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Existence and weak–strong uniqueness for
Maxwell–Stefan–Cahn–Hilliard systems

Xiaokai Huo, Ansgar Jüngel, and Athanasios E. Tzavaras

Abstract. A Maxwell–Stefan system for fluid mixtures with driving forces depending on Cahn–
Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations
contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary
conditions. The nonconvex part of the energy is assumed to have a bounded Hessian. The main
difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving
the positive-definiteness of the matrix on a subspace and using the Bott–Duffin matrix inverse. The
global existence of weak solutions and a weak–strong uniqueness property are shown by a careful
combination of (relative) energy and entropy estimates, yielding H2.�/ bounds for the densities,
which cannot be obtained from the energy or entropy inequalities alone.

1. Introduction

The evolution of fluid mixtures is important in many scientific fields, like biology and
nanotechnology, to understand the diffusion-driven transport of species. The transport
can be modeled by the Maxwell–Stefan equations [29, 31], which consist of mass bal-
ance equations and relations between the driving forces and the fluxes. The driving forces
involve chemical potentials of the species, which in turn are determined by the (free)
energy. When the fluid is immiscible, the energy can be assumed to consist of thermo-
dynamic entropy and phase separation energy, given by a density gradient [5]. The gra-
dient energetically penalizes the formation of an interface and restrains the segregation.
This leads to a system of cross-diffusion equations with fourth-order derivatives. The aim
of this paper is to provide a global existence and weak–strong uniqueness analysis for
multicomponent systems of Maxwell–Stefan–Cahn–Hilliard type.

2020 Mathematics Subject Classification. Primary 35A02; Secondary 35G20, 35G31, 35K51, 35K55,
35Q35.
Keywords. Cross-diffusion systems, global existence, weak–strong uniqueness, relative entropy, relative
free energy, parabolic fourth-order equations, Maxwell–Stefan equations, Cahn–Hilliard equations.

https://creativecommons.org/licenses/by/4.0/


X. Huo, A. Jüngel, and A. E. Tzavaras 798

1.1. Model equations and state of the art

The equations for the partial densities ci and partial velocities ui are

@tci C div.ciui / D 0; i D 1; : : : ; n; (1)

cir�i �
ciPn
kD1 ck

nX
jD1

cjr�j D �

nX
jD1

Kij .c/cjuj ; (2)

nX
jD1

cjuj D 0; (3)

supplemented by the initial and boundary conditions

c.�; 0/ D c0 in �; ciui � � D rci � � D 0 on @�, t > 0, i D 1; : : : ; n; (4)

where � � Rd (d D 1; 2; 3) is a bounded domain, � is the exterior unit normal vector
on the boundary @�, c D .c1; : : : ; cn/ is the density vector, and Kij .c/ are the fric-
tion coefficients. The left-hand side of (2) can be interpreted as the driving forces of the
thermodynamic system, and the right-hand side is the sum of the friction forces. The
chemical potentials

�i D
ıE

ıci
D log ci ��ci ; i D 1; : : : ; n; (5)

are the variational derivatives of the (free) energy

E.c/ D H .c/C
1

2

nX
iD1

Z
�

jrci j
2 dx; H .c/ D

nX
iD1

Z
�

.ci .log ci � 1/C 1/ dx; (6)

and H .c/ is the thermodynamic entropy. Note that this energy is convex; we show in Sec-
tion 5 that our results still hold if the energy contains a nonconvex part with bounded Hes-
sian (like the potential in [11]). We assume that

Pn
iD1Kij .c/D 0 for j D 1; : : : ; n, mean-

ing that the linear system in r�j is invertible only on a subspace, and that
Pn
iD1 c

0
i D 1

in�, which implies that
Pn
iD1 ci .t/D 1 in� for all time t > 0. This means that the mix-

ture is saturated and ci can be interpreted as a volume fraction. For simplicity, we have
normalized all physical constants.

Model (1)–(5) has been derived rigorously in [21] in the high-friction limit from a
multicomponent Euler–Korteweg system for a general convex energy functional depend-
ing on c and rc. A thermodynamics-based derivation can be found in [30]. When the
energy equals E.c/ D H .c/, the model reduces to the classical Maxwell–Stefan equa-
tions, analyzed first in [3, 18, 19] for local-in-time smooth solutions and later in [26] for
global-in-time weak solutions. In the single-species case, model (1)–(5) becomes a fourth-
order Cahn–Hilliard-type equation with convex potential �.c/ D c.log c � 1/. Such a
model, additionally including a nonconvex potential, was analyzed in, e.g., [11, 32]. Con-
vergence from the Euler–Korteweg in the high-friction limit to the Cahn–Hilliard equation
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with nonconvex potential is provided in [17]. Only a few works are concerned with the
multispecies situation, and all of them require additional conditions. The mobility matrix
in [4, 28] is assumed to be diagonal and that in [27] has constant entries, while [10, 12]
suppose a particular (but nondiagonal) structure of the mobility matrix. We also mention
[1, 2] on related models with free energies of type H .

The proof of the uniqueness of solutions to cross-diffusion or fourth-order systems is
quite delicate due to the lack of a maximum principle and regularity of the solutions. The
uniqueness of strong solutions to Maxwell–Stefan systems has been shown in [19, 23],
and uniqueness results for weak solutions in a very special case can be found in [7]. A
weak–strong uniqueness result was proved for reaction–diffusion systems in [15] and for
Maxwell–Stefan systems in [22]. Concerning uniqueness results for fourth-order equa-
tions, we refer to [8] for single-species Cahn–Hilliard equations, [24] for single-species
thin-film equations, and [14] for the quantum drift-diffusion equations. To our knowledge,
there are no uniqueness results for multicomponent Cahn–Hilliard-type systems. In this
paper, we analyze these equations in a general setting for the first time.

1.2. Key ideas of the analysis

Before stating the main results, we explain the mathematical ideas needed to analyze
model (1)–(5). First, we rewrite (2) by introducing the matrix D.c/ 2 Rn�n with entries

Dij .c/ D
1
p
ci
Kij .c/

p
cj

in the unknowns .
p
c1u1; : : : ;

p
cnun/:

p
cir�i �

p
ciPn

kD1 ck

nX
jD1

cjr�j D �

nX
jD1

Dij .c/
p
cjuj ;

nX
iD1

p
ci .
p
ciui / D 0:

(7)

We show in Lemma 3 that this linear system has a unique solution in the space L.c/ WD
¹z 2 RnW

Pn
iD1

p
cizi D 0º, and the solution reads

p
ciui D �

nX
jD1

DBD
ij .c/

p
cjr�j ;

where DBD.c/ is the so-called Bott–Duffin matrix inverse; see Lemmas 3 and 4 for the
definition and some properties. Then, defining the matrix B.c/ 2 Rn�n with elements

Bij .c/ D
p
ciD

BD
ij .c/

p
cj ; i; j D 1; : : : ; n; (8)

system (1)–(2) can be formulated as (see Section 2.1 for details)

@tci D div
nX

jD1

Bij .c/r�j ; i D 1; : : : ; n:
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The matrix B.c/ is often called the Onsager or mobility matrix in the literature. The
major difficulty of the analysis comes from the fact that the matrix B.c/ is singular and
degenerates when ci ! 0 for some i 2 ¹1; : : : ; nº. Formally computing the energy identity

dE

dt
.c/C

nX
i;jD1

Z
�

Bij .c/r�i � r�j dx D 0;

the degeneracy at ci D 0 prevents uniform estimates for r�i in L2.�/. In some works,
this issue has been compensated for. For instance, there exists an entropy equality for the
model of [12] yielding an L2.�/ bound for �ci , and the decoupled mobilities in [6, 28]
allow for decoupled entropy estimates. In our model, the energy identity does not provide
a gradient estimate for the full vector .r�1; : : : ;r�n/ but only for a projection:

dE

dt
.c/C C1

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

.ıij �
p
cicj /
p
cjr�j

ˇ̌̌̌2
dx � 0;

where ıij is the Kronecker delta; see Lemma 5. (The constant C1 > 0 and all constants
that follow do not depend on c.) To address the degeneracy issue, we compute the time
derivative of the entropy:

dH

dt
.c/C

nX
i;jD1

Z
�

Bij .c/r log ci � r�j dx D 0:

This does not provide a uniform estimate for �ci , but we show (see Lemma 5) that

dH

dt
.c/C C2

nX
iD1

Z
�

.�ci /
2 dx

� C3

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

.ıij �
p
cicj /
p
cjr�j

ˇ̌̌̌2
dx:

Combining the energy and entropy inequalities in a suitable way, the last integral cancels:

d

dt

�
H .c/C

C3

C1
E.c/

�
C C2

nX
iD1

Z
�

.�ci /
2 dx � 0: (9)

This provides the desired H 2.�/ bound for ci . Note that the energy or entropy inequality
alone does not give estimates for ci . The combined energy–entropy inequality is the key
idea of the paper for both the existence and weak–strong uniqueness analysis. Observe
that the term H .c/C .C3=C1/E.c/ can also be written as

.1C C3=C1/H .c/C
1

2

nX
iD1

Z
�

jrci j
2 dx:
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1.3. Main results

We make the following assumptions:

(A1) Domain: � � Rd with d � 3 is a bounded domain. We set QT D � � .0; T /
for T > 0.

(A2) Initial data: c0i 2 H
1.�/ satisfies c0i � 0 in �, i D 1; : : : ; n, and

Pn
iD1 c

0
i D 1

in �.

The assumption d � 3 is made for convenience, it can be relaxed for higher space
dimensions by choosing another regularization in the existence proof; see (83). The con-
straint

Pn
iD1 c

0
i D 1 expresses the saturation of the mixture and it propagates to the

solution. We introduce the matrix Dij .c/ D .1=
p
ci /Kij .c/

p
cj for i; j D 1; : : : ; n and

set
L.c/ D

®
x 2 RnW

p
c � x D 0

¯
; L?.c/ D span¹

p
cº; (10)

where
p
c D .

p
c1; : : : ;

p
cn/. The projections PL.c/, PL?.c/ 2 Rn�n on L.c/, L.c/?,

respectively, are given by

PL.c/ij D ıij �
p
cicj ; PL?.c/ij D

p
cicj ; for i; j D 1; : : : ; n: (11)

We impose for any given c 2 Œ0; 1�n the following assumptions on D.c/ D .Dij .c// 2

Rn�n:

(B1) D.c/ is symmetric and ranD.c/ D L.c/, ker.D.c/PL.c// D L?.c/.

(B2) For all i; j D 1; : : : ; n, Dij 2 C 1.Œ0; 1�n/ is bounded.

(B3) The matrix D.c/ is positive semidefinite, and there exists � > 0 such that all
eigenvalues � ¤ 0 of D.c/ satisfy � � �.

(B4) For all i; j D 1; : : : ; n, Kij .c/ D
p
ciDij .c/=

p
cj is bounded in Œ0; 1�n.

Examples of matrices D.c/ satisfying these assumptions are presented in Section 6.
Our first main result is the global existence of weak solutions.

Theorem 1 (Global existence). Let Assumptions (A1)–(A2) and (B1)–(B4) hold. Then
there exists a weak solution c to (1)–(5) satisfying 0� ci � 1,

Pn
iD1 ci D 1 in�� .0;1/,

ci 2 L
1
loc.0;1IH

1.�// \ L2loc.0;1IH
2.�//; @tci 2 L

2
loc.0;1IH

1.�/0/;

the initial condition in (4) is satisfied in the sense of H 1.�/0, and for all �i 2 C10 .� �
.0;1//,

0 D �

Z 1
0

Z
�

ci@t�i dx dt C

nX
jD1

Z 1
0

Z
�

Bij .c/r log ci � r�i dx dt

C

nX
jD1

Z 1
0

Z
�

div.Bij .c/r�i /�cj dx dt; (12)
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where Bij .c/ is defined in (8). Furthermore,

H .c.�; T //C C1E.c.�; T //C C2

Z T

0

Z
�

.jr
p
cj2 C j�cj2/ dx dt

C C2

Z T

0

Z
�

j�j2 dx dt � H .c0/C C1E.c
0/; (13)

where C1 > 0 depends on �, n, kD.c/kF and C2 > 0 depends on n, kD.c/kF (where
k � kF is the Frobenius matrix norm and � is introduced in Assumption (B3)). Moreover, �
is the weak L2.�/ limit of an approximating sequence of

Pn
jD1 PL.c/ij

p
cjr�j .

Some comments are in order. First, by Assumption (B2), the elements of the matrix
D.c/ are bounded for any c 2 Œ0; 1�n and therefore, the quantity kD.c/kF is bounded
uniformly in c. Second, the weak formulation (12) makes sense since Bij .c/r log ci 2
L2.QT /. Indeed, by the definition of B.c/, we have

Bij .c/r log cj D
p
ciD

BD
ij .c/

1
p
cj
rcj ;

and the matrix
p
ciD

BD
ij .c/=

p
cj is bounded for all c 2 Œ0; 1�n; see Lemma 4 (iii) below.

However, note that the expression
Pn
jD1 Bij .c/r�j is generally not an element of

L2.QT /. In particular, we cannot expect that r�ci 2 L2.QT /. Third, we have not been
able to identify the weak limit � because of low regularity. However, if

nX
jD1

PL.c/ij
p
cjr�j 2 L

2
loc.0;1IL

2.�//

holds for all i D 1; : : : ;n, then we can identify �i D
Pn
jD1PL.c/ij

p
cjr�j ; see Lemma 9.

To prove Theorem 1, we first introduce a truncation with parameter ı 2 .0;1/ as in [12]
to avoid the degeneracy. Then we reduce the cross-diffusion system to n� 1 equations by
replacing cn by 1 �

Pn�1
iD1 ci . The advantage is that the diffusion matrix of the reduced

system is positive definite (with a lower bound depending on ı). The existence of solutions
cıi to the truncated, reduced system is proved by an approximation as in [25] and the
Leray–Schauder fixed-point theorem; see Section 3.1. An approximate version of the free
energy estimate (13) (proved in Lemma 8 in Section 3.2) provides suitable uniform bounds
that allow us to perform the limit ı ! 0. The approximate densities cıi may be negative
but, by exploiting the entropy bound for cıi , its limit ci turns out to be nonnegative. The
limit ı! 0 is then performed in Section 3.3, using the uniform estimates and compactness
arguments.

