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Estimation of non-uniqueness and short-time asymptotic
expansions for Navier–Stokes flows

Zachary Bradshaw and Patrick Phelps

Abstract. There is considerable evidence that solutions to the three-dimensional Navier–Stokes
equations in the natural energy space are not unique. Assuming this is the case, it becomes important
to quantify how non-uniqueness evolves. In this paper we provide an algebraic estimate for how
rapidly two possibly non-unique solutions can separate over a compact spatial region in which the
initial data has sub-critical regularity. Outside of this compact region, the data is only assumed to
be in the scaling critical weak Lebesgue space and can be large. To establish this upper bound on
the separation rate, we develop a new spatially local, short-time asymptotic expansion which is of
independent interest.

1. Introduction

The Navier–Stokes equations,

@tu ��uC u � ruCrp D 0; r � u D 0; (1.1)

govern the evolution of a viscous incompressible flow’s velocity field u and its associated
scalar pressure p. The system is supplemented with a divergence-free initial datum u0.
We consider the problem on R3 � .0; T /, where 0 < T � 1. A foundational mathemati-
cal treatment of the problem was given by Leray [38], where global weak solutions were
constructed for finite energy data. Solutions with the properties of those constructed by
Leray are referred to as Leray weak solutions. Recent work suggests that uniqueness does
not hold in the class of Leray weak solutions. Indeed, non-uniqueness has been affirmed in
weaker classes than the Leray class [14] and within the Leray class for the forced Navier–
Stokes equations [2]. Within the Leray class and with no forcing, a research program
of Jia and Šverák [27, 28] and the numerical work of Guillod and Šverák [25] support
non-uniqueness. This program proposes non-uniqueness in a class of solutions with large
L3;1 data and then truncates the conjectured solutions to give non-unique Leray–Hopf
solutions. We presently consider solutions in this critical space and give a precise defini-
tion below.
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While the evidence suggests non-uniqueness, there is no clear picture of how non-
uniqueness would evolve. In this note, we take the view that solutions are not unique and
seek to quantify how rapidly distinct solutions can separate as they evolve from a shared
initial state. In particular, we are interested in the following question:

How can non-uniqueness be quantified in terms of local properties of the initial
data?

To answer this question, we seek conditions so that, given some divergence-free u0, ball
B , positive exponent � , time T > 0, and weak solutions u1 and u2 to (1.1) both evolving
from u0, we have

ku1 � u2kL1.B/.t/ . t�

for all 0 < t < T . We refer to bounds like the above as an “estimation of non-uniqueness”
and the right-hand side as a “separation rate.”

A preliminary perspective on this question follows from the local smoothing of Jia
and Šverák [27]. Local smoothing says that, if u0 is sufficiently regular in a ball B , then
a solution u remains regular on B 0 � Œ0; T � for some T > 0, where B 0 b B . This can
be viewed as saying that the non-local effects of the pressure are not strong enough to
overcome the local regularity of the data. Local regularity is proven in [27] by showing
that, for solutions in the local Leray class,1 if u0jB 2 Lp.B/ for some 3 < p � 1 and
U is the strong solution to the Navier–Stokes equations with initial data a divergence-
free localization of u0 to B , then the difference u � U is in the parabolic Hölder space
C

par.B

0 � Œ0; T �/, where  D .p/ 2 .0; 1/. This space is endowed with the seminorm

Œf �C par.B 0�Œ0;T �/
WD Œf �

C
=2
t .Œ0;T �IL1.B 0//

C Œf �L1.Œ0;T �IC x .B 0//:

Let us point out that, given the parabolic scaling of (1.1), the exponent for the time variable
is =2. Since U is uniquely determined by u0, this implies that, for possibly distinct
solutions u1 and u2 with the same data u0, we have

ku1 � u2kL1.B 0/.t/ � ku1 � U kL1.B 0/.t/C kU � u2kL1.B 0/.t/ . t

2 : (1.2)

Since =2 < 1, the derivative of the right-hand side blows up as t ! 0C, allowing rapid
separation.

A stronger separation rate is identified for discretely self-similar (DSS) solutions,
i.e. solutions satisfying u�.x; t/ WD �u.�x; �2t /, for some � > 1, with data in Lploc.R

3 n

¹0º/ for 3 < p � 1 in [7]. There, due to the global scaling properties of the solution,

ju1 � u2j.x; t/ .
t
3
2

.jxj C
p
t /4
;

1This is a more general class than the Leray class and was introduced by Lemarié-Rieusset. See [37]
and the later papers [9,27,30,32,36] for useful properties. Local Leray solutions are sometimes referred to
as local energy solutions.
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outside of a space-time paraboloid, i.e. in the region jxj � R0
p
t , for some R0 � 0. Away

from x D 0, this gives the separation rate t3=2, which is stronger than (1.2) for t � 1.
Although we do not have a proof, we expect the rate t3=2 is optimal because it arises in [7]
from pointwise bounds for gradients of the Oseen tensor [41] which seem unavoidable.
The solutions in [7] have a great deal of structure due to their assumed scaling invariance
and it is natural to seek separation rates under relaxed conditions.

