‰P .x3//i

C hw; �2c .�.x/ˆ
P .x3//C �c.�2�

0.x/ˆP .x3//i

C hw;w�0�c.3x
2BP .x3//i: (4.11)
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Using the definition of the operator �c , it is easy to see that, for two polynomials f and g,
we have

�c.fg/.x/ D g.x/�c.f /.x/C f .c/�c.g/.x/: (4.12)

Taking g.x/ D ‰P .x3/ and f .x/ D 3x2�.x/ in (4.12), we get

hw; �c.3x
2�.x/‰P .x3//i D hw;‰P .x3/�c.3x

2�.x//C 3c2�.c/�c.‰
P .x3//i:

Replacing g.x/ D 3x2 and f .x/ D �.x/ in (4.12), it is not difficult to check that

�c.3x
2�.x// D 3.x3 C .c C ˇ0/x

2
C �.c/x C c�.c//:

Then, using (4.1), and from (4.3), (4.4), and (4.5), we obtain

hw; �c.3x
2�.x/‰P .x3//i D 3hu; x‰P .x/i C 3.c C ˇ0/.�.c/C 1 C ˇ

2
0/hu;‰

P .x/i

C 3c2�2.c/hu; .�c3‰
P /.x/i: (4.13)

Replacing g.x/ D ˆP .x3/ and f .x/ D �.x/ in (4.12), and using (4.1), from (4.3), (4.4),
and (4.5) we deduce that

�c.�.x/ˆ
P .x3// D .x C c C ˇ0/ˆ

P .x3/C �.c/.x2 C cx C c2/.�cˆ
P /.x3/: (4.14)

Again, as a consequence of (4.12), we get

�c..x C c C ˇ0/ˆ
P .x3// D ˆP .x3/C .2c C ˇ0/.x

2
C cx C c2/.�c3ˆ

P /.x3/;

�c..x
2
C cx C c2/.�c3ˆ

P /.x3// D .x C 2c/.�c3ˆ
P /.x3/

C 3c2.x2 C cx C c2/
�
�2
c3
ˆP

�
.x3/:

Applying the operator �c to (4.14) and taking into account the last two equations,

�2c .�.x/ˆ
P .x3//DˆP .x3/C..2c C ˇ0/.x

2
C cx C c2/C�.c/.x C 2c//.�c3ˆ

P /.x3/

C 3c2�.c/.x2 C cx C c2/
�
�2
c3
ˆP

�
.x3/

holds. Then, using (4.3), (4.4), and (4.5), we have

hw; �2c .�.x/ˆ
P .x3//i D hu;ˆP .x/i C 2�.c/.2c C ˇ0/hu; .�c3ˆ

P /.x/i

C 3c2�2.c/
˝
u;
�
�2
c3
ˆP

�
.x/
˛
:

(4.15)

On the other hand, if we consider in (4.12) g.x/ D ˆP .x3/ and f .x/ D �2�0.x/, then,

�c.�2�
0.x/ˆP .x3// D �4ˆP .x3/ � 2.2c C ˇ0/.x

2
C 2c C c2/.�c3ˆ

P /.x3/:

Using once more (4.3), (4.4), and (4.5), and after simple computations, one obtains

hw; �c.�2�
0.x/ˆP .x3//i D �4hu;ˆP .x/i � 2.2c C ˇ0/�.c/hu; .�c3ˆ

P /.x/i: (4.16)
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Hence, from (4.15) and (4.16), we have

hw; �2c .�.x/ˆ
P .x3//C �c.�2�

0.x/ˆP .x3//i

D �3hu;ˆP .x/i C 3c2�2.c/
˝
u;
�
�2
c3
ˆP

�
.x/
˛
:

(4.17)

Now, replacing g.x/ D BP .x3/ and f .x/ D 3x2 in (4.12), we get

�c.3x
2BP .x3// D 3.x C c/BP .x3/C 3c2.x2 C cx C c2/.�c3B

P /.x3/;

�0.�c.3x
2BP .x3/// D 3BP .x3/C 3cx2.�0B

P /.x3/C 3c2.x C c/.�c3B
P /.x3/

C 3c4x2.�0�c3B
P /.x3/: (4.18)

Using (4.6), (4.7), and (4.8), we get

w.BP .x3// D .uBP /.x3/C ..1 C ˇ
2
0/x C ˇ0x

2/.u�0B
P /.x3/;

w.x2.�0B
P /.x3// D �.x/.u�0B

P /.x3/;

w..x C c/.�c3B
P /.x3// D .x C ˇ0 C c/.u�c3B

P /.x3/

C Œc.1 C ˇ
2
0/x C .cˇ0 C 1 C ˇ

2
0/x

2�.u�0�c3B
P /.x3/;

w.x2.�0�c3B
P /.x3// D �.x/.u�0�c3B

P /.x3/:

In other words, from (4.18) and keeping in mind the last four equations, we have

w�0.�c.3x
2BP .x3/// D 3.uBP /.x3/C Œ3.c.1 C ˇ

2
0/x C c

2.cˇ0 C 1 C ˇ
2
0/x

2/

C 3c4�.x/�.u�0�c3B
P /.x3/

C Œ3..1 C ˇ
2
0/x C ˇ0x

2/C 3c�.x/�.u�0B
P /.x3/

C 3c2.x C ˇ0 C c/.u�c3B
P /.x3/: (4.19)

Using (4.3), (4.4), and (4.5) it is not hard to check that

hw; 3.uBP /.x3/i D 3hu; uBP .x/i; (4.20)

hw; Œ3..1 C ˇ
2
0/x C ˇ0x

2/C 3c�.x/�.u�0B
P /.x3/i

D 3Œ2.ˇ0 C c/.1 C ˇ
2
0/C ˇ

2
0c�hu; u�0B

P .x/i; (4.21)

hw; 3c2.x C ˇ0 C c/.u�c3B
P /.x3/i D 3c2.2ˇ0 C c/hu; u�c3B

P .x/i

by (4.2)
D 3c2.2ˇ0 C c/.c

3
hu; u�0�c3B

P .x/i C hu; u�0B
P .x/i/ (4.22)

and

hw; .3c2Œc.1 C ˇ
2
0/x C .cˇ0 C 1 C ˇ

2
0/x

2�C 3c4�.x//.u�0�c3B
P /.x3/i

D 3c2.2cˇ0.1 C ˇ
2
0/C 2c

2.1 C ˇ
2
0/C .1 C ˇ

2
0/
2
C c2ˇ20/hu; .u�0�c3B

P /.x/i:

(4.23)
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Adding (4.20), (4.21), (4.22), (4.23) and taking into account (4.19) we deduce that

hw;w�0.�c.3x
2BP .x3///i D 3hu; uBP .x/i C 3c2�2.c/hu; .u�0�c3B

P /.x/i

C 3.c C ˇ0/.�.c/C 1 C ˇ
2
0/hu; u�0B

P .x/i: (4.24)

Replacing (4.13), (4.17), and (4.24) in (4.11), we can conclude that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2�2.c/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛

C 3.c C ˇ0/.�.c/C 1 C ˇ
2
0/hu;‰

P .x/C u�0B
P .x/i

C 3hu; x‰P .x/C uBP .x/i:

We conclude the proof by noting that (4.10) follows from hu; ‰P .x/ C u�0BP .x/i D
hu; x‰P .x/C uBP .x/i D 0.

Proposition 4.1. The class of w depends only on the zeros x D 0 and x D c, of the
polynomial ˆ.x/, where c is a root of �.x/ given by (3.16).

Proof. Let c be a zero ofˆ such that c ¤ 0 and �.c/¤ 0. Ifˆ0.c/C‰.c/ and B.c/D 0,
then from (3.13), (3.15), and (4.9), c3 is a common zero ofˆP ,BP and .ˆP /0C‰P . But,
since (3.12) cannot be simplified, then hu;�c3‰P C �2c3ˆ

P C u�0�c3B
P i ¤ 0. Therefore,

from (4.10) we conclude that hw; �c‰ C �2cˆ C w�0�cBi ¤ 0. As a consequence, we
cannot divide in (2.11) by x � c.

In order to find the class of w, we will investigate the behavior of the polynomials ˆ,
‰ and B at x D c, where c is either equal to zero or a root of �.x/ given by (3.16). So,
we only need to analyze separately these three possible cases.

(A) �.x/ has two different zeros and one of them is zero, i.e., ˇ0 ¤ 0 and �.x/ D
x.x C ˇ0/.
This means that ˇ20 C 1 D 0.

(B) �.x/ has a double zero, i.e., ˇ0 ¤ 0 and �.x/ D .x � d/2 with d D �ˇ0
2

.

This means that ˇ20 C 1 D
ˇ20
4

.

(C) �.x/ D .x � a/.x � b/ with ab ¤ 0, a ¤ b.

This means that ˇ20 C 1 ¤ 0 and ˇ20 C 1 ¤
ˇ20
4

.

