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Existence and weak—strong uniqueness for
Maxwell-Stefan—Cahn-Hilliard systems

Xiaokai Huo, Ansgar Jiingel, and Athanasios E. Tzavaras

Abstract. A Maxwell-Stefan system for fluid mixtures with driving forces depending on Cahn—
Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations
contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary
conditions. The nonconvex part of the energy is assumed to have a bounded Hessian. The main
difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving
the positive-definiteness of the matrix on a subspace and using the Bott—Duffin matrix inverse. The
global existence of weak solutions and a weak—strong uniqueness property are shown by a careful
combination of (relative) energy and entropy estimates, yielding H2($2) bounds for the densities,
which cannot be obtained from the energy or entropy inequalities alone.

1. Introduction

The evolution of fluid mixtures is important in many scientific fields, like biology and
nanotechnology, to understand the diffusion-driven transport of species. The transport
can be modeled by the Maxwell-Stefan equations [29, 31], which consist of mass bal-
ance equations and relations between the driving forces and the fluxes. The driving forces
involve chemical potentials of the species, which in turn are determined by the (free)
energy. When the fluid is immiscible, the energy can be assumed to consist of thermo-
dynamic entropy and phase separation energy, given by a density gradient [5]. The gra-
dient energetically penalizes the formation of an interface and restrains the segregation.
This leads to a system of cross-diffusion equations with fourth-order derivatives. The aim
of this paper is to provide a global existence and weak—strong uniqueness analysis for
multicomponent systems of Maxwell-Stefan—Cahn—Hilliard type.
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1.1. Model equations and state of the art

The equations for the partial densities ¢; and partial velocities u; are

dic; +div(c;u;) =0, i=1,...,n, )

n n

o

Vi — =Y _ ¢V == Kij(e)cuj, @
D k=1Ck

j=1 j=1
n
chuj = 0, (3)
j=1

supplemented by the initial and boundary conditions
c(.0)=¢c"inQ, cu;-v=Ve-v=00n0Q,t>0,i=1,....n, (4

where @ ¢ R? (d = 1,2, 3) is a bounded domain, v is the exterior unit normal vector
on the boundary 92, ¢ = (c1, ..., cy) is the density vector, and Kj;(c) are the fric-
tion coefficients. The left-hand side of (2) can be interpreted as the driving forces of the
thermodynamic system, and the right-hand side is the sum of the friction forces. The
chemical potentials

88

ni = — =logec; —Ac;, i=1,...,n, @)
56’[

are the variational derivatives of the (free) energy

€(c) = H(c) + %Z/Q IVei|2dx, H(c) = Z/Q(ci(logci — 1)+ dx, (6

i=1 i=1

and # (c) is the thermodynamic entropy. Note that this energy is convex; we show in Sec-
tion 5 that our results still hold if the energy contains a nonconvex part with bounded Hes-
sian (like the potential in [11]). We assume that Z:’zl Kij(c)=0for j =1,...,n, mean-
ing that the linear system in V; is invertible only on a subspace, and that ) ;_; c? =1
in 2, which implies that Y _;_; ¢;(#) = 1 in  for all time 7 > 0. This means that the mix-
ture is saturated and ¢; can be interpreted as a volume fraction. For simplicity, we have
normalized all physical constants.

Model (1)—(5) has been derived rigorously in [21] in the high-friction limit from a
multicomponent Euler—Korteweg system for a general convex energy functional depend-
ing on ¢ and Ve. A thermodynamics-based derivation can be found in [30]. When the
energy equals &(c) = H#(c), the model reduces to the classical Maxwell-Stefan equa-
tions, analyzed first in [3, 18, 19] for local-in-time smooth solutions and later in [26] for
global-in-time weak solutions. In the single-species case, model (1)—(5) becomes a fourth-
order Cahn—Hilliard-type equation with convex potential ¢(c) = c(logc — 1). Such a
model, additionally including a nonconvex potential, was analyzed in, e.g., [11,32]. Con-
vergence from the Euler—Korteweg in the high-friction limit to the Cahn—Hilliard equation
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with nonconvex potential is provided in [17]. Only a few works are concerned with the
multispecies situation, and all of them require additional conditions. The mobility matrix
in [4,28] is assumed to be diagonal and that in [27] has constant entries, while [10, 12]
suppose a particular (but nondiagonal) structure of the mobility matrix. We also mention
[1,2] on related models with free energies of type .

The proof of the uniqueness of solutions to cross-diffusion or fourth-order systems is
quite delicate due to the lack of a maximum principle and regularity of the solutions. The
uniqueness of strong solutions to Maxwell-Stefan systems has been shown in [19, 23],
and uniqueness results for weak solutions in a very special case can be found in [7]. A
weak—strong uniqueness result was proved for reaction—diffusion systems in [15] and for
Maxwell-Stefan systems in [22]. Concerning uniqueness results for fourth-order equa-
tions, we refer to [8] for single-species Cahn—Hilliard equations, [24] for single-species
thin-film equations, and [14] for the quantum drift-diffusion equations. To our knowledge,
there are no uniqueness results for multicomponent Cahn—Hilliard-type systems. In this
paper, we analyze these equations in a general setting for the first time.

1.2. Key ideas of the analysis

Before stating the main results, we explain the mathematical ideas needed to analyze
model (1)—(5). First, we rewrite (2) by introducing the matrix D(c) € R™*" with entries

1
D;:: = K. -
lj(c) «/C_z lj(c)\/cj
in the unknowns ( /c1uU1, ..., \/ChUn):

n n
e
VeV — =5 lck Y ¢V ==Y Dij(e)Jeu;,
j=1

k=1 = j=1

(N

n

2 Vei(eiui) = 0.

i=1
We show in Lemma 3 that this linear system has a unique solution in the space L(c) :=
{ze R": Y ", /cizi = 0}, and the solution reads

n
Veiup = — Z DIP(e) /& V iy,
=1

where DBP(c) is the so-called Bott-Duffin matrix inverse; see Lemmas 3 and 4 for the
definition and some properties. Then, defining the matrix B(c¢) € R™*" with elements

Bij(¢) = JeiDPP(e) Jej. i.j=1.....n, (8)

system (1)—(2) can be formulated as (see Section 2.1 for details)

n
dic; = diVZBij(c)V,uj, i=1,...,n.
j=1
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The matrix B(c) is often called the Onsager or mobility matrix in the literature. The
major difficulty of the analysis comes from the fact that the matrix B(c) is singular and
degenerates when ¢; — 0 for some i € {1,...,n}. Formally computing the energy identity

dé
E(c) + Z / Bij(c)Vu; -Vujdx =0,

i,j=1

the degeneracy at ¢; = 0 prevents uniform estimates for Vy; in L?(Q2). In some works,
this issue has been compensated for. For instance, there exists an entropy equality for the
model of [12] yielding an L?(2) bound for Ac;, and the decoupled mobilities in [6, 28]
allow for decoupled entropy estimates. In our model, the energy identity does not provide
a gradient estimate for the full vector (Vuy, ..., Vu,) but only for a projection:

dé& " 2
E(¢)+C1 ij — i)/ V| dx <0,
i_

where §;; is the Kronecker delta; see Lemma 5. (The constant C; > 0 and all constants
that follow do not depend on c.) To address the degeneracy issue, we compute the time
derivative of the entropy:

d¥
W(c)—}- Z / Bij(c)Vloge; - Vu; dx = 0.

i,j=1

This does not provide a uniform estimate for Ac;, but we show (see Lemma 5) that

Perra Z / (Ac))” dx

i=1

dx.

ij = A/CiCj «/_VMJ

i=1

Combining the energy and entropy inequalities in a suitable way, the last integral cancels:
d(](()+c38()>+c Xn:/(A )2 dx <0 )
— c)+ —&(c ci) dx .
dt C 2 -1/ l -

This provides the desired H2(2) bound for ¢;. Note that the energy or entropy inequality
alone does not give estimates for ¢;. The combined energy—entropy inequality is the key
idea of the paper for both the existence and weak—strong uniqueness analysis. Observe
that the term J# (c) 4+ (C3/C1)&(¢) can also be written as

(1+ C3/C) I (e) + / Veil? d.
l—l
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1.3. Main results

We make the following assumptions:

(A1) Domain: Q C R? with d < 3 is a bounded domain. We set Q7 =  x (0, T)
for T > 0.

(A2) Initial data: C? e H'(Q) satisfies c? >0in,i=1,...,n,and > ;_, clp =1
in Q.

The assumption d < 3 is made for convenience, it can be relaxed for higher space
dimensions by choosing another regularization in the existence proof; see (83). The con-
straint Y ;_; c? = 1 expresses the saturation of the mixture and it propagates to the
solution. We introduce the matrix D;;(¢) = (1/./ci)K;j(c)/cj fori,j =1,...,n and
set

L(c)={x eR": J/c-x =0}, L*(c)=span{+/c}, (10)

where /¢ = (\/c1, ..., /cn). The projections Pz (c), P;1(c) € R"" on L(c), L(c)*,
respectively, are given by

Pr(c)ij = 8ij — JJeic;, Pri(e)ij = Jeic;, fori,j=1,...,n. (1n
We impose for any given ¢ € [0, 1]* the following assumptions on D(c) = (D;;(c)) €
Rnxn:
(B1) D(c) is symmetric and ran D(c) = L(c), ker(D(c) Pr(c)) = L*(c).
(B2) Foralli,j =1,...,n, D;j € Cl([O, 1]") is bounded.

(B3) The matrix D(c) is positive semidefinite, and there exists p > 0 such that all
eigenvalues A # 0 of D(c) satisfy A > p.

(B4) Foralli,j =1,....n, K;j(c) = ﬁDij(c)/ﬁis bounded in [0, 1]".

Examples of matrices D(c) satisfying these assumptions are presented in Section 6.

Our first main result is the global existence of weak solutions.

Theorem 1 (Global existence). Let Assumptions (Al)—(A2) and (B1)—(B4) hold. Then
there exists a weak solution c to (1)—(5) satisfying 0 < c¢; <1, Z:’Zl ci =1inQ x(0,00),

€ L2 (0,00; H'(R)) N L2 (0,00; H3(R)), d;¢c; € L?

loc loc

(0,00; H'(R)"),

the initial condition in (4) is satisfied in the sense of H (), and for all ¢; € C§o(Q2 x
(0, 00)),

) n o
0:—/ / ci0: i dxdt—i—Z/ [ Bij(c)Viogc; - Vo dx dt
o Ja o Ja

+Z/O /Qdiv(B,-j(c)ng,-)ch dx dt, (12)

J=1
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where B;j(c) is defined in (8). Furthermore,
T
Hc(, 1))+ Ci&(c(,T)) + CZ/ / (|V«/E|2 + |Ac|2) dx dt
0 Q

T
+cz/ / 1€ dxdt < H(c®) + C18(c?), (13)
0 Q

where C1; > 0 depends on p, n, ||D(c)||r and C, > 0 depends on n, || D(c)||r (where
|| - | F is the Frobenius matrix norm and p is introduced in Assumption (B3)). Moreover, §
is the weak L*(S2) limit of an approximating sequence of Z;'Zl Pr(€)ij /S5 V 1.

Some comments are in order. First, by Assumption (B2), the elements of the matrix
D(c) are bounded for any ¢ € [0, 1]* and therefore, the quantity || D(c)||r is bounded
uniformly in ¢. Second, the weak formulation (12) makes sense since B;;(c)V logc; €
L?(Qr). Indeed, by the definition of B(c), we have

1
Bij(c)Vlogc; = \/c_,-D?jD(c)\/—CTch,

and the matrix \/¢; D} (¢)/ /¢; is bounded for all ¢ € [0, 1]"; see Lemma 4 (jii) below.
However, note that the expression Z?:l B;ij(c)Vp; is generally not an element of
L?(Qr). In particular, we cannot expect that VAc¢; € L2(Q7). Third, we have not been
able to identify the weak limit ¢ because of low regularity. However, if

n
Y PL(€)ij GV i € Lie(0,00; L (R))
j=1

holds foralli =1,...,n, then we can identify {; = Z;’:l Pr(c)ij ﬁV,uj; see Lemma 9.

To prove Theorem 1, we first introduce a truncation with parameter § € (0, 1) asin [12]
to avoid the degeneracy. Then we reduce the cross-diffusion system to n — 1 equations by
replacing ¢, by 1 — Z:’;ll ¢;. The advantage is that the diffusion matrix of the reduced
system is positive definite (with a lower bound depending on §). The existence of solutions
cf to the truncated, reduced system is proved by an approximation as in [25] and the
Leray—Schauder fixed-point theorem; see Section 3.1. An approximate version of the free
energy estimate (13) (proved in Lemma 8 in Section 3.2) provides suitable uniform bounds
that allow us to perform the limit § — 0. The approximate densities cf may be negative
but, by exploiting the entropy bound for cf, its limit ¢; turns out to be nonnegative. The
limit § — 0 is then performed in Section 3.3, using the uniform estimates and compactness
arguments.

