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First-order mean-field games on networks and
Wardrop equilibrium

Fatimah Al Saleh, Tigran Bakaryan, Diogo Gomes, and
Ricardo de Lima Ribeiro

Abstract. We explore the relationship between Wardrop equilibrium and stationary mean-field
games (MFG) on networks with flow-dependent costs. First, we present the notion of Wardrop
equilibrium and the first-order MFG model on networks. We then reformulate the MFG prob-
lem into a road traffic problem, establishing that the flow distribution of the MFG solution is the
corresponding Wardrop equilibrium. Next, we prove that the solution of the MFG model can be
recovered using the corresponding Wardrop equilibrium. Next, we examine the cost properties
and calibrate MFG with respect to travel cost problems on networks. We propose a novel cal-
ibration approach for MFGs. Additionally, we demonstrate that non-monotonic MFGs can be
generated by even simple travel costs.

1. Introduction

Models for flows on networks arise in the study of road traffic and pedestrian crowds.
We consider stationary models for which the cost of traversing a network edge de-
pends on the agent flow in that edge. These models capture congestion effects and
agents’ behavior and preferences, including crowd aversion and attempts to mini-
mize travel time. Agents minimize their costs by considering the flow. A well-studied
stationary equilibrium is the one following Wardrop’s first criterion: “Equal jour-
ney times on all used routes, and less than those experienced by a single vehicle on
any unused route.”, [40,41]. Multiple authors have studied Wardrop equilibria; see,
for example, the survey [23]. In the context of optimal transport, Wardrop equilib-
rium was addressed in [22] and [21]. Road traffic is modeled on directed networks.
Pedestrian network models are inherently undirected, so we introduce the associated
directed network. In a road traffic model, an edge is an aggregated entity, hence the
model does not describe the microstructure within the edge. In [26], a mean-field
game (MFG) model on undirected networks was introduced to address these matters.
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The MFG theory was introduced in [29, 33] to describe the dynamics of systems
with a large number of rational agents. In these models, each agent optimizes an indi-
vidual functional, depending on their actions and the distribution of other agents. An
MFG model comprises a backward-in-time Hamilton—Jacobi (HJ) equation coupled
with either a forward-in-time Fokker—Planck (FP) equation, or a transport equation.
The HJ equation describes the optimal behavior of an agent; the FP equation gov-
erns the distribution of the agents. MFG models have been used to address pedestrian
flows [13], crowds [32], population dynamics [14], building evacuation problems [24],
and in the study of traffic flows [11].

Recently, there has been significant interest in studying nonlinear PDEs on net-
works due to their applications in traffic and pedestrian dynamics. Various notions
of viscosity solutions to HJ equations on networks were studied in [1, 30, 38]. Later
in [18], the authors proved the equivalence of the viscosity solutions of HJ equations
on networks. The existence and uniqueness of viscosity solutions to Eikonal equa-
tions on networks are addressed in [20]. More recently, progress on junction problems
has been obtained in [35, 36]. Stationary HJ equations on networks were considered
in [39] and [31]. Concerning transport phenomena on networks, the survey paper [12]
examines numerous results. More recent works in this direction include [17, 25].

Several researchers in the MFG community examined MFGs on networks, par-
ticularly second-order problems. Stationary second-order MFGs were studied in [2,
15, 19]. The time-dependent case was studied in [3, 16]. However, these methods for
MFGs on networks are not applicable to first-order MFGs, which present a distinct
set of phenomena, causing issues such as loss of smoothness in HJ equations and
value function discontinuity at vertices. First-order MFGs on networks were consid-
ered in [7-10], specifically in the context of optimal visiting problems where agents
have multiple targets. The methods in those papers, since they focus on general time-
dependent problems, are quite different from ours, where we take full advantage of
the stationary nature of the game. Recently, in [6], time-dependent MFGs on networks
were analyzed using weak solutions. First-order deterministic MFGs with control on
the acceleration were studied in [4,5]. As far as the authors are aware, there is no sys-
tematic approach for solving stationary first-order MFGs on networks, despite their
relevance in scenarios that cannot be modeled by second-order MFGs, such as vehic-
ular networks or dense crowds.

The relation between Wardrop equilibrium and MFGs on networks was observed
in [26]. However, the exact relationship between these two models was not estab-
lished there. We address the challenge of converting an MFG on a network into a
standard road traffic problem. Moreover, we demonstrate how to utilize the Wardrop
equilibrium of the transformed problem to solve the original MFG.
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Organization and results

In this paper, we consider a road traffic model, where agents enter through a finite
set of vertices with a prescribed flow and leave through a set of exit vertices where
they pay an exit cost. Although our MFG model is defined on undirected networks,
the road traffic model is closely related to an MFG model on networks. In our MFG
model, the entry flows and the exit costs are given, but the flow direction in each edge
is not prescribed a priori. We discuss a method to transform one model into the other.

Section 2 outlines the main definitions and results about Wardrop equilibria. We
introduce a road traffic model on a directed network, with travel costs that depend the
flow in the edges. Furthermore, we prove the uniqueness of the Wardrop equilibrium
(refer to Theorem 2.6). Next, we present our MFG model on networks. We start by
examining an MFG model on a single edge and recalling the flow technique from
[27, 28] (see Section 3). We then define a cost that depends on the flow in the edge
for the MFG model (see Definition 5). Then, we establish the connection between
the cost and the solution to the MFG system (1.1). In Section 4, we further discuss
MFG models on networks. Our model is defined by a one-dimensional, stationary,
first-order MFG system for each edge ey,

{ Hi(x,ux(x),m(x)) =0,

(1.1)
(—=m(x)Dp Hy (x, ux(x), m(x)))x = 0,

alongside boundary conditions at the vertices. Here, u is the value function for an
agent and m is the probability density of agents distribution. The first equation of
(1.1) is the Hamilton—Jacobi (HJ) equation and the latter equation is the Fokker—
Planck (FP) or transport equation.

The first main contribution of this paper is the MFG problem’s reformulation into
a road traffic problem and the creation of a method to recover the MFG solution from
the corresponding Wardrop equilibrium. In Section 5, we start with the undirected
network of the MFG model and construct an associated directed network to define a
corresponding road traffic problem. Then we prove that the MFG problem’s solution is
the Wardrop equilibrium of its corresponding road traffic problem (see Theorem 5.3).
Moreover, Proposition 7 proves that the associated road traffic problem has a unique
solution. This finding establishes the uniqueness of the solution to the original MFG
problem (see Proposition 8). To finalize the connection between MFG and road traffic
models, in Section 6, we show the process of retrieving the solution to the MFG
problem from the associated Wardrop equilibrium (see Theorem 6.2).

In contrast to the road traffic model where the cost depends on the edges, MFG
models enable costs within an edge to vary at different points. Thus, the conversion
from MFG and road traffic models averages the MFG’s microscopic effects into a
macroscopic cost for the road traffic model. Section 7, containing the paper’s sec-
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ond main result, examines how the MFG’s microscopic properties encoded in the
Hamiltonian translate to the road traffic model’s macroscopic properties. We also
investigate a class of Hamiltonians for which the associated cost function fulfills the
requirements for a unique correspondence between MFG and road traffic models.

One can consider the edge’s cost as travel time, which can be experimentally mea-
sured based on the flow of agents on the edges. Therefore, in principle, these models
are simple to calibrate: it is enough to have data on the flow rates and corresponding
velocities. This calibration issue is more complex for MFG models. Hence, Section 8
demonstrates the calibration of an MFG model on a single edge using the concepts
and results from previous sections. The problem is the following.

Problem 1. Consider the cost ¢ for an agent to cross an edge. Suppose c is given as a
function of the flow and the direction of travel. Determine an MFG model whose cost
coincides with c.

Note that the cost, ¢, may not be the travel time, and as far as the authors know,
before this work, there was no systematic approach to solving Problem 1. We rigor-
ously state the preceding problem in Section 8 and solve it. We demonstrate how non-
monotone MFG models arise as solutions to Problem 1 for natural costs and might
be necessary for modeling general traffic problems. Non-monotone problems war-
rant further research due to their surprising modeling implications as agents appear to
prefer congested areas.

This work suggests several future research directions, including the exploration
of non-monotone MFGs, examining their general properties, and extending our mod-
els to dynamic settings. The non-monotonicity of these MFG models introduces the
potential for new phenomena, like multiple equilibria or instability, warranting further
investigation.

2. Wardrop equilibrium

We examine a steady-state model where agents navigate a network. This network
features flow-dependent travel costs on its edges.

