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Dynamics of mean-field bosons at positive temperature

Andreas Deuchert, Marco Caporaletti, and Benjamin Schlein

Abstract. We study the time evolution of an initially trapped weakly interacting Bose gas at pos-
itive temperature, after the trapping potential has been switched off. It has been recently shown in
Deuchert–Seiringer (2021) that the one-particle density matrix of Gibbs states of the interacting
trapped gas is given, to leading order in N , as N !1, by that of the ideal gas, with the conden-
sate wave function replaced by the minimizer of the Hartree energy functional. We show that this
structure is stable with respect to the many-body evolution in the following sense: the dynamics can
be approximated in terms of the time-dependent Hartree equation for the condensate wave function
and in terms of the free evolution for the thermally excited particles. The main technical novelty of
our work is the use of the Hartree–Fock–Bogoliubov equations to define a fluctuation dynamics.
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1. Introduction and main results

1.1. Background and summary

The time evolution of bosonic many-particle systems in the mean-field limit has received
a considerable amount of attention in recent years. The main theme in most works is the
study of the dynamics of Bose gases that are initially prepared in a ground state (equilib-
rium state at zero temperature) of a trapped Hamiltonian after the trap has been switched
off. It is well known, see e.g. [53,68] and references therein, that under appropriate condi-
tions on the interaction potential, ground states of interacting mean-field systems display
complete Bose–Einstein condensation (BEC), that is, the largest eigenvalue �N of the
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reduced one-particle density matrix (1-pdm) of the ground state wave function satisfies
�N =N ! 1 asN !1. It turns out that this structure is stable with respect to the dynam-
ics generated by the time-dependent many-particle Schrödinger equation. More precisely,
it can be shown that the system displays complete BEC also at time t > 0, where the con-
densate wave function (the eigenfunction related to the largest eigenvalue of the 1-pdm)
is given by the solution to the time-dependent Hartree equation.

The first results in this direction were obtained in [46] and then in [39, 40, 71]. The
case of Coulomb interactions has been studied more recently in [5, 32] and in [27] with
a relativistic dispersion relation. In [33, 38] the convergence towards the Hartree equation
has been interpreted as an Egorov-type theorem, [2] focuses on the propagation of Wigner
measures, and bounds on the rate of convergence towards the Hartree dynamics have been
obtained in [1,18,51,67]. Once the convergence towards the time-dependent Hartree equa-
tion is established, it is natural to ask whether it is possible to make statements about the
fluctuations around the Hartree dynamics. As shown in [6, 16, 44–46, 56], for mean-field
systems it is possible to approximate the dynamics of particles outside the condensate
by the time evolution generated by a Bogoliubov Hamiltonian. This, in particular, allows
one to obtain a norm approximation for the wave function, and not only for the 1-pdm.
A systematic expansion for correlation functions in terms of the solution of the Hartree
equation and a Bogoliubov two-point function that approximates the original dynamics to
arbitrary precision has been obtained in [12].

Another interesting scaling limit for the Bose gas is the Gross–Pitaevskii (GP) limit,
which can be used to describe modern experiments with cold alkali gases. In contrast
to the mean-field limit, where particle collisions are frequent but weak, particles interact
rarely but strongly in the GP limit. These strong collisions induce microscopic correlations
between the particles that are the main reason why the GP limit is more challenging from
a mathematical point of view than the mean-field limit. It has been shown in [57, 58] that
ground states of trapped gases display complete BEC also in the GP limit. Moreover, in
the series of works [28–31] it has been established that there is complete BEC also at later
times and that the condensate wave function is given by the solution to the time-dependent
GP equation. For other results in this direction, we refer to [7,11,14,15,19–23,41–43,47,
49, 50, 52, 60, 61, 63]. More references concerning the dynamics of BECs in the above
scaling limits can be found in the lecture notes [9] and in the review article [62].

Here we are interested in the dynamics of mean-field bosons, initially prepared in an
equilibrium state at positive temperature (Gibbs state). Just above the critical temperature
for BEC, correlation functions of the many-body Gibbs state have been shown to con-
verge, in the mean-field limit, to correlation functions of the invariant measure associated
with the nonlinear Hartree equation, see [34, 36, 37, 54, 55]; observe that, in dimensions
d D 2; 3, this requires an appropriate renormalization of the interaction. In [35], also
time-dependent correlations have been proven to converge. In the present paper, we are
primarily interested in initial data prepared at equilibrium below the critical temperature,
where the BEC coexists with a thermal cloud and both phases contain a macroscopic
number of particles. In [25], it has been recently shown that at temperatures lower than
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(but comparable with) the critical temperature of the corresponding ideal (noninteracting)
gas, the 1-pdm of the Gibbs state of a trapped mean-field system can be approximated by
the 1-pdm of the ideal gas, where the condensate wave function has been replaced by the
minimizer of the Hartree energy functional. Our goal here is to investigate the dynamics
of such positive temperature states, after the trapping potential has been switched off. In
our main theorem we show that the 1-pdm of the evolved state is given, to leading order,
by that of the ideal gas, propagated with the noninteracting time evolution, with the con-
densate wave function replaced by the solution of the time-dependent Hartree equation. In
particular, the numbers of particles inside the condensate and outside the condensate are
preserved by the time evolution, to leading order.

1.2. Notation

We denote by h�; �i the inner product in L2.Rd /, and by B.L2.Rd // the space of bounded
operators on L2.Rd /. The L2-norm of a function and the norm of an operator in
B.L2.Rd // are both denoted by k � k. If p ¤ 2, we denote by k � kp the Lp norm of
a function, and kAkLp D .TrŒ.A�A/p=2�/1=p is the pth Schatten norm of the operator
A 2B.L2.Rd //, for p 2 Œ1;1/. The corresponding Banach spaces of compact operators
with finite Lp-norm are denoted by Lp . Sobolev spaces are denoted by W n;p or by Hn

if p D 2, with k � kW n;p and k � kHn denoting the corresponding Sobolev norms. For the
Fourier transform in Rd we use the notation, and the convention,

F f .k/ D Of .k/ D
1

.2�/d=2

Z
Rd

eik�xf .x/ dx:

For quantities a, b depending on N and/or t , we use the notation a . b to say that there
exists a constant C > 0 with a � Cb. If a . b and b . a we write a � b.

1.3. The model

In this article we consider the time evolution of an initially trapped Bose gas, prepared in
a positive temperature state (an approximate Gibbs state), after the trapping potential has
been switched off. We start by introducing our setup.

We will be interested in quantum states with a fluctuating particle number. These states
are naturally defined on the bosonic Fock space

F.L2.R3// D
1M
nD0

L2sym.R
3n/;

where L2sym.R
3n/ denotes the closed linear subspace of L2.R3n/ consisting of those func-

tions ‰.x1; : : : ; xn/ that are invariant under any permutation of the coordinates x1; : : : ;
xN 2 R3. As usual, we have L2sym.R

0/ D C. By a�x and ax we denote the creation and
annihilation operators (actually operator-valued distributions) on F that respectively cre-
ate and annihilate a particle at point x 2 R3. They satisfy the canonical commutation
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relations
Œax ; a

�
y � D ı.x � y/; Œax ; ay � D 0 D Œa

�
x ; a
�
y �;

where ı.x/ denotes the delta distribution with unit mass at x D 0. Quantum states on the
bosonic Fock space with an expected number of particles equal to N are elements of the
set

�N D
®
� 2 B.F/ j � � 0; Tr� D 1; TrŒN �� D N

¯
;

where N D
R

R3 a
�
xax dx denotes the particle number operator on F. The reduced one-

particle density matrix (1-pdm)  of a state � 2 �N is defined via its integral kernel by

.x; y/ D TrŒa�yax��

and defines a nonnegative operator on L2.R3/ with Tr  D N .
The time evolution we are interested in is governed by the Heisenberg equation

i@t�t D ŒHN ; �t �; (1.1)

where
HN D

Z
R3

ra�xrax dx C
1

2N

Z
R6

v.x � y/a�xa
�
yayax dx dy (1.2)

and ŒA; B� D AB � BA denotes the commutator of two linear operators A and B . The
prefactorN�1 in front of v guarantees that, for particles in the condensate, the kinetic and
the potential energy are comparable. Any solution to (1.1) with initial condition �0 2 �N
can be written in terms of the strongly continuous unitary group e�iHN t as

�t D e
�iHN t�0e

iHN t : (1.3)

The fact that HN commutes with N guarantees TrŒN �t � D TrŒN �0�. As explained in
Section 1.1, we are interested in the solution (1.3) for initial data describing equilibrium
states of trapped gases at positive temperature. Let us now recall some known properties
of such states.

1.4. Equilibrium states of trapped Bose gases

Equilibrium states of trapped Bose gases can be defined as minimizers, in �N , of the Gibbs
free energy functional

F .�/ D TrŒH trap
N �� � TS.�/;

with the von Neumann entropy S.�/ D �TrŒ� ln.�/�;
(1.4)

Here,

H
trap
N D HN C

Z
R3

w.x/a�xax dx

D

Z
R3

a�x.��C w.x//ax dx C
1

2N

Z
R6

v.x � y/a�xa
�
yayax dx dy (1.5)
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denotes the Hamiltonian of the trapped system and T > 0 is the temperature. The potential
w.x/ is trapping, that is, w.x/!1 for jxj ! 1. Under suitable assumptions on w and
v, the Hamiltonian (1.5) is bounded from below in Fock space and the minimum of (1.4)
is attained for the Gibbs state

�G D
exp.�.H trap

N � �N /=T /

TrŒexp.�.H trap
N � �N /=T /�

;

where the chemical potential � 2 R is chosen (depending on N ) so that TrŒN �� D N .
This leads to the (grand canonical) free energy

F.T;N / D min
�2�N

F .�/ D �T ln TrŒexp.�.H trap
N � �N /=T /�C �N: (1.6)

Before discussing what is known about approximate minimizers of the Gibbs free
energy functional F , let us briefly recall some well-known facts about the ideal (nonin-
teracting) trapped Bose gas, that is, the system described by the Hamiltonian in (1.5) with
v D 0. In the following we assume that the trapping potential w satisfies

lim
jxj!1

w.x/

Ljxjs
D 1 (1.7)

for two constants s > 0 and L > 0. The 1-pdm  id of the Gibbs state �G of the ideal gas
equals

 id
D

1

exp..��C w � �N /=T / � 1
: (1.8)

The chemical potential �N satisfies �N < e, where e denotes the lowest eigenvalue of
�� C w, and is chosen such that Tr  id D N holds. By definition, the system displays
BEC if and only if the largest eigenvalue N0.T; N / of  id is of order N in the limit
N !1, that is, if and only if

lim
N!1

N0.T;N /

N
D g0 > 0; where N0.T;N / D

1

exp..e � �N /=T / � 1
. (1.9)

The trapped ideal Bose gas is well known to exhibit a BEC phase transition with critical
temperature given by

Tc.s/ D
N 1=˛

.�˛�.˛/�.˛//1=˛
; (1.10)

where

� D
2L�3=s

3�

Z 1

0

.1 � x/3=2x2 dx and ˛ D
6C 3s

2s
:

Here �.˛/ denotes the Gamma function and �.˛/ is the Riemann zeta function. More
precisely, let us define tc.s/ D Œ.�˛�.˛/�.˛//1=˛��1, that is, tc.s/ D N�1=˛Tc.s/. If T D
�N 1=˛ with � � 0, then we have g0 D Œ1 � .�=tc.s//˛�C with Œx�C D max¹x; 0º. This
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is a consequence of the definition of N0.T; N / and the eigenvalue asymptotics of ��C
w; see e.g. [66, Theorem XIII.81].1 Alternatively, the statement follows on combining
[17, Theorem 2.1] (critical temperature in the canonical ensemble), [26, Lemma A.2]
(equivalence of ensembles), and [66, Theorem XIII.81].

An important property of the ideal gas at temperature T D �N 1=˛ with fixed � 2
.0; tc.s// is that its density  id.x; x/ displays a two-scale structure. The condensed par-
ticles are described by the ground state of ��C w. Accordingly, their density varies on
a length scale of order 1, independent of N . On the other hand, since the free energy
is to leading order proportional to NT , see e.g. [25], excited particles carry on average
an energy of order T . They are therefore characterized by the much larger length scale
R� 1, which can be obtain by equating T D Rs . This yields R � N 2=.6C3s/. The den-
sity %th of the thermal cloud is proportional to %th � N=R

3 � T 3=2 � N 3s=.6C3s/ � N ,
that is, the thermal cloud is much more dilute than the condensate.

As recently shown in [25], this two-scale structure is preserved if we add a weak inter-
action to the Hamiltonian, as in (1.5). To make this statement precise, we introduce, for a
function � in the form domain of ��C w and g 2 Œ0; 1�, the Hartree energy functional

EH.�/ D h�; .��C w/�i C
g

2

Z
R6

j�.x/j2v.x � y/j�.y/j2 dx dy: (1.11)

The function � is interpreted as the condensate wave function and the parameter g as
the condensate fraction. In the following we assume that v is such that the functional
EH is bounded from below and admits a unique minimizer in the set of functions with
L2.R3/-norm equal to 1. We denote the minimum and the minimizer of EH by EH.g/

and �H, respectively. Using [25, Theorem 1.3 and Lemma 7.1], it can be shown2 that for
0 � T . Tc.s/, with Tc.s/ defined in (1.10) as the critical temperature of the ideal trapped
gas, the free energy in (1.6) satisfies

lim
N!1

N�1jF.T;N / � F0.T;N / �N0.T;N /E
H.g0/j D 0:

Here N0.N; T / and g0 are chosen as in (1.9), and F0.T; N / denotes the free energy in
(1.6) with v D 0. The effect of the interaction can be observed, to leading order inN , only
in the condensate, because the thermal cloud is much more dilute. Another consequence of
the results in [25] is that for any approximately minimizing sequence �N 2 �N satisfying

lim
N!1

N�1jF .�N / � F0.T;N / �N0.T;N /E
H.g0/j D 0; (1.12)

the corresponding 1-pdm N is such that

lim
N!1

N�1
N �  idQ �N0.T;N /j�

H
ih�H
j


L1 D 0

1The theorem in the reference is stated for s > 1 but the proof applies for all s > 0.
2The result in the reference is stated for the special choice w.x/ D x2. However, the techniques that

have been used to prove this result also apply to the more general trapping potentials we introduced in the
discussion of the ideal gas.
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holds, where Q D 1 � j 0ih 0j with the ground state  0 of ��C w. That is, to leading
order in N , N is the 1-pdm of the ideal gas, where the eigenfunction of its largest eigen-
value (the condensate wave function) has been replaced by the minimizer of the Hartree
energy functional. This, in particular, implies that the interacting systems display a BEC
phase transition with critical temperature given by that of the ideal gas to leading order.
It also indicates that the density of the Gibbs state �G has the same two-scale structure as
that of the ideal trapped gas.

1.5. Construction of the initial data

In this subsection we define our class of initial states. Our definition is motivated by the
discussion in Section 1.4.

Let � 2 L2.R3/ and let  2 B.L2.R3// be a positive trace class operator. We think
of � as a condensate wave function and of  as a 1-pdm describing excitations of the
condensate. The particle number n.�; / of the pair .�; / is defined by

n.�; / D

Z
R3

j�.x/j2 dx C Tr :

Let G be the unique quasi-free state on F that satisfies ŒG;N � D 0 and has  as 1-pdm.
We also define the Weyl transformation

W.�/ D exp.a�.�/ � a.�//: (1.13)

The above definitions allow us to associate to each pair .�; / the state

�.�; / D W.�/GW.�/� (1.14)

on the bosonic Fock space. The kernel of its 1-pdm is given by

TrŒa�yax�.�; /� D �.x/�.y/C .x; y/;

which, in particular, implies TrŒN �.�;/�D n.�;/. The state �.�;/ is still a quasi-free
state, in the sense that higher-order correlations can be computed through the Wick theo-
rem, summing over all possible partitions in groups of one or two creation and annihilation
operators. Choosing � D

p
N0.T;N /�

H and  D  idQ, it is simple to check that �.�; /
provides a good approximation for the free energy of the system in the sense of (1.12). In
our main theorem, we will describe the evolution in (1.3) for initial data given by suitable
perturbations of a quasi-free state of the form �.�; /, under appropriate assumptions on
.�; /.

To this end, we first use the Araki–Woods representation, see [3,24], to recast a mixed
state � 2 �N as a vector ‰ on the doubled Fock space F ˝ F. This will allow us to
apply the formalism of Bogoliubov transformations and fluctuation dynamics. Note that
a similar strategy was used in [8] to study the mean-field evolution of fermionic mixed
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states. The vector ‰ is conveniently defined in terms of the spectral decomposition � DP1
˛D1 �˛j ˛ih ˛j as

‰ D

1X
˛D1

�1=2˛  ˛ ˝  ˛; (1.15)

where we define the complex conjugate of  ˛ in the position-space representation. It
satisfies

TrŒA�� D h‰; .A˝ 1/‰i (1.16)

for A 2 B.F/. It should be noted that this representation is far from being unique. When
we replace the vectors  ˛ in the second tensor factor in (1.15) by elements of another
orthonormal basis of F, we obtain an equivalent representation of �.�; / on F ˝ F in
the sense that (1.16) continues to hold.