Our second main result is concerned with the weak—strong uniqueness. For this, we

define the relative entropy and free energy in the spirit of [16] by, respectively,

37
H(e|e) = J(e) = H(@) ~ 5 —(@) - (e =)

- i/ﬁ(a log = — (¢; = &)) d. (14)

i=1
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- _. 0& _ -
Elcle) = E(c) —€(0) — 5 -(&) - (¢ =)
I o
= H(eld) + 5 > i IV(c; — é)|? dx. (15)

i=1

Theorem 2 (Weak—strong uniqueness). Let Assumptions (Al)—(A2), (B1)—(B4) hold, let
¢ be a weak solution to (1)—(5) with initial datum ¢°, and let ¢ be a strong solution to
()=(5) with initial datum é°. We assume that the weak solution c satisfies

n
> PL(€)ij GV € L7 (0.00: LA(Q)) fori,j=1.....n (16)
Jj=1

(see (11) for the definition of Pr(c)) and for all T > 0O the energy and entropy inequalities

n T
E(c(T)) + Z/ /B,-j(c)w,--w,- dxdi < &(c°). (17)
ij=1"0 Q
n T
H(c(T)) + Z/ /B,-,-(c)Vlogc,--V,uj dx dt < J(c®). (18)
ij=1 0 Q

The strong solution ¢ is supposed to be strictly positive, i.e., there exists m > 0 such that
¢ >min R, t > 0, and satisfies the regularity

1
& € L(0, 00 W3 (), Vdiv(_—B,-,- (E)V;lj) € L2 (0, 00; L¥(Q))
Ci

fori =1,...,n,aswell as for any T > 0 the energy and entropy conservation identities
n T
sen+ Y. [ [ By@Vii- Vi drdr = 6@ (19)
S 0 Q
i,j=1
n T
H@ET)+ ) / / Bij(€)Vlogé; - Vii; dx dt = #(&°), (20)
i=do Je

where p; =logc; — Ac; and ji; =logc; — Ac;. Then, for any T > 0, there exist constants
C1, only depending on | D(c)| F, n, p, and Co(T) > 0, only depending on T, meas(2),
n, p, such that

H(e(T)|e(T)) + C18(c(T)[E(T)) < Co(T)(H(c®1€%) + C1€(c°|e?)). 1)

In particular, if ¢® = ¢° then the weak and strong solutions coincide.

Observe that we need stronger assumptions on the weak solutions than those obtained
in Theorem 1. Assumption (16) guarantees that the flux ) 7 _,; Bij(c)V; lies in L*(Qr7).
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Indeed, we prove in Lemma 4 (i) in Section 2 that DIBJ.D (c) is bounded for ¢ € [0, 1]".
Therefore, since DBP(¢) = DBP(¢) Pr(¢), assumption (16) and ¢; € L®(Qr) imply that

n n
Y By@Vu = V& Y DR PLOy G Vi € LXQr).  (22)
Jj=1 Jk=1
By the way, it follows from Z;‘l=1 Pr(c)ij /c;VIoge; =2V /ci € L?(Qr) that
n n
Y PL(©)ij G VA = Y Prle)ij /G V(loge; — i) € L(Qr).  (23)
j=1 j=1
Since VAc; may not be in L2(Q7), we interpret (23) in the sense of distributions, i.e., for
all ® € CS°(Q;RY),

<Z PL(C)ij \/C_jVACj, CD>
=1

=T Z/Q(V(PL(C)U@ - @ 4 Pr(c)ij /cj div ®)Acj dx.
j=1

For the proof of Theorem 2, we estimate first the time derivative of the relative entropy
(14):

dJ "
—(cle C
T (cle) + 1,;/9

n
oy
ZZ;Q

where C; > 0 are some constants depending only on the data. The first term on the right-
hand side can be handled by estimating the time derivative of the relative energy (15):

e .
E(c|c)+C4;/Q

59;/9

+c5<9)/98(c|c‘) dx,

n 12 n
ZPL(c)ij\/c_jVIOgc_—] dx + C, Z/ (Alci —)) dx
4 Cj ‘ Q

j=1 J i=1

2
dx + C3/ &(cle)dx,
Q

> PL(e)ij &GV (y — i)
Jj=1

2
dx

Z Pr(e)ij /c;V (i) — jij)
=1

n 12 n

g PL(c),-j‘/ch1ogf—j dx + 0 E /(A(Ci —¢))dx
. Ci : Q
Jj=1 J i=1

where 6 > 0 can be arbitrarily small. Choosing § = C;C4/C>, we can combine both
estimates leading to

%(Je(cw) + g—i&’(dé)) < (c3 +
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and the theorem follows after applying Gronwall’s lemma. As the computations are quite
involved, we compute first in Section 4.1 the time derivative of the relative entropy and
energy for smooth solutions. The rigorous proof of the combined relative entropy—energy
inequality for weak solutions ¢ and strong solutions ¢ is then performed in Section 4.2.

The paper is organized as follows. The Bott—Duffin matrix inverse is introduced in
Section 2, some properties of the mobility matrix B(c) are proved, and the combined
energy—entropy inequality (9) is derived for smooth solutions. The global existence of
solutions (Theorem 1) is shown in Section 3, while Section 4 is concerned with the proof
of the weak—strong uniqueness property (Theorem 2). The case of nonconvex energies
is investigated in Section 5, showing that Theorems | and 2 still hold if the convex part
of the energy equals the Boltzmann entropy (see (6)) and the Hessian of the nonconvex
part is bounded. Finally, we present some examples verifying Assumptions (B1)—(B4) in
Section 6.

Notation
Elements of the matrix A € R"*” are denoted by A;;, i, j = 1,...,n, and elements of a
vector ¢ € R" are ¢y, ..., c,. We use the notation f(c) = (f(c1),..., f(cn)) forc € R"?

and a function f:R — R. The expression |V f(c)|? is defined by > 7, |V f(c;)|* and | - |
is the usual Euclidean norm. The matrix R(c) € R™*" is the diagonal matrix with elements
s fCns 16, Rij(e) = \J/cibij fori, j = 1,...,n, where §;; denotes the Kronecker
delta. We understand by Vu the matrix with entries dy, it;. Furthermore, C > 0, C; > 0
are generic constants with values changing from line to line.

2. Properties of the mobility matrix and a priori estimates

We wish to express the fluxes c;u; as a linear combination of the gradients of the chemical
potentials. Since K(c¢) has a nontrivial kernel, we need to use a generalized matrix inverse,
the Bott-Duffin inverse. This inverse and its properties are studied in Section 2.1. The
properties allow us to derive in Section 2.2 some a priori estimates for the Maxwell—
Stefan—Cahn—Hilliard system.

2.1. The Bott-Duffin inverse

We wish to invert (2) or, equivalently, (7). We recall definition (11) of the projection
matrices Pr (c) € R™" on L(c) and P;1(c) € R™" on L*(c), where L(c) and L*(c)
are defined in (10). Then (7) is equivalent to the following problem:

Solve D(c¢)z = —Pr(¢)R(c)Vu in the space z € L(c), 24)

where z; = ,/cju;, recalling that R(c) = diag(y/c).
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Lemma 3 (Solution of (24)). Suppose that D(c) satisfies Assumption (B1). The Bott—
Duffin inverse

DBP(¢) = Pr(c)(D(c)PL(c) + Ppi(c)) ™!

is well defined, symmetric, and satisfies ker DBP(¢) = L+ (c). Furthermore, for any y €
L(c), the linear problem D(c)z = y for z € L(c) has a unique solution given by z =
D®P(c)y.

We refer to [22, Lemma 17] for the proof. The property for the kernel follows from
ker DBP(¢) = ker Py (c) = L*(c). Since Pr(c)R(c)Vp € L(c) (this follows from the
definition of Pz (c¢) and Z:’zl ¢; = 1), we infer from Lemma 3 that (24) has the unique
solution z = —DBP(¢) Pr(¢)R(c)Vp € L(c) or, componentwise,

ciup = \Jeiz; = —Z Vei(DPP(e) PL(€))ij /¢ V iy = —Z Ve DPP(€)ij /e V

j=1 j=1

fori = 1,...,n, where the last equality follows from DBP(¢) Py (c) = DBP(c); see [22,
(81)]. Then we can formulate equation (1) as

n
0sci = diVZ Bij(c)Vuj, where Bjj(c) = \/c_iDg-D(c)\/F, i,j=1,....,n. (25
j=1

The boundary conditions c;u; - v = 0 on d€2 yield

n
Y Bij(©)Vuj-v=0 ondQ,1>0,i=1,...n. (26)
j=1

We recall some properties of the Bott—Duffin inverse.
Lemma 4 (Properties of DBP(¢)). Suppose that D(c) € R™*" satisfies Assumptions (B1)—
(B4). Then we have the following properties:

(1) The coefficients DlBjD e CY([0,1]™) are bounded fori,j = 1,...,n.

(i) Let A(c) be an eigenvalue of (D(c)Pr(c) + Pp1(c))L. Then A, < A(c) < Ap,
where
Am = (1 +n|D@)|r)""., Ay =max{l,p '},

|| - | 7 is the Frobenius matrix norm, and p > 0 is a lower bound for the eigen-
values of D(c); see Assumption (B3).

(iii) The functions ¢ +— ﬁD?jD(c)/ﬁ are bounded in [0,1]" fori,j =1,...,n.
A consequence of (ii) are the inequalities

Am|PL(c)z|* < 2TDBP(c)z < Ap|Pr(c)z)* forz € R™. (27)

Note that the Frobenius norm of D(c) is bounded uniformly in ¢ € [0, 1]", since D;; is
bounded by Assumption (B1).
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Proof of Lemma 4. Points (i) and (ii) are proved in [22, Lemma 11] in an interval [m, 1]*
for some m > 0. In fact, we can conclude (i)—(ii) in the full interval [0, 1]", since our
Assumptions (B2)—(B3) are stronger than those in [22].
For the proof of (iii), dropping the argument ¢ and observing that RDR™! = K, we
obtain
RDBPR™! = RP,(DPy + P;1) 'R™! = RPL(R"'R)(DPL + P, 1) 'R™!
= RPLR Y (R(DP. + P,.)R™ 1)1
= RPLR" Y (RDR'RPLR™' + RP, 1 R"})™!
= RPLR"Y (KRPLR™ '+ RP, RV

The determinant of the expression in the brackets equals
det(R(DPL + P;1)R™1) = det(DPy + Py 1).
Therefore, denoting by “adj” the adjugate matrix, it follows that

RP; R™" adj(KRPLR™ RP; . R!
RDBDR— L a .]( L + Lt ) (28)
det(DPr, + P 1)
By Assumption (B3), the eigenvalues of D are not smaller than p > 0. The proof of
[22, Lemma 11] shows that the eigenvalues of DPy 4 P; . are not smaller than p > 0,

too. This implies that det(DPr, + P;1) > p"~! > 0. The coefficients

(RPLR_I)ij = 81] — (i, (RPLJ_R_I)U = Cj

are bounded for ¢ € [0, 1]" and, by Assumption (B4), the coefficients of K are also
bounded. Therefore, all elements of adj(KRPy R™! + RP; 1 R™') are bounded. We con-
clude from (28) that the entries of RDBPR™! are bounded in [0, 1]*, i.e., point (iii)
holds. "

The most important property is the positive-definiteness of DBP(c) on L(c); see (27).
This property implies the a priori estimates proved in the following subsection.