Now, we are able to discuss in details the different situations. In fact, each of the three
cases (A), (B), and (C) can be split into several sub-subcases.

4.1. Case A

Let us assume that ˇ20 C 1 D 0, i.e., ˇ0 ¤ 0 and �.x/ D x.x C ˇ0/.
First, observe that according to Proposition 3.1, the linear functional w satisfies (2.11)

withˆ.x/D x.xC ˇ0/ˆP .x3/ and B.x/D 3x2BP .x3/. The class ofw is at most 3s0C
6. From (4.9), we have

ˆ.0/ D 0; ˆ0.0/C‰.0/ D �ˇ0ˆ
P .0/; B.0/ D 0:
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Further, from (4.10), we obtain

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

4.c C ˇ0/
2
hu; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
i;

which readily gives
hw; �0‰ C �

2
0ˆC w�

2
0Bi D 0:

A.1. If ˆP .0/ ¤ 0, then we cannot divide by x in (2.11). For this reason, we can ana-
lyze the possible division by x C ˇ0. Due to Proposition 3.1 and (4.9)–(4.10) one has
ˆ.�ˇ0/ D 0, B.�ˇ0/ D 3ˇ20B

P .�ˇ30/, ˆ
0.�ˇ0/ C ‰.�ˇ0/ D ˇ0ˆ

P .�ˇ30/, and hw;
��ˇ0‰ C �

2
�ˇ0

ˆC w�0��ˇ0Bi D 0, which brings up two subcases.

A.1.1. If ˆP .�ˇ30/¤ 0 or BP .�ˇ30/¤ 0, then the functional equation cannot be simpli-
fied and s D 3s0 C 6.

A.1.2. If ˆP .�ˇ30/ D B
P .�ˇ30/ D 0, then the functional equation can be simplified to

x C ˇ0.

Remark 4.1. Note that, for the sake of simplicity, regardless of how many times the sim-
plification of the functional equation is repeated, we will always keep the same notations
ˆ, ‰, and B for the resulting polynomials.

Then, in this case, the linear functional w satisfies (2.11), with ˆ.x/ D xˆP .x3/ and
B.x/D 3.x � ˇ0/B

P .x3/C 3ˇ20.x
2 � ˇ0xC ˇ

2
0/.��ˇ30

BP /.x3/. Using Lemma 2.1, we
get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

4.c C ˇ0/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

It follows thatˆ.�ˇ0/D 0,B.�ˇ0/D 9ˇ40.B
P /0.�ˇ30/,ˆ

0.�ˇ0/C‰.�ˇ0/D�3ˇ
3
0‰

P

.�ˇ30/ and hw; ��ˇ0‰ C �
2
�ˇ0

ˆC w�0��ˇ0Bi D 0. Here, two more subcases emerge.

A.1.2.1. If .BP /0.�ˇ30/¤ 0 or‰P .�ˇ30/¤ 0, then simplification of the functional equa-
tion cannot occur and s D 3s0 C 5.

A.1.2.2. If .BP /0.�ˇ30/D‰
P .�ˇ30/D 0, so it is possible to simplify the functional equa-

tion to x C ˇ0 and w satisfies (2.11), with ˆ.x/ D x.x2 � ˇ0x C ˇ20/.��ˇ30ˆ
P /.x3/ and

B.x/D 3.x �ˇ0/.��ˇ30
BP /.x3/C 3ˇ20.x

2 �ˇ0xCˇ
2
0/
2.�2
�ˇ30

BP /.x3/. Now, applying
Lemma 2.1 yields

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

4
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

We conclude, in this case, that the functional equation can no longer be simplified. Indeed,
otherwise, we have hu;��ˇ30‰

P C �2
�ˇ30

ˆP Cw�0��ˇ30
BP i D 0, .��ˇ30 �0ˆ

P /.�ˇ30/D 0

and then, naturally, .�0ˆP /0.�ˇ30/D 0. Therefore,‰P .�ˇ30/C .ˆ
P /0.�ˇ30/D 0. On the

other hand, we have ˆP .�ˇ30/ D B
P .�ˇ30/ D 0. Then, one can divide (3.12) by x C ˇ0

and this yields a contradiction. Hence, s D 3s0 C 4.
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A.2. IfˆP .0/D 0 then simplification of the functional equation of by x can occur, andw
satisfies (2.11), withˆ.x/D .xC ˇ0/ˆP .x3/ and B.x/D 3xBP .x3/. Using Lemma 2.1
we infer that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

3.c C ˇ0/
2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.0/D 0, B.0/D 0,ˆ0.0/C‰.0/D 0 and hw;�0‰C �20ˆCw�
2
0Bi D 0. Then,

you can divide the functional equation by x and thus w satisfies (2.11), with

ˆ.x/ D .x C ˇ0/x
2.�0ˆ

P /.x3/; B.x/ D 3BP .x3/: (4.25)

From (4.10) and taking into account Lemma 2.1, we deduce

hw;�c‰C �
2
cˆCw�0�cBi D 3c

2.cC ˇ0/
2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
: (4.26)

Since c D 0, then ˆ.0/ D 0, B.0/ D 3BP .0/, ˆ0.0/C‰.0/ D 0 and hw; �0‰ C �20ˆC
w�20Bi D 0. So, the current case can itself extend to two subcases.

A.2.1. If BP .0/¤ 0 then no dividing by x in (2.11) is possible. Thus, we move to analyz-
ing the possibility of dividing by x C ˇ0. Based on (4.25) and (4.26) we getˆ.�ˇ0/D 0,
B.�ˇ0/ D 3B

P .�ˇ30/, ˆ
0.�ˇ0/C‰.�ˇ0/ D �ˇ

2
0.�0ˆ

P /.�ˇ30/ D ˇ
�1
0 ˆP .�ˇ30/ and

hw; ��ˇ0‰ C �
2
�ˇ0

ˆC w�0��ˇ0Bi D 0. So, two subcases present themselves.

A.2.1.1. If ˆP .�ˇ30/ ¤ 0 or BP .�ˇ30/ ¤ 0, the functional equation remains non simpli-
fied and s D 3s0 C 4.

A.2.1.2. IfˆP .�ˇ30/DB
P .�ˇ30/D 0, so dividing the functional equation by xCˇ0 can

indeed happen and w satisfies (2.11), with ˆ.x/ D x2.�0ˆP /.x3/ and B.x/ D 3.x2 �
ˇ0x C ˇ

2
0/.��ˇ30

BP /.x3/. It follows from Lemma 2.1 that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c C ˇ0/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

As a consequence, ˆ.�ˇ0/ D ˇ20.�0ˆ
P /.�ˇ30/ D �ˇ

�1
0 ˆP .�ˇ30/ D 0, B.�ˇ0/ D 9ˇ20

.BP /0.�ˇ30/, ˆ
0.�ˇ0/C‰.�ˇ0/ D �3ˇ0‰

P .�ˇ30/, and hw; ��ˇ0‰C �
2
�ˇ0

ˆCw�0 �

��ˇ0Bi D 0. At this point, two more subcases appear.

A.2.1.2.1. If‰P .�ˇ30/¤ 0 or .BP /0.�ˇ30/¤ 0, then again the functional equation cannot
be simplified and s D 3s0 C 3.

A.2.1.2.2. If ‰P .�ˇ30/ D .B
P /0.�ˇ30/ D 0, then it is possible for the functional equa-

tion to be simplified by x C ˇ0 and w satisfies (2.11), with ˆ.x/ D x2.x2 � ˇ0x C

ˇ20/.��ˇ30
�0ˆ

P /.x3/ and B.x/ D 3.x2 � ˇ0x C ˇ20/
2.�2
�ˇ30

BP /.x3/.
In this case, the functional equation cannot be simplified. Indeed, suppose it does, then

we have hu; ��ˇ30‰
P C �2

�ˇ30
ˆP C u�0��ˇ30

BP i D 0 and .��ˇ30 �0ˆ
P /.�ˇ30/ D 0. This

shows that .�0ˆP /0.�ˇ30/D 0, and so,‰P .�ˇ30/C .ˆ
P /0.�ˇ30/D 0. On the other hand,

we have ˆP .�ˇ30/ D B
P .�ˇ30/ D 0. Therefore, dividing in (3.12) by x C ˇ0 is possible

and this makes a contradiction. Consequently, s D 3s0 C 2.
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A.2.2. If BP .0/ D 0, then simplifying by x the functional equation is possible and w
satisfies (2.11), with

ˆ.x/ D .x C ˇ0/x.�0ˆ
P /.x3/; B.x/ D 3x2.�0B

P /.x3/: (4.27)

Lemma 2.1 together with (4.10) yields

hw; �c‰ C �
2
cˆC w�0�cBi D 3c.c C ˇ0/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
: (4.28)

Considering c D 0 givesˆ.0/D 0, B.0/D 0,ˆ0.0/C‰.0/D ˇ0.3‰P .0/C 2.ˆP /0.0//
and hw; �0‰ C �20ˆC w�

2
0Bi D 0. This provides us with two new subcases.

