Ann. Inst. H. Poincaré D © 2023 Association Publications de I'Institut Henri Poincaré
Comb. Phys. Interact. 11 (2024), 453-502 Published by EMS Press
DOI 10.4171/AIHPD/167 This work is licensed under a CC BY 4.0 license

Trisections in colored tensor models

Riccardo Martini and Reiko Toriumi

Abstract. We give a procedure to construct trisections for closed manifolds generated by col-
ored tensor models without restrictions on the number of simplices in the triangulation, there-
fore generalizing previous works in the context of crystallizations and PL-manifolds. We give
a description of how trisection diagrams can arise from colored tensor model graphs for closed
4-manifolds. We further speculate on generalization of similar constructions for a class of
singular-manifolds generated by simplicial colored tensor models.
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1. Introduction

One of the most remarkable results in theoretical physics lies in random matrix mod-
els [36] whose critical limit by ’t Hooft’s topological expansion [105] provides a uni-
versal random geometry as a Brownian map [80, 81, 86], which is proven [87—-89]
equivalent to Liouville continuum gravity (quantum gravity with dilaton field in two
dimensions) [33,95]. Upon introduction of non-trivial dynamics, matrix models can
be shown to be mathematically rich. The theories based on Kontsevich-type matrix
models [48,70] can be reformulated as a non-commutative quantum field theory [49,
99,100, 107], namely, the Grosse—Wulkenhaar model. The Grosse—Wulkenhaar mode
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is an appealing quantum field theory with mathematical rigor, and exhibits properties
like constructive renormalizability, asymptotic safety [37], integrability [46, 50], and
Osterwalder—Schrader positivity [47,51].

Tensor models are higher rank analogues of such random matrix models, which
therefore lend themselves well to be a candidate to produce even more remarkable
results for higher-dimensional random geometry and quantum gravity [34,35,59,61,
97,98]. Colored tensor models [64] in particular, are shown to represent fluctuating
piecewise-linear (PL) pseudo-manifolds via their perturbative expansion in Feynman
graphs encoding topological spaces [2]. Colored tensor models admit a 1/N expan-
sion of the partition function [53, 54,57] with a resummable leading order, given by
melonic graphs [20], exhibiting critical behavior and a continuum limit [20]. Mel-
onic graph amplitudes satisfy a Lie algebra encoded in the large N limit of the
Schwinger-Dyson equations for tensor models [56]. Non-perturbative aspects such
as Borel summability [58,63, 66] and topological recursion [17, 19] are also studied.

Tensor models also provide a very interesting platform to explore new types of
quantum/statistical field theory, owing to their non-local interactions and their vast
combinatorics. As with matrix models, the combinatorial nature of tensor models can
be enriched by introducing differential operators such that the resulting theory con-
tains non-trivial dynamics. Consequently, the statistical model acquires a notion of
scale and its 1/N expansion can be translated into a renormalization group flow of
the theory. A series of analyses and results to understand the renormalization group
flow can be found in the works [4,5,11,22,23,25-27]. Different methods have been
developed to accommodate the non-local nature of tensor models coming from com-
binatorics, such as dimensional regularization [12] and 4 — e expansion [24]. Having
a formulation of renormalization group flow, one can then search for non-trivial fixed
points, e.g., via functional renormalization group [6, 7, 9, 10, 14, 38, 77] and check
their stability via Ward—Takahashi identities [78, 79]. Other non-perturbative studies
include Polchinski equations [71,72]. Moreover, in recent years, tensor models have
found a new avenue of research in holography via the large N melonic limit, which is
shared with the Sachdev—Kitaev—Ye model [60, 108]. Indeed, tensor models are a con-
ceptually and computationally powerful tool not only to address random geometric
problems but also problems in holography [31, 62, 68, 69, 73-75, 92-94], non-local
quantum and statistical field theories, artificial intelligence [76], turbulence [32], lin-
guistics [67,96], and condensed matter [21], and serve as a very rich playground for
theoretical physicists and mathematicians alike.

In the present work, we focus on studying the topological information encoded in
the graphs generated by rank-4 colored tensor models. Understanding and revealing
topological information and structure of PL-manifolds generated by tensor models are
important work in the context of random geometry and quantum gravity. Of course,
the present work is not the first one nor the only one to address the topological proper-
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ties encoded in the PL-pseudo-manifolds that colored tensor models represent. In fact,
there are precedent works examining topological spaces of tensor models [52, 55,
61,64], e.g., homology and homotopy of the graphs have been presented. For three-
dimensions, therefore correspondingly for rank-3 colored tensor models, Heegaard
splitting has been identified in [103].

However, this particular work of ours focuses on a novel concept, trisections
in four-dimensional topology, recently introduced by Gay and Kirby in 2012 [45].
Trisections are a novel tool to describe four-dimensional, closed, smooth manifolds
by revealing the nested structure of lower-dimensional submanifolds. In particular, the
trisection genus of a 4-manifold is an invariant of the DIFF category.' In the context
of discrete manifolds, the trisection of all standard simply connected PL 4-manifolds
has been studied for example in [3], and trisections in so-called crystallization graphs
have been investigated in [29]. In the former work [3], they rely on Pachner moves to
ensure that these submanifolds are handlebodies. However, in colored tensor models,
we do not have the privilege to perform Pachner moves, since they are not compatible
with colors in rank-4 tensor models. In the latter work [29], the study focused on crys-
tallization graphs, which are very special graphs that ensure the connectivity of each
of the submanifolds. However, in tensor models we generate also graphs which are
not crystallizations, and furthermore, in the continuum limit of tensor models, where
we are interested in large volume and refined triangulations, we will not find crys-
tallization graphs dominating. Hence, crystallizations have a limited applicability in
tensor models.

Therefore, we would like to address and formulate trisection in the colored tensor
model setting in this work.

The paper is organized as follows. In Section 2, we review some key points related
to colored tensor models, which our work is based on. In particular, in Section 2.1,
we review the construction of tensor models and the definition of their partition func-
tion. In Section 2.2, we recall how Feynman graphs of colored tensor models can
encode manifolds and what kind of topological information they store. In Section 3,
we illustrate a few key concepts of three-dimensional topology necessary to our work.
In Section 3.1, we explain how to describe manifolds via their handle decomposition
and recall how, in the case of 3-manifolds, it encodes their Heegaard splitting. Sec-
tion 3.2 analyzes the behavior of Heegaard splittings under connected sum, which will
be of great importance in the later part of the paper, while in Sections 3.3 and 3.4, we
review two constructions of Heegaard surfaces that are known in the literature and are
based on combinatorial methods. Section 4, finally, is dedicated to the construction
of trisections. After introducing the concept of trisection for smooth 4-manifolds, in

ISince in four dimensions DIFF ~ PL, the trisection genus is also a PL-invariant.
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Section 4.1 we review a particular kind of move, known as stabilization, and highlight
some features that stabilization shares with connected sum of trisections. In Sec-
tion 4.2, we focus on how to partition the vertices of a 4-simplex in three sets, which
is the starting point of our construction of trisections. In Section 4.3, we study the
structure obtained in a PL-manifold via our combinatorial construction and point out
what kind of problems are encountered for a generic graph of a four-dimensional
manifold. From this point onward, our work departs from previous results studying
trisections via triangulations of 4-manifolds. In Section 4.4, finally, we show how
the information about trisection can be extracted from the colored graph of rank-4
colored tensor models. Sections 4.5 and 4.6 elaborate on the analyses of the results.
In particular, we prove that, indeed, we split the manifold under investigation into
three four-dimensional handlebodies and we analyze the diagram generated by our
procedure. Strictly speaking, this diagram gives rise to a collection of trisection dia-
grams of a given genus, as it is characterized by a redundant amount of attaching
curves. Section 4.6 discusses such redundancy and explains how trisection diagrams
can be obtained upon knowing the homotopy group of the central surface. It is worth
mentioning here that all the trisection diagrams in such a collection are related by
construction by a finite sequence of handle slides and stabilizations (examples are
given in Appendix A). Section 4.7 addresses relaxation of the hypothesis of graphs
dual to manifolds and illustrates in some cases that it is possible to draw a few topo-
logical conclusions for a wider class of graphs. Finally, in Section 5, we summarize
our results and point out a few possible future directions which may benefit from the
present work.