Our second main result is concerned with the weak–strong uniqueness. For this, we
define the relative entropy and free energy in the spirit of [16] by, respectively,

H .cj Nc/ WD H .c/ �H . Nc/ �
@H

@c
. Nc/ � .c � Nc/

D

nX
iD1

Z
�

�
ci log

ci

Nci
� .ci � Nci /

�
dx; (14)
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E.cj Nc/ WD E.c/ � E. Nc/ �
@E

@c
. Nc/ � .c � Nc/

D H .cj Nc/C
1

2

nX
iD1

Z
�

jr.ci � Nci /j
2 dx: (15)

Theorem 2 (Weak–strong uniqueness). Let Assumptions (A1)–(A2), (B1)–(B4) hold, let
c be a weak solution to (1)–(5) with initial datum c0, and let Nc be a strong solution to
(1)–(5) with initial datum Nc0. We assume that the weak solution c satisfies

nX
jD1

PL.c/ij
p
cjr�j 2 L

2
loc.0;1IL

2.�// for i; j D 1; : : : ; n (16)

(see (11) for the definition of PL.c/) and for all T > 0 the energy and entropy inequalities

E.c.T //C

nX
i;jD1

Z T

0

Z
�

Bij .c/r�i � r�j dx dt � E.c0/; (17)

H .c.T //C

nX
i;jD1

Z T

0

Z
�

Bij .c/r log ci � r�j dx dt � H .c0/: (18)

The strong solution Nc is supposed to be strictly positive, i.e., there exists m > 0 such that
Nci � m in �, t > 0, and satisfies the regularity

Nci 2 L
1
loc.0;1IW

3;1.�//; r div
� 1
Nci
Bij . Nc/r N�j

�
2 L1loc.0;1IL

1.�//

for i D 1; : : : ; n, as well as for any T > 0 the energy and entropy conservation identities

E. Nc.T //C

nX
i;jD1

Z T

0

Z
�

Bij . Nc/r N�i � r N�j dx dt D E. Nc0/; (19)

H . Nc.T //C

nX
i;jD1

Z T

0

Z
�

Bij . Nc/r log Nci � r N�j dx dt D H . Nc0/; (20)

where�i D logci ��ci and N�i D log Nci �� Nci . Then, for any T > 0, there exist constants
C1, only depending on kD.c/kF , n, �, and C2.T / > 0, only depending on T , meas.�/,
n, �, such that

H .c.T /j Nc.T //C C1E.c.T /j Nc.T // � C2.T /.H .c0j Nc0/C C1E.c
0
j Nc0//: (21)

In particular, if c0 D Nc0 then the weak and strong solutions coincide.

Observe that we need stronger assumptions on the weak solutions than those obtained
in Theorem 1. Assumption (16) guarantees that the flux

Pn
jD1Bij .c/r�j lies inL2.QT /.
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Indeed, we prove in Lemma 4 (i) in Section 2 that DBD
ij .c/ is bounded for c 2 Œ0; 1�n.

Therefore, sinceDBD.c/DDBD.c/PL.c/, assumption (16) and ci 2 L1.QT / imply that

nX
jD1

Bij .c/r�j D
p
ci

nX
j;kD1

DBD
ik .c/PL.c/kj

p
cjr�j 2 L

2.QT /: (22)

By the way, it follows from
Pn
jD1 PL.c/ij

p
cjr log cj D 2r

p
ci 2 L

2.QT / that

nX
jD1

PL.c/ij
p
cjr�cj D

nX
jD1

PL.c/ij
p
cjr.log cj � �j / 2 L2.QT /: (23)

Since r�ci may not be in L2.QT /, we interpret (23) in the sense of distributions, i.e., for
all ˆ 2 C10 .�IR

d /,� nX
jD1

PL.c/ij
p
cjr�cj ; ˆ

�
D �

nX
jD1

Z
�

�
r.PL.c/ij

p
cj / �ˆC PL.c/ij

p
cj divˆ

�
�cj dx:

For the proof of Theorem 2, we estimate first the time derivative of the relative entropy
(14):

dH

dt
.cj Nc/C C1

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx C C1

nX
iD1

Z
�

.�.ci � Nci //
2 dx

� C2

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx C C3

Z
�

E.cj Nc/ dx;

where Ci > 0 are some constants depending only on the data. The first term on the right-
hand side can be handled by estimating the time derivative of the relative energy (15):

dE

dt
.cj Nc/C C4

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx

� �

nX
iD1

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx C �

nX
iD1

Z
�

.�.ci � Nci //
2 dx

C C5.�/

Z
�

E.cj Nc/ dx;

where � > 0 can be arbitrarily small. Choosing � D C1C4=C2, we can combine both
estimates leading to

d

dt

�
H .cj Nc/C

C2

C4
E.cj Nc/

�
�

�
C3 C

C2C5

C4

�
E.cj Nc/;
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and the theorem follows after applying Grönwall’s lemma. As the computations are quite
involved, we compute first in Section 4.1 the time derivative of the relative entropy and
energy for smooth solutions. The rigorous proof of the combined relative entropy–energy
inequality for weak solutions c and strong solutions Nc is then performed in Section 4.2.

The paper is organized as follows. The Bott–Duffin matrix inverse is introduced in
Section 2, some properties of the mobility matrix B.c/ are proved, and the combined
energy–entropy inequality (9) is derived for smooth solutions. The global existence of
solutions (Theorem 1) is shown in Section 3, while Section 4 is concerned with the proof
of the weak–strong uniqueness property (Theorem 2). The case of nonconvex energies
is investigated in Section 5, showing that Theorems 1 and 2 still hold if the convex part
of the energy equals the Boltzmann entropy (see (6)) and the Hessian of the nonconvex
part is bounded. Finally, we present some examples verifying Assumptions (B1)–(B4) in
Section 6.

Notation

Elements of the matrix A 2 Rn�n are denoted by Aij , i; j D 1; : : : ; n, and elements of a
vector c 2 Rn are c1; : : : ; cn. We use the notation f .c/ D .f .c1/; : : : ; f .cn// for c 2 Rn

and a function f WR!R. The expression jrf .c/j2 is defined by
Pn
iD1 jrf .ci /j

2 and j � j
is the usual Euclidean norm. The matrixR.c/ 2Rn�n is the diagonal matrix with elements
p
c1; : : : ;

p
cn, i.e., Rij .c/D

p
ciıij for i; j D 1; : : : ; n, where ıij denotes the Kronecker

delta. We understand by r� the matrix with entries @xi�j . Furthermore, C > 0, Ci > 0
are generic constants with values changing from line to line.

2. Properties of the mobility matrix and a priori estimates

We wish to express the fluxes ciui as a linear combination of the gradients of the chemical
potentials. SinceK.c/ has a nontrivial kernel, we need to use a generalized matrix inverse,
the Bott–Duffin inverse. This inverse and its properties are studied in Section 2.1. The
properties allow us to derive in Section 2.2 some a priori estimates for the Maxwell–
Stefan–Cahn–Hilliard system.

2.1. The Bott–Duffin inverse

We wish to invert (2) or, equivalently, (7). We recall definition (11) of the projection
matrices PL.c/ 2 Rn�n on L.c/ and PL?.c/ 2 Rn�n on L?.c/, where L.c/ and L?.c/
are defined in (10). Then (7) is equivalent to the following problem:

Solve D.c/z D �PL.c/R.c/r� in the space z 2 L.c/; (24)

where zi D
p
ciui , recalling that R.c/ D diag.

p
c/.
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Lemma 3 (Solution of (24)). Suppose that D.c/ satisfies Assumption (B1). The Bott–
Duffin inverse

DBD.c/ D PL.c/.D.c/PL.c/C PL?.c//
�1

is well defined, symmetric, and satisfies kerDBD.c/ D L?.c/. Furthermore, for any y 2
L.c/, the linear problem D.c/z D y for z 2 L.c/ has a unique solution given by z D
DBD.c/y .

We refer to [22, Lemma 17] for the proof. The property for the kernel follows from
kerDBD.c/ D kerPL.c/ D L?.c/. Since PL.c/R.c/r� 2 L.c/ (this follows from the
definition of PL.c/ and

Pn
iD1 ci D 1), we infer from Lemma 3 that (24) has the unique

solution z D �DBD.c/PL.c/R.c/r� 2 L.c/ or, componentwise,

ciui D
p
cizi D �

nX
jD1

p
ci .D

BD.c/PL.c//ij
p
cjr�j D �

nX
jD1

p
ciD

BD.c/ij
p
cjr�j

for i D 1; : : : ; n, where the last equality follows from DBD.c/PL.c/ D D
BD.c/; see [22,

(81)]. Then we can formulate equation (1) as

@tci D div
nX

jD1

Bij .c/r�j ; where Bij .c/ D
p
ciD

BD
ij .c/

p
cj , i; j D 1; : : : ; n: (25)

The boundary conditions ciui � � D 0 on @� yield

nX
jD1

Bij .c/r�j � � D 0 on @�, t > 0, i D 1; : : : ; n: (26)

We recall some properties of the Bott–Duffin inverse.

Lemma 4 (Properties ofDBD.c/). Suppose thatD.c/2Rn�n satisfies Assumptions (B1)–
(B4). Then we have the following properties:

(i) The coefficients DBD
ij 2 C

1.Œ0; 1�n/ are bounded for i; j D 1; : : : ; n.

(ii) Let �.c/ be an eigenvalue of .D.c/PL.c/CPL?.c//�1. Then �m � �.c/ � �M ,
where

�m D .1C nkD.c/kF /
�1; �M D max¹1; ��1º;

k � kF is the Frobenius matrix norm, and � > 0 is a lower bound for the eigen-
values of D.c/; see Assumption (B3).

(iii) The functions c 7!
p
ciD

BD
ij .c/=

p
cj are bounded in Œ0; 1�n for i; j D 1; : : : ; n.

A consequence of (ii) are the inequalities

�mjPL.c/zj
2
� z|DBD.c/z � �M jPL.c/zj

2 for z 2 Rn: (27)

Note that the Frobenius norm of D.c/ is bounded uniformly in c 2 Œ0; 1�n, since Dij is
bounded by Assumption (B1).
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Proof of Lemma 4. Points (i) and (ii) are proved in [22, Lemma 11] in an interval Œm; 1�n

for some m > 0. In fact, we can conclude (i)–(ii) in the full interval Œ0; 1�n, since our
Assumptions (B2)–(B3) are stronger than those in [22].

For the proof of (iii), dropping the argument c and observing that RDR�1 D K, we
obtain

RDBDR�1 D RPL.DPL C PL?/
�1R�1 D RPL.R

�1R/.DPL C PL?/
�1R�1

D RPLR
�1.R.DPL C PL?/R

�1/�1

D RPLR
�1.RDR�1RPLR

�1
CRPL?R

�1/�1

D RPLR
�1.KRPLR

�1
CRPL?R

�1/�1:

The determinant of the expression in the brackets equals

det.R.DPL C PL?/R
�1/ D det.DPL C PL?/:

Therefore, denoting by “adj” the adjugate matrix, it follows that

RDBDR�1 D
RPLR

�1 adj.KRPLR�1 CRPL?R�1/
det.DPL C PL?/

: (28)

By Assumption (B3), the eigenvalues of D are not smaller than � > 0. The proof of
[22, Lemma 11] shows that the eigenvalues of DPL C PL? are not smaller than � > 0,
too. This implies that det.DPL C PL?/ � �n�1 > 0. The coefficients

.RPLR
�1/ij D ıij � ci ; .RPL?R

�1/ij D ci

are bounded for c 2 Œ0; 1�n and, by Assumption (B4), the coefficients of K are also
bounded. Therefore, all elements of adj.KRPLR�1 CRPL?R�1/ are bounded. We con-
clude from (28) that the entries of RDBDR�1 are bounded in Œ0; 1�n, i.e., point (iii)
holds.

The most important property is the positive-definiteness ofDBD.c/ on L.c/; see (27).
This property implies the a priori estimates proved in the following subsection.

2.2. A priori estimates

We show an energy inequality for smooth solutions.

Lemma 5 (Free energy inequality). Let c 2 C1.�� .0;1/IRn/ be a positive, bounded,
smooth solution to (1)–(5). Then, for any 0 < � < �m,

d

dt

�
H .c/C

.�M � �/
2

�m�
E.c/

�
C 2�

Z
�

jr
p
cj2 dx C �

Z
�

j�cj2 dx

C
.�M � �/

2

2�

Z
�

jPL.c/R.c/r�j
2 dx � 0;

where the entropy H .c/ and the free energy E.c/ are given by (6) and �m, �M are defined
in Lemma 4.
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Proof. We derive first the energy inequality. To this end, we multiply equation (25) for ci
by �i D .@E=@ci /.c/, integrate over �, integrate by parts (using the boundary conditions
(26)), and take into account the lower bound (27) for DBD.c/:

dE

dt
.c/ D

nX
iD1

Z
�

@E

@ci
.c/@tci dx D �

nX
i;jD1

Z
�

Bij .c/r�i � r�j dx

D �

nX
i;jD1

DBD
ij .c/.

p
cir�i / � .

p
cjr�j / dx

� ��m

Z
�

jPL.c/R.c/r�j
2 dx: (29)

The entropy inequality is derived by multiplying (25) by log ci , integrating over �,
and integrating by parts (using the boundary conditions (26)):

dH

dt
.c/ D

nX
iD1

Z
�

.log ci /@tci dx D �
nX

i;jD1

Z
�

Bij .c/r log ci � r�j dx:

To estimate the right-hand side, we set G D RPLR (omitting the argument c) and M WD
B � �G for � 2 .0; �m/. Then

dH

dt
.c/ D �

nX
i;jD1

Z
�

Mijr log ci � r�j dx � �
nX

i;jD1

Z
�

Gijr log ci � r�j dx

DW I1 C I2: (30)

Before estimating the integrals I1 and I2, we start with some preparation. We use
Lemma 4 (ii) and P |

LPL D PL to obtain

z|Bz D .Rz/|DBDRz � �mjPLRzj
2
D �m.PLRz/

|.PLRz/ D �mz
|Gz for z 2 Rn:

The matrix M is positive semidefinite since for any z 2 Rn,

z|Mz D z|Bz � �z|Gz � .�m � �/z
|Gz D .�m � �/jPLRzj

2: (31)

Furthermore, by Lemma 4 (ii) again, we have the upper bound

z|Mz D z|.B � �G/z � .�M � �/z
|Gz D .�M � �/jPLRzj

2: (32)

We are now in the position to estimate the integral I1, using Young’s inequality for
any � > 0:

I1 �
�

2

nX
i;jD1

Z
�

Mijr log ci � r log cj dx C
1

2�

nX
i;jD1

Z
�

Mijr�i � r�j dx

�
�

2
.�M � �/

Z
�

jPLRr log cj2 dx C
�M � �

2�

Z
�

jPLRr�j
2 dx

D 2�.�M � �/

Z
�

jr
p
cj2 dx C

�M � �

2�

Z
�

jPLRr�j
2 dx;
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where the last step follows from
Pn
jD1.PL/ijRjr log cj D 2r

p
ci , which is a conse-

quence of
Pn
jD1 rcj D 0. For the integral I2, we use the definitions Gij D ciıij � cicj

and �j D log cj ��cj :

I2 D ��

nX
i;jD1

Z
�

.ciıij � cicj /
rci

ci
� r.log cj ��cj / dx

D ��

nX
iD1

Z
�

rci � r.log ci ��ci / dx C �
Z
�

nX
iD1

rci �

nX
jD1

cjr.log cj ��cj / dx

D ��

nX
iD1

Z
�

rci � r.log ci ��ci / dx D ��
Z
�

.4jr
p
cj2 C j�cj2/ dx;

where we integrated by parts in the last step.
Inserting the estimates for I1 and I2 into (30) yields

dH

dt
.c/C 4�

Z
�

jr
p
cj2 dx C �

Z
�

j�cj2 dx

� 2�.�M � �/

Z
�

jr
p
cj2 dx C

�M � �

2�

Z
�

jPLRr�j
2 dx:

We set � D �=.�M � �/ to conclude that

dH

dt
.c/C 2�

Z
�

jr
p
cj2 dx C �

Z
�

j�cj2 dx �
.�M � �/

2

2�

Z
�

jPLRr�j
2 dx: (33)

The right-hand side can be absorbed by the corresponding term in (29). Indeed, adding
the previous inequality to (29) times .�M � �/2=.�m�/ finishes the proof.