For the next step in our construction we need the unitary equivalence

UF.L2.R3//˝ F.L2.R3// D F.L2.R3/˚ L2.R3//

defined by the relations U�˝�D z�, where z� denotes the vacuum vector of F.L2.R3/
˚ L2.R3//,

U.a.f /˝ 1/U� D a.f ˚ 0/ DW a`.f /;

U.1˝ a.f //U� D a.0˚ f / DW ar .f /:
(1.17)

Thus, every state � 2 �N can be represented by a normalized vector z‰ D U‰ 2

F.L2.R3/˚ L2.R3// satisfying

TrŒA�� D hz‰U.A˝ 1/U� z‰i:

If A is expressed in terms of creation and annihilation operators a�, a, then U.A˝ 1/U�

is obtained from A by replacing all operators a� with a�
`

and all operators a with a`. Let
us now consider, in particular, the state (1.14). An important observation is that the quasi-
free state G can be described, on F .L2.R3/ ˚ L2.R3//, by the vector z‰G D T ./ z�,
where

T ./ D exp
�Z

R6

k .x; y/a
�
`;xa

�
r;y dx dy � h.c.

�
(1.18)

and k .x; y/ denotes the integral kernel of the operator k D arcsinh.
p
/. We observe

that T ./ is a Bogoliubov transformation and satisfies the relations

T �./a`.f /T ./ D a`.uf /C a
�
r .vf /;

T �./ar .f /T ./ D ar .uf /C a
�
` .vf /;

(1.19)

where u D
p
1C  and v D

p
 . With (1.19), it is clear that z‰G is quasi-free (it satisfies

the Wick theorem) and that it has the same 1-pdm as G, in the sense that

h z‰G ; a
�
`;ya`;x

z‰Gi D .x; y/:
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Recalling (1.14), we find that the quasi-free state �.�; /, now with a condensate de-
scribed by the wave function �, can be described, on F.L2.R3/˚L2.R3// by the vector
z‰.�; / D W.�/T ./ z� (sometimes called the purification of �.�; /), in the sense that

TrŒA�.�; /� D hz�; T �./W�.�/U.A˝ 1/U�W.�/T ./ z�i: (1.20)

Here we introduced, on F.L2.R3/˚ L2.R3//, the Weyl operator

W.�/ D exp.a�` .�/C a
�
r .
N�/ � h:c:/ (1.21)

satisfying the relations

W�.�/a`.f /W.�/ D a`.f /C hf; �i;

W�.�/ar .f /W.�/ D ar .f /C hf; N�i:
(1.22)

The validity of (1.20) can be checked similarly to the comparable equality for G, using
(1.19) and (1.22).

In our main theorem, we will study the dynamics of initial states ��.�;/, represented,
on F.L2.R3/˚ L2.R3//, by the vector W.�/T ./� , for a normalized � 2 F.L2.R3/˚
L2.R3//. That is, the state ��.�; / is defined so that, for every observable A 2 B.F/,

TrŒA��.�; /� D h�; T �./W�.�/U.A˝ 1/U�W.�/T ./�i:

Our assumptions on �,  , � will make sure that ��.�; / is a perturbation of the quasi-
free state �.�; / (in particular, we will require the expectation of the number of particles
operator and sufficiently many of its moments to stay bounded, in the state �, uniformly
in N ). From (1.3), we conclude that the evolution ��;t .�; / D e�iHN t��.�; /e

iHN t of
the initial data ��.�; / is such that

TrŒA��;t .�; /�

D h�; T �./W�.�/ exp.iLN t /U.A˝ 1/U� exp.�iLN t /W.�/T ./�i; (1.23)

with the Liouvillian
LN D HN;` �HN;r : (1.24)

The operators HN;` and HN;r are defined as the original Hamiltonian HN in (1.2) with
a�x , ax replaced by a�

`;x
, a`;x and a�r;x , ar;x , respectively. In other words, on F.L2.R3/˚

L2.R3//, we are interested in the evolution e�iLN tW.�/T ./� generated by LN on the
initial data W.�/T ./� .

Motivated by the properties of approximate equilibrium states of trapped Bose gases
with a trapping potential satisfying (1.7) for some s > 0, we will make the following
assumptions on the pair .�; /.

Assumptions 1.1. We assume that the pair .�; / is such that � 2 H 3.R3/ and
TrŒ.1 ��/3=2.1 ��/3=2� < C1. Moreover, n.�; / D N and the following holds for
s > 0:
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(A) The condensate wave function � can be written as � D c.N / Q�, with a fixed nor-
malized Q� 2 L2.R3/. The N -dependent constant c.N / determines the expected
number of particles in the condensate.

(B) The 1-pdm  obeys Z
R6

j O.p; q/j dp dq . T 3=2c .s/

with Tc.s/ as in (1.10), and where O.p; q/ denotes the integral kernel of  in
Fourier space.

(C) The operator norm of  satisfies

kk . Tc.s/:

Part (A) in the above assumption allows us to choose Q� D �H minimizing (1.11) with
g in (1.9), and c.N / D

p
N0.N; T /, as defined in (1.9). Point (B) implies that the density

satisfies j.x; x/j . T
3=2

c .s/, uniformly in x 2 R3. In fact, it also implies (and this will be
important for us) a bound (uniform in t ) for the density of the free evolution ei�te�i�t

and, more generally,

sup
x;y2R3

j.ei�te�i�t /.x; y/j �

Z
R6

j O.p; q/j dp dq . T 3=2c .s/:

As we will see in Section 2, point (B) is satisfied by  idQ with the 1-pdm  id of the ideal
gas in (1.8) with the choice w.x/ D jxjs and with Q D 1 � j 0ih 0j, where  0 denotes
the ground state of ��C jxjs . Point (C) in Assumption 1.1 is satisfied by  idQ too.

We conclude this section with a brief discussion of the relevant scales related to our
time evolution. In the whole discussion we assume that T D �Tc.s/ with � 2 .0; 1/. This
in particular implies that we have order N particles in the condensate and order N parti-
cles in the thermal cloud. We are interested in following the dynamics of the condensate,
and therefore consider times of order 1. This is motivated by the fact that the energy per
particle in the condensate and the related length scale are both of order 1, independent of
N ; see Section 1.4. In contrast, the energy per particle in the thermal cloud is proportional
to T and the related velocity is of the order T 1=2 � N s=.6C3s/ � 1. Thus, particles in
the thermal cloud move much faster than particles in the condensate. For particles in the
condensate, the N�1 factor appearing in (1.2) in front of the interaction produces a mean-
field potential and leads to the Hartree equation. In contrast, the typical length scale R of
the thermal cloud scales as N 2=.6C3s/ � 1 (see Section 1.4); hence the thermal cloud is
much more dilute and we can expect that, to leading order in N , it moves according to the
free evolution. Our main result confirms this heuristic picture.

1.6. Main result

Our main result is captured in the following theorem.
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Theorem 1.2. We assume that v 2 L1.R3/ \ W 1;p.R3/ with p > 3 satisfies v.x/ D
v.�x/ for a.e. x 2 R3 and that Ov 2 L1.R3/, where Ov denotes the Fourier transform
of v. Moreover, we assume that the pair .�; / satisfies Assumption 1.1 with 0 < s � 3=2
and that the fluctuation vector � is such that h�; .N` CNr /

44�i . 1 holds with N`=r DR
a�
`=r;x

a`=r;x dx. Then there exists a constant c > 0 such that the 1-pdm �;t of the state
��;t .�; / defined in (1.23) satisfies�;t � ei�te�i�t

� j�t ih�t j


L1 .
p
NT 3=4c .s/ exp

�
c exp.c exp.ct//

�
; (1.25)

where k � kL1 denotes the trace norm and Tc.s/ is defined in (1.10). The function �t is the
solution to the time-dependent Hartree equation

i@t�t .x/ D .��CN�1v � j�t .x/j2/�t .x/ with initial datum �0.x/ D �.x/: (1.26)

Remark 1.3. We have the following remarks concerning Theorem 1.2.

(1) The right-hand side of (1.25) scales for 0< s � 3=2 asN .1Cs/=.2Cs/ �N 5=7�N ,
which should be compared to Tr �;t D N D TrŒei�te�i�t C j�t ih�t j�. That is,
the 1-pdm ei�te�i�t C j�t ih�t j yields a good approximation for �;t for fixed
t > 0 and large N .

(2) The time dependence of the right-hand side of (1.25) can be replaced by
C" exp.c exp.c.t C t3C"/// for " > 0 provided we have either v � 0 or Ov � 0.
More details can be found in Remark 3.6 in Section 3.2 below.

(3) We can obtain a better approximation for �;t by letting ! D j�ih�j C  and
considering the solution to the time-dependent Hartree equation

i@t!t D Œ��CN�1v � %!t .x/; !t � (1.27)

with !tD0 D ! and %!t .x/ D !t .x; x/. Then, proceeding as in our proof of The-
orem 1.2, we could show that

k�;t � !tkL1 .
p
NTc.s/ exp

�
c exp.c exp.ct//

�
:

In this case the dependence on N on the right-hand side is optimal, already for
t D 0. In fact, taking � D U.1C a�r .

N�=k�k//�=
p
2, with U defined in (1.17), a

short computation shows that

TrŒN ��.�; /� � TrŒN ��.�; /� �
h�;
p
�i

k�k
: (1.28)

Assume kk � Tc.s/ and let  denote the normalized eigenfunction of  asso-
ciated with its largest eigenvalue. Choosing � D c.N / so that k�k �

p
N , the

right-hand side of (1.28) is of order
p
NTc.s/.

(4) The assumption on � appearing in Theorem 1.2 is needed for sD 3=2. For s < 3=2,
fewer moments are sufficient.
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(5) The restriction 0 < s � 3=2 is required because, if Assumption 1.1 (C) is violated
for sD 3=2, the largest eigenvalue of  might grow so fast withN that our analysis
breaks down; see the discussion after (5.17).

(6) The theorem holds, in particular, for the following choice of .�;/: Let hD��C
jxjs with 0 < s � 3=2. The 1-pdm  is defined by  D  idQ with  id in (1.8),
where the projection Q removes the largest eigenvalue of  id (the condensate),
and the temperature T in the definition of  id obeys T . Tc.s/. The condensate
wave function � is given by

p
N � TrŒ idQ� times a minimizer of the Hartree

energy functional in (1.11). In Section 2 we show that the pair .�; / satisfies all
assumptions of Theorem 1.2. It is also possible to consider traps with s > 3=2, in
particular the harmonic trapw.x/D x2, if we restrict our attention to temperatures
T . Tc.3=2/� Tc.2/. Our analysis applies above the critical temperature as well,
where � D 0 and kk � 1; in this case, we can take any s 2 .0I1/ and we only
need weaker assumptions on � (and we get better bounds).

1.7. Proof strategy and organization of the article

For the convenience of the reader we give in this section a short summary of the main
steps leading to a proof of Theorem 1.2.

In Section 2 we show that the initial data in Remark 1.3 (5), consisting of the minimizer
of the Hartree energy functional in (1.11) and the 1-pdm of the ideal gas trapped by the
potential w.x/ D jxjs with s 2 .0; 3=2�, satisfies Assumption 1.1.

Our many-body analysis is based on the definition of fluctuation dynamics around the
dynamics generated by the Hartree–Fock–Bogoliubov (HFB) equations; see e.g. [4, 10].
We do not give a derivation of these equations from quantum mechanics but rather use
them as a technical tool. In Section 3 we introduce the HFB equations, we recall their
well-posedness, as established in [4], and we show how they can be approximated by
the much simpler effective dynamics appearing in Theorem 1.2, if the initial data satisfies
Assumption 1.1. We also prove a bound for solutions of the HFB equations that guarantees
the diluteness of the thermal cloud during the time evolution and is a crucial ingredient
for our many-body analysis.

Section 4 is devoted to the construction of the fluctuation dynamics around the HFB
equations and to the proof of Theorem 1.2. We start by recalling some basic facts about
Weyl and Bogoliubov transformations in Section 4.1, and afterwards define the fluctuation
dynamics in Section 4.2. In Section 4.3 we prove a bound for the trace-norm difference of
�;t and the 1-pdm related to the solution to the HFB equations in terms of the expected
number of excitations in the time-dependent fluctuation vector. A bound for this quantity
is stated without proof in Proposition 4.3 in Section 4.4. We end Section 4 by showing
how Proposition 4.3 implies Theorem 1.2.

In Section 5 we give a proof of Proposition 4.3 that is based on a Grönwall argu-
ment for the expected number of particles in the fluctuation dynamics, and we start our
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analysis in Section 5.1 with the computation of its generator. In Section 5.2 we introduce
a fluctuation dynamics with a cutoff in the particle number and prove the equivalent of
Proposition 4.3 for this dynamics. Section 5.3 is devoted to the proof of weak a priori
bounds for the original fluctuation dynamics without a cutoff, that are later used in Sec-
tion 5.4 to show that the two fluctuation dynamics are close in a suitable sense. Finally, in
Section 5.5 we use the results of the previous sections to give a proof of Proposition 4.3,
thus concluding the proof of Theorem 1.2.

2. Properties of the 1-pdm of the ideal gas and of Hartree minimizers

In this section we provide an example of a physically relevant initial pair .�; / satisfy-
ing Assumption 1.1. To this end, we choose  as the 1-pdm of the ideal gas described
by the Schrödinger operator h D �� C jxjs for some s 2 .0; 2� and � as the mini-
mizer of the Hartree functional (1.11), again with h D ��C jxjs and with a sufficiently
regular interaction potential v (Theorem 1.2 describes the evolution of perturbations of
the state �.�; / in (1.14), if s 2 .0I 3=2�). The next proposition shows the validity of
Remark 1.3 (5).

Proposition 2.1. Let h D ��C jxjs , for some s 2 Œ0; 2�, and

 D
1

eˇ.h��/ � 1
Q

with a chemical potential � 2 R satisfying h > � and with Q D 1 � j 0ih 0j denoting
the projection on the orthogonal complement of the ground state  0 of h. Then, for every
ˇ > 0, there exists a constant C <1 (depending on ˇ), with

Tr.1 ��/3=2.1 ��/3=2 � C: (2.1)

Moreover, denoting by O.p; q/ the integral kernel of  in Fourier space, we find kk .
Tc.s/ and Z

R6

j O.p; q/j dp dq . T 3=2c .s/ (2.2)

for all ˇ > 0 with ˇ�1 . Tc.s/.
Let v 2W 1;p.R3/ for some p > 3 and let � 2H 1.R3/ with k�k D 1 solve the Hartree

equation
.��C jxjs C g.v � j�j2/.x//�.x/ D �H�.x/ (2.3)

with g 2 Œ0; 1� in the sense of distributions, for some �H 2 R. Then we have k�kH3 .
.1C kvk1 C �

H/3=2.

In order to prove Proposition 2.1, we will make use of the following lemma.
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Lemma 2.2. Let w 2 W 1;1
loc .R

3/ be real valued, with w.x/ � �C , for some C � 0. Let
hw D ��C w, denote � D 1C C , and assume the operator inequality

jrwj2 . .� C hw/: (2.4)

Then we have

.1 ��/2; w2 . .� C hw/
2; .1 ��/3 . .� C hw/

3: (2.5)

Remark. In applications we will use Lemma 2.2, with w.x/ D jxjs and with w.x/ D
jxjs C g.v � j�j2/.x/, for s 2 Œ0; 2�.

Proof of Lemma 2.2. Pick u 2 C1c .R3/. A short computation shows

hu; .� ��C w/2ui D hu; Œ.1 ��/2 C .C C w/2�ui C 2hru; .C C w/rui

C 2Rehu; .rw/rui C 2hu; .C C w/ui: (2.6)

With (2.4), we find

jhu; .rw/ruij � k.rw/uk kruk . hu; .� C hw/ui:

Estimating .� C hw/ � ".� C hw/2 C C" and using w � �C we conclude, from (2.6),
that

hu; .� C hw/
2ui & hu; Œ.1 ��/2 C .C C w/2�ui: (2.7)

Since hw is essentially self-adjoint on C1c .R
3/ (see for instance [65, Theorem X.28]),

this proves the first bound in (2.5). To show the second bound, consider

.1 ��/3 D .1 ��/2 � r � .1 ��/2r:

From (2.7), we have .1 ��/2 . .� C hw/
2 and therefore that

�r � .1 ��/2r . �r � .� C hw/2r
D �..hw C �/r C Œr; hw �/ � .r.hw C �/ � Œr; hw �/

. .� C hw/.��/.� C hw/C jŒr; hw �j
2:

With �� � � C hw , Œr; hw � D rw and assumption (2.4), we conclude that

.1 ��/3 . .� C hw/
3:

We will also need the following estimate of the Fourier transform of the heat kernel
associated with h.