2. Tensor models

2.1. (d + 1)-colored tensor models

In this section, we introduce tensor models, and in particular colored tensor mod-
els and some of their relevant objects which will be used later in order to construct
trisections.

Tensor models are statistical theories of random tensors and can be thought of
as zero-dimensional field theories. Then tensor models mostly encode combinatorial
information and many of their properties can be directly imported to their higher-
dimensional counterpart: tensor field theories. Colors are introduced via an extra index
labeling the tensor themselves and we require the covariance of the theory to be diag-
onal with respect to the color indices. This last requirement will allow us to have
a much greater control on the combinatorics encoded in the theory.
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Besides the field content of the theory (e.g., rank of tensors and amount of colors
considered), a colored tensor model is defined in perturbation theory upon specifying
a free covariance and an array of interactions (deformations around the free theory).
In this paper, we restrict to a simplicial model (the meaning of this name will be clear
soon). We therefore consider the multiplicative group of integers modulo N, Z  and
let I be Zx,d with elementsn € I, n = {ny,...,ng4} and F(I) the space of complex
functions on /. We give the following definition.

Definition 2.1. A (d + 1)-colored tensor model of rank d tensors is defined via
a measure dv

d
dv = [dpci (@' ¢)e™.
i=0

d d
§=2 Z Koy 1_[ ¢111, + 2 Z Jzﬁon-ﬁd 1_[ 4_5%1.,
i=0

n €l n;el i=0
where
s ¢':1 — Cared + 1 complex random fields;
e CU:F(I)— F(I)ared + 1 covariances;

o K, K:I*@*D 5 C are two vertex kernels.

If X and K are such that every tensor has exactly one index (n;) contracted
with another tensor in the interaction, we call the model a simplicial colored tensor
model. Note that in the interaction term, every color index appears on the same foot-
ing, while the free measure factorizes in the product of single color measures. Thanks
to this structure, the Feynman diagrams of a simplicial colored tensor model can be
represented as colored graph, i.e., a connected bipartite regular graph such that each
line has a color in {0, 1, ..., d} and each node is incident to exactly one line of each
color.”

Definition 2.2. A closed (d + 1)-colored graph is a graph ¥ = ('V, &) with node
set 'V and line set & such that

« 'V is bipartite; there is a partition of the node set V = V U V, such that for any
element/ € &,1 = {v, v}, where v € V and v € V. The cardinalities satisfy |V| =
21V| = 2|V|.

’In the following, we will often have to go back and forth between graphs and triangulation.
Therefore, in order to avoid confusion, we will adopt the terms node and line for, respectively,
zero-dimensional and one-dimensional objects in a graph, while we will call verfex and edge
a zero-dimensional and a one-dimensional object in the triangulation. When referring to edges
on the boundary of two-dimensional polygons we might use the term sides.
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» The line set is partitioned into d + 1 subsets & = U?:o &', where &' is the subset
of lines with color i.

o Ttis (d + 1)-regular (i.e., all nodes are (d + 1)-valent) with all lines incident to
a given node having distinct colors.

To distinguish, we call the elements v € V (v € V) positive (negative) nodes and
draw them with the colors clockwise (anti-clockwise) turning. We often denote by
these positive (negative) nodes in colors black (white) in graphs. The bipartition also
induces an orientation on the lines, say from v to v.

We notice that (d + 1)-colored graphs are dual to (colored) simplicial triangu-
lations of piecewise linear (PL) orientable pseudo-manifolds® in d dimensions [2,
43,52]. In particular, every node in the graph corresponds to a top-dimensional sim-
plex, every line is dual to a (d — 1)-dimensional face and two nodes joined by a
line of color i represent a pair of d-simplices sharing the same (d — 1)-face (i.e., an
orientation reversing homeomorphism between the two boundary faces is implied).
In fact, given a simplicial colored triangulation 7 of a PL pseudo-manifold M, one
can consider the dual cellular decomposition 7 * and notice that a colored graph is
nothing but the 1-skeleton of 7 *. Therefore, colored graphs are often referred to as
graph encoding manifolds (GEM), and play a fundamental role in the study of PL
topological invariant from a combinatorial point of view, especially within the frame-
work of crystallizations [43]. We remark that not every triangulation can be colored,
although a refinement compatible with edge coloring can always be found by means
of barycentric subdivision.

We postpone a more detailed explanation of the topological description of colored
graphs to the following sections. Nevertheless, it is useful to recall here how to embed
a colored graphs in its dual triangulation. Consider a triangulation 7 of a 4-mani-
fold M, and a colored graph § dual to 7, therefore K(§) = T and |K(§)| = M.
The most natural prescription is to embed the graph such that every component of the
graph intersects its dual simplex transversally and at the barycenter. Since the graph
is the 1-skeleton of the dual cellular decomposition of M, it is only made of nodes
and lines. Therefore, we only have to embed nodes in the barycenter of d-simplices
and have i-colored lines intersecting i -colored (d — 1)-faces transversally. Examples
are shown in Figure 1. For example in four dimensions we will have nodes at the cen-
ter of 4-simplices and i-colored lines intersecting i-colored tetrahedra transversally.
Although very simple, this embedding represents a very powerful tool to understand
many topological properties of PL. manifolds using colored graphs.

3 A pseudo-manifold is characterized by being non-branching, strongly-connected, and pure
to ensure a rather nice property for a d -dimensional simplicial complex. However, K (8') may
not represent a manifold, i.e., K(8%) may not be a sphere [52].
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Figure 1. We show d-simplices in dimensions d = 2, 3, 4, where we also embedded (d + 1)-
colored graphs. From left to right, d = 2, 3,4, and on the top row, embedded tensor model graphs
are shown in stranded representation, and on the bottom row, shown in colored representation.
‘We show in red, 0-colored faces (one-dimensional for rank 2, two-dimensional for rank 3, and
three-dimensional for rank 4).

As a final remark, we point out that bipartiteness of a colored graphs &, which
from a tensor model point of view follows from employing complex tensors and a real
free covariance, implies orientability of K(¥) [2]. Both in the GEM formalism and
in tensor models, this condition can be relaxed if non-orientable (pseudo-)manifolds
shall be considered, nevertheless, in this paper we restrict ourselves to the orientable
case.

2.2. Topology of colored graphs

As advertised, these colored graphs are extensively studied in topology especially
in the form of crystallization [30, 42, 82]. One can say that the colors therefore are
responsible to encode enough topological information to construct a d-dimensional
cellular complex, rather than the a priori naive 1-complex of a graph. Most of the
topological information is encoded within different kinds of embedded sub-complexes
of K(¥) and their combinatorial description in terms of colored graphs.

Bubbles. The first structure we present is that of bubbles.* Starting from a colored
graph § dual to a colored triangulation T = K(§), a n-bubble B, """ is the a-th
connected component of the subgraph spanned by the colors iy,...,i, € {0,...,d}.

