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On topological bound states and secular equations
for quantum-graph eigenvalues

Evans M. Harrell II and Anna V. Maltsev

Abstract. Quantum graphs without interaction which contain equilateral cycles possess “topo-
logical” bound states which do not correspond to zeros of one of the two variants of the secular
equation for quantum graphs. Instead, their eigenvalues lie in the set of singularities of the
vertex-scattering secular matrix. This observation turns out to be representative of a wider
phenomenon. We introduce a notion of topological bound states and show that they are lin-
ear combinations of functions supported on generators of the fundamental group of the graph
(hence the “topological” in the name), including for graphs that have interactions on the edges.
Using an Ihara-style theorem, we elucidate the role of such topological bound states in the spec-
tral analysis of quantum graph Hamiltonians using secular matrices. En route we determine the
set of the fixed vectors of the bond-scattering matrix.

This work is dedicated to E. B. Davies on the occasion of his 80th birthday and in
honor of his important contributions to the theory of quantum graphs, e.g.,

E. B. Davies et al. [J. Phys. A: Math. Theor. 43 (2010), article no. 474013] and
E. B. Davies [J. Operator Theory 69 (2013), 195–208], and of his broad and

influential work on spectral theory (1989) and (1995)

1. Introduction

With the rise of big data, graph theory in the guise of network science has found
interesting new applications in fields of study as diverse as biology, physics, and soci-
ology. Some applications in microelectronics and neural networks, known as quantum
graphs, require edges not only to connect vertices but also to carry solutions of dif-
ferential equations. Reference works about the theory of quantum graphs include
[7, 11, 22].

Many fundamental questions about networks relate to the spectral properties of
operators acting on them, such as the discrete Laplacian. For example, it is known as
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part of Hodge theory for combinatorial graphs that eigenfunctions of discrete Lapla-
cians often localize on the topological “holes”; see, e.g., [3, 4, 10, 23] and references
therein for this phenomenon and some consequences. The possibility of eigenfunc-
tions that localize on compact subsets such as cycles is likewise well known in the
theory of quantum graphs. In a sense that has been made precise in [1, 8], quantum-
graph eigenfunctions “generically” do not vanish on vertices and consequently are
not compactly supported, yet compactly supported eigenfunctions occur rather often
in commonly considered models. Much of the literature referencing such states of
quantum graphs relates them to scattering resonances, following the work of Exner
and Lipovský [14], who suggested that near-real “topological” resonances could grow
out of compactly supported bound states; this idea has been further explored in [12,
13, 16]. Compactly supported states have also been related to the issue of “scarring”
in [20].

The main result of this article is to identify a topological mechanism that gives rise
to compactly supported eigenfunctions on quantum graphs. After some background
in this section, we review the use of secular equations involving the “bond scattering
matrix” � as a tool for spectral analysis on quantum graphs, innovating in (1.3) and
the following discussion in order to incorporate general interactions on the edges.
The operator � is a purely topological quantity unrelated to the eigenparameter. In
Section 2, we present a useful factorization of � and several other quantities of interest
in Theorem 2.1, and we then characterize the fixed points of � in Theorem 2.2. In
particular, we prove that, other than the constant vector, the fixed points correspond to
discrete harmonic vector fields and have bases supported on “holes” that generate the
fundamental group of the combinatorial aspect of the metric graph. Section 3 turns to
quantum graphs, where something happens on edges in addition to purely topological
relations. We identify a topological condition related to the eigenfunctions that fail to
be identified in one of the versions of the secular equation, and use the condition as
the basis of Definition 3.1. Theorem 3.1 precisely characterizes topological quantum-
graph states and shows that they are supported on holes for reasons similar to the case
of the fixed vectors of � . Theorem 3.2 accounts for the different types of quantum-
graph eigenvalues and sets up a vertex secular equation that includes general edge
interactions; an explicit form is worked out in the following corollary. We close with
a section consisting of several instructive case studies.

Heretofore, topological bound states appear to be systematically discussed only
in symmetric cases with no interaction on the edges. Analysis of compactly sup-
ported states on metric graphs began, at least implicitly, with the 1985 work of von
Below [27], in which it was shown that the spectral analysis of equilateral metric
graphs, with no quantum interaction and standard Kirchhoff vertex conditions, can be
reduced by factorization to the analysis of the underlying combinatorial graph. The
equilateral situation has been further analyzed in greater generality in [2, 24, 28]. The
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equilateral case is accessible to analysis because symmetry can be used to reduce the
spectral analysis to the study of Sturm–Liouville problems on individual edges with
Dirichlet or, respectively, Neumann conditions at the vertices. The noninteracting case
factorizes so that the spectrum of the Laplacian on the metric graph is completely
determined by that of the combinatorial Laplacian, for which compactly supported
eigenvectors are typical.