2.2. A priori estimates
We show an energy inequality for smooth solutions.

Lemma 5 (Free energy inequality). Let ¢ € C*°(Q2 x (0,00); R") be a positive, bounded,
smooth solution to (1)—~(5). Then, forany 0 < A < A,

d (Am — A)? 2 2
E(Jf(c)+ e wandd +2A/ NA dx—i—)t/ |Ac|? dx
(XM )t)z

/ |PL()R(e)Vpul? dx <0,

where the entropy J(c) and the free energy &(c) are given by (6) and Ay, Ay are defined
in Lemma 4.
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Proof. We derive first the energy inequality. To this end, we multiply equation (25) for ¢;
by pi = (08/dc;i)(c), integrate over €2, integrate by parts (using the boundary conditions
(26)), and take into account the lower bound (27) for DBP(¢):

de 2 [ 08 -
E(c) = ;/ﬁ 8—Ci(c)8tc,~ dx = — Z /Q Bij(e)Vu; -V dx

i,j=1
=— > DP(WeVi) - (Vi) dx
i,j=1
< —Am/ |Pr(c)R(c)V|? dx. (29)
Q

The entropy inequality is derived by multiplying (25) by log c;, integrating over €2,
and integrating by parts (using the boundary conditions (26)):

d% n n
7(0) = Z/Q(logci)atci dx = — Z /QB,-,-(C)Vlogc,- -V dx.
i=1

ij=1
To estimate the right-hand side, we set G = R Py R (omitting the argument ¢) and M :=
B — AG for A € (0, A),). Then

dje n n
W(c): - Z /QM,-J-Vlogc,--V,ujdx—/\ Z /QGileogci-Vp,jdx

i,j=1 i,j=1
=1 + . (30)

Before estimating the integrals I; and I, we start with some preparation. We use
Lemma 4 (ii) and PIT P; = Py to obtain

zTBz = (Rz)TDB°Rz > A,,| PLRz|?> = A,,(PLRz)T(PLRz) = A,,zTGz forz € R”.
The matrix M is positive semidefinite since for any z € R”,

2TMz =2TBz — 127Gz > (Ay — M)27Gz = (A, — A)| PLRz|%. (31)
Furthermore, by Lemma 4 (ii) again, we have the upper bound

2TMz =zT(B —1G)z < Ay — N)z7Gz = (Ay — A)| PLRz|*. (32)

We are now in the position to estimate the integral /;, using Young’s inequality for
any 0 > 0:

0 « 1 <
I < 3 Z /QM,-]-VIOgc,- -Vloge; dx + 20 Z /QMUV/L,- -V, dx
i,j=1 i,j=1

Ay —A
20

/ |PLRV p|* dx,
Q

IA

0
2 Chae —A)/ |PLRV loge|? dx +
Q

Ay —A
26

/ |PL RV |? dx
Q

=20(Ay — A)/ Ve dx +
Q
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where the last step follows from Z;’ZI(PL)Z-J- R;Vlogc; = 2V./c;, which is a conse-
quence of Z;-':l Vcj = 0. For the integral /,, we use the definitions G;; = ¢;§;; — cic;
and u; = logc; — Ac;y:

2 =-A Z /(c, ij clc,)— V(logecj — Acj) dx

i,j=1

__)LZ/ Vei - V(loge; — Ac,)dx—i—/l/ ZVQ Zc,V(logc] Acj)dx

i=1
=1 Z / Vei -V(loge; — Aci)dx = —A / (4|V/e|* + |Acl?) dx,
i=1
where we integrated by parts in the last step.
Inserting the estimates for /; and 5 into (30) yields

Cii—ie(c)+4k/ |V«/E|2dx+)k/ |Ac|2dx

<20(Ap — A)[ |Vel? dx +
We set 6 = A/(Ap — A) to conclude that
d—]((c)+2)t/ |V\/E|2dx+)L/ |Ac|?dx <
dt Q Q

The right-hand side can be absorbed by the corresponding term in (29). Indeed, adding
the previous inequality to (29) times (A3 — A)?/ (A A) finishes the proof. |

/ |PLRVp|*dx.

2
M/ |PLRV|? dx. (33)

Note that the energy inequality (29) or the entropy inequality (33) alone are not suffi-
cient to control the derivatives of ¢ but only a suitable linear combination. We will prove
these inequalities rigorously in the following section for weak solutions; see Lemma 8.

3. Proof of Theorem 1

We prove the existence of global weak solutions to (1)—(4). For this, we construct an
approximate system depending on a parameter § > 0, similarly to [12], and then pass to
the limit § — 0.

3.1. An approximate system

In order to deal with the degeneracy of the matrix B(c) when a component of ¢ vanishes,
we introduce the cutoff function y5: R” — R”, with

8 fore; < 6,
(xse)i =19 c¢i for§ <¢; <1-46,
1-6 forc; >1-—6,
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and define the approximate matrix
B%(c) = R(xs¢) D™ (xs¢)R(x5¢). (34)

recalling that R(ysc) = diag(/xsc). We wish to solve the approximate problem

n
9€°
drc] =div)_ BV, ul = 8—(c5) inQ, >0, (35)
c;
j=1 J

n
0 =c?inQ, Y Bi(®)Vul-v=0 Vcf-v=00n0Q (36

j=1
wherei =1,...,n, Y /_; ¢} = 1, and the approximate energy is defined by
1 n n
&%(c) == H#%(c) + 5;/;2|Vci|2dx, Ho(c) = ;/th(c,-)dx,
rlogé —68/2 + r?/(28) forr < 8,
hf(r)z rlogr for6 <r<1-96, (37)

rlog(1—8)—(1—38)/2+r%/2(1=8)) forr>1-34.

Observe that the solutions cf may be negative. We will show below that cf converges to a
nonnegative function as § — 0. The approximate entropy density is chosen in such a way
that k¥ € C2(R). Indeed, we obtain

logd +c¢; /8 for ¢; < 6,
(h¥) (ci) = { loge; + 1 for§ <ci <1-8,  (h%)'(c;) =
log(1—=68)+c¢;/(1—=6) forc; >1—36,

(xse)i

With these definitions, we obtain ;Lf = (hf)’(cf) — Ac;S fori =1,...,n.

Theorem 6 (Existence for the approximate system). Let Assumptions (A1)—(A2) and
(B1)—~(B4) hold and let § > 0. Then there exists a weak solution (¢%, p%) to (35)-(36)
satisfying Y r_, c3(t) =1inQ, t >0,

¢ e L2(0,00; H'(R2)) N L2 (0, 00: H2(R)),

loc

drci € L2(0.00: HX(Q)), ul e L2 (0,00; H ()., i=1,....n,

and the first equation in (35) as well as the initial condition in (36) are satisfied in the
sense of L2 (0, 00; H%(R)').

loc

The proof of this theorem is deferred to Appendix A, since it is technical and involves
well-established techniques. We show some properties of the matrix B®(c). We introduce
the matrices Pr(xsc), Pri(xsc) € R™" with entries

Vv (xse)i(xse);

Vv (xse)i(xse); =1
Do (x50 ’ "

ZZ=1 (xs€)k '

Pr(xsc)ij =8ij — Pri(xse)ij = .
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Lemma 7 (Properties of B%(c)). Suppose that D(c) satisfies Assumptions (B1)—(B4).
Then Lemmas 3 and 4 hold with Pr(c), Ppi(c), and DBP(c) replaced by Pr(xsc),
Py 1(xsc), and DBP(ysc¢). As a consequence, the matrix B®(c), defined in (34), satis-

fies
zTB%(¢)z > Am|PL(xs¢)R(ysc)z|? foranyz,c € R", (38)

and the first (n — 1) x (n — 1) submatrix B%(c) of B¥(¢) is positive definite and satisfies
for n(8) = Am&>/n,
ZTBS(¢)z > n(8)Z|> foranyz e R", (39)

Proof. 1t can be verified that Assumptions (B1)-(B2) hold for D(ysc), so Lemmas 3 and 4
still hold for the matrix D(ysc). Inequality (38) is a direct consequence of Lemma 4 (ii).
It remains to prove (39). We define for given Z € R"~! the vector z € R” with z; = Z; for
i=1,...,n—1and z, = 0. Then (38) becomes

ZTB%(¢)z > Am|PL(xs¢)R(x5¢)2|* = Am(R(x5¢)2)T PL(xs¢)(R(x5¢)%),  (40)

where A denotes the first (n — 1) x (n — 1) submatrix of a given matrix A4 € R™*"_ It
follows from the Cauchy—Schwarz inequality that for any ¢ € R"~!,

n—1
5 _ ;_(  (se)j ) 2 (xs¢); 2
é- L(xs¢)¢ ;Cz Z Zk 1(XSC)k |§| sz 1(X50)k|§|

— (xs¢)n
ZZ=1(X§c)k

Therefore, (40) becomes

51> = —ICIZ.
n

i A8 i Am6?
zTBS(c)z>—Z|¢(mc>lzl|2 Amd TN (sedilE P = FE—
n =1 n

i=1

which proves (39). [

3.2. Uniform estimates
We derive energy and entropy estimates for the solutions to (35), which are uniform in §.

Lemma 8 (Energy and entropy inequalities). Let ¢® be a weak solution to (35)-(36),
constructed in Theorem 6. Then the following inequalities hold for any T > 0:

&3P (. 1)) + Z/ [ 5Vl - vuddx dt < €%(c), A1)

i,j=1

JH (b (. T)) + Z/ / SV (f) - Vil dx dt < % (c?), (42)

i,j=1
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n T 512
93y + PN 38 7y 42 A
T + T + ;/Ofg xdi

2k (x5¢%)i
n. T
+)‘Z/ /(ACf)zdxdz
i=1 70 J@
Au — M) T
+%[ /|PL(X568)R(X508)V;L5|2dxdt
0o Ja
12
S %S(CO) + MSS(CO), (43)

2AmA

where A satisfies 0 < A < Am, Am, Ay are introduced in Lemma 4, and R(ysc®) =

diag(v/x5¢%).

Proof. Summing (89) witho = loverk = 1,..., N, we find that

n—1 T
EEOTH+ Y /0 /Q BY@)vu® - Vo' dx di

i,j=1

n T ()2 ()2 ~5 -0
+8;/(; /Q((Awi )2+ (w;7)?) dx dr < €°(c%).

We know from (92) and the construction of ys that (w ™) is bounded in L2(0, T'; H'(2))
and (§fj (¢)) is bounded in L*°(Q7) with respect to (e, 7). Therefore, we can pass to the
limit (¢, T) — 0 in the previous inequality, and weak lower semicontinuity of the integral
functionals leads to (41).

To show (42), we use (hf ) (cis ) — (hf)’ (cﬁ) as a test function in the weak formulation
of (82) and sumoveri =1,...,n —1:

n—1 T _
H(e(-.T)) + Z/O /Qij(&'*)V((hf)’(cf)—(h;?)'(c;f))-vu);? dx dt < #°(c0).
i,j=1

This inequality can be rewritten as (42) using w? = /Lf — /L‘EL. Finally, we derive (43) by
combining (42) and (41) and proceeding as in the proof of Lemma 5. ]

3.3. Proof of Theorem 1

We perform the limit § — 0 to finish the proof of Theorem 1. It follows from [13, Lemma
2.1] that for sufficiently small § > 0, there exists C > 0 (independent of §) such that for
allry,...,r, € Rsatisfying Y ', ri =1,

> ki) = —C. (44)

i=1
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Therefore, estimate (43) implies that

n n T |VC§|2 n T
Z/ |Ved (., T)|2dx+2/ / L dxdt +Z/ f(Acf)zdxdz
179 o JQ i—1J0 Je

8Y.
=1 (xs¢®)i
T
T / / |PL(xse®) R(se®) Vil 2 dx di < C. 45)
0 Q

and the constant C > 0 depends on A,,, A3s, and ¢%. Mass conservation (or using the test
function ¢; = 1 in the weak formulation of (35)) shows that [, c3(-, T) dx = [, c§ dx
forany T > 0, i.e., |¢%] Loeo(o,7:L1 () < C. We conclude from the Poincaré-Wirtinger
inequality that

le? llzooqo,r:m1 @) + 1€ 220, 7:m2(02)) < C- (46)

Next, we estimate Btcis . Lemma 7 implies that the entries of

(D(xs¢®) PL(xs¢®) + PLo(xse®)™

are uniformly bounded. Thus, by the definition of DBP(ys¢%) and (27),

)

and the right-hand side is bounded by (45). Setting Ji’g = Z;’:l Blfgj (cS)Vuf, this means
that (Jl.s) is bounded in L2(Q7). Therefore, there exists a subsequence that is not rela-
beled such that, as § — 0,

n
> B Vi

2 T
dxdt < Ay / / |PL (s’ R(z5e®) Vb P dox d,
i o Ja

J$ —~ J; weakly in L2(Q7).

This implies that
||3t0?||L2(0,T;H1(Q)') <C. 47)

We conclude from (46) and (47), using the Aubin—Lions lemma, that, for a subsequence
(if necessary),
¢d > ¢ strongly in L2(0,T; H'(Q)),

1

5 X ¢ weakly-x in L0, T; H'(Q)),

¢

(43)
cf — ¢ weakly in L2(0, T; H*(2)),
3¢t — d,¢; weakly in L2(0,T; HY(Q)").
Performing the limit § — 0 in (35), we see that d,c; = div J; holds in the sense of
L%(0,T; HY(Q)').
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We prove that ¢; > 0in Qr,i = 1,...,n, following [13]. By definition (37) and the
lower bound (44), we have for 0 < § < 1,

z—C+/ cflongx—i—/ ¢ logddx — C§
{cf<0} {0<cf<8}

> —C +1log$ ¥ dx + C8logs — C5.
{cf<0}

Hence, we obtain

C
/ max{O,—cf}dx = / |cf|dx < —.
Q {cf <0 |log 8|

The limit § — 0 leads to

max{0, —¢;} dx <0,

implying that ¢; > 0in Q7. The limit § — 0in 3_7_, ¢§ = 1 gives >"7_, ¢; = 1, hence
¢i < 1lholdsin Q7.