Note that the energy inequality (29) or the entropy inequality (33) alone are not suffi-
cient to control the derivatives of c but only a suitable linear combination. We will prove
these inequalities rigorously in the following section for weak solutions; see Lemma 8.

3. Proof of Theorem 1

We prove the existence of global weak solutions to (1)–(4). For this, we construct an
approximate system depending on a parameter ı > 0, similarly to [12], and then pass to
the limit ı ! 0.

3.1. An approximate system

In order to deal with the degeneracy of the matrix B.c/ when a component of c vanishes,
we introduce the cutoff function �ı WRn ! Rn, with

.�ıc/i WD

8̂̂<̂
:̂
ı for ci < ı;

ci for ı � ci � 1 � ı;

1 � ı for ci > 1 � ı;
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and define the approximate matrix

Bı.c/ WD R.�ıc/D
BD.�ıc/R.�ıc/; (34)

recalling that R.�ıc/ D diag.
p
�ıc/. We wish to solve the approximate problem

@tc
ı
i D div

nX
jD1

Bıij .c
ı/r�ıj ; �ıj D

@Eı

@cj
.cı/ in �; t > 0; (35)

cıi .�; 0/ D c
0
i in �;

nX
jD1

Bıij .c
ı/r�ıj � � D 0; rc

ı
i � � D 0 on @�; (36)

where i D 1; : : : ; n,
Pn
iD1 c

0
i D 1, and the approximate energy is defined by

Eı.c/ WD H ı.c/C
1

2

nX
iD1

Z
�

jrci j
2 dx; H ı.c/ WD

nX
iD1

Z
�

hıi .ci / dx;

hıi .r/ D

8̂̂<̂
:̂
r log ı � ı=2C r2=.2ı/ for r < ı;

r log r for ı � r � 1 � ı;

r log.1 � ı/ � .1 � ı/=2C r2=.2.1 � ı// for r > 1 � ı:

(37)

Observe that the solutions cıi may be negative. We will show below that cıi converges to a
nonnegative function as ı ! 0. The approximate entropy density is chosen in such a way
that hıi 2 C

2.R/. Indeed, we obtain

.hıi /
0.ci / D

8̂̂<̂
:̂

log ı C ci=ı for ci < ı;

log ci C 1 for ı < ci < 1 � ı;

log.1 � ı/C ci=.1 � ı/ for ci > 1 � ı;

.hıi /
00.ci / D

1

.�ıc/i
:

With these definitions, we obtain �ıi D .h
ı
i /
0.cıi / ��c

ı
i for i D 1; : : : ; n.

Theorem 6 (Existence for the approximate system). Let Assumptions (A1)–(A2) and
(B1)–(B4) hold and let ı > 0. Then there exists a weak solution .cı ;�ı/ to (35)–(36)
satisfying

Pn
iD1 c

ı
i .t/ D 1 in �, t > 0,

cıi 2 L
1
loc.0;1IH

1.�// \ L2loc.0;1IH
2.�//;

@tci 2 L
2
loc.0;1IH

2.�/0/; �ıi 2 L
2
loc.0;1IH

1.�//; i D 1; : : : ; n;

and the first equation in (35) as well as the initial condition in (36) are satisfied in the
sense of L2loc.0;1IH

2.�/0/.

The proof of this theorem is deferred to Appendix A, since it is technical and involves
well-established techniques. We show some properties of the matrix Bı.c/. We introduce
the matrices PL.�ıc/, PL?.�ıc/ 2 Rn�n with entries

PL.�ıc/ij D ıij �

p
.�ıc/i .�ıc/jPn
kD1.�ıc/k

; PL?.�ıc/ij D

p
.�ıc/i .�ıc/jPn
kD1.�ıc/k

; i; j D 1; : : : ;n:
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Lemma 7 (Properties of Bı.c/). Suppose that D.c/ satisfies Assumptions (B1)–(B4).
Then Lemmas 3 and 4 hold with PL.c/, PL?.c/, and DBD.c/ replaced by PL.�ıc/,
PL?.�ıc/, and DBD.�ıc/. As a consequence, the matrix Bı.c/, defined in (34), satis-
fies

z|Bı.c/z � �mjPL.�ıc/R.�ıc/zj
2 for any z; c 2 Rn; (38)

and the first .n � 1/ � .n � 1/ submatrix zBı.c/ of Bı.c/ is positive definite and satisfies
for �.ı/ D �mı2=n,

Qz| zBı.c/Qz � �.ı/jQzj2 for any Qz 2 Rn�1: (39)

Proof. It can be verified that Assumptions (B1)–(B2) hold forD.�ıc/, so Lemmas 3 and 4
still hold for the matrix D.�ıc/. Inequality (38) is a direct consequence of Lemma 4 (ii).
It remains to prove (39). We define for given Qz 2 Rn�1 the vector z 2 Rn with zi D Qzi for
i D 1; : : : ; n � 1 and zn D 0. Then (38) becomes

Qz| zBı.c/Qz � �mj zPL.�ıc/ zR.�ıc/Qzj
2
D �m. zR.�ıc/Qz/

| zPL.�ıc/. zR.�ıc/Qz/; (40)

where QA denotes the first .n � 1/ � .n � 1/ submatrix of a given matrix A 2 Rn�n. It
follows from the Cauchy–Schwarz inequality that for any � 2 Rn�1,

�| zPL.�ıc/� D

n�1X
iD1

�2i �

� n�1X
jD1

s
.�ıc/jPn
kD1.�ıc/k

�j

�2
� j�j2 �

n�1X
jD1

.�ıc/jPn
kD1.�ıc/k

j�j2

D
.�ıc/nPn
kD1.�ıc/k

j�j2 �
ı

n
j�j2:

Therefore, (40) becomes

Qz| zBı.c/Qz �
�mı

n

n�1X
iD1

j
p
.�ıc/i Qzi j

2
D
�mı

n

n�1X
iD1

.�ıc/i j Qzi j
2
�
�mı

2

n
jQzj2;

which proves (39).

3.2. Uniform estimates

We derive energy and entropy estimates for the solutions to (35), which are uniform in ı.

Lemma 8 (Energy and entropy inequalities). Let cı be a weak solution to (35)–(36),
constructed in Theorem 6. Then the following inequalities hold for any T > 0:

Eı.cı.�; T //C

nX
i;jD1

Z T

0

Z
�

Bıij .c
ı/r�ıi � r�

ı
j dx dt � Eı.c0/; (41)

H ı.cı.�; T //C

nX
i;jD1

Z T

0

Z
�

Bıij .c
ı/r.hıi /

0.cıi / � r�
ı
j dx dt � H ı.c0/; (42)
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H ı.cı.�; T //C
.�M � �/

2

2�m�
Eı.cı.�; T //C �

nX
iD1

Z T

0

Z
�

jrcıi j
2

.�ıcı/i
dx dt

C �

nX
iD1

Z T

0

Z
�

.�cıi /
2 dx dt

C
.�M � �/

2

2�

Z T

0

Z
�

jPL.�ıc
ı/R.�ıc

ı/r�ı j2 dx dt

� H ı.c0/C
.�M � �/

2

2�m�
Eı.c0/; (43)

where � satisfies 0 < � < �m, �m, �M are introduced in Lemma 4, and R.�ıcı/ D
diag.

p
�ıcı/.

Proof. Summing (89) with � D 1 over k D 1; : : : ; N , we find that

zEı. Qc.�/.�; T //C

n�1X
i;jD1

Z T

0

Z
�

zBıij . Qc
.�//rw

.�/
i � rw

.�/
j dx dt

C "

nX
iD1

Z T

0

Z
�

..�w
.�/
i /2 C .w

.�/
i /2/ dx dt � zEı. Qc0/:

We know from (92) and the construction of �ı that .w.�// is bounded in L2.0; T IH 1.�//

and . zBıij . Qc// is bounded in L1.QT / with respect to ."; �/. Therefore, we can pass to the
limit ."; �/! 0 in the previous inequality, and weak lower semicontinuity of the integral
functionals leads to (41).

To show (42), we use .hıi /
0.cıi / � .h

ı
i /
0.cın/ as a test function in the weak formulation

of (82) and sum over i D 1; : : : ; n � 1:

H ı.c.�; T //C

n�1X
i;jD1

Z T

0

Z
�

zBıij . Qc
ı/r..hıi /

0.cıi / � .h
ı
i /
0.cın// � rw

ı
j dx dt � H ı.c0/:

This inequality can be rewritten as (42) using wıi D �
ı
i � �

ı
n. Finally, we derive (43) by

combining (42) and (41) and proceeding as in the proof of Lemma 5.

3.3. Proof of Theorem 1

We perform the limit ı! 0 to finish the proof of Theorem 1. It follows from [13, Lemma
2.1] that for sufficiently small ı > 0, there exists C > 0 (independent of ı) such that for
all r1; : : : ; rn 2 R satisfying

Pn
iD1 ri D 1,

nX
iD1

hıi .ri / � �C: (44)
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Therefore, estimate (43) implies that

nX
iD1

Z
�

jrcıi .�; T /j
2 dx C

nX
iD1

Z T

0

Z
�

jrcıi j
2

.�ıcı/i
dx dt C

nX
iD1

Z T

0

Z
�

.�cıi /
2 dx dt

C

Z T

0

Z
�

jPL.�ıc
ı/R.�ıc

ı/r�ı j2 dx dt � C; (45)

and the constant C > 0 depends on �m, �M , and c0. Mass conservation (or using the test
function �i D 1 in the weak formulation of (35)) shows that

R
�
cıi .�; T / dx D

R
�
cı0 dx

for any T > 0, i.e., kcıkL1.0;T IL1.�// � C . We conclude from the Poincaré–Wirtinger
inequality that

kcıkL1.0;T IH1.�// C kc
ı
kL2.0;T IH2.�// � C: (46)

Next, we estimate @tcıi . Lemma 7 implies that the entries of

.D.�ıc
ı/PL.�ıc

ı/C PL?.�ıc
ı//�1

are uniformly bounded. Thus, by the definition of DBD.�ıc
ı/ and (27),Z T

0

Z
�

ˇ̌̌̌ nX
jD1

Bıij .c
ı/r�ıj

ˇ̌̌̌2
dx dt � �M

Z T

0

Z
�

jPL.�ıc
ı/R.�ıc

ı/r�ı j2 dx dt;

and the right-hand side is bounded by (45). Setting J ıi WD
Pn
jD1B

ı
ij .c

ı/r�ıj , this means
that .J ıi / is bounded in L2.QT /. Therefore, there exists a subsequence that is not rela-
beled such that, as ı ! 0,

J ıi * Ji weakly in L2.QT /:

This implies that
k@tc

ı
i kL2.0;T IH1.�/0/ � C: (47)

We conclude from (46) and (47), using the Aubin–Lions lemma, that, for a subsequence
(if necessary),

cıi ! ci strongly in L2.0; T IH 1.�//;

cıi
?
* ci weakly-? in L1.0; T IH 1.�//;

cıi * ci weakly in L2.0; T IH 2.�//;

@tc
ı
i * @tci weakly in L2.0; T IH 1.�/0/:

(48)

Performing the limit ı ! 0 in (35), we see that @tci D div Ji holds in the sense of
L2.0; T IH 1.�/0/.
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We prove that ci � 0 in QT , i D 1; : : : ; n, following [13]. By definition (37) and the
lower bound (44), we have for 0 < ı < 1,

C �

Z
�

hıi .c
ı
i / dx

� �C C

Z
¹cıi <ıº

�
cıi log ı �

ı

2
C
.cıi /

2

2ı

�
dx

� �C C

Z
¹cıi <0º

cıi log ı dx C
Z
¹0<cıi <ıº

cıi log ı dx � Cı

� �C C log ı
Z
¹cıi <0º

cıi dx C Cı log ı � Cı:

Hence, we obtain Z
�

max¹0;�cıi º dx D
Z
¹cıi <0º

jcıi j dx �
C

jlog ıj
:

The limit ı ! 0 leads to Z
�

max¹0;�ciº dx � 0;

implying that ci � 0 in QT . The limit ı ! 0 in
Pn
iD1 c

ı
i D 1 gives

Pn
iD1 ci D 1, hence

ci � 1 holds in QT .
Next, we identify Ji by showing that Ji D

Pn
jD1Bij .c/r.log cj ��cj / in the sense

of distributions. Inserting the definition of �ıi and choosing a test function �i 2 L1.0; T I
W 2;1.�// satisfying r�i � � D 0 on @�, we find thatZ T