As an instructive case consider the equilateral tetrahedral metric graph with edge
length� , no quantum interaction, and standard Kirchhoff vertex conditions, i.e., eigen-
functions  ` are continuous at the vertices, and the sum of their outgoing derivatives
at each vertex is 0. On the edges, � 00

`
D k2 `. An exercise exploiting symmetry

reveals that the eigenfunctions may be divided into those that are symmetric with
respect to permutation of the edges incident to each vertex, and those that vanish
at each vertex, and thus the eigenvalues equal those of the interval with, respec-
tively, Neumann and Dirichlet boundary conditions, i.e., k takes on integer values.
Furthermore, for the category of eigenfunctions that vanish at vertices it turns out
to be possible to find eigenbases that consist of functions supported on quadrilateral
cycles of the tetrahedron. (When k is an even positive integer there are eigenbases
consisting of functions supported on triangular faces; see case study (1) below.) As to
the multiplicity, the dimension of these eigenspaces is 3, which equals the first Betti
number ˇ1 WD jEj � jV j C 1 D 6 � 4C 1 of the discrete tetrahedral graph, i.e., the
number of generators of its fundamental group. As we show below in Theorem 2.2,
this association with the fundamental group is not a coincidence.

Are compactly supported states like those of the tetrahedron merely exceptional
cases due to high symmetry, or are they instances of a general phenomenon? By
embedding such highly symmetric examples in larger, quite arbitrary graphs attached
at vertices where eigenfunctions vanish, it is easy to see that the possibility of eigen-
functions supported on the graph’s “holes” is by no means restricted to equilateral
graphs. One of our purposes in this article is to explore conditions for the existence
of compactly supported eigenstates that are associated with fundamental group of the
combinatorial graph on which the quantum graph is built, and to characterize them.

A second purpose of this article is to clarify some aspects of the usual method
of determining quantum-graph eigenvalues via a secular determinant [7], which dates
from the pioneering work of Kottos and Smilansky [21]. As already realized in [21],
there are (at least) two distinct ways to set up a secular matrix, one focusing on “vertex
scattering” and one focusing on “bond scattering” (The latter has become the more
widespread approach, e.g., see [7]; The reader is referred to [7, 21] for the motivation
and usual derivation of the secular matrices.) As part of our analysis we build an alter-
native algebraic bridge between these two secular matrices following a technique of
Ihara [17, 26], in the course of which we show that the two secular equations are not
completely equivalent. Indeed, although the vertex-scattering version of the secular
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matrix is smaller and therefore in some ways more efficient than the bond-scattering
version, it does not account for certain topological quantum-graph eigenstates analo-
gous to the tetrahedral states supported on cycles.

The great majority of articles on quantum-graph spectral problems using a bond-
scattering analysis look only at the free Schrödinger equation �u00 D k2u on the
edges, or include a purely magnetic interaction, which in one-dimension can be locally
gauged into a free Schrödinger form with a change of variable. Here, we take care to
spell out how to incorporate interactions on the edges by allowing a general transfer
matrix ˆe. We imagine ˆe as the solution operator for a second-order ordinary dif-
ferential equation �u00 C V.x/u D k2u, but it is far from restricted to this particular
form.

We recall that a quantum-graph eigenfunction  .xI k/ is an L2-normalized con-
tinuous function that satisfies�

�
d2

dx2
C V.x/

�
 .xI k/ D k2 .xI k/ (1.1)

on the edges of a metric graph � , and certain conditions at the vertices. In this article,
we confine ourselves to Kirchhoff (a.k.a. Neumann–Kirchhoff [5] or “standard”) ver-
tex conditions, according to which functions are continuous at vertices and the sum
of their outgoing derivatives at each vertex is 0. We refer to [5, 7, 25] for background
and precise definitions of these operators.

In [21], the secular determinant was derived by regarding the vertex conditions and
transfer operators on bonds as a linear system and using the methods of linear algebra
to reduce them to a convenient form in which the combinatorial part is captured in
a 2m � 2m matrix acting on the set of oriented edges, known as the bond-scattering
matrix � . (Here and henceforth, we set m WD jEj, and n WD jV j.)

Definition 1.1. The bond-scattering matrix � is given as follows.

• �e0e D 0 unless the terminal vertex t .e/ equals the source vertex s.e0/.

• Otherwise, if e0 ¤ �e, where �e designates the reversal of �e, then �e0e D
2

dt.e/
.

• If e0 D �e, then ��ee D
2

dt.e/
� 1.

We observe that the matrix � is unitary and doubly stochastic. (See the discussion
of � in [7] for further details and [9] for some additional spectral properties of � .) The
bond-scattering secular determinant for the eigenvalues of a quantum graph joins the
topological aspects of the graph with the analysis on the edges through a condition of
the form

�S .k/ WD det.1 �ˆ.k/�/ D 0; (1.2)

in which ˆ depends analytically on the effective eigenparameter k and makes no
reference to the topology of the graph, whereas the k-independent bond-scattering
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matrix � is purely combinatorial. The squares of solutions of equation (1.2) are the
eigenvalues of the quantum graph [5, 21].

Allowing a nontrivial scalar interaction on the edges brings a small additional
complication. Without scalar interactions Kottos and Smilansky in [21] were able
to choose the matrix ˆ in (1.2) in the form diag.exp.ik`e//, where `e D `�e is the
length of the oriented edge e and k2 is an eigenvalue of the quantum graph when the
secular determinant vanishes. This, however, relies on a simplification that is special
to � 00 D k2 , with which the 2 � 2 fundamental solution matrix can be encoded as
a single complex-valued function exp.ik`e/ (see Remark 1.1 (3) below).