In this paper, with no scaling assumptions we almost recover the separation rate t3=2,
which was obtained for DSS solutions in [7]. We take our initial data to be in L3;1.R3/,
which coincides with the weak Lebesgue space L3w and is a Lorentz space.2 If, addition-
ally, u0jB 2 Lp.B/ for a ball B and some 3 < p � 1, then we show there exists a time
T > 0 so that, for any � < 3=2, any two weak solutions u1 and u2 in a certain class satisfy

ku1 � u2kL1.B 0/.t/ . t� ;

where B 0 b B and 0 < t < T . This class of initial data is motivated by a natural type-I
blow-up scenario wherein a strong solution u defined on R3 � .�1; 0/ satisfying

ju.x; t/j .
1

jxj C
p
�t

develops a singularity at the space-time origin. The singular profile would satisfy

ju.x; 0/j . jxj�1 2 L3;1:

Because uniqueness is not expected for large L3;1 data, upon singularity formation the
solution might branch into distinct flows. In this scenario, our theorem provides an upper
bound on how fast the branching solutions can separate away from the singularity. Addi-
tionally, the initial data in [7] is only locally critical at the origin; it is locally sub-critical3

everywhere else. In our theorem, the only sub-critical assumption is within the ball B; the
data can have L3;1 singularities anywhere else.

Before stating our result we define the class of solutions we have in mind, which
was originally developed by Barker, Seregin, and Šverák [6] and extends ideas in [40].
This notion of solution has since been extended to non-endpoint critical Besov spaces of
negative smoothness [1].

2L3;1 includes all the DSS data considered in [7]. It is important in the analysis of the Navier–Stokes
equations as an endpoint space, where many desirable features such as regularity or uniqueness are not
known to hold. For example, there is a time-local unique strong solution when u0 is possibly large in L3

[31], but this is unknown in the larger space L3;1. It is a critical space in that it is scaling invariant with
respect to the scaling of (1.1).

3We say the space X is sub-critical if ku0kX D �˛ku�0kX , where ˛ > 0. Examples of sub-critical
spaces are Lp for p 2 .3;1�. Typically, inclusion in sub-critical spaces controls small scales and leads to
regularity. For super-critical spaces, ˛ < 0 and small scales are typically not controlled. For critical spaces,
small scales are usually controlled to an extent when C1c is dense in the space. Critical spaces where this
fails, like L3;1, are sometimes referred to as ultra-critical.
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Definition 1.1 (Weak L3;1-solutions). Let T > 0 be finite. Assume u0 2 L3;1 is diver-
gence-free. We say that u and an associated pressure p comprise a weak L3;1-solution
if

• .u; p/ satisfies (1.1) distributionally,

• u satisfies the local energy inequality of Scheffer [39] and Caffarelli, Kohn, and Niren-
berg [15], i.e. for all non-negative � 2 C1c .R

3 � .0; T �/ and 0 < t < T , we haveZ
�.x; t/ju.x; t/j2 dx C 2

Z t

0

Z
jruj2� dx dt

�

Z t

0

Z
juj2.@t� C��/ dx dt C

Z t

0

Z
.juj2 C 2p/.u � r�/ dx dt;

• for every w 2 L2, the following function is continuous on Œ0; T �,

t !

Z
w.x/ � u.x; t/ dx;

• Qu WD u � et�u0 satisfies, for all t 2 .0; T /,

sup
0<s<t

k Quk2
L2
.s/C

Z t

0

kr Quk2
L2
.s/ ds <1;

and

k Quk2
L2
.t/C 2

Z t

0

Z
jr Quj2dxds� 2

Z t

0

Z
.es�u0˝ QuC e

s�u0˝ e
s�u0/ W r Qudxds:

In particular, k Quk2
L2
.t/! 0 as t ! 0C.

In [6], weak solutions are constructed which satisfy the above definition for all T > 0.
Also, due to their spatial decay, weak L3;1-solutions are mild,4 which means they satisfy
the formula

u.x; t/ D et�u0 � B.u; u/;

where P is the Leray projection operator and

B.f; g/ WD

Z t

0

e.t�s/�Pr �
�1
2
.f ˝ g C g ˝ f /

�
ds;

which is symmetric.
An important observation in [6] is that the non-linear part of a weak L3;1-solution

satisfies a dimensionless energy estimate, namely

sup
0<s<t

k QukL2.s/C

�Z t

0

kr Quk2
L2
.s/ ds

� 1
2

.u0 t
1
4 : (1.3)

4Although this can be proved directly, it also follows from [10] or [37, p. 109].
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We emphasize that the energy associated with Qu vanishes at t D 0. This decay property
will be essential in our work. It appeared earlier in the a priori estimates of the weak
discretely self-similar solutions constructed in [8] as well as [40], which is the precursor
to [6]. It is used in the Calderón-type splitting (see [16]) construction in [6] to deplete a
time singularity. In [1], it is established in Besov spaces with et�u0 replaced by higher
Picard iterates, which are defined below.

As pointed out in [6], (1.3) can be viewed as an estimate on the separation rate of two
weak L3;1-solutions since, denoting two such solutions with the same data by u1 and u2,
we have

ku1 � u2kL2.t/ . k Qu1kL2.t/C k Qu2kL2.t/ . t
1
4 :

Notably, this is a global estimate. For data inL3;1, global estimates are confined to super-
critical norms since we do not expect Qu to be in a stronger space than u—indeed, any
singularity at a positive time is carried by Qu not by et�u0. Such singularities can pos-
sibly occur at arbitrarily small times. Therefore, if we seek a finer estimate (i.e. using
a sub-critical norm) on the separation of the flows using the reasoning above, it should
be confined to a local region where local smoothing holds, e.g. where the initial data is
sub-critical. The following theorem provides such an estimate.