4Sometimes referred to as residues in the literature.
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In order to lighten the notation, we will indicate d-bubbles by their only lacking
color and sometimes we will refer to them as i-bubble, for example in four dimen-
sions we might consider the O-bubble B = B,>>*. Bach bubble identifies a sin-
gle simplex in T, in particular given a n-bubble B its dual K(BL") is
PL-homeomorphic to the link of a (d — n)-simplex o, in the first barycentric sub-
division of 7. Upon the embedding procedure described above, we can think about
K (!82““"”) as the boundary of a n-dimensional submanifold of 7, intersecting o,
transversally. The most important bubbles for our work are d-bubbles and 2-bubbles.
d-bubbles represent the link of vertices (0-simplices) in 7. A standard result states
that K (%) is a manifold if and only if all d-bubbles are topological spheres. 2-bubbles
will be referred to as bicolored cycles,’ they identify (d — 2)-simplices (triangles
in four dimensions) and are often depicted in tensor models when employing the
“stranded” notation for Feynman graphs. From a tensor model perspective, while
nodes of § correspond to interaction vertices and lines to free propagators of the
theory, bicolored cycles come from the contraction patterns of tensor indices.

Jackets. Let § be a (d + 1)-colored graph. For any cyclic permutation n={no,...,n4}
of the color set, up to inverse, there exist a regular cellular embedding of § into
an orientable surface X, such that regions of X, are bounded by bicolored cycles
labeled by {n;, n;+1} [8,53,54,57]. Then, we define a jacket ¢, as the colored graph
having the same nodes and lines as ¢, but only the bicolored cycles {7;, ;i +1}-

Definition 2.3. A colored jacket ¢, is a 2-subcomplex of §, labeled by a permuta-
tion 1 of the set {0, ..., d}, such that

* ¢, and ¢ have identical node sets, Vg = Vg;
* ¢y and ¢ have identical line sets, Eg = Eg;

+ the bicolored cycle set of §, is a subset of the bicolor set of §: g = { f € Fg|
f=miniv1}.1 € Zasa}.

From a tensor model perspective, jackets are merely ribbon graphs (only comprise
of nodes, lines and bicolored cycles), like the ones generated by matrix models graphs.
See examples of jackets in Figure 2. Therefore, jackets represent embedded surfaces
in the cellular complex represented by colored tensor models graphs. Let us clarify
this point. The regular embedding of ¢ into X, defines a cellular decomposition of %,
with polygonal 2-cells having (d + 1)-sides. Each 2-cell is dual (in X,) to a node
of § and each side is dual to a line (furthermore, every vertex is dual to a bicolored
cycle {n;, ni+1}). Therefore, sides inherit the colors carried by lines of . One may

5In the tensor models literature, we often refer to bicolored cycles as faces, however, in this
paper, we will keep the word faces for general simplices.
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Figure 2. We show in the top row the colored representations of the elementary melon ¥ in
rank-3 tensor bipartite colored model, its bubbles ;’86, BT, Bi, and $§ from left to right. In the
middle row, we show the stranded representations of the same objects as the top row. In the
bottom row, we show in the stranded representation, the jackets of the elementary melon in
rank 3 tensor bipartite colored model.

notice that the transversal intersection of a surface with a codimension-1 i-simplex is
a one-dimensional edge homeomorphic to such an i-colored side. Therefore, we can
think that K({,) is an embedding of X, in K(¥), such that it intersects transversally
all the (d — 1)-faces. If d < 3, the dimensionality of X, is too low to define two
different regions within the top-dimensional simplices. If d = 3, however X, splits
every top-dimensional simplex and have been shown to represent Heegaard surfaces
of three-dimensional PL-manifold K(¥) [103]; we discuss this further in Section 3.3.

It is evident that § and ¥ have the same connectivity. We note here that the number
of independent jackets is d!/2. We define the Euler characteristic of the jackets as
x(§) =2—-2gg9 =|Vg| — |Eg| + |Fg|, where gg4 is the genus of the jacket and
corresponds to the genus of %,,. Note that we only define jackets for the closed colored
graphs here. We also remark that jackets are also bipartite reflecting the definition
above, and therefore represent orientable surfaces.

Gurau degree. From atensor model perspective, jackets play a crucial role in the large
N expansion of colored tensor models, as they define the so-called Gurau degree,
which is the parameter that governs the large N expansion. For completeness, we
introduce the Gurau degree of a graph § as follows.
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Definition 2.4. Given colored graph § and the set of its jackets, we define a com-
binatorial invariant, called Gurau degree, as the sum of genera of all jackets of §:
wE) =) 4 8g- Itis easy to see that w is a non-negative integer.

A remarkable feature of Gurau degree is that if @ = 0, then the K(¥§) is a topolog-
ical sphere, although the converse is not always true. Although for d = 2 the degree
equals the genus of the triangulation dual to ¢, it is not a topological invariant for
d > 2. However, it is an important quantity in tensor models, as the classification of
graphs organized by the Gurau degree allows fora 1/ N expansion where N is the size
of the tensors, just like the 1/ N expansion of matrix models according to the genus.
We refer to other literature [53, 54, 57] for a more detailed discussion on the large N
expansion of colored tensor models.

3. Heegaard splittings of 3-manifolds

In this section, we introduce some of the concepts that are pedagogical to under-
standing trisections and to which we refer often in later sections of the paper, namely
handle decomposition and Heegaard splittings. We begin defining such constructions
for objects in the TOP category (specifically for three-dimensional topological man-
ifolds in the case of Heegaard splittings), and we restrict later to the PL category,
which is the main focus of this work.

3.1. Attaching handles

A handle decomposition of a closed and connected topological d -manifold M is a pre-
scription for the construction of M by subsequently attaching handles of higher index.
We can define an i-handle in d dimensions as a topological d-ball D¢ parametrized
as D' x D4~ and is glued to a manifold K along S~ x D4~ i.e., there exist an ori-
entation reversing homeomorphism from S'=1 x D?~ to a subset of dK. Therefore,
an i-handle can be viewed as the thickening of an i-dimensional ball (which we call
spine); we will refer to the boundary of this ball as the attaching sphere of the handle.
A (d — i)-ball intersecting the spine transversally, is called compression disc, and its
intersection with the boundary of the handle is referred to as belt sphere. Note that,
unless the handle decomposition of a manifold includes at least one top-dimensional
handle, the result always has a boundary. See Figure 3 for the illustration of anatomy
of handles.

Definition 3.1. A handlebody H (sometimes referred to as 1-handlebody) is a mani-
fold whose handle decomposition contains only a 0-handle and 1-handles. The genus g
of H can be defined as the number of 1-handles in its decomposition.
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Figure 3. Handles in three dimensions. The figure shows (from left to right) a three-dimensional
a 0-handle (D?), a 1-handle (D! x D? glued along S° x D?), a 2-handle (D% x D! glued along
S! x D1), and a 3-handle (D? glued along S?). The gluing surfaces are colored in brown. For
0-handle, the spine is a point, for 1-handle the spine is a line, and for 2-handle the spine is a disc,
all colored in solid black. We also show in red belt spheres for 1-handle and 2-handle. Lastly,
we also illustrate how 1-handles and 2-handles attach to a O-handle at the gluing region which
are colored in brown.

Note that, if H is three-dimensional, then g equates the genus of dH . Moreover,
a manifold is a handlebody if and only if it collapses to a one-dimensional spine.