In order to handle ODEs with interactions such as � 00 C V.x/ D k2 , we
replace equation (1.2) by

det.14m �ˆ.k/y�/ D 0; (1.3)

where y� WD � ˝ 12 and ˆ.k/ is a block-diagonal matrix composed of 2m, 2 � 2
matrices ˆe.k/. (When the details about the dimensions of the matrices are unimpor-
tant we may abbreviate (1.3) in the form (1.2) for simplicity.) Since block-diagonal
matrices will occur frequently, we choose a labeling convention and introduce the
notation

BMatŒMe� WD

266666666666664

Me1

Me2

: : :

Mem

M�e1

M�e2

: : :

M�em

377777777777775
:

Recall that a fundamental solution set for � 00C V.x/ D k2 consists of solu-
tions  1;  2 such that at the beginning end of the edge e parametrized as x D 0,
 1.0/ D 1,  01.0/ D 0, while  1.0/ D 0,  01.0/ D 1. The general solution matrix, or
transfer matrix ˆe.k/ on the edge e takes on the form

ˆe.k/ D

 
 1.k; `e/  2.k; `e/

 01.k; `e/  02.k; `e/

!
(1.4)

at the terminal vertex of e. Canonically, with V D 0, this convention gives U the form

ˆe.k/ D

 
cos.k`e/

1
k

sin.k`e/

�k sin.k`e/ cos.k`e/

!
: (1.5)

In what follows, we assume only the following conditions on the transfer matrices
ˆ.k/.
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Assumptions. (A) In a basis of oriented edges e, ˆ.k/ is a block-diagonal matrix
consisting of 2 � 2 invertible matrices ˆe.k/.

(B) For standardization, the first entry of the vector space C2 attached to the
directed edge e corresponds to the value of a quantum-graph eigenfunction at the
source vertex s.e/ and the second entry to its outgoing derivative at s.e/.

(C) Each block ˆe.k/ is an entire matrix-valued function of k.
Quantum states  are functions inL2 of the metric graph, but they are determined

by vectors x in the null space of the matrix appearing in the determinant in (1.3). We
therefore make the following definition.

Definition 1.2. If  is a quantum-graph eigenfuction, then any nonzero vector x in
the nullspace of the 4m� 4mmatrix 14m �ˆ.k/y� will be referred to as a counterpart
vector to  , cf. (1.3). Thus, the counterpart vector is a family of 2-component vectors
attached to each directed edge e, for which x1.s.e// D  and x2.s.e// D  0.s.e//.
This ensures that such an x determines the corresponding  up to normalization.

Remarks 1.1. (1) When the first entry of a 2-vector attached to e vanishes, we say
that the corresponding quantum state  satisfies a Dirichlet condition at s.e/. Analo-
gously, if the second entry of a counterpart x vanishes it is equivalent to a Neumann
boundary condition at s.e/. Periodic boundary conditions will also arise naturally; see
the remark following (3.2).

(2) When setting up the solution matrices on the edges ˆe.k/, our convention is
to preserve the orientation on e, i.e., the entries of ˆe.k/x correspond, respectively,
to the value of the eigenfunction and its incoming rather than outgoing derivative at
t .e/. Because the orientation of �e is the reverse of that of e, the x-derivative on �e
is the negative of the x-derivative on e. Consequently, the 2 � 2 blocks ˆe.k/ satisfy

ˆ�e.k/ D

 
1 0

0 �1

!
ˆ�1e .k/

 
1 0

0 �1

!
: (1.6)

(3) If

ˆe.k/ D

 
cos kx sinkx

k

�k sin kx cos kx

!
;

then
ˆ�e.k/ D ˆe.k/: (1.7)

Furthermore, when V D 0, we have

ˆe.k/ D 12 cos k C

 
0 1

k

�k 0

!
sin k: (1.8)
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As

det

 
0 1

k

�k 0

!
D 1 and

 
0 1

k

�k 0

!2
D �12;

we can identify

i D

 
0 1

k

�k 0

!
; (1.9)

where i is the imaginary unit. This allows us to reduce the secular matrix to the 2m �
2m form in [5] rather than the 4m� 4mmatrix that we introduced here to account for
a possibility of a nonzero V . In fact, (1.7) remains true with a scalar potential energy
that is symmetric on e, but it is not true in general.

2. Structure and fixed vectors of the bond-scattering matrix

The bond-scattering matrix given in Definition 1.1 and used to find quantum graph
eigenvalues via (1.2) is related to the other matrices that arise in algebraic graph theory
including the adjacency matrix, the graph Laplacian, the non-backtracking matrix, and
the discrete heat kernel; we detail some of these connections below in Theorem 2.1.
Because of complications arising from a reliance on oriented edges, we will write such
matrices in terms of the oriented incidence matrix of the underlying combinatorial
graph.

In discrete differential geometry, the incidence matrix is interpreted as the exterior
derivative and in cohomology theory as the coboundary operator; for discussions of
these matters from different points of view we refer to [4, 23, 26]. A version of the
incidence matrix adapted to the space of oriented edges can be defined as follows: Let
ı�t be the n � 2m matrix associating a given edge with its terminal vertex t .e/ such
that

.ı�t /t.e/;e D 1

with all other entries 0. Correspondingly, let ı�s associate e with its source vertex s.e/.
(The difference ı�t � ı

�
s then gives the full oriented incidence matrix, and the usual

discrete derivative is its adjoint, ıt � ıs . Terminology in the literature is not universal,
conventions varying as to sign and whether the incidence matrix is represented as an
n � 2m or an n �m matrix.) Denote the edge-reversal operator by � W e! �e. Note
that if the oriented edges are ordered so that the secondm of them are the reversals of
the first m in the same order, then � has the block form 

0 1m

1m 0

!
:

From the definitions, ı�t � D ı
�
s and ı�s � D ı

�
t .
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Theorem 2.1. The bond-scattering matrix can be written as follows:

� D 2ısD
�1ı�t � �; (2.1)

where D D ı�s ıs D ı
�
t ıt is the diagonal matrix of the degrees dv of the vertices. See

Table 1.