Theorem 1.2 (Estimation of non-uniqueness). Assume u0 2 L3;1 and is divergence-free.
Fix x0 2 R3. Assume that u0jB 2 Lp.B/, where B D B2.x0/ and p 2 .3;1�. Let u1 and
u2 be weak L3;1-solutions with data u0. Then there exists T D T .p; u0/ > 0 so that, for
every � 2 .0; 3=2/ and t 2 .0; T /,

ku1 � u2kL1.B1=4.x0//.t/ .p;�;u0 t� ;

where the dependence on u0 is via the quantities ku0kLp.B/ and ku0kL3;1 .

Insofar as non-uniqueness in the Leray class is concerned, if u0 2 L2 \ L3;1, then
any weakL3;1-solution is also a Leray weak solution as discussed in [6]. Hence our result
applies to a subset of the Leray class.

Theorem 1.2 is a corollary of the following theorem, the proof of which constitutes
the bulk of this paper. Before stating the theorem, we recall the definition of Picard
iterates. Let P0 D P0.u0/ D et�u0 and define the kth Picard iterate to be Pk D P0 �

B.Pk�1; Pk�1/. Classically, the Picard iterates converge to a solution to (1.1) whenever
(1.1) can be viewed as a perturbation of the heat equation. This is not the case for large
L3;1 data, so we do not expect convergence of Pk to u when u is a weak L3;1-solution.
Nonetheless, the Picard iterates do capture some asymptotics at t D 0 of weak L3;1-
solutions, which is the point of the following theorem.

Theorem 1.3 (Local asymptotic expansion). Assume u0 2 L3;1 and is divergence-free.
Fix x0 2 R3 and p 2 .3;1�. Assume further that u0jB 2 Lp.B/, where B D B2.x0/.
Then there exist  D .p/ 2 .0; 1/ and T D T .p; ku0kL3;1 ; ku0kLp.B// > 0 so that, for
any � 2 .0; 3=2/, t 2 .0; T /, and k D 0; 1; : : : ; k0,

ku � PkkL1.B1=4.x0//.t/ .p;u0;�;k t
ak ;
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where a0 D min¹=2; 1=2 � 3=.2p/º, akC1 D min¹�; k.1=2 � 3=.2p//C a0º, and k0 is
the smallest natural number so that

k0

�1
2
�
3

2p

�
C a0 � �:

In particular, ak0 D � and ak > ak�1 for k D 1; : : : ; k0. It follows that, for .x; t/ 2
B1=4.x0/ � .0; T /, and letting a�1 D �3=.2p/, we have

u.x; t/ D P0 C

k0�1X
kD0

O.tak /CO.t� / D

k0X
kD�1

O.tak /;

where the O.tak / terms are exactly solvable for �1 � k < k0.

Note that Theorems 1.2 and 1.3 can be extended by replacing B1=4.x0/ with B�.x0/
for any � < 2 via rescaling and a covering argument. In this extension T degrades as �
approaches 2.

Short-time asymptotic expansions have been examined by Brandolese for small self-
similar flows [11] and by Brandolese and Vigneron for both small (in which case the
expansion holds for all times) and large (in which case the data is globally sub-critical and
the expansion is up to a finite time) non-self-similar flows [13]. A follow-up paper by Bae
and Brandolese considers the forced Navier–Stokes equations [3]. In [34], Kukavica and
Ries give an expansion in arbitrarily many terms assuming the solution is smooth. In all of
the preceding papers, either the initial data is strong enough to generate smooth solutions
(e.g. it is in a sub-critical class or is small in a critical class) or the solution is assumed to
be smooth. Additionally, the terms of the asymptotic expansions depend on u.

The novelty of Theorem 1.3 is that it establishes time asymptotics without any scal-
ing assumption (cf. [7]) or requirements implying global regularity on the relevant time
domain (cf. [3, 11, 13, 34]). The asymptotics depend only on u0—they are independent of
u, which is necessary for Theorem 1.2. Because ours is a spatially local expansion, spatial
asymptotics are not relevant.

Remark 1.4. If we take ju0j.x/ . jxj�1, then, by a rescaling argument, it is possible to
show that, for any 0 < � < 3=2 and x ¤ 0,

ju � Pk0 j.x; t/ .
t�

jxj2�C1
;

where 0 < t . jxj2. This almost reaches the t3=2=jxj4 asymptotic bounds established for
discretely self-similar solutions in [7].

Long-time asymptotic expansions have also been studied extensively; see e.g. [20,21,
24, 26], the review article [12], and the references therein. The spatial asymptotics for the
stationary problem have also been studied; see e.g. [33] and the references therein.

With Theorem 1.3 in hand, we quickly prove Theorem 1.2.
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Proof of Theorem 1.2. Suppose u1 and u2 are weakL3;1-solutions with data u0. By The-
orem 1.3, we have for i D 1; 2 that

kui � Pk0kL1.B1=4.x0//.t/ .p;�;u0 t�

for all 0 < t < T . By the uniqueness of Picard iterates, we infer

ku1 � u2kL1.B1=4.x0//.t/ � ku1 � Pk0kL1.B1=4.x0//.t/C ku2 � Pk0kL1.B1=4.x0//.t/

.p;�;u0 t�

for all 0 < t < T .