0

Z
�

J ıi � r�i dx dt

D

nX
jD1

Z T

0

Z
�

Bıij .c
ı/r�i � r..h

ı
j /
0.cıj / ��c

ı
j / dx dt

D

nX
jD1

Z T

0

Z
�

Bıij .c
ı/r�i � r.h

ı
j /
0.cıj / dx dt

C

nX
jD1

Z T

0

Z
�

�cıj div.Bıij .c
ı/r�i / dx dt

DW I5 C I6: (49)

By definition (34) of Bıij .c
ı/, we have

I5 D

nX
jD1

Z T

0

Z
�

q
.�ıcı/iD

BD
ij .�ıc

ı/r�i �
rcıjp
.�ıcı/j

dx dt:
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Lemma 4 shows that
p
ciD

BD
ij .c/=

p
cj is bounded in Œ0; 1�n and in particular when ck D 0

for some index k. The strong convergence cı ! c implies that �ıcı ! c in Lq.0; T I
Lq.�// for any q <1 such that

I5 !

nX
jD1

Z T

0

Z
�

p
ciD

BD
ij .c/

1
p
cj
r�i � rcj dx dt

D

nX
jD1

Z T

0

Z
�

Bij .c/r�i � r log cj dx dt:

The limit in I6 is more involved. We decompose I6 D I61 C I62, where

I61 D

nX
jD1

Z T

0

Z
�

�cıj B
ı
ij .c

ı/��i dx dt;

I62 D

nX
jD1

Z T

0

Z
�

�cıj rB
ı
ij .c

ı/ � r�i dx dt:

We deduce from the strong convergence of cı and the weak convergence of �cıj that

I61 !

nX
jD1

Z T

0

Z
�

�cjBij .c/��i dx dt:

To show the convergence of I62, we considerZ T

0

Z
�

jr.Bıij .c
ı/ � Bij .c//j

2 dx dt

D

Z T

0

Z
�

ˇ̌̌̌ nX
kD1

°�@Bıij
@ck

.cı/ �
@Bij

@ck
.c/
�
rck C

@Bıij

@ck
.cı/r.cık � ck/

±ˇ̌̌̌2
dx dt:

By Lemma 4 (i), @DBD
ij =@ck exists and is bounded in Œ0; 1�n. Then, by the definition of

Bij .c/, we have .@Bıij =@ck/.c
ı/! .@Bij =@ck/.c/ strongly in L2.QT /. It follows from

rcı
k
!rck strongly inL2.QT / that the right-hand side of the previous identity converges

to zero. We infer that

I62 !

nX
jD1

Z T

0

Z
�

�cjrBij .c/ � r�i dx dt:

Consequently, we have

I6 !

nX
jD1

Z T

0

Z
�

�cj .Bij .c/��i CrBij .c/ � r�i / dx dt

D

nX
jD1

Z T

0

Z
�

�cj div.Bij .c/r�i / dx dt:



X. Huo, A. Jüngel, and A. E. Tzavaras 816

We have shown that (49) becomes in the limit ı ! 0Z T

0

Z
�

Ji � r� dx dt

D

nX
jD1

Z T

0

Z
�

�
Bij .c/r�i � r log cj C�cj div.Bij .c/r�i /

�
dx dt

and hence, in the sense of distributions,

Ji D

nX
jD1

Bij .c/r.log cj ��cj /; i D 1; : : : ; n:

Step 2: Energy and entropy inequalities. The limit cıi * ci weakly-? in L1.0; T I

H 1.�// (see (48)) and the weak lower semicontinuity of the energy and entropy show
that

H .c.�; T // � lim inf
ı!0

H ı.cı.�; T //;

E.c.�; T // � lim inf
ı!0

Eı.cı.�; T //:

Moreover, because of the weak convergence of �cıi in L2.QT / from (48),

nX
iD1

Z T

0

Z
�

.�ci /
2 dx dt � lim inf

ı!0

nX
iD1

Z T

0

Z
�

.�cıi /
2 dx dt:

The combined energy–entropy inequality (43) and the property jr.�ıcı/i j � jrcıi j giverq.�ıcı/iL2.QT / D 1

2

 rcıip
.�ıcı/i


L2.QT /

� C;

which, together with .�ıcı/i ! ci strongly in L2.QT /, leads to

r

q
.�ıcı/i * r

p
ci weakly in L2.QT /: (50)

We conclude that

kr
p
cikL2.QT / � lim inf

ı!0

rq.�ıcı/iL2.QT /:
Finally, by (43), we observe that PL.�ıcı/R.�ıcı/r�ı is uniformly bounded in

L2.QT / such that, up to a subsequence,

PL.�ıc
ı/R.�ıc

ı/r�ı * � weakly in L2.QT /:

Hence, again by weak lower semicontinuity of the norm,

k�kL2.0;T IL2.�// � lim inf
ı!0

kPL.�ıc
ı/R.�ıc

ı/r�ıkL2.0;T IL2.�//:
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It remains to take the limit inferior ı ! 0 in (43) to conclude that the combined energy–
entropy inequality (13) holds.

Lemma 9 (Identification of �). Let the regularity condition (16) hold and let � be the
weak L2.QT / limit of PL.�ıcı/R.�ıcı/r�ı . Then � D PL.c/R.c/r�.

Proof. Let �i 2 C10 .QT / be a test function. Then, inserting the definition �ıj D

.hıj /
0.cıj / ��c

ı
j and integrating by parts,

nX
jD1

Z T

0

Z
�

�
PL.�ıc

ı/ij

q
.�ıcı/jr�

ı
j � PL.c/ij

p
cjr�j

�
� r�i dx dt

D

nX
jD1

Z T

0

Z
�

�
PL.�ıc

ı/ij

q
.�ıcı/jr.h

ı
j /
0.cıj / � PL.c/ij

p
cjr log cj

�
� r�i dx dt

C

nX
jD1

Z T

0

Z
�

div
®�
PL.�ıc

ı/ij

q
.�ıcı/j � PL.c/ij

p
cj
�
r�i

¯
�cıj dx dt

C

nX
jD1

Z T

0

Z
�

div.PL.c/ij
p
cjr�i /�.c

ı
j � cj / dx dt: (51)

The bracket in the first integral on the right-hand side can be written as

PL.�ıc
ı/ij

q
.�ıcı/jr.h

ı
j /
0.cıj / � PL.c/ij

p
cjr log cj

D PL.�ıc
ı/ij

rcıjq
.�ıcı/j

� PL.c/ij
rcj
p
cj
:

Thanks to the convergences (48) and (50), we can pass to the limit ı ! 0 in (51):

lim
ı!0

nX
jD1

Z T

0

Z
�

�
PL.�ıc

ı/ij

q
.�ıcı/jr�

ı
j � PL.c/ij

p
cjr�j

�
� r�i dx dt D 0:

By the uniqueness of the limit, the claim � D PL.c/R.c/r� follows.

4. Proof of Theorem 2

In this section, we prove the weak–strong uniqueness property. First, we compute a com-
bined relative energy–entropy inequality. Then we use this inequality to derive a stability
estimate, which leads to the desired weak–strong uniqueness result.
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4.1. Evolution of the relative energy and entropy

We start by calculating the time evolution of the relative entropy (14) and the relative
energy (15) for smooth solutions c and Nc. Inserting (25) and integrating by parts leads to

dH

dt
.cj Nc/ D

nX
iD1

Z
�

�
log

ci

Nci
@tci �

�ci
Nci
� 1

�
@t Nci

�
dx

D �

nX
i;jD1

Z
�

Bij .c/r log
ci

Nci
� r�j dx

C

nX
i;jD1

Z
�

Bij . Nc/r
�ci
Nci

�
� r N�j dx

D �

nX
i;jD1

Z
�

Bij .c/r log
ci

Nci
� r.�j � N�j / dx

�

nX
i;jD1

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r log

ci

Nci
� r N�j dx:

Next, we compute

dE

dt
.cj Nc/ D

nX
iD1

Z
�

�
log

ci

Nci
@tci �

�ci
Nci
� 1

�
@t Nci

�
dx

C

nX
iD1

Z
�

r.ci � Nci / � r@t .ci � Nci / dx

D

nX
iD1

°�
log

ci

Nci
��.ci � Nci /

�
@tci �

�ci
Nci
� 1 ��.ci � Nci /

�
@t Nci

±
dx

D �

nX
i;jD1

Z
�

Bij .c/r.�i � N�i / � r�j dx

C

nX
i;jD1

Z
�

Bij . Nc/r
�ci
Nci
� 1 ��.ci � Nci /

�
� r N�j dx: (52)

We add and subtract the expression
Pn
iD1

R
�
Bij .c/r.�i � N�i / � r N�j dx:

dE

dt
.cj Nc/ D �

nX
iD1

Z
�

Bij .c/r.�i � N�i / � r.�j � N�j / dx

C

nX
i;jD1

Z
�

°
Bij . Nc/

�ci
Nci
r log

ci

Nci
� r�.ci � Nci /

�
� Bij .c/r.�i � N�i /

±
� r N�j dx
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D �

nX
i;jD1

Z
�

Bij .c/r.�i � N�i / � r.�j � N�j / dx

�

nX
i;jD1

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r.�i � N�i / � r N�j dx

C

nX
i;jD1

Z
�

Bij . Nc/
�ci
Nci
� 1

�
r�.ci � Nci / � r N�j dx: (53)

We want to reformulate the expression Nc�1i .ci � Nci /r�.ci � Nci / in the last integral. For
this, we observe that for any smooth function f , it holds that

f r�f D r.f�f / � rf�f

D r.div.f rf / � jrf j2/ � div.rf ˝rf /C
1

2
rjrf j2

D r div.f rf / �
1

2
rjrf j2 � div.rf ˝rf /:

Therefore,

.ci � Nci /r�.ci � Nci / D r div..ci � Nci /r.ci � Nci // �
1

2
rjr.ci � Nci /j

2

� div.r.ci � Nci /˝r.ci � Nci //:

Inserting this expression into the last term of (53) and integrating by parts, we find that

dE

dt
.cj Nc/ D �

nX
iD1

Z
�

Bij .c/r.�i � N�i / � r.�j � N�j / dx

�

nX
i;jD1

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r.�i � N�i / � r N�j dx

C

nX
i;jD1

Z
�

.ci � Nci /r.ci � Nci / � r div
� 1
Nci
Bij . Nc/r N�j

�
dx

C
1

2

nX
i;jD1

Z
�

jr.ci � Nci /j
2 div

� 1
Nci
Bij . Nc/r N�j

�
dx

C

nX
i;jD1

Z
�

r.ci � Nci /˝r.ci � Nci / W r ˝
� 1
Nci
Bij . Nc/r N�j

�
dx;

where r ˝ . Nc�1i Bij . Nc/r N�j / is a matrix with entries @xk . Nc
�1
i Bij . Nc/@x` N�j / for k; ` D

1; : : : ; n and “:” denotes the Frobenius matrix product.
The following lemma states the rigorous result. Since we suppose that the weak solu-

tion satisfies energy and entropy inequalities instead of equalities, we obtain also inequal-
ities for the relative energy and entropy.
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Lemma 10 (Relative energy and entropy). Let c and Nc be a weak and strong solution
to (1)–(5) with initial data c0 and Nc0, respectively. Assume that c satisfies the regularity
(16) and the energy and entropy inequalities (17)–(18). Furthermore, we suppose that Nc
is strictly positive and satisfies the regularity

N�i D log Nci �� Nci 2 L2loc.0;1IH
2.�//;

Nci 2 L
1
loc.0;1IW

3;1.�//; i D 1; : : : ; n:

Then the following relative energy and entropy inequalities hold for any T > 0:

E.c.T /j Nc.T //C

nX
iD1

Z T

0

Z
�

Bij .c/r.�i � N�i / � r.�j � N�j / dx dt

� E.c0j Nc0/ �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r.�i � N�i / � r N�j dx dt

C

nX
i;jD1

Z T

0

Z
�

.ci � Nci /r.ci � Nci / � r div
� 1
Nci
Bij . Nc/r N�j

�
dx dt

C
1

2

nX
i;jD1

Z T

0

Z
�

jr.ci � Nci /j
2 div

� 1
Nci
Bij . Nc/r N�j

�
dx dt

C

nX
i;jD1

Z T

0

Z
�

r.ci � Nci /˝r.ci � Nci / W r ˝
� 1
Nci
Bij . Nc/r N�j

�
dx dt; (54)

H .c.T /j Nc.T // � H .c0j Nc0/

�

nX
i;jD1

Z T

0

Z
�

Bij .c/r log
ci

Nci
� r.�j � N�j / dx dt

�

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r log

ci

Nci
� r N�j dx dt: (55)

The integrals in (54) and (55) are well defined because of the regularity properties for
weak solutions c and the regularity assumptions on the strong solution Nc. Indeed, we have
Bij .c/r�j 2 L

2.QT / (see (22)), Bij .c/r log ci D 2DBD
ij .c/

p
cjr
p
ci 2 L

2.QT / (see
(13)), and using definition (8), assumption (16), and Lemma 4 (i), we have

Bij .c/r�i � r�j

D DBD
ij .c/.2r

p
ci �
p
cir�ci / � .2r

p
cj �
p
cjr�cj / 2 L

1.QT /:
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Proof of Lemma 10. The relative energy and entropy inequalities are proved from the
weak formulation of (1) by choosing suitable test functions. For this, we observe that,
by (12), ci � Nci satisfies

0 D

Z 1
0

Z
�

.ci � Nci /@t�i dx dt

C

Z
�

.c0i .x/ � Nc
0
i .x//�i .x; 0/ dx

�

nX
jD1

Z 1
0

Z
�

.Bij .c/r log cj � Bij . Nc/r log Ncj / � r�i dx dt

�

nX
jD1

Z 1
0

Z
�

�
div.Bij .c/r�i /�cj � div.Bij . Nc/r�i /� Ncj

�
dx dt: (56)

By density, this formulation also holds for �i D N�i�".t/, where

�".t/ D

8̂̂̂<̂
ˆ̂:
1 for 0 � t � T ;

.T � t /

"
C 1 for T < t < T C ";

0 for t � T C ":