Next, we identify J; by showing that J; = Z}’Zl B;j(c)V(logcj — Acj) in the sense
of distributions. Inserting the definition of uf and choosing a test function ¢; € L*°(0, T’;
W?2:2(Q)) satisfying V¢; - v = 0 on 92, we find that

T
/ / JE Ve dxdt
0 Q

n T
= Z/O /ngfj(cS)Vzpi-V((hf)’(cf)—Acf)dxdt
Jj=1
n T

= Zf / BS (Vi - V(1Y (cf) dx dt
i=/o Je
n T
+> / / Ac? div(B} (c®) V) dx dt
=l Je
=I5+ Is. (49)
By definition (34) of BY; (¢?), we have

- r Vel
Is = Z/ /Q Vv (x5€)i DEP (x5¢®) Ve - ——L—= dx d1.
j=1"0 i

\% (XS"S)]
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Lemma 4 shows that ,/c; DszD (¢)//cj is bounded in [0, 1]" and in particular when ¢ =0

8

for some index k. The strong convergence ¢’ — ¢ implies that ys¢® — ¢ in LI(0, T;

L4(2)) for any g < oo such that

no LT
1
Is — / /A/C,-DIB-D(C)—V@-Vcdxdt
i ]; 0 Q ’ v CJ !

no.T
= Z/ /QB,-]-(C)W),- -Vloge; dx dt.
j=1"°

The limit in /¢ is more involved. We decompose I = I¢1 + 2, Where

n T
Tei = Z/ / Act BS (%) Ady dx dt,
o Je

n T
162=Z/ LAchij(c")-wi dx dt.
j=1"0

We deduce from the strong convergence of ¢® and the weak convergence of chs_ that

n. T
Ig1 — Z/ f ACjB,'j(C)A(ﬁ,’ dxdt.
oo Ja

To show the convergence of /s,, we consider

T
[ [ v - sy axar

I

By Lemma 4 (i), BD?J-D /dc exists and is bounded in [0, 1]”. Then, by the definition of
Bi;(c), we have (anj/ack)(cs) — (3B;j/dck)(c) strongly in L2(Q7). It follows from
Vc,‘i — Ve strongly in L2(Q7) that the right-hand side of the previous identity converges
to zero. We infer that

n oBS. 9B dBS. 2
SO ) - BB o)) v + 22 ey - ck)}‘ dx dr.
=Ny dck dck

n T
Iso — Z/ / AcjVBij(c) - Vi dx dt.
=170 Ja

Consequently, we have

n.oo.T
Ie — AB, Ai VB," V,d d
; ;/Ofg ¢j (Biy () Ads + VByj(c) - Vo) dx d

no T
=Y [ [ e dvisy @9 dxar
j=1
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We have shown that (49) becomes in the limit § — 0

T
f /Ji-V¢dxdt
0 Q

n T
= Z/ / (Bij(c)Vgi - Vlogc; + Ac; div(Bij(c)Vey)) dx di
/o Je
and hence, in the sense of distributions,
n
Ji = ZBij(C)V(lOng —Acj), i=1,...,n.
j=1

Step 2: Energy and entropy inequalities. The limit Cf — ¢; weakly-x in L*°(0, T;
H(RQ)) (see (48)) and the weak lower semicontinuity of the energy and entropy show
that

J(e(.T) < liminf 3¢° (¢ (. T)).

€(c(. 1)) <lim igf&s(cé(., T)).

Moreover, because of the weak convergence of Acl‘.s in L2(Qr) from (48),

Z/ /(Ac,)zdxdt <11m1nf2/ /(Acs)zdxdt

i=1

The combined energy—entropy inequality (43) and the property |V (ysc®);| < |ch| give

[Vv Gse®ill 2oy = 2”/7‘

(xscd)

C»
L2(Qr) —
which, together with (ysc®); — ¢; strongly in L2(Q7), leads to

Vi (xsc®)i — V/e; weakly in L2(Q7). (50)

We conclude that

IVVeillLzcory < ligllj(r)lf” Vi (rsed)i ”L2(QT)'

Finally, by (43), we observe that P7(xsc®)R(xs¢®)Vu® is uniformly bounded in
L2(Q7) such that, up to a subsequence,

Pr(xse®)R(xs¢®)Vp® — ¢ weakly in L2(Qr).

Hence, again by weak lower semicontinuity of the norm,

1802200, 7;22(2)) = ligrl)i(r)lf IPL(xse®)R(xs¢®) VS 1200, 7:12)-
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It remains to take the limit inferior § — 0 in (43) to conclude that the combined energy—
entropy inequality (13) holds.

Lemma 9 (Identification of {). Let the regularity condition (16) hold and let § be the
weak L2(Q7) limit of P (ys¢®)R(xs¢®)Vul. Then & = Pr(¢)R(c)Vp.

Proof. Let ¢; € Cg°(Qr) be a test function. Then, inserting the definition ,uf =
(hf-)’ (cf) — Acf and integrating by parts,

n T
Zfo /Q(PL(X(sC‘S)ij V (xs¢%); Vs — PL(e)ij &V i) - Vi dx dt
ji=1
no T
= Z/o [Q(PL(Xsc"")u V (Xac‘s)jV(hf)/(C}s)—PL(c)ijﬁV1ong).V¢i dx dt
j=1

n T
” Z/o /gzdiv{(PL(Xscs)"f \/(XT'S)J'— PL(c)ij JTj) Vi } Act dx dt

Jj=1
n T

+Z/ /div(PL(c)ijﬁwi)A(c;?—cj)dxdz. 51)
iZilo Je

The bracket in the first integral on the right-hand side can be written as

Pr(xs¢®)ij [ (x5¢%);V(hEY (c]) — Pr(e)ij /7 V loge;

8

Vel Ve,
= PrL(xs”)ij———= = Pr(e)ij— =
v (xsed); VG

Thanks to the convergences (48) and (50), we can pass to the limit § — 0 in (51):
n T

fim 3" / /Q (PLtse®)ij v/ (x5e8); Vil — Prie)is V&GV iy) - Ve dx dt = 0.
0

§—0 “
j=1

By the uniqueness of the limit, the claim { = Pr(c)R(c)V u follows. ]

4. Proof of Theorem 2

In this section, we prove the weak—strong uniqueness property. First, we compute a com-
bined relative energy—entropy inequality. Then we use this inequality to derive a stability
estimate, which leads to the desired weak—strong uniqueness result.
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4.1. Evolution of the relative energy and entropy

We start by calculating the time evolution of the relative entropy (14) and the relative
energy (15) for smooth solutions ¢ and c. Inserting (25) and integrating by parts leads to

dd—‘}f(cw) - g/ﬂ(logi_—zatci - (E—l — 1)3,5,) dx

n
=— Z [ B,-j(c)VlogC_—l-V,ujdx
=179 ‘i

s /Q By @V () Vi dx

i,j=1

n
Ci _
-y /Q Bij(e)Vlog &+ V(uy — i) dx

ij=1

n
-y /(Bl-,(c)—C_—’Bi/(c-))vmgf—‘-vlz, dx.
Q" ¢ Ci ’

i,j=1

Next, we compute
& ~ . Ci Ci _
E(ﬂ") = ;/Q(IOg E_iatci - (a - 1)3,0,-) dx
n
+ 3 [ Ve - Vo~ a)dx
i=1
n ) '
= Z{(log% — A — Ei)>atci - (z— 11— Adci — m)a,ai} dx
i=1 ! i

. /Q By @)V (i — fu) - Vi dx

i,j=1
n C:

+ 3 / B,-,-(c')v(_—‘—l—A(ci—ai))-v,z, dx. (52)
ij=17% €i

We add and subtract the expression Y ¢_, Jo Bij(€)V (i — i) - Vi dx:
d& _ . _ _
el ==%  Bir @)V = 1) - Yy — i) dx
i=1

+ Z /Q{B,-,-(c')(g—ivmgg—i—VA(ci—al-))

i,j=1

— Biy(e)V(ui — i)} - Vi dx
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= Z /QBij(C)V(/M — i) - V() — i) dx

i,j=1
" Ci _ - -
=2 [ (Bute) = L8 @) Vs — i) - Vi dx
i,j=1 !
n ci
+ 3 / B,-j(é)(c_—’—l)VA(c,-—ai)-v;zjdx. (53)
R Q i
i,j=1

We want to reformulate the expression ¢;- Y(¢; — ¢i)VA(c; — ¢;) in the last integral. For
this, we observe that for any smooth function f, it holds that

SVAS = V(fAf) =V fAf
= VANV 1)~V f 1)~V S ® Vf) + 3 VIV T
= Vdiv(fVf)— %V|Vf|2 —div(Vf ® Vf).
Therefore,

(ci —E)VA(e; — &) = Vdiv((c; — &) V(e — &) — %VIV(@ —a)l®
—div(V(e; — &) ® V(ei — ).

Inserting this expression into the last term of (53) and integrating by parts, we find that
e . _ _
el == BV (= ) - Vs = fy) d
i=1

n
¢ _ _ _
- / (Bij(C) - TlBij(c))V(Mi — i) - Vit dx
ij=1"% Ci
C 1
+ Y /(ci &)V —G) - VdiV(C_—Bij(C_)V[Lj> dx
< Q i
i,j=1
- Xn: / V(ci — &) di (13 ()i ) d
= ci — Ci iv| — B (c i) dx
2ij=1 o i i Z ij Hj
= 1
+ Y [ V-8V -0V e (28O Vi) dx,
i,j=1 !
where V ® (Ei_lBij (¢)Vji;) is a matrix with entries 0y, (c_i_lBij (€)0x, ;) for k, £ =
1,...,n and “:” denotes the Frobenius matrix product.
The following lemma states the rigorous result. Since we suppose that the weak solu-

tion satisfies energy and entropy inequalities instead of equalities, we obtain also inequal-
ities for the relative energy and entropy.
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Lemma 10 (Relative energy and entropy). Let ¢ and ¢ be a weak and strong solution
to (1)—(5) with initial data c° and ¢°, respectively. Assume that c satisfies the regularity
(16) and the energy and entropy inequalities (17)—(18). Furthermore, we suppose that ¢
is strictly positive and satisfies the regularity

fu =1logé; — A& € Ly, (0,00t H(Q)),
¢ € L2(0,00; W3®(Q)), i=1,...,n.
Then the following relative energy and entropy inequalities hold for any T > 0:

noo.T
E(e(MIET) + Y [0 /Q By ()Y i — i) - V(i — i) dx di

i=1

n T ]
< &(c%c%) - ,-,122:1/0 /Q(Bij(c) - ;_;Bij(c_)>v(:ui — &) - Vi dx dt

+ i /OT/Q(c,- — )V (e —51‘)-Vdiv(éBij(E)Vﬂj)dxdl

i,j=1

1 & T 1
+ = E Ve, — ¢ Zd. —B;i(c)Vi;)dxdt
! /0 / |V(c ¢i)| 1v<c_i j(c) /,Lj) X

i,j=1

n T
+ Zfo /QV(ci—c_i)®V(Ci—Ei):V®(éBij(E)Vﬁj)dxdt, (54)

ij=1

H(e(T)e(T)) = H(c°|e%)

n T
Ci _
=Y [ By@viosd - Voy - ) dxar
0 Q Ci

i,j=1

noooT e e
- Z/ /(Bi,'(c)—_—’Bij(é))Vlog_—’-V/lidxdt. (55)
o Ja Ci Ci |

ij=1

The integrals in (54) and (55) are well defined because of the regularity properties for
weak solutions ¢ and the regularity assumptions on the strong solution ¢. Indeed, we have

Bij(e)Vpj € L*(Qr) (see (22)), Bij(¢)V logc; = 2DEP(¢) /GG V /& € L*(Qr) (see
(13)), and using definition (8), assumption (16), and Lemma 4 (i), we have
Bij(€)Vi - Viuy
= DIBJ'D(C)(ZV\/C_I'_ VeiVAc) -2V /c; — JciV Ac)) € LY(O7).
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Proof of Lemma 10. The relative energy and entropy inequalities are proved from the
weak formulation of (1) by choosing suitable test functions. For this, we observe that,
by (12), ¢; — ¢; satisfies

00
0= / [ (C,' —E,‘)aﬂﬁi dx dt
0 Q

4 / (c0(x) — E0(x)) i (x.0) dx
Q

n [es)
—Z/ /(Bij(c)Vlogcj — Bi;(€)Vlogé;) - Vi dx dt
=/ Je

— Z/O /Sz(diV(Bij (C)V¢i)ACj - diV(B,'j (E)V(]ﬁ,’)AEj) dx dt. (56)
j=1

By density, this formulation also holds for ¢; = [1;0.(¢), where

1 forO0<t <T,
T —t
0:(t) = ( )+1 forT <t <T +¢,
&
0 fort > T + ¢.
Then, passing to the limit ¢ — 0 and summing overi = 1,...,n, we arrive at
n T
Z/ (ci —¢i)jai dx
Q 0

i=1

n T
:Z/ (8,[2,’,6,'—0_,')61[
0

i=1

n T
- Z/ /(Bij(c)Vlogcj-V[Li + div(Bij (¢)Vjii)Acj) dx dt
ij=1"0 7%

n T
+ ) f / (Bij &)V logé; - Vji; + div(Bj (€) Vi) A;) dx dt
- 0 Q
i,j=1
=17+ Ig + Io,

where (-, -) is the duality bracket between H ()’ and H'(R2). This product is well
defined, since it holds in the sense of H ()’ that

n n
Ocfii = 0;(logé; — AG;) = Y = div(Byj (€)Viiy) = > Adiv(By; (&) Vi)).
j=1" j=1
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Inserting this expression into /7, the dual product can be written as an integral:
n T
_ Ci - -\ 1 o -
L=-3 / f <B,~j(c)V(c_— — 1) Vit + Ale; — Ci)dIV(Bij(C)V/Lj)) dx dt
e 0o Ja i
i,j=1

n T ) ¢ .
= — Z/O /SzBij(C)V<E—i—1>~V,LLjdxdl‘

ij=1
N Z/ /c",-A(ci—El-)div<_—B,-j(c")Vﬂj) dx dt
ij=1 0 Q Ci
- Z / / _—Bij((,_‘)A(Ci —C_,')VC_,' -V,EL]' dx dt.
ij=170 JQ Ci