Discussion of the proof: By local smoothing [27], it is not difficult to show that

ku � P0kL1.B1=2.x0//.t/ . t

2 ;

for some  D .p/ 2 .0; 1/ and across some time interval. Our main insight is that this
bound improves when P0 is replaced by higher Picard iterates, a consequence of the self-
improvement property of Picard iterates which has been used elsewhere, e.g. [1, 11, 23].
To see how this works, we note that

u � PkC1 D �B.u � Pk ; u � Pk/ � 2B.Pk ; u � Pk/: (1.4)

Each term on the right-hand side locally has an algebraic decay rate at t D 0. The product
structure and the time integral in the bilinear operator B.f; g/ leads to an improved alge-
braic decay rate for the left-hand side compared to that for u � Pk . This improvement is
only local. The far-field contributions to the flow are managed using a new a priori bound
for weakL3;1-solutions—see Corollary 2.3. The properties of weakL3;1-solutions [1,6]
are used critically throughout.

Organization: In Section 2, we establish several key lemmas, most importantly the
extension of the decay property (1.3) to other space-time Lebesgue norms. We also estab-
lish some elementary properties of Picard iterates. Section 3 contains the proof of Theo-
rem 1.3.

Remark 1.5. It is worth mentioning that, for the Euler equations, Vasseur and Yang have
explored separation rates for the energy [43] and Drivas, Elgindi, and La have explored
rates in Gevrey spaces [18].

2. Preliminaries

In this section we prove new a priori bounds for weak L3;1-solutions. See Lemmas 2.1
and 2.2. We then establish a property of Picard iterates in Lemma 2.5.

Due to scaling considerations, one predicts that if the energy-level quantities on the
left-hand side of (1.3) are replaced by lower Lebesgue or Lorentz norms, then the exponent
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on the right-hand side will increase to preserve the scaling of the inequality. With our
application in mind, it is natural to ask whether the following dimensionless estimate
holds:

sup
0<s<t

ku � Pkk
L
3
2 ;1
.s/ . t

1
2 :

This estimate is motivated by the L3=2;1–L3;1 duality pairing and, looking forward,
would improve the estimate (3.4) and allow us to achieve the separation rate t3=2 in our
main theorem. There are barriers to establishing the above decay rate, but nearby rates
are within reach as the next two lemmas show. In the lemmas, we replace u � Pk with
terms from (1.4). The proofs of the lemmas also illustrate the barriers to getting the above
estimate in L3=2;1. Once we move away from the exponent 3=2, it is sufficient to consider
Lebesgue norms instead of Lorentz norms.

Lemma 2.1. Fix q 2 .3=2; 3/, T > 0, and k 2N0. Assume u0 2 L3;1 and is divergence-
free. Let u be a weak L3;1-solution with initial data u0. Then, letting r D 2q

2q�3
,

kB.u � Pk ; u � Pk/kLr .0;T ILq;1/ .k;q;u0 T
1
2 :

The above estimate is dimensionless. By Lorentz space embeddings we trivially infer

kB.u � Pk ; u � Pk/kLr .0;T ILq;ˇ / .k;q;u0 T
1
2

for every ˇ 2 .1;1�. This includes Lr .0; T ILq/ when ˇ D q. In our application, we will
only use the Lq version of this. However, the proof for the full scale of Lorentz spaces is
no harder and we therefore include it in case it is useful elsewhere.

Proof of Lemma 2.1. By Yamazaki [44, Theorem 2:2],

kB.u � Pk ; u � Pk/kLq;1 .
Z t

0

1

.t � s/
1
2

k.u � Pk/
2
kLq;1.s/ ds

.
Z t

0

1

.t � s/
1
2

ku � Pkk
2
L2q;2

.s/ ds: (2.1)

Recall the extension of the Gagliardo–Nirenberg inequality to the Lorentz scale [17,
Corollary 2.2] which states

kf kL Qp;ˇ . Qp; Qq;ˇ kf k�L Qq;1krf k
1��
L2

; (2.2)

for ˇ > 0 and
1

Qp
D
�

Qq
C .1 � �/

�1
2
�
1

3

�
;

where 1� Qq < Qp <1 and 3=2� 3= Qp < 1. Let Qp D 2q and Qq D 2. These satisfy the above
conditions because q < 3. Then � is given by

3

2q
�
1

2
D �
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and, provided 1 < q < 3, the other conditions above are met. To summarize,

kf kL2q;2 .q kf k�L2;1krf k
1��
L2

.q kf k�L2krf k
1��
L2

;

where we used the continuous embedding L2 � L2;1. Returning to our main estimate,
this gives

kB.u � Pk ; u � Pk/kLq;1.t/ .q
Z t

0

1

.t � s/
1
2

ku � Pkk
2�
L2
kr.u � Pk/k

2.1��/

L2
ds

.k;q;u0 t
�
2

Z t

0

1

.t � s/
1
2

kr.u � Pk/k
2.1��/

L2
ds;

where we used the fact that (1.3) applies also to u � Pk as a consequence of [1, Lemma
2.2],5 in which case the suppressed constant accrues a dependence on k. Note that for
t 2 .0; T /,Z t

0

1

.t � s/
1
2

kr.u � Pk/k
2.1��/

L2
ds D

Z
R

1

jt � sj
1
2

kr.u � Pk/k
2.1��/

L2
.s/�.0;T /.s/ ds;

and the right-hand side can be viewed as I 1
2
.kr.u � Pk/k

2.1��/

L2
�.0;T //, where I 1

2
is a

Riesz potential in one dimension. The Hardy–Littlewood–Sobolev inequality states thatI 1
2
kr.u � Pk/k