Matrix Formula Dimensions Notes
Incidence ı�t � ı

�
s n � 2m Oriented

Adjacency A D ı�t ıs n � n

Degrees D D ı�t ıt D ı
�
s ıs n � n diag.dv/

Discrete Laplacian
L D D � A D ı�t .ıt � ıs/

n � n L � 0
D .ı�s � ı

�
t /ıs

Normalized Laplacian D�1=2.ı�t � ı
�
s /.ıt � ıs/D

�1=2 n � n

Laplacian on forms .ıt � ıs/D
�1.ı�t � ı

�
s / 2m � 2m Reduces to m �m

=1-down Laplacian

Edge reversal � D
�

0 1
1 0

�
2m � 2m (or 4m � 4m)

Bond-scattering � D 2ısD�1ı�t � � 2m � 2m Unitary

Non-backtracking H D ıtı
�
s � � 2m � 2m

Self-loops
are excluded

Bond transfer ˆ.k/ D BMat.ˆe.k// 4m � 4m
Edge solution
matrices

Secular 14m � .� ˝ 12/U.k/ 4m � 4m Edge version

Table 1. Some additional matrix factorizations.

Basic facts about the edge-reversal operator � include

�2 D 1; ı�t � D ı
�
s ; ı�s � D ı

�
t ; ��� D ��1 D ��:

Proof. Each of these identities is a straightforward exercise.

The next theorem characterizes the fixed points of the operator � as harmonic 1-
forms on the combinatorial graph �c on which the quantum graph is built. We prepare
with two simple lemmas.

Lemma 2.1. Suppose that �x D x. Then, the following equalities hold:

• ��x D x;

• ��x D �x;

• ���x D �x.



On topological bound states and secular equations for quantum-graph eigenvalues 9

Proof. If �x D x, then ���x D ��x, and since � is unitary, x D ��x.
Since

��� D ��; x D ���x;

so that
�x D ��x:

The final claim follows by a similar argument.

By replacing x with x ˙ �x, we can therefore assume that the set of fixed vectors
of � has a basis such that �x D ˙x.

Lemma 2.2. Consider any k-cycle C 2 �c and assign vertices v` and edge orienta-
tions so that ®

e1; e2; : : : ; ekº D ¹v1 ! v2; v2 ! v3; : : : ; vk ! v1
¯
:

Then, the vector x 2 C2m such that x.e`/ D 0 if e` … C ; x.e`/ D 1 for ` D 1; : : : ; k;
and x.e`/ D �1 for e` D �ej , j D 1; : : : ; k, is a fixed point of � .

Proof. Direct verification.

Theorem 2.2. We suppose that �c is finite and connected.

(a) If �x D x and �x D x, then x is a multiple of the constant vector 1 D
.1; 1; 1; : : :/.

(b) If �x D x and x ? 1, then �x D �x.

(c) The fixed points of � are harmonic 1-forms in the sense that

.ıt � ıs/D
�1.ı�t � ı

�
s /x D 0: (2.2)

(d) There are ˇ1 WD m� nC 1 linearly independent harmonic 1-forms such that
�x D �x.

(e) Let ¹Cj W 1 � j � ˇ1º be a set of independent generators of the fundamental
group of �c . (These are cycles, or “holes” in �c .) Then, there is a basis for the
fixed vectors of � such that �x D �x consisting of vectors supported on each
Cj , which can be normalized to have the explicit forms given in Lemma 2.2.

Remark 2.1. The operator on the left side of (2.2) is the normalized Laplacian on
discrete 1-forms, also known as the “1-down Laplacian” and thus such x are dis-
crete harmonic 1-forms, or, in the terminology of [4], “circulations”. The operator
ısD

�1ı�t appearing in (2.1) is an asymmetric variant of the normalized Laplacian on
forms as given on the left-hand side of (2.2). Parts of Theorem 2.2 is standard lore
about harmonic 1-forms, which we have adapted to account for edge orientations and
to connect these objects to � . See [23, 26] for more about discrete harmonic 1-forms.
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Proof. (a) Suppose that �x D x and �x D x. It follows that ısD�1ı�t x D x. We
calculate

kxk2 D
˝
ı�s x;D

�1ı�t x
˛
D

X
e;e0

xe0ıs.e0/;t.e/
1

dt.e/
xe D

X
v2V

1

dv

X
e!v

X
e0 v

xe0xe

D

X
v2V

1

dv

ˇ̌̌̌ X
e!v

xe

ˇ̌̌̌2
:

By Cauchy’s inequality,ˇ̌̌̌ X
e!v

xe

ˇ̌̌̌2
�

X
e!v

1
X
e!v

jxej
2
D dv

X
e!v

jxej
2;

with equality if and only if all xe are equal whenever t .e/D v and whenever s.e/D v.
Because the graph is connected, if equality holds for all vertices in the sum, it follows
that x is proportional to 1. We thus have

kxk2 �
X
v2V

X
e!v

jxej
2
D kxk2;

implying that x is proportional to 1.
(b) Claim (b) follows immediately from Claim (a), since the states that are sym-

metric with respect to edge reversal are unique up to normalization.
(c) x ? 1 because