A.2.2.1. If 3‰P .0/C 2.ˆP /0.0/¤ 0 then (2.11) cannot be divided by x. Hence, as usual,
an analysis of the possible division by x C ˇ0 is at play. Relying on (4.27) and (4.28) one
gets ˆ.�ˇ0/ D 0, B.�ˇ0/ D �3ˇ�10 BP .�ˇ30/, ˆ

0.�ˇ0/C‰.�ˇ0/ D �ˇ
�2
0 ˆP .�ˇ30/

and hw; ��ˇ0‰ C �
2
�ˇ0

ˆC w�0��ˇ0Bi D 0. Again, two subcases unfold.

A.2.2.1.1. If ˆP .�ˇ30/ ¤ 0 or BP .�ˇ30/ ¤ 0, the functional equation cannot be simpli-
fied and s D 3s0 C 3.

A.2.2.1.2. If ˆP .�ˇ30/ D B
P .�ˇ30/ D 0, then the functional equation can be simplified

by xCˇ0 andw satisfies (2.11), withˆ.x/D x.�0ˆP /.x3/ andB.x/D 3x2.x2 �ˇ0xC
ˇ20/.��ˇ30

�0B
P /.x3/. Again, using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c.c C ˇ0/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

From the latter relation, it follows that ˆ.�ˇ0/ D �ˇ0.�0ˆP /.�ˇ30/ D 0, B.�ˇ0/ D
�9ˇ0.B

P /0.�ˇ30/,ˆ
0.�ˇ0/C‰.�ˇ0/D 3‰

P .�ˇ30/ and hw;��ˇ0‰C �
2
�ˇ0

ˆCw�0 �

��ˇ0Bi D 0. This allows two new sub-subcases to be considered.

A.2.2.1.2.1. If ‰P .�ˇ30/ ¤ 0 or .BP /0.�ˇ30/ ¤ 0, then simplification of the functional
equation cannot take place, leading to s D 3s0 C 2.

A.2.2.1.2.2. If ‰P .�ˇ30/ D .BP /0.�ˇ30/ D 0, in this case, the functional equation can
in fact be simplified by x C ˇ0 and w satisfies (2.11), with ˆ.x/ D x.x2 � ˇ0x C

ˇ20/.��ˇ30
�0ˆ

P /.x3/ and B.x/ D 3x2.x2 � ˇ0x C ˇ20/
2.�2
�ˇ30

�0B
P /.x3/. By virtue of

Lemma 2.1, we obtain

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

At this stage, the functional equation cannot be submitted to further simplification. For
if one supposes the contrary, we have hu; ��ˇ30‰

P C �2
�ˇ30

ˆP C u�0��ˇ30
BP i D 0 and

.��ˇ30
�0ˆ

P /.�ˇ30/D0. This yields .�0ˆP /0.�ˇ30/D0 and so‰P .�ˇ30/C.ˆ
P /0.�ˇ30/D

0. But since one has ˆP .�ˇ30/ D B
P .�ˇ30/ D 0. Then, (3.12) can be divided by x C ˇ0

yielding a contradiction, and eventually s D 3s0 C 1.
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A.2.2.2. If 3‰P .0/C 2.ˆP /0.0/ D 0, now, it is possible to simplify the functional equa-
tion by x and then w satisfies (2.11), with

ˆ.x/ D .x C ˇ0/.�0ˆ
P /.x3/; B.x/ D 3x.�0B

P /.x3/; (4.29)

and it follows from (4.10) and Lemma 2.1 that

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c C ˇ0/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
: (4.30)

Hence, dividing in (2.11) by x is not possible, for the reason that if hu; �0‰P C �20ˆ
P C

u�20B
P i D 0 and .�0ˆP /.0/ D 0. then one finds .ˆP /0.0/ D 0. Taking into account that

3‰P .0/C 2.ˆP /0.0/D 0, we obtain‰P .0/D 0. Therefore,‰P .0/C .ˆP /0.0/D 0. But
we also have ˆP .0/ D BP .0/ D 0. Then, we can divide in (3.12) by x and this yields a
contradiction.

As a result, we can now analyze the possible division by x C ˇ0. From (4.29) and
(4.30) we haveˆ.�ˇ0/D 0,B.�ˇ0/D�3ˇ�20 BP .�ˇ30/,ˆ

0.�ˇ0/C‰.�ˇ0/Dˇ
�3
0 ‰P

.�ˇ30/ and hw; ��ˇ0‰ C �
2
�ˇ0

ˆC w�0��ˇ0Bi D 0. Here, two subcases arise.

A.2.2.2.1. If ˆP .�ˇ30/ ¤ 0 or BP .�ˇ30/ ¤ 0, then the functional equation cannot be
subject to further simplification and s D 3s0 C 2.

A.2.2.2.2. If ˆP .�ˇ30/ D B
P .�ˇ30/ D 0, then the functional equation can be simplified

by x C ˇ0 and w satisfies (2.11), with ˆ.x/ D .�0ˆP /.x3/ and B.x/ D 3x.x2 � ˇ0x C
ˇ20/.��ˇ30

�0B
P /.x3/. By means of Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c C ˇ0/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Therefore,ˆ.�ˇ0/D 0,B.�ˇ0/D�9ˇ�0 � .B
P /0.�ˇ30/,ˆ

0.�ˇ0/C‰.�ˇ0/D�3ˇ
�1
0 �

‰P .�ˇ30/ and hw;��ˇ0 z‰C �
2
�ˇ0

ˆCw�0��ˇ0BiD 0. By this fact, two new sub-subcases
exist here.

A.2.2.2.2.1. If ‰P .�ˇ30/ ¤ 0 or .BP /0.�ˇ30/ ¤ 0, then the functional equation cannot
be simplified and s D 3s0 C 1.

A.2.2.2.2.2. If‰P .�ˇ30/D .B
P /0.�ˇ30/D 0, then simplifying the functional equation by

xCˇ0 can be done andw satisfies (2.11), withˆ.x/D .x2 �ˇ0xCˇ20/.��ˇ30 �0ˆ
P /.x3/

and B.x/ D 3x.x2 � ˇ0x C ˇ20/
2.�2
�ˇ30

�0B
P /.x3/.

Furthermore, from Lemma 2.1, we infer that

hw; �c‰ C �
2
cˆC w�0�cBi D 3

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

In this case, the functional equation cannot be simplified. Indeed, supposing the contrary,
we have hu; ��ˇ30‰

P C �2
�ˇ30

ˆP C u�0��ˇ30
BP i D 0 and .��ˇ30 �0ˆ

P /.�ˇ30/ D 0. The

last equality is equivalent to .�0ˆP /0.�ˇ30/D 0, so .ˆP /0.�ˇ30/D0, since .ˆP /0.�ˇ30/D
�ˇ30.�0ˆ

P /0.�ˇ30/. Hence,‰P .�ˇ30/C .ˆ
P /0.�ˇ30/D 0. Further, we haveˆP .�ˇ30/D

BP .�ˇ30/D 0. Therefore, we can divide in (3.12) by xC ˇ0 which yields a contradiction,
and so, s D 3s0.
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4.2. Case B

Let us assume that ˇ20 C 1 D
ˇ20
4

, i.e., ˇ0 ¤ 0 and �.x/ D .x � d/2 with d D �ˇ0
2

.
Relying on Proposition 3.1, the linear functional w satisfies (2.11) with ˆ.x/ D .x �

d/2ˆP .x3/ and B.x/ D 3x2BP .x3/, where d WD �ˇ0
2
¤ 0. The class of w is at most

3s0 C 6. From (4.9) we have ˆ.0/ D d2ˆP .0/, B.0/ D 0, ˆ0.0/ C ‰.0/ D 2dˆP .0/.
But (4.10) states that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � d/4
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Thus, this gives
hw; �0‰ C �

2
0ˆC w�

2
0Bi D 0:

We then establish the following discussion.

B.1. If ˆP .0/¤ 0, then in (2.11) we cannot divide by x. Thus, we can analyze the possi-
ble division by x � d . According to Proposition 3.1 and (4.9)–(4.10) we have ˆ.d/ D 0,
B.d/ D 3d2BP .d3/, ˆ0.d/ C ‰.d/ D 0 and hw; �d‰ C �2dˆ C w�0�dBi D 0. This
case is divided into two subcases.

B.1.1. If BP .d3/¤ 0, then the functional equation cannot be simplified and s D 3s0C 6.

B.1.2. IfBP .d3/D 0, then the functional equation can indeed be divided by x � d andw
satisfies (2.11), withˆ.x/D .x � d/ˆP .x3/, B.x/D 3x2.x2C dxC d2/.�d3BP /.x3/.
Taking into account Lemma 2.1, we derive

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � d/3
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So, ˆ.d/ D 0, B.d/ D 9d4.BP /0.d3/, ˆ0.d/ C ‰.d/ D �2ˆP .d3/ and hw; �d‰ C
�2
d
ˆC w�0�dBi D 0. Here, two situations may arise.