Replacing Ac;j by logc; — uj in Ig and integrating by parts in the term involving the
divergence, some terms cancel and we find that

n T
Is = — Z / /;Z(Bij (e)V; - Vioge; + div(B;;(c)Vi;)(logcej — /Lj)) dx dt
0

i,j=1

noaT
- Z/ /Bij(C)Vﬂi-V/Ljdxdl‘.
0 Q

ij=1

Assumption (16) guarantees that the flux has the regularity

Z Bij(c)Vuj € L*(Qr)

j=1

such that the last integral is defined. The remaining term /o is reformulated in a similar
way, leading to

n T
Iy = Z[ /B,-j(a)v;z,uwj dxdt.
ij=170 78

It follows from the definition of the relative energy, inequality (17) for &€ (c), and identity
(19) for &(c) that

E(c(T)[e(T)) — &(c|e®)
T

= (E(c(T)) - €(c%) — (E@E(T)) - €@)) — /Q i (c— &) dx

0
n T
<=2 [ [ By©@Vi Vi - By@ Vi Vi) dd
=)o Ja
— 7+ Ig + Io)



Existence and weak—strong uniqueness for Maxwell-Stefan—Cahn—Hilliard systems 823

n T
=— Zfo /QBij(C)V(Mi—/li)'Vﬂj dxdt

i,j=1

n T )
- Z/O /QB,-,-(E)V(%—l)Vﬂjdxdz

ij=1

N Z/ /c',-A(c,-—E,-)div(_—B,-j(c')Vﬁj> dx dt
0o JQ Ci

ij=1
- Z / / _—Bij(c_‘)A(C,‘ —¢;)Ve; - Vi dx dt.
ij=170 JQ Ci
This inequality is just a reformulation of (52), which leads, by proceeding as in (53) and

the subsequent calculations, to (54).
Next, we verify the relative entropy inequality. Taking the test function ¢; =

(log ¢;)0.(¢) in (56), passing to the limit ¢ — 0, and summing overi = 1,...,n leads to
n T n T
Z/ (c; — ) logé; dx| = Z/ /(ci —&)d,(log &) dx dt
i=17% 0o o1 J0 Je

n 0o
- Z/ / (Bij(c)Vloge; — Bij(¢c)Vlogcj) - Vlogc; dx dt
ol Ja

_ Z/O A(diV(Bij (¢)Vlogci)Ac; — div(Bij (€)V log ;) AG;) dx di.
j=1

This yields, together with (18), (20), an integration by parts, and regularity assumption
(16), that

H(c(T)|e(T)) — H(c"1e”)

T
= (H(c(T)) = H(c®)) — (H(E(T)) — H()) - /Q(C — &) -logédx
0
n T
= _iélﬁ /SZ(BU (¢)Vloge; - Vuj — Bij(E)VlOg G - V/:L]) dx dt
noaT
- ;[G /Q(Ci —¢;)9;(log ¢;) dx dt
+,-,,Z=:1/0 /Q(Bij(c)wj-wogc‘i — Bi;(€)Vji; - Viog ;) dx dt
S g Ci Ci o —
== /O [Q(Bij(c)wj -V(log C—) - V(c‘_i - 1) : Bij(c)w,») dx dt,

ij=1

which readily gives (55).
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4.2. Proof of the weak—strong uniqueness property

We proceed with the proof of Theorem 2. First, we estimate the relative entropy inequality
(55) and then the relative energy inequality (54). A combination of both estimates shows
(21), which proves the weak—strong uniqueness property.

Step 1: Estimating the relative entropy. As in the proof of Lemma 5, we decompose the
matrix B(c) by setting M(c) := B(c¢) — AG(c) such that B(c) = M(c) + AG(c), where
G(c) = R(c)Pr(c)R(c) has the entries G;j(¢) = ¢;d;; —cjcj and 0 < A < A,,. In terms
of these matrices, we can formulate (55) as

H(c(T)|e(T)) — H(c"1e®)

n T
Ci _
== Z/o /QMi_i(c)VIOgC-_i‘V(M_i_N_i)dth

ij=1

n T )
) Z/ /Gij(c)VlogC_i-V(uj—/lj)dxdt
ij=170 J@ Ci

nooT ‘. o
— Z/ /(B,-j(c)—_—lBij(E)>V10g_—l-V[Lj dx dt
0o JQ Ci Ci

ij=1
= Tio + I11 + I12. (57)

Step 1a: Estimate of I19. We know from (31) and (32) that M(c) is positive semidefinite

and satisfies
ZTM(c)z < (Ayr — M| PL(c)R(c)z|?

for all z € R”. Therefore, using Young’s inequality with 6 > 0,

0 z r Ci Cj
I < — Z / / M;j(c)Vlog — - Vlog = dx dt
4 =1 0 Q ’ Cj Cj

1« (T ) i
T Z/; LMU(C)V(M—Mi)'V(,uj—,u_,-)dxdt

i,j=1

oy [ [

i=1

+$(AM—A>f[OT/Q

i=1

n 12

E PL(c)ij,/chIOgc_—l‘ dxdt
; Ci
j=1

2
dx dt. (58)

> PL(e)ij GV (1) — i)
j=1

Step 1b: Estimate of I1;. In the term [, we replace u; — fi; by log(c;/cj) — A(cj —
¢j) and compute both terms in the difference separately. Now, the definition G;j(¢) =
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J/¢i Pr(¢c)ij /¢j and the property PL, (¢)? = Pr(c) lead to

z r Ci cj
Z / / Gij(c)Vlog_—l-Vlog_—]dxdt
0o JQ Ci Cj

i,j=1 J

n T . .
= Z f / \/C_iPL(c)ij\/c_jVIOgC_—l-VlogC_—dedt
0 Q Cj Cj

ij=1

2/

Furthermore, we use G;;(c) = ¢;8;; — c;c; and integration by parts to find that

2
dx dt.

n
Ci
Z PL(C)ijA/CjVIOgC_—J.
j=1 /

n T )
Z / / Gij(c)Vlog C_—l -VA(cj —¢;)dx dt
0o Ja Ci

ij=1

n T .
T Z / / div<(ci8ij —cicj)Vlog —_Z)A(Cj —¢j)dxdt
0o Ja ¢

i,j=1

noooT
- _Z/ / div(Ve; —¢;Vlogci)Ale; — ¢;) dx dt
i=170 JQ

n T
+ Z/o /Qdiv(chc,-—cichIOgE,-)A(cj—Ej)dxdt

ij=1
n T
=— Z/ /diV(Vci—c,-VlogEi)A(ci—E,-)dxdt
i,j=170 J9
n T
- Z/ fdiV(CiCjVIOgEi)A(Cj—c_j)dxdt,
=1l Ja

825

(59)

where we used Y7, ¢;Ve¢; = 0 in the last step. We mention that Y7_, G;j(c)VAc; €
L?(Qr) because of (23), so the first integral in the previous computation is well defined.

It follows from Ac; A(c; — &) = (A(c; — ¢;))? + AG; A(c; — &) that

n T ..
3 / / Gij(e)Viog - VA(ci — &) dx dt
o Jo Ci

i,j=1
n T
- _ S _&))2
= ;[G /Q(A(c, ¢i))? dx dt

n T
—Z/ / diV(VC_i —CiV]OgC_,‘)A(C,‘ —c_,-)dx dt
i=170 JQ

n T
- Z/ /diV(cicj-Vlogc_i)A(Cj—Ej)dxdt.
0 Q

i,j=1

(60)
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We multiply (59) by —A and (60) by A and sum both expressions to find that

n T
gL
11 ;09

n T
_ L A))2
A;/(; /Q(A(c, &) dxdt

n 12

Z Pr(c)ij ‘/chIOgC_—] dx dt
Cs

j=1 /

n T
—AZ/ /div(Vc'i —¢iV1og&)A(c; — &) dx dt
i=170 JQ

n T
—2 Z/O /Qdiv(ciCjVIOgc_i)A(Cj—Ej)dxdt. (61)

ij=1

We apply Young’s inequality to the last two terms. The third term in (61) becomes
no T
—AZ/ /div(VEl-—c,-VlogEi)A(ci—E,-)dxdt
i=170 /9
A (T )
< - (A(c; —¢1)) dx dt
noaT
+/\Z/ /|div((c,- —é)Vlogé)|>dx dt
i=170 /9@
A [T >
< - (A(c; —¢;)) dx dt
n T
+/\Z||V10gc_i||Loo(QT)/ /;Z|V(Ci—5i)|2dxdl
i=1 0
n T
+/\Z||A10g5i||Loo(QT)/ /;2(01‘ —¢;)?dx dt
i=1 0
A T )
< - (A(c; —¢;)) dx dt

=~ (" 2 2
ACy i —Ci V(ei —¢i)|%) dx dt,
+ izl/(; /Q((c ¢i)-+ |V(ci —¢)|7)dx dt
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where the constant C > 0 depends on the L* norms of V log ¢ and A log ¢. Next, for the
fourth term in (61),

n T
-2 Z/O [Qdiv(c,-c,-vmgc',-)A(c,-—E,-)dxdx

L,j=1

A (T _
512/0 /Q(A(c,-—c,-))2dxdt

i=1

ol

Taking into account that

n 2
Z div(cicjVlogc;)| dxdt.

i=1

n n
V> &Viegs =Y Ve =0,

i=1 i=1

we estimate the integrand of the last term:

n n
Zdiv(cichIOgc",-) = Zdiv((ci —¢;)cjViloge;)

i=1 i=1

n n
= ch div((¢; — ¢;)Vloge;) + Z(ci —¢;i)Vlogc; - Ve

i=1 i=1

n n
= ch div((¢; — ¢;)Vlogei) + ZC,‘V]OgC_i -V(cj —¢j)

i=1 i=1

n
+ Z(Ci — C_’i)VIOgC_',' . VE]'

i=1

<C Z(IC;’ —Gil + V(e = 3ai))s

i=1

where C > 0 depends on the L°° norms of V log ¢ and A log ¢. This yields

n T
-2 Z/O /Qdiv(c,-cjvmgaim(c,-—aj)dxdz

i,j=1
Ao [T )

< - (A(c; —¢;)) dx dt
4,;/0 /g )

“ d 2 2
AC i — Ci V(e —¢; dxdt.
4 ?:1:/0 [Q«c &) + V(c; — &)P) dxdi
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Using these estimates in (61), we arrive at

2
I = “\/c_,-VlogC_—J dx dt
Cj
A< T )
R A -
2;/0 /;2( (c; —¢i)) dxdt
no.T
+AC Z/ /Q((Ci — &)+ |V(ei — &) dx dt. (62)
i=170

Step 1c: Estimate of I12. By definition of B;;(c) and Young’s inequality with 6" > 0,

Ci _ — Ci _
Iy = - Z/ |V (PEP @ vE — [ D5 VE) Viog & Vit dx i

i,j=1

S ]

+§Z/ /(DBD(c)f fDBD(c)f Vi, 2 dx dt.

ij=1

Vlog—) dx dt

The bracket of the second term can be estimated according to

|DEP(e) 5 - [DBD(c)/E‘
= |D;j;°(e) /) — c BD g
|DEP(e) 55 — DEP(@) /G ff“_D JONG

C n
< ﬁchi—aH Ve — Veil)
i=1

< Cm) Y _lei —él, (63)

i=1

using the assumption ¢; > m > 0 and the boundedness of D?jD (see Lemma 4 (i)). It

follows that
I = —Z/ / Ci
no LT
+C(m,9’)2/ /(ci — &) dx dt. (64)
i=170 JQ

12
Vlog C:—l dxdt
Ci
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Step 1d: Combining the estimates. We deduce from (57), after inserting estimates (58),
(62), and (64) for 119, I11, and 115, respectively, that

H(e(T)E(T)) = H(c°|e%)

0 noeT o ¢ P
+(Z(AM—A)—A);[O L‘;PL(c)ijﬁVIOgE—j dx dt
A=A s (T [ e
TR Z/O /QZPL(C)ij\/C_jV(Mj_Mj) dx di
i=1 =1

A [T )2
_5;[0 /Q(A(cl—c,)) dx dt
n T
A i —ai)? i — &)} dxd
+ c;/o /Q((c &)+ |V(ci —&)P) dx dt

9’ n T
+ — Ci
2l ke

The last but one term on the right-hand side still needs to be estimated. To this end, we
decompose I = Pr(c) + Pri(c):

n ci 2 n
Zci Vlogé—z) = Z

i=1 i=1

.2 n T
v1og‘i—’) dxdt—i—C(m,Q’)Z[ /(c,-—(?,-)zdxdt. 65)
Ci =1 J/0 Ja

n 2
.
> PL(e)ij ¢V log _—"

.
j=1 J

3

i=1

n
.
Y Pri(e)ij /o Viog =

i
j=1 /

2

The first term on the right-hand side can be absorbed for sufficiently small 6’ > 0 by
the second term on the left-hand side of (65). For the other term, we use the definition

P;i(c)ij = /cic; and Z;le Ve = Z;’:l Vé; = 0:

n n n
cj cj _ _
E PLl(c),-j./chIOgE—]_ = /¢ E quogE—]_ = /¢ E (c; —¢j)Vioge;.
J = J

j=1 j=1

This gives

Z/ /c,-Vlog_—‘ dx dt
=170 JQ Ci
noeT
<
“zh

n T
+ 2 IVI0ge limiop [ [ e~ axa. (66)
j=1 0

2
dx dt

n
i
E Pr(c)ij/cjV1og C_—J
j=1 /
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Hence, choosing & = A/(Ay — A) and 8’ = A, we conclude from (65) that

) A n T
J((C(T)|C(T))+§;/O /Q
A n T ' ~\\2

2
dx dt

n
Ci
Z Pr(c)ij/cjVlog c_—j
j=1 /

< #(c°|c%)
v — A 2 n T n 5
* %Z/O /Q D PL(e)ij /&G V() — fij)| dxdt
i=1 j=1
n T
+CZ/ /((c,- —&)* + V(e —¢)P) dx dt. ©7)
i=170 JQ

We show in the next step that the second term on the right-hand side can be estimated by
the relative energy inequality.