2.1��/

L2
�.0;T /


Lr .R/

.r
kr.u � Pk/k2.1��/L2

�.0;T /

LQr .R/

;

where
1

r
D
1

Qr
�
1

2
:

The selection
Qr D

1

1 � �
; r D

2

1 � 2�
;

is valid for the Hardy–Littlewood–Sobolev inequality provided 3=2 < q.6 Letting r D
2q
2q�3

and putting the above observations together leads to

kB.u � Pk ; u � Pk/kLr .0;T ILq;1/ .k;q;u0 T
�
2

kr.u � Pk/k2.1��/L2
�.0;T /


LQr .R/

.k;q;u0 T
�
2 kr.u � Pk/k

2
Qr

L2.0;T IL2/

.k;q;u0 T
�
2 T

1
2Qr D T

1
2 ; (2.3)

where we used the extension of (1.3) to u � Pk again.

5We will use the fact several times and presently elaborate on how it follows from [1, Lemma 2.2].
The bounds [1, (2.36)–(2.39)] allow us to extend (1.3) to u � Pk for k > 0. Note that kr.PkC1 �
Pk/kL2.0;T IL2/ . T 1=4 is not mentioned in [1, (2.39)] but, upon inspecting the proof, it also holds as a
consequence of the energy estimate for the Stokes equation and the above-listed bounds.

6If q D 3=2, then � D 1=2 and r D 1, which is not permitted in the Hardy–Littlewood–Sobolev
inequality.
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We prove a similar result for B.Pk ; u� Pk/. This requires the well-known fact that if
u0 2 L

3;1, then Pk is in the scaling-invariant Kato classes for q 2 .3;1�, i.e.

kPkkKq
WD sup

0<t<1

t
1
2�

3
2q kPkkq.t/ .k;u0 1: (2.4)

To check this, note that the above property is immediate for P0 by the embedding L3;1 �
PB
�1C.3=p/
p;1 for 3 < p � 1, and the fact that ku0k PB�1C.3=p/p;1

� kP0kKp
[4]. Then, by the

standard bilinear estimate (see the original papers [19, 31] or [42, Chapter 5]),

kB.f; g/kLp .t/ .
Z t

0

1

.t � s/
1
2 s

3
2 .
1
q�

1
p /
kf ˝ g C g ˝ f kLq .s/ ds; (2.5)

we have

kB.Pk ; Pk/kL1.t/ .
Z t

0

1

.t � s/
1
2C

3
2q

kPk�1kLq .s/kPk�1kL1.s/ ds

.
Z t

0

1

.t � s/
1
2C

3
2q s

1� 3
2q

kPk�1kKq
kPk�1kK1 ds

. t�
1
2 kPk�1kKq

kPk�1kK1

and

kB.Pk ; Pk/kLq .t/ .
Z t

0

1

.t � s/
1
2

kPk�1kLq .s/kPk�1kL1.s/ ds

.
Z t

0

1

.t � s/
1
2 s
1� 3

2q

kPk�1kKq
kPk�1kK1 ds

. t
� 12C

3
2q kPk�1kKq

kPk�1kK1 :

Claim (2.4) follows from the above observations by induction.

Lemma 2.2. Fix q 2 .3=2; 3/, T > 0, and k 2N0. Assume u0 2 L3;1 and is divergence-
free. Let u be a weak L3;1-solution with initial data u0. Then, letting r D 2q

2q�3
,

kB.Pk ; u � Pk/kLr .0;T ILq;1/ .k;q;u0 T
1
2 :

Proof. By Yamazaki [44, Theorem 2:2] and the extension of the Hölder inequality to
Lorentz spaces,

kB.Pk ; u � Pk/kLq;1 .
Z t

0

1

.t � s/
1
2

kPk.u � Pk/kLq;1.s/ ds

.
Z t

0

1

.t � s/
1
2

.kPkk
2
L2q;1

C ku � Pkk
2
L2q;1

/ ds

.
Z t

0

1

.t � s/
1
2

.kPkk
2
L2q
C ku � Pkk

2
L2q;1

/ ds:
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Noting that we may choose ˇ D 1 in the extension of the Gagliardo–Nirenberg inequality
(2.2) to the Lorentz scale, we have the desired result for the u�Pk term by the work done
between (2.1) and (2.3) in the proof of Lemma 2.1.

We then consider Pk in L2q : By the membership of Pk in the Kato class,Z t

0

1

.t � s/
1
2

kPkk
2
L2q

ds .
Z t

0

1

.t � s/
1
2 s
1� 3

2q

kPkk
2
K2q

ds

.k;q;u0 t
3
2q�

1
2 :

Then, using r D 2q
2q�3

,

kB.Pk ; u � Pk/kLr .0;T ILq;1/ .k;q;u0
�Z T

0

.t
3
2q�

1
2 /r dt

� 1
r

.k;q;u0 T
3
2q�

1
2C

1
r .k;q;u0 T

1
2 :

Together, the above two lemmas lead to the following corollary.

Corollary 2.3. Fix q 2 .3=2;3/, T > 0, and k 2N. Assume u0 2L3;1 and is divergence-
free. Let u be a weak L3;1-solution with initial data u0. Then, letting r D 2q

2q�3
, we have

ku � PkkLr .0;T ILq/ .k;q;u0 T
1
2 :

Proof. This is immediate given Lemmas 2.1 and 2.2 and the fact that

u � Pk D �B.u � Pk�1; u � Pk�1/ � 2B.Pk ; u � Pk�1/

for k � 1.