Then, passing to the limit "! 0 and summing over i D 1; : : : ; n, we arrive at

nX
iD1

Z
�

.ci � Nci / N�i dx

ˇ̌̌̌T
0

D

nX
iD1

Z T

0

h@t N�i ; ci � Nci i dt

�

nX
i;jD1

Z T

0

Z
�

�
Bij .c/r log cj � r N�i C div.Bij .c/r N�i /�cj

�
dx dt

C

nX
i;jD1

Z T

0

Z
�

�
Bij . Nc/r log Ncj � r N�i C div.Bij . Nc/r N�i /� Ncj

�
dx dt

DW I7 C I8 C I9;

where h�; �i is the duality bracket between H 1.�/0 and H 1.�/. This product is well
defined, since it holds in the sense of H 1.�/0 that

@t N�i D @t .log Nci �� Nci / D
nX

jD1

1

Nci
div.Bij . Nc/r N�j / �

nX
jD1

� div.Bij . Nc/r N�j /:
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Inserting this expression into I7, the dual product can be written as an integral:

I7 D �

nX
i;jD1

Z T

0

Z
�

�
Bij . Nc/r

�ci
Nci
� 1

�
� r N�j C�.ci � Nci / div.Bij . Nc/r N�j /

�
dx dt

D �

nX
i;jD1

Z T

0

Z
�

Bij . Nc/r
�ci
Nci
� 1

�
� r N�j dx dt

�

nX
i;jD1

Z T

0

Z
�

Nci�.ci � Nci / div
� 1
Nci
Bij . Nc/r N�j

�
dx dt

�

nX
i;jD1

Z T

0

Z
�

1

Nci
Bij . Nc/�.ci � Nci /r Nci � r N�j dx dt:

Replacing �cj by log cj � �j in I8 and integrating by parts in the term involving the
divergence, some terms cancel and we find that

I8 D �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/r N�i � r log cj C div.Bij .c/r N�i /.log cj � �j /

�
dx dt

D �

nX
i;jD1

Z T

0

Z
�

Bij .c/r N�i � r�j dx dt:

Assumption (16) guarantees that the flux has the regularity

nX
jD1

Bij .c/r�j 2 L
2.QT /

such that the last integral is defined. The remaining term I9 is reformulated in a similar
way, leading to

I9 D

nX
i;jD1

Z T

0

Z
�

Bij . Nc/r N�i � r N�j dx dt:

It follows from the definition of the relative energy, inequality (17) for E.c/, and identity
(19) for E. Nc/ that

E.c.T /j Nc.T // � E.c0j Nc0/

D
�
E.c.T // � E.c0/

�
�
�
E. Nc.T // � E. Nc0/

�
�

Z
�

N� � .c � Nc/ dx

ˇ̌̌̌T
0

� �

nX
i;jD1

Z T

0

Z
�

.Bij .c/r�i � r�j � Bij . Nc/r N�i � r N�j / dx dt

� .I7 C I8 C I9/
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D �

nX
i;jD1

Z T

0

Z
�

Bij .c/r.�i � N�i / � r�j dx dt

�

nX
i;jD1

Z T

0

Z
�

Bij . Nc/r
�ci
Nci
� 1

�
� r N�j dx dt

�

nX
i;jD1

Z T

0

Z
�

Nci�.ci � Nci / div
� 1
Nci
Bij . Nc/r N�j

�
dx dt

�

nX
i;jD1

Z T

0

Z
�

1

Nci
Bij . Nc/�.ci � Nci /r Nci � r N�j dx dt:

This inequality is just a reformulation of (52), which leads, by proceeding as in (53) and
the subsequent calculations, to (54).

Next, we verify the relative entropy inequality. Taking the test function �i D

.log Nci /�".t/ in (56), passing to the limit "! 0, and summing over i D 1; : : : ; n leads to
nX
iD1

Z
�

.ci � Nci / log Nci dx
ˇ̌̌̌T
0

D

nX
iD1

Z T

0

Z
�

.ci � Nci /@t .log Nci / dx dt

�

nX
jD1

Z 1
0

Z
�

.Bij .c/r log cj � Bij . Nc/r log Ncj / � r log Nci dx dt

�

nX
jD1

Z 1
0

Z
�

�
div.Bij .c/r log Nci /�cj � div.Bij . Nc/r log Nci /� Ncj

�
dx dt:

This yields, together with (18), (20), an integration by parts, and regularity assumption
(16), that

H .c.T /j Nc.T // �H .c0j Nc0/

D
�
H .c.T // �H .c0/

�
�
�
H . Nc.T // �H . Nc0/

�
�

Z
�

.c � Nc/ � log Nc dx
ˇ̌̌̌T
0

� �

nX
i;jD1

Z T

0

Z
�

.Bij .c/r log ci � r�j � Bij . Nc/r log Nci � r N�j / dx dt

�

nX
iD1

Z T

0

Z
�

.ci � Nci /@t .log Nci / dx dt

C

nX
i;jD1

Z 1
0

Z
�

.Bij .c/r�j � r log Nci � Bij . Nc/r N�j � r log Nci / dx dt

D �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/r�j � r

�
log

ci

Nci

�
� r

�ci
Nci
� 1

�
� Bij . Nc/r N�j

�
dx dt;

which readily gives (55).
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4.2. Proof of the weak–strong uniqueness property

We proceed with the proof of Theorem 2. First, we estimate the relative entropy inequality
(55) and then the relative energy inequality (54). A combination of both estimates shows
(21), which proves the weak–strong uniqueness property.

Step 1: Estimating the relative entropy. As in the proof of Lemma 5, we decompose the
matrix B.c/ by setting M.c/ WD B.c/ � �G.c/ such that B.c/ DM.c/C �G.c/, where
G.c/ D R.c/PL.c/R.c/ has the entries Gij .c/ D ciıij � cicj and 0 < � < �m. In terms
of these matrices, we can formulate (55) as

H .c.T /j Nc.T // �H .c0j Nc0/

� �

nX
i;jD1

Z T

0

Z
�

Mij .c/r log
ci

Nci
� r.�j � N�j / dx dt

� �

nX
i;jD1

Z T

0

Z
�

Gij .c/r log
ci

Nci
� r.�j � N�j / dx dt

�

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r log

ci

Nci
� r N�j dx dt

DW I10 C I11 C I12: (57)

Step 1a: Estimate of I10. We know from (31) and (32) that M.c/ is positive semidefinite
and satisfies

z|M.c/z � .�M � �/jPL.c/R.c/zj
2

for all z 2 Rn. Therefore, using Young’s inequality with � > 0,

I10 �
�

4

nX
i;jD1

Z T

0

Z
�

Mij .c/r log
ci

Nci
� r log

cj

Ncj
dx dt

C
1

�

nX
i;jD1

Z T

0

Z
�

Mij .c/r.�i � N�i / � r.�j � N�j / dx dt

�
�

4
.�M � �/

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

ci

Nci

ˇ̌̌̌2
dx dt

C
1

�
.�M � �/

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt: (58)

Step 1b: Estimate of I11. In the term I11, we replace �j � N�j by log.cj = Ncj / � �.cj �
Ncj / and compute both terms in the difference separately. Now, the definition Gij .c/ D
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p
ciPL.c/ij

p
cj and the property PL.c/2 D PL.c/ lead to

nX
i;jD1

Z T

0

Z
�

Gij .c/r log
ci

Nci
� r log

cj

Ncj
dx dt

D

nX
i;jD1

Z T

0

Z
�

p
ciPL.c/ij

p
cjr log

ci

Nci
� r log

cj

Ncj
dx dt

D

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt: (59)

Furthermore, we use Gij .c/ D ciıij � cicj and integration by parts to find that

nX
i;jD1

Z T

0

Z
�

Gij .c/r log
ci

Nci
� r�.cj � Ncj / dx dt

D �

nX
i;jD1

Z T

0

Z
�

div
�
.ciıij � cicj /r log

ci

Nci

�
�.cj � Ncj / dx dt

D �

nX
iD1

Z T

0

Z
�

div.rci � cir log Nci /�.ci � Nci / dx dt

C

nX
i;jD1

Z T

0

Z
�

div.cjrci � cicjr log Nci /�.cj � Ncj / dx dt

D �

nX
i;jD1

Z T

0

Z
�

div.rci � cir log Nci /�.ci � Nci / dx dt

�

nX
i;jD1

Z T

0

Z
�

div.cicjr log Nci /�.cj � Ncj / dx dt;

where we used
Pn
iD1 cjrci D 0 in the last step. We mention that

Pn
jD1 Gij .c/r�cj 2

L2.QT / because of (23), so the first integral in the previous computation is well defined.
It follows from �ci�.ci � Nci / D .�.ci � Nci //

2 C� Nci�.ci � Nci / that
nX

i;jD1

Z T

0

Z
�

Gij .c/r log
ci

Nci
� r�.ci � Nci / dx dt

D �

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

�

nX
iD1

Z T

0

Z
�

div.r Nci � cir log Nci /�.ci � Nci / dx dt

�

nX
i;jD1

Z T

0

Z
�

div.cicjr log Nci /�.cj � Ncj / dx dt: (60)
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We multiply (59) by �� and (60) by � and sum both expressions to find that

I11 D ��

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

� �

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

� �

nX
iD1

Z T

0

Z
�

div.r Nci � cir log Nci /�.ci � Nci / dx dt

� �

nX
i;jD1

Z T

0

Z
�

div.cicjr log Nci /�.cj � Ncj / dx dt: (61)

We apply Young’s inequality to the last two terms. The third term in (61) becomes

� �

nX
iD1

Z T

0

Z
�

div.r Nci � cir log Nci /�.ci � Nci / dx dt

�
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �

nX
iD1

Z T

0

Z
�

jdiv..ci � Nci /r log Nci /j2 dx dt

�
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �

nX
iD1

kr log NcikL1.QT /

Z T

0

Z
�

jr.ci � Nci /j
2 dx dt

C �

nX
iD1

k� log NcikL1.QT /

Z T

0

Z
�

.ci � Nci /
2 dx dt

�
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt;
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where the constant C > 0 depends on the L1 norms of r log Nc and � log Nc. Next, for the
fourth term in (61),

� �

nX
i;jD1

Z T

0

Z
�

div.cicjr log Nci /�.cj � Ncj / dx dt

�
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �

nX
jD1

Z T

0

Z
�

ˇ̌̌̌ nX
iD1

div.cicjr log Nci /
ˇ̌̌̌2
dx dt:

Taking into account that

r

nX
iD1

Ncir log Nci D
nX
iD1

r Nci D 0;

we estimate the integrand of the last term:

nX
iD1

div.cicjr log Nci / D
nX
iD1

div..ci � Nci /cjr log Nci /

D

nX
iD1

cj div..ci � Nci /r log Nci /C
nX
iD1

.ci � Nci /r log Nci � rcj

D

nX
iD1

cj div..ci � Nci /r log Nci /C
nX
iD1

cir log Nci � r.cj � Ncj /

C

nX
iD1

.ci � Nci /r log Nci � r Ncj

� C

nX
iD1

.jci � Nci j C jr.ci � Nci /j/;

where C > 0 depends on the L1 norms of r log Nc and � log Nc. This yields

� �

nX
i;jD1

Z T

0

Z
�

div.cicjr log Nci /�.cj � Ncj / dx dt

�
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:
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Using these estimates in (61), we arrive at

I11 � ��

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

�
�

2

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (62)

Step 1c: Estimate of I12. By definition of Bij .c/ and Young’s inequality with � 0 > 0,

I12 D �

nX
i;jD1

Z T

0

Z
�

p
ci

�
DBD
ij .c/

p
cj �

r
ci

Nci
DBD
ij . Nc/

p
Ncj

�
r log

ci

Nci
� r N�j dx dt

�
� 0

4

nX
iD1

Z T

0

Z
�

ci

ˇ̌̌
r log

ci

Nci

ˇ̌̌2
dx dt

C
n

� 0

nX
i;jD1

Z T

0

Z
�

�
DBD
ij .c/

p
cj �

r
ci

Nci
DBD
ij . Nc/

p
Ncj

�2
jr N�j j

2 dx dt:

The bracket of the second term can be estimated according toˇ̌̌
DBD
ij .c/

p
cj �

r
ci

Nci
DBD
ij . Nc/

p
Ncj

ˇ̌̌
D

ˇ̌̌
DBD
ij .c/

p
cj �D

BD
ij . Nc/

p
Ncj �

p
ci �
p
Nci

p
Nci

DBD
ij . Nc/

p
Ncj

ˇ̌̌
�

C
p
m

nX
iD1

.jci � Nci j C j
p
ci �

p
Nci j/

� C.m/

nX
iD1

jci � Nci j; (63)

using the assumption Nci � m > 0 and the boundedness of DBD
ij (see Lemma 4 (i)). It

follows that

I12 �
� 0

4

nX
iD1

Z T

0

Z
�

ci

ˇ̌̌
r log

ci

Nci

ˇ̌̌2
dx dt

C C.m; � 0/

nX
iD1

Z T

0

Z
�

.ci � Nci /
2 dx dt: (64)
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Step 1d: Combining the estimates. We deduce from (57), after inserting estimates (58),
(62), and (64) for I10, I11, and I12, respectively, that

H .c.T /j Nc.T // � H .c0j Nc0/

C

��
4
.�M � �/ � �

� nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
�M � �

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

�
�

2

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C �C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt

C
� 0

4

nX
iD1

Z T

0

Z
�

ci

ˇ̌̌
r log

ci

Nci

ˇ̌̌2
dx dt C C.m; � 0/

nX
iD1

Z T

0

Z
�

.ci � Nci /
2 dx dt: (65)

The last but one term on the right-hand side still needs to be estimated. To this end, we
decompose I D PL.c/C PL?.c/:

nX
iD1

ci

ˇ̌̌
r log

ci

Nci

ˇ̌̌2
D

nX
iD1

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
C

nX
iD1

ˇ̌̌̌ nX
jD1

PL?.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
:

The first term on the right-hand side can be absorbed for sufficiently small � 0 > 0 by
the second term on the left-hand side of (65). For the other term, we use the definition
PL?.c/ij D

p
cicj and

Pn
jD1 rcj D

Pn
jD1 r Ncj D 0:

nX
jD1

PL?.c/ij
p
cjr log

cj

Ncj
D
p
ci

nX
jD1

cjr log
cj

Ncj
D
p
ci

nX
jD1

.cj � Ncj /r log Ncj :

This gives

nX
iD1

Z T

0

Z
�

ci

ˇ̌̌
r log

ci

Nci

ˇ̌̌2
dx dt

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C

nX
jD1

kr log Ncj kL1.QT /

Z T

0

Z
�

.ci � Nci /
2 dx dt: (66)
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Hence, choosing � D �=.�M � �/ and � 0 D �, we conclude from (65) that

H .c.T /j Nc.T //C
�

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
�

2

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

� H .c0j Nc0/

C
.�M � �/

2

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (67)

We show in the next step that the second term on the right-hand side can be estimated by
the relative energy inequality.