B.1.2.1. IfˆP .d3/¤ 0 or BP .d3/¤ 0, then no simplification of the functional equation
can occur and s D 3s0 C 5.

B.1.2.2. IfˆP .d3/DBP .d3/D 0, then the functional equation can be simplified by x �
d and w satisfies (2.11), with ˆ.x/DˆP .x3/, B.x/D3x2.x2CdxCd2/2.�2

d3
BP /.x3/.

Together with Lemma 2.1, we have

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � d/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

It is clear thatˆ.d/D0,B.d/D27d6.�d3BP /0.d3/D
27d6

2
.BP /00.d3/,ˆ0.d/C‰.d/D

3d2.‰.d3/ � .ˆP /0.d3// and hw; �d‰ C �2dˆC w�0�dBi D 0. Again, two situations
may come up.

B.1.2.2.1. If .BP /00.d3/ ¤ 0 or ‰.d3/ � .ˆP /0.d3/ ¤ 0, then no simplification of the
functional equation is possible and s D 3s0 C 4.
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B.1.2.2.2. If .BP /00.d3/ D ‰.d3/� .ˆP /0.d3/ D 0, then the functional equation can be
simplified by x � d and w satisfies (2.11), with ˆ.x/ D .x2 C dx C d2/.�d3ˆP /.x3/,
B.x/ D 3x2.x2 C dx C d2/3.�3

d3
BP /.x3/. Using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � d/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

It is easy to check thatˆ.d/D3d2.ˆP /0.d3/, B.d/D81d8.�2
d3
BP /0.d3/D 27d6

3Š
.BP /000

.d3/,ˆ0.d/C‰.d/D 6d‰.d3/C 9d4.‰P /0.d3/ and hw;�d‰C �2dˆCw�0�dBiD 0.
Now, we need to consider the the following sub-subcases.

B.1.2.2.2.1. If j‰.d3/j C j.‰P /0.d3/j C j.BP /000.d3/j ¤ 0, then the functional equation
cannot be simplified and s D 3s0 C 3.

B.1.2.2.2.2. If j‰.d3/j C j.‰P /0.d3/j C j.BP /000.d3/j D 0, then the functional equation
can be simplified to x � d and w satisfies (2.11), with

ˆ.x/ D .x2 C dx C d2/2
�
�2
d3
ˆP

�
.x3/; B.x/ D 3x2.x2 C dx C d2/4

�
�4
d3
BP

�
.x3/:

(4.31)
By Lemma 2.1, one can check that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
; (4.32)

which confirms that the functional equation can no longer be subject to simplification.
Indeed, by a contradiction argument, suppose that hu; �d3‰P C �2d3ˆ

P C u�0�d3B
P i D

0 and ‰P .d3/ D .ˆP /0.d3/ D 0. Therefore, ‰P .d3/ C .ˆP /0.d3/ D 0. But we also
have ˆP .d3/ D BP .d3/ D 0. Then, dividing in (3.12) by x � d is possible which yields
a contradiction. Then, s D 3s0 C 2.

B.2. If ˆP .0/ D 0, then the functional equation can be simplified to x and w satisfies
(2.11), withˆ.x/D .x � d/2x2.�0ˆP /.x3/, B.x/D 3xBP .x3/. Due to Lemma 2.1, we
get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c.c � d/

4
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
;

which implies thatˆ.0/D 0,B.0/D 0,ˆ0.0/C‰.0/D 0 and hw;�0‰C�20ˆCw�
2
0BiD

0. Then, the functional equation can indeed be simplified by x and w satisfies (2.11), with

ˆ.x/ D .x � d/2x.�0ˆ
P /.x3/; B.x/ D 3BP .x3/: (4.33)

Now, by Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � d/

4
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
: (4.34)

Then, in (2.11), we cannot divide by x. Because, suppose we have hu; �0‰P C �20ˆ
P C

u�20B
P i D 0, BP .0/ D 0 and .ˆP /0.0/ C ‰P .0/ D 0. But, we also have ˆP .0/ D 0.

So, one can divide in (3.12) by x and this yields a contradiction. Therefore, an analysis
of the possible division by x � d is at play. From (4.33) and (4.33) we have ˆ.d/ D 0,
B.d/ D 3BP .d3/, ˆ0.d/C‰.d/ D 0 and hw; �d‰ C �2dˆCw�0�dBi D 0. Here, two
cases occur to discuss.
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B.2.1. If BP .d3/¤ 0, then the functional equation cannot be simplified and s D 3s0C 4.

B.2.2. If BP .d3/D 0, then the functional equation can be simplified to x � d and w sat-
isfies (2.11), withˆ.x/D .x � d/x.�0ˆP /.x3/,B.x/D 3.x2C dxC d2/.�d3BP /.x3/.
From Lemma 2.1 one can easily see that

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � d/

3
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

One then has ˆ.d/ D 0, B.d/ D 9d2.BP /0.d3/, ˆ0.d/C ‰.d/ D �2d�2ˆP .d3/ and
hw; �d‰ C �

2
d
ˆC w�0�dBi D 0. Again, the following two subcases arise.

B.2.2.1. If ˆP .d3/ ¤ 0 or .BP /0.d3/ ¤ 0, then the functional equation cannot be sim-
plified and s D 3s0 C 3.

B.2.2.2. If ˆP .d3/ D .BP /0.d3/ D 0, then the functional equation can be simplified
again to x � d and w satisfies (2.11), with ˆ.x/ D x.�0ˆP /.x3/, B.x/ D 3.x2 C dx C
d2/2.�2

d3
BP /.x3/. Using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � d/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So,ˆ.d/D d�2ˆP .d3/D 0, B.d/D 27d2

2
.BP /00.d3/,ˆ0.d/C‰.d/D�3.‰P .d3/�

.ˆP /0.d3// and hw; �d‰ C �2dˆC w�0�dBi D 0. In this case, we will consider the fol-
lowing two subcases.

B.2.2.2.1. If .BP /00.d3/ ¤ 0 or ‰.d3/ � .ˆP /0.d3/ ¤ 0, then no simplification of the
functional equation is possible and then s D 3s0 C 2.

B.2.2.2.2. If .BP /00.d3/ D ‰.d3/ � .ˆP /0.d3/ D 0, so it is possible to divide the func-
tional equation by x � d andw satisfies (2.11), withˆ.x/D x.x2C dxC d2/.�d3�0ˆP /
.x3/ and B.x/ D 3.x2 C dx C d2/3.�3

d3
BP /.x3/. Lemma 2.1 provides the fact that

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � d/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.d/D 3.ˆP /0.d3/D 3‰.d3/,B.d/D 81d6.�2
d3
BP /0.d3/D 27d6

6
.BP /000.d3/,

ˆ0.d/C ‰.d/ D 6d�1‰.d3/C 9d2.‰P /0.d3/ and hw; �d‰ C �2dˆC w�0�dBi D 0.
Again, two situations come up to be discussed.

B.2.2.2.2.1. If j‰.d3/j C j.‰P /0.d3/j C j.BP /000.d3/j ¤ 0, then the functional equation
cannot be simplified and s D 3s0 C 1.

B.2.2.2.2.2. If j‰.d3/j C j.‰P /0.d3/j C j.BP /000.d3/j D 0, then the functional equation
can be simplified to x�d andw satisfies (2.11) withˆ.x/Dx.x2CdxCd2/2.�2

d3
�0ˆ

P /

.x3/ and B.x/ D 3.x2 C dx C d2/4.�4
d3
BP /.x3/. Lemma 2.1 implies that

hw; �c‰ C �
2
cˆC w�0�cBi D 3

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

In this case, the functional equation cannot be simplified. Suppose hu; �d3‰PC�2d3ˆ
PC

u�0�d3B
P iD0 and ‰P .d3/D.ˆP /0.d3/D0. Therefore, ‰P .d3/C.ˆP /0.d3/D0. But



F. Marcellán and M. Khalfallah 26

we also have
ˆP .d3/ D BP .d3/ D 0:

Then, we can divide in (3.12) by x � d and this yields a contradiction. Hence, s D 3s0.

4.3. Case C

Let us assume that ˇ20 C 1 ¤ 0 and ˇ20 C 1 ¤
ˇ20
4

, i.e., �.x/ D .x � a/.x � b/ with
ab ¤ 0, a ¤ b.

According to Proposition 3.1, the linear functionalw satisfies (2.11) withˆ.x/D .x �
a/.x � b/ˆP .x3/ and B.x/D 3x2BP .x3/, with a¤ 0, b ¤ 0, a� b ¤ 0. The class of w
is at most 3s0 C 6. From (4.9) we have ˆ.0/ D abˆP .0/, B.0/ D 0 and ˆ0.0/C‰.0/ D
.aC b/ˆP .0/. But due to (4.10),

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/2.c � b/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So,
hw; �0‰ C �

2
0ˆC w�

2
0Bi D 0:

As done in the previous cases, an in-depth discussion of several subcases take place.