After discussing the model’s components, we delve into Wardrop’s equilibrium
concept [41]. In Section 5, we establish a connection between this concept and the
MFG model detailed in Section 4. The model comprises the following:

(1) A finite directed network (graph), = (E, 17), where E = er:kel,2,....n
represents the set of edges and V= v; 10 €1,2,...,m represents the set of
vertices. Each edge e corresponds to a pair of endpoints (v, v;), which can
be used interchangeably with € when no confusion arises.



First-order mean-field games on networks and Wardrop equilibrium 5

(2) The flow denotes the number of agents passing a specific point in a given time
unit. The flow in edge € is denoted by J.
The network’s flow refers to the 77-dimensional vector j = (J1,..., Ji)-

(3) A travel cost on each edge ej defined by a continuous function ¢y : E > R.
The cost vector for the edges is denoted as ¢(j) = (¢1()), ...,z (J)). Note
that (¢(j),j) =Y r—; k(j)Jjk indicates the social cost per unit of time
corresponding to the distribution of flows j.

(4) Agents travel the network entering via X entrance vertices and exiting through
L exit vertices, which are distinct from the entrance vertices. For simplicity,
we assume that the last i vertices in V' are the exit vertices. Additionally, we
presume that entrance and exit vertices have an incidence of 1. As mentioned
in the remark below, this assumption entails no loss of generality.

Remark 2.1. Should a vertex with an incidence greater than 1 be identified as an
entrance, we attach to it an auxiliary entrance edge, designating another vertex as the
new entrance vertex. Similarly, for an exit vertex, we relabel it by adding an auxiliary
exit edge.

(5) A prescribed flow of agents, denoted by the entry flow ¢ = (i1, ...,13) > 0,
is given at entrance vertices, while entry flows for other vertices are set to
zero. The information is encoded in a (7 — [t)-dimensional vector B. Each
component of B corresponds to a non-exit vertex.

(6) At the i exit vertices, agents incur an exit cost (Z('ﬁ,) fori =m— [+
1,...,m. This cost is assumed to be zero, resulting in no loss of generality, as
explained in Remark 2.2.

Remark 2.2. If the exit cost at an exit vertex is nonzero, we attach an auxiliary exit
edge to it and relabel its extra vertex as the new exit vertex. In the auxiliary exit edge,
the travel cost is the exit cost, and at the new exit vertex, the exit cost is zero.

Define K as the (77 — [{) x i Kirchhoff matrix, obtained by removing [ lines
corresponding to the exit vertices of I' from the incidence matrix of I’

-1 ifeg = (i, 0y),
Kr=31 ife =@, %),
0 ifT; &2,

wherei € {1,2,...,m—j}and k € {1,2,...,7n}. Rows of the K matrix correspond
to non-exit vertices, while columns correspond to the edges.
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Definition 1. A distribution of flows, j > 0, is admissible if
Kj+B=0. 2.1
The set of all admissible distributions of flows is denoted by 4.

Remark 2.3. Equations in (2.1) correspond to Kirchhoff’s law for non-exit vertices.

Lemma 2.4. The set 4 := A / K, the quotient of A by the kernel of K, both defined
above, is closed, convex, and bounded.

Proof. Because we are looking at the quotient, there is a representative of the equiva-
lence class for which each coordinate of j is at most the sum of the entries of B, this
is the canonical representative.

Convexity and closedness are due to the linear nature of the admissibility equa-
tion (2.1). [ ]

Following Smith [40], we define the Wardrop equilibrium.

Definition 2. A distribution of flows j* € 4 is a Wardrop equilibrium if, for all
admissible j € A,
€™, j* =i =o. (2.2)

In Section 6, we prove that Definition 2 implies that in a Wardrop equilibrium,
any flow-carrying minimizes the travel cost to an exit.

We use the notion of monotonicity to state and prove a result on the uniqueness of
Wardrop equilibria.

Definition 3. A cost ¢ is monotone if, for any ji, j2 € A,
(€(j1) —¢€(j2), j1—Jj2) = 0. (2.3)

If j1 # J2, the inequality in (2.3) is strict; in that case, we say that € is strictly mono-
tone.

Example 2.5. If ¢; depends only on j; and is an increasing function, then ¢ is the gra-
dient of a convex function, hence monotone. In fact, in this case, existence of Wardrop
equilibria is connected to the existence of a minimizer of such convex function.

Existence of a Wardrop equilibrium is obtained under continuity of the cost func-
tion ¢. Strict monotonicity of the cost is sufficient for uniqueness.

Theorem 2.6 (Existence and uniqueness of Wardrop equilibrium). Suppose the cost
C is continuous and strictly monotone on . Then, there is one, and only one, Wardrop
equilibrium.
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Proof. We focus on the issue of existence first. Let T : A C ]R?jr — 4 be defined by
T(j) =Projz(j —c(j)).

where Proj 7 is the orthogonal projection from ]R’i to A.

A fixed point of T belongs to the boundary of 4 and is a Wardrop equilibrium.
With the result of Lemma 2.4, and Brouwer’s Fixed Point Theorem, we obtain the
existence.

To prove uniqueness, suppose j1 and jz are Wardrop equilibria. Then, for any
J € 4, we have

(€. j1—J)=0 and (c(j2).J2—J) =0.

Accordingly,
(€(1) —¢(j2). j1—Jj2) =0,
and because ¢ is strictly monotone, j3 = j2. [

It is important to add that the unique Wardrop equilibrium is cost efficient, as it
does not allow extra flow with positive cost.

Definition 4. A flow distribution j¢ > 0 on TCisa flow loop if it is a nontrivial solution
of K jo = 0.

Proposition 1. If j* is a Wardrop equilibrium, then
(€(j™). jo) = 0,

for any flow loop, Jy.

Proof. Let j* be a Wardrop equilibrium and let jg be a flow loop. Set
j©) = J* + ejo.

Since jg is a loop, j(g) € #A, for ¢ € Rg’ . The condition for a Wardrop equilibrium
(2.2) for the particular j(¢) implies that

0>(c(J").J" —(J* +¢cjo)) = —€{€(J*). Jo), Ve>0.
Thus, (¢(j*), jo) = 0. -

Now, we examine the structure of the Wardrop equilibrium in a specific case rel-
evant to MFGs on undirected networks. We associate a pair of directed edges with
opposite orientations to every undirected edge. Thus, these networks have as a pri-
mary building block the loop network in Figure 1.
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Figure 1. Loop subnetwork.

Proposition 2. Consider a network containing both edges e, = (V,, ;) and its re-
verse, €1 = (V;, V). Let Ji > 0 be the flow in e and j; > 0 be the flow in €. Let the
cost in e, and e; be ¢ (J) and ¢;(J), respectively, where j = (Ji, Ji, Js) and Js is the
flow on all the other edges. Furthermore, suppose that the costs ¢ and ¢; satisfy the
following condition:

(D +a() >0, V. (2.4)

Then, any Wardrop equilibrium, j* = (i, ji', J§), satisfies the complementary con-
dition
e =o. 2.5)

Proof. We prove the theorem for a network containing the subnetwork shown in
Figure 1. To simplify, we will consider only the edges and flows shown in Fig-
ure 1. Assume that j* = (j, j;", j§) is a Wardrop equilibrium and does not satisfy
(2.5), i.e., without loss of generality j* > j* > 0. Consider the admissible flow
Jo = (g —J;'»0, j§), then by (2.2), we have

0=(c(j").J" —Jjo) = @) +a(G N
which contradicts assumption (2.4). Hence, j* cannot be a Wardrop equilibrium. =

With this proposition established, we now analyze cost monotonicity in a network
containing the subnetwork in Figure 1.

Example 2.7. The monotonicity condition for the subnetwork in Figure 1 is
(@1(0).e2()) = @ (). c2(1). T —J) =0,

where j = (J1. j2) and j = (J1, j2). Suppose that ¢1(j) = ¢1(j1 — J2) and ¢2(j) =
¢2(j2 — J1). Then, we have

€11 = 2) =1y = 121 = J1) + (@2 — 1) = ¢2(J2 — /1) (J2 — J2) = 0.
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This example can be generalized to networks constructed from similar subnet-
works as in Figure 1. The sum in the monotonicity condition

D @) =&k — ji) = 0
k

can be organized in related pairs of edges.

3. Mean-field games problem in a single edge

We will focus on a single edge to begin our discussion of MFGs on networks.

3.1. MFG system in an edge

Consider an edge that is identified with the interval [0, 1]. In this edge, the Hamilto-
nian, H : [0, 1] x R x R:{ — R, is smooth and convex in the second variable. The
MEFG consists of the following system of equations:

{ H(x,ux(x),m(x)) =0,

3.
(=m(x)Dp H(x,1ux(x), m(x)))x = 0.

The first equation is the Hamilton—Jacobi (HJ) equation, while the second equation
is the transport equation. We aim to find the agent’s density m : [0, 1] — Rg’ and the
value function u : [0, 1] — R as the two unknowns.