0 D h1; .� C �/xi D h.�� C �/1; xi D h21; xi:

Since ısD�1ı�t x D 0, by taking the inner product with �x, we get

0Dh�x;ısD
�1ı�t xiD hı

�
s �x;D

�1ı�t xiD hı
�
t x;D

�1ı�t xiD
X
v

1

dv
j

X
t.e/Dv

xej
2
� 0:

It follows that j
P
t.e/Dv xej

2 D 0, and a similar argument gives j
P
s.e/Dv xej

2 D 0,
from which (2.2) follows.

(d) This is clear if x / 1. Since the fixed vectors of � orthogonal to 1 are all odd
with respect to � , it follows that for them,

ısD
�1ı�t x D 0; (2.3)

and as in the previous proof, on subspace of C2m for which �x D�x, ısD�1ı�t x D 0
implies (2.2).

(e) According to (c), the dimension of the null space of � � 1 when restricted to
the subspace of x W �x D �x equals that of .ıt � ıs/D�1.ı�t � ı

�
s /x, and because the
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rank of the Laplacian on discrete 1-forms equals that of the scalar discrete Laplacian,
which has nullity 1 when the graph is connected, the set of solutions of (2.3) such that
�x D �x has dimension ˇ1, cf., for example, [15, Theorem 20].

(f) Because of Lemma 2.2 we may choose the cycles on which the basis vectors
are supported as any set of generators of the fundamental group of �c .

3. Topological quantum-graph states

Due to its relative simplicity, Kottos and Smilansky concentrated on a version of the
secular equation in the form (1.2) based on the bond-scattering matrix in [21], but they
also derived an alternative “vertex-scattering” variant. Their n � n vertex-scattering
secular matrix is smaller than 2m � 2m, but depends on the eigenparameter k in a
more complicated way. Moreover, rather than being an analytic function of k, it has
singularities. In [21, equation (8)], Kottos and Smilansky discarded these singularities
with the consequence that potential quantum-graph states may be overlooked if their
eigenvalues happen to coincide with the singularities. In this section, we show that
a factorization used by Ihara in [17] provides a direct way to pass from one version
of the secular matrix to the other, and makes a deep connection with these possible
eigenstates on the quantum graph, which are linked to its topological structure. We
turn our attention to the vertex-scattering secular equation below, cf. (3.16).

Because of Proposition 2.1, in the usual “bond-scattering” from the secular deter-
minant can be written as

det.1 �ˆy�/ D det.14m �ˆ.2ısD�1ı�t � �/˝ 12/

D det.14m Cˆy� � 2ˆısD�1ı�t ˝ 12/: (3.1)

(As in (1.3), y� WD � ˝ 12.) As we spell out below, an “Ihara-style” factorization
reducing a 4m � 4m determinant to an 2n � 2n determinant can be carried out if
det.1C ˆy�/ can be treated as an invertible factor. Since, however, .1C ˆ�/ is not
always invertible, treating it as a factor to be inverted introduces singularities. Gener-
ically, this is not problematic, since for a generic quantum graph it is the zeros of
the vertex-version of the secular determinant that yield eigenvalues of the quantum
graph, and zeros cannot coincide with singularities. However, in non-generic cases,
the null space of 1C ˆ� and that of 1 � ˆy� may have a nontrivial intersection, in
which case the introduced singularities can coincide with eigenvalues of the quan-
tum graph. When this occurs, analytic aspects of the spectrum are entangled with the
combinatorial topology of the graph, and hence, the corresponding eigenvectors and
eigenfunctions can be viewed as topological quantum-graph states, cf. Definition 3.1
below.
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We capture some useful properties of y� and ˆ in the following lemma.

Lemma 3.1. Let x 2C4m, thought of as a set of 2-vectors attached to oriented edges.
Then, any two of the following imply the third:

(1) y�x D x,

(2) ˆ.k/x D x,

(3) ˆ.k/y�x D x.

Moreover,

.1Cˆ�/.1 �ˆ�/ D .1 �ˆ�/.1Cˆ�/ D 1 �ˆ�ˆ�; (3.2)

and hence, any vector x in the null space of .1˙ ˆ�/ is a fixed vector of the block-
diagonal matrix with blocks ˆe.k/ˆ�e.k/, i.e.,

ˆe.k/ˆ�e.k/x.e/ D x.e/: (3.3)

Equation (3.2) provides an explicit formula for the inverse of 1Cˆ� , when there are
no nontrivial solutions to (3.3):

.1Cˆ�/�1 D .1 �ˆ�/.1 �ˆ�ˆ�/�1

D .1 �ˆ�/.1 � BMatŒˆe.k/ˆ�e.k/�/
�1: (3.4)

Remark 3.1. The expression (3.3) shows that any vector in the null space of .1˙
ˆ�/ corresponds to a periodic solution of the underlying ordinary differential equa-
tion on the doubled edge obtained by following �e by e. We refer to these as periodic
solutions on the doubled edge, and caution that they may be nonzero on certain
edges while vanishing on others. Similarly, the associated values of k2 will be called
doubled-edge periodic eigenvalues. In works where V.x/D 0 (e.g., [7]) these periodic
solutions show up as factors of the form exp.2ik`e/.