Our next lemma is a technical statement about the decay at t D 0 of the heat semigroup.

Lemma 2.4. Let B D BR.x0/ and B 0 WD Br .x0/, where 0 < r < R < 1. Then, for
0 < t <1, ke� jx�yj24t .1 � �B/k

L
3
2 ;1
y


L1x .B 0/

.R;r e
�.R�r/2

4t :

Proof. First, assume without loss of generality that x0 D 0. Then, letting x 2 B 0,

ke�
jx�yj2

4t .1 � �B/k
L
3
2 ;1
y

D
3

2

Z 1
0

�
®
yW e�

jx�yj2

4t .1 � �B.y// � s
¯ 2
3 ds;

where � is Lebesgue measure. Note that the above set can be written as

A.x; s/ D
®
yW jx � yj �

p
�4t ln.s/; jyj > R

¯
D B.x; .�4t ln.s//

1
2 / n BR.0/;
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which is well defined because t � 0 and s � 1. Thenke� jx�yj24t .1 � �B.y//k
L
3
2 ;1
y


L1x .B 0/

.
Z 1
0

�.A.x; s//
2
3 ds


L1x .B/

.
Z e

�.R�r/2

4t

0

j�4t ln.s/j ds

. 4t
�
e
�.R�r/2

4t
.R � r/2

4t
C e

�.R�r/2

4t

�
.R;r e

�.R�r/2

4t :

The above lemma leads to a local a priori inclusion for Picard iterates.

Lemma 2.5. Let B D BR.x0/ and B 0 D Br .x0/, where 0 < r < R <1. Let u0 2 L3;1

with u0jB 2 Lq.B/, for some 3 < q � 1. For each k0 2 N0, it follows that Pk0 2
L1.0;1ILq.B 0// and

kPk0kL1.0;1ILq.B 0// � C.ku0kLq.B/; ku0kL3;1 ; q; R; r; k0/:

Proof. Note that for any � > 0, sup�<t<1 kPkkq .�;k ku0kL3;1 due to the fact that Pk 2
Kq when q > 3. We therefore only need to prove the inclusion for a short period of time.
Let ¹Bkº be a collection of concentric balls about x0 of radii ˛kC1R, for some ˛ 2 .0; 1/.
Fix k0 2 N0. Choose ˛ so that r D ˛k0C1R.

For P0 D et�u0 we have

kP0kLq.B0/.t/ D

Z
R3

1

t
3
2

e�
jx�yj2

4t u0.y/ dy


Lq.B0/

D

�Z
Bc
C

Z
B

�
t�

3
2 e�

jx�yj2

4t u0.y/ dy


Lq.B0/

. ku0kL3;1 t�
3
2

ke� jx�yj24t .1 � �B.y//k
L
3
2 ;1
y


L
q
x.B0/

C ket�.�B.y/u0/kLq.R3/: (2.6)

For the far-field term, by Lemma 2.4,ke� jx�yj24t .1 � �B.y//k
L
3
2 ;1
y


L
q
x.B0/

.R;˛;q
ke� jx�yj24t .1 � �B.y//k

L
3
2 ;1
y


L1x .B0/

.R;˛ e
�.R.1�˛//2

4t : (2.7)

For the near-field term,

ket�.u0�B/kLq.R3/ . ku0�BkLq.R3/ . ku0kLq.B/:

Therefore, P0kL1.0;t ILq.B 0// .R;˛ ku0kL3;1 C ku0kLq.B/:
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If k0 D 0, then we are done. If k0 > 0, then we use induction. Observe that

B.Pk�1; Pk�1/ D B.Pk�1�Bk�1 ; Pk�1/C B.Pk�1.1 � �Bk�1/; Pk�1/:

For the first part,

kB.Pk�1�Bk�1 ; Pk�1/kLq.Bk/.t/ .q kPkkK1
Z t

0

1

.t � s/
1
2 s

1
2

kPk�1kLq.Bk�1/.s/ ds

.k;q ku0kL3;1kPk�1kL1.0;t ILq.Bk�1//.t/:

For the other part, by the pointwise estimate for the kernel K of the Oseen tensor (see
[41, 42]),

jDm
x K.x; t/j .m

1

.jxj C
p
t /3Cjmj

; (2.8)

where m is a multi-index, we have

kB.Pk�1.1 � �Bk�1/; Pk�1/kLq.Bk/.t/

.
Z t

0

Z
Bc
k�1

Pk�1 ˝ Pk�1.y; s/

.jx � yj C
p
t � s/4

dy ds


Lq.Bk/

.q k j � j
�4
kL2.j�j>R.˛k�˛kC1//

Z t

0

kPk�1k
2
L4
ds

.R;˛;k;q ku0k2L3;1
Z t

0

s.�1C
3
4 / ds .R;˛;k;q ku0k2L3;1 t

3
4 ;

where we used the membership of Pk�1 in the Kato class K4.
We know by our base case that P0 is in L1.0;1ILq.B0//. We have just shown

B.Pk�1;Pk�1/ 2L
1.0;1ILq.B0// whenever Pk�1 is inL1.0;1ILq.Bk�1//. Hence,

Pk D P0 � 2B.Pk�1; Pk�1/ 2 L
1.0;1ILq.Bk//:

This extends up to k0 and so Pk0 2 L
1.0;1ILq.B 0//. Note that by tracing the proof, it

is clear that kPkkL1.0;1ILq.B 0// � C.ku0kLq.B/; ku0kL3;1 ; q; R; r; k0/.