Step 2: Estimating the relative energy. We start from the relative energy inequality (54).
Observing that due to Lemma 4 (ii),

Z Bij(e)V(wi — i) - V(uy — fiy)
ij=1

= Y DEP()(VarViwi — i) - (V& V(s — i)

Lj=1

zkmi

i=1

2

)

Y PL©)i GV — i)

Jj=1

inequality (54) becomes

n T
E(c(T)e(T)) + Am ;/0 /sz

< &(c%E% + Iz + I + 15 + L6, (68)

2
dx dt

> PL(e)ij GV (1) — i)
=1

where
" T Ci _ _ _
Ly=-Y_ (Bij(c) - _—Bij(c))v(ui — i) - Vijdxdt,
ij=170 Q Ci

n T _ _ ] 1 _ ~
Iis = Z/{; /S;(c,-—ci)V(c,-—ci)-lev(E—iB,-j(c)Vuj> dxdt,

ij=1
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1« [T 1
Lhs=- Y / / IV (c; —ai)|2div(_—3ij(5)vgj) dx dt,
220 Ja Ci

n T i ) | L
Iig = Z /(; /;ZV(Ci —¢)® V(e —¢i): V(EB,'J'(C)V/L]') dxdt.

ij=1

The terms /14, 115, and 116 can be estimated directly by using the regularity assumption
Vdiv((1/¢i)Bij(€)Vij) € L=(Qr):

noooT
114+115+116§CZ/ /((Ci—C_i)2+|v(ci—5i)|2)dde- (69)
i=170 J/Q

The estimate for /13 is more involved. First, we use the definition of B(c) and decom-
pose I = Pr(c) + Pyi(c). Then

no.T
I3 = Z / / VeiEij(e,e)V(ui — i) - Viij dx dt =: 131 + I3a,
0o Jo

i,j=1
where
_ Ci _ =
Eij(e.&) = DjP(e) /e — | = DiP @) V.
1

n T
o= Y [ [ Pu@uy e POV (i~ ix) - Vi ddi,
0

i,jk{=1

n T
Iz = Z / /QPLL(C)iZEZj(C,C_)PLl(c)ik\/aV(Mk—/:Lk)‘vﬁj dxdt.
0

i,j,k,{=1

For I;31, it is sufficient to apply Young’s inequality and to use estimate (63) for

E,-j(c,c"):
sl
I131 < —
131 = ) Z o Q

i=1

n 2
3 PL(e)ij GV (1 — )| dx d

J=1

n T
n
+ = Eii(c.o))?|Vii; |*dx dt
e i,§j::1/0 /Q| i (e OPIViy]

52l

i=1
n T
+C(m)2/ [(c,- —&)?dxdt, (70)
i=1 0 Q

where C(m) > 0 depends on m, n, A, and the L*°(Q1) norm of V.

2
dx dt

Y PL(e)ij &GV (1 — i)
j=1
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For I135, we observe that the property ran DBP(¢) = L(c), which follows from Lem-
ma 3, implies that P; 1 (¢)DBP(¢)z = 0 for all z € R”. Hence,

n n
_ [ce Iy
Y " Pri(e)icEg(c.6) ==Y Pri(c)ie E_gDZD(C)VCj'
=1 =1

We infer from the definitions P; 1 (c)ix = /Cick and px — i =log(ck/cx) — A(ck — Cx)
that

n T
== [ PLL(c>,~kﬁPLl<c)ie\/gD}?,%)ﬁwk—ﬁk)

ik A=1
-V dxdt
n T n
cy o = _ _
= — Z [ / ZcickTDzD(c)\/aV(uk — fig) - Vi dxdt
k=170 YR ce
- T Ct—Cl BD,— /= Ck _
= — Z ck—=—Dy; (c)\/c_jV10g_—-V,u,- dxdt
k=10 Je N Ck
n T _ =
-y f / div(ck e DZD(E)\/C__jV[Lj)A(ck — &) dxdt
o Ja N
= Ji + Jo, (71

where we added the expression — Y y_; +/¢¢ DZD (€) = 0, which follows from ker DBP(¢)

= L1 (¢) = span{~/¢} (see Lemma 4) and the symmetry of DPP(¢) (see Lemma 3), and
we integrated by parts in the last integral.
To estimate J;, we use Young’s inequality with 8 > 0, Lemma 4 (iii), and (66):

0 < r Cr |2
J1 = —Z/ / ck’VIOg_—‘ dx dt
4o Ja Cr

n T

n _ Ck 9 - _

+ 23 [ [ - DI @rG IV P dx dr
k=1 0o JQ Cy

6 [T
< —
=izl L,
noaT
+CGZ/ /(c,-—c',-)zdxdt
0 Q

i=1

C (T )
+ — cg —¢g)dxdt,
9;/0 [ eca

where C > 0 depends on the L°°(Q7) norms of V¢ and Vji.

2
dx dt

n
Ci
> Pu(e)y 5V log
j=1 J
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Next, we use Young’s inequality again, with 6" > 0:

Jy < — Z/ (A(ck — &) dx dt

Z / [ laivceetec - co0u@nP axa,

kZl

where we defined
n
1
Q@) =Y —=DiP@) G Vii;.
Estimating

[div(ck(ce — ) Qe(€))| = |cr(ce — ce) div Qg(€) + cx V(g — ¢¢) - Qu(€)

833

(72)

+ (ce — co)V(ck — k) - Qe(€) + (cg — cp)Veg - Q)]

< C(leg — el + [V(ce — o) + [V(ck — cr)l)s

where C > 0 depends on the L°°(Q7) norm of Q¢(¢), we deduce from (72) that

Jz<—Zf<A<ck—ck))2dxdr+ Z[ [ =2+ ¥~ ava,

Inserting the estimates for J; and J, into (71) leads to

dx dt

1132<—

NG

n

+ = o Z/ /(A(c, — &) dxdt

c,o i — )2+ V(i —&)|?) dx dt.
e )2[0 fg«c &) + V(e — &)P) dx di

Then, together with (70), we find that

113<— NV (1 — ) dxdl
cj dxdt

i=1 j=1
rn T

+ — Aci—c'i)zdxdt
4;/0 [ @@-a

“ T 2 2
c@,6 i — G V(ci — ¢ dx dt.
+C( );:1:/0 /Q«c &)? + V(e — &)?) dx dt

(73)
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Finally, we insert this estimate and estimate (69) for /14, 115, and I;¢ into (68), observing
that the first term on the right-hand side of (73) is absorbed by the second term on the
left-hand side of (68):

n T
&(c(T)|e(T)) + %mZ/O /Q
i=1
9 n T
< 0,=0 —
< &(c%¢ )+4;/0 /Q
9’ n T ) =\ 2

é T 2 2
c@,6 i — Ci V(ci — ¢ dx dt. 74
+C( );:1:/0 /Q«c &% + V(i — &)[?) dx dr (74)

2
dx dt

> PL(e)ij /G V (1 — i)
=1

2
dxdt

n
.
ZPL(c)ij,/—c,-vmgC_—{
j=1 J

Step 3: Combining the relative energy and relative entropy inequalities. Next, multiply
(74) by 4(Aar — L)%/ (AmA), choose 8’ = A,,A%/(4(Apr — A)?), and add this expression
to (67) (which estimates ¢ (¢|c)). Then some terms on the right-hand side can be absorbed
by the corresponding expressions on the left-hand side, leading to

4(Apm — A)? _
TE (e(T)le(T))

n

P

i=1

n T n
+%Z/O /QZPL(C)ij\/c_jVIOg%
i=1 j=1 J
+&Xn:fT/(A(c,- — &) dxdt
4= Jo Ja
401 — )2
AmA

H(c(T)]e(T)) +

2
dx dt

Y PL©)ii GV — i)
j=1

2
dx dt

< H(c°)e®) + &(c°¢?

noaT
+C(9,9’)Z/ /((c,- — &)+ V(i —&)>) dxdt.
i=170 /&
The last term can be bounded in terms of the free energy, since ¢; log(c; /¢;) — (¢; — ¢;) >
(c; —¢;)?/2[22, Lemma 18]:

4(Ap — M)?
AmA

4(Ap — A)?

E(c(TIE(T)) = H(’)e®) + ———

H(c(T)|e(T)) + €(c’1e”)

T
+C/ &(c(t)|e(r)) dt.
0

Then the theorem follows after applying Gronwall’s lemma.
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5. Nonconvex potential energies

In this section, we consider the case of a possibly nonconvex potential energy ¥ (¢). We
work with the functionals

8(c)=Jf(c)+/gw(c)dx+%Z/ch,-ﬁdx,
i=1

H = (1 — 1 Ddx.
(©) ;/Q(uogc )+ 1) dx

Then the chemical potential associated to & (c) is given by
- 5& 0 ad
i = = _1/f(c) +logei — Ac¢i = —I/I(C) + Wi,
8¢; ac; dc;
where p; is defined by (5). The resulting model is system (1)—(3) with u; replaced by fi;.
We assume that 1 (c) is a general function satisfying
(P) ¥ € C3([0, 1]") satisfies ¥ lc3(jo,117) < C for some constant C > 0.

In the following, we show that our main results, Theorems | and 2, can be extended to this
situation.

5.1. The energy inequality and existence of solutions

We show that Lemma 5 still holds true. We outline only the points where the proof needs
to be modified. First, with fi = u 4+ D (c), the energy inequality (29) becomes

%(c) < / |PLOREVEP dx = A / |PLE)R(E)V (1 + Dy ()] dx
Q Q

<22 [ 1P R@TP dx +d [ PLORED Vel dx
2 Q Q

IA

A
—7’”/ |PL(c)R(c)Vp,|2dx—|—C/\m/ |Vel? dx, (75)
Q Q

where we used the definition R;;(c) = ,/c¢;8;; and the boundedness of D2y (¢). We com-
pute the time derivative of # (¢) along solutions to (1)—(3):

d% n n
—)=- > /QM,-J-Vlogc,--V,&jdx—)L > /SZGileogci-Vﬂjdx

i,j=1 i,j=1

n n
— Z[M,-_,-Vlogc,--v,ujdx—)t Z [ G;jVloge; - Vu; dx
Q Q

i,j=1 i,j=1

— E M;jVioge; - V—(c)dx — A E Gi;jVloge; - V—(c)dx
i Q dej i Q dc;j
i,j=1 Y i,j=1 J

=L+ L+ + .
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The terms I; and I, were estimated in Section 2.2 so that it remains to bound the terms
I and I, coming from the nonconvex potential. To estimate I, we recall property (iii) in
Lemma 4, which implies that B;; /c; = /ci D D(e)/ /¢; is bounded (by the definition
(25) of B;;). Then the boundedness of G;;/c; = §;; — c¢; implies that M;; /c; = (B;j —
AG;j)/c; is bounded too. Thus, by Young’s inequality and assumption (P),

; 82
I = Z / _fv v—(c)dx— Z / Ve, - ;”Ck(c)vck)dx

i,j=1 i,j,k=1
<C Z/‘Mu Ve, |2dx + Z /‘ac,ackvc"‘ dx<C/ |Ve|? dx.

For the term fz, we use the definition of G(c), Z:‘l=1 Ve; = 0, and assumption (P):

Ve 0
[y = —2 Z /(cl y —cch)—c va—w( ) dx

i,j=1

=—)LZ/ Vc'-Va—w(c)dx+)L/ Zn:Vc--Zn:c-Va—w(c)dx
=1 Q ! 80[ Qi=l ! i=1 4 8c,-

=—A Z/ Gorde (c)vc, Ve, dx<)LC/ |Ve|? dx.