Proof. The first three statements and (3.2) are immediate. From (3.2) and the def-
inition of � the matrix ˆ�ˆ� consists of blocks of the form equation (3.3). The
calculation of the inverse is straightforward.

We will show in Corollary 3.1 that vectors in the null space of .1Cˆy�/ give rise
to singularities in the vertex secular equation. Since eigenstates of the quantum graph
are determined through their counterparts x on the associated combinatorial graph via

.1 �ˆy�/x D 0;

if they are also in this null space, i.e.,

.1Cˆy�/x D 0;
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then the vertex secular equation fails to account for them. Note that the difference of
the these two conditions yieldsˆ.k/.y� C y�/x D 0, which, sinceˆ.k/ is invertible, is
equivalent to the purely topological condition

.y� C y�/x D 0: (3.5)

This allows us to identify the special eigenstates that satisfy an additional purely topo-
logical condition.

Definition 3.1. A quantum-graph eigenfunction  such that its counterpart x 2 C4m

simultaneously satisfies .y� Cy�/xD 0 and .1�ˆy�/xD 0will be called a topological
quantum-graph state. (Recall that by convention, on each directed edge e, x1.e/ D
 .s.e// and x2.e/ D  0.s.e//.)

Theorem 3.1. Suppose that is a topological quantum-graph state and that x 2C4m

is its counterpart edge-space vector, Then, the following statements hold.

(A) For ` D 1; 2,
ı�t x` D 0: (3.6)

(B) On every edge, x1.e/ D 0. Consequently,  satisfies Dirichlet conditions
at every vertex. (This statement excludes “fake vertices” of degree 2.) In
particular, topological quantum-graph states vanish on leaves, which are by
definition edges having a terminal degree-one vertex.

(C) There are at most ˇ1 D m � n C 1 topological quantum-graph states for
a given eigenvalue, and they have an eigenbasis consisting of vectors sup-
ported on generating cycles Cj of the fundamental group. For any topological
quantum-graph state in such a basis, the Dirichlet problems for the edges
e � Ck on which it is supported must share the eigenvalue k2.

Remarks 3.1. (1) The expression on the left side of (3.6) can be thought of as a
discrete divergence.

(2) The final statement of (C) means that even if the quantum graph has a nontriv-
ial interaction, the edges comprised in Ck are “spectrally equilateral.”

(3) In the case of equilateral quantum graphs the dimension of the eigenbasis is
equal to ˇ1.

Proof. (A): It follows from Definition 3.1 together with equation (2.1) that

ısD
�1ı�t x` D 0: (3.7)

Taking the inner product of ısD�1ı�t x` with �x` yields

0 D h�x`; ısD
�1ı�t x`i D hı

�
t x`;D

�1ı�t x`i;
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which implies that ı�t x` D 0, because D�1 > 0. (Note that: For ` D 2, (3.7) is also
just the Kirchhoff condition on the derivatives at the vertices.)

(B): Since
Œı�t x1�.v/ D

X
eWvDt.e/

x1.e/ D dv .v/;

it follows from statement (A) that  .v/ D 0 at every vertex. The final statement then
follows since at a terminal vertex,  .v/ D  0.v/ D 0, and hence, x D 0 on the asso-
ciated edge.

(C): It follows from statement (A) that

.ıt � ıs/D
�1.ı�t � ı

�
s /x2 D 0 (3.8)

so that x2 is a harmonic 1-form in the same sense as in (2.2). Since the Laplacian
is written in self-adjoint form in (3.8), its null space has an orthonormal basis. The
constant vector in C2m is in the null space but cannot be a topological quantum
graph space. Hence, the dimension of the null space is determined as in the proof
of Theorem 2.2. The statement about basis vectors supported on the generators of the
fundamental group follows also as for Theorem 2.2 because any topological quantum-
graph state must be nontrivial on some cycle, and linear combinations can always be
found with support on simple cycles.

Remark 3.2. If the edge interactions are symmetric under the action of � , the coun-
terparts x of the basis vectors on the cycles are of the form given in Lemma 2.2. Their
existence of course requires the existence of cycles consisting of sequences of edges
with a common Dirichlet eigenvalues. Expressed in the more general schema of the
operators �e, topological quantum-graph states require that each �e for e in the cycle
share the eigenvector

�
0
1

�
, and if the supporting cycle consists of the consecutive ori-

ented edges e1 � � � e1, then

�en
�en�1

� � ��e1

"
0

1

#
D

"
0

1

#
:

Theorem 3.2. There are three types of eigenvalues of a quantum graph.

• The eigenvalues of topological eigenstates are periodic eigenvalues associated
with doubled edges in accordance with (3.3). However, not all periodic eigenval-
ues associated with doubled edges give rise to topological eigenstates, only those
that are associated with spectrally equilateral cycles as in Theorem 3.1, part (C).

• Continuing to use the notation yM WDM ˝ 12 for any matrix M , the values k for
which the vertex secular matrixbı�t �BMat.ˆe.k/Cˆ�e.k/

�1/ � 2y�
�
BMat.ˆe.k/ �ˆ�e.k/

�1/bıt (3.9)
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has zero determinant correspond to non-topological eigenstates with eigenvalue
k2.