Remark 2.6. Under the assumptions of Lemma 2.5 and by classical estimates for the heat
semigroup,

ket�.u0�B/kL1.B 0/.t/ . t
� 3
2q ku0kLq.B/:

Note that, combining (2.6) and (2.7),

ket�.u0.1 � �B//kL1.B 0/.t/ .T ku0kL3;1 t�
3
2q ;

provided t < T , for any given time T . Hence,

ket�u0kL1.B 0/.t/ .u0;T t
� 3
2q :
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3. Proof of Theorem 1.3

Our foundation for the proof of Theorem 1.3 is the local smoothing result of Jia and Šverák
[27], which we presently restate. Note that L2uloc is the space of uniformly locally square
integrable functions and is defined by the norm

kf k2
L2uloc
WD sup

x02R3

Z
B1.x0/

jf j2 dx:

Let E2 denote the closure of C1c in the L2uloc norm. Note that L3;1 embeds in E2 (see
the appendix of [9]). Local smoothing as presented below refers to local energy solu-
tions (a.k.a. local Leray solutions using the terminology of [27]; see also [9, 32, 37]). It is
straightforward to show that weak L3;1-solutions are local energy solutions.

Theorem 3.1 (Local smoothing [27, Theorem 3.1]). Let u0 2E2 be divergence-free. Sup-
pose u0jB2.0/ 2L

p.B2.0//with ku0kLp.B2.0//<1 and p >3. Decompose u0DU0CU 00
with divU0 D 0, U0jB4=3 D u0, suppU0 bB2.0/, and kU0kLp.R3/ <C.p;ku0kLp.B2.0///.
Let U be the locally-in-time-defined mild solution to (1.1) with initial data U0. Then there
exists a positive T D T .p; ku0kL2uloc

; ku0kLp.B2.0/// such that any local energy solution u
with data u0 satisfies

ku � U kC par. xB 1
2
�Œ0;T �/ � C.p; ku0kL2uloc

; ku0kLp.B2.0///;

for some  D .p/ 2 .0; 1/.

See also [5, 29, 30, 35] for more recent work on local smoothing which allows locally
critical data which is also locally small; the above statement on the other hand is for locally
sub-critical data. The dependence on ku0kL2uloc

can be replaced with ku0kL3;1 , which is
why L2uloc is not mentioned in Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, assumeB WDB2.x0/ is centered at x0D
0. Assume u0jB 2 Lp.B/. Let U0 be a localization of the data to B such that u0 D
U0 in B4=3.0/ � B , supp U0 b B . This is done via a Bogovskii map [22] as per the
decomposition in Theorem 3.1. Let U be the locally-in-time-defined mild solution to (1.1)
with data U0. Define ¹Bkº

k0
kD0

to be a collection of nested balls centered at 0 with radii
˛k=2 so that 1=4 D ˛k0=2, where k0 will be specified later (this is a slight abuse of
notation in that Bk0 is the ball centered at the origin of radius 1=4, which would usually
be denoted B1=4). Then, recalling P0 D et�u0,

ju � P0j.x; t/ � ju � U j.x; t/C jU � e
t�U0j.x; t/C je

t�.U0 � u0/j.x; t/

DW I1.x; t/C I2.x; t/C I3.x; t/:

In the definition of C par. xB 1
2
� Œ0; T �/, the exponent in the time-variable modulus of con-

tinuity is =2. By local smoothing (Theorem 3.1) and the fact that ku0kL2uloc
. ku0kL3;1 ,
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there exists T D T .p; u0/ > 0 so that

I1.x; t/ .p;u0 t

2 ;

for some  D .p/ 2 .0; 1/, x 2 B0, and 0 < t < T .
For I2, by (2.5), for any p 2 .3;1� and 0 < t < T ,

I2.x; t/ � kB.U;U /kL1.R3/.t/

. t
1
2�

3
2p kU k2L1.0;T ILp/ . t

1
2�

3
2p kU0k

2
Lp ;

where we possibly redefine T to make it smaller than the timescale of existence for the
strong solution to (1.1), i.e. T . kU0k�2p=.p�3/Lp , and the timescale coming from Theorem
3.1.

Noting that U0 � u0 D 0 in B4=3, the last part, I3, is broken into integrals over a shell
and a far-field region as

I3.x; t/ .
�Z

4
3�jyj<2

C

Z
jyj�2

�
t�

3
2 e�

jx�yj2

4t jU0 � u0j.y/ dy DW I31.x; t/C I32.x; t/:

For I31, using the fact that U0 was solved for via a Bogovskii map, and therefore
kU0kLp.R3/ . ku0kLp.B/, we have for all 0 < t < T and x 2 B0 that

I31.x; t/ . t�
3
2 e�

. 43�
1
2 /
2

4t kU0 � u0kLp. 43�jyj<2/
.t/ .u0;p t


2 :

For I32, by Lemma 2.4, the fact that U0.y/ � 0 for jyj � 2, and taking x 2 B0 and
0 < t < T , we have

I32.x; t/ .
Z
jyj�2

t�
3
2 e�

jx�yj2

4t ju0j.y/ dy

. t�
3
2 ku0kL3;1

ke� jx�yj24t .1 � �B.y//k
L
3
2 ;1
y


L1x .B0/

.u0 t�
3
2 e
�.2� 12 /

2

4t .p;u0 t

2 :