Definition 3.2. Let H; and H, be two three-dimensional handlebodies of genus g
and let f be an orientation reversing homeomorphism from dH; to dH,. We call
(H1, Hz, f) a Heegaard splitting of the 3-manifold M if

M = H, UHz. 3.1
f

The common boundary ¥ = dH; = dH, is then called a Heegaard surface.

From now on, making use of a slight abuse of notation and for the sake of clarity,
we represent a Heegaard splitting with the triple M = (H;, H,, X), by asserting
3 = 0H; = 0H, is provided by the homeomorphism f.

A Heegaard splitting allows us to represent a closed and compact 3-manifold® M
via a surface and two sets of closed lines on the surface representing the homotopically

In the present manuscript, we focus on closed and orientable manifolds, nevertheless the
definition of Heegaard splitting applies to a wider class of manifolds. In particular, we point
out that in the case of non-orientable 3-manifold, the Heegaard surface is non-orientable as
well [101]. Moreover, the definition of Heegaard splitting can be extended to manifold with
boundary making use of compression bodies instead of handlebodies [85].
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Figure 4. Heegaard diagrams for S3. The picture shows two Heegaard diagrams (out of
infinitely many with arbitrary genus g) for the sphere S3: for minimum genus g = 0 (on the left),
and for g = 1 (on the right). The diagram with a Heegaard surface g = 0 (S2) does not have any
attaching curves. The a- and B-curves on the Heegaard surface g = 1 (S' x S!)are shown in
red and blue. The toric Heegaard surface in the latter is the common boundary of two solid tori
(D? x S1): we can consider them so that inside this toric Heegaard surface, there is one solid
torus, and there is another one outside. In particular, we can consider the diagram as embedded
in R3 plus a point at infinity (therefore in a space homeomorphic to S3). The outside solid torus
is specified by the blue -curve which is the boundary of a horizontally lying compression disc.
Its spine would circle around the torus intersecting this compression disc transversally. Note
that if one views the blue curve as the attaching sphere of a 2-handle, the resulting manifold
would be a topological ball D3, which can be easily capped-off to generate S3.

inequivalent belt spheres of each handlebody. These curves, namely «- and B-curves,
encode the information on how H; and H> are glued to their boundaries. We refer to
a- and B- curves collectively as attaching curves.

The representation we just described is called a Heegaard diagram for M . Fig-
ure 4 shows two examples of Heegaard diagrams for the 3-sphere. It is important to
point out that cutting X along the «-curves or along the B-curves never leads to a dis-
connected surface, instead we obtain a 2-sphere from which an even number of discs
(two per each curve) have been removed. See Figure 5.

We should point out the symmetry between i-handles and (d — i)-handles in d
dimensions. Since (D! x D47%) = (Si~! x D4) U (D' x S¢~i~1), the difference
between the two types of handles is which portion of the handle’s boundary is glued
onto a manifold and which part remains for other handles to be glued on. In particular,
the 1-handles and 3-handles of H» in (3.1), glue onto H; as 2-handles and 3-handles,
respectively.

Finally, we point out that a Heegaard splitting of a 3-manifold is not unique, nev-
ertheless two splittings of the same manifold (and the respective Heegaard diagrams),
are always connected by a finite sequence of moves, called Heegaard moves, consist-
ing in:
¢ handle slides,

* insertion/removal of topologically trivial couples of 1-handle and 2-handle (i.e.,
glued in such a way that together they form a 3-ball D3).
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Figure 5. Cutting along attaching curves. An example of viable attaching curves (top) and a not
viable one (bottom). Note that cutting along the latter separated the would-be Heegaard surface
in two connected components.

Definition 3.3. Given a 3-manifold M, the minimal genus over all the possible Hee-
gaard surfaces is a topological invariant. We call this number Heegaard genus.

3.2. Connected sum and Heegaard splittings

The connected sum M §f N of two d-manifolds M and N is constructed by remov-
ing a topological d-ball D¢ from their interior and gluing M and N by identifying
their boundaries (homeomorphic to S d=1y If M and N are both oriented, there is
a unique connected sum constructed through an orientation reversing map between
the boundaries after the removal of the d-balls and the resulting manifold is unique
up to homeomorphisms.

We define the boundary-connected sum of two d-manifolds with boundaries, M
and N, as the manifold M fj N obtained by performing a connected sum of their
boundaries dM ff ON. Note that the boundary-connected sum of handlebodies H;
and H, is a handlebody itself. The spine of H; ] H, can be represented by joining the
two spines through a line or a point.’

A question that naturally arises is: given two 3-manifolds M and N, is there
a way to represent a Heegaard splitting of M #f N in terms of Heegaard splittings
M ={H;,H,,Ypy}and N = {K1, K5, X 5}? To answer this question, we consider
a 3-ball Dyy (resp. Dy ) intersecting X3 (X ) transversally in one 2-ball. Since the
result is unique up to homeomorphism, we can choose the ball to be removed as better

TThe line connecting the two spines does not represent any handle, rather, the identification
of two discs on the boundaries of the two handlebodies and, therefore, can be contracted to a
point. Nevertheless, it is useful for the moment to consider it as a specification of the way the
boundary-connected sum is performed.
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Figure 6. Connected sum. We represent here the connected sum of 3-manifolds via their Hee-
gaard diagrams (Lens space (1, 1) on the left, S' x S? on the right). The picture shows the balls
to be removed (castration) from the manifolds and how they intersect the Heegaard surfaces.
Note that this corresponds to the boundary-connected sum of the handlebodies. We show in the
solid black thick line as the spine of the handlebodies, and the attaching curves are in red and
in green. The arrows along the circles on the Heegaard surface show the reversed orientation.

suits us. Since the intersection of the 3-ball with each element of the splittings is a ball
of the appropriate dimension, the connected sum of M § N performed removing Dy
and Dy naturally gives rise to a Heegaard splitting of the form {H, §] K1, H» [ K>,
¥upm #t £y} See Figure 6 for an explicit example.

A few comments are in order. Firstly, we remark that the Heegaard splitting of
closed manifolds is symmetric with respect to the two handlebodies. By this we mean
that we can differentiate H, and H, through labels induced by the construction of the
splitting, but ultimately their role (and therefore the role of a-curves and B-curves)
can be interchanged. For example, if we have in mind a handle decomposition of M
we can say that H, is given by the set of handles of index i < 1 while H; is given by
the set of handles with i > 2 but, as we explained above, these characterizations can be
easily switched for three-dimensional manifolds upon inverting the gluing order of the
handles. If we induce the Heegaard splitting via a self-indexing Morse function f via
f~1(3/2), the role of the handlebodies can be switched upon sending f to — f + 3.
In agreement with this feature of Heegaard splittings, we notice that H; and H»
induce, as submanifolds of M, an opposite orientation of X,s. This might create an
ambiguity in performing the connected sum M #§ N through the Heegaard splittings
of M and N since reversing the orientation of one of the two Heegaard surfaces cor-
responds to a different boundary-connected sum of the handlebodies involved in the
construction. This ambiguity reflects the fact that the connected sum is unique only
after specifying the orientation of the manifolds involved.® Ultimately, a choice of a-

8 An example of connected sum between three-dimensional manifolds in which reversing the
orientation of one of the manifolds involved changes the result is /(3, 1)  /(3, 1), which is not
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and B-curves for the two diagrams corresponds to a choice of relative orientation for
the two manifolds and specifies a connected sum constructed so that the set of a-
curves in M ff N is the union of the sets of a-curves in M and a-curves in N and
similarly for the B-curves.