• If k2 is a periodic eigenvalue of one or more doubled edges, it is possible for
k2 to simultaneously be in the topological spectrum and in the nontopological
spectrum, cf. case study (6) below.

Remark 3.3. Observe that the components Avw of the vertex secular matrix A WDbı�t .2.1Cˆy�/�1 � 1/bıt vanish unless vertices v and w are equal or connected by an
edge. Therefore, A is like a k-dependent discrete Laplacian matrix with weights that
are not necessarily positive, and which become singular for special values of k.

Proof. The characterization of the topological eigenvalues and eigenstates recapitu-
lates part of Theorem 3.1.

To show the second part of the theorem, which extends results of [21] for metric
graphs where V D 0, suppose that det.1Cˆ.k/�/¤ 0. Following the proof of Ihara’s
theorem as presented in [19], we begin writing

det.1 �ˆy�/ D det.1 �ˆ.2ısD�1ı�t � �/˝ 12/

D det.1Cˆy� � 2ˆ.ıs ˝ 12/.D
�1
˝ 12/.ı

�
t ˝ 12//

D det.1Cˆy� � 2ˆbıs bD�1bı�t /: (3.10)

Next, we use the assumption that 1Cˆ.k/� is invertible and the matrix identity

det.QCMN/ D det.Q/ det.1CNQ�1M/; (3.11)

the validity of which requires only that the dimensions of M; N; Q, and 1 allow
them to be added and multiplied as shown, plus the assumption that Q is square and
invertible. If k2 is not a doubled-edge periodic eigenvalue, this enables us to rewrite
(3.10) as

det.1 �ˆy�/ D det.1Cˆy�/ det
�
1 � 2bD�1bı�t .1Cˆy�/�1ˆbıs�

D det.1Cˆy�/ det
�
1 � 2bD�1bı�t .1Cˆy�/�1ˆy�bıt�

D det.1Cˆy�/ det
�bD�1bı�t .1 � 2.1Cˆy�/�1ˆy�/bıt�

D det.1Cˆy�/.det D/�2 det
�bı�t .1 � 2.1Cˆy�/�1ˆy�/bıt�

D det.1Cˆy�/.det D/�2 det
�bı�t .2.1Cˆy�/�1 � 1/bıt�: (3.12)

(The first equality uses (3.11), the next two lines follow from identities in Theo-
rem 2.1, and the final lines are elementary.) Thus, the solutions in k of

det
�bı�t .2.1Cˆy�/�1 � 1/bıt� D 0

define non-topological eigenstates with eigenvalue k2.
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If det.1 C ˆ.k/�/ D 0, then either the vertex secular equation is singular and
cannot simultaneously be zero, or else it must contain at least one root associated
with an eigenvalue in order to cancel the singularity.

The third type of eigenvalue arises due to a similar observation. Since the edge
secular equation is entire and the vertex secular equation is equivalent to dividing
it by det.1C ˆ.k/�/, the zeros of which correspond to periodic eigenvalues on the
doubled edges, the degree of a pole of the vertex secular equation is the difference of
the degrees of the zeros of det.1Cˆ.k/�/ and of the bond secular equation.

Corollary 3.1. The matrix

A WD bı�t .2.1Cˆy�/�1 � 1/bıt (3.13)

has the form

Avw D

´
2
P
¹eWv!wº.ˆ

�1
�e �ˆe/

�1 if v ¤ w;P
¹eWe!vº.ˆ

�1
�e Cˆe/.ˆ

�1
�e �ˆe/ if v D w:

(3.14)

Proof. We recall the formula (3.4) and we take a look at the expression between thebı�t and bıt in equation (3.13):

2.1Cˆy�/�1 � 1 D .2.1 �ˆy�/ � BMatŒ1 �ˆeˆ�e�/.BMatŒ1 �ˆeˆ�e�/
�1

D .1C BMatŒˆeˆ�e� � 2ˆy�/.BMatŒ1 �ˆeˆ�e�/
�1:

Now,
.1Cˆeˆ�e/.1 �ˆeˆ�e/

�1
D .ˆ�1�e Cˆe/.ˆ

�1
�e �ˆe/

and
ˆy� D y�.y�ˆy�/ D y�BMat.ˆ�e/:

Thus,

ˆy�.BMatŒ1 �ˆeˆ�e�/
�1
D y�BMat.ˆ�e/.BMatŒ1 �ˆeˆ�e�/

�1

D y�.BMatŒˆ�1�e �ˆe�/
�1:

This yields that

2.1Cˆy�/�1 � 1 D BMatŒ.ˆ�1�e Cˆe/.ˆ
�1
�e �ˆe/� � 2y�.BMatŒˆ�1�e �ˆe�/

�1:

(3.15)
Since an edge pointing at vertex v cannot also point to vertex w ¤ v, the term in
(3.13) resulting from the first term above is again a block diagonal matrix:

.bı�t BMatŒ.ˆ�1
�e Cˆe/.ˆ

�1
�e �ˆe/�bıt /vwD

´P
¹eWe!vº.ˆ

�1
�e Cˆe/.ˆ

�1
�e �ˆe/ if v D w;

0 otherwise:
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The term resulting from the second term in (3.15) is not a diagonal block matrix,
since the y� reverses the edge orientations. Thus, this term will be as follows:

2.bı�t y�.BMatŒˆ�1�e �ˆe�/
�1bıt /vw D ´ 2P¹eWv!wº.ˆ�1�e �ˆe/

�1 if v ¤ w;

0 otherwise:

Corollary 3.2. Suppose V D 0. Then, the non-topological eigenvalues of the quantum
graph are k 2 R such that det A.k/ D 0 with

A.k/v;w D i

8̂̂̂<̂
ˆ̂:
0 if v is not connected to w

�
1p

degv degw sin.klv;w/
if v is connected tow by an edge of length lv;wP

y�v
cot.klv;y/

deg.v/ if v D w:
(3.16)

Remark 3.4. In this case, the matrix A is the vertex-scattering matrix from Kottos–
Smilansky.