The constant flow, j, for the second equation in (3.1), leads to an algebraic equa-
tion for m(x, j) (denoted by m for simplicity)

J =-mDyH(x,ux,m), (3.2)

see Proposition 5 for details. This procedure is the current method from [27]. Here
we refer to the currents as flows. It defines, abusing the notation, the distribution of
agents m(-, j) and the value function u(-, j) across the edge whose flow is ;.

We will demonstrate the application of the flow method using a prototypical fam-
ily of Hamiltonians for MFGs with congestion. While the Hamiltonian is not defined
for m = 0, the same method works.

Example 3.1. Let
lpI?
H(x.pom) = 2o+ V(x) = g(m).
m
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where g is an increasing function, V' is a smooth function and 0 < « < 2 is the con-
gestion strength. Then, (3.1) becomes

| |? Vix) =
e T V() = g0m), (3.3)

(—m'™%uy), = 0.

Two special values of « exist: & = 0 corresponds to the uncongested MFG and o = 1
corresponds to the critical congestion model. For the critical congestion model, the
system decouples; u becomes a linear function and m can be obtained by solving the
first equation in (3.3).

Because the flow, j = —m!

~®u,, is constant, we transform (3.3) into the follow-
ing algebraic system:
%)
J
2m2—oc

1
j/ m* dx = u(0, j) —u(l. j),
0

+V(x) = g(m),
(3.4

provided m > 0. We refer to the last equation in (3.4) as the edge equation. In this
equation, either u(0, j) or u(1, j) is given by boundary conditions. The sign of the
flow indicates the direction in which the agents travel, from O to 1 when j > 0 and
from 1 to 0 when j < 0. The edge equation determines u (0, j) as a function of u(1, j)
when j > 0 and u(1, j) as a function of 4(0, j) when j < 0. This result varies based
on the specification of boundary conditions, which we will discuss next.

3.2. Travel cost in one edge

Consider the edge [0, 1] together with a Hamiltonian H : [0, ] x R x R — Rg’ . Given
the flow j in this edge, let co1 () be the cost of moving from left to right (i.e., from 0
to 1) and c19(j) be the cost of moving from right to left (i.e., from 1 to 0). To retrieve
formulas for these costs, we introduce the Lagrangian, L, as follows:

L(x,v,m) = sup{—pv — H(x, p,m)}.
P
We also define the value function, u, given a distribution m, as follows:

T
u(x) = rxn%p /(; L(x,x,m(x)) dt + u(x(T)).

x(0)=x,
x(T)€{0,1}
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The cost of moving from x € [0, 1] to y € [0, 1], given the distribution m, is

T
¢xy(m) = min / L(x,x,m(x))dt.
x,T, Jo

x(0)=x,
x(T)=y

We let the cost depend on the flow, j, by substituting m(x) by m(x, j).

Definition 5. For j € R, given a distribution of agents m(-, j), the optimal cost of
traveling from x to y on the edge is

T
cxy(J) = miTn/ L(x,x,m(x, j))dt,
xT, Jo

x(03=x,
x(T)=y

where the minimum is taken over all Lipschitz trajectories X and terminal times 7.

When (x,y) = (0,1) or (x, y) = (1, 0), the cost and the boundary conditions are
related as follows:

The agent at a vertex of an edge has two options: leaving this edge or crossing
it to get to the opposite vertex of the same edge. This is encoded in the following
inequalities:

{u(w) < ci0(j) +u(0. /). 35)
u(0, j) = co1(j) +u(l, j).
Moreover, the self-consistency in MFGs requires that the direction in which the agent
moves to be aligned with the direction of the flow. This is reflected in the following
condition:

1
J>0=u0) =cor(j)+u(l) < 601(j)=—/ ux(x, j)dx,
0 (3.6)

1
<02 u(l) = cro(j) +u0) © 61o(j)=/0 iy (x, j) dx.

Remark 3.2. From (3.6) we note that —u (-, j) and u (-, j) represent the local costs
for co1(j) and c¢19(j ), respectively.

Remark 3.3. The optimality conditions in (3.5) imply the following local compati-
bility condition:
—co1(j) =< c10(j)-

This can be interpreted as loops having a non-negative cost
co1(j) + c10(j) = 0.

Proposition 3. Ifthe costs in (3.5) are non-negative, then the inequalities in (3.5) are
redundant.
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Proof. The conditions for optimality (3.5) imply
—co1(j) =u(l,j) —u(0, ) = c10()).

If j # 0, one of the two inequalities becomes an equality. As the costs are non-
negative, the other inequality holds. ]

Now, we analyze the variational problems that define the costs cg; and cj¢. Start-
ing with cg;, we parametrize, in the integral of Definition 5, the velocity v by the
space coordinate x, so dx = v dt provided that x > 0, we get

VL(x,v(x, j),m(x, j))
v(x, j)

co1(j) = min/ dx, 3.7
v Jo
where the minimum is taken within the set L ([0, 1] x R, R™) of positive, essentially
bounded functions.
Similarly, for ¢y,

_L(x,v(x, ), m(x, }))

(. ) dx, (3.8)

1
cro(j) = min/
v Jo

where the minimum is taken within the set L°°([0, 1] x R, R7) of negative, essentially
bounded functions.

Proposition 4. Consider a fixed flow j, if L is superlinear in the second variable,

that is,
. L(x,v,m)
lim —— = 400,
v—>+o00 |l)|

and L(-,0,-) > 0O, then the following statements hold:

(1) There exist two functions vy > 0 and v* < 0 that minimize (3.7) and (3.8),
respectively. Additionally, these functions satisfy the Euler—Lagrange equa-
tion

_L(X, U(X, j)vm(x7 .])) + DvL(xv v(x, j)’m(xv ])) —
v(x, j)? v(x,j)

0, Vxelo 1]
3.9)

(2) For any such minimizers, the following holds:

1
co1(Jj) =/0 DyL(x,vi(x,j).m(x,j))dx, foranyj € R\{0}. (3.10)

Additionally,

1
cro(j) = — /0 DyL(xr v (x. j)m(x. j)) dx.  forany j € R\{0}.
3.11)
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(3) If the function v — L(x, v, m) is strictly convex with respect to v, then the
function v is unique among positive functions, and the function v* is unique
among negative functions.

Proof. Since L(x,0,m) > 0, it follows that

L(x,v,m)

+00.
v—0 |U|

This, combined with the superlinearity assumption, implies that, for every x and j,
there exists a minimizer v} (x, j) > 0 of L(x,v,m(x, j))/v which solves (3.9). This
pointwise minimizer also minimizes (3.7).

By (3.9), we have

Lx, 0% (x, ), m(x, j)
vE(x, j) '

DyL(x,v}i(x,j),m(x,j)) = (3.12)
Thus, we get (3.10).

Now, we prove the uniqueness of the minimizer if L is strictly convex in the
velocity variable. Observe that any critical point of v — L(x, v, m)/v is a minimum.
In fact, if v is such a critical point,

ng(L(x,v,m)) _ DU(DUL(x,v,m) B L(x,v,m))

v v v2
_ D2, L(x,v,m) _2DUL(x,v,m) N 2L(x,v,m)
v v2 v3
. D%vL(x,v,m)
v 9

where we use the first-order condition for critical points to obtain the last equality.
Because v — L(x, v, m)/v is continuous, for fixed m and x, it cannot have more
than one local minimum.
Similarly, we prove results for v*. ]

Remark 3.4. In (3.10), the cost co; is defined for any j € R. In particular, when
Jj <0, coy is the cost of moving against the flow.

Proposition 5. Consider the MFG system (3.1) and the flow equation (3.2). If the
Hamiltonian H is strictly convex in p, then

Ux(x, j) = —DvL(x,n%,m), (3.13)

where L is the Lagrangian associated to H.



F. Al Saleh, T. Bakaryan, D. Gomes, and R. Ribeiro 14

Moreover, m is determined as a function of x and j by

H(x, —DvL(x, i,m),m) —0. (3.14)
m

Proof. As H is strictly convex in p, p — D, H(x, p, m) is invertible. Moreover, if
DyL(x,v,m) =—pandv =—D,H(x, p,m), we have

p=—DyL(x,—DpH(x, p,m),m).

Applying the function v — —D, L(x,v/m,m) to both sides of (3.2), we obtain the
result of the first statement.
Now, by substituting (3.13) in the HJ equation from (3.1), we derive (3.14). ]

Proposition 6. Consider the setting of Proposition 5. Let m(x, j) be determined by
(3.14). If j > O, then (3.10) becomes

1 .
c(n(j)=/ DvL(x,;,,m(x,j)) dx. (3.15)
0 m(x,j)
Similarly, if j < O, then (3.11) becomes
! J
c10(j) = —/ DvL(x, —,,m(x,j)) dx. (3.16)
0 m(x, j)

Proof. For j > 0, we use (3.13) to substitute u, in (3.6), to get (3.15). The case for
J < 0is proven similarly. ]

Remark 3.5. Note that (3.15) and (3.16) are not valid, in general, for j < 0 and
Jj > 0, respectively. In these cases, we must use (3.10) and (3.11). Also, one obtains
the relations v} (x, j) = j/m(x, j) for j > 0and v*(x, j) = j/m(x, j), for j <O0.