Secondly, we point out that the choice of a disc to be removed from each Heegaard
surface during the connected sum operation is irrelevant, provided it does not intersect
any attaching curve. To convince oneself, it is sufficient to remember that cutting
along all the a-curves we obtain a pinched sphere on which any discs are equivalent,
and similarly for the -curves.

3.3. Jackets as Heegaard surfaces

Turning our attention to objects in the PL category, in particular to PL 3-manifolds
encoded in colored graphs, one might wonder whether there exists a natural formu-
lation of Heegaard splittings in terms of combinatorial objects. In [103], it is shown
that the Riemann surfaces corresponding to the jackets of a rank-3 colored tensor
model are Heegaard surfaces, and that if the corresponding triangulation is a manifold,
then the triple (K(g @), H@) HD) is a Heegaard splitting of the triangulation.
Although the complex structure of the Riemann surfaces studied in [103] was merely
a consequence of the field content of the model examined, the Heegaard structure is
purely combinatorial. In fact, this identification was already known in the crystalliza-
tion theory literature, and led to the formulation of the concept of regular genus [44].
Here, we revise such construction which will be of great importance in the following.

Let us consider a three-dimensional connected orientable closed manifold M
dual to a rank-3 colored tensor model graph ¥ which is introduced in Section 2:
M = K(8). For every 3-simplex A® e 7, we consider a function f mapping A®
onto [0, 1] € R as in Figure 7. We recall that in every A®, each edge is uniquely
defined by a pair of colors {7, j}, where i, j € 0,1, 2, 3. We can construct f such
that the preimage of the points {{O}, {1}} under f identifies everywhere in T two
non-intersecting edges of given colors f~1(0) = {i, j}, f~'(1) = {k.I}, i, j. k,l €
{0,1,2,3},i # j # k # [, while the preimage of any point in (0, 1) gives us a square
cross section of each A®). We can glue these squares via their boundaries according
to the colors, obtaining a surface embedded in M. The surface ¥ constructed in this
way is a realization of a quadrangulation represented by one the jackets J; ik,
of § and is dual to the corresponding matrix model obtained by removing the strands

homeomorphic to /(3, 1) §/(3, 1), where /(3, 1) represents /(3, 1) with the opposite orientation.
A similar feature happens in four dimensions with the two possible connected sums of CP?
with itself.
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0
AB AD

Figure 7. Mapping of a 3-simplex AP, f is a map from a d-simplex AD o2 L%J—Simplex
AL%J, |x] being the floor function of x; here, it is for d = 3. As we will explain later, the
0-skeleton of the first barycentric subdivision of AL%) minus the O-skeleton of ALZ! itself
defines the splitting and its preimage represents, in this case, a square in the Heegaard surface.
The 0-skeleton of AL%J defines the spines of the handlebodies. By linearly extending this iden-
tification, we can reconstruct the entire tetrahedron [102].

{i, j} and {k,[}.” Since the graph § is closed, bipartite and connected, so is J.
The surface X therefore splits M in two manifolds Hy and H; with their common
boundary being the surface X itself. It is easy to notice that the spine of each H; is
one-dimensional. In fact, it is given by the set of edges f~!(i) for i € {0, 1}. Thus,
Hj and H; are handlebodies and a jacket ¢ identifies a Heegaard surface X.

Once we identified a Heegaard splitting of M in terms of combinatorial objects
(i.e., via jackets) as described above, it is natural to wonder how the attaching curves
arise. As we can see from Figure 8, for every edge e in the spine of H; we can
construct a compression disc in the shape of a polygon. The intersection of the com-
pression disc with each of the tetrahedra sharing e is a triangle (Figure 8) and the
disc is therefore a polygon whose sides are as many as the number of the 3-simplices
sharing e. Importantly, we see that the perimeter of the polygon is the projection of
the edges opposite to the spine on the Heegaard surface. This implies that, given the
quadrangulation of ¥ defined by a jacket §, we can draw the attaching curves by
connecting the opposite edges of each square.

A remark is in order. The construction of attaching curves drawn on a Heegaard
surface we described so far is, in a way, overcomplete since it provides us with a re-
dundant description; we will end up having many copies of the same curve (i.e., ho-

“Here we employ a slightly different notation for jackets with respect to the one introduced
in Section 2.2. Notice that, if d = 3, the set of bicolored cycles in the jacket is lacking only
two elements from the set of bicolored cycles of §. Thus, by writing J¢;. ;y(k.;} We mean that
{i,j} ¢ {{ni.ni+1}Vi € Z4} and similarly for {k, [}. This notation is especially convenient in
order to understand jackets in terms of Heegaard splittings.
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Figure 8. A compression disc, an attaching curve and a spine of three-dimensional handlebody.
The central green line is a single edge in the triangulation, shared by six 3-simplices, which is to
be identified as a spine of a three-dimensional handlebody. The rectangular faces (one of them
colored in yellow) of the hexagonal prism are part of the Heegaard surface 3. A compression
disc is depicted in pink (a hexagon) and its intersection with the Heegaard surface is an attaching
curve. As illustrated above, a segment of an attaching curve can be considered as a projection
on ¥ of the edge opposite to the spine (e) in each 3-simplex.

motopically equivalent ones) and furthermore, curves that are homotopic to a point
(which hence should not be considered since they describe the attaching of a sphere).
It is sufficient to consider only one representative of each equivalence class,'” never-
theless, when constructing a trisection later on, a bit of care will be needed to convince
ourselves that such freedom does not imply any ambiguity in the construction.

For completeness, we compute here the genus of the Heegaard surface obtained
with the procedure described above. Since ¥ = K(¢), we have that the genus gy, is
given by

2— g 1
ge=—F-=52-Vg+ Eg—Fy),
2 2
where y g is the Euler characteristic of K({) and Vg, E4 and Fg the vertices, edges
and bicolored paths in J, respectively. Since the vertices and the edges in the jacket
are the same as those in 9, and they satisfy 2 E¢ = 4Vg, we can further write

1 1
gn =1+ Vg~ >Fs>0. (3.2)

3.4. More Heegaard splittings in triangulable manifolds

For later convenience, we illustrate now a different construction of Heegaard split-
tings from which we will borrow its technique later on. Consider a triangulation 5

10We stress that an a-curve and a B-curve can be homotopically equivalent and that the
operation of modding out the equivalence class should be performed in either set independently.
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Figure 9. A schematic representation of the two handlebodies obtained for a single tetrahedron
using the 1-skeletons of 7 and 7 *.

of a PL manifold M and its dual cellular decomposition 7 *. The 1-skeletons of T~
and T are perfect candidates to be identified as spines of Hy and H,. In fact, H;
and H; are nothing but tubular neighborhoods of these two 1-skeletons, providing an
orientation reversing homeomorphism between their boundaries, we can identify the
Heegaard surface (see Figure 9). Note that if 7 is the triangulation associated with a
colored graph g, the 1-skeleton of T * is the graph itself. The Heegaard genus g is
then given by

g=E;s—Vyr+1=Eqx —Vgsx +1 =V« 4+ 1, 3.3)

where Eq (E3+) and Vg (Vg«) are the number of edges and vertices in the 1-
skeletons of 7 (7 *). The genus then corresponds to the number of independent loops
of each graph, i.e., the dimension of the first homology groups of the 1-skeletons.
Note that, by definition, Vg= corresponds to the number of tetrahedra in 7, which
we denote by F A?” while Eg = is the number of triangles in 7, which we denote
by F AD- Therefore, equation (3.3) leads to the following identity for the Euler char-
acteristic of M:

(M) = VT—ET—I—FA(z) —FA(s) =0,
7 7

which is always true for odd-dimensional manifolds due to the Poincaré duality [91].
Finally, if we compare the present construction with the one obtained in Sec-
tion 3.3 we can find from equation (3.2) (and using the fact that § is the 1-skeleton
of T*):
1
g —g = _E(VT* + Fg) <0.