Lemma 2.3. Let kt .p; q/ denote the Fourier transform of the kernel of the operator
exp.�th/ for t > 0. The function .p; q/ 7! kt .p; q/ is nonnegative a.e. and satisfiesZ

R6

kt .p; q/ dp dq � .�=t/3=2: (2.8)
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Proof. Let us define Pt .v/ as .2�/�3=2 times the Fourier transform of the function
exp.�t jxjs/. We have

R
Pt .v/ dv D 1, and from [66, Theorem XIII.52 and Example 2

on p. 220] we know that it is nonnegative. Accordingly, Pt .v � w/ defines a probability
transition kernel.3 Moreover, we have the Markov propertyZ

R3

Pt1.v � z/Pt2.z � w/ dz D Pt1Ct2.v � w/

for t1; t2 � 0.
From the Trotter product formula, see e.g. [64, Theorem VII.31], we know that

exp.�th/ D lim
n!1

�
exp.�t jxjs=n/ exp.t�=n/

�n (2.9)

holds in the strong operator topology. Let us denote by Kn.v; w/ the Fourier transform
of the integral kernel of the n-dependent operator on the right-hand side of the above
equation. With the notation q0 D v and qn D w, we can write

0 � Kn.v; w/ D

Z � nY
iD1

Pt=n.qi�1 � qi /

�
exp

�
�

nX
iD1

tq2i
n

�
dq1 : : : dqn�1

�

Z � nY
iD1

Pt=n.qi�1 � qi /

��
1

n

nX
iD1

exp.�tq2i /
�

dq1 : : : dqn�1

D
1

n

nX
iD1

Z
Pit=n.v � q/ exp.�tq2/P.n�i/t=n.q � w/ dq: (2.10)

To get from the first to the second line, we applied Jensen’s inequality. Let �;  2
L2.R3/\L1.R3/ be two nonnegative functions. In combination, (2.9) and (2.10) imply
the bound

0 �

Z
R6

�.v/kt .v; w/ .w/ dv dw D lim
n!1

Z
R6

�.v/Kn.v; w/ .w/ dv dw

� lim inf
n!1

1

n

nX
iD1

Z
R9

�.v/Pit=n.v � q/ exp.�tq2/P.n�i/t=n.q � w/ .w/ dv dq dw

� k k1k�k1

Z
R3

exp.�tq2/ dq D k k1k�k1.�=t/3=2: (2.11)

The first bound in (2.11) implies that kt .p; q/ � 0 holds for a.e. .p; q/ 2 R6. The bound
in (2.8) follows from (2.11), when we take the supremum over all functions �,  with
0 � �; � 1 on both sides. This proves Lemma 2.3.

We are now ready to show Proposition 2.1.

3The functionPt .v�w/ is the transition kernel of an s-stable Levy process; see e.g. [48, Example 6.5].
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Proof of Proposition 2.1. To show (2.1), we remark that, with the choice w.x/D jxjs , for
s 2 .0I 2�, we have jrw.x/j D sjxjs�1 and therefore

jrw.x/j2 . Œw.x/C jxj�2 C 1� . .1C h/

with h D ��Cw.x/. In the last step, we applied Hardy’s inequality. Thus, we can apply
Lemma 2.2 to estimate

Tr.1 ��/3=2.1 ��/3=2 �
.1 ��/3=2 1

.1C h/3=2

2 Tr.1C h/3:

The claim follows by noticing (with ¹ej º1jD0 indicating the eigenvalues of h) that

Tr.1C h/3 D
1X
jD1

1

eˇ.ej��/ � 1
.1C ej /

3 . Tr e�ch .
Z

R3

e�cw.x/=2dx <1 (2.12)

for some constant c > 0, where we used e1 > e0 > � in the first step, see [66, Theo-
rem XIII.47], and in the second step the bound for the trace of the propagator of the heat
equation below [13, equation (6.5)]. The bound kk . Tc.s/ follows from .h � �/Q �

e1 � e0 DW �e > 0, which implies that

kk �
1

exp.ˇ�e/ � 1
�

1

ˇ�e
. Tc.s/:

Next we show (2.2). We use here the notation  j for the eigenfunction of h corre-
sponding to the eigenvalue ej , for j 2N. The identity .exp.x/� 1/�1D

P1
˛D1 exp.�˛x/

for x > 0 allows us to write

 D

1X
˛D1

�
exp.�ˇ.h � �/˛/ � exp.�ˇ.e0 � �/˛/j 0ih 0j

�
:

Using the above representation of  and the notation kt from Lemma 2.3, we estimate

j O.p; q/j �

MX
˛D1

exp.ˇ�˛/kˇ˛.p; q/C
1X

˛DMC1

1X
iD1

exp.�ˇ˛.ei � �//j O i .p/j j O i .q/j

C

MX
˛D1

exp.�ˇ.e0 � �/˛/j O 0.p/j j O 0.q/j; (2.13)

whereM 2N. An application of Lemma 2.3 shows that theL1.R6/-norm of the first term
on the right-hand side is bounded by

MX
˛D1

exp.ˇ�˛/
Z

R6

kˇ˛.p; q/ dp dq �
MX
˛D1

exp.ˇe0˛/
� �
ˇ˛

�3=2
� .�=ˇ/3=2 exp.ˇe0M/

1X
˛D1

˛�3=2: (2.14)
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To obtain the first bound we used e0 �� > 0, and for the second one e0 > 0. The L1.R6/-
norm of the term in the last line is bounded by

MX
˛D1

exp.�ˇ.e0 � �/˛/
Z

R6

j O 0.p/j j O 0.q/j �Mk O 0k
2
1: (2.15)

The norm on the right-hand side is bounded by the H 2-norm of  0. Since  0 is an eigen-
function of h, we conclude with Lemma 2.2 that it is finite. It remains to consider the
second term on the right-hand side of (2.13). To that end, with �e D e1 � e0 > 0 we
estimate
1X

˛DMC1

1X
iD1

exp.�ˇ˛.ei � �//j O i .p/j j O i .q/j D
1X
iD1

e�ˇ.MC1/.ei��/

1 � e�ˇ.ei��/
j O i .p/j j O i .q/j

�
1

ˇ�e

1X
iD1

e�ˇM.ei��/j O i .p/j j O i .q/j:

Integrating over p, q, the right-hand side is bounded by

1

ˇ�e

1X
iD1

e�ˇM.ei��/
�Z
j O i .p/j dp

�2
.

1

ˇ�e

1X
iD1

e�ˇM.ei��/h i ; .1 ��/
2 i i

.
1

ˇ�e

1X
iD1

e�ˇM.ei��/.1C ei /
2:

Choosing M 2 N with M > ˇ�1, (2.2) follows from the last equation (proceeding as in
(2.12) to bound the sum over i ), together with (2.13), (2.14), and (2.15).

Finally, let us show the bound on k�kH3 , for a normalized � solving the Hartree
equation (2.3). Let w.x/D jxjs C g.v � j�j2/.x/ and hw D��Cw. Since v 2 L1.R3/
(by Sobolev embedding), we have kv � j�j2k1 � kvk1. We also have (choosing p0 < 3=2
such that 1=p C 1=p0 D 1)

kr.v � j�j2/k1 � krvkpk�k
2
2p0 . krvkpk�k2H1 :

Therefore, we can apply Lemma 2.2, with w D jxjs C g.v � j�j2/.x/ and � D 1C kvk1
to show that

k.1 ��/3=2�k . k.� C hw/3=2�k D .� C �H/3=2;

which proves the claim.

3. The Hartree–Fock–Bogoliubov equations

As explained in Section 1.7, we use the HFB equations to define our fluctuation dynamics
in Section 4.2. Here we introduce the equations and collect some of their properties that
we need for the many-body analysis.
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For the triple .�t ; t ; ˛t / consisting of a condensate wave function �t 2 L2.R3/, a
positive trace class operator t (a 1-pdm), and a pairing function ˛t 2 L2.R6/, the HFB
equations take the form

i@t�t D h.t /�t C k.˛
�t
t /�t ;

i@tt D Œh.
�t
t /; t �C k.˛

�t
t /˛

�
t � ˛tk.˛

�t
t /
�;

i@t˛t D Œh.
�t
t /; ˛t �C C Œk.˛

�t
t /; t �C C k.˛

�t
t /;

(3.1)

where ŒA;B�C D A NB�CB NA�, � D  C j�ih�j, and ˛� D ˛C j�ih N�j. By NA we denote
the operator with the complex conjugate integral kernel in position space. Moreover, we
use the notation

h./ D ��C b./; k.˛/ D
1

N
v]˛; (3.2)

where
b./ D

1

N
v � % C

1

N
v];

v]� denotes the operator with kernel v.x � y/�.x;y/, and the density associated with the
1-pdm  is given by % .x/D .x; x/. Here v is an interaction potential satisfying suitable
assumptions to be specified later. The mean-field scaling we are interested in is reflected
in the factor N�1 multiplying v in the equations.

The HFB equations arise naturally as a quasi-free approximation of the many-body
dynamics (which does not preserve quasi-freeness) for quasi-free initial data. Their deriva-
tion from many-body dynamics is an interesting problem. At zero temperature, several
rigorous results are available, in the mean field as well as more singular scalings. At pos-
itive temperature, this problem cannot be addressed by our analysis. Indeed, using (4.25)
we can only show that the HFB equations approximate the many-body dynamics, at the
level of the 1-pdm, up to errors of order

p
NTc.s/. This bound is optimal for our choice

of initial states, as pointed out in Remark 1.3 (3). However, at this level of precision we
cannot resolve the difference between the HFB evolution and the simpler Hartree evolu-
tion (1.27). In (3.5) we bound the difference by O.

p
NTc.s//, but it is actually expected

to be much smaller. For more information about the HFB equations and their derivation
from many-body dynamics, we refer the reader to [4, 10, 23, 41–45].

3.1. Well-posedness

In this subsection we state conditions that guarantee the well-posedness of the HFB equa-
tions. We define M D .1 ��/1=2, and for j � 0 we introduce the linear spaces

H j;1
DM�jL1M�j and H j;2

D
®
˛ 2 L2

jM j˛; ˛M j
2 L2

¯
with Lj defined in Section 1.2, which are Banach spaces when endowed with the norms

kkH j;1 D kM j M j
kL1 and k˛kH j;2 D kM j˛kL2 C k˛M j

kL2 ;
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respectively. These norms are natural in the sense that, if  D j ih j is a rank-one pro-
jection, then kkH j;1 D k k2

H j , while k˛kH j;2 reduces to the standard Sobolev norm on
H j .R6/ when ˛ is identified with its integral kernel. We also define the Banach space
.Xj ; k � kXj /, where

Xj D H j
�H j;1

�H j;2 and k.�; ; ˛/kXj D k�kH j C kkH j;1 C k˛kH j;2 :

The following holds true; see [4, Theorem 5.1].

Theorem 3.1. Let .�0; 0; ˛0/ 2 X3 and suppose that

�
.1/
0 D

�
0 ˛0
˛0 1C 0

�
is positive, i.e. �.1/0 � 0 as an operator on L2.R3/˝ L2.R3/ (this is always the case if
0, ˛0 are the reduced 1-pdm and pairing density of a state � on F.L2.R3//). Assume
also that the interaction potential v satisfies v.x/ D v.�x/ and v 2 W 1;p.R3/ for some
p > 3. Then there exists a unique triple .�t ; t ; ˛t / 2 C 1.Œ0;1/; X1/ \ C 0.Œ0;1/; X3/
satisfying (3.1) with initial datum .�0; 0; ˛0/ in the classical sense in X1. Moreover, the
number of particles

n.�t ; t / D

Z
R3

j�t .x/j
2 dx C Tr t

and the energy

E.�t ; t ; ˛t / D TrŒh.�tt /t �

C
1

N
TrŒ.v � j�t j2 C v]j�t ih�t j/t �C

1

2N
TrŒ.v � %t C v]t /t �

C
1

N

Z
R6

v.x � y/j˛t .x; y/C �t .x/�t .y/j
2 dx dy

are conserved along the evolution, i.e. n.�t ; t / D n.�0; 0/, E.�t ; t ; ˛t / D E.�0;

0; ˛0/, for every t > 0. Finally, the dynamics is positivity preserving, that is,

�
.1/
t D

�
t ˛t
˛t 1C t

�
� 0 (3.3)

for every t > 0.

3.2. Approximation of the HFB dynamics

Although we use the HFB equations to define our fluctuation dynamics in Section 4.2,
we ultimately want to show convergence of the full many-body dynamics to a simpler
effective dynamics, with �t solving the time-dependent Hartree equation (1.26), t D
ei�t0e

�i�t evolving freely, and ˛t D 0. To reach this goal, we will use the next proposi-
tion.
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Proposition 3.2. Let the pair .�0; 0/ satisfy Assumption 1.1 with s 2 .0;1/, and let the
interaction potential v satisfy the assumptions of Theorem 1.2. Moreover, let .�t ; t ; ˛t /
denote the solution to the HFB equations (3.1) with initial datum .�0; 0; 0/. Then there
exists a constant c > 0 independent of N and t such that

kt � 
F
t kL1 . N 1=2T 3=4c .s/t exp.ct/;

k�t � �
H
t k . T 3=4c .s/t exp.ct/;

(3.4)

where �H
t is the solution to the time-dependent Hartree equation in (1.26) with initial

condition �0 and F
t D e

i�t0e
�i�t .

Remark 3.3. We have the following remarks:

(1) Our assumptions on .�0; 0/ and v guarantee that the HFB equations are well
posed; see Theorem 3.1. It is well known that they also guarantee the global well-
posedness of the time-dependent Hartree equation in H 1.R3/, and that the L2-
mass of the solution is preserved along the Hartree flow.

(2) As explained in Section 1.4, the scaling of the critical temperature with the number
of particles is given by Tc.s/ � N

1=˛ D N
2s
6C3s . In particular, T 3=4c .s/� N 1=2

for every s > 0, showing that the bounds given in (3.4) are nontrivial.

(3) It is possible to get better rates than those in (3.4) if one compares to a slightly
more complicated evolution for the 1-pdm. Indeed, let !0 D j�0ih�0j C 0, and
define !t to be the solution of the Hartree equation (1.27) with initial datum
!tD0 D !0. Then we have the improved boundj�t ih�t j C t � !tL1 . N 1=2T 1=2c .s/t exp.ct/; (3.5)

for some constant c > 0 independent of t and N . As a consequence, one gets
a better (indeed, optimal) rate of convergence in (1.25) by replacing j�H

t ih�
H
t j C

ei�t0e
�i�t with !t in the statement; see Remark 1.3 (3). Estimate (3.5) is proven

by a suitable adaptation of the Grönwall-type argument given below, but since
we do not need it for our main result, we omit the details. We only highlight
that the gain from using (1.27) is that it allows one to replace the direct term
Œv � j�t j

2; t � appearing on the right-hand side of (3.9), which we can only bound
by N 1=2T

3=4
c .s/ (see (3.16)), with some simpler terms that can be shown to be of

order N 1=2T
1=2

c .s/.

Proof of Proposition 3.2. We introduce the notation �t D .�t ; t ; ˛t /, and we write the
HFB equations as

i@t�t D A�t C f .�t /; (3.6)

where
A� D .���; Œ��; �; Œ��; ˛�C/ (3.7)
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is a linear operator on X0 with domain D.A/ D X2, and f 2 C.X0/ is defined by

f .�/ D
�
b./� C k.˛�/ N�;

Œb.�/; �C .k.˛�/˛� � ˛k.˛�/�/;

Œb.�/; ˛�C C Œk.˛
�/; ˛�C C k.˛

�/
�
:

Applying Duhamel’s formula to (3.6) and (1.26) we get

�t � �
H
t D �i

Z t

0

ei.t�s/�
�� 1
N
v � j�sj

2�s �
1

N
v � j�H

s j
2�H
s

�
C b.s/�s C k.˛s/�s

�
ds; (3.8)

t � 
F
t D �i

Z t

0

ei.t�s/��Œb.�ss /; s�C k.˛�ss /˛�s � ˛sk.˛�ss /��e�i.t�s/� ds; (3.9)

˛t D �i
Z t

0

ei.t�s/.�xC�y/
�
Œb.�ss /; ˛s�C C Œk.˛

�s
s /; s�C C k.˛

�s
s /
�

ds: (3.10)

Here we identify ˛t with its kernel ˛t .x; y/ in L2.R6/ and we denote by �x C �y the
Laplacian acting on this space.

Let us start by deriving a bound for the right-hand side of (3.8). We use the identity

1

N
v � j�sj

2�s �
1

N
v � j�H

s j
2�H
s D

� 1
N
v � .j�sj

2
� j�H

s j
2/
�
�H
s

C

� 1
N
v � j�sj

2
�
.�s � �

H
s /;

Young’s inequality, and the conservation of the particle number for the Hartree and HFB
equations, to see that 1

N
v � j�sj

2�s �
1

N
v � j�H

s j
2�H
s

 . N�1kvk1.k�sk
2
C k�H

s k
2/k�s � �

H
s k

. N�1kvk1.k�0k
2
C k0kL1/k�s � �

H
s k

. k�s � �H
s k:

In the second term on the right-hand side of (3.8) we write

b.s/�s D b.
F
s /�s C b.s � 

F
s /�s;

and we estimate the two terms separately. First, we bound the operator norm of

b.F
s / D N

�1v � %F
s
CN�1v]F

s :

Using Assumption 1.1 (B), we see that

kN�1v � %F
s
k D N�1kv � %F

s
k1 � N

�1
kvk1 sup

x2R3

jF
s .x; x/j . N�1T 3=2c .s/: (3.11)
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Moreover, for any  2 L2.R3/ we can estimate

N�1j.v]F
s / .x/j � N

�1

Z
R3

jv.x � y/j jF
s .x; y/j j .y/j dy

� N�1 sup
x;y2R3

jF
s .x; y/j

Z
R3

jv.x � y/j j .y/j dy

. N�1T 3=2c .s/.jvj � j j/.x/;

which implies

N�1k.v]F
s / k . N�1T 3=2c .s/

jvj � j j . N�1T 3=2c .s/k k:

For the operator norm of b.s � F
s / we have the bound

N�1kv � .%s � %F
s
/k D N�1kv � .%s � %F

s
/k1

� N�1kvk1

Z
R3

js.x; x/ � 
F
s .x; x/j dx . N�1ks � 

F
s kL1 ;

and

N�1kv].s � 
F
s /k � N

�1

�Z
R6

v.x � y/2js.x; y/ � 
F
s .x; y/j

2 dx dy
�1=2

� N�1kvk1ks � 
F
s kL2 . N�1ks � 

F
s kL1 ; (3.12)

where in the last step we used the fact that the Hilbert–Schmidt norm of a trace-class
operator is bounded by its trace norm. Collecting (3.11)–(3.12) we deduce

kb.F
s /k . N�1T 3=2c .s/;

kb.s � 
F
s /k . N�1ks � 

F
s kL1 :

(3.13)

The above bounds and the conservation of the particle number imply

kb.s/�sk . N�1=2.k�0k
2
C k0kL1/1=2

� .N�1=2T 3=2c .s/kvk1 CN
�1=2
kvk1ks � 

F
s kL1/

. N�1=2T 3=2c .s/kvk1 CN
�1=2
kvk1ks � 

F
s kL1 :

Similarly, we estimate

kk.˛s/�sk � N
�1
kvk1k˛skL2k�sk . N�1=2kvk1k˛skL2 :

We have thus shown that

k�t � �
H
t k . N�1=2T 3=2c .s/t

C

Z t

0

.k�s � �
F
s k CN

�1=2
ks � 

F
s kL1 CN�1=2k˛skL2/ ds: (3.14)
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We now turn to the right-hand side of (3.9). Using the bounds in (3.13) again, we find

kŒb.�ss /; s�kL1 � kb.�ss /skL1 C ksb.
�s
s /kL1

� 2
�
kskL1.kb.s � 

F
s /k C kb.