C.1. If ˆP .0/ ¤ 0, then dividing by x in (2.11) is not possible. Thus, naturally, we move
on to analyzing the possibility of dividing by x � a or by x � b. Indeed, Proposition 3.1
and relations (4.9)–(4.10) give thatˆ.a/D 0, B.a/D 3a2BP .a3/,ˆ0.a/C‰.a/D .b �
a/ˆP .a3/ and hw; �a‰ C �2aˆC w�0�aBi D 0. Therefore, two cases occur to discuss.

C.1.1. If BP .a3/¤ 0 orˆP .a3/¤ 0, this will indeed prevent us from dividing by x � a
in (2.11), which leads usually to an analysis of the possible division by x � b. Given that
ˆ.b/ D 0, B.b/ D 3b2BP .b3/, ˆ0.b/C‰.b/ D .a � b/ˆP .b3/ and hw; �b‰C �2bˆC
w�0�bBi D 0, The current case can itself provide two more subcases.

C.1.1.1. If BP .b3/¤ 0 orˆP .b3/¤ 0, then the functional equation cannot be simplified
and s D 3s0 C 6.

C.1.1.2. If BP .b3/ D ˆP .b3/ D 0, then the functional equation can be simplified to
x � b and w satisfies (2.11), with ˆ.x/ D .x � a/ˆP .x3/ and B.x/ D 3x2.x2 C bx C
b2/.�b3B

P /.x3/.
Now, using Lemma 2.1, one finds

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/2.c � b/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence, ˆ.b/ D .b � a/ˆP .b3/ D 0, B.b/ D 9b4.BP /0.b3/, ˆ0.b/C ‰.b/ D 3b2.b �
a/‰P .b3/ and hw;�b‰C �2bˆCw�0�bBiD0. This subcase splits into two sub-subcases.

C.1.1.2.1. If .BP /0.b3/¤ 0 or‰P .b3/¤ 0, then no simplification of the functional equa-
tion occurs and the class remains s D 3s0 C 5.
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C.1.1.2.2. If .BP /0.b3/ D ‰P .b3/ D 0, this indeed allows the functional equation to
be simplified by x � b and then w satisfies (2.11), with ˆ.x/ D .x � a/.x2 C bx C

b2/.�b3ˆ
P /.x3/ and B.x/ D 3x2.x2 C bx C b2/2.�2

b3
BP /.x3/. By Lemma 2.1 we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Note that at this stage, the functional equation cannot be subject to simplification any-
more. As a matter of fact, suppose we have hu; �b3‰P C �2b3ˆ

P C u�0�b3B
P i D 0

and ‰P .b3/ D .ˆP /0.b3/ D 0. Then, ‰P .b3/C .ˆP /0.b3/ D 0, and since ˆP .b3/ D
BP .b3/ D 0. Hence, dividing in (3.12) by x � b can occur which yields a contradiction
and eventually, s D 3s0 C 4.

C.1.2. If BP .a3/ D ˆP .a3/ D 0, then the functional equation can be simplified by x �
a and w satisfies (2.11), with ˆ.x/ D .x � b/ˆP .x3/ and B.x/ D 3x2.x2 C ax C

a2/.�a3B
P /.x3/. Applying Lemma 2.1 yields

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/.c � b/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So that ˆ.a/ D .a � b/ˆP .a3/ D 0, B.a/ D 9a4.BP /0.a3/, ˆ0.a/C ‰.a/ D 3a2.a �
b/‰P .a3/ and hw; �a‰ C �2aˆC w�0�aBi D 0. Hence, two cases present themselves.

C.1.2.1. If .BP /0.a3/ ¤ 0 or ‰P .a3/ ¤ 0, then the functional equation cannot be sim-
plified to .x � a/. So, an analysis of the possible division by x � b is required. We have
ˆ.b/ D 0, B.b/ D 3b2.b2 C ab C a2/.�a3B

P /.b3/ D 3b2

b�a
BP .b3/, ˆ0.b/ C ‰.b/ D

�.b � a/.b2 C ab C a2/.�a3ˆ
P /.b3/ D �.b3 � a3/.�a3ˆ

P /.b3/ D �ˆP .b3/ and hw;
�b‰ C �

2
b
ˆC w�0�bBi D 0. Two situations arise to discuss.

C.1.2.1.1. If BP .b3/ ¤ 0 or ˆP .b3/ ¤ 0, then the functional equation can not be sim-
plified and s D 3s0 C 5.

C.1.2.1.2. If BP .b3/ D ˆP .b3/ D 0, then the functional equation can be simplified to
x � b andw satisfies (2.11), withˆ.x/DˆP .x3/ and B.x/D 3x2.x2C axC a2/.x2C
bx C b2/.�b3�a3B

P /.x3/. By Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/.c � b/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.b/DˆP .b3/D 0,B.b/D 9b4.b2C abC a2/.�a3BP /0.b3/D
9b4

b�a
.BP /0.b3/,

ˆ0.b/C‰.b/D 3b2‰P .b3/ and hw;�b‰C �2bˆCw�0�bBi D 0. In this case, two more
subcases arise.

C.1.2.1.2.1. If .BP /0.b3/ ¤ 0 or ‰P .b3/ ¤ 0, then the simplification of the functional
equation cannot take place which makes s D 3s0 C 4.

C.1.2.1.2.2. If .BP /0.b3/ D ‰P .b3/ D 0, in this case the functional equation can be
simplified to x � b and w satisfies (2.11), with ˆ.x/D .x2 C bx C b2/.�b3ˆP /.x3/ and
B.x/ D 3x2.x2 C ax C a2/.x2 C bx C b2/2.�2

b3
�a3B

P /.x3/.
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Again, using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � a/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So, the functional equation cannot be simplified anymore. It suffice to see that if one has
hu; �b3‰

P C �2
b3
ˆP C u�0�b3B

P i D 0 and ‰P .b3/ D .ˆP /0.b3/ D 0, then ‰P .b3/C
.ˆP /0.b3/ D 0. And since we have ˆP .b3/ D BP .b3/ D 0. Then, one can divide by
x � b in (3.12) which brings us to a contradiction. Hence, s D 3s0 C 3.

C.1.2.2. If .BP /0.a3/ D ‰P .a3/ D 0, then the functional equation can be simplified
by x � a and w satisfies (2.11), with ˆ.x/ D .x � b/.x2 C ax C a2/.�a3ˆP /.x3/ and
B.x/ D 3x2.x2 C ax C a2/2.�2

a3
BP /.x3/.

Using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � b/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Here, the functional equation cannot be simplified by x � a. Indeed, in the contrary, we
have hu; �a3‰P C �2a3ˆ

P C u�0�a3B
P i D 0 and ‰P .a3/ D .ˆP /0.a3/ D 0. Hence, we

derive ‰P .a3/C .ˆP /0.a3/ D 0. But we also have ˆP .a3/ D BP .a3/ D 0. Therefore,
we can divide in (3.12) by x � b and this yields a contradiction.

Thus, we need to see if a division by x � b is possible. Since ˆ.b/ D 0, B.b/ D
3b2.b2 C ab C a2/2.�2

a3
BP /.b3/ D 3b2

.b�a/2
BP .b3/, ˆ0.b/ C ‰.b/ D .b2 C ab C a2/

.�a3ˆ
P /.b3/ D �1

b�a
ˆP .b3/ and hw; �b‰ C �2bˆC w�0�bBi D 0. Then, two subcases

come up to discussion.

C.1.2.2.1. If BP .b3/ ¤ 0 or ˆP .b3/ ¤ 0, then the functional equation cannot be simpli-
fied and s D 3s0 C 4.

C.1.2.2.2. If BP .b3/ D ˆP .b3/ D 0, then the functional equation can be simplified by
x � b and w satisfies (2.11), with ˆ.x/ D .x2 C ax C a2/.�a3ˆ

P /.x3/ and B.x/ D
3x2.x2 C ax C a2/2.x2 C bx C b2/.�b3�

2
a3
BP /.x3/.

Using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2.c � b/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Then, it is easy to check that ˆ.b/D.b2CabCa2/.�a3ˆP /.b3/D0, B.b/D9b4.b2C
abCa2/2.�2

a3
BP /0.b3/D 9b4

.b�a/2
.BP /0.b3/, ˆ0.b/C‰.b/D 3b2

b�a
‰P .b3/ and hw; �b‰ C

�2
b
ˆC w�0�bBi D 0, and so, we need to consider the two ensuing sub-subcases.

C.1.2.2.2.1. If .BP /0.b3/ ¤ 0 or ‰P .b3/ ¤ 0, the functional equation cannot be subject
to simplification and then s D 3s0 C 3.