Therefore, we notice that g < g, which imply that this way of constructing
a Heegaard splitting is actually less advantageous, as the topological invariant is the
minimum genus of Heegaard surface.
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4. Trisections

A construction analogous to a Heegaard splitting (in three-dimensions) can be per-
formed in four-dimensions, which is called trisection [45]. Note that one can perform
trisections for non-orientable manifolds [104], however in this paper, we restrict our-
selves to orientable manifolds. Again, we start by working within the TOP category.
We will restrict to objects in the PL category later in the paper.

Definition 4.1. Let M be a closed, orientable, connected 4-manifold. A trisection
of M is a collection of three submanifolds X, X», X3 C M such that:

* each X; is a four-dimensional handlebody of genus g;,

 the handlebodies have pairwise disjoint interiors 0X; D (X; N X;) C dX; and
M =, Xi,

 the intersection of any two handlebodies X; N X; = H;; is a three-dimensional
handlebody,

¢ the intersection of all the four-dimensional handlebodies X; N X, N X3 is a closed
connected surface X called central surface,

fori,j €1,2,3.

Note that any two of the three-dimensional handlebodies {H;;, Hj;, X} form
a Heegaard splitting of d.X;.
In four dimensions, we have the following extending theorem [90]:

Theorem 4.2. Given a four-dimensional handlebody H of genus g and an homeo-
morphism ¢: dH — 0H, there exists a unique homeomorphism ®: H — H which
extends ¢ to the interior of H.

It implies that closed 4-manifolds are determined by their handles of index i < 2
and that there is a unique cap-off determining the remaining 3- and 4-handles (recall
the symmetric roles of i-handles and (4 — i)-handles in four dimensions). However,
in the context of trisections, the extending theorem plays an even bigger role, for it
can be applied to each handlebody X; in Definition 4.1. Consequently, a trisection
of M is fully determined by the three three-dimensional handlebodies H;; which, in
turn, can be represented by means of Heegaard diagrams.

Hence, similarly to the three-dimensional case of Heegaard splittings, a trisection
can be represented with a diagram consisting of the central surface'' ¥ and three sets

"From now on we may adopt the term “central surface” for both the case of trisections and
Heegaard splittings when a feature is clearly common to the central surface of a trisection and
the Heegaard surface of a Heegaard splitting.
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X>

e

(a) (b)

Figure 10. (a) Schematic representation of the trisection of a 4-manifold M. X1, X», and X3
are four-dimensional submanifolds whose boundaries are Hy, U Hy3, Hi2 U H»3,and Hy3 U
Hj3, respectively. H12, H13, and H»3 are three-dimensional handlebodies and X is a Heegaard
surfaces for the pairs { H12, H13}, {H12, H23}, and { H13, H»3}. X is called the central surface
of a trisection. (b) Lower three-dimensional representation of the trisected manifold. H» is
represented in half of S2 colored in red, Hy3 in green, and H>3 in blue surface. Inside of S2,
namely D3 bounded by Hi> and Hj3 represents X1, whereas the outside space above (below)
H1> (H13) and H»3 represents X2 (X3). The yellow circle represents 2. This representation
of a trisection is very crude and strictly speaking wrong (e.g., keep in mind that M ought to be
closed); obviously, all the submanifolds and the given manifold itself are in principle general,
however in this representation, they are depicted in a very special way.

of curves: a-curves, B-curves and y-curves (collectively, attaching curves). These
curves are constructed, as before, by means of compression discs and represent the
belt spheres of the 1-handle of each of the three-dimensional handlebodies H;;. A tri-
section diagram therefore combines the three Heegaard diagrams for dX; into a single
diagram. Thus one can say that the construction of trisection, together with the extend-
ing theorem, allows us to study four-dimensional topology, within a two-dimensional
framework. Again, infinitely many possible trisection diagrams are viable for a given
manifold and they are connected by a finite sequence of moves generalizing Heegaard
moves. Therefore, we have the following:

Definition 4.3. Given a 4-manifold M, the minimal genus over all the possible central
surfaces trisecting M is a topological invariant. We call this number trisection genus.

We remark that the connected sum of two 4-manifolds M = {H,, Ha3, H13, XM}
(defining implicitly the handlebodies X1, X, and X3) and N = {K;13, K>3, K13, 2N}
(defining Y7, Y» and Y3) can be constructed in analogy to the three-dimensional case
by removing 4-balls which intersect all the elements of each trisection in balls of
the appropriate dimension. The resulting manifold will support a trisection of the
form M § N = {H12 | K12, H23 1] K»3, H1311 K13, X #f £ 4} implicitly defining the
handlebodies X1 Y1, X201 Y> and X34 7Y3.
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4.1. Stabilization

Both in the context of Heegaard splittings and of trisections there is a move that
increases the genus of the central surface by one. It is instructive to illustrate how
this can be achieved and to point out small differences between the four-dimensional
and three-dimensional cases.

We consider a three-dimensional manifold M with a Heegaard diagram of
genus g, ¥y, and the genus-1 Heegaard diagram of S3, which we call T (see Fig-
ure 4). Since S3 has trivial topology we have the following identity:

M® 483 =M.

As explained in Section 3.2, this operation can be represented by the diagram X s ft T
which has genus g’ = g + 1. We can understand this operation in terms of carving a
handle out of one of the two handlebodies in M ® and adding it to the other one. For
a given d-manifold N with boundary, the operation of drilling out a tubular neighbor-
hood of a properly embedded ball D?*~1 ¢ N is equivalent to adding a k-handle
whose attaching sphere bounds a ball DX in dN . The properly embedded (d — k — 1)-
ball is bounded by the belt sphere of a (k + 1)-handle which we may add in order to
cancel the k-handle and to recover N. This describes how to increment the genus of
the central surface of a Heegaard diagram if we consider the case'” d = 3 and k = 1;
note that a 2-handle for one handlebody plays the role of a 1-handle for the other
handlebody. In this way, it is clear how we are actually not changing anything in the
overall manifold but rather rearranging its handle decomposition.

In four dimensions there exist a similar operation which is called stabilization.
The genus-1 trisection diagrams of S* are shown in Figure 11 (b) and each represents
a trisection where two handlebodies X; and X; are 4-balls while the third X has
genus-1. Note that the boundary dX} has the topology of S! x S? as can be seen from
each diagram by removing the curve circulating around the toroidal direction.

If we consider a 4-manifold M ® we can clearly increment the genus of its cen-
tral surface by considering the connected sum of its trisection diagram with one of
the three in Figure 11 (b). Although this is not within the investigation scope of the
present work, we should mention that the stabilization operation allows us to always

12Note that for k = 1 we identify two discs on the boundary of a handlebody and represent
their identification through the spine of the resulting 1-handle. From this point of view, we
can treat the operation of increasing the genus of a handlebody and the connected sum of two
handlebodies (see Figure 6) on the same footing, with the only difference being whether the
considered discs lie on the boundary of the same handlebody or not. Note that in both cases
it is sufficient to specify the spine of the new handle in order to recover the full topological
information.
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(a) (b)

Figure 11. Lower-dimensional (in three dimensions) representation of stabilization in four
dimensions. Figure 11 (a) represents the process of adding a four-dimensional 1-handle to one of
the handlebodies preserving the trisection structure. The figure follows the conventions of Fig-
ure 10 (b). We also show the resulting spine of the four-dimensional handlebody as well as the
compression disc for the new handle. Figure 11 (b) shows the three genus-1 trisection diagrams
for S*. Stabilization can be represented at the level of trisection diagrams as the connected sum
with one of these three diagrams.

obtain a trisection where all the four-dimensional handlebodies have the same genus.
This type of trisection is referred to as balanced. In fact, it is worth noticing that the
stabilization operation, although affecting the topology of all the three-dimensional
handlebodies H;;, only affects one of the four-dimensional ones, while leaving the
other two unmodified.