Collecting these estimates and /; and I, from (30), summarized in (33), we obtain

dge
—(c)+2/x/ |Vﬁ|2dx+l/ |Ac]? dx
Q

Ap — A)2
< M/ |PLRV;L|2dx+C/ |Vel? dx.
21 Q Q

Adding this inequality to (75), multiplied by 2(A3r — A)?/ (A A), leads to the free energy
inequality

i(,%(c) +

2 _ 2
(G = 4) 8(c))+2,1/ |V¢E|2dx+xf |Ac|? dx
dt Q Q
)
n (Am

AmAL
2
f |PL()R()Vpul? dx < c/ Ve[ dx < CE(c),
Q Q

and Gronwall’s inequality eventually gives

— )2 T T
%(c(T))+W8(c(T))+2A/ / |v¢z|2dxdz+A/ / |Ac|? dx dt
m 0 Q 0 Q

A — A2 (T
+%/0 /Q|PL(c)R(c)Vu|2dxdt
2(har — )2

= (D) (H(eo) + =2

8(c0)). (76)
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The estimated quantity in (76) equals (abbreviating @ = 2(Aps — A)2/AmA)

H(c(T)) + a&(c(T))
= / (Z(ci(logci D+ 1D +ay(c)+ %Z |Vc,-|2) dx.
2 \io1 i=1

Since ¢; € [0, 1], assumption (P) implies that | (¢)| < C, such that the term involving the
nonconvex potential ¢ can be absorbed by the right-hand side of (76).

The method of the proof of Theorem 1 in Section 3 still works, with the exception that
we need to replace the estimates in Lemma 8 by the corresponding version of (76) for the
approximate system.

5.2. The relative energy estimate and weak—strong uniqueness

For possibly nonconvex potentials satisfying assumption (P), the existence proof implies
the same regularity of solutions as before and thus, Lemma 10 still holds. In order to prove
the weak—strong uniqueness, we write i = . + Dy (¢) as in the previous subsection. The
aim is to estimate the quantities

H(c|é) = Z/Q<ci 1og% — (e — Ei)) dx, (77)
i=1 !

&(clé) == H(c|e) + %Z/ﬂ [V (ci —c',~)|2dx+/91ﬂ(c|c_)dx, (78)

i=1

where ¥ (c|¢) = ¥ (c¢) — ¥ (¢) — DY (¢) - (¢ — ¢), by following the lines of Section 4.2,
but now accounting for the last term in (78) containing the nonconvex part.

First we consider the relative entropy # (c|c). Inequality (57) holds with p;, fi;
replaced by u; + Dy (c), j1; + Dy (c):

H(c(T)|e(T)) — H () < Lo+ Iy + Tz + Lo + Iy + 12, (79
where

~ " r Cj d ad -
I =— Z /0 /;zMij(c)VlogE—i-V(%(c)—%(c)) dxdt,
ij=1

- " T Ci 0 oy _
Fiy =2 Z/O /S;G,-j(c)VlogE—;-V(a—z(c)—%(c))dxdl,
ij=1

~ " T Ci _ Ci d -
fo==3 [ [ (By© - £ 8y@)Vioe S - vl @ axa,
1 1 J

i,j=1
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and the terms /19, 111, 112 are defined in (57). The term flO is estimated in a similar way
to I in the previous subsection:

110 =~ Z / / = —(V(ci —¢i) + (¢i — ¢i)Vlogci)

i,j,k=1
92 2
) Y
Veg — Veg )dxd
X(ac,-ack(c) k ac,»ack(”) Ck) v

T
5c/0 L(|V<c—é>|2+|c—é|2)dx

; ' G4 c 2d d
+C..X_:/0 /Q‘acjaCk(c)V(cj—cj)‘ xdt

9%y 2
C c))Vei| dxd
+ / [ ‘ dc; 8ck 8cj ock (c)) < ’ xat

§C/ /(|V(C—E|2+|C—E|2)dx,
0 Q

where we used the Lipschitz continuity of the second derivative of ¥ in the last step. For
111, we take into account the property yTGz = yTRPp Rz = (P Ry)T(Pr Rz) and apply
Young’s inequality:

- A (TS 2
11151/(; /;2 P cj dx dt
0
NG Iﬂ(c)——“’( )) dx di
ZPL(C)U dxdt
el

T
=2 2
+C/0 /Qqc e + V(e — &)} dx dt.

Because of the boundedness of || VD (€)]| ., the term 7, can be estimated in the same
way as (64) and consequently, it satisfies inequality (64). Inserting these estimates into
(79) and using the estimate for /¢, /11, and /1, from Section 4.2, we arrive at

2 n
J(e(T)e(T) + 5
i=1

T n 2
ZPL(C)ij\/C_jVIOgC_l—] dx dt
elim Cj

A - r . =.))2
+5;/0 /Q(A(c,—c,)) dx dt
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_3\2 n 2
< ge(e0)et) + LM =2 GV — )| dxdr
n T
+CZ/ /((c,-—c",-)2+|V(cl~—5i)|2)dxdt. (80)
i—1/0 Ja

This estimate equals (67) with the exception of the factor A /4 instead of A /2 in the second
term on the left-hand side.

Next, we consider the estimate of the relative energy. Inequality (54) still holds true
with u;, fi; replaced by u; + (0¥/dc;)(c), i + (9y¥/dc;)(€). We can use the estimates
for 114, I15, I16 in (68), but 713 needs to be estimated differently. This term reads here as

Iis = —Z /OTfQ(Bij(c>—§—zBi,-(5))V(m — ) V(i + %(5)) dx di

—Z[ / Bij(e) - ZBi,(a))v(g—Z(c)—g—Z(a))

i,j=1
_ oy _
'V(Mj + J(CD dx dt
i
= I3 + 113,

The term I{5, can be estimated in the same way as in (70)—(71), additionally taking into
account the boundedness of 3%v/dc;dc;, and it satisfies (73), while 15, is bounded by
Young’s inequality according to

1132<CZ/ / Bl,(c) zBij(E))zdxdt

i,j=1

e Z/ /‘v e )——( ))‘2‘V<ﬂj+§—z(5))‘2dxdt

T
SC/ /|C—5|2dxdt+/ /|V(c—5)|2dxdt.
o Ja 0o Ja

Observe that this inequality does not alter the estimates of the relative energy (74), but
the second term on the left-hand side contains the difference u; + (9y/dc;)(c) — fij —
(0y/ 8cj)(E) instead of Mj — [ij, which is bounded from below by

2
dx dt

fV(u, (c) — i — —(c))

2
dx dt

al: Z Pr(e)ij /i V(pj — i)

2
dx dt

Z PL(e);s mV( () - —(c))
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2
> VGV (1 — fi7)| dxd
i=1

T
_ _ a2 02
C/\m/O /Q(|c ¢l +|V(ec —¢)7)dx.

Hence, combining (74) with (80), multiplied by 8(Ays — A)2/(AmA),

8(Ay — A)?
%@wwa»+i§%rLadnwn)
Ay —A)2 &
(M ) ZPL(C),]fV(M, iij) " ddi
cj dxdt
A (T | .
+Z;f0 /Q(A(c,-—c,-)) dx dt
= aee®) + 2D g o0y
- Tm 2 2
c,o i — Ci Ve — ¢ dx dt. 81
+C( )ZM;AW &) + V(e — @) dx di 81)

This inequality corresponds to the estimate in Step 3 of Section 4.2. The convex part of
the energy equals

&1(cle) = H(c|¢) + %/Q |V(c —¢)|* dx.

Then the energy can be bounded from below as

8(c|5)=]€(c|c_)+%/QW(C—E)|2dx+/gw(c|c")dx281(c|c")—C1/Q|c—E|2dx,

where the last integral comes from the nonconvex part. Thus, together with #(c|c) >
% Jo le— ¢|? dx, we conclude from (81) that

1 1 8(Aar — A)2 8(Anr — A
53(’(c|6)+4—1/ |c—6|2dx+L81(c|E)—LC1/ le — ) dx
Q

A
8(Ay — )2
A

T
L 7)2 L 7)]2
—i—C/O /;2((@ ¢i)" 4+ |V(ci —¢;)|7) dx dt.

< H(c°1e%) + &(c°¢%
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We choose A = Ay — &, where 2 < A,,Ap/(64C;) and & < Aps/2. Then

80w —A2 . _ _ 8Ci _ Awhw/8 _ 1
AmA YT O — &) AmAm/2 4

Thus the L?(2) norm of ¢ — ¢ cancels, and we find that

8(Ay — A)? _ 01-0 8(Ay — A)?
T81(0|0) < H(c"|c”) + T

T
+ C[O /;z((c,- — &) + | V(e —¢)|?) dx dt.

%J(’(clc') + &(c%e%

Arguing as in Step 3 of Section 4.2, we can apply Gronwall’s inequality to end up with

8(Aar — 1)2
A

8(Aar — 1)

%Jf(dc‘)—}— 81(C|E)§C<J€(c°|éo)+ - 28(c°|E°)).

Thus, the weak—strong uniqueness result holds in the presence of the nonconvex part of
the potential.

6. Examples
We present some models which satisfy Assumptions (B1)—(B4).

6.1. A Cahn—Hilliard model with degenerate mobility

Elliott and Garcke [12] studied equations (1)—(5), formulated in terms of the mobility
matrix (8), where

bj(cj)
ZZ=1 by (ck)

The functions b; € C ([0, 1]) are nonnegative and satisfy Bic; < b;(c;) < Bac; for ¢; €
[0, 1] and some constants 0 < 81 < B,. The potential v is chosen as

Bij(C)ij(Ci)((gij— ), i,j =1,...,n.

v(c) =c"Me,

where M is a constant 7 x n matrix. This model describes phase transitions in multicom-
ponent systems; in [33] it has been suggested that the dynamics of polymer mixtures are
modeled with b; (c;) = Bic; and B; > 0. The subspace L(c) becomes

Lc) ={z e R": Y[, /bi(ci)zi =0},

and the matrix DBP(¢) is determined directly from the mobility matrix:

_ Bij(c) — 5. — V bi(ci)bj(cj)
Vhi(ebi(e)) 7 Yo bi(er)
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Instead of checking Assumptions (B1)-(B4), it is more convenient to verify the statements
of Lemma 4 directly. This has been done in [22, Section 2]. Moreover, condition (P) holds.
While the global existence of weak solutions has been already proved in [12], we obtain
the weak—strong uniqueness property as a new result.

As illustrated in [12], for n = 2, taking ]\7[,-1- = x(1 =¢;;)fori,j =1,2with y >0
in the previous example, the variable u := ¢; — ¢, satisfies the Cahn—Hilliard model with
degenerate mobility matrix

ou = div[(l — uz)V((log(l +u) —log(1 —u)) — yu — Au)]

This corresponds to the energy

1 1
g = / (_((1 +u)log(1 + u) + (1 — u) log(u)) — luz) dx + —/ IVul? dx,
o\2 2 2 Jo
which is expressed in terms of u rather than (cy, ¢3).

6.2. The classical Maxwell-Stefan system

In the classical Maxwell-Stefan model, the matrix K(c) has entries

Kij(e) = 8ij Y kigee — kijei
=1

fori,j = 1,...,n. The associated matrix DMS(¢) is given by

D}\/IS(C) J_K,,(c)f- 8ij Zk,gq kijJcici, i,j=1,.
=1

It is proved in [22, Section 5.4] that this matrix satisfies Assumptions (B1)—(B4). Thus,
Theorems 1 and 2 hold for the model

n
d;c; + div(cju;) =0, Zciui =0, i=1,...,n,
i=1

n
c,-V,ui - Z k ZCJV,LL] = —Zkijcicj(ui —uj),
k=1

Jj=1
where y; = logc; — Ac;. Compared to [22], the mobility does not only depend on ¢; but
also on Ac;. This extends the existence and weak—strong uniqueness results to a more
general case.

6.3. A physical vapor decomposition model for solar cells

Thin-film crystalline solar cells can be fabricated as thin coatings on a substrate by the
physical vapor decomposition process. The dynamics of the volume fractions of the pro-
cess components can be described by model (1)—(4) with the mobility matrix

n
Bij(c) = 6ij Zkizcicz —kijcici, i, j=1,...,n
=1
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In this case, the Bott-Duffin matrix is given by DP(c) = Bjj(c)/ J/cic; = D} (e),
where DMS(¢) is the Maxwell-Stefan matrix of the previous subsection. Thus, Assump-
tions (B1)—(B4) are verified for this matrix. With the energy

n l n
8(c)=Z/Qc,-(logc,-—l)dx+EZ/QWQde

i=1 i=1

+ﬁ/ﬂcl(1—cl)dx,

the chemical potential becomes u; = logc; — Ac; + B(1 — ¢1), and the nonconvex part
of the potential has a bounded second derivative. This energy is different from that used
in [10], since here we consider the phase separation of all species, while the authors in
[10] consider the case when only one species is separated from the others. We infer that
Theorems 1 and 2 hold for the model

n
e =div Y kijeic; V(i — ),
j=1

wi =loge; — Aci + (1 —2¢1), i=1,...,n.

When p; = logc; for all i, the global existence of weak solutions was proved in [1] and
the weak—strong uniqueness of solutions was shown in [20]. A global existence result was
obtained in [10] for u; = logc; — Acy + B(1 — 2¢1) with B > 0 and w; = logc; for
i=2,...,n.