4. Mean-field game model on a network

The MFG formulation on networks shares various aspects with the road traffic model,
with the key difference being that MFGs are set up in undirected networks.

4.1. The network and the data
In the MFG model, the given information is as follows.

Network. A finite undirected network, '=(E, V'), where E ={e :k €{1,2,...,n}}
is the set of edges and V = {v; :i € {1,2,...,m}} is the set of vertices. To any edge
ex, we associate the pair (v,, v;) of its endpoints.
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Entrances and exits. Agents enter the network through A entrance vertices and exit
it through p exit vertices (disjoint from the entrance vertices). For convenience, we
assume that the last p vertices in V' are the exit vertices. Furthermore, we suppose
that entrance and exit vertices have incidence 1. If this is not the case, we proceed as
in Remark 2.1.

Entry flows. A flow of agents, the entry flow ¢ = (¢1,...,t3) > 0, is prescribed at
the entrance vertices. It follows that these are the flows at the entry edges, the edges
that have an entrance vertex. Entry flows in other vertices are zero.

Exit costs. At the u exit vertices, agents pay an exit cost denoted by ¢. Here, we
assume that this exit cost vanishes. If the exit cost is nonzero, an auxiliary edge is
added as described in Remark 2.2.

Hamiltonian. On each edge e, = (v,, v;), identified with the [0, 1] interval, there is
a smooth Hamiltonian, convex in the momentum variable

Hy :[0,1] xR xR — R.

Example 4.1. Consider a network with three edges as shown in Figure 2. Assume
that v; and v3 be entrance vertices, and let v, and v4 be exit vertices. By attaching an
exit edge to v, and an entrance edge to v3, we obtain the network depicted in Figure 3.

4.2. The variables and the costs
On the network I', we define the following variables.

Edge flows. Each edge has a flow variable, representing the number of agents cross-
ing that edge per unit of time. The flow jj in the edge e = (v,, v;) is decomposed
into positive and negative parts, with j; = j ,é — Jg» Where j ,i is the flow to the vertex
v; and jk’ is the flow to the vertex v,.

Transition flows. The transition flow from ey to e; through a common vertex v, is
denoted by j;;.

v3
e3 V1
V4 €2 €1

v2

Figure 2. MFG network.
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Figure 3. MFG network with entrance and exit edges.

Value function. The value function at the vertex v; of e = (v, v;) is denoted by
u}c = uk(l, Jjk), similarly u,’( = uk(O, Jk), see equation (4.2). Note that the notation
of the value function depends on an edge-vertex pair rather than solely on a vertex.
One of the values uﬁC and u;_provides boundary data for the HJ equation on edge ex.
We denote by u the vector of these values.

Travel costs. As per Section 3, edge e, = (v,, v;) has travel cost c,i (jx) from v, to
v, and ¢ (jx) from v; to v,. Note that the cost in the edge depends only on the flow
in this edge.

Travel costs on, auxiliary, entrance edges into the network are zero, and the travel
costs in the opposite direction are +o0o. Travel costs on, auxiliary, exit edges away
from the network are the exit costs, and travel costs in the opposite direction are +oo.

Switching costs. Agents pay a switching cost W;i ;» for moving from ey to ¢; through
a common vertex v;.

Generally, W;i ; = 0. For simplicity, we assume W/i ; is independent of the transition
flow.

Switching costs are consistent if for any vertex v; with more than two incident
edges, a triangle-type inequality in the switching costs holds,

Vit < Vip + V- (4.1)

The switching costs are strictly consistent if the inequalities above are strict.
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Remark 4.2. When adding extra vertices or edges, switching costs are modified as
follows: switching cost from an entrance edge to an original edge is 0, and from an
original edge to an entry edge is 4+-o00. Similarly, switching cost from an exit edge to
an original edge is 400, and from an original edge to an exit edge is 0. This prevents
entry through exits and exit through entrances.

4.3. The equations

Finally, we set up the equations that determine the MFG. These consist of the MFG
system in the edges and the optimality conditions at the vertices, as considered in
Section 3. Further, we have Kirchhoff’s condition, representing the balance of the
flow of agents at the different vertices.

MFG. On each edge e; = (v,, v;), identified with the [0, 1] interval, an MFG system
is given by

H i k’ k :O,
{ R, 1y, ) 42)

k

where the unknowns are u*, m*, and j;. Note that ji is given if ex is an entry edge.

Complementary conditions. The decomposition of flows satisfies
JeJE =00 ji=0. ji=0, 4.3)

where j,i is the flow to the vertex v; and jk’ is the flow to the vertex v,..
The same is true for transition flows

Jaiie =0 Ji =0, =0
Hence, all agents in an edge or transition move in the same direction.

Optimality conditions at the vertices. Agents minimize travel cost by choosing the
least expensive path. In particular, they can switch from ey to e; through the common
vertex v; by paying a cost W/i ;- Hence

ur <uf + ik, Yikl (4.4)

Complementarity conditions at the vertices. A nonzero transition flow j ,é ; means
that agents move from e to ¢; through v; and that uj = u; + ;. So, we have the
following:

J g —uj =) =0, Vik,L. (4.5)
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Optimality conditions in the edges. In the edge e = (v, v;), for any j; we have

ur <Ci . _’_ui’
{ k= k(]k) k 4.6)

ub < el (i) + u.

Moreover,

Jk >0 = ul = ch(j}) +ut,
Je <0 = u}c cp(—jg) +uy.
The costs c,ic and ¢; may not be the same, as discussed in Section 3.

Complementarity conditions in the edges. In the edge e = (v,, v;), we have the
complementary conditions

ot — b — el —0.
]Ii ( f ]: I:(]k)) A7)
Jk (uk —Up — Ck(Jk)) = 0.

Balance equations and Kirchhoff’s law. Consider an edge ey = (v, v;), let & be
the set of indices of the incident edges at v;, and §; = &\k. The flow j,i is equal to
the sum of the transition flows from ey to all the other incident edges at v;

D k=i (4.8)

€8y

this identity models the splitting of the flow at a vertex. We have a similar equation
for the gathering of the transition flows; the flow j; is the sum of the transition flows
to e from all the incident edges at v;

Y =i (4.9)
18y

In particular, we have Kirchhoff’s law at v;; that is, the sum of the incoming flows j ,i

is equal to the sum of the outgoing flows j lr(l),

Yo=Y i?
keé& le&

where r (/) is the vertex of ¢;, different from v;.

Entry edge equations. Consider an entry edge e, = (v, v;) with a flow (; entering
the network through the vertex v,. For this edge, the following conditions hold:

3
=,
{J’j : (4.10)
Je =0,

where the first condition states that all flow crosses the edge while the second equation
imposes that no agents leave through vertex v,.
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Exit edge equations. In every exit edge e; = (v;, vs), we assume the exit cost van-
ishes, so we have
uj <0,

with equality if j;/ > 0. In ¢;, we also have

5. Reformulation of the MFG as a road traffic model

In this section, we reformulate the MFG model from Section 4 as a road traffic model,
as outlined in Section 2. After identifying the network, the flows, and the costs in
the road traffic model, we show that the MFG solution corresponds to a Wardrop
equilibrium.

While the network in the road traffic model is directed, in the MFG model it is
undirected. To establish the correspondence between MFG and road traffic models,
we construct a directed network I" from the MFG’s undirected network T".

(1) Inthe road traffic model, each directed edge corresponds to a flow or transition
flow from the MFG model.

(2) Directed edge vertices in the road traffic model are analogous to pairs (eg, v;),
where e is an edge and v; is one of its vertices in I'. This pair is built as
follows:

e For a flow j,i in edge ex = (v, v;) € T, the vertices in the new edge
correspond to the pairs (ex, v,) and (eg, v;).

* For a transition flow j,i ; from edge e to the edge ¢; through the vertex
v;, the new vertices correspond to the pairs (eg, v;) and (ey, v;).

Remark 5.1. A natural notation for the edges in T is to use the same indices from the
corresponding flow in the MFG. For example, E}; for the edge carrying the flow J]é
and e, for j;,. However, to avoid complex notation and maintain consistency with
the preceding notation, we relabel the edges and the vertices and write I' = (E, V)
for E={e, :k €{l1,2,....,n}}and V = {v; : i € {1,2,...,m}}. When the precise
correspondence is needed, we use the identification e, = E,’; ore, = E,’; /-

(3) As the entrance flows at exit vertices and exit flows at entrance vertices are
zero, we remove the corresponding edges so that I' has entrance and exit
vertices with incidence 1.