C.1.2.2.2.2. If .BP /0.b3/D‰P .b3/D 0, in this case, the functional equation can indeed
be divided by x � b and w satisfies (2.11), with

ˆ.x/ D .x2 C ax C a2/.x2 C bx C b2/
�
�b3�a3ˆ

P
�
.x3/;

B.x/ D 3x2.x2 C ax C a2/2.x2 C bx C b2/2
�
�2
b3
�2
a3
BP

�
.x3/:
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Lemma 2.1 yields

hw; �c‰ C �
2
cˆC w�0�cBi D 3c

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

At this point, the functional equation is no longer subject to simplification. By a contradic-
tion argument, suppose we have hu; �b3‰P C �2b3ˆ

P C u�0�b3B
P i D 0 and ‰P .b3/ D

.ˆP /0.b3/D 0. Therefore,‰P .b3/C .ˆP /0.b3/D 0. But sinceˆP .b3/D BP .b3/D 0.
Then, we can divide in (3.12) by x � b which yields a contradiction. Eventually, s D
3s0 C 2.

C.2. If ˆP .0/ D 0, then the functional equation can be simplified by x and w satis-
fies (2.11), withˆ.x/D .x � a/.x � b/x2.�0ˆP /.x3/ andB.x/D 3xBP .x3/. We derive
from Lemma 2.1 that

hw; �c‰ C �
2
cˆC w�0�cBi D 3c.c � a/

2.c � b/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
;

which implies thatˆ.0/D0, B.0/D0,ˆ0.0/C‰.0/D0 and hw;�0‰C �20ˆCw�
2
0Bi D

0. The functional equation can then be simplified by x andw satisfies (2.11), withˆ.x/D
.x � a/.x � b/x.�0ˆ

P /.x3/ and B.x/ D 3BP .x3/.
Again, by Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � a/

2.c � b/2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

So,ˆ.0/D 0,B.0/D 3BP .0/,ˆ0.0/C‰.0/D 3ab..ˆP /0.0/C‰P .0// and hw;�0‰C
�20ˆCw�

2
0Bi ¤ 0. Then, dividing by x in (2.11) cannot occur. So, as customary, we ana-

lyze the potential division by x � a and by x � b. We have ˆ.a/ D 0, B.a/ D 3BP .a3/,
ˆ0.a/C‰.a/D�a�2.a� b/ˆP .a3/ and hw;�a‰C�2aˆCw�0�aBiD0. Consequently,
two cases are unfolded.

C.2.1. If BP .a3/ ¤ 0 or ˆP .a3/ ¤ 0, then the functional equation cannot be simplified
by x � a. Thus, we can analyze the possible division by x � b. We haveˆ.b/D 0,B.b/D
3BP .b3/, ˆ0.b/C ‰.b/ D �.b � a/b�2ˆP .b3/ and hw; �b‰ C �2bˆC w�0�bBi D 0.
Two different sub-use cases should be considered.

C.2.1.1. If BP .b3/ ¤ 0 or ˆP .b3/ ¤ 0, then no further simplification of the functional
equation is possible and s D 3s0 C 4.

C.2.1.2. If BP .b3/ D ˆP .b3/ D 0, this infers that the functional equation can be sim-
plified to x � b and w satisfies (2.11), with ˆ.x/ D .x � a/x.�0ˆ

P /.x3/ and B.x/ D
3.x2 C bx C b2/.�b3B

P /.x3/. Both (4.10) and Lemma 2.1 imply that

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � a/

2.c � b/
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.b/D .b � a/b.�0ˆP /.b3/D 0,B.b/D 9b2.BP /0.b3/,ˆ0.b/C‰.b/D 3.b �
a/‰P .b3/ and hw; �b‰ C �2bˆC w�0�bBi D 0. This situation shades the light on two
other subcases.
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C.2.1.2.1. If .BP /0.b3/ ¤ 0 or ‰P .b3/ ¤ 0, then the functional equation cannot be sim-
plified and s D 3s0 C 3.

C.2.1.2.2. If .BP /0.b3/ D ‰P .b3/ D 0, then the functional equation can be simplified
to x � b and w satisfies (2.11), with ˆ.x/ D x.x � a/.x2 C bx C b2/.�b3�0ˆP /.x3/,
B.x/ D 3.x2 C bx C b2/2.�2

b3
BP /.x3/.

Using Lemma 2.1, we obtain

hw; �c‰ C �
2
cˆC w�0�cBi D 3.c � a/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

In this case, the functional equation is no longer subject to simplification. Indeed, on
the contrary, if hu; �b3‰P C �2b3ˆ

P C u�0�b3B
P i D 0 and ‰P .b3/ D .ˆP /0.b3/ D 0.

Therefore, ‰P .b3/C .ˆP /0.b3/ D 0. But we also have ˆP .b3/ D BP .b3/ D 0. Then,
one can divide in (3.12) by x � b yielding a contradiction. Hence, s D 3s0 C 2.

C.2.2. If BP .a3/ D ˆP .a3/ D 0, then the functional equation can be simplified by x �
a and w satisfies (2.11), with ˆ.x/ D .x � b/x.�0ˆP /.x3/ and B.x/ D 3.x2 C ax C
a2/.�a3B

P /.x3/.
Using Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.x � a/.x � b/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.a/D .a� b/a.�0ˆP /.a3/D 0,B.a/D 9a2.BP /0.a3/,ˆ0.a/C‰.a/D 3.a�
b/‰P .a3/ and hw; �a‰ C �2aˆC w�0�aBi D 0. This leads to the following subcases.

C.2.2.1. If .BP /0.a3/ ¤ 0 or ‰P .a3/ ¤ 0, then the functional equation cannot be sim-
plified by x � a. Thus, we can analyze the possible division by x � b. We have ˆ.b/ D
0, B.b/ D 3.b2 C ab C a2/.�a3B

P /.b3/ D 3
b�a

BP .b3/, ˆ0.b/ C ‰.b/ D �3b3.b �
a/.�a3�0ˆ

P /.b3/D�3.b2C abC a2/�1ˆP .b3/ and hw;�b‰C �2bˆCw�0�bBi D 0.
There are two subcases that may arise in this case.

C.2.2.1.1. If BP .b3/ ¤ 0 or ˆP .b3/ ¤ 0, then the functional equation cannot be simpli-
fied and s D 3s0 C 3.

C.2.2.1.2. If BP .b3/ D ˆP .b3/ D 0, then the functional equation can be simplified by
x � b and w satisfies (2.11), with ˆ.x/ D x.�0ˆ

P /.x3/ and B.x/ D 3.x2 C ax C

a2/.x2 C bx C b2/.�b3�a3B
P /.x3/.

Lemma 2.1 implies that

hw; �c‰ C �
2
cˆC w�0�cBi D 3.x � a/.x � b/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence, ˆ.b/ D b.�0ˆP /.b3/ D b�2ˆP .b3/ D 0, B.b/ D 9b2.b2 C ab C a2/.�a3BP /0

.b3/D 9b2

b�a
.BP /0.b3/,ˆ0.b/C‰.b/D 3‰P .b3/ and hw; �b‰C �2bˆCw�0�bBi D 0.

This fact provides us with two more sub-cases.

C.2.2.1.2.1. If .BP /0.b3/ ¤ 0 or ‰P .b3/ ¤ 0, then no simplification of the functional
equation may occur and s D 3s0 C 2.
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C.2.2.1.2.2. If .BP /0.b3/ D ‰P .b3/ D 0, then it is possible to simplify the functional
equation by x � b and w satisfies (2.11), with ˆ.x/ D x.x2 C bx C b2/.�b3�0ˆP /.x3/,
B.x/ D 3.x2 C ax C a2/.x2 C bx C b2/2.�2

b3
�a3B

P /.x3/.
According to Lemma 2.1, we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.x � a/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

In this case, the functional equation cannot be simplified. Indeed, by a contradiction argu-
ment, we have hu; �b3‰P C �2b3ˆ

P C u�0�b3B
P i D 0 and ‰P .b3/ D .ˆP /0.b3/ D 0.

Hence, ‰P .b3/ C .ˆP /0.b3/ D 0. In other words ˆP .b3/ D BP .b3/ D 0. Then, we
can divide in (3.12) by x � b and this brings us to a contradiction. As a consequence,
s D 3s0 C 1.

C.2.2.2. If .BP /0.a3/ D ‰P .a3/ D 0, then the functional equation can be simplified
by x � a and w satisfies (2.11), with ˆ.x/ D x.x � b/.x2 C ax C a2/.�a3�0ˆP /.x3/,
B.x/ D 3.x2 C ax C a2/2.�2

a3
BP /.x3/.