A. Proof of Theorem 6

The proof is divided into four steps. First, we reformulate (35) using the first 7 — 1 com-
ponents. Second, a time-discretized regularized system, similarly to [25, Chapter 4], is
constructed and the existence of weak solutions to this system is proved. Third, we derive
some uniform estimates from the energy inequality. Finally, we perform the deregulariza-
tion limit.

Step 1: Reformulation in n — 1 components. We reformulate the approximate system in
terms of the n — 1 relative chemical potentials

wf:uf—uﬁ, i=1,...,n—1.

It holds that

n n ) .
S (PL(ts0) Rz )y = Z(ak, - —m) Joser; =o.

j=1 Jj=1
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Then, using DBP(¢) = DBP(c) PL(c) (which is a general property of the Bott—Duffin
inverse; see [22, (81)]),

> Bl(e) =Y V(xs)iDiP(e) [ (xs¢);
= j=1

= Y V50 DFP(e)(Pr(xs€)R(xs¢)k; = 0.

Jik=1

This shows that
n n—1 n—1
DBV =Y BV + Bl(e)Vi, = 3 BV = ty).
=1 =1 =1
Consequently, we can rewrite the first equation in (35) as

n—1 n—1
0cf =divy Bi(h)Vw), i=1..n-1. d=1-)¢c. (82
j=1 i=1
recalling that B? is the first ( — 1) x (n — 1) submatrix of BY.

Step 2: Existence for a regularized system. We consider for given§ > 0, T > 0, N € N,

and (c’ffl, cees c,’f:ll) the regularized system
Uk k-1 B ko k 20k ok
;(ci —c; ):leZBij(c WVwi —e(A%w; +w;) inQ, (83)
j=1
wk = (W) (k) — (W) Ky — Ak =), i=1,....n—1, (84)

where 7 = T/N and ¢k =1 — Z:l;ll c{‘. Equation (83) is understood in the weak sense:

1 B n—1 _
;/;Z(C{‘—clk Y dx+Z/QB§j(ck)v¢,- - Vwk dx
j=1

+ a/ (AWK Ap; + wFe)dx =0
Q

for test functions ¢; € H?(Q).

The e-regularization ensures that wlk € H?(Q) «— L>(Q) since d < 3. In higher
space dimensions, we can replace Azwllc by (—A)mw{C with m > d /2, which gives wlk €
H™(Q) — L®(Q).

We prove the solvability of (83)—(84) in two steps.

Lemma 11 (Solvability of (84)). Let w € L?(Q;R"™ ). Then there exists a unique strong
solution ¢ € H*>(Q;R"™ 1) to

wi = (1% (¢c;) — (h8) (cn) — A(ci —cn) inQ, Vei-v=0o0ndQ  (85)
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fori=1,....,.n—1, wherec, =1— :1:—11 c;. This defines the operator £: L>(;R"™1)
— H?(Q;R" 1), £(w) =é.

Proof. The system of equations can be written as
div(MVé); = (h)) (ei) — (h) (cn) —w;i  in Q,

where the entries of the diffusion matrix M are M;; =2 and M;; = 1foralli # j.In
particular, M is symmetric and positive definite. Thus, we can apply the theory for ellip-
tic systems with sublinear growth function and conclude the existence of a unique weak
solution ¢ € H1(Q;R”™!). It remains to verify that this solution lies in H?2(Q2;R"™1).
Summing (85) overi = 1,...,n — 1, we find that

n—1

n—1
Aew=—3 Aei = % > (wi — () () +
i=1

i=1

n—1

— () (cn) € L*(@)

with the boundary condition V¢, - v = 0 on 2. We infer from elliptic regularity theory
that ¢, € H?(2). Consequently, Ac,, € L?(Q) and elliptic regularity again implies that
ci € H*(Q). [

It follows from Lemma 11 that we can write (83) as

L@y — ek
T

n—1
=div)_ B} (@)Vuf —e(Awf +wf) inQi=1...n—1 (86)
Jj=1

Lemma 12 (Solvability of (86)). Let ¢l e H2(Q; R"™Y). Then there exists a weak
solution wk € H2(2;R"™1) to (86) such that for all ¢; € L>(0, T; H2(Q)),

1 B n—1 _
© [y —d s+ [ B ew)ve ik dx

i,j=1
n—1

+ 82/ (AwFAp; + wF¢;) dx = 0.
i=179

Proof. Given w € L®(Q;R"1) and o € [0, 1], we wish to find a solution to the linear
problem
Aw. @) = F(¢) forp e H*(R"™), (87)

where

n—1 n—1
Aw.) = Y [ By @)V Vg dx e Y [ widg i) dx,

i,j=1 i=1

7($) = —%/ﬂ(i@ _ &) g,
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We infer from the boundedness of El‘i (£ (w)) that the bilinear form + is continuous on
H?(Q:;R" ). Furthermore, by the positive-definiteness of El‘g] (£(w)), thanks to (39),
A 1s coercive. Moreover, ¥ is a continuous linear form on H 2(Q; R"_l). We conclude
from the Lax—Milgram theorem that there exists a unique solution w € H?(Q;R"™1)
to (87). Since d < 3 by Assumption (A1), we have H?(Q) < L% (Q2) and therefore
w e L®(Q;R" 1),

This defines the fixed-point operator S: L>®(Q2; R"™1) x [0, 1] — L®(Q; R"™1),
S(w, o) = w. The operator S is continuous, and it satisfies S(w,0) = 0 for all w €
L>®(:;R"™ 1), In view of the compact embedding H?(2) < L*(R), S is also com-
pact. It remains to verify that all fixed points of S(:, ) are uniformly bounded. To this
end, let w € L>®°(R2; R"™!) be such a fixed point. Then w € H?(;R"™!) solves (87)
with w = w. We choose the test function ¢ = w in (87) to find that

n—1
g/(5—5’<—1).u)aix+ 3 / BY &)V, - Vw; dx
TJQ Q

Lj=1

n—1
+ 82/ (Aw;)? + w?)dx =0, (88)
i=17%

where ¢ = £(w) = (c1,...,cn—1) and ¢; solves (84) with wlk replaced by w;. Using the

test function ¢; — clk_l in the weak formulation of (84) leads to

n—1 1
= cf T Dwi = - . o k-1
;/Q(c, ¢ Hwidx ;/Q(V(C’ en) - Vici — ck1y

+ (B8 (ei) — (W) (e))(ci — cF71)) dx.

The convexity of the function hf and Z:’:—ll ¢;i = 1 — ¢, imply that

n—1 n—1

Z(Ci - c{‘_l)(hf)/(ci) > Z(hf(ci) — hf(clk_l)),
i=1 =
n—1

= (e =) (cn) = (en = cx 7)) (cn) = B (en) — iy (™).

i=1

. -1 ~1 _ _
Moreover, since Y ', V¢; = =V, and 72 Vb= = —vek=1,

n—1 n n
D V(i —en)-Viei—cf T =) Vel =Y Vel Ve

i=1 i=1 i=1

| | — _
> 2D IVal? =2 X IV
i=1 i=1
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This yields

n—1
Z/ (ci —clk_l)wi dx
i=17%

n 3 1 n 3
> Z/Q(hf(c,-)—h;‘(c{f YYdx + EZ/Q(WC,-F—WQ?C ') dx
i=1

i=1
> &%(e) - &5 @M.
where .
&%) = 7% + Z[ IVei |2 dx,  J%(@) = 3% (c).
i=17%

Inserting this inequality into (88) finally gives
_ n—1
o&@+1 ) [ BY(&)Vw; - Vw, dx
i j=1"%
+ 8‘[/ (Aw]? + |w|?) dx < o &5 ). (89)
Q
By the positive-definiteness of B (positive-semidefiniteness is sufficient), this gives a

uniform H?2(Q) bound and consequently a uniform L*°(£2) bound for w. The Leray—
Schauder fixed-point theorem now implies the existence of a solution to (83)—(84). ]

Step 3: Uniform estimates. We wish to derive estimates uniform in ¢ and 7. The start-
ing point is the regularized energy estimate (89) and the positive-definiteness estimate
(39). First, we introduce the piecewise constant in time functions w(® (x, 1) = w* (x),
éD(x,1)=L(wk(x))forx e Qandr € (k—1)t,kt],k=1,...,N,and set w® (x,0) =
(06 /9¢)(¢°) and ¢ (x,0) = ¢°. Then, introducing the shift operator (o, w®)(x, 1) =
w® (x,t —7) for x € Q and ¢t > t, we can formulate (83)—(84) as

1 ~

(@D — 6,6) = div(B* (@) Vw®) — e(A2w® + w®), (90)

T

(2) ] (x) ] (¥) ;
w;? = () () = () () = A, —¢fP), i=1,....n=1, (D

recalling that ¢ = £( w®) is a function of w®. Then (89) can be written after summa-
tionoverk = 1,...,N as

T T
83(5(’)(T))+n(8)/ / Vw2 dx dt +8C[ w32 dt < E°(E°),
0 Q 0

where we used (39) and the generalized Poincaré inequality with constant C > 0. This
implies the estimates

C(5)”w(r)||L2(0,T;H1(Q)) + \/E”w(r)”LZ(O,T;HZ(Q)) <C, (92)

where C > 0 denotes here and in the following a constant independent of ¢ and 7.
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To derive a uniform estimate for ¢®, we multiply (91) by Ac( 2

Or = Q x (0, T), integrate by parts, and sumoveri = 1,...,n — 1:

Zf /Vw(r) Vc(r)dxdt

i=1

, integrate over

_Z/ /V((hg)(c(r)) 1Y () - Ve dx dr

i=1

_ T
+ Z / / (Ac)? = AcD AcD)dx di =: I3 + 1.
i=170 /&

Since V(1) (c™) = (1) (c)\Ve™ = Ve /(15¢@); and Y12 Vel = —vel?,
the term I3 can be written as

@2
Vel
Iz = / / xdt.
Z Q (XSC(I))I
Using the property Z:’;ll Aci(r) = —Ac,(f), the remaining term /4 becomes
noo.T
Iy = Z/ [(Acl.(’))zdx dt.
i=170 /9
Therefore, by Young’s inequality,
2 Ve (T)|2
(Ac;”)*dxdt + / / xdt
21 [
= Z/ / Vw(r) Vc(r) dx dt

i=1

(f)|2 © 12
). T
‘Z/ [ TR + (25e@); |V |)dxdt

|Ve (f)|2 o
1—1/ /;2(}(50(7)), dxdt+ 3 Z/ / |Vw |“dx dt.

i=1

I A

The first term on the right-hand side is absorbed by the left-hand side. Thus, we deduce
from (92) that

V (f)|2
()2 - (€2
2:/ /(Ac Y dxdt + = }j/ /Q(chm) dxdt < ||Vw 122005 < C-

(@

Since ¢; " € L*°(Qr), we infer from the previous estimate that

||C,-(r)||L2(0,T;H2(Q)) <C, i=1,...,n. (93)
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Finally, we derive an estimate for the discrete time derivative. It follows from (86) that
n—1

— 0V l2o.rm@y < Y IBEE) Leon VW l12(07)
j=1

1
~llef”
T

+elw 207 m20)-
The entries of BS (¢®) are bounded since § < (ys¢™); < 1 — 6. Thus, by (92),
T71||Ci(r) _O‘L’Ci(r)”Lz(O,T;HZ(Q)’) <C, i=1,....,n—1. 94)

Step 4: Limit (¢,7) — 0. In view of estimates (93) and (94), we can apply the version of
the Aubin—Lions lemma in [9, Theorem 1] to conclude the existence of a subsequence,
which is not relabeled, such that as (e, ) — 0,

cl-(r) —¢; stronglyin L2(0,T; HY(Q)),i =1,...,n—1.

We deduce from (92)—(94) that, possibly for another subsequence,

Ci(t) —~ ¢ weakly in L%(0, T; H*()),
e —0pe) —~ d,e; weakly in L2(0, T; HX(R)'),
wi(’) — w; weakly in L2(0, T; HY(Q)),

aw,.(’) 50 strongly in L2(0,T; H*(Q)),i =1,...,n— 1.

We define ¢, := 1 — Y"1 ¢;. Then e — ¢, strongly in L2(0, T; H'(R)) and weakly
in L%(0, T; H*(Q)). Furthermore, (ci(r)) converges, up to a subsequence, pointwise a.e.,
and its limit satisfies § < (ysc); <1—48,i = 1,...,n. The matrix El‘i (E(f)) is uniformly
bounded and

B! (™) — BY (&) strongly in LY(Q7) forany g < 00,i,j =1.....n.

These convergence results allow us to pass to the limit (¢, 7) — 0 in the weak formulation
of (90)—(91) to find that ¢ solves

n—1
0c; =divy_ BY@Vw,, wi =B (i) — (1) (cn) — Alci — cn)
j=1
fori =1,...,n — 1. Transforming back to the chemical potential u via w; = u; — i, and

cp=1-— Z:’;ll ¢, we see that ¢® := ¢ solves system (35)—(36), where u; = (hf)’(c,-) —
AC,‘.
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