Example 5.2. Consider the network presented in Example 4.1. We follow the previ-
ous steps to transform this network from the MFG to the road traffic setting. Accord-
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Figure 4. Road traffic network I

ingly, we get the new network T in Figure 4, which consists of 22 edges and 10

vertices. The blue edges correspond to the flows and the red edges correspond to the
transition flows. The dashed edges will be removed, as per the third step above, so
they are not included in T.

The correspondence between the variables in the MFG model and the road traffic

model is as follows:

)]

2

3

“

The value function from the MFG is a function on the new vertices because ujC
is a function on pairs (e, v;), where v; is a vertex of e;. While this function
is not explicitly present in the road traffic model, it remains relevant in our
analysis.

We establish a natural correspondence between flows in the two models, j
and j.Ife, = E,ic, we set j, = j,i, and if e, = E}'d, we set J, = jlil'
Following the notation from Section 2, the network’s flow is denoted by j.
By combining (4.8) and (4.9) at a pair (eg, v;) for which v; is neither an
entrance nor an exit, we derive the Kirchhoff’s law at the corresponding vertex
of f,

A G =i+ D ke 5.1

€&y €8y

which can be expressed in terms of the variable j.

At entrance vertices with entry flow assignments, we have the first equation
in (4.10). This equation, along with (5.1), is encoded as a matrix equation
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(similar to (2.1) in Definition 1)
Kj+ B =0.

Hence, there is a linear equation for every vertex in I" that is not an exit.

(5) Let E,’; el and e € T be the edges corresponding to the undirected edge
ex = (vr,v;) € T', with orientations corresponding to the flows j; and j;,
respectively. Based on Section 3, the MFG has two costs ¢; and ¢; in the edge
ek The cost for traveling in e; is ¢} (jx) = ¢} (j; — ji ), where jr = (ji. ji)
and the cost for traveling in ej_is ¢ (jx) = ¢ (ji — j§)-

(6) The MFG’s switching costs 1/f,i ; correspond to constant travel costs in the road
traffic model; in the transition edges e, = e}, the costis ¢, (j) := ¢3,;(j) =
Via-

Applying this to the network in Figure 4, produces the network in Figure 5.

The main result connecting MFGs on networks with road traffic models is the

following.

Theorem 5.3. Let M be an MFG on a network and W be the corresponding road
traffic model. Let u be the value of the value function close to the vertices and j* be
the flow on the network. If (u, j*) solves M, then the corresponding j* is a Wardrop
equilibrium for W.

Figure 5. Road traffic network with costs.
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Proof. For any admissible j, we have
Kji*+B=0 and Kj+ B =0.
Subtracting the two equations, we get
K(G*=Jj) =0. (5.2)

Let u be the vector of value functions. To retrieve the costs on the edges, multiply
(5.2) from the left by ul
ul K(j* —j) = 0.

Each flow appears twice, once for each of its vertices and with different signs,
except for those flows that point towards an exit vertex. These appear only once. The
previous computation can be organized as

> W —u) G =70+ Yl —uD (i — i) = 0. (5.3)
A %t
the first sum is over the edges of W where the vertices of e are v, and v;; this includes
the exit edges since, in that case, u}c < 0. The second sum is over the transition edges
of W corresponding to transitions through the vertex v; from e to ¢;. Based on the

complementarity conditions in the edges, given by (4.7), there are two possible cases
for the terms in the first sum in (5.3),

j,i* >0= u,’c—u}c = E,i(j*)

or, noting (4.6),
=i %

K =0=uy —u}'c < E,i(j*).
Because j,i >0,
J=0= (uf —u) G = J0) = ()G = T

Similarly, based on the complementarity conditions at the vertices (4.5), we have two
cases for the terms in the second sum in (5.3), either
> 0= ul —ul =Yg
or, noting (4.4),
Tkl = 0= up —up < Y.
Because j,il >0,

=i %

T =0= l —uD)Gar — 7)) = Y Gir — Ji)-



First-order mean-field games on networks and Wardrop equilibrium 23

Using these results in (5.3), we get

Y aGHGE -+ D ey - b

% z.
A ji7=0
+ Y Y Gir — k) + D VG = Jk) <0,
% %
Tkr>0 k=0

which implies
(™). =) =0.

Accordingly, j* is a Wardrop equilibrium. ]

Next, we prove a uniqueness result for the associated Wardrop equilibrium. For
this, we present some definitions.

We say the cost is reversible if cg; = c1¢, indicating equal travel costs for both
directions along an edge. If co1(—j) = co1(j) for every j € R, then the cost is even.
We discuss these properties in Section 7.

Proposition 7. If the costs are reversible, even, increasing for positive flows, and
satisfying (2.4) for every edge ex = (v,, ;) of the MFG network, then the equilibrium
flow in the road traffic model is unique in the corresponding edge.

Proof. Recall that E,ic(jk) = c,"c(j,i —Jg) = c]i(jk) is the cost on the edge ex =
(vy, v;) in the road traffic model, where c,i is the cost from the MFG and j; =
(j,i, Ji)- In the reverse direction, it is ¢; (jx) = ¢; (j; — j,i) = ¢ (—Jk)- Note that
the cost variation

(e —c().j—1)

for each edge, can be expressed as
> ek Gi) = ek G Gh = 7o) + (g (=) = e (=J) T = 77)-
k

The costs corresponding to the transition flows are disregarded because they are con-
stant.
Since the cost is reversible, i.e., ¢ () = ¢, (j) = c(j), we get

> (€)= G i = 7 + (e(=Ji) = e (=) G = 75)- (5.4)
k

Apply Proposition 2 with (2.4) to obtain complementarity of the flows, (2.5). It implies
four cases for assessing the terms in the expression (5.4).
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(1) If ji = j; = 0, we have

(i) = G Uk = Ji)-
2) If j]i = j,’C = (0, because c is even, we have

(c(=Jp) = (=T Uk — Ji)-

3) If j]i = jlg = 0, then, since c is even, we have

(c(Gp) = Gk = Ji)
(4) If jT = ji =0, we have

(c(i) = Uk = 70

In each case, the sum is non-negative because the cost ¢(j) is increasing for j > 0.
Strict inequality occurs if c(j) is strictly increasing and j]’c #* j,’c Because the cost is
strictly monotone, by Theorem 2.6, the Wardrop equilibrium is unique. ]

Remark 5.4. For general costs, some conditions that implies uniqueness are as fol-
lows:

(1) The cost ¢} is increasing in R¢, if j7 = j7 = 0.
=0

A

(2) The cost ¢; is increasing in R, if j,’c =7
(3) The following inequality holds:
A AR AT AN AR AT
if ji = jI =0.
(4) The following inequality holds:
A AR A CH SN AVARAANS
if jT =ji =0.
Remark 5.5. In Proposition 7, we proved the uniqueness of the flows. However, with
the same assumptions, we do not have uniqueness of the transition flows. For example,
consider 4 intersecting edges at a single vertex, as in Figure 6. Let the flows in edges
e and e3 be j; = j3 = 10, and the flows in edges e, and e4 be j, = j4 = 5. Possible

transition flows are ji3 = 10, jo4 = 5, and j14 = j»3 = 0. Another possibility is
having ji3 = 7.5 and ja4 = j14 = ja3 = 2.5.

Proposition 8. In the MFG, with the same assumptions as in Proposition 7, the flow
is uniquely defined in each edge.
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Figure 6. 4 edges intersect in 1 vertex.

Proof. Suppose the MFG has two solutions which the flow may differ in one edge.
By Theorem 5.3, both solutions are Wardrop equilibria. Due to the uniqueness of the
flows in the road traffic model, they must be the same. [

6. Recovering MFG solution from the Wardrop equilibrium

Here we demonstrate how to derive the mean-field game (MFG) solution from the
corresponding Wardrop equilibrium. We follow the same procedure as in Section 5
to convert the MFG on a network into a road traffic model. The structure of the
network and associated costs are derived from the MFG problem. Subsequently, we
derive the MFG solution from the Wardrop equilibrium. This consists in recovering
the flows, the transition flows, and the value function. Derive the flow in edge e; of
the MFG by considering the difference between flows in the corresponding directed
edges in the Wardrop equilibrium. The correspondence for transition flows is immedi-
ate. Kirchhoff’s law in T, (5.1), implies the splitting and gathering of equations (4.8)
and (4.9) for the MFG network I'.
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Proposition 9. Consider an MFG model with positive costs on the edges (2.4) and
strictly consistent switching costs (4.1). Let j* be the corresponding Wardrop equi-
librium. Then, the splitting and gathering balance conditions, (4.8) and (4.9), hold on
every non-entrance and non-exit vertex.