F
s /k/C

b.j�sih�sj/F
s


L1

C
b.j�sih�sj/ks � F

s kL1

�
. kvk1ks � F

s kL1 C T 3=2c .s/kvk1

CN�1k.v � j�sj
2/F

s kL1 CN�1
.v]j�sih�sj/F

s


L1

C
b.j�sih�sj/ks � F

s kL1 : (3.15)

The third term on the right-hand side of (3.15) is bounded by

N�1k.v � j�sj
2/F

s kL1 � N�1kF
s k
1=2

L1 k.v � j�sj
2/.F

s /
1=2
kL2

. N�1=2
�Z

R3

j.v � j�sj
2/.x/j2jF

s .x; x/j dx
�1=2

. N�1=2T 3=4c .s/kv � j�sj
2
k

. N 1=2T 3=4c .s/kvk . N 1=2T 3=4c .s/: (3.16)

The exchange term can be estimated byv]j�sih�sjL1
�

Z
Ov.p/

jeip�:�siheip�:�sjL1
dp � kOvk1k�sk2;

thus,
N�1

v]j�sih�sjF
s


L1

. kF
s k . Tc.s/:

As for the term on the last line of (3.15), we haveb.j�sih�sj/ks � F
s kL1 � N�1

�
kv � j�sj

2
k1 C

v]j�sih�sj�ks � F
s kL1

. kvk1ks � F
s kL1 :

Going back to (3.15) we find

kŒb.�ss /; s�kL1 . ks � F
s kL1 CN 1=2T 3=4c .s/C T 3=2c .s/C Tc.s/:

To bound the last two terms in the integral on the right-hand side of (3.9), we use the
elementary inequality k˛sk2L2 � .1C Tr s/Tr s , which follows from (3.3). We find

kk.˛�ss /˛
�
s kL1 � kk.˛�ss /kL2k˛skL2

� N�1kvk1.k�sk
2
C .1C ksk

2
L1/

1=2/k˛skL2 . k˛skL2 ; (3.17)

and similarly
k˛sk.˛

�s
s /
�
kL1 . k˛skL2 :
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We conclude that

kt � 
F
t kL1 . .N 1=2T 3=4c .s/C T 3=2c .s/C Tc.s//t

C

Z t

0

.ks � 
F
s kL1 C k˛kL2/ ds: (3.18)

We also need to control the operator norm of (3.9). Thus, we observe that

kb.�ss /k � N
�1
kv � .%s C j�sj

2/k1 CN
�1
v].s C j�sih�sj/L2

. N�1kvk1.kskL1 C k�sk
2/ . kvk1; (3.19)

which implies

kŒb.�ss /; s�k � 2kb.
�s
s /k ksk . .ks � 

F
s k C Tc.s//:

Similarly, we find
kk.˛�ss /˛

�
s k . kk.˛�ss /˛

�
s kL1 . k˛skL2 ;

where we used (3.17) in the second step. We conclude that

kt � 
F
t k . Tc.s/t C

Z t

0

.ks � 
F
s k C k˛skL2/ ds: (3.20)

Finally, we combine (3.10), (3.19), kk.˛�ss /k � kk.˛
�s
s /kL2 . kvk1, and kABkL2 �

kAk kBkL2 to see that

k˛tkL2 �

Z t

0

kŒb.�ss /; ˛s�C C Œk.˛
�s
s /; s�C C k.˛

�s
s /kL2 ds

. Tc.s/t C

Z t

0

.ks � 
F
s k C k˛skL2/ ds (3.21)

holds.
Let us define the norm

k�k� D T
�3=4

c .s/k�k CN�1=2T �3=4c .s/kkL1 C T �1c .s/.kk C k˛kL2/:

In combination, (3.14), (3.18), (3.20), and (3.21) imply

k�t � �t;0k� � Ct CK

Z t

0

k�s � �s;0k�;

for constants C; K > 0 independent of t and N . Here, �t D .�t ; t ; ˛t /, while �t;0 D
.�H
t ; 

F
t ; 0/. With an application of Grönwall’s lemma we conclude that

k�t � �t;0k� � Cte
Kt ;

which proves the claim.
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Assumption 1.1 guarantees the diluteness of the thermal cloud when propagated with
the free time evolution at all times. We now prove that this property continues to hold for
the 1-pdm evolved with the HFB equations up to a double exponential growth in time. The
precise statement is captured in the following proposition.

Proposition 3.4. Let the pair .�0; 0/ satisfy Assumption 1.1 with s 2 .0; 2�, and let v be
as in Theorem 1.2. Moreover, let .�t ; t ; ˛t / denote the solution to the HFB equations in
(3.1), with initial datum .�0; 0; 0/. Then there exist constants c; C > 0 such that

sup
x;y2R3

jt .x; y/j . T 3=2c .s/ exp.c exp.ct//

holds for t > 0 and N � C exp.c exp.ct//.

In order to prove Proposition 3.4 we need two lemmas. The first one concerns the
growth of the L1-norm of the Fourier transform of the solution to the time-dependent
Hartree equation in time.

Lemma 3.5. Assume that �t is a solution to the time-dependent Hartree equation in
(1.26) with initial condition �0 2 H 2.R3/ and v satisfies the same assumptions as in
Theorem 1.2. There exists a constant c > 0 such that

k O�tk1 . k O�0k1 exp.ct/;

where O�t denotes the Fourier transform of �t .

Proof. We use Duhamel’s formula to write �t as

�t D e
i�t�0 � i

Z t

0

ei.t�s/��.N�1v � j�sj2/�s� ds:

Taking the L1-norm in Fourier space on both sides, we find

k O�tk1 � k O�0k1 CN
�1

Z t

0

k Ov bj�sj2k1k O�sk1 ds

� k O�0k1 CN
�1
k Ovk1

Z t

0

k
b
j�sj

2
k1k O�sk1 ds

� k O�0k1 CN
�1
k Ovk1k�0k

2

Z t

0

k O�sk1 ds . k O�0k1 C
Z t

0

k O�sk1 ds;

where we used the conservation of the L2-mass in the last step. An application of Grön-
wall’s lemma yields

k O�sk1 . k O�0k1 exp.ct/;

which proves the claim.
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Remark 3.6. If v � 0 or Ov � 0 it can be shown that there exists a constant C > 0 depend-
ing only on k�0k2, EH.�/, with EH defined in (1.11), and " > 0 such that

k�tkH2.R3/ � C.1C jt j
2C"/k�0kH2.R3/: (3.22)

This result follows from the analysis in [69, Section 5]. It allows us to replace the exponen-
tial time dependence in Lemma 3.5 by the polynomial time dependence on the right-hand
side of (3.22) (because the H 2.R3/-norm of a function dominates the L1.R3/-norm
of its Fourier transform), the double exponential time dependence in Proposition 3.4
by exp.c.t C t3C"//, and the triple exponential time dependence in Theorem 1.2 by
exp.c exp.c.t C t3C"///.

The second lemma is a generalization of Grönwall’s inequality which follows from
[72, Corollary 3.2].

Lemma 3.7. Let p 2 N n ¹0; 1º, T > 0, and let a, b, c be continuous, nonnegative, and
nondecreasing functions on Œ0; T � such that ea.t/.p�1/T < 1 C b.t/=.a.t/p�1c.t// for
every t 2 Œ0; T �. If u 2 L1Œ0; T � satisfies u.t/ � 0 and

u.t/ � a.t/C b.t/

Z t

0

u.s/ ds C c.t/
Z t

0

up.s/ ds

for a.e. t 2 Œ0; T � then, for a.e. t 2 Œ0; T �, we have

u.t/ � a.t/
h
1 �

a.t/p�1c.t/

b.t/
.e.p�1/b.t/t � 1/

i� 1
p�1
eb.t/t :

Remark 3.8. As a consequence of the power-law nonlinearity in the integral inequality
in Lemma 3.7, the bound for u.t/ blows up as t approaches the smallest time T � such that

T � D b.T �/�1.p � 1/�1 ln
�
1C b.T �/=.a.T �/p�1c.T �//

�
:

For times satisfying 0 < t � T �=2, the nonlinearity is irrelevant and functions obeying
the integral inequality satisfy the standard Grönwall estimate

u.t/ . a.t/ exp.b.t/t/:

We are now prepared to give the proof of Proposition 3.4.

Proof of Proposition 3.4. For a Hilbert–Schmidt operator  we use the notation kkd DR
j O.p; q/j dp dq, where O.p; q/ denotes the Fourier transform of the integral kernel of  .

For � 2 L2.R3/ we also define k�kd D k O�k1. We will prove that there exists a constant
c > 0, independent of t and N , such that

ktkd . T 3=2c .s/ exp.c exp.ct//;

k˛tkd . T 3=2c .s/ exp.c exp.ct//;

k�t � �
H
t kd . exp.c exp.ct//
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holds for t > 0, andN large enough depending on t , which implies the claim. To this end,
we start by noticing that the operator e�iA.t�s/, with A as in (3.7), acts in Fourier space
by multiplication with a complex phase, and therefore preserves the norm k � kd for �,  ,
and ˛, for every t > s > 0. Thus (3.9) implies, for t > 0,

ktkd � k
F
t kd C

Z t

0

kb.�ss /s C k.˛
�s
s /˛

�
s � ˛sk.˛

�s
s /
�
kd ds; (3.23)

with F
t defined below (3.4). Young’s convolution inequality implies

k.N�1v � %

�s
s
/skd D N

�1
k. Ovb%


�s
s
/ �1 Os.�; �/k1

� N�1k Ovk1.k�0k
2
C k0k1/kskd . kskd;

where f �i Os.�; �/ denotes the convolution of f with the i th variable of the kernel
Os.p; q/. A straightforward computation shows that, for any Hilbert–Schmidt operator  ,
we have

1.v]/.p; q/ D .2�/�3
Z

R3

Ov.�/ O.q � �; p � �/ d�: (3.24)

It follows that

kN�1.v]�ss /skd

D N�1
Z

R6

ˇ̌̌̌Z
R3

Ov.�/
�
Os.z � �; p � �/C O�s.z � �/ O�s.p � �/

�
Os.z; q/ d� dz

ˇ̌̌̌
dp dq

� N�1kskd �

�
sup
z2R3

Z
R6

j Ov.�/j
�
j Os.z � �; p � �/j C j O�s.z � �/ O�s.p � �/j

�
d� dp

�
:

Bounding j Ov.�/j � kvk1 and integrating first in p and then in �, we find

kN�1.v]�ss /skd � N
�1
kvk1.kskd C k�sk

2
d/kskd

. N�1kvk1.kskd C k�s � �
H
s k
2
d C k�

H
s k
2
d/kskd

. N�1ksk
2
d CN

�1
kskdk�s � �

H
s k
2
d C exp.ct/kskd:

In the last step we used Lemma 3.5. Similarly, we see that

kk.˛�s /˛�s � ˛sk.˛
�s /�kd � N

�1
kvk1.k˛skd C k�sk

2
d/k˛skd

� N�1kvk1.k˛skd C k�s � �
H
s k
2
d C k�

H
s k
2
d/k˛skd

. N�1k˛sk
2
d CN

�1
k˛skdk�s � �

H
s k
2
d C exp.ct/k˛skd:

In combination, (3.23) and the above bounds imply

ktkd � k
F
t kd C C exp.ct/

Z t

0

.kskd C k˛skd/ ds

C CN�1
Z t

0

�
ksk

2
d C k˛sk

2
d C k�s � �

H
s k
2
d.kskd C k˛skd/

�
ds: (3.25)
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Next we consider the right-hand side of (3.10). Estimates similar to those above show

kŒb.�ss /; ˛s�C C Œk.˛
�s
s /; s�Ckd

. N�1kvk1
�
.k�s � �

H
s k
2
d C k�

H
s k
2
d/.kskd C k˛skd/C kskdk˛skd

�
. N�1.kskd C k˛skd/k�s � �

H
s k
2
d C exp.ct/.kskd C k˛skd/CN

�1
kskdk˛skd

and

kk.˛�ss /kd � N
�1
k Ovk1.k˛skd C k�s � �

H
s k
2
d C k�

H
s k
2
d/

. N�1k˛skd CN
�1
k�s � �

H
s k
2
d C exp.ct/;

which implies

k˛tkd . exp.ct/C exp.ct/
Z t

0

.kskd C k˛skd/ ds

CN�1
Z t

0

�
ksk

2
d C k˛sk

2
d C k�s � �

H
s k
2
d.1C kskd C k˛skd/

�
ds: (3.26)

Finally, we consider (3.8). We use the identity

j�sj
2
� j�H

s j
2
D �s.�s � �H

s /C .�s � �
H
s /�

H
s ;

Lemma 3.5, and Young’s inequality to see that

k.N�1v � .j�sj
2
� j�H

s j
2//�H

s kd � N
�1
 Ov�.b�s �c�H

s / �
b�s C .�s � �H

s /
c
�H
s

�
1
k�H
s kd

. N�1=2 exp.ct/kvk2k�s � �H
s kd.k�sk C k�

H
s k/

. exp.ct/k�s � �H
s kd;

as well as

k.N�1v � j�sj
2/.�s � �

H
s /kd � N

�1
k Ov bj�sj2k1k�s � �H

s kd . k�s � �H
s kd:

Out of the remaining terms on the right-hand side of (3.8), the direct term is bounded by

kN�1v � %s�skd D N
�1
k. Ovc%s / � O�sk1 � N�1k Ovc%sk1k O�sk1:

We use the identity c%s .�/ D .2�/�3=2 R Os.p; p � �/ dp to see that

kc%sk1 � .2�/�3=2 Z
R6

j Os.p; p � �/j dp d� . kskd;

which implies

kN�1v � %s�skd . N�1kvk1kskd.k�s � �
H
s kd C k�

H
s kd/

. N�1kskdk�s � �
H
s kd CN

�1=2 exp.ct/kskd:
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Using (3.24) another time, we can bound the remaining term on the right-hand side of
(3.8) by

kN�1v].s C ˛s/�skd

� N�1
Z

R3

ˇ̌̌̌Z
R6

Ov.�/
�
O.q � �; p � �/C Ǫ .q � �; p � �/

�
O�s.q/ d� dq

ˇ̌̌̌
dp

� N�1kvk1.kskd C k˛skd/.k�s � �
H
s kd C k�

H
s kd/

. N�1.kskd C k˛skd/k�s � �
H
s kd CN

�1=2 exp.ct/.kskd C k˛skd/:

In combination, (3.8) and the above estimates imply

k�t � �
H
t kd . exp.ct/

Z t

0

�
k�s � �

H
s kd CN

�1=2.kskd C k˛skd/
�

ds

CN�1
Z t

0

k�s � �
H
s kd.kskd C k˛skd/ ds: (3.27)

Let us define

u.t/ D T �3=2c .s/ktkd C T
�3=2

c .s/k˛tkd C k�t � �
H
t kd:

We collect the bounds in (3.25), (3.26), and (3.27), and use the assumption s � 2 to find

u.t/ . 1C exp.ct/T �3=2c .s/C exp.ct/
Z t

0

u.z/ dz

CN�1T 3=2c .s/

Z t

0

u.z/2 dz CN�1
Z t

0

u.z/3 dz

. exp.ct/C exp.ct/
Z t

0

u.z/ dz CN�1
Z t

0

u.z/3 dz

for every t > 0 and some c > 0 independent of t andN . For any t > 0, the assumptions of
Lemma 3.7 are satisfied with T D t , as long as N � C exp.c exp.ct//, and we conclude
that, under this condition,

u.t/ . exp.c exp.ct//;

which proves the claim.