Step 2: Estimating the relative energy. We start from the relative energy inequality (54).
Observing that due to Lemma 4 (ii),

nX
i;jD1

Bij .c/r.�i � N�i / � r.�j � N�j /

D

nX
i;jD1

DBD
ij .c/.

p
cir.�i � N�i // � .

p
cjr.�j � N�j //

� �m

nX
iD1

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
;

inequality (54) becomes

E.c.T /j Nc.T //C �m

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

� E.c0j Nc0/C I13 C I14 C I15 C I16; (68)

where

I13 D �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r.�i � N�i / � r N�j dx dt;

I14 D

nX
i;jD1

Z T

0

Z
�

.ci � Nci /r.ci � Nci / � r div
� 1
Nci
Bij . Nc/r N�j

�
dx dt;
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I15 D
1

2

nX
i;jD1

Z T

0

Z
�

jr.ci � Nci /j
2 div

� 1
Nci
Bij . Nc/r N�j

�
dx dt;

I16 D

nX
i;jD1

Z T

0

Z
�

r.ci � Nci /˝r.ci � Nci / W r
� 1
Nci
Bij . Nc/r N�j

�
dx dt:

The terms I14, I15, and I16 can be estimated directly by using the regularity assumption
r div..1= Nci /Bij . Nc/r N�j / 2 L1.QT /:

I14 C I15 C I16 � C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (69)

The estimate for I13 is more involved. First, we use the definition of B.c/ and decom-
pose I D PL.c/C PL?.c/. Then

I13 D

nX
i;jD1

Z T

0

Z
�

p
ciEij .c; Nc/r.�i � N�i / � r N�j dx dt DW I131 C I132;

where

Eij .c; Nc/ D D
BD
ij .c/

p
cj �

r
ci

Nci
DBD
ij . Nc/

p
Ncj ;

I131 D

nX
i;j;k;`D1

Z T

0

Z
�

PL.c/i`E j̀ .c; Nc/PL.c/ik
p
ckr.�k � N�k/ � r N�j dx dt;

I132 D

nX
i;j;k;`D1

Z T

0

Z
�

PL?.c/i`E j̀ .c; Nc/PL?.c/ik
p
ckr.�k � N�k/ � r N�j dx dt:

For I131, it is sufficient to apply Young’s inequality and to use estimate (63) for
Eij .c; Nc/:

I131 �
�m

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C
n

2�m

nX
i;jD1

Z T

0

Z
�

jEij .c; Nc/j
2
jr N�j j

2 dx dt

�
�m

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C C.m/

nX
iD1

Z T

0

Z
�

.ci � Nci /
2 dx dt; (70)

where C.m/ > 0 depends on m, n, �m, and the L1.QT / norm of r N�.
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For I132, we observe that the property ranDBD.c/ D L.c/, which follows from Lem-
ma 3, implies that PL?.c/DBD.c/z D 0 for all z 2 Rn. Hence,

nX
`D1

PL?.c/i`E j̀ .c; Nc/ D �

nX
`D1

PL?.c/i`

r
c`

Nc`
DBD

j̀ . Nc/
p
Ncj :

We infer from the definitionsPL?.c/ik D
p
cick and�k � N�k D log.ck= Nck/��.ck � Nck/

that

I132 D �

nX
i;j;k;`D1

Z T

0

Z
�

PL?.c/ik
p
ckPL?.c/i`

r
c`

Nc`
DBD

j̀ . Nc/
p
Ncjr.�k � N�k/

� r N�j dx dt

D �

nX
j;k;`D1

Z T

0

Z
�

nX
iD1

cick
c`
p
Nc`
DBD

j̀ . Nc/
p
Ncjr.�k � N�k/ � r N�j dx dt

D �

nX
j;k;`D1

Z T

0

Z
�

ck
c` � Nc`
p
Nc`

DBD
j̀ . Nc/

p
Ncjr log

ck

Nck
� r N�j dx dt

�

nX
j;k;`D1

Z T

0

Z
�

div
�
ck
c` � Nc`
p
Nc`

DBD
j̀ . Nc/

p
Ncjr N�j

�
�.ck � Nck/ dx dt

DW J1 C J2; (71)

where we added the expression�
Pn
`D1

p
Nc`D

BD
j̀
. Nc/D 0, which follows from kerDBD. Nc/

D L?. Nc/ D span¹
p
Ncº (see Lemma 4) and the symmetry of DBD. Nc/ (see Lemma 3), and

we integrated by parts in the last integral.
To estimate J1, we use Young’s inequality with � > 0, Lemma 4 (iii), and (66):

J1 �
�

4

nX
kD1

Z T

0

Z
�

ck

ˇ̌̌
r log

ck

Nck

ˇ̌̌2
dx dt

C
n

�

nX
j;k;`D1

Z T

0

Z
�

.c` � Nc`/
2 ck

Nc`
DBD

j̀ . Nc/
2
Ncj jr N�j j

2 dx dt

�
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C C�

nX
iD1

Z T

0

Z
�

.ci � Nci /
2 dx dt

C
C

�

nX
`D1

Z T

0

Z
�

.c` � Nc`/
2 dx dt;

where C > 0 depends on the L1.QT / norms of r Nc and r N�.
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Next, we use Young’s inequality again, with � 0 > 0:

J2 �
� 0

4

nX
kD1

Z
�

.�.ck � Nck//
2 dx dt

C
n

� 0

nX
k;`D1

Z T

0

Z
�

jdiv.ck.c` � Nc`/Q`. Nc//j2 dx dt; (72)

where we defined

Q`. Nc/ WD

nX
jD1

1
p
Nc`
DBD

j̀ . Nc/
p
Ncjr N�j :

Estimating

jdiv.ck.c` � Nc`/Q`. Nc//j D jck.c` � Nc`/ divQ`. Nc/C ckr.c` � Nc`/ �Q`. Nc/

C .c` � Nc`/r.ck � Nck/ �Q`. Nc/C .c` � Nc`/r Nck �Q`. Nc/j

� C.jc` � Nc`j C jr.c` � Nc`/j C jr.ck � Nck/j/;

where C > 0 depends on the L1.QT / norm of Q`. Nc/, we deduce from (72) that

J2 �
� 0

4

nX
kD1

Z
�

.�.ck � Nck//
2 dx dt C

C

� 0

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:

Inserting the estimates for J1 and J2 into (71) leads to

I132 �
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
� 0

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C C.�; � 0/

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:

Then, together with (70), we find that

I13 �
�m

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
� 0

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C C.�; � 0/

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (73)
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Finally, we insert this estimate and estimate (69) for I14, I15, and I16 into (68), observing
that the first term on the right-hand side of (73) is absorbed by the second term on the
left-hand side of (68):

E.c.T /j Nc.T //C
�m

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

� E.c0j Nc0/C
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
� 0

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

C C.�; � 0/

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (74)

Step 3: Combining the relative energy and relative entropy inequalities. Next, multiply
(74) by 4.�M � �/2=.�m�/, choose � 0 D �m�2=.4.�M � �/2/, and add this expression
to (67) (which estimates H .cj Nc/). Then some terms on the right-hand side can be absorbed
by the corresponding expressions on the left-hand side, leading to

H .c.T /j Nc.T //C
4.�M � �/

2

�m�
E.c.T /j Nc.T //

C
.�M � �/

2

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

� H .c0j Nc0/C
4.�M � �/

2

�m�
E.c0j Nc0/

C C.�; � 0/

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:

The last term can be bounded in terms of the free energy, since ci log.ci= Nci /� .ci � Nci / �
.ci � Nci /

2=2 [22, Lemma 18]:

H .c.T /j Nc.T //C
4.�M � �/

2

�m�
E.c.T /j Nc.T // � H .c0j Nc0/C

4.�M � �/
2

�m�
E.c0j Nc0/

C C

Z T

0

E.c.t/j Nc.t// dt:

Then the theorem follows after applying Grönwall’s lemma.
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5. Nonconvex potential energies

In this section, we consider the case of a possibly nonconvex potential energy  .c/. We
work with the functionals

E.c/ D H .c/C

Z
�

 .c/ dx C
1

2

nX
iD1

Z
�

jrci j
2 dx;

H .c/ D

nX
iD1

Z
�

.ci .log ci � 1/C 1/ dx:

Then the chemical potential associated to E.c/ is given by

Q�i D
ıE

ıci
D
@ 

@ci
.c/C log ci ��ci D

@ 

@ci
.c/C �i ;

where �i is defined by (5). The resulting model is system (1)–(3) with �i replaced by Q�i .
We assume that  .c/ is a general function satisfying

(P)  2 C 3.Œ0; 1�n/ satisfies k kC 3.Œ0;1�n/ � C for some constant C > 0.

In the following, we show that our main results, Theorems 1 and 2, can be extended to this
situation.

5.1. The energy inequality and existence of solutions

We show that Lemma 5 still holds true. We outline only the points where the proof needs
to be modified. First, with Q� D �C D .c/, the energy inequality (29) becomes

dE

dt
.c/ � ��m

Z
�

jPL.c/R.c/r Q�j
2 dx D ��m

Z
�

jPL.c/R.c/r.�C D .c//j2 dx

� �
�m

2

Z
�

jPL.c/R.c/r�j
2 dx C �m

Z
�

jPL.c/R.c/D2 .c/rcj2 dx

� �
�m

2

Z
�

jPL.c/R.c/r�j
2 dx C C�m

Z
�

jrcj2 dx; (75)

where we used the definition Rij .c/D
p
ciıij and the boundedness of D2 .c/. We com-

pute the time derivative of H .c/ along solutions to (1)–(3):

dH

dt
.c/ D �

nX
i;jD1

Z
�

Mijr log ci � r Q�j dx � �
nX

i;jD1

Z
�

Gijr log ci � r Q�j dx

D �

nX
i;jD1

Z
�

Mijr log ci � r�j dx � �
nX

i;jD1

Z
�

Gijr log ci � r�j dx

�

nX
i;jD1

Z
�

Mijr log ci � r
@ 

@cj
.c/ dx � �

nX
i;jD1

Z
�

Gijr log ci � r
@ 

@cj
.c/ dx

DW I1 C I2 C QI1 C QI2:
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The terms I1 and I2 were estimated in Section 2.2 so that it remains to bound the terms
QI1 and QI2 coming from the nonconvex potential. To estimate QI1, we recall property (iii) in
Lemma 4, which implies that Bij =cj D

p
ciD

BD
ij .c/=

p
cj is bounded (by the definition

(25) of Bij ). Then the boundedness of Gij =cj D ıij � ci implies that Mij =cj D .Bij �

�Gij /=cj is bounded too. Thus, by Young’s inequality and assumption (P),

QI1 D

nX
i;jD1

Z
�

Mij

cj
rcj � r

@ 

@cj
.c/ dx D

nX
i;j;kD1

Z
�

Mij

cj
rcj �

� @2 

@cj @ck
.c/rck

�
dx

� C

nX
i;jD1

Z
�

ˇ̌̌Mij

cj

ˇ̌̌2
jrcj j

2 dx C

nX
j;kD1

Z
�

ˇ̌̌ @2 
@cj @ck

rck

ˇ̌̌2
dx � C

Z
�

jrcj2 dx:

For the term QI2, we use the definition of G.c/,
Pn
iD1 rci D 0, and assumption (P):

QI2 D ��

nX
i;jD1

Z
�

.ciıij � cicj /
rci

ci
� r
@ 

@cj
.c/ dx

D ��

nX
iD1

Z
�

rci � r
@ 

@ci
.c/ dx C �

Z
�

nX
iD1

rci �

nX
jD1

cjr
@ 

@cj
.c/ dx

D ��

nX
i;jD1

Z
�

@2 

@ci@cj
.c/rci � rcj dx � �C

Z
�

jrcj2 dx:

Collecting these estimates and I1 and I2 from (30), summarized in (33), we obtain

dH

dt
.c/C 2�

Z
�

jr
p
cj2 dx C �

Z
�

j�cj2 dx

�
.�M � �/

2

2�

Z
�

jPLRr�j
2 dx C C

Z
�

jrcj2 dx:

Adding this inequality to (75), multiplied by 2.�M � �/2=.�m�/, leads to the free energy
inequality

d

dt

�
H .c/C

2.�M � �/
2

�m�`
E.c/

�
C 2�

Z
�

jr
p
cj2 dx C �

Z
�

j�cj2 dx

C
.�M � �/

2

2�

Z
�

jPL.c/R.c/r�j
2 dx � C

Z
�

jrcj2 dx � CE.c/;

and Grönwall’s inequality eventually gives

H .c.T //C
2.�M � �/

2

�m�
E.c.T //C 2�

Z T

0

Z
�

jr
p
cj2 dx dt C �

Z T

0

Z
�

j�cj2 dx dt

C
.�M � �/

2

2�

Z T

0

Z
�

jPL.c/R.c/r�j
2 dx dt

� C.T /
�
H .c0/C

2.�M � �/
2

�m�
E.c0/

�
: (76)
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The estimated quantity in (76) equals (abbreviating ˛ D 2.�M � �/2=�m�)

H .c.T //C ˛E.c.T //

D

Z
�

� nX
iD1

.ci .log ci � 1/C 1/C ˛ .c/C
˛

2

nX
iD1

jrci j
2

�
dx:

Since ci 2 Œ0; 1�, assumption (P) implies that j .c/j � C , such that the term involving the
nonconvex potential  can be absorbed by the right-hand side of (76).

The method of the proof of Theorem 1 in Section 3 still works, with the exception that
we need to replace the estimates in Lemma 8 by the corresponding version of (76) for the
approximate system.

5.2. The relative energy estimate and weak–strong uniqueness

For possibly nonconvex potentials satisfying assumption (P), the existence proof implies
the same regularity of solutions as before and thus, Lemma 10 still holds. In order to prove
the weak–strong uniqueness, we write Q�D�CD .c/ as in the previous subsection. The
aim is to estimate the quantities

H .cj Nc/ WD

nX
iD1

Z
�

�
ci log

ci

Nci
� .ci � Nci /

�
dx; (77)

E.cj Nc/ WD H .cj Nc/C
1

2

nX
iD1

Z
�

jr.ci � Nci /j
2 dx C

Z
�

 .cj Nc/ dx; (78)

where  .cj Nc/ D  .c/ �  . Nc/ � D . Nc/ � .c � Nc/, by following the lines of Section 4.2,
but now accounting for the last term in (78) containing the nonconvex part.