Proof. In the road traffic model, we have Kirchhoff’s law (5.1) for every non-entrance
and non-exit vertex. Because of (4.3), either j; = 0 or j,i = 0. Without loss of gen-
erality, assume that j ]é = 0, then (5.1) becomes

J]Z + Z j/iz = Z jlik~ 6.1)

e €€ e €€

We show that the corresponding transition flows j ,é ; are zero. Suppose, by contradic-
tion, that one of the flows j; ; is nonzero, then by (6.1), we have jllk > 0, for some [.
For the Wardrop equilibrium j*, choose 6 > 0 small enough and set j by modifying
the following coordinates:

Ju =0k =0 Ty =Jp o and =gy to
Note that j € 4. Because j* is a Wardrop equilibrium, we get

o(—c;;(J%) + e ) + cra (J%) <0,

which is
i i i
0(_%7 + V5, + Vi) = 0.
Thus,
which contradicts the strict inequality (4.1). Hence, j/il must be zero. Using this in
(6.1), we get (4.9). Similarly, we get (4.8). ]

Next, we present some definitions and a lemma to retrieve the value function.

Definition 6. Consider an admissible flow for a road traffic problem. A regular vertex
is a vertex that belongs to an edge where the flow is positive.

Definition 7. A walk on a network is a sequence {v;, e; }ffzo U {vg 41} of vertices and
edges of a graph such that ¢; = (v;, vi41) fori =0, ..., k. Consider an admissible
flow for a road traffic problem, a positive walk is a walk of regular vertices connected
by edges where the flows are positive. A closed positive walk is a positive walk which
is infinite and periodic.

Lemma 6.1. In a road traffic problem, if all loops have positive costs, then any regu-
lar vertex is connected to an exit by a positive walk.
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Proof. Let j* be a Wardrop equilibrium and let ¥ be a regular vertex. Suppose, by
contradiction, that there is a positive walk starting at ¥ containing an infinite number
of vertices. Because the network is finite, there is a closed positive walk. Let I be the
indices of the edges of this closed positive walk. Next, take o > 0 small enough so
that one can reduce the flow on the closed positive walk, still keeping it non-negative.'

Denoting the new flow j, consider the partition j = (jo, j—) into the flows that
did not change, and the flows that decreased. Consider the same partition for ¢(j*) =
(€T )o.c(J5)-)-

Since the cost on loops is positive, we have

(@), 7" = J) = (€0 7§ — o) + €)= 72— j-) = 0 Y& (") > 0
kel

which contradicts the Wardrop equilibrium condition. |

Because of Lemma 6.1, we can always connect any regular vertex v; € e =
(v, ;) to an exit vertex. Hence, we define

i =" &, (6.2)
1

where 17}; is the candidate for the value function at v;, ¢;(J7) is the cost in each edge
of the walk and the sum is taken over the flow-carrying edges.

Proposition 10. Given the Wardrop equilibrium j*, the value function % in (6.2) is
well defined at all regular vertices, i.e., it does not depend on the positive path from
the regular vertex to the exit.

Furthermore, a flow-carrying walk to an exit minimizes the exit cost.

Proof. Let j* be a Wardrop equilibrium. Consider a regular vertex with outgoing
walks, w; and w,, whose costs given j* are ¢y and c,. Assume, without loss of
generality that ¢, > ¢;. Choose ¢ > 0 small enough so that one can divert o from the
flow in w, to wy, forming a new admissible flow distribution j. Consider a partition
of j = (j+., jo, j—) into the flows that were increased, did not change, and decreased,
respectively. Consider the same partition for ¢(j*) = (¢(j*)+.c(j*)o,c(j*)-). From
the definition of Wardrop equilibrium (2.2)

0> (™). J" —J) = €G)+. % — Jj+) + (€, Jo — o)
+ (G- JZ = j-)
=0(—c1 + ¢2)
> 0,

which contradicts the assumption of j * being a Wardrop equilibrium. |

!This amounts to subtracting ¢ from the flow of each nonzero component of a loop.
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Proposition 11. n a road traffic model where all vertices are regular, the value func-
tion U in the road traffic model is the value function u in the MFG model and satisfies
(4.4) and (4.6).

Proof. The value function u at vertex vy is the infimum among the costs of all walks
starting at vg. Hence, by Proposition 10, % = u. By Proposition 10, for e = (v, v;),
we have
i, < cx(Jk) + Zgl(jl)s
lew
where w is the sequence of indices of the edges of a positive walk to an exit. By (6.2),
we can write the previous inequality as

i?,rc <cr(Jr) + 17;.(.
If jx > 0, then we have
i = Tk (Ji) + il
If the edge e is a transition edge, then we can get (4.4) similarly; we just replace
the travel costs by the switching costs. ]

Theorem 6.2. Consider an MFG model with positive costs on the edges (2.4) and
strictly consistent switching costs (4.1). Let j* be the corresponding Wardrop equilib-
rium. If all vertices are regular in the road traffic model, then the Wardrop equilibrium
J ¥ satisfies the MFG equations.

Proof. Proposition 9 assures the balance equations hold for j* and Proposition 11,
assures the value function obeys the optimality conditions. Hence, the MFG equations
are satisfied. ]

This shows how to recover the solution of an MFG problem, (u, j*), from the
Wardrop equilibrium of the corresponding road traffic problem, j*.

7. Cost properties

We begin this section by studying cost properties derived from the microstructure
of the MFGs in a single edge. We discuss cost reversibility, then we examine mono-
tonicity.

7.1. Cost reversibility

Cost reversibility considers if a single agent’s travel direction remains the same irre-
spective of whether they travel against or with the flow. In a reversible MFG setting,
an agent’s cost depends solely on the density of other agents and is unaffected by their
direction of travel.
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Proposition 12. [f the Hamiltonian is an even function in p, i.e., H(x,—p,m) =
H(x, p, m), and strictly convex, then we have the following:

(1) The cost is reversible; that is, co1(j) = c10(j), VJj € R\{0}.
(2) The cost is even; that is, co1(—Jj) = co1(J), VJj € R\{0}.

Proof. Since H is even, L is also even, i.e.,
L(x,—v,m) = L(x,v,m).

The density m is determined by solving (3.14). For j > 0, traveling from O to 1, the
optimal velocity is v} = # which solves the necessary optimality condition (3.9).
For the same j and m, we consider the optimal trajectory connecting 1 to 0. We claim
that v* = —vi, as it satisfies (3.9). Then, using (3.10) and (3.11), we obtain

co1(j) = c10(/)-

Thus, the cost is reversible.

Next, we prove the second statement. Consider the HJ equation in (3.1) and the
definition of the flow in (3.2). If we replace j by —j, p = uy by —p = —uy, and
keep m unchanged, the HJ in (3.1) holds because H is even and (3.2) holds because
D, H is odd in p. Hence,

m(x7_j)=m(x’j)' (71)

Because H is strictly convex, L is strictly convex. Thus, by Proposition 4, there
exists v} > 0 unique solution of (3.9) in R. Using (7.1) in (3.9) we get

vi(x,—j) =vi(x,j), Vj.
Similarly,
vf(x,—j) = Ui(x’j)’ V.]
Then, (3.10) implies
co1(—Jj) = co1(j)- u
Example 7.1 (Even Hamiltonian). Suppose the separable Hamiltonian is
2

H(x,p,m) = %—m.

The corresponding Lagrangian is

2
L(x,v,m) = 5 + m.
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The resulting MFG, with flow j, system is

L
2
—Muy = j.
The density m is obtained by substituting u, = —r% in the HJ equation, which gives

the identity
Accordingly,

On the other hand, (3.12) implies
v = (2m)1/ 2,

Hence, substituting the formula for m in the previous identity, we obtain

-(5)")”

Using (3.10), we compute the cost as

1
C01(j)=/() 231 |Y3 dx = 23|13,

Note that, for j > 0, using (3.15), we have
1 - .
. J J \1/3
i) = [ 2 i = @)

Analogously, for j < 0, we have

cr0(j) = —2j)3.

7.2. Monotonicity of the costs

From Remark 3.2, the local cost at x for moving from O to 1, given the positive
flow j, is denoted by —g—;(x,j). Hence, for j > 0, co1(j) = —fol g—)’ﬁ(x,j)dx and
; 1 92 X
1) == fo 2ge(x, j)dx.
For general MFGs of the form (3.1), under the monotonicity condition

|:—%D,,,H D2, H

D2 g aD? Hi| is positive definite, (7.2)
pm pp
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where the derivatives of H are calculated at (x, ux(x, j), m(x, j)), the uniqueness
of the solution in several cases was proved in [34] (also see [37]). This condition is
relevant for the monotonicity of the costs.