Stabilization too can be understood as a specific carving operation. As before, we
identify a D! that constitutes the spine of the carved 1-handle. Since we are going
to increase the genus of, say, X, the 1-ball will need to be properly embedded in
the complement M @ \ X1 (we will carve the handle out of the complement and
add it to X;). The central surface simultaneously represents the boundary of all the
three-dimensional handlebodies which, therefore, need to have their genus increased
as well. Since we are only specifying one 1-handle, and with simple symmetry con-
siderations, it is easy to guess that the spine should be a disc D! embedded in H»3,
with endpoints on the central surface. Figure 11 shows a schematic representation of
this procedure following the same conventions of Figure 10 (b). Under such a move,
the topology of X, and X3 remains unaffected. To understand this, it is sufficient to
notice that X, in Figure 10 (b) (resp. X3) intersects only half of the 1-handle and the
intersection is a 4-disc intersecting dX, (resp. dX3) in D3 (see Figure 11). In other
words, carving the 1-handle leads to two manifolds X} and X7 satisfying:

X;iD* = X5,  XjiD* = X.
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Note that the portion of the boundary of the four-dimensional 1-handle that does
not constitute the attaching sphere has the topology of D! x S2. Upon the following
decomposition

D' x$? = (D' xD?) [ ] (D' xD?),
Dlxsl!
we can understand it as a pair of three-dimensional 1-handles with common bound-
aries and “parallel” spines. Therefore, a regular neighborhood of a one-dimensional
disc properly embedded in one of the three-dimensional handlebodies intersects all
the elements of a trisection without spoiling the construction, but rather defining an
alternative trisection for the same manifold.

4.2. Subdividing 4-simplices

We would like to understand trisections from colored triangulations, i.e., triangu-
lations dual to colored graphs which can be generated by colored tensor models.
It amounts to formulating trisections relying on combinatorics. We will do so, by gen-
eralising the three-dimensional Heegaard splittings formulated in the colored tensor
models [103]. From now on, we therefore restrict to the PL category.

Following [3], let us consider a 4-simplex A® and define a partition of its vertices
in three sets Py, P; and P, such that one vertex belongs to one of the sets and the
rest is divided in two pairs. For example, labeling each vertex with the color of its

0 1s assigned to Py, the vertices i

opposite 3-face we might have that the vertex v
and v2 are assigned to P; and the vertices v3 and v are assigned to P,. Given such
a partition, any pair of sets (P;, P;) is identified with a n-dimensional subsimplex on
the boundary of A® while the third set Py is identified with the opposite (3 — n)-
dlrpensmnal subsimplex, where i, j,k €{0,1,2} and i # j # k. For example (P =
(', v?}), P, = {v?, v4)) and Py = {vO} give a 3-simplex spanned by v' v3, v
and a O-simplex v°, whereas (Pg = {v°}, P; = {v', v2}) and Py = {v 4} give
a 2-simplex spanned by v°, v1, v2 and a 1-simplex with endpoints v3 and v*

Then, we can define a map f from AW to A® guch that each set Pi is sent
into each of the three vertices in A® and extend it linearly to the interiors of A
and A® . We proceed by considering the subcomplex spanned by the 0-skeleton of
the first barycentric subdivision of A® minus the 0-skeleton of A®). The resulting
cubical decomposition of A® is shown in Figure 12. A® is decomposed in three
2-cubes ¢; with i € 1,2, 3, pairwise intersections of which result in 1-cubes ¢;;, all
sharing a central 0-cube, c123. The preimage of this construction under f gives us
the splitting of A we are looking for. Notice that the boundary faces of A (each
spanned by two vertices) are subdivided into two 1-cubes. The preimage of f there-
fore induces splittings of the submmphces on the boundary of A® identified w1th the

pairs (P;, P;). Focusing on A® 5 {v1,v2 v3 ,v*), which is sitting opposite to v°, and



R. Martini and R. Toriumi 476

fl(Pl)

(=)

f(Po)

f(P2)

A® A®

Figure 12. Illustration of the linear map from A to A The sets P; partitioning the vertices
of the 4-simplex A, as well as their images in 2-simplex A‘®, are shown. Removing the 0-
skeleton of A® from the O-skeleton of its first barycentric subdivision provides with the cubical
decomposition. The preimage of A‘® under f splits the 4-simplex in three four-dimensional
pieces, whose boundaries are three-dimensional blocks D @), @ A, and R 5@ . The latter
three three-dimensional blocks meet at one two-dimensional square s. D @) is in blue, @ 5 @)
inred, R o in green, and the common surface s in yellow. f(Daw@) = 23, f(Qaw) =12,
f(Raw) = c13,and f(s) = c123.

considering the partition P; = {vT, va}, P, = {vg, vz} and Py = {va}, A® is mapped
via f to a 1-simplex of A® in precisely the same manner as in Figure 7. The coning
of the splitting surface of A®) with respect to v°, generates a square prism which we
call D, @, whose image under f is 1-cube c,3. Similarly, in the two 2-subsimplices
of A® defined by { Py, P;} and { Py, P>}, we identify a one-dimensional cross sec-
tion, which then will be coned toward P, and P;, respectively. These conings generate
triangular prisms @ 5@ and R @), whose images are cj» and ¢13 in A® | The inter-
section @ @ N Rp@ N Dpw is a two-dimensional cube.”? Figure 12 shows such
coning operations.

4.3. Splitting 4-bubbles

At this point, one would like to induce the above subdivision in every simplex o of
a triangulation 7 of a given manifold M and prove the emerging structure of a tri-
section, namely see that each of the sets D = | J, Do, @ =, @5, R =, Ro

3The bidimensionality of the central square is ensured by the fact that all the pairwise inter-
sections of the three-dimensional blocks are transverse.
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is connected and homeomorphic to a handlebody. In order to achieve this'* we will
have to perform a few manipulations. For later reference, we call the attaching curves
determined by manipulations of @ (resp. R, D) as « (resp. B, y).

Let us consider a colored triangulation 7 of a 4-manifold M, and a colored
graph § dual to T, i.e., K(§) = T and |K(§)| = M. If we take seriously a partition
of the vertices induced by colors, we notice soon that the main immediate obstacle is
achieving the connectedness of @ and {R. Evidently, the union @ U R consists of dis-
connected three-dimensional polytopes surrounding the vertices of  which belong
to the isolated partition set whose element is only one vertex per 4-simplex. R

Let us elaborate on the structure of @ and R. In the triangulation 7, a 4-bubble B,
identifies a three-dimensional subcomplex which surrounds a vertex vfl In particular,

i
a

angulation dual to B}:, K (!Bi), is PL-homeomorphic to the union of such 3-faces.

vl sits opposite to a 3-face of color i in every 4-simplex containing it and the tri-

Moreover, we point out that such a triangulation, K (i)’fl), is also homeomorphic to
the link of vi which, for the case of M being a manifold, turns out to be a topo-
logical 3-sphere.> See Figure 13 for a lower-dimensional representation of K (586).
Given the combination of colors defining the 4-bubble, a possibly more accurate way
to address the corresponding triangulation is not as the union of the 3-faces situating
opposite to v, but rather as the union of a set of three-dimensional cross sections
parallel to such 3-faces which cut 4-simplices midway between vi and its opposite
3-faces, namely, @,, U R, in Figure 14. R

Consequently, given the set A, = {0 4-simplex s.t. v}, € o}, the 4-bubble identi-
fies the union )

KB = @ UR,.

g€EA,

For later reference, we call the four-dimensional neighborhood'® of vg bounded by
K(B2), X{ and we define the following unions:

Q, = U Qy, Ry= UJR(,.

g€, o€,

“Indeed, we have to define a new structure related to &, which improves its topological
properties in order to obtain a handlebody.