First we consider the relative entropy H .cj Nc/. Inequality (57) holds with �i , N�i
replaced by �i C D .c/, N�i C D . Nc/:

H .c.T /j Nc.T // �H .c0j Nc0/ � I10 C I11 C I12 C QI10 C QI11 C QI12; (79)

where

QI10 D �

nX
i;jD1

Z T

0

Z
�

Mij .c/r log
ci

Nci
� r

� @ 
@cj

.c/ �
@ 

@cj
. Nc/
�
dx dt;

QI11 D ��

nX
i;jD1

Z T

0

Z
�

Gij .c/r log
ci

Nci
� r

� @ 
@cj

.c/ �
@ 

@cj
. Nc/
�
dx dt;

QI12 D �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r log

ci

Nci
� r
@ 

@cj
. Nc/ dx dt;
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and the terms I10, I11, I12 are defined in (57). The term QI10 is estimated in a similar way
to QI1 in the previous subsection:

QI10 D �

nX
i;j;kD1

Z T

0

Z
�

Mij

ci
.r.ci � Nci /C .ci � Nci /r log Nci /

�

� @2 

@cj @ck
.c/rck �

@2 

@cj @ck
. Nc/r Nck

�
dx dt

� C

Z T

0

Z
�

.jr.c � Nc/j2 C jc � Ncj2/ dx

C C

nX
i;jD1

Z T

0

Z
�

ˇ̌̌ @2 
@cj @ck

.c/r.cj � Ncj /
ˇ̌̌2
dx dt

C C

Z T

0

Z
�

ˇ̌̌� @2 

@cj @ck
.c/ �

@2 

@cj @ck
. Nc/
�
r Ncj

ˇ̌̌2
dx dt

� C

Z T

0

Z
�

.jr.c � Ncj2 C jc � Ncj2/ dx;

where we used the Lipschitz continuity of the second derivative of  in the last step. For
QI11, we take into account the property y|GzD y|RPLRzD .PLRy/

|.PLRz/ and apply
Young’s inequality:

QI11 �
�

4

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C C�

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr

�@ 
@ci

.c/ �
@ 

@ci
. Nc/
�ˇ̌̌̌2

dx dt

�
�

4

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C C

Z T

0

Z
�

.jc � Ncj2 C jr.c � Nc/j2/ dx dt:

Because of the boundedness of krD . Nc/kL1 , the term QI12 can be estimated in the same
way as (64) and consequently, it satisfies inequality (64). Inserting these estimates into
(79) and using the estimate for I10, I11, and I12 from Section 4.2, we arrive at

H .c.T /j Nc.T //C
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
�

2

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt
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� H .c0j Nc0/C
.�M � �/

2

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C C

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (80)

This estimate equals (67) with the exception of the factor �=4 instead of �=2 in the second
term on the left-hand side.

Next, we consider the estimate of the relative energy. Inequality (54) still holds true
with �i , N�i replaced by �i C .@ =@ci /.c/, N�i C .@ =@ci /. Nc/. We can use the estimates
for I14, I15, I16 in (68), but I13 needs to be estimated differently. This term reads here as

I 013 D �

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r.�i � N�i / � r

�
N�j C

@ 

@cj
. Nc/
�
dx dt

�

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�
r

�@ 
@ci

.c/ �
@ 

@ci
. Nc/
�

� r

�
N�j C

@ 

@cj
. Nc/
�
dx dt

DW I 0131 C I
0
132:

The term I 0131 can be estimated in the same way as in (70)–(71), additionally taking into
account the boundedness of @2 =@ci@cj , and it satisfies (73), while I 0132 is bounded by
Young’s inequality according to

I 0132 � C

nX
i;jD1

Z T

0

Z
�

�
Bij .c/ �

ci

Nci
Bij . Nc/

�2
dx dt

C C

nX
i;jD1

Z T

0

Z
�

ˇ̌̌
r

�@ 
@ci

.c/ �
@ 

@ci
. Nc/
�ˇ̌̌2 ˇ̌̌
r

�
N�j C

@ 

@cj
. Nc/
�ˇ̌̌2

dx dt

� C

Z T

0

Z
�

jc � Ncj2 dx dt C

Z T

0

Z
�

jr.c � Nc/j2 dx dt:

Observe that this inequality does not alter the estimates of the relative energy (74), but
the second term on the left-hand side contains the difference �j C .@ =@cj /.c/ � N�j �
.@ =@cj /. Nc/ instead of �j � N�j , which is bounded from below by

�m

2

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr

�
�j C

@ 

@ci
.c/ � N�j �

@ 

@ci
. Nc/
�ˇ̌̌̌2

dx dt

�
�m

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

�
3�m

2

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr

� @ 
@cj

.c/ �
@ 

@cj
. Nc/
�ˇ̌̌̌2

dx dt
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�
�m

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

� C�m

Z T

0

Z
�

.jc � Ncj2 C jr.c � Nc/j2/ dx:

Hence, combining (74) with (80), multiplied by 8.�M � �/2=.�m�/,

H .c.T /j Nc.T //C
8.�M � �/

2

�m�
E.c.T /j Nc.T //

C
.�M � �/

2

�

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr.�j � N�j /

ˇ̌̌̌2
dx dt

C
�

4

nX
iD1

Z T

0

Z
�

ˇ̌̌̌ nX
jD1

PL.c/ij
p
cjr log

cj

Ncj

ˇ̌̌̌2
dx dt

C
�

4

nX
iD1

Z T

0

Z
�

.�.ci � Nci //
2 dx dt

� H .c0j Nc0/C
8.�M � �/

2

�m�
E.c0j Nc0/

C C.�; � 0/

nX
iD1

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt: (81)

This inequality corresponds to the estimate in Step 3 of Section 4.2. The convex part of
the energy equals

E1.cj Nc/ WD H .cj Nc/C
1

2

Z
�

jr.c � Nc/j2 dx:

Then the energy can be bounded from below as

E.cj Nc/DH .cj Nc/C
1

2

Z
�

jr.c � Nc/j2 dxC

Z
�

 .cj Nc/dx �E1.cj Nc/�C1

Z
�

jc � Ncj2 dx;

where the last integral comes from the nonconvex part. Thus, together with H .cj Nc/ �
1
2

R
�
jc � Ncj2 dx, we conclude from (81) that

1

2
H .cj Nc/C

1

4

Z
�

jc � Ncj2 dx C
8.�M � �/

2

�m�
E1.cj Nc/ �

8.�M � �/
2

�m�
C1

Z
�

jc � Ncj2 dx

� H .c0j Nc0/C
8.�M � �/

2

�m�
E.c0j Nc0/

C C

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:
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We choose � D �M � ", where "2 < �m�M=.64C1/ and " < �M=2. Then

8.�M � �/
2

�m�
C1 D

8"2C1

�m.�M � "/
<
�m�M=8

�m�M=2
D
1

4
:

Thus the L2.�/ norm of c � Nc cancels, and we find that

1

2
H .cj Nc/C

8.�M � �/
2

�m�
E1.cj Nc/ � H .c0j Nc0/C

8.�M � �/
2

�m�
E.c0j Nc0/

C C

Z T

0

Z
�

..ci � Nci /
2
C jr.ci � Nci /j

2/ dx dt:

Arguing as in Step 3 of Section 4.2, we can apply Grönwall’s inequality to end up with

1

2
H .cj Nc/C

8.�M � �/
2

�m�
E1.cj Nc/ � C

�
H .c0j Nc0/C

8.�M � �/
2

�m�
E.c0j Nc0/

�
:

Thus, the weak–strong uniqueness result holds in the presence of the nonconvex part of
the potential.

6. Examples

We present some models which satisfy Assumptions (B1)–(B4).

6.1. A Cahn–Hilliard model with degenerate mobility

Elliott and Garcke [12] studied equations (1)–(5), formulated in terms of the mobility
matrix (8), where

Bij .c/ D bi .ci /
�
ıij �

bj .cj /Pn
kD1 bk.ck/

�
; i; j D 1; : : : ; n:

The functions bi 2 C 1.Œ0; 1�/ are nonnegative and satisfy ˇ1ci � bi .ci / � ˇ2ci for ci 2
Œ0; 1� and some constants 0 < ˇ1 � ˇ2. The potential  is chosen as

 .c/ D c| yM c;

where yM is a constant n � n matrix. This model describes phase transitions in multicom-
ponent systems; in [33] it has been suggested that the dynamics of polymer mixtures are
modeled with bi .ci / D ˇici and ˇi > 0. The subspace L.c/ becomes

L.c/ D
®
z 2 RnW

Pn
iD1

p
bi .ci /zi D 0

¯
;

and the matrix DBD.c/ is determined directly from the mobility matrix:

DBD
ij .c/ D

Bij .c/p
bi .ci /bj .cj /

D ıij �

p
bi .ci /bj .cj /Pn
kD1 bk.ck/

:
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Instead of checking Assumptions (B1)–(B4), it is more convenient to verify the statements
of Lemma 4 directly. This has been done in [22, Section 2]. Moreover, condition (P) holds.
While the global existence of weak solutions has been already proved in [12], we obtain
the weak–strong uniqueness property as a new result.

As illustrated in [12], for n D 2, taking yMij D �.1 � ıij / for i; j D 1; 2 with � > 0
in the previous example, the variable u WD c1 � c2 satisfies the Cahn–Hilliard model with
degenerate mobility matrix

@tu D div
�
.1 � u2/r

�
.log.1C u/ � log.1 � u// � �u ��u

��
:

This corresponds to the energy

E D

Z
�

�1
2
..1C u/ log.1C u/C .1 � u/ log.u// �

�

2
u2
�
dx C

1

2

Z
�

jruj2 dx;

which is expressed in terms of u rather than .c1; c2/.

6.2. The classical Maxwell–Stefan system

In the classical Maxwell–Stefan model, the matrix K.c/ has entries

Kij .c/ D ıij

nX
`D1

ki`c` � kij ci

for i; j D 1; : : : ; n. The associated matrix DMS.c/ is given by

DMS
ij .c/ D

1
p
ci
Kij .c/

p
cj D ıij

nX
`D1

ki`c` � kij
p
cicj ; i; j D 1; : : : ; n:

It is proved in [22, Section 5.4] that this matrix satisfies Assumptions (B1)–(B4). Thus,
Theorems 1 and 2 hold for the model

@tci C div.ciui / D 0;
nX
iD1

ciui D 0; i D 1; : : : ; n;

cir�i �
ciPn
kD1 ck

nX
jD1

cjr�j D �

nX
jD1

kij cicj .ui � uj /;

where �i D log ci ��ci . Compared to [22], the mobility does not only depend on ci but
also on �ci . This extends the existence and weak–strong uniqueness results to a more
general case.

6.3. A physical vapor decomposition model for solar cells

Thin-film crystalline solar cells can be fabricated as thin coatings on a substrate by the
physical vapor decomposition process. The dynamics of the volume fractions of the pro-
cess components can be described by model (1)–(4) with the mobility matrix

Bij .c/ D ıij

nX
`D1

ki`cic` � kij cicj ; i; j D 1; : : : ; n:
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In this case, the Bott–Duffin matrix is given by DBD
ij .c/ D Bij .c/=

p
cicj D DMS

ij .c/,
where DMS.c/ is the Maxwell–Stefan matrix of the previous subsection. Thus, Assump-
tions (B1)–(B4) are verified for this matrix. With the energy

E.c/ D

nX
iD1

Z
�

ci .log ci � 1/ dx C
1

2

nX
iD1

Z
�

jrci j
2 dx

C ˇ

Z
�

c1.1 � c1/ dx;

the chemical potential becomes �i D log ci ��ci C ˇ.1 � c1/, and the nonconvex part
of the potential has a bounded second derivative. This energy is different from that used
in [10], since here we consider the phase separation of all species, while the authors in
[10] consider the case when only one species is separated from the others. We infer that
Theorems 1 and 2 hold for the model

@tci D div
nX

jD1

kij cicjr.�i � �j /;

�i D log ci ��ci C ˇ.1 � 2c1/; i D 1; : : : ; n:

When �i D log ci for all i , the global existence of weak solutions was proved in [1] and
the weak–strong uniqueness of solutions was shown in [20]. A global existence result was
obtained in [10] for �1 D log c1 � �c1 C ˇ.1 � 2c1/ with ˇ > 0 and �i D log ci for
i D 2; : : : ; n.

A. Proof of Theorem 6

The proof is divided into four steps. First, we reformulate (35) using the first n � 1 com-
ponents. Second, a time-discretized regularized system, similarly to [25, Chapter 4], is
constructed and the existence of weak solutions to this system is proved. Third, we derive
some uniform estimates from the energy inequality. Finally, we perform the deregulariza-
tion limit.

Step 1: Reformulation in n � 1 components. We reformulate the approximate system in
terms of the n � 1 relative chemical potentials

wıi D �
ı
i � �

ı
n; i D 1; : : : ; n � 1:

It holds that

nX
jD1

.PL.�ıc/R.�ıc//kj D

nX
jD1

�
ıkj �

p
.�ıc/k.�ıc/jPn
`D1.�ıc/`

�q
.�ıc/j D 0:
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Then, using DBD.c/ D DBD.c/PL.c/ (which is a general property of the Bott–Duffin
inverse; see [22, (81)]),

nX
jD1

Bıij .c/ D

nX
jD1

p
.�ıc/iD

BD
ij .c/

q
.�ıc/j

D

nX
j;kD1

p
.�ıc/iD

BD
ik .c/.PL.�ıc/R.�ıc//kj D 0:

This shows that
nX

jD1

Bıij .c/r�
ı
j D

n�1X
jD1

Bıij .c/r�
ı
j C B

ı
in.c/r�

ı
n D

n�1X
jD1

Bıij .c/r.�
ı
j � �

ı
n/:

Consequently, we can rewrite the first equation in (35) as

@tc
ı
i D div

n�1X
jD1

zBıij .c
ı/rwıj ; i D 1; : : : ; n � 1; cın D 1 �

n�1X
iD1

cıi ; (82)

recalling that zBı is the first .n � 1/ � .n � 1/ submatrix of Bı .