Proposition 13. Let H be smooth, and define
M =mD,HD, H — (DyH)> —mD,HD} H.

Suppose the monotonicity condition (7.2) holds. Then

0%u

. 1 |-D,H
{Z’éff} =7 [ iy } (7.3)

a1 MLD
where the derivatives of H are calculated at (x,ux(x, j),m(x, j)).

Moreover, if (7.2) holds, then

0%u
dj dx

(x,j)<O.

Proof. Differentiate, formally, the HJ equation from (3.1) and in the flow equation
(3.2) with respect to j to get the linear system

D, H( VP ym
X, Ux, M) —F— X, Ux,M)— =V,
P ) 0x " )
5 9%u 5 om
_mDppH(x,ux,m)W — (DpH(x,ux, m) —i—mmeH(x,ux,m))T =1,
(7.4)

where g—; = Uy = Ux(x,j)and m = m(x, j). The solution of (7.4) is given by (7.3),
which proves the first result.
For the second result, notice that (7.2) implies D,, H < 0 and the determinant

4
A=——DnHDp,H — (D, H)* > 0.
Together with Cauchy’s inequality, we get that the denominator in (7.3) satisfies
mDnHD, H — (DyH)*> —mD,HD}, H

1
<mDuHD},H — (DyH)* + (DpH)? + 7m* (D}, H)’

Am?
=——<0.
4

Consequently, (7.2) implies
0%u

0.
3jox "
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Remark 7.2. If D,, H(x,ux,m) < 0, then m and ¢o1(j) = —fol Ux(x, j)dx have
the same monotonicity with respect to j > 0 and opposite otherwise. Because, by the
first equation in (7.4) and (3.2),

92u mD,, H(x,uyx,m) dm

djox j 0
Condition (7.2) is sufficient but not necessary to have monotonicity of the cost, as
we show in the following example for separable Hamiltonians.

Example 7.3. Suppose the Hamiltonian is convex in p and separable, that is, it is of
the form H(x, p,m) = H(x, p) — g(m). Then

D;mH(xﬁpﬂm):O and DmH(xspﬁm)z_g,(m)
From (7.3), we get

Fu g'(m)
9jdx  —mg'(m)D2,H — (DpH)>

(7.5)

If g’(m) > 0, then 970x ax < 0. Now, let g’(m) < 0, y > 1, and consider a Hamiltonian

independent of x

|pl”
H(p7m) =

—g(m).
Then we have
DpH(p,m) = p|p|"~2,
DpH(p,m)* = [p[™* = (DpH(ux,m))* = (yg(m))*”7,
D2, H(p.m) = (y —D|p|"> = D2, H(u..m)=(y — )(yg(m)' ™7
Replace the above in (7.5) to obtain
0%u g'(m)

Bjax

—mg (m)()/ - 1)()/g(m)) = (yg(m))>~

mg'(m)(y — 1) + yg(m) <0. (7.6)
The prior inequality holds when considering
gm)=mP, B>o.
In this case, (7.6) becomes
— (y - DB <0.

Hence, for 8 > we obtaln < 0.

19
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Next, we study the monotonicity of co; when j < 0. In this case, agents travel
against the flow, and Proposition 6 does not apply to compute co.

Proposition 14. Let H be smooth and L be its Legendre transform. For j < 0, the

following holds:
, 1 . . om(x, )
co1(J) = / — D L(x, 03 (x, j),m(x, j)———=dx. (1.7
0o Ui dj
Moreover, if (7.2) holds, then
co1(j) <0. (7.8)

Proof. We use v instead of v}, and omit the arguments for v and m, to simplify
notation and write (3.12) as

vDyL(x,v,m)— L(x,v,m) =0.

Formally differentiating with respect to j gives
i

i ad
ngvL(x, v, m) 8;') + ngmL(x, v,m)a—r; — Dy, L(x, v,m)a—l;l =0. (7.9)

Additionally, differentiating (3.10) with respect to j yields

3_

/ . ! 2 v 2 om
co1(j) = | Dy, L(x,v,m) T + Dme(x,v,m)a—j dx.

Noting the relation in (7.9), we get the result in (7.7). To prove the second claim,
assume (7.2) holds and notice that in (7.7),

1
—Dy L(x,v,m) > 0,
v

and by (7.3), together with (3.2),

Consequently, we obtain (7.8). |

7.3. Analysis of the velocity field

Lions’ monotonicity condition (7.2) is related to crowd aversion; that is, agents try to
avoid congested areas. As we have shown before, in this case, both cg; and m(x, -)
increase with j > 0, and both c19 and m(x, -) decrease with j < 0. It is possible
to have a crowd-seeking behavior, where g is decreasing, cg; increases with j and
m(x, -) decreases with j. This is a phenomenon observed in uncongested highways.
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Increased speed results in greater car distances, leading to decreased density. Here,
we analyze the dependence of the optimal velocity field
J
m(x, j)

v(x,j) = (7.10)

on the traffic flow and the traffic density. We first examine the flow’s impact.

Proposition 15. Let H and M be as in Proposition 13. For j > 0,

P vD2, H + DyHD2,H
T M ‘

Moreover, in the separable case, if Lions’ condition (7.2) holds, then
0
Zx.j) > 0.
aj

If the reverse Lions’ condition holds (that is; the matrix in (7.2) is negative definite),
then

ad
Zx.j) <.
dj
Proof. Formally differentiating (7.10) with respect to j yields

1 j om 1 am

v
T iy=—-L" (14D HZ).
8j(x"]) m  m? 9j m(+ ’ 8j)

From (7.3) we have

gy (1 ) ey
aj m M M ’

In the separable case, H(x, p,m) = H (x, p) — g(m), we have

v . —gmDiJH
8—j(x,]) = T”” (7.11)

If Lions’ condition holds, then g’(m) > 0 and by Proposition 13, M < 0. Thus,
d
= (x,/) > 0.
dj

If the reverse Lions’ condition holds, we get the opposite inequality. |

Next, we investigate the relationship between traffic velocity and density, denoted
as %—’l’)’. When this is greater than zero, it corresponds to the behavior of the uncon-
gested model.
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Proposition 16. Let M be as in Proposition 13. Let in(x,v) := m(x, j(x,v)), where
j(x,v) is obtained from v(x, j) = j/m(x, j). For j > 0, in the separable case (as
in Example 7.3), we have the following relation:
om v (7.12)
w g'(m)D2,#" '
Proof. Note first that M = —mg’(m)D;pJ( — (DpJ)? < 0. From (7.3) and (7.11)
we have

om _ Om 9]
 9j v
_Dy¥  -M
M g (m)D2, X
v
= - |
g'(m)D3, 3t

Remark 7.4. From (7.12), we observe that if g is increasing, then the density
increases with v > 0 while if g is decreasing, then /n decreases with v > 0.

A summary of the results of this section. For highway or pedestrian traffic scenar-
ios, we expect that as j increases, m increases and v decreases. But in this model, the
road capacity is not limited, so we get counter-intuitive results. For separable H and
j > 0, if Lions’ condition (7.2) holds, then

(1) coj increases as j increases, see Proposition 13;

(2) m decreases as j increases, see the proof of Proposition 14;

(3) v increases as j increases, see Proposition 15.

However, Lions’ condition is not needed for the previous points to hold. Exam-
ple 7.3 gives conditions under which (1) and (3) hold without monotonicity. However,
(2) does not hold; see Remark 7.2.

We have presented an analysis of the velocity field based on Lions’ monotonicity
condition and its implications.

8. Calibration of MFGs

In this section, we address Problem 1; that is, the precise correspondence between
MFG and road traffic models. Thus, we consider the following two inverse problems.
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Problem 2. Let W be a road traffic model on a single edge, identified with the interval
[0, 1]. Find L such that, for any flow j,

()
/ L(x,v,m)ds = c(j),
0

where ¢ : R:{ — R is a reversible flow-dependent travel cost and T(j) > 0 is the
crossing time for an agent moving at optimal speed.

Problem 3. Let W be a road traffic model on a single edge, identified with the interval
[0, 1]. Find L such that, for any flow j,

()
/ L(x,v,m)ds =c(j), and T(j)=c(j),
0

where ¢ : R:{ — R™ is a reversible flow-dependent travel cost and T(j) > 0 is the
crossing time for an agent moving at optimal speed.

While Problem 2 may seem more natural, Problem 3 is more straightforward to
calibrate as measuring average speed v as a function of flow is sufficient to obtain
the cost ¢(j). In general, we are not aware of another way to assign a travel cost
depending on the flow.

Solutions to these problems are not unique, but each can generate an MFG model
associated with the cost ¢. Non-uniqueness partially stems from the absence of micro-
scopic effects in road traffic models.

8.1. Identification of road traffic cost problems with mean-field games

In this section, we work with a specific class of x-independent Lagrangians and show
how to tackle the above problems. There is no uniqueness in this class; see Exam-
ple 8.1.

In Problem 2, we identify a corresponding MFG model whose travel cost on an
edge, for a given flow j, is c¢(j). We assume that agents travel from O to 1. Thus, the
flow is positive. We do not expect to recover the MFG microstructure from the road
traffic model’s macrostructure, so we consider Lagrangians without x-dependency.
To have reversible costs, we consider Lagrangians that are even in the velocity. More
concretely, we restrict our choice to

L(x,v,m) = m*£(v) + g(m), 8.1)

with &£ convex and even, and 0 < o < 2. This class encompasses various examples
while being specific enough to yield closed-form formulas for the cost. Because the
Lagrangian is even and the cost is reversible, it suffices to solve the problem for j > 0.



First-order mean-field games on networks and Wardrop equilibrium 37

Moreover, since there are no location preferences in the edge, the incremental cost of
the travel is the same everywhere; that is, u, is constant in x. Therefore, according
to the MFG system, the density m is constant with respect to the flow j. The corre-
sponding MFG is equivalent to

m:r'e(”—) = g(m).
m

/ ux .
—mH (ﬁ) =7

where # is the Legendre transform of &£. From the second equation in (8.2) and the
relation —&£'(—H’(p)) = p, we find

Uy = —m"‘éﬁ’(i),
m

and transform the MFG system (8.2) into the algebraic system

wal-2(f) o
m

¢(j) = u(0) —u(l) = m“:c'(i),
m

8.2)

(8.3)

assuming m > 0. Suppose that the last equation in (8.3) is solvable for m in terms
of j, i.e., there exists an invertible function W, such that

m = W.(j). (8.4)
Now, let ®;(m) := m"‘éﬁ’(}%). Then, by (8.4) and the last equation in (8.3), we have
Ve(j) =m = @; (c()))-

Hence, we obtain
W m) = 7@ (m)).

Hence, W, is (locally) well defined when m — &; (m) is strictly monotone in m for
every j. If, in addition, c is strictly monotone, then W, is invertible. By inverting (8.4)
and substituting in the first equation of (8.3), we get

mH (—éﬁ’(—qjc_l (m) )) = g(m).
m

This relation identifies g(m) in terms of ¢, £’ and F.
Next, we present an example illustrating the application of the previous discussion
to solve the inverse problem.
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Example 8.1. Let ¢ # 1 and 8 > 0. (230nsider the Lagrangian, £(v) = % with
corresponding Hamiltonian, # (p) = é’—ﬂ. The system (8.3) becomes

{m“‘zﬂjz = 2g(m),

c(j) =m*"'Bj.
provided m > 0. The second equation gives, for « # 1, m as a function of j,
1
c(i)\ T '
m = ((—])) =:W(j). (8.5)
BJ
If W, is invertible, we obtain the following:
B a2 -
g(m) = Sm* (07" (m))2.

Now, consider a linear cost, ¢(j) = ¢1 + ¢2j. By (8.5), the density is

(o ey
m_(ﬂj+ﬂ) ‘

Assuming cq, ¢z > 0, the range of m is

(3)7 +o0). .

(0, (%)m) foroa < 1.

With the linear cost, W, is invertible and we have the following expression for g(m):

pme=2c?

m)=_———,

80 = e — oy

which can be written as follows:

1 c?

Y] /2 _ €2 1-a/2\2"
28 (m“ Fmi )

g(m)

Note that this g is non-monotone. For « < 1, it has one singularity at O and another
1 . . . . .
one at mo = (%)ﬁ. This last value m, is the maximal density. For o > 1, there is
a singularity at my, but it is a minimal density in this case. Figures 7 and 8 illustrate
1

this behavior, where we plot 20m for « = 0.1 and o = 3, respectively, with 8 = 1,

c1 = 1l,and ¢, = 0.9.

The preceding example illustrates an important point: even with the simple linear
flow-dependent cost, we obtain a coupling function g (m) that is non-monotone which
falls outside standard MFG theory. If & < 1, g(m) is neither decreasing nor increasing
for the values of m in (8.6). For « > 1, g(m) is decreasing for the values of m that
satisfy (8.6).
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05 1.0

Figure 7. Fora = 0.1 touches 0 at two points.

_1
> g(m)

10+

1 L n L

05 0 15 20

Figure 8. Foro = 3 touches 0 at one point.

1
> g(m)
8.2. Identification of road traffic time models with mean-field games

We examine Problem 3. As discussed in Section 7.3, the optimal velocity is v = #
Given that the edge length is 1 and velocity v is constant, we obtain

T =—.
J
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To address this problem, we refer to L from (8.1) and show how to determine both £
and g. Arguing as in Section 8.1, we obtain

m
m“éﬁ'(i) = c(j), (8.7)
m
c(j)=".
J

provided m > 0. We study the case j > 0. From the last equation in (8.7), we get
m = jc(j), Vj>0. (8.8)
Let W.(j) = jc(j). If ¢ is positive and increasing, then W, () is invertible. Hence,
J =t (m).

Furthermore, m can take any value in R™. Using the identity above, we substitute j
into the second equation of (8.7). Next, we use the result in the first equation of (8.7)

to get
q/—l
g(m) = m“%(—%). (8.9)
Now, we substitute m from (8.8) in the second equation in (8.7) to get
f(l)z c(j)
c(j) (Je(j))e
Finally, recalling that v = le) we have
/ 1
W)= —7—. (8.10)
()

If ¢ is increasing, the preceding expression defines £’(v) for lim;_, oo %1) <v <
. .

c(0)°

compute its Legendre transform #, and then use (8.9) to obtain g.

Thus, with the maximal velocity being ﬁ, we first use (8.10) to determine &£,

In the following example, we show that non-monotone MFGs may arise.

Example 8.2. Consider ¢(j) = 1+ j. Find £ and g for which the cost is ¢(J).
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System (8.7) simplifies to

(m)—m“Je(— 2me )
gl = JI+dm—-1)
v2a—1
W)= —
(v) T
1
v=—
14
m=j(l+j).

The Lagrangian is convex if o > % However, the obtained coupling may fail to be
monotone, as depicted in Figure 9.

8.3. Example: Braess paradox

We demonstrate the application of MFG calibration in road traffic problems, specifi-
cally illustrating how the Braess paradox can arise in MFGs.

Example 8.3 (Braess paradox). Consider the network in Figure 10 with cost ¢(j) =
(45, j2]/100, | j3]/100, 45). Agents traverse the network from the entrance vertex v;
to the exit vertex v4, minimizing their travel cost. Assume that the cost at the exit is
zero and the flow at the entry is 4000. At vy, agents will be equally distributed between
the edges e; and e;, both having a cost of 65. Adding a new edge es = (v2, v3), see
Figure 11, with zero travel cost: ¢(j) = (45, |j2|/100, |j3|/100, 45, 0), causes some
agents to select the path e;, e, e3.

05 10 15 20 25 30"

Figure 9. The coupling g (m) decreases with m, for @ = 0.6.
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v2

€3 31

Vg4 U1

ey €2

v3

Figure 10. Braess paradox network.

Figure 11. Braess paradox network with edge in the middle.

If all agents are taking this path, this is a Wardrop equilibrium. The addition of e5
results in increased travel costs for all agents. This is the well-known Braess paradox.

Which Hamiltonians result in the costs associated with the Braess paradox? The
computations below establish the MFG for the Braess paradox, addressing this ques-
tion. For the edges e3 and e,, and for o > %, we have

Ly = 2 ) = 10002
200100 K
with k = 202[—51, and
100D«
gm) = ———.

The constant costs do not fit the previous calibration. However, in e; and e4, for small
&, we can set the cost to ¢(j) = 45 + ¢|j|. Similarly, in the edge es, the cost is set to

c(j) =eljl.
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9. Conclusion and future work

In the first part of this paper, we presented the Wardrop and first-order MFG model
on networks. We then demonstrated how to reformulate the MFG problem into a road
traffic problem and proved that the MFG solution is the Wardrop equilibrium for the
road traffic problem. Furthermore, we proved that the solution of the MFG problem
can be recovered from the solution of the corresponding road traffic problem. In the
second part of the paper, we studied the cost properties and proposed a novel approach
to calibrating MFGs. We demonstrated that even simple travel costs can lead to non-
monotone MFGs. This work suggests several future directions, such as investigating
non-monotone MFGs and their general properties, as well as extending our models
to the dynamic setting. The absence of monotonicity for these MFG models may
lead to new phenomena, such as multiple equilibria or instability, which we consider
important topics for future research.
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