Proof. This follows directly from Corollary 3.1 and identification (1.9).

Corollary 3.3. A quantum graph with V D 0 and edge lengths which are not ratio-
nally related has only non-topological eigenvalues. For any graph that contains a
cycle with rationally related lengths, a topological eigenvalue and eigenvector can be
constructed.

4. Case studies

In this section, we collect some illustrative examples, many of which are based on
tetrahedra, which are accessible without being trivial. See Figures 1 and 2.

(1) The equilateral tetrahedron with edge length � and no potential. Every quadri-
lateral cycle supports topological quantum-graph states as in Lemma 2.2, with eigen-
values `2, ` any positive integer. Every triangular face supports topological quantum-
graph states with eigenvalues `2, ` > 0 even. These are not all linearly independent,
as the dimension of the eigenspaces is only ˇ1 D 3, as can either be shown directly
or deduced as a consequence of Theorems 2.2 and 3.1. The nontopological eigen-
functions correspond to eigenfunctions that are even with respect to permutation of
the edges incident to any given vertex, and thus to functions on edges proportional to
cos `x, with ` � 0 even.

(2) A tetrahedral metric graph with edge lengths � except for edge #1, which is
incommensurate, e.g., with length 1. The topological states of the equilateral tetrahe-
dron that are zero on edge #1 persist, and they have multiplicity 2 rather than 3.
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Incommensurate side

Figure 1. Equilateral tetrahedron case study (1) (left), tetrahedron with one incommensurate
side from case study (2) (center), and tetrahedron with two additional edges case study (3)
(right).

(3) If two additional edges of length � are attached to vertices of the tetrahedron
of case study 1, and their other ends are joined at a new vertex of degree 2, we get
a model that can be thought of as equilateral, or it can be thought of as containing
an additional edge of length 2� joining the vertices. All of the original topological
states persist, and additional topological states appear that are supported in part on the
new edges. The multiplicity is increased to the new ˇ1 D 4. (The vertices to which
the new edge is attached could be the same, in effect attaching a loop of length 2�:)
This confirms that the tetrahedral symmetry of case study 1 is not the source of the
topological states. Rather, they arise from equilaterality, as suitably interpreted.

(4) An equilateral length-� tetrahedron, with V.x/ D 144 on edge #1, 0 on all
others. There are a full set of TQGSs supported on the cycles that do not include edge
#1, while on the cycles including edge #1 there are only TQGSs corresponding to
Pythagorean triples with the integer 12, i.e., (5,12,13), (9, 12, 15), (12, 16, 20). This
confirms that spectral equilaterality matters, not strict metric equilaterality.

(5) Although topological quantum-graph states can be regarded as probability-
zero events in many randomly generated families of quantum graphs, cf. [21], there
are other random models in which many of them exist with high probability. For
instance, consider the model of a large complete metric graph, for which the edge
lengths are assigned one of two values according to some Bernoulli process. With
a high probability the result will contain equilateral cycles as subgraphs, and these
always support topological states according to Lemma 2.2. Theorem 2.2 (D) implies
that there will be a basis of topological bound states of dimension ˇ1. As the two-
length model is a union of two complementary Erdős–Rényi graphs, well-established
work on estimates on Betti numbers gives the total number of edges in the graph as an
asymptotic estimate on dimension of the eigenspace corresponding to the topological
eigenvalue [18]. Furthermore, by Theorem 3.1 a similar interacting model can be
made by assigning one of a pair of possible transfer matrices to the edges.
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Figure 2. A manifestation of the two-lengths model on 10 vertices where one length is marked
in blue and the other in green, the green one chosen with probability 1/3.

(6) As stated in the third case of Theorem 3.9 a given eigenvalue may easily have
both topological and ordinary eigenvectors. Take, for instance, any quantum graph �1
with non-topological eigenfunction  that is not the ground state, with eigenvalue k2.
Separately, consider an equilateral complete graph, such as the triangle or tetrahedron,
with no potential energy, and adjust the scale so that one of its topological quantum-
graph eigenvalues equals k2. To be specific, if the length of the edges is L, then �2

L2

is the eigenvalue of the topological states with eigenfunctions of the form sin.� x
L
/

on the edges of a cycle, so choose L D k
�

. Call this metric graph T . Since  is not
the ground state of �1, it vanishes somewhere, which we can designate as a degree-
two vertex v. Now, “surgically” attach v to one of the vertices of T to form a new
quantum graph �2 for which both �1 and T can be regarded as subgraphs (see [6] for
a survey and analysis of surgery on quantum graphs.) The original  supported on �1
continues to satisfy all of the conditions to be an eigenfunction on �2 with eigenvalue
k2, and the same is true for the topological state supported on a cycle of T .
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