5Nevertheless, colored tensor models and colored graphs generate in general pseudo-
manifolds and, therefore, the topology of K(i)’fl) might turn out to be very different. We
comment on this case in Section 4.7.

16Note that we choose to call this X i as it will be part of one of the trisection four-
dimensional handlebodies defined earlier in Definition 4.1.
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K(89) K(80)

)

QO

Figure 13. Representation of two components of K (!Ba) in a three-dimensional complex.
In three dimensions, K (30) is a two-dimensional complex whose edges are shown in grey.
In the picture we present two components: K (BO) and K (i)’o) surrounding v9 and v? 5 Tespec-
tively. The same O-colored face (shown in red and shared by two 3-simplices) gives rise to two
different building blocks (shown in orange) in K (!86).

We pick 0 as a special color and define a specific partition,'” i.e., Py = {vo}
P = {vl} U {vz} and P, = {v3} U {v4} Then we consider the 4-bubbles !80 and,
in each such 4-bubble, the jacket $p, p, = ${1,2},{3,4)- Combining the constructions
described in Sections 3.3 and 4.2, we readily obtain the sets @ and JR. Nevertheless,
each of these sets, is disconnected and constituted by as many connected compo-
0 are in the triangulation 7. Recalling how jackets identify
Heegaard surfaces for the realizations of 4-colored graphs, it is easy to see that @,
and R, are the two handlebodies in a Heegaard splitting of a given BO Looking at
the Heegaard splittings iS‘O =(Hiq Hau, K(4 (!80))) we have that:

nents as many vertices v

@a = Hl,a’ ﬁa = H2,a’ Q= |_|H1,a7 R = |_|H2,a7
a a

with LI representing the disjoint union of sets.

It is now clear that there is a limitation of partitioning the vertices in the trian-
gulation according to colors if we try to identify a trisection naively. Moreover, the
information on D, although formally present, appears to be implicit and hidden in
the construction. In previous works [3], as we briefly mentioned, these problems have
been tackled in two different ways. In [3], the authors perform Pachner moves on the
triangulation. The specific type of Pachner move employed (2 — 4 Pachner move)

""Here we picked the color 0 to identify the vertex that in every 4-simplex is “isolated” by
the partition, nevertheless, we stress that at this level any permutation of the colors would be an
equivalent choice.
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Figure 14. Representation of 5. The picture shows the combinatorial structure of the polytope
resulting from two 4-simplices, o, and o0y, sharing one boundary 0O-colored face t,; spanned
by {vT, vi, v§, vz}. Each o;, i = a,b, can be considered as the coning of 7,5 with respect to v?.
The tetrahedron t,, is split by the square o3, depicted in dark violet. Moreover, each 4-simplex
is split by the three-dimensional @, , Rs;, Dg; , here in red, green and violet, respectively. We
represent in yellow the two squares s, and s, that contribute to the central surfaces of each
4-bubble !Bg and !82. The thick black line in the center of the figure is the embedded 0-colored
line /5 connecting s, and s,.

increases the number of 4-simplices in 7~ without affecting the topology (replaces a 4-
ball by another 4-ball having the same triangulation on the boundary). This allows to
connect the spines of the four-dimensional handlebodies at will, as well as to clearly
infer the structure of compression discs for all the three-dimensional handlebodies.
Nevertheless, Pachner moves are not compatible with the colors in the present case,
since the complete graph with six vertices cannot be consistently 5-colored. On the
other hand, in [29] the authors considered a special class of colored graphs encod-
ing crystallizations. By definition, all K(B") are connected in crystallization theory.
Such requirement imposes a limited amount of nodes in the graph encoding a mani-
fold M, which results in a very powerful tool to study the topology of PL-manifolds.'®
However, crystallization graphs only reflect a small amount of cases of interest to the
tensor model community. In the following section we present an alternative approach
which allows to generalize the construction of trisections to a wider class of graphs.

18As we will explain later, the authors of [29] actually consider a wider class of graphs.
Nevertheless, they still base their construction on connectedness of some chosen i-bubble.
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4.4. Connecting 4-bubbles

In order to overcome the issues coming from having disconnected realizations of 4-
bubbles, we follow a similar construction of Heegaard splittings discussed in Sec-
tion 3.4. Let us start by embedding the colored graph dual to 7 in 7 itself via the
prescription described in Section 2.1. We consider four-dimensional regular neigh-
borhoods of the 0-colored lines embedded in 7. Topologically, each such four-di-
mensional neighborhood 7 is D? x D!, and its boundary is (82 x D) U (D3 x §9).
This boundary intersects & (three-dimensional) transversally and, therefore, the lon-
gitudinal component S* x D! is split by O into two parts: d+n and d_n, each of
topology D? x D!, “As a convention we fix d.1n to be between £ and {v! vz} and d_n
between D and {v3, v,

Construction 4.4. Given a colored mangulatlon of a manifold M, dual to a col-
ored graph 8§, and a choice of a jacket for its 0-bubbles, 3’(1)’0) there exist three
3-submanifolds of T: @', R’ and D', such that they share the same boundary

Y =0Q =0R =09/,

and which are constructed carving regular neighborhoods of the embedded 0-colored
lines of § as

Un)]u o]
)] [

Y
|
—
)
—
e N

where | runs over the set of 0-colored lines and n indicates the interior of n.

In order to understand Construction 4.4, let us consider two vertices vg and vg sit-
ting opposite to the same 0-colored 3-face, 7,5 and call n,p, the regular neAighborhood
of the 0-colored line £, dual to 7,5. We call the 4-simplex spanned by vg U 1, Oa,
and similarly for b.

One can view the 3-ball D? in this four-dimensional regular neighborhood of a 0-
colored line, ngp, as a retraction of the tetrahedron @5, U Ry, = K (532) N o, (or
for b) inside each 4-simplex, o, (or 0p), where @, is @ N oy, etc. Using ngp, we
perform a connected sum of the 3-submanifolds defined by 4-bubbles K (:86)’5 and,
at the same time, perform a boundary-connected sum of the four-dimensional neigh-
borhoods of vertices in the triangulation.
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__ The union 0, U 0}, via their shared face 7, defines a polytope'” 7,5, spanned by
vg Utz U vg. In each 7,3, there are two central squares s, and s, which are the inter-
sections of 7,4 with the realization of jackets of 0-bubbles K (¢ (i)’g)) and K(g (i)’g)),
respectively. We note that a neighborhood of the barycenter of s, (resp. sp) intersects
K (!83) (resp. K (!8?)) in a 3-ball satisfying the requirements presented in Section 3.2.
Therefore, by removing such neighborhoods and identifying their boundaries, we can
easily construct the connected sum K