Therefore,
ku � P0kL1.B0/.t/ .p;u0 t

min¹ 2 ;
1
2�

3
2p º;

where the dependence on u0 is via the quantities ku0kLp.B/ and ku0kL3;1 .
We inductively extend this estimate to higher Picard iterates. Fix � as in the statement

of the theorem. Recursively define the sequence ¹akº by

akC1 D min
®
�; 1=2 � 3=.2p/C ak

¯
;

a0 D min
®
=2; 1=2 � 3=.2p/

¯
:

Assume for induction that

ku � PkkL1.Bk/ .k;˛;p;u0 t
ak
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for 0 < t < T , and the dependence on u0 is via the same quantities as above. Note that

ju � PkC1j.x; t/ � jB.u � Pk ; u � Pk/j C 2jB.Pk ; u � Pk/j

DW J.x; t/CK.x; t/:

We split J further as

J.x; t/ � jB..u � Pk/�Bk ; u � Pk/j C jB..u � Pk/.1 � �Bk /; u � Pk/j

DW J1.x; t/C J2.x; t/:

For the near field, J1, we use the inductive hypothesis to obtain that, for 0 < t < T ,

kJ1kL1.BkC1/.t/ .
Z t

0

1

.t � s/
1
2

ku � Pkk
2
L1.Bk/

ds

.k;˛;p;u0 t
1
2C2ak .k;˛;p;u0 t

1
2�

3
2pCak : (3.1)

Considering J2, for 0 < t < T , we have by (2.8) that

kJ2kL1.BkC1/.t/ .
Z t

0

Z
jx�yj> 1

2˛
k� 12˛

kC1

1

jx � yj4
ju � Pkj

2.y; s/ dy ds

.
t

.˛k � ˛kC1/4
ku � Pkk

2
L2
.t/ .˛;k;u0 t

3
2 ; (3.2)

where we used the version of (1.3) for higher Picard iterates from [1].
Attending now to K, we split and bound it as

K.x; t/ � 2jB.Pk ; .u � Pk/�Bk /j C 2jB.Pk ; .u � Pk/.1 � �Bk //j

DW K1.x; t/CK2.x; t/:

For the near-field K1 and for 0 < t < T we have

kK1kL1.BkC1/.t/ .
Z t

0

1

.t � s/
1
2C

3
2p

ku � PkkL1.Bk/.s/kPkkLp.Bk/.s/ ds:

By Lemma 2.5, sup0<t<1 kPkkLp.Bk/ < 1. Note that 1=2 C 3=.2p/ < 1 precisely if
3 < p. Hence,

kK1kL1.BkC1/.t/ .k;˛;p;u0 t
1
2�

3
2pCak (3.3)

for 0 < t < T , by the inductive hypothesis. For the far-field K2, using Corollary 2.3 and
taking x 2 BkC1, 0 < t < T , and q 2 .3=2; 3/, we have by (2.8) and O’Neil’s inequality
that

K2.x; t/ .
Z t

0

Z
Bc
k

1

.jx � yj C
p
t � s/4

ju � Pkj jPkj dy ds

.
1 � �Bk .�/
jx � �j4


Lr
0
.0;T ILq

0;q00 /
kPkkL1.0;T IL3;1/ku � PkkLr .0;T ILq/

.k;q;u0 t
1
r 0
C 1
2 ;
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where
1 D

1

q
C
1

q0
C
1

3
; 1 D

1

q
C

1

q00
; and 1 D

1

r
C
1

r 0
:

Because in Corollary 2.3 we take

r D
2q

2q � 3
;

we have
1

r 0
D

3

2q
:

Observe that 1=r 0 < 1 and

lim
q! 3

2

C

1

r 0
D 1:

Therefore, for any � < 3=2, by taking q > 3=2 sufficiently close to 3=2,

K2.x; t/ .k;�;u0;q t
� : (3.4)

Altogether, (3.1), (3.2), (3.3), and (3.4) imply that, for 0 < t < T ,

ku � PkC1kL1.BkC1/.t/ .k;˛;p;u0;q t
akC1 ;

for k � 0 and any � < 3=2, where

akC1 D min
°
�; .k C 1/

�1
2
�
3

2p

�
C a0

±
:

Choose k0 to be the smallest natural number so that

k0

�1
2
�
3

2p

�
C a0 � �:

Then ak0 D � and ak < ak�1 for k D 1; : : : ; k0. Because Bk0 WD B1=4.0/, it follows that

ku � Pk0kL1.B1=4.x0//.t/ .p;�;u0 t� :

Regarding the asymptotic expansion, we observe that for 1 � k � k0 and .x; t/ 2

B1=4.x0/ � .0; T /,
u D Pk0 CO.t� /;

and
jPk � Pk�1j.x; t/ � ju � Pkj.x; t/C ju � Pk�1j.x; t/ D O.tak�1/:

Hence,

u.x; t/ D P0 C

k0X
kD1

.Pk � Pk�1/.x; t/„ ƒ‚ …
DPk0

CO.t� /

D O.t�
3
2p /C

k0�1X
kD0

O.tak /CO.t� / D

k0X
kD�1

O.tak /;
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where we are letting a�1 D �3=.2p/ and are using Remark 2.6 to obtain the asymptotics
for P0.

Funding. The research of Z. Bradshaw is supported in part by the Simons Foundation via
a collaboration grant.
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