We use Lemma 2.1 to find

hw; �c‰ C �
2
cˆC w�0�cBi D 3.x � b/

2
˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Here, the functional equation cannot longer be divided by x � a. Indeed, on the contrary,
we have hu; �a3‰P C �2a3ˆ

P C u�0�a3B
P i D 0 and ‰P .a3/ D .ˆP /0.a3/ D 0. This

implies that ‰P .a3/ C .ˆP /0.a3/ D 0. Also, we have ˆP .a3/ D BP .a3/ D 0. Then,
dividing in (3.12) by x � b is not possible and this yields a contradiction.

So, we move now to inspect the possible division by x � b. We have ˆ.b/ D 0,
B.b/ D 3.b2 C ab C a2/2.�2

a3
BP /.b3/ D 3

.b�a/2
BP .b3/, ˆ0.b/ C ‰.b/ D �b.b2 C

ab C a2/.�a3�0ˆ
P /.b3/ D �1

b2.b�a/
ˆP .b3/ and hw; �b‰C �2bˆCw�0�bBi D 0. Then,

two situations may emerge.

C.2.2.2.1. If BP .b3/ ¤ 0 or ˆP .b3/ ¤ 0, then the functional equation cannot be simpli-
fied and s D 3s0 C 2.

C.2.2.2.2. If BP .b3/ D ˆP .b3/ D 0, then in this case, it is possible to divide the func-
tional equation by x � b andw satisfies (2.11), withˆ.x/D x.x2C axC a2/.�a3�0ˆP /
.x3/ andB.x/D3.x2CaxCa2/2.x2CbxCb2/.�b3�2a3B

P /.x3/. Relying on Lemma 2.1
we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3.x � b/

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

Hence,ˆ.b/D b.b2C abC a2/.�a3ˆP /.b3/D 0,B.b/D 9b2.b2C abC a2/2.�2
a3
BP /0

.b3/D 9b2

.b�a/2
.BP /0.b3/, ˆ0.b/C‰.b/D 3b2

b�a
‰P .b3/ and hw; �b‰C�2bˆCw�0�bBi D

0. As a consequence, we split the current subcase into two sub-subcases.

C.2.2.2.2.1. If .BP /0.b3/ ¤ 0 or ‰P .b3/ ¤ 0, then the functional equation cannot be
simplified and s D 3s0 C 1.
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C.2.2.2.2.2. If .BP /0.b3/ D ‰P .b3/ D 0, then the functional equation can be simplified
to x � b andw satisfies (2.11), withˆ.x/D x.x2C axC a2/.x2C bxC b2/.�b3�0ˆP /
.x3/ andB.x/D 3.x2C axC a2/2.x2C bxC b2/2.�2

b3
�2
a3
BP /.x3/. Using Lemma 2.1,

we get

hw; �c‰ C �
2
cˆC w�0�cBi D 3

˝
u; �c3‰

P
C �2

c3
ˆP C u�0�c3B

P
˛
:

In this case, the functional equation can no longer be submitted to further simplifica-
tion. Indeed, suppose we have hu; �b3‰P C �2b3ˆ

P C u�0�b3B
P i D 0 and ‰P .b3/ D

.ˆP /0.b3/D 0. Therefore,‰P .b3/C .ˆP /0.b3/D 0. But we haveˆP .b3/DBP .b3/D
0. Then, we can divide in (3.12) by x � b and this yields a contradiction. Hence, s D 3s0.

Next, we will introduce some notations in order to enlight the presentation of our main
result. Let

XP .x/ WD jˆP .x/j C jBP .x/j; Y P .x/ WD j‰P .x/j C j.BP /0.x/j;

ZP .x/ WD 3‰P .x/C 2.ˆP /0.x/; (4.35)

MP .x/ WD jˆP .x/j C j.BP /0.x/j;

NP .x/ WD j‰P .x/ � .ˆP /0.x/j C j.BP /00.x/j; (4.36)

RP .x/ WD j‰P .x/j C j.‰P /0.x/j C j.BP /000.x/j: (4.37)

Then, we have the following theorem.

Theorem 4.1. Let s, s0 be the class of w and u D �$ .w/, respectively. Then, we distin-
guish the following cases.

Case A. �.x/ D x.x C ˇ0/, ˇ0 ¤ 0. Then,

ˆP .0/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .�ˇ30/ ¤ 0) s D 3s0 C 6;

XP .�ˇ30/ D 0)

8<:Y P .�ˇ30/ ¤ 0) s D 3s0 C 5;

Y P .�ˇ30/ D 0) s D 3s0 C 4:

ˆP .0/ D 0)8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

BP .0/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .�ˇ30/ ¤ 0) s D 3s0 C 4;

XP .�ˇ30/ D 0)

8<:Y P .�ˇ30/ ¤ 0) s D 3s0 C 3;

Y P .�ˇ30/ D 0) s D 3s0 C 2;

BP .0/ D 0)

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

ZP .0/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .�ˇ30/ ¤ 0) s D 3s0 C 3;

XP .�ˇ30/ D 0)

8<:Y P .�ˇ30/ ¤ 0) s D 3s0 C 2;

Y P .�ˇ30/ D 0) s D 3s0 C 1;

ZP .0/ D 0)

8̂̂̂<̂
ˆ̂:
XP .�ˇ30/ ¤ 0) s D 3s0 C 4;

XP .�ˇ30/ D 0)

8<:Y P .�ˇ30/ ¤ 0) s D 3s0 C 1;

Y P .�ˇ30/ D 0) s D 3s0:
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Case B. �.x/ D .x � d/2 with d D �ˇ0
2
¤ 0. Then,

ˆP .0/ ¤ 0)8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

BP .d3/ ¤ 0) s D 3s0 C 6;

BP .d3/ D 0)

8̂̂̂̂
<̂
ˆ̂̂:
MP .d3/ ¤ 0) s D 3s0 C 5;

MP .d3/ D 0)

8̂<̂
:
NP .d3/ ¤ 0) s D 3s0 C 4;

NP .d3/ D 0)

´
RP .d3/ ¤ 0) s D 3s0 C 3;

RP .d3/ D 0) s D 3s0 C 2:

ˆP .0/ D 0)8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

BP .d3/ ¤ 0) s D 3s0 C 4;

BP .d3/ D 0)

8̂̂̂̂
<̂
ˆ̂̂:
MP .d3/ ¤ 0) s D 3s0 C 3;

MP .d3/ D 0)

8̂<̂
:
NP .d3/ ¤ 0) s D 3s0 C 2;

NP .d3/ D 0)

´
RP .d3/ ¤ 0) s D 3s0 C 1;

RP .d3/ D 0) s D 3s0:

Case C. �.x/ D .x � a/.x � b/ with ab ¤ 0, a ¤ b. Then,

ˆP .0/ ¤ 0)8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

XP .a3/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .b3/ ¤ 0) s D 3s0 C 6;

XP .b3/ D 0)

8<:Y P .b3/ ¤ 0) s D 3s0 C 5;

Y P .b3/ D 0) s D 3s0 C 4;

XP .a3/ D 0)

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Y P .a3/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .b3/ ¤ 0) s D 3s0 C 5;

XP .b3/ D 0)

8<:Y P .b3/ ¤ 0) s D 3s0 C 4;

Y P .b3/ D 0) s D 3s0 C 3;

Y P .a3/ D 0)

8̂̂̂<̂
ˆ̂:
XP .b3/ ¤ 0) s D 3s0 C 4;

XP .b3/ D 0)

8<:Y P .b3/ ¤ 0) s D 3s0 C 3;

Y P .b3/ D 0) s D 3s0 C 2:

ˆP .0/ D 0)8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

XP .a3/ ¤ 0)

8̂̂̂<̂
ˆ̂:
XP .b3/ ¤ 0) s D 3s0 C 4;

XP .b3/ D 0)

8<:Y P .b3/ ¤ 0) s D 3s0 C 3;

Y P .b3/ D 0) s D 3s0 C 2;

XP .a3/ D 0)

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Y P .a3/ ¤ 0)

8̂<̂
:
XP .b3/ ¤ 0) s D 3s0 C 3;

XP .b3/ D 0)

´
Y P .b3/ ¤ 0) s D 3s0 C 2;

Y P .b3/ D 0) s D 3s0 C 1;

Y P .a3/ D 0)

8̂<̂
:
XP .b3/ ¤ 0) s D 3s0 C 2;

XP .b3/ D 0)

´
Y P .b3/ ¤ 0) s D 3s0 C 1;

Y P .b3/ D 0) s D 3s0:
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5. An example of Laguerre–Hahn linear functional of class 1

In this section, as an application of the results of the previous sections, we determine all the
Laguerre–Hahn orthogonal polynomial sequences ¹Wnºn�0 of class 1 obtained via cubic
transformations W3n.x/ D Pn.x

3/, requiring ¹Pnºn�0 to be a singular Laguerre–Hahn
sequence of class zero.