Step 2: Existence for a regularized system. We consider for given ı > 0, T > 0, N 2 N,
and .ck�11 ; : : : ; ck�1n�1 / the regularized system

1

�
.cki � c

k�1
i / D div

n�1X
jD1

zBıij . Qc
k/rwkj � ".�

2wki C w
k
i / in �; (83)

wki D .h
ı
i /
0.cki / � .h

ı
n/
0.ckn / ��.c

k
i � c

k
n /; i D 1; : : : ; n � 1; (84)

where � D T=N and ckn D 1 �
Pn�1
iD1 c

k
i . Equation (83) is understood in the weak sense:

1

�

Z
�

.cki � c
k�1
i /�i dx C

n�1X
jD1

Z
�

zBıij .c
k/r�i � rw

k
j dx

C "

Z
�

.�wki ��i C w
k
i �i / dx D 0

for test functions �i 2 H 2.�/.
The "-regularization ensures that wki 2 H

2.�/ ,! L1.�/ since d � 3. In higher
space dimensions, we can replace �2wki by .��/mwki with m > d=2, which gives wki 2
Hm.�/ ,! L1.�/.

We prove the solvability of (83)–(84) in two steps.

Lemma 11 (Solvability of (84)). Letw 2 L2.�IRn�1/. Then there exists a unique strong
solution Qc 2 H 2.�IRn�1/ to

wi D .h
ı
i /
0.ci / � .h

ı
n/
0.cn/ ��.ci � cn/ in �; rci � � D 0 on @� (85)
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for i D 1; : : : ; n� 1, where cn D 1�
Pn�1
iD1 ci . This defines the operator LWL2.�IRn�1/

! H 2.�IRn�1/, L.w/ D Qc.

Proof. The system of equations can be written as

div.Mr Qc/i D .hıi /
0.ci / � .h

ı
n/
0.cn/ � wi in �;

where the entries of the diffusion matrix M are Mi i D 2 and Mij D 1 for all i ¤ j . In
particular, M is symmetric and positive definite. Thus, we can apply the theory for ellip-
tic systems with sublinear growth function and conclude the existence of a unique weak
solution Qc 2 H 1.�IRn�1/. It remains to verify that this solution lies in H 2.�IRn�1/.
Summing (85) over i D 1; : : : ; n � 1, we find that

�cn D �

n�1X
iD1

�ci D
1

n

n�1X
iD1

.wi � .h
ı
i /
0.ci //C

n � 1

n
.hın/

0.cn/ 2 L
2.�/

with the boundary condition rcn � � D 0 on @�. We infer from elliptic regularity theory
that cn 2 H 2.�/. Consequently, �cn 2 L2.�/ and elliptic regularity again implies that
ci 2 H

2.�/.

It follows from Lemma 11 that we can write (83) as

1

�
.L.w/i � c

k�1
i /

D div
n�1X
jD1

zBıij . Qc
k/rwkj � ".�

2wki C w
k
i / in �, i D 1; : : : ; n � 1: (86)

Lemma 12 (Solvability of (86)). Let Qck�1 2 H 2.�IRn�1/. Then there exists a weak
solution wk 2 H 2.�IRn�1/ to (86) such that for all �i 2 L2.0; T IH 2.�//,

1

�

Z
�

.L.w/i � c
k�1
i /�i dx C

n�1X
i;jD1

Z
�

zBıij .L.w//r�i � rw
k
j dx

C "

n�1X
iD1

Z
�

.�wki ��i C w
k
i �i / dx D 0:

Proof. Given xw 2 L1.�IRn�1/ and � 2 Œ0; 1�, we wish to find a solution to the linear
problem

A.w;�/ D F .�/ for � 2 H 2.�IRn�1/; (87)

where

A.w;�/ D

n�1X
i;jD1

Z
�

zBıij .L. xw//r�i � rwj dx C "

n�1X
iD1

Z
�

.�wi��i C wi�i / dx;

F .�/ D �
�

�

Z
�

.L. xw/ � Qck�1/ � � dx:
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We infer from the boundedness of zBıij .L. xw// that the bilinear form A is continuous on
H 2.�IRn�1/. Furthermore, by the positive-definiteness of zBıij .L. xw//, thanks to (39),
A is coercive. Moreover, F is a continuous linear form on H 2.�IRn�1/. We conclude
from the Lax–Milgram theorem that there exists a unique solution w 2 H 2.�IRn�1/
to (87). Since d � 3 by Assumption (A1), we have H 2.�/ ,! L1.�/ and therefore
w 2 L1.�IRn�1/.

This defines the fixed-point operator S W L1.�I Rn�1/ � Œ0; 1� ! L1.�I Rn�1/,
S. xw; �/ D w. The operator S is continuous, and it satisfies S. xw; 0/ D 0 for all xw 2
L1.�IRn�1/. In view of the compact embedding H 2.�/ ,! L1.�/, S is also com-
pact. It remains to verify that all fixed points of S.�; �/ are uniformly bounded. To this
end, let w 2 L1.�IRn�1/ be such a fixed point. Then w 2 H 2.�IRn�1/ solves (87)
with xw D w. We choose the test function � D w in (87) to find that

�

�

Z
�

. Qc � Qck�1/ �w dx C

n�1X
i;jD1

Z
�

zBıij . Qc/rwi � rwj dx

C "

n�1X
iD1

Z
�

..�wi /
2
C w2i / dx D 0; (88)

where Qc D L.w/ D .c1; : : : ; cn�1/ and ci solves (84) with wki replaced by wi . Using the
test function ci � ck�1i in the weak formulation of (84) leads to

n�1X
iD1

Z
�

.ci � c
k�1
i /wi dx D

n�1X
iD1

Z
�

�
r.ci � cn/ � r.ci � c

k�1
i /

C ..hıi /
0.ci / � .h

ı
i /
0.cn//.ci � c

k�1
i /

�
dx:

The convexity of the function hıi and
Pn�1
iD1 ci D 1 � cn imply that

n�1X
iD1

.ci � c
k�1
i /.hıi /

0.ci / �

n�1X
iD1

.hıi .ci / � h
ı
i .c

k�1
i //;

�

n�1X
iD1

.ci � c
k�1
i /.hın/

0.cn/ D .cn � c
k�1
n /.hın/

0.cn/ � h
ı
n.cn/ � h

ı
n.c

k�1
n /:

Moreover, since
Pn�1
iD1 rci D �rcn and

Pn�1
iD1 rc

k�1
i D �rck�1n ,

n�1X
iD1

r.ci � cn/ � r.ci � c
k�1
i / D

nX
iD1

jrci j
2
�

nX
iD1

rck�1i � rci

�
1

2

nX
iD1

jrci j
2
�
1

2

nX
iD1

jrck�1i j
2:
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This yields

n�1X
iD1

Z
�

.ci � c
k�1
i /wi dx

�

nX
iD1

Z
�

.hıi .ci / � h
ı
i .c

k�1
i // dx C

1

2

nX
iD1

Z
�

.jrci j
2
� jrck�1i j

2/ dx

� zEı. Qc/ � zEı. Qck�1/;

where

zEı. Qc/ WD zH ı. Qc/C

nX
iD1

Z
�

jrci j
2 dx; zH ı. Qc/ WD H ı.c/:

Inserting this inequality into (88) finally gives

� zEı. Qc/C �

n�1X
i;jD1

Z
�

zBıij . Qc/rwi � rwj dx

C "�

Z
�

.j�wj2 C jwj2/ dx � � zEı. Qck�1/: (89)

By the positive-definiteness of zBı (positive-semidefiniteness is sufficient), this gives a
uniform H 2.�/ bound and consequently a uniform L1.�/ bound for w. The Leray–
Schauder fixed-point theorem now implies the existence of a solution to (83)–(84).

Step 3: Uniform estimates. We wish to derive estimates uniform in " and � . The start-
ing point is the regularized energy estimate (89) and the positive-definiteness estimate
(39). First, we introduce the piecewise constant in time functions w.�/.x; t/ D wk.x/,
Qc.�/.x; t/DL.wk.x// for x 2� and t 2 ..k� 1/�;k��, kD 1; : : : ;N , and setw.�/.x;0/D
.@ zE=@ Qc/. Qc0/ and Qc.�/.x; 0/ D Qc0. Then, introducing the shift operator .��w.�//.x; t/ D
w.�/.x; t � �/ for x 2 � and t � � , we can formulate (83)–(84) as

1

�
. Qc.�/ � �� Qc

.�// D div. zBı. Qc/rw.�// � ".�2w.�/ Cw.�//; (90)

w
.�/
i D .h

ı
i /
0.c

.�/
i / � .hın/

0.c.�/n / ��.c
.�/
i � c

.�/
n /; i D 1; : : : ; n � 1; (91)

recalling that Qc.�/ DL.w.�// is a function ofw.�/. Then (89) can be written after summa-
tion over k D 1; : : : ; N as

zEı. Qc.�/.T //C �.ı/

Z T

0

Z
�

jrw.�/j2 dx dt C "C

Z T

0

kw.�/k2
H2.�/

dt � zEı. Qc0/;

where we used (39) and the generalized Poincaré inequality with constant C > 0. This
implies the estimates

C.ı/kw.�/kL2.0;T IH1.�// C
p
"kw.�/kL2.0;T IH2.�// � C; (92)

where C > 0 denotes here and in the following a constant independent of " and � .
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To derive a uniform estimate for Qc.�/, we multiply (91) by ��c.�/i , integrate over
QT D � � .0; T /, integrate by parts, and sum over i D 1; : : : ; n � 1:

n�1X
iD1

Z T

0

Z
�

rw
.�/
i � rc

.�/
i dx dt

D

n�1X
iD1

Z T

0

Z
�

r..hıi /
0.c

.�/
i / � .hın/

0.c.�/n // � rc
.�/
i dx dt

C

n�1X
iD1

Z T

0

Z
�

..�c
.�/
i /2 ��c

.�/
i �c.�/n / dx dt DW I3 C I4:

Since r.hıi /
0.c

.�/
i / D .hıi /

00.c
.�/
i /rc

.�/
i D rc

.�/
i =.�ıc

.�//i and
Pn�1
iD1 rc

.�/
i D �rc

.�/
n ,

the term I3 can be written as

I3 D

nX
iD1

Z T

0

Z
�

jrc
.�/
i j

2

.�ıc.�//i
dx dt:

Using the property
Pn�1
iD1 �c

.�/
i D ��c

.�/
n , the remaining term I4 becomes

I4 D

nX
iD1

Z T

0

Z
�

.�c
.�/
i /2 dx dt:

Therefore, by Young’s inequality,

nX
iD1

Z T

0

Z
�

.�c
.�/
i /2 dx dt C

nX
iD1

Z T

0

Z
�

jrc
.�/
i j

2

.�ıc.�//i
dx dt

D

n�1X
iD1

Z T

0

Z
�

rw
.�/
i � rc

.�/
i dx dt

�
1

2

n�1X
iD1

Z T

0

Z
�

�
jrc

.�/
i j

2

.�ıc.�//i
C .�ıc

.�//i jrw
.�/
i j

2
�
dx dt

�
1

2

n�1X
iD1

Z T

0

Z
�

jrc
.�/
i j

2

.�ıc.�//i
dx dt C

1

2

n�1X
iD1

Z T

0

Z
�

jrw
.�/
i j

2 dx dt:

The first term on the right-hand side is absorbed by the left-hand side. Thus, we deduce
from (92) that
nX
iD1

Z T

0

Z
�

.�c
.�/
i /2 dx dt C

1

2

nX
iD1

Z T

0

Z
�

jrc
.�/
i j

2

.�ıc.�//i
dx dt �

1

2
krw.�/k2

L2.QT /
� C:

Since c.�/i 2 L
1.QT /, we infer from the previous estimate that

kc
.�/
i kL2.0;T IH2.�// � C; i D 1; : : : ; n: (93)
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Finally, we derive an estimate for the discrete time derivative. It follows from (86) that

1

�
kc
.�/
i � ��c

.�/
i kL2.0;T IH2.�/0/ �

n�1X
jD1

k zBıij . Qc
.�//kL1.QT /krw

.�/
j kL2.QT /

C "kw
.�/
i kL2.0;T IH2.�//:

The entries of zBı. Qc.�// are bounded since ı � .�ıc.�//i � 1 � ı. Thus, by (92),

��1kc
.�/
i � ��c

.�/
i kL2.0;T IH2.�/0/ � C; i D 1; : : : ; n � 1: (94)

Step 4: Limit ."; �/! 0. In view of estimates (93) and (94), we can apply the version of
the Aubin–Lions lemma in [9, Theorem 1] to conclude the existence of a subsequence,
which is not relabeled, such that as ."; �/! 0,

c
.�/
i ! ci strongly in L2.0; T IH 1.�//, i D 1; : : : ; n � 1:

We deduce from (92)–(94) that, possibly for another subsequence,

c
.�/
i * ci weakly in L2.0; T IH 2.�//;

��1.c
.�/
i � ��c

.�/
i / * @tci weakly in L2.0; T IH 2.�/0/;

w
.�/
i * wi weakly in L2.0; T IH 1.�//;

"w
.�/
i ! 0 strongly in L2.0; T IH 2.�//, i D 1; : : : ; n � 1:

We define cn WD 1 �
Pn�1
iD1 ci . Then c.�/n ! cn strongly in L2.0; T IH 1.�// and weakly

in L2.0; T IH 2.�//. Furthermore, .c.�/i / converges, up to a subsequence, pointwise a.e.,
and its limit satisfies ı � .�ıc/i � 1� ı, i D 1; : : : ; n. The matrix zBıij . Qc

.�// is uniformly
bounded and

zBıij . Qc
.�//! zBıij . Qc/ strongly in Lq.QT / for any q <1, i; j D 1; : : : ; n:

These convergence results allow us to pass to the limit ."; �/! 0 in the weak formulation
of (90)–(91) to find that c solves

@tci D div
n�1X
jD1

zBıij . Qc/rwj ; wi D .h
ı
i /
0.ci / � .h

ı
n/
0.cn/ ��.ci � cn/

for i D 1; : : : ; n� 1. Transforming back to the chemical potential� viawi D�i ��n and
cn D 1 �

Pn�1
iD1 ci , we see that cı WD c solves system (35)–(36), where �i D .hıi /

0.ci / �

�ci .
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