4. Fluctuation dynamics

As explained in Section 1.7, the proof of Theorem 1.2 is based on the construction of a
suitable fluctuation dynamics on the double Fock space F.h˚ h/ with h D L2.R3/. In
this section we construct the fluctuation dynamics and discuss some of its properties. We
start by recalling a few well-known facts about Weyl operators and Bogoliubov transfor-
mations.
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4.1. Weyl operators and Bogoliubov transformations

We recall the definition of the Weyl operatorW.�/ acting on F.h/ in (1.13), as well as the
Weyl operator W.�/ acting on F.h˚ h/ in (1.21). Both operators act as shifts on creation
and annihilation operators, i.e.

W.�/�axW.�/ D ax C �.x/; W.�/�a�xW.�/ D a
�
x C �.x/;

and

W.�/�a`;xW.�/ D a`;x C �.x/; W.�/�a�`;xW.�/ D a�`;x C �.x/;

W.�/�ar;xW.�/ D ar;x C �.x/; W.�/�a�r;xW.�/ D a�r;x C �.x/:
(4.1)

To express (4.1) in a more compact form, we denote x D .�; x/ 2 ¹`; rº � R3 and for a
given � 2 h we define ���W ¹`; rº �R3 ! C by

���.x/ D ���.�; x/ D

´
�.x/; � D `;

�.x/; � D r:

This allows us to write (4.1) as

W.�/�axW.�/ D ax C ���.x/; W.�/�a�x W.�/ D a�x C ���.x/: (4.2)

Next we recall some well-known facts about Bogoliubov transformations. We are
interested in the case where the one-particle Hilbert space is given by h or by h˚ hD h2.
The complex conjugate NA of an operator A 2B.hn/ with n 2 ¹1; 2º is defined as the oper-
ator whose integral kernel, in position space, is the complex conjugate of the kernel of A.
For n D 1; 2, a bounded linear map �W .hn ˚ hn/! .hn ˚ hn/ of the form

� D

�
U xV

V xU

�
(4.3)

is called a symplectomorphism if

���� D � and ���� D � ; with � D

�
1 0

0 �1

�
: (4.4)

Here 1 denotes the identity operator on hn. If V is a Hilbert–Schmidt operator, � is imple-
mentable on F.hn/, see [4, 59, 70], i.e. there exists a unitary T� on F.hn/ such that

T �� a.f /T� D a.Uf /C a
�. xV Nf /;

T �� a
�.f /T� D a

�.Uf /C a. xV Nf /;

hold for f 2 hn. The operator T� is called the Bogoliubov transformation corresponding
to �. For Bogoliubov transformations on F.h2/ it is convenient to introduce a compact
notation, similar to (4.2). For a symplectomorphism �W .h2 ˚ h2/ ! .h2 ˚ h2/ of the
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form (4.3), with U; V 2 B.h2/, we denote by U.x; y/, V.x; y/ the kernels4 of U , V , that
is,

U.x; y/ D U�;� 0.x; y/;

where x D .�; x/ and y D .� 0; y/, and the same for V . We also define Ux.y/ D U.y; x/,
Vx.y/ D V.y; x/. With this notation, we can write

T �� axT� D a.Ux/C a
�.Vx/;

T �� a
�
xT� D a

�.Ux/C a.Vx/:
(4.5)

4.2. Construction of the fluctuation dynamics

In this subsection we use the Hartree–Fock–Bogoliubov (HFB) equations in (3.1) to define
our fluctuation dynamics. As explained in Section 1.7, we do not intend to derive the HFB
equations, but rather to use them as an intermediate step between the many-body evolution
and the simple effective dynamics appearing in Theorem 1.2 (or in Remark 1.3 (3)).

First of all, we discuss how our reference state, associated with the solution of the
HFB equations, can be conveniently expressed as a vector in F.h2/. Let .�; / satisfy
Assumption 1.1 and let .�t ; t ; ˛t / be the solution of the HFB equations (3.1), with initial
datum .�; ; 0/. We denote by Gt the density matrix of the quasi-free state on F.h/, with
1-pdm t and pairing density ˛t , and we define its generalized 1-pdm by

�
.1/
t D

�
t ˛t
˛t 1C t

�
(4.6)

(the condensate will be added later on, through conjugation with a Weyl operator). As
proven in [4, Proposition 3.9], we can write

�
.1/
t D U�t �

.1/
0 Ut (4.7)

with

�
.1/
0 D

�
 0

0 1C N

�
and an implementable symplectomorphism

Ut D

�
�t #t
#t �t

�
(4.8)

satisfying the equation

i@tU�t D �ƒ.�
.1/
t /U�t ; with ƒ.�.1/t / D

 
h.

�t
t / k.˛

�t
t /

Nk.˛
�t
t /

Nh.
�t
t /

!
; (4.9)

4Since V 2 L2.h2/ its kernel is a function in L2.R3/˚ L2.R3/. The kernel of U is a distribution.
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with h./, k.˛/ defined in (3.2) and the initial condition U0 D 1 (with � defined in (4.4)).
Raising Ut to h2, we obtain the map Rt W h2 ! h2, defined by

Rt D

�
…t ‚t
‚t …t

�
;

where we defined

…t D

�
�t 0

0 �t

�
and ‚t D

�
#t 0

0 #t

�
:

As Ut , the map Rt is an implementable symplectomorphism, for all t 2 R. Hence, we
find a family of unitary operators Rt on F.h2/, with

R�t axRt D a.…t;x/C a
�.‚t;x/ and R�t a

�
x Rt D a

�.…t;x/C a.‚t;x/:

Let us also introduce the unitary family Tt D RtT ./, with T ./ as defined in (1.18).
We observe that Tt is again a family of Bogoliubov transformations, satisfying

T �t axTt D a.Ut;x/C a
�.Vt;x/ and T �t a

�
x Tt D a

�.Ut;x/C a.Vt;x/ (4.10)

with
Ut D U0…t C V0‚t ; Vt D V0…t C U0‚t ; (4.11)

and

U0 D

 p
1C  0

0
p
1C 

!
; V0 D

�
0
p


p
 0

�
: (4.12)

In other words, Tt implements the symplectomorphism

Tt D T0Rt D

�
Ut Vt
Vt Ut

�
: (4.13)

The following lemma provides us with bounds for the operator norms of Ut and Vt .

Lemma 4.1. Under the assumptions of Proposition 3.2, there exists a constant c > 0 such
that

kUtk .
p
Tc.s/ exp.ct/ and kVtk .

p
Tc.s/ exp.ct/ (4.14)

hold. Here k � k denotes the norm of a linear operator on h˚ h.

Proof. We first prove a bound on the operators �t , #t in (4.8), from which the claim will
follow. To do this we observe that, as a consequence of (4.9), �t , #t satisfy the system of
PDEs

i@t��t D h.
�t
t /�

�
t C k.˛

�t
t /#

�
t ;

i@t#�t D h.
�t
t /#

�
t C k.˛

�t
t /�

�
t :

(4.15)
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Let  with k k � 1 belong to an appropriate dense subset of L2.R3/. Using (4.15) and
the fact that h.�tt / is self-adjoint we get

i
d
dt
k�t k

2
D i

d
dt
h ; �t�

�
t  i D

˝
 ;
�
�tk.˛

�t
t /#

�
t � #tk.˛

�t
t /
���t

�
 
˛

D 2i Imh ; �tk.˛
�t
t /#

�
t  i;

thus we can estimate

d
dt
k�t k

2
� 2kk.˛

�t
t /k.k�t k

2
C k#t k

2/: (4.16)

Proceeding in the same way, we also find

d
dt
k#t k

2
� 2kk.˛

�t
t /k.k�t k

2
C k#t k

2/: (4.17)

The operator norm of k.˛�tt / is easily bounded by

kk.˛
�t
t /k � kk.˛

�t
t /kL2

� N�1kvk1

�Z
.j˛t .x; y/j

2
C j�t .x/j

2
j�t .y/j

2/ dx dy
�1=2

� c=2;

for some constant c > 0 independent of t , N , and  . To obtain the bound, we used
k˛tk

2
L2 � ktk

2
L1 C ktkL1 � N.N C 1/ and k�tk2 � N . Inserting this into (4.16) and

(4.17) we find
d
dt
.k�t k

2
C k#t k

2/ � c.k�t k
2
C k#t k

2/;

which together with the initial condition �0 D 1, #0 D 0, and an application of Grönwall’s
lemma lets us conclude

k�t k
2
� exp.ct/; k#t k2 � exp.ct/:

Therefore, taking the sup over  we find

k�tk
2
� exp.ct/; k#tk2 � exp.ct/: (4.18)

Using (4.18), (4.11), (4.12), and point (C) of Assumption 1.1, we deduce (4.14).

We claim that Tt� 2 F.h2/ describes exactly the quasi-free state on F.h/ with gener-
alized 1-pdm (4.6). In fact,˝

U�Tt�;
�
a�.g/a.f /˝ 1

�
U�Tt�

˛
D
˝
T ./�;

�
a�` .�tg/C a`.#t Ng/

��
a`.�tf /C a

�
` .#t

Nf /
�
T ./�

˛
D
˝
f;
�
��t �t C #

�
t .1C /#t

�
g
˛
D hf; tgi; (4.19)
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with U in (1.17). To get to the last line we used (4.7). A similar computation shows

hU�Tt�; .a.g/a.f /˝ 1/U�Tt�i D hf; ˛t Ngi: (4.20)

Next we add the condensate. To this end, we apply the Weyl operator W.�t /. Proceed-
ing as in (4.19) and (4.20), and using (4.1), we find that the vector W.�t /Tt� 2 F.h2/

describes the quasi-free state associated with the solution of the HFB equations. With this
reference state, we are now ready to define the fluctuation dynamics as

Ufluct.t; s/ D T �t W.�t /
� exp.�iLN .t � s//W.�s/Ts (4.21)

with LN in (1.24).

4.3. Bound by the expectation of the number of particles

For � 2 F.h2/, we define the fluctuation vector �t D Ufluct.t; 0/�. By definition, we have

W.�t /Tt�t D e
�iLN tW.�/T0� D e

�iLN tW.�/T ./�;

which is exactly the vector in F.h2/ associated with the state ��;t .�; / defined in (1.23)
and considered in Theorem 1.2. Hence, the 1-pdm of the state ��;t .�; / can be written as

�;t .x; y/ D TrŒa�yax��;t .�; /� D h�t ; T
�
t W�.�t /a

�
`;ya`;xW.�t /Tt�t i:

A short computation that uses (4.2), (4.5), and

t .x; y/ D
X

�2¹`;rº

Z
R3

Vt;`..�; z/; x/Vt;`..�; z/; y/ dz (4.22)

allows us to write the kernel of �;t as

�;t .x; y/ D �t .x/�t .y/C t .x; y/

C
˝
�t ; .a

�.Ut;`;y/a.Ut;`;x/C a
�.Vt;`;x/a.Vt;`;y//�t

˛
C
˝
�t ; .a.Vt;`;y/a.Ut;`;x/C a

�.Ut;`;y/a
�.Vt;`;x//�t

˛
C
˝
�t ;
®
�t .x/.a

�.Ut;`;y/C a.Vt;`;y//

C �t .y/.a.Ut;`;x/C a
�.Vt;`;x//

¯
�t
˛
: (4.23)

With this representation for �;t , we obtain the following lemma, which bounds the trace
norm of �;t � j�t ih�t j � t in terms of the expectation of the (shifted) number of particles
operator

N D N` CNr C 5 D d�.1/C 5; (4.24)

on the fluctuation vector. The shift in the definition ensures that N � 4 is a strictly positive
operator, which is technically convenient for our estimates in Proposition 5.3.
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Lemma 4.2. Under the assumptions of Theorem 1.2 and with Ut , Vt as in (4.11), we have
the bound

k�;t � j�t ih�t j � tkL1 � .kUtk
2
C kVtk

2/h�t ;N �t i

C 2N 1=2.kUtk
2
C kVtk

2/1=2h�t ;N �t i
1=2

C 2k�tk � .kUtk
2
C kVtk

2/1=2h�t ;N �t i
1=2: (4.25)

Proof. Let J 2 B.h/. We take the trace of (4.23) against J : this will allow us to prove
(4.25) by duality. Denoting by J.x; y/ the integral kernel of J , the contribution of the
third term on the right-hand side of (4.23) is given byZ

R6

J.x; y/
˝
�t ;
�
a�.Ut;`;y/a.Ut;`;x/C a

�.Vt;`;x/a.Vt;`;y/
�
�t
˛
dx dy

D

Z �
Ut;`.z2; x/J.x; y/Ut;`.z1; y/

C Vt;`.z2; x/J.x; y/Vt;`.z1; y/
�
h�t ; a

�
z1az2�t i dz1 dz2 dx dy

D h�t ; d�.J1 C J2/�t i; (4.26)

where we used the notation
R

dzD
P
�2¹`;rº

R
R3 dz. The operators J1 and J2 are defined

by

J1.z1; z2/ D
Z

R6

Ut;`.z2; x/J.x; y/U �t;`.y; z1/ dx dy;

J2.z1; z2/ D
Z

R6

Vt;`.z2; x/J.x; y/V �t;`.y; z1/ dx dy:

The absolute value of the right-hand side of (4.26) is bounded by

jh�t ; d�.J1 C J2/�t ij � .kJ1k C kJ2k/h�t ;N �t i:

With
kJ1k � kUtk

2
kJ k and kJ1k � kVtk

2
kJ k

we conclude thatˇ̌̌̌Z
R6

J.x; y/
˝
�t ;
�
a�.Ut;`;y/a.Ut;`;x/C a

�.Vt;`;x/a.Vt;`;y/
�
�t
˛
dx dy

ˇ̌̌̌
� kJ k.kUtk

2
C kVtk

2/h�t ;N �t i: (4.27)

Next we consider the contribution of the fourth term on the right-hand side of (4.23).
Defining J3; J4W h! h˚ h by

J3.z; y/ D
Z

R3

Ut;l .z; x/J.x; y/ dx; J4.z; x/ D
Z

R3

J.x; y/Ut;l .z; y/ dy;
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we writeZ
R6

J.x; y/
˝
�t ;
�
a.Vt;`;y/a.Ut;`;x/C a

�.Ut;`;y/a
�.Vt;`;x/

�
�t
˛
dx dy

D

Z
R3

h�t ; a.Vt;`;y/a.J3;y/�t i dy C
Z

R3

h�t ; a
�.J4;x/a

�.Vt;`;x/�t i dx: (4.28)

The absolute value of the first term on the right-hand side of (4.28) is bounded by�Z
R3

h�t ; a.Vt;`;y/a
�.Vt;`;y/�t i dy

�1=2�Z
R3

h�t ; a
�.J3;y/a.J3;y/�t i dy

�1=2
:

Using the canonical commutation relations, (4.22), and Tr t � N , we see that the first
factor is not larger than

kVtkh�t ;Nr�t i
1=2
CN 1=2:

For the second factor we have the bound

kJ3kh�t ;N �t i
1=2
� kJ k kUtkh�t ;N �t i

1=2:

The second term on the right-hand side of (4.28) can be bounded similarly by the same
expression, and we thus findˇ̌̌̌Z

R6

J.x; y/h�t ;
�
a.Vt;`;y/a.Ut;`;x/C a

�.Ut;`;y/a
�.Vt;`;x/

�
�t i dx dy

ˇ̌̌̌
� 2

�
kJ k kUtk kVtkh�t ;N �t i CN

1=2
kJ k kUtk h�t ;N �t i

1=2
�
: (4.29)

It remains to provide bounds for the terms on the right-hand side of (4.23) that are linear
in creation and annihilation operators.

We define the operator J5 via its integral kernel

J5.z; x/ D
Z

R3

Vt;l .z; y/J.x; y/ dy

and write ˇ̌̌̌Z
R6

�t .x/J.x; y/h�t ; .a
�.Ut;`;y/C a.Vt;`;y//�t i d.x; y/

ˇ̌̌̌
D

ˇ̌̌̌Z
R3

�t .x/h�t ; .a
�.J4;x/C a.J5;x//�t i dx

ˇ̌̌̌
� k�tk2kJ k.kUtk

2
C kVtk

2/1=2h�t ;N �t i
1=2: (4.30)

The remaining term on the right-hand side of (4.23) can be estimated in the same way. In
combination, (4.23), (4.27), (4.29), and (4.30) prove the claim.
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4.4. Proof of Theorem 1.2

In the next proposition, whose proof is deferred to the next section, we control the growth
of the expectation of the number of particles operator.

Proposition 4.3. Let v satisfy the same assumptions as in Theorem 1.2, and let the pair
.�; / satisfy Assumption 1.1 with 0 < s � 3=2. For every k 2 N, there exist constants
c; C > 0 independent of N , t such that

h�t ;N �t i � exp
�
c exp.c exp.ct//

�
h�;N �i

C CN .22�k/=14 exp
�
c exp.c exp.ct//

�
� .h�;N 4�i1=2 CN 10=7/h�;N kC2�i1=2 (4.31)

for every N 2 N, t > 0.

Remark 4.4. Similar bounds can be established for higher moments of the number of
particles operator on the fluctuation vector h�t ;N j �t i, for any j � 2. The proof is essen-
tially the same as for (4.31). We do not pursue this generalization here because we do not
need it for our main result, and we want to keep the notation as simple as possible.

Next we show how Proposition 4.3 implies Theorem 1.2.

Proof of Theorem 1.2. We combine (4.25) and Lemma 4.1 to see that�;t � j�t ih�t j � tL1 . exp.ct/
�
Tc.s/h�t ;N �t i C

p
NTc.s/h�t ;N �t i

1=2
�
: (4.32)

An application of Proposition 4.3 with k D 42 proves

h�t ;N �t i . exp
�
c exp.c exp.ct//

�
; (4.33)

under the assumptions of Theorem 1.2. Plugging (4.33) into (4.32) and using the boundj�t ih�t j C t � �j�H
t ih�

H
t j C e

i�te�i�t�
L1 . N 1=2T 3=4c .s/ exp.ct/; (4.34)

which follows from (3.4), we get (1.25), concluding the proof of the theorem.

Remark 4.5. Remark 1.3 (3) is proven by using the bound (3.5) instead of (4.34) at the
end of the proof of Theorem 1.2.

5. Study of the fluctuation dynamics

The aim of this section is to prove Proposition 4.3. We will apply a Grönwall argument,
and therefore start our analysis with the computation of the generator of the fluctuation
dynamics Ufluct.t; s/ in (4.21).
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5.1. Generator of the fluctuation dynamics

The propagator of the fluctuations satisfies the equation

i@tUfluct.t; s/ D GN;tU
fluct.t; s/

with the time-dependent generator

GN;t D .i@tT �t /Tt C T �t .i@tW
�
t /WtTt C T �t W�t LNWtTt ;

where we used the shorthand Wt DW.�t /. In the following proposition we compute GN;t .
To keep formulas at a reasonable length, we introduce the notation

v.x; y/ D

8̂̂<̂
:̂
v.x � y/ if � D � 0 D `;

�v.x � y/ if � D � 0 D r;

0 instead;

(5.1)

where xD .�;x/ and yD .� 0; y/. We recall the notation
R
f .x/dxD

P
�Dl;r

R
f .�;x/dx

for f W ¹`; rº � R3 ! C, which was introduced in Section 4 and will be used throughout
the present section.

Proposition 5.1. Let v be an interaction potential satisfying the same assumptions as in
Theorem 1.2, and let � 2 H 3.R3/,  2 H3;1. The generator of the fluctuation dynamics
Ufluct.t; s/ can be written as

GN;t D 	
.1/
N;t C 	

.2/
N;t C 	

.3/
N;t C 	

.4/
N;t ; (5.2)

where
	
.1/
N;t D

1

2N

Z
v.x; y/

�
a�.Ut;x/a

�.Ut;y/a.Ut;y/a.Ut;x/

C a�.Ut;x/a
�.Vt;y/a.Vt;y/a.Ut;x/

C a�.Ut;y/a
�.Vt;x/a.Vt;x/a.Ut;y/

C a�.Vt;x/a
�.Vt;y/a.Vt;y/a.Vt;x/

C 2a�.Ut;x/a
�.Vt;y/a.Vt;y/a.Ut;x/

�
dx dy

collects the terms that are quartic in a and a� and commute with N ,

	
.2/
N;t D

1

2N

Z
v.x; y/

�
a�.Ut;x/a

�.Ut;y/a
�.Vt;y/a

�.Vt;x/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;y/a.Ut;x/

C a�.Ut;x/a
�.Vt;y/a

�.Vt;x/a.Vt;y/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;x/a.Ut;y/

C a�.Ut;y/a
�.Vt;y/a

�.Vt;x/a.Vt;x/C h:c:
�

dx dy
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contains the quartic terms that do not commute with N ,

	
.3/
N;t D

1

N

Z
v.x; y/

®
���.x/

�
a�.Ut;x/a

�.Ut;y/a
�.Vt;y/C a

�.Ut;x/a
�.Ut;y/a.Ut;y/

C a�.Ut;x/a
�.Vt;y/a.Vt;y/C a

�.Ut;y/a
�.Vt;y/a.Vt;x/

C a�.Vt;y/a.Vt;x/a.Vt;y/C a
�.Ut;x/a.Vt;y/a.Ut;y/

C a�.Ut;y/a.Vt;x/a.Ut;y/C a.Vt;x/a.Vt;y/a.Ut;y/
�

C h:c:
¯

dx dy

the cubic terms, and

	
.4/
N;t D Tr.VtLV �t /C

1

2N

Z
v.x; y/j��� t .x/j2j��� t .y/j2 dx dy;

with

L D

�
�� 0

0 �

�
; (5.3)

is a time-dependent constant.

Remark 5.2. Comparing with the literature (especially [8, Proposition 3.1]), it may seem
surprising that the kinetic energy d�.�/ of the excitations does not appear in (5.2). This
is a consequence of a different definition of the symplectomorphism Tt in (4.13), which
of course leads to a different Bogoliubov transformation Tt . In particular, from (4.11),
we observe that the HFB propagator Ut only acts from the right on the initial data (4.12).
Effectively, this amounts to considering the fluctuation dynamics in the interaction picture.

Proof of Proposition 5.1. We start our proof with the computation of .i@tT �t /Tt . Our anal-
ysis for this term follows that in the proof of [8, Proposition 3.1]. We observe that

T �t A.f; g/Tt D A.Tt .f; g//

holds for f;g 2 h˚ h, with the notation A.f;g/D a.f /C a�. Ng/. If we differentiate both
sides with respect to time we find

.i@tT �t /TtA.Tt .f; g//C A.Tt .f; g//T
�
t .i@tTt / D �A..i@tTt /.f; g//:

We use 0 D i@t .T �t Tt / D .i@tT �t /Tt C T �t .i@tTt / to arrive at�
.i@tT �t /Tt ; A.Tt .f; g//

�
D �A..i@tTt /.f; g//: (5.4)

Since Tt is a symplectomorphism and (5.4) holds for f; g 2 h ˚ h, we conclude that
.i@tT �t /Tt is quadratic in creation and annihilation operators. That is, we can write it as

.i@tT �t /Tt D
Z
Ct .x; y/a�x ay dx dyC

1

2

�Z
Dt .x; y/a�x a

�
y dx dyC h:c:

�
; (5.5)
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where Ct .x;y/ andDt .x;y/ denote the kernels of two operators Ct andDt on h˚ h. The
operator Ct is self-adjoint, i.e.

Ct .y; x/ D Ct .x; y/;

and we assume
D.x; y/ D D.y; x/;

which will be justified a posteriori. We use (5.4) to determine the kernels. A straightfor-
ward computation shows that�Z

Ct .x; y/a�x ay dx dy; A.Tt .f; 0//
�
D �a.CtUtf /C a

�.CtVt Nf /;�
1

2

Z
Dt .x; y/a�x a

�
y dx dy; A.Tt .f; 0//

�
D �a�.DtUt Nf /;�

1

2

Z
Dt .x; y/axay dx dy; A.Tt .f; 0//

�
D a.DtVtf /:

We insert this into (5.4) and obtain the following system of equations for Ct ;Dt :�
Ct Dt

� ��Ut Vt
Vt �Ut

�
D
�
�i@tUt i@tVt

�
:

Using (4.4) and (4.9), we see that

�
Ct Dt

�
D
�
i@tUt �i@tVt

� �U �t V �t
V �t U �t

�
D �

�
Ut Vt

� �Ht Kt
Kt Ht

��
U �t V �t
V �t U �t

�
;

and hence
Ct D �

�
UtHtU

�
t C UtKtV

�
t C VtKtU

�
t C VtHtV

�
t

�
;

Dt D �
�
UtHtV

�
t C UtKtU

�
t C VtKtV

�
t C VtHtU

�
t

�
;

(5.6)

where

Ht D

 
h.

�t
t / 0

0 h.
�t
t /

!
; Kt D

 
k.˛

�t
t / 0

0 k.˛
�t
t /

!
:

Observe that Dt is indeed symmetric, that is, D�t D Dt .
Next we compute T �t .i@tW

�
t /WtTt . A short computation shows

.i@tW�t /Wt D �.a
�.i@t��� t /C a.i@t��� t //;

which implies

T �t .i@tW
�
t /WtTt D �

�
a�.Ut .i@t��� t //C a�.Vt .�i@t��� t //C h:c:

�
:



Dynamics of mean-field bosons at positive temperature 1035

We write LN D L0 C VN with

L0 D d�`.��/ � d�r .��/ D d�.L/;

VN D
1

2N

Z
v.x � y/a�`;xa

�
`;ya`;ya`;x dx dy

�
1

2N

Z
v.x � y/a�r;xa

�
r;yar;yar;x dx dy

D
1

2N

Z
v.x; y/a�x a

�
y ayax dx dy;

and L as defined in (5.3). A straightforward calculation shows that

W�t L0Wt D L0 C a.L��� t /C a
�.L��� t /:

Using (4.5) we can compute

T �t L0Tt D d�.UtLU �t C VtLV
�
t /C Tr.VtLV �t /

C

Z
a�x a

�
y .UtLV

�
t /.x; y/ dx dyC h:c:;

as well as

T �t Œa.L��� t /C a
�.L��� t /�Tt D a.UtL��� t C VtL��� t /C a

�.UtL��� t C VtL��� t /:

We conclude that

T �t W�t L0WtTt D a.UtL��� t C VtL��� t /C a
�.UtL��� t C VtL��� t /C Tr.VtLV �t /

C d�.UtLU �t C VtLV
�
t /C

�Z
a�x a

�
y .UtLV

�
t /.x; y/ dx dyC h:c:

�
:

Let us continue with the computation of T �t W�t VNWtTt . Using (4.1), we obtain

W�t a
�
x a
�
y ayaxWt D a

�
x a
�
y ayax C

�
��� t .x/a�x a

�
y ay C ��� t .x/a�y ayax C .x$ y/

�
C
�
j��� t .y/j2a�x ax C ��� t .x/��� t .y/a�x ay C .x$ y/

�
C
�
��� t .x/��� t .y/a�x a

�
y C h:c:

�
C
�
a�x��� t .x/j��� t .y/j

2
C ax��� t .x/j��� t .y/j2 C .x$ y/

�
C j��� t .x/j2j��� t .y/j2;

where .x$ y/ is a shorthand notation for the expression preceding it with x and y
exchanged. We conjugate both sides with Tt , apply (4.5), bring all terms to normal order,
and integrate the result against the potential 1

2N
v.x;y/. We omit the details of this lengthy

but straightforward computation, which leads us to

T �t W�t VNWtTt D

3X
iD1

	
.i/
N;t CQCLC C;
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where the operators 	
.i/
N;t are defined below (5.2). Moreover,

Q D
1

2N

Z
v.x; y/

®
��� t .x/��� t .y/

�
a�.Ut;x/a

�.Ut;y/C a
�.Ut;x/a.Vt;y/

C a�.Ut;y/a.Vt;x/C a.Vt;x/a.Vt;y/
�
C h:c:

¯
dx dy

C
1

N

Z
v.x; y/j��� t .y/j2

�
a�.Ut;x/a.Ut;x/C a

�.Ut;x/a
�.Vt;x/

C a.Vt;x/a.Ut;x/C a
�.Vt;x/a.Vt;x/

�
dx dy

C
1

N

Z
v.x; y/��� t .x/��� t .y/

�
a�.Ut;x/a.Ut;y/C a

�.Ut;x/a
�.Vt;y/

C a.Vt;x/a.Ut;y/C a
�.Vt;y/a.Vt;x/

�
dx dy

C
1

2N

Z
v.x; y/

®
.Ut;y; Vt;x/

�
a�.Ut;y/a.Vt;x/C a

�.Ut;x/a
�.Ut;y/

C a.Vt;x/a.Vt;y/C a
�.Ut;x/a.Vt;y/

�
C h:c:

¯
dx dy

C
1

N

Z
v.x; y/.Vt;y; Vt;y/

�
a�.Ut;x/a.Ut;x/C a

�.Vt;x/a.Vt;x/

C a�.Ut;x/a
�.Vt;x/C a.Vt;x/a.Ut;x/

�
dx dy

C
1

N

Z
v.x; y/.Vt;y; Vt;x/

�
a�.Ut;x/a

�.Vt;y/C a.Vt;x/a.Ut;y/

C a�.Vt;y/a.Vt;x/C a
�.Ut;x/a.Ut;y/

�
dx dy

contains the quadratic terms,

L D
1

N

Z
v.x; y/

°
��� t .x/

h�
j��� t .y/j2 C .Vt;y; Vt;y/

�
.a�.Ut;x/C a.Vt;x//

C .Vt;x; Ut;y/.a.Ut;y/C a
�.Vt;y//

C .Vt;x; Vt;y/.a
�.Ut;y/C a.Vt;y//

i
C h:c:

±
dx dy (5.7)

the linear terms, and

C D
1

2N

Z
v.x; y/j��� t .x/j2j��� t .y/j2 dx dy

is a time-dependent constant. Here we used the notation .�; �/ for the inner product in
.L2.R3/˚ L2.R3/; dz/, that is,

.f; g/ D

Z
f .z/g.z/ dz: (5.8)

Equation (4.7) implies

.Vt;y; Vt;x/ D V
�
t Vt .x; y/ DW Qt .x; y/ and .Ut;y; Vt;x/ DW Q̨ t .x; y/; (5.9)

where Qt .x; y/ and Q̨ t .x; y/ denote the kernels of the full 1-pdm Qt 2 B.h ˚ h/ and
of the full pairing function Q̨ t 2 B.h ˚ h/ of the vector state ‰t D Tt� on F.h ˚ h/,
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respectively. It should be highlighted that

Qt ..x; `/; .y; `// D t .x; y/;

Q̨ t ..x; `/; .y; `// D ˛t .x; y/:

We use Qt .x; y/ D Qt .y; x/ and Q̨ t .x; y/ D Q̨ t .y; x/ to write L in (5.7) as

L D a�
�
Ut .v � .j��� t j

2
C %t /��� t /

�
C a

�
Vt .v � .j��� t j2 C %t //��� t

�
C a�

�
Ut ..v]˛t /��� t /

�
C a

�
Vt ..v]˛t /��� t /

�
C a�

�
Ut ..v]t /��� t /

�
C a

�
Vt ..v]t /��� t /

�
C h:c:

D a�
�
Ut
�
.v � j���j2 C v � %t C v]t /��� t C .v]˛t /��� t

�
C Vt

�
.v � j���j2 C v � %t C v]t /��� t C .v]˛t /��� t

��
C h:c:

In the final step we use the HFB equations to cancel all terms that are linear or
quadratic in a and a�. We start by collecting all linear terms. Using the HFB equations in
(3.1), we find

LC a.UtL��� t C VtL��� t /C a
�.UtL��� t C VtL��� t /C T �t .i@tW

�
t /WtTt

D

°
a�
�
Ut
�
.LC v � j���j2 C v � %t C v]t /��� t C .v]˛t /��� t

�
C Vt

�
.LC v � j���j2 C v � %t C v]t /��� t C .v]˛t /��� t

��
� a�.Ut .i@t��� t /C Vt .i@t��� t //

±
C h:c: D 0:

Similarly, we write

Q D
1

2

�Z
a�x a

�
y
�
Ut .v].j��� t ih��� t j C ˛t //U

�
t

C Vt .v].j��� t ih��� t j C ˛t //V
�
t

�
.x; y/ dx dyC h:c:

�
C

Z
a�x ay

�
Ut .v].j��� t ih��� t j C ˛t //V

�
t C Vt .v].j��� t ih��� t j C ˛t //U

�
t

�
.x; y/ dx dy

C

�Z
a�x a

�
y
�
Ut .v � .j��� t j

2
C %t //V

�
t

�
.x; y/ dx dyC h:c:

�
C

Z
a�x ay

�
Ut .v � .j��� t j

2
C %t //U

�
t C Vt .v � .j��� t j

2
C %t //V

�
t

�
.x; y/ dx dy

C

�Z
a�x a

�
y
�
Ut .v].j��� t ih��� t j C t //V

�
t

�
.x; y/ dx dyC h:c:

�
C

Z
a�x ay

�
Ut .v].j��� t ih��� t j C t //U

�
t C Vt .v].j��� t ih��� t j C t //V

�
t

�
.x; y/ dx dy:
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Combining these terms with the quadratic terms coming from W�t T �t L0TtWt we get

d�.UtLU �t C VtLV
�
t /C

�Z
a�x a

�
y .UtLV

�
t /.x; y/ dx dyC h:c:

�
CQ

D

Z
a�x ay

�
UtHtU

�
t C UtKtV

�
t C VtKtU

�
t C VtHtV

�
t

�
.x; y/ dx dy

C
1

2

�Z
a�x a

�
y
�
2UtHtV

�
t C UtKtU

�
t C VtKtV

�
t

�
.x; y/ dx dyC h:c:

�
D �.i@tT �t /Tt :

The last equality follows from (5.5), (5.6), andZ
a�x a

�
y .VtHtU

�
t /.x; y/ dx dy D

Z
a�x a

�
y .UtHtV

�
t /.y; x/ dx dy

D

Z
a�x a

�
y .UtHtV

�
t /.x; y/ dx dy: (5.10)

Equation (5.10) is a consequence of the canonical commutation relations and H�t D Ht .
Thus all linear and quadratic terms in the generator cancel. This concludes the proof of
Proposition 5.1.

5.2. The truncated fluctuation dynamics

As explained in Section 1.7, we will apply a Grönwall argument to control the expected
number of particles in the fluctuation vector �t . The main problem to overcome in this
approach is that the operator norms of Ut and Vt in the generator GN;t grow with N . To
solve this problem, we introduce an auxiliary fluctuation dynamics Ufluct

� , with a time-
dependent generator G

.�/
N;t defined similarly to GN;t , but with a cutoff on the number of

particles. We will then prove a bound on the growth of the expectation and of the moments
of the number of particles operator with respect to Ufluct

� ; later we will compare with the
true fluctuation dynamics Ufluct. A similar strategy was used in [67] (at T D 0) and in [8]
(for fermionic systems).

We choose � 2 .0; 1/, recall the definition of N in (4.24), and define

G
.�/
N;t
WD

4X
iD1

	
.i;�/
N;t ;

where

	
.1;�/
N;t D

1

2N

Z
v.x; y/

�
a�.Ut;x/a

�.Ut;y/a.Ut;y/a.Ut;x/

C a�.Ut;x/a
�.Vt;y/a.Vt;y/a.Ut;x/

C a�.Ut;y/a
�.Vt;x/a.Vt;x/a.Ut;y/

C a�.Vt;x/a
�.Vt;y/a.Vt;y/a.Vt;x/

C 2a�.Ut;x/a
�.Vt;y/a.Vt;y/a.Ut;x/

�
1.N � N �/ dx dy;
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.2;�/
N;t D

1

2N

Z
v.x; y/

®�
a�.Ut;x/a

�.Ut;y/a
�.Vt;y/a

�.Vt;x/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;y/a.Ut;x/

C a�.Ut;x/a
�.Vt;y/a

�.Vt;x/a.Vt;y/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;x/a.Ut;y/

C a�.Ut;y/a
�.Vt;y/a

�.Vt;x/a.Vt;x/
�
1.N �N �/C h:c:

¯
dx dy;

	
.3;�/
N;t D

1

N

Z
v.x; y/

®
���.x/

�
a�.Ut;x/a

�.Ut;y/a
�.Vt;y/C a

�.Ut;x/a
�.Ut;y/a.Ut;y/

C a�.Ut;x/a
�.Vt;y/a.Vt;y/C a

�.Ut;y/a
�.Vt;y/a.Vt;x/

C a�.Vt;y/a.Vt;x/a.Vt;y/C a
�.Ut;x/a.Vt;y/a.Ut;y/

C a�.Ut;y/a.Vt;x/a.Ut;y/C a.Vt;x/a.Vt;y/a.Ut;y/
�

� 1.N � N �/C h:c:
¯

dx dy;

and 	
.4;�/
N;t D 	

.4/
N;t . By 1.N � N �/ we denote the spectral projection of the number of

particles operator onto the linear subspace of F.h˚ h/, where N � N � holds. We also
introduce the fluctuation dynamics Ufluct

� .t I s/ as the unique solution to the equation

i@tUfluct
� .t I s/ D G

.�/
N;tU

fluct
� .t I s/ with Ufluct

� .sI s/ D 1;

which is well defined because for every t > 0 the Hamiltonian G
.�/
N;t is a bounded self-

adjoint operator on F.h˚ h/. The fluctuation vector related to the above dynamics will be
denoted by ��;t DUfluct

� .t I 0/� . The goal of this section is to prove the following proposi-
tion.

Proposition 5.3. Let the interaction potential v satisfy the same assumptions as in Theo-
rem 1.2, and let the initial datum .�;/ satisfy Assumption 1.1 with 0< s� 3=2. Moreover,
let � 2 .0; 1=7�. For every j 2N, there exists a constant c > 0 independent ofN 2N and
t > 0 such that

h��;t ;N
j ��;t i � exp

�
c exp.c exp.ct//

�
h�;N j �i

for every N 2 N, t > 0.

Proof. We start by noting that

i
d
dt
h��;t ;N

j ��;t i D �

j�1X
kD0

h��;t ;N
k ŒG

.�/
N;t ;N �N j�k�1��;t i: (5.11)

A simple computation shows

ŒG
.�/
N;t ;N � D Q	

.2;�/
N:t C

Q	
.3;�/
N;t ;
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where

Q	
.2;�/
N;t D �

1

N

Z
v.x; y/

®�
2a�.Ut;x/a

�.Ut;y/a
�.Vt;y/a

�.Vt;x/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;y/a.Ut;x/

C a�.Ut;x/a
�.Vt;y/a

�.Vt;x/a.Vt;y/

C a�.Ut;x/a
�.Ut;y/a

�.Vt;x/a.Ut;y/

C a�.Ut;y/a
�.Vt;y/a

�.Vt;x/a.Vt;x/
�

� 1.N � N �/ � h:c:
¯

dx dy (5.12)

and

Q	
.3;�/
N;t D �

1

N

Z
v.x; y/

®
���.x/

�
3a�.Ut;x/a

�.Ut;y/a
�.Vt;y/C a

�.Ut;x/a
�.Ut;y/a.Ut;y/

C a�.Ut;x/a
�.Vt;y/a.Vt;y/C a

�.Ut;y/a
�.Vt;y/a.Vt;x/

� a�.Vt;y/a.Vt;x/a.Vt;y/ � a
�.Ut;x/a.Vt;y/a.Ut;y/

� a�.Ut;y/a.Vt;x/a.Ut;y/ � 3a.Vt;x/a.Vt;y/a.Ut;y/
�

� 1.N � N �/ � h:c:
¯

dx dy: (5.13)

We insert the first term on the right-hand side of (5.12) into (5.11) and estimate it by

j�1X
kD0

2

N

Z ˇ̌
v.x; y/

˝
��;t ;N

ka�.Ut;x/a
�.Ut;y/a

�.Vt;y/a
�.Vt;x/

� 1.N � N �/N j�k�1��;t
˛ˇ̌

dx dy

D

j�1X
kD0

2

N

Z ˇ̌
v.x; y/

˝
��;t ;N

k.N � 4/j=2�k�1a�.Ut;x/a
�.Ut;y/a

�.Vt;y/a
�.Vt;x/

� 1.N � N �/N j=2��;t
˛ˇ̌

dx dy

� 2j

�
1

N

Z
jv.x; y/j

a.Ut;x/a.Ut;y/.N � 4/j=2�k�1N k��;t
2 dx dy

�1=2
�

�
1

N

Z
jv.x; y/j

a�.Vt;y/a�.Vt;x/1.N � N �/N j=2��;t
2 dx dy

�1=2
: (5.14)

The square of the first factor on the right-hand side of (5.14) can be estimated by

1

N

Z
jv.x; y/j

˝
��;t ;N

k.N � 4/j=2�k�1a�.Ut;y/a
�.Ut;x/a.Ut;x/a.Ut;y/

� .N � 4/j=2�k�1N k��;t
˛
dx dy

�
kvk1

N

Z ˝
��;t ;N

k.N � 4/j=2�k�1a�.Ut;y/ d�.UtU �t /a.Ut;y/

� .N � 4/j=2�k�1N k��;t
˛
dy

�
kvk1kUtk

2

N

Z ˝
��;t ;N

k.N � 4/j=2�k�1a�.Ut;y/.N � 3/a.Ut;y/

� .N � 4/j=2�k�1N k��;t
˛
dy
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D
kvk1kUtk

2

N

Z ˝
��;t ;N

k.N � 4/j=2�k�1=2a�.Ut;y/a.Ut;y/

� .N � 4/j=2�k�1=2N k��;t
˛
dy

�
kvk1kUtk

4

N

˝
��;t ;N

j ��;t
˛
: (5.15)

To treat the second term on right-hand side of (5.14) we first note that

a.Vt;x/a.Vt;y/a
�.Vt;y/a

�.Vt;x/

D a�.Vt;x/a
�.Vt;y/a.Vt;y/a.Vt;x/C a

�.Vt;x/a.Vt;x/ Qt .y; y/

C a�.Vt;y/a.Vt;y/ Qt .x; x/C a�.Vt;x/a.Vt;y/ Qt .y; x/

C a�.Vt;y/a.Vt;x/ Qt .x; y/

C Qt .x; x/ Qt .y; y/C Qt .x; y/ Qt .y; x/; (5.16)

with Qt as defined in (5.9). We insert the first term on the right-hand side of (5.16) back
into the second factor on the right-hand side of (5.14) and find

1

N

Z
jv.x; y/j

a.Vt;y/a.Vt;x/1.N � N �/N j=2��;t
2 dx dy

.
kvk1kVtk

4

N
kN j=2C11.N � N �/��;tk

2
�
kvk1kVtk

4

N 1�2�

˝
��;t ;N

j ��;t
˛
:

To estimate the contributions from the last two terms on the right-hand side of (5.16), we
note that, by Cauchy–Schwarz, j Qt .x; y/j2 � Qt .x; x/ Qt .y; y/. Hence we can boundˇ̌̌̌

1

N

Z
v.x; y/

�
Qt .x; x/ Qt .y; y/C Qt .x; y/ Qt .y; x/

�
dx dy

ˇ̌̌̌
� 4kvk1N

�1 sup
x2R3

jt .x; x/j

Z
t .x; x/ dx . kvk1 exp.c exp.ct//T 3=2c .s/:

In the first estimate we used the bound

sup
x2¹l;rº�R3

Z
v.x; y/ dy � kvk1;

which follows immediately from definition (5.1) of v.x;y/, and the fact that for xD .�; x/
we have

Qt .x; x/ D

´
t .x; x/ if � D `;

t .x; x/ if � D r;

which lets us control the diagonal of Qt with that of t . The second estimate follows from
Lemma 3.4 and Tr t � N . Similar considerations show that the contributions from all
remaining terms on the right-hand side of (5.16) can be bounded by a constant times

N�1C� exp.ct exp.ct//T 3=2c .s/kvk1kVtk
2
h��;t ;N

j ��;t i:
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The above considerations show
1

N

Z
jv.x; y/j

a�.Vt;y/a�.Vt;x/1.N � N �/N j=2��;t
2 dx dy

.
h
kvk1kVtk

4

N 1�2�
C exp.ct exp.ct//T 3=2c .s/kvk1.1CN

�1C�
kVtk

2/
i
h��;t ;N

j ��;t i;

which combined with (5.15) implies

(5.14) . .kvk1 C kvk1/h��;t ;N
j ��;t i

�

h
kUtk

2kVtk
2

N 1��
C

exp.c exp.ct//T 3=4c .s/kUtk
2

N 1=2
.1CN�1=2C�=2kVtk/

i
. exp.c exp.ct//h��;t ;N j ��;t i: (5.17)

In the second step, we used definition (1.10) of Tc.s/ and Lemma 4.1 to see that

N�1=2T 3=4c .s/kUtk
2 . exp.ct/N�1=2T 7=4c .s/ . exp.ct/N�1=2N

7
4

2s
6C3s . exp.ct/

for 0 < s � 3=2 (this determines the restriction on the range of s that we can treat), and
the condition � � 1=7, again with Lemma 4.1, to show

N�1C�kUtk
2
kVtk

2; N�1=2C�=2kVtk . exp.ct/:

Next we consider the second term on the right-hand side of (5.12). An application of
Cauchy–Schwarz yields
j�1X
kD0

1

N

Z ˇ̌
v.x; y/

˝
��;t ;N

ka�.Ut;x/a
�.Ut;y/a

�.Vt;y/a.Ut;x/

� 1.N � N �/N j�k�1��;t
˛ˇ̌

dx dy

� j

�
1

N

Z
jv.x; y/j

a.Ut;x/a.Ut;y/.N � 4/j=2�k�1N k��;t
2 dx dy

�
�

�
1

N

Z
jv.x; y/j

a�.Vt;y/a.Ut;x/1.N � N �/N j=2��;t
2 dx dy

�1=2
: (5.18)

The first factor on the right-hand side can be estimated similarly to the first term on the
right-hand side of (5.14). The second factor is estimated by

1

N

Z
jv.x; y/j

˝
��;t ;N

j=21.N � N �/a�.Ut;x/a.Vt;y/a
�.Vt;y/a.Ut;x/

� 1.N � N �/N j=2��;t
˛
dx dy

D
1

N

Z
jv.x; y/j

˝
��;t ;N

j=21.N � N �/a�.Ut;x/a
�.Vt;y/a.Vt;y/a.Ut;x/

� 1.N � N �/N j=2��;t
˛
dx dy

C
1

N

Z
jv.x; y/j Qt .y; y/

˝
��;t ;N

j=21.N � N �/a�.Ut;x/a.Ut;x/

� 1.N � N �/N j=2��;t
˛
dx dy

.
�
kvk1kUtk

2kVtk
2

N 1�2�
C kvk1 exp.c exp.ct//T 3=2c .s/

kUtk
2

N 1��

�
h��;t ;N

j ��;t i:
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Using Lemma 4.1 and the assumptions on s and � as above we conclude that

(5.18) . exp.c exp.ct//h��;t ;N j ��;t i:

The contributions of all remaining terms on the right-hand side of (5.12) can be estimated
in the same way.

Let us now consider the terms on the right-hand side of (5.13). The contribution arising
from the first of these terms can be bounded, with Cauchy–Schwarz, by

j�1X
kD0

2

N

Z ˇ̌
���.x/v.x; y/

˝
��;t ;N

ka�.Ut;x/a
�.Ut;y/a

�.Vt;y/1.N � N
�/

�N j�k�1��;t
˛ˇ̌

dx dy

� j

�
1

N

Z
jv.x; y/j

a.Ut;x/a.Ut;y/.N � 4/j=2�k�1N k��;t
2 dx dy

�
�

�
1

N

Z
jv.x; y/j j���.x/j2

a�.Vt;y/1.N � N �/N j=2��;t
2 dx dy

�1=2
: (5.19)

The first factor can again be estimated as the first factor on the right-hand side of (5.14).
We estimate the other one by

1

N

Z
jv.x; y/j j���.x/j2

˝
��;t ;N

j=21.N � N �/a.Vt;y/a
�.Vt;y/

� 1.N � N �/N j=2��;t
˛
dx dy

D
1

N

Z
jv.x; y/j j���.x/j2

˝
��;t ;N

j=21.N � N �/a�.Vt;y/a.Vt;y/

� 1.N � N �/N j=2��;t
˛
dx dy

C
1

N

Z
jv.x; y/j j���.x/j2 Qt .y; y/

˝
��;t ;N

j 1.N � N �/��;t
˛
dx dy

. Œkvk1N
�
kVtk

2
C kvk1 exp.c exp.ct//T 3=2c .s/�h��;t ;N

j ��;t i;

where we used Lemma 3.4 and k�tk22 � N . We conclude with the help of Lemma 4.1 and
� � 1=7 that

(5.19) . exp.c exp.ct//h��;t ;N j ��;t i:

The contribution of the other terms on the right-hand side of (5.13) can be bounded simi-
larly.

Collecting all bounds, we find

j@t h��;t ;N
j ��;t ij . exp.c exp.ct//h��;t ;N j ��;t i;

and we conclude by an application of Grönwall’s lemma.

5.3. Weak bounds on the original dynamics

In order to prove that Ufluct
� remains close to the full fluctuation dynamics, we need some

rough a priori bounds on the growth of the number of particles operator when conjugated
with Ufluct.
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Lemma 5.4. Let v be an interaction potential satisfying the same assumptions as in The-
orem 1.2, and let � 2 H 3.R3/,  2 H3;1 with n.�; / D N . For j 2 N and t > s > 0,
we have

Ufluct.t; s/�N 2jUfluct.t; s/ . .kUtk
2
C kVtk

2/2j .kUsk
2
C kVsk

2/2jN 2j

C .1C .kUtk
2
C kVtk

2/2j /N 2j : (5.20)

Proof. We claim that the bounds

W�t N 2jWt . N 2j
CN 2j ;

WtN
2jW�t . N 2j

CN 2j
(5.21)

and
T �t N 2jTt . .kUtk

2
C kVtk

2/2jN 2j
CN 2j ;

TtN
2jT �t . .kUtk

2
C kVtk

2/2jN 2j
CN 2j

(5.22)

hold for every j 2 N and t > 0. Assuming these bounds for the moment, (5.20) is easily
proved by a repeated application of (5.21), (5.22). Indeed, by the definition of the fluctua-
tion dynamics we have

Ufluct.t; s/�N 2jUfluct.t; s/

D T �s W�s e
itLN .t�s/WtTtN

2jT �t W�t e
�itLN .t�s/WsTs

. .kUtk
2
C kVtk

2/2jT �s W�s e
itLN .t�s/WtN

2jW�t e
�itLN .t�s/WsTs CN

2j

. .kUtk
2
C kVtk

2/2jT �s N 2jTs C .1C kUtk
2
C kVtk

2/2jN 2j

. .kUtk
2
C kVtk

2/2j .kUsk
2
C kVsk

2/2jN 2j
C .1C .kUtk

2
C kVtk

2/2j /N 2j ;

where in the second estimate we also used the fact that the Liouvillian LN defined in
(1.24) commutes with the number of particles operator. Thus we just need to prove (5.21),
(5.22). The bounds in (5.21) follow by a straightforward adaptation of the arguments in
[67, Lemma 3.6].

The proof of (5.22) is also inspired by the proof of the same lemma, but since the
adaptation is less straightforward in this case, we provide the details. We start with the
first bound in (5.22), and we proceed by induction on j 2 N. For the base case, we use
(4.10) to compute T �t N Tt , bring all terms to normal order, and find

T �t N Tt D

Z �
a�.Ut;x/a.Ut;x/C a

�.Vt;x/a.Vt;x/C a
�.Ut;x/a

�.Vt;x/

C a.Vt;x/a.Ut;x/C .Vt;x; Vt;x/
�

dxC 5; (5.23)

where .�; �/ denotes the inner product defined in (5.8). To obtain a bound for T �t N 2Tt , we
square (5.23) and apply Cauchy–Schwarz. This yields

T �t N 2Tt . 1C

Z �
a�.Ut;x/a.Ut;x/a

�.Ut;y/a.Ut;y/C a
�.Vt;x/a.Vt;x/a

�.Vt;y/a.Vt;y/

C .Vt;x; Vt;x/.Vt;y; Vt;y/C a
�.Ut;x/a

�.Vt;x/a.Vt;y/a.Ut;y/

C a.Vt;y/a.Ut;y/a
�.Ut;x/a

�.Vt;x/
�

dx dy: (5.24)
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The first two terms in the integral are bounded by .kUtk4 C kVtk4/N 2, and we useZ
.Vt;x; Vt;x/ dx D

Z
R3

�
Qt ..x; `/; .x; `//C Qt ..x; r/; .x; r//

�
dx

D 2

Z
R3

t .x; x/ dx � 2N (5.25)

to see that the third term in the integral is bounded by 4N 2. To bound the first term in the
second line of (5.24) we write it asZ

a�.Ut;x/a.Vt;y/a
�.Vt;x/a.Ut;y/ dx dyC

Z
a�.Ut;x/a.Ut;y/.Vt;y; Vt;x/ dx dy:

Using Cauchy–Schwarz and (5.25), it is easy to check that the first term is bounded by
kUtk

2kVtk
2N 2 C kUtk

2N . The second term equals the second quantization of the oper-
ator UtV �t VtU

�
t . Accordingly, it is bounded by kUtk2kVtk2N . To obtain a bound for the

last term on the right-hand side of (5.24), we write it asZ �
a.Vt;x/a

�.Ut;y/a.Ut;y/a
�.Vt;x/

C a�.Vt;x/a.Vt;y/.Ut;y; Ut;x/C .Vt;y; Vt;x/.Ut;y; Ut;x/
�

dx dy:

Applying Cauchy–Schwarz shows that the first term is bounded by 2kUtk2kVtk2N 2 C

kVtk
2N . The second operator is the second quantization of VtU �t U tV

�
t , and is therefore

also bounded by kUtk2kVtk2N . A computation that uses (4.4) and (5.9) shows that the
last term in (5.25) can be written as

TrŒV �t VtU
�
t Ut � D TrŒ Qt .1C Qt /� � 2N C .Tr Qt /2 � 2N C 4N 2:

To obtain the second bound we used k � kL2 � k � kL1 . Collecting the above estimates we
find

T �t N 2Tt . .kUtk
2
C kVtk

2/2N 2
CN 2: (5.26)

It remains to consider the induction step. Let us denote adA.B/ D ŒB; A� and Xt D
T �t N Tt . From (5.23) we have

adnN .Xt / D .�2/
n

Z
a�.Ut;x/a

�.Vt;x/ dxC 2n
Z
a.Vt;x/a.Ut;x/ dx:

Therefore, for any n 2 N we can bound

jadnN .Xt /j
2 . .kUtk

4
C kUtk

4/N 2
CN 2: (5.27)

From the induction assumption, we find

T �t N 2jC2Tt D XtT
�
t N 2jTtXt . Xt .C

2j
t N 2j

CN 2j /Xt

. C
2j
t XtN

2jXt C C
2
t N 2N 2j

CN 2jC2

. C
2j
t XtN

2jXt C C
2jC2
t N 2jC2

CN 2jC2; (5.28)
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where we defined Ct WD kUtk2 C kVtk2. With Cauchy–Schwarz, (5.26), (5.27), and the
commutator expansion

ŒAn; B� D

n�1X
jD0

�
n

m

�
Amadn�mA .B/;

we obtain

XtN
2jXt � 2N

jX2t N j
C 2jŒN j ; Xt �j

2

� 2N jX2t N j
C 4jC1

j�1X
nD0

N n
jadj�n

N
.Xt /j

2N n

. C 2t N 2jC2
CN 2N 2j : (5.29)

Inserting (5.29) into (5.28) we get

T �t N 2jC2Tt � C
2jC2
t N 2jC2

CN 2jC2;

which proves the induction step.
Finally, the second bound in (5.22) follows from the first bound and the observation

that T �t is also a Bogoliubov transformation, implementing the symplectomorphism

T �1t D �T �t � D

�
U �t �V �t
�V �t U �t

�
:

This concludes the proof of the lemma.

5.4. Comparison of the two fluctuation dynamics

In this subsection we compare the fluctuation dynamics Ufluct and Ufluct
� . The goal is to

prove the following lemma. Throughout the section we use the shorthand notation Ct WD
kUtk

2 C kVtk
2 and Tc WD Tc.s/.

Lemma 5.5. Let the assumptions of Lemma 5.4 be satisfied, and let k 2 N, � 2 .0; 1=7�.
There exists a constant c > 0 independent of t , N such that

jh�t ;N .�t � ��;t /ij C jh��;t ;N .�t � ��;t /ij

. N�1=2��k=2 exp.c exp.c exp.ct///

� .T 7c h�;N
4�i1=2 C T 5c N

2/.TcN
�1=2
C T 1=2c N��=2 C T 3=4c N��/

� h�;N kC2�i1=2 (5.30)

where we recall that �t D Ufluct.t; 0/� and ��;t D Ufluct
� .t; 0/�.
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Proof. We only prove a bound for the first term on the left-hand side of (5.30). A bound
for the second term can be obtained with the same arguments. We start by noting that

h�t ;N .�t � ��;t /i D
˝
�t ;N .Ufluct.t; 0/ �Ufluct

� .t; 0//�
˛

D �i
Z t

0

ds
˝
�t ;N Ufluct.t; s/.GN;s � G

.�/
N;s/U

fluct
� .s; 0/�

˛
D �i

Z t

0

ds
�
�t ;N Ufluct.t; s/

� 3X
iD1

	
.i;�/;>
N;t

�
Ufluct
� .s; 0/�

�
; (5.31)

where 	
.i;�/;>
N;t is defined exactly as 	

.i;�/
N;t , with 1.N �N �/ replaced by 1.N >N �/. The

contribution from the term with four U operators appearing in 	
.1;�/;>
N;t can be estimated

by

2

N

Z t

0

Z ˇ̌
v.x; y/

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/

� 1.N > N �/��;s
˛ˇ̌

dx dy ds

�
2

N

Z t

0

�Z
jv.x; y/j

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/

�Ufluct.t; s/�N �t
˛
dx dy

�1=2
�

�Z
jv.x; y/j

˝
��;s; 1.N > N �/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/

� 1.N > N �/��;s
˛
dx dy

�1=2
ds: (5.32)

An application of Lemma 5.4 shows thatZ
jv.x; y/j

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/U
fluct.t; s/�N �t

˛
dx dy

� kvk1kUsk
4
˝
�t ;N Ufluct.t; s/N 2Ufluct.t; s/�N �t

˛
. kvk1C 2s

�
C 2s C

2
t h�t ;N

4�t i C C
2
t N

2
h�t ;N

2�t i
�

. kvk1C 2s
�
.C 2s C

6
t C

4
0 C C

6
t C

4
0 /h�;N

4�i C .C 2s C
6
t C C

4
t /N

4
�
: (5.33)

To bound the second factor, we use

1.N > N �/ � .N =N �/k (5.34)

with k 2 N n ¹0º. Using (5.34) and Lemma 5.3, we obtainZ
jv.x; y/j

˝
��;s; 1.N > N �/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/1.N > N �/��;s
˛
dx dy

� kvk1kUsk
4N��kh��;s;N

kC2��;si

� kvk1kUsk
4N��k exp

�
c exp.c exp.cs//

�
h�;N kC2�i: (5.35)
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We note that Lemma 4.1 implies Ct . Tc exp.ct/. When combined with (5.33) and (5.35),
this gives

(5.32) .
kvk1Tc

N 1C�k=2
exp

�
c exp.c exp.ct//

�
h�;N kC2�i1=2

�
�
T 7c h�;N

4�i1=2 C T 5c N
2
�
: (5.36)

When inserted into (5.31), the other terms in 	
.1;�/;>
N;t can be estimated in the same way

by the right-hand side of (5.36).
Next we consider the terms arising from 	

.2;�/;>
N;t . We start by considering the term

with four creation operators. We bound its contribution to (5.31) by

2

N

Z t

0

Z ˇ̌
v.x; y/

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a
�.Vs;y/a

�.Vs;x/

� 1.N > N �/��;s
˛ˇ̌

dx dy ds

�
2

N

Z t

0

�Z
jv.x; y/j

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a.Us;y/a.Us;x/

�Ufluct.t; s/�N �t
˛
dx dy

�1=2
�

�Z
jv.x; y/j

˝
��;s; 1.N > N �/a.Vs;x/a.Vs;y/a

�.Vs;y/a
�.Vs;x/

� 1.N > N �/��;s
˛
dx dy

�1=2
ds: (5.37)

A bound for the first factor was obtained in (5.33). To estimate the other factor, we use the
identity (5.16). The normal-ordered term was considered in (5.35). We use Proposition 3.4
and estimates similar to those above to bound the remaining contributions by

kvk1 exp
�
c exp.c exp.cs//

��
T 5=2c N��.kC1/ C T 3=2c N 1��.kC2/

�
h�;N kC2�i:

Hence, we have

(5.37) .
kvk1 C kvk1

N 1C�k=2
exp

�
c exp.ct exp.ct//

��
T 7c h�;N

4�i1=2 C T 5c N
2
�

�
�
Tc C T

5=4
c N��=2 CN��T 3=4c N 1=2

�
h�;N kC2�i1=2:

The remaining terms in 	
.2;�/;>
N;t can be estimated analogously.

We are left to consider the contributions from 	
.3;�/;>
N;t . We insert the term with three

creation operators into (5.37) and findˇ̌̌̌
3

N

Z t

0

Z
v.x; y/���s.x/

˝
�t ;N Ufluct.t; s/a�.Us;x/a

�.Us;y/a
�.Vs;y/

� 1.N > N �/��;s
˛
dx dy ds

ˇ̌̌̌
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�
3

N

Z t

0

�Z
jv.x; y/j

a.Us;y/a.Us;x/Ufluct.t; s/�N �t
2 dx dy

�1=2
�

�Z
jv.x; y/j j���s.x/j2

a�.Vs;y/1.N > N �/��;s
2 dx dy

�1=2
ds

.
.kvk1 C kvk1/

N 1=2C�k=2
exp

�
c exp.c exp.ct//

��
T 7c h�;N

7�i1=2 C T 5c N
2
�

�
�
T 1=2c N��=2 C T 3=4c N��

�
h�;N kC2�i1=2:

The remaining terms in 	
.3;�/;>
N;t can be estimated in a similar way by the right-hand side

of the above equation.
Collecting the above bounds, and usingN�1=2T 3=4c D N�1=2T

3=4
c .s/ . 1 (which fol-

lows from the condition s � 3=2), we obtain

jh�t ;N .�t � ��;t /ij . N�1=2��k=2 exp
�
c exp.c exp.ct//

�
.T 7c h�;N

4�i1=2 C T 5c N
2/

� .TcN
�1=2
C T 1=2c N��=2 C T 3=4c N��/h�;N kC2�i1=2:

5.5. Proof of Proposition 4.3

We are now ready to prove our final bound for the growth of the number of excitations in
the fluctuation vector. For � 2 .0; 1=7� we have, by Proposition 5.3 and Lemma 5.5,

h�t ;N �t i � h��;t ;N ��;t i C jh��;t ;N .�t � ��;t /ij C jh.�t � ��;t /;N �t ij

. exp
�
c exp.c exp.ct//

�
h�;N �i CN�1=2��k=2 exp

�
c exp.c exp.ct//

�
� .T 7c h�;N

4�i1=2 C T 5c N
2/.TcN

�1=2
C T 1=2c N��=2 C T 3=4c N��/

� h�;N kC2�i1=2:

Choosing � D 1=7 and using Tc D Tc.s/ � Tc.3=2/ . N 2=7 we arrive at (4.31).
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[12] L. Boßmann, N. Pavlović, P. Pickl, and A. Soffer, Higher order corrections to the mean-field
description of the dynamics of interacting Bosons. J. Stat. Phys. 178 (2020), no. 6, 1362–1396
Zbl 1439.82029 MR 4081233

[13] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler
theorems, including inequalities for log concave functions, and with an application to the dif-
fusion equation. J. Functional Analysis 22 (1976), no. 4, 366–389 Zbl 0334.26009
MR 0450480

[14] C. Brennecke, P. T. Nam, M. Napiórkowski, and B. Schlein, Fluctuations of N -particle quan-
tum dynamics around the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré C Anal. Non
Linéaire 36 (2019), no. 5, 1201–1235 Zbl 1419.81042 MR 3985542

[15] C. Brennecke and B. Schlein, Gross–Pitaevskii dynamics for Bose–Einstein condensates. Anal.
PDE 12 (2019), no. 6, 1513–1596 Zbl 1414.35184 MR 3921312

[16] S. Buchholz, C. Saffirio, and B. Schlein, Multivariate central limit theorem in quantum dynam-
ics. J. Stat. Phys. 154 (2014), no. 1-2, 113–152 Zbl 1291.82079 MR 3162535

[17] S. Chatterjee and P. Diaconis, Fluctuations of the Bose–Einstein condensate. J. Phys. A 47
(2014), no. 8, article no. 085201 Zbl 1287.82005 MR 3165088

https://doi.org/10.4310/CMS.2016.v14.n5.a9
https://doi.org/10.4310/CMS.2016.v14.n5.a9
https://zbmath.org/?q=an:1385.81013
https://mathscinet.ams.org/mathscinet-getitem?mr=3506807
https://doi.org/10.1063/1.3115046
https://zbmath.org/?q=an:1214.81089
https://mathscinet.ams.org/mathscinet-getitem?mr=2513969
https://doi.org/10.1063/1.1704002
https://doi.org/10.1063/1.1704002
https://mathscinet.ams.org/mathscinet-getitem?mr=152295
https://doi.org/10.1007/s00028-022-00799-2
https://doi.org/10.1007/s00028-022-00799-2
https://zbmath.org/?q=an:07530653
https://mathscinet.ams.org/mathscinet-getitem?mr=4423602
https://doi.org/10.4310/MAA.2000.v7.n2.a2
https://doi.org/10.4310/MAA.2000.v7.n2.a2
https://zbmath.org/?q=an:1003.81027
https://mathscinet.ams.org/mathscinet-getitem?mr=1869286
https://doi.org/10.1007/s00220-013-1722-1
https://doi.org/10.1007/s00220-013-1722-1
https://zbmath.org/?q=an:1280.81157
https://mathscinet.ams.org/mathscinet-getitem?mr=3063915
https://doi.org/10.1002/cpa.21542
https://doi.org/10.1002/cpa.21542
https://zbmath.org/?q=an:1320.35318
https://mathscinet.ams.org/mathscinet-getitem?mr=3366749
https://doi.org/10.1002/cpa.21598
https://doi.org/10.1002/cpa.21598
https://zbmath.org/?q=an:1352.81061
https://mathscinet.ams.org/mathscinet-getitem?mr=3570479
https://doi.org/10.1007/978-3-319-24898-1
https://zbmath.org/?q=an:1396.81003
https://mathscinet.ams.org/mathscinet-getitem?mr=3382225
https://doi.org/10.1007/s00023-018-0644-z
https://doi.org/10.1007/s00023-018-0644-z
https://zbmath.org/?q=an:1390.81757
https://mathscinet.ams.org/mathscinet-getitem?mr=3775154
https://doi.org/10.1007/s00023-016-0513-6
https://doi.org/10.1007/s00023-016-0513-6
https://zbmath.org/?q=an:1358.81173
https://mathscinet.ams.org/mathscinet-getitem?mr=3592092
https://doi.org/10.1007/s10955-020-02500-8
https://doi.org/10.1007/s10955-020-02500-8
https://zbmath.org/?q=an:1439.82029
https://mathscinet.ams.org/mathscinet-getitem?mr=4081233
https://doi.org/10.1016/0022-1236(76)90004-5
https://doi.org/10.1016/0022-1236(76)90004-5
https://doi.org/10.1016/0022-1236(76)90004-5
https://zbmath.org/?q=an:0334.26009
https://mathscinet.ams.org/mathscinet-getitem?mr=0450480
https://doi.org/10.1016/j.anihpc.2018.10.007
https://doi.org/10.1016/j.anihpc.2018.10.007
https://zbmath.org/?q=an:1419.81042
https://mathscinet.ams.org/mathscinet-getitem?mr=3985542
https://doi.org/10.2140/apde.2019.12.1513
https://zbmath.org/?q=an:1414.35184
https://mathscinet.ams.org/mathscinet-getitem?mr=3921312
https://doi.org/10.1007/s10955-013-0897-3
https://doi.org/10.1007/s10955-013-0897-3
https://zbmath.org/?q=an:1291.82079
https://mathscinet.ams.org/mathscinet-getitem?mr=3162535
https://doi.org/10.1088/1751-8113/47/8/085201
https://zbmath.org/?q=an:1287.82005
https://mathscinet.ams.org/mathscinet-getitem?mr=3165088


Dynamics of mean-field bosons at positive temperature 1051

[18] L. Chen, J. O. Lee, and B. Schlein, Rate of convergence towards Hartree dynamics. J. Stat.
Phys. 144 (2011), no. 4, 872–903 Zbl 1227.82046 MR 2826623
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