Proposition 3.1 and Theorem 4.1 state that w is a Laguerre–Hahn linear functional
of class s D 1 if and only if the first component u D �$ .w/, is a Laguerre–Hahn linear
functional of class s0 D 0 and one of the following conditions hold:

A.2.2.2.2.1. �.x/ D x.x C ˇ0/; ˇ0 ¤ 0I ˆP .0/ D 0; BP .0/ D 0; ZP .0/ D 0;

XP .�ˇ30/ D 0; Y P .�ˇ30/ ¤ 0:

A.2.2.1.2.2. �.x/ D x.x C ˇ0/; ˇ0 ¤ 0I ˆP .0/ D 0; BP .0/ D 0; ZP .0/ ¤ 0;

XP .�ˇ30/ D 0; Y P .�ˇ30/ D 0:

B.2.2.2.2.1. �.x/ D .x � d/2; d D �
ˇ0

2
¤ 0I ˆP .0/ D 0; BP .d3/ D 0;

MP .d3/ D 0; NP .d3/ D 0; RP .d3/ ¤ 0:

C.2.2.1.2.2. �.x/ D .x � a/.x � b/; ab ¤ 0; a ¤ bI ˆP .0/ D 0; XP .a3/D0;

Y P .a3/ ¤ 0; XP .b3/ D 0; Y P .b3/ D 0:

C.2.2.2.2.1. �.x/ D .x � a/.x � b/; ab ¤ 0; a ¤ bI ˆP .0/ D 0; XP .a3/D0;

Y P .a3/ D 0; XP .b3/ D 0; Y P .b3/ ¤ 0:

First, we will analyze the conditions in A.2.2.2.2.1. Let us consider a complex number
ˇ0 ¤ 0 and according to (4.35), it is clear that these conditions are equivalent to �.x/ D
x.x C ˇ0/. As a consequence,

ˆP .0/ D 0; BP .0/ D 0; 3‰P .0/C 2.ˆP /0.0/ D 0; ˆP .�ˇ30/ D 0;

BP .�ˇ30/ D 0; ‰P .�ˇ30/ ¤ 0 or .BP /0.�ˇ30/ ¤ 0:

Since s0 D 0 implies degˆP � 2, then from the conditions ˆP .0/ D ˆP .�ˇ30/ D 0 we
have

ˆP .x/ D x.x C ˇ30/: (5.1)

Therefore, from (2.15) and (2.16), u D �$ .w/ can be obtained by shifting the linear
functional satisfying (3.12) with ˆP .x/ D x2 � 1. In fact,

u D hˇ30 =2
ı ��1J .˛; �; �; �/;

where J .˛; �1; �; �/ is the singular Laguerre–Hahn linear functional of class zero analo-
gous to the classical Jacobi. Indeed, it satisfies [10]

.�J .˛; �; �; �//0 C  J .˛; �; �; �/C '.x�1J 2.˛; �; �; �// D 0;



Cubic decomposition of a Laguerre–Hahn linear functional I 35

with

�.x/ D x2 � 1;

 .x/ D .˛ � 2/x C �;

'.x/ D .1 � ˛/x2 C

�
˛� � 2�

˛ � 1

˛ � 2

�
x �

�2

˛ � 2
C �� C �.˛ C 1/ � 1:

J .˛; �; �; �/ is regular if and only if � ¤ 0, ˛ ¤ 2, ˛ ¤ �n, n � 0, and ˛ ¤ ˙� � 2n,
n � 1.

In this case,

‰P .x/ D .˛ � 2/x C
ˇ30
2
.˛ � 2C �/; (5.2)

BP .x/ D

�
2

ˇ30

��2�
.1 � ˛/

�
2

ˇ30
x C 1

�2
C

�
˛� � 2�

˛ � 1

˛ � 2

��
2

ˇ30
x C 1

�
�

�2

˛ � 2
C �� C �.˛ C 1/ � 1

�
: (5.3)

From 3‰P .0/C 2.ˆP /0.0/ D 0 and the fact that .ˆP /0.0/ D ˇ30 , ‰P .0/ D ˇ30
2
.˛ � 2C

�/, we get

� D
2

3
� ˛;

which readily yields

‰P .x/ D .˛ � 2/x �
2

3
ˇ30 : (5.4)

Moreover, conditions BP .0/ D 0 and BP .�ˇ30/ D 0 are equivalent to

� D
2

3

.2 � 3˛/.˛ � 1/

˛.˛ � 2/
; � D

4

9

.3˛ � 1/

˛.˛ C 1/
:

As a consequence,
BP .x/ D .1 � ˛/x.x C ˇ30/: (5.5)

Therefore, it follows from (5.1), (5.4), and (5.5) and Proposition 3.1 that

ˆ.x/ D x4.x C ˇ0/.x
3
C ˇ30/;

‰.x/ D 3x3.x C ˇ0/

�
.˛ � 2/x3 �

2

3
ˇ30

�
� 2.2x C ˇ0/x

3.x3 C ˇ30/;

B.x/ D 3.1 � ˛/x5.x3 C ˇ30/:

Thus, by simple computations we obtain, after division by x4.x C ˇ0/

ˆ.x/ D x3 C ˇ30 ;

‰.x/ D .3˛ � 5/x2 C ˇ0x � ˇ
2
0 ;

B.x/ D 3.1 � ˛/x.x2 � ˇ0x C ˇ
2
0/: (5.6)
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So, here, w is a Laguerre–Hahn linear functional of class s D 1 and satisfying (2.11) with
ˆ, ‰, B given in (5.6).

The linear functionals described above are the unique Laguerre–Hahn linear function-
als of class 1 obtained via cubic transformations of the form W3n.x/ D Pn.x

3/, requiring
¹Pnºn�0 to be a singular Laguerre–Hahn sequence of class zero (see [27]). In fact, we will
show that the conditions in A.2.2.1.2.2., B.2.2.2.2.1., C.2.2.1.2.2., and C.2.2.2.2.1. are not
compatible with the regularity of u. Indeed, let us assume that there exists a regular linear
functional w satisfying (2.11) under the conditions in A.2.2.1.2.2.

By the notations (4.35), it is clear that these conditions are equivalent to, �.x/ D
x.x C ˇ0/, ˇ0 ¤ 0;

ˆP .0/ D 0; BP .0/ D 0; 3‰P .0/C 2.ˆP /0.0/ ¤ 0; ˆP .�ˇ30/ D 0;

BP .�ˇ30/ D 0; ‰P .�ˇ30/ D 0; .BP /0.�ˇ30/ D 0:

Since s0 D 0 implies degˆP � 2, then by the conditions ˆP .0/ D 0 and ˆP .�ˇ30/ D 0
we have

ˆP .x/ D x.x C ˇ30/:

Thus, in this case,‰P andBP are given by equations (5.2) and (5.3). ConditionsBP .0/D
BP .�ˇ30/ D .BP /0.�ˇ30/ D 0 and on account of degBP � 2, we assume that BP is
identically null, which gives ˛ D 1, � D 0 and

�2 C 2� � 1 D 0: (5.7)

On the other hand, from the condition ‰P .�ˇ30/ D 0 and taking into account ˇ0 ¤ 0, it
is clear that � D �1. Hence, from (5.7) we get � D 0 which contradicts the regularity of
the linear functional u.

Next, let us assume that there exists a regular linear functional w satisfying (2.11)
under conditions in B.2.2.2.2.1.

Since s0 D 0 implies degˆP � 2, then by the conditions ˆP .0/ D ˆP .d3/ D 0 we
have

ˆP .x/ D x.x � d3/:

Therefore,
u D h�d3=2 ı ��1J .˛; �; �; �/:

In this case,

‰P .x/ D .˛ � 2/x �
d3

2
.˛ � 2C �/;

BP .x/ D

�
2

d3

��2�
.1 � ˛/

�
�
2

d3
x C 1

�2
C

�
˛� � 2�

˛ � 1

˛ � 2

��
�
2

d3
x C 1

�
�

�2

˛ � 2
C �� C �.˛ C 1/ � 1

�
:
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Taking into account that conditions

BP .d3/ D .BP /0.d3/ D .BP /00.d3/ D 0

hold, and since degBP � 2, we assume that the polynomial BP is identically zero, which
then gives ˛ D 1, � D 0 and

�2 C 2� � 1 D 0: (5.8)

On the other hand, based on‰P .d3/� .ˆP /0.d3/D 0, the fact that .ˆP /0.d3/D d3 and
‰P .d3/ D �d

3

2
.�C 1/, we get

d3

2
.˛ � � � 4/ D 0;

which gives � D �1. Hence, combined with (5.8) we then have � D 0 which is in contra-
diction with the regularity of the linear functional u.

Finally, let us assume that there exists a regular linear functional w satisfying (2.11)
under the conditions in C.2.2.1.2.2. or those in C.2.2.2.2.1. Since s0 D 0 implies degˆP �
2, so from the conditions

ˆP .0/ D ˆP .a3/ D ˆP .b3/ D 0;

we conclude that, in this case, degˆP � 3 which yields a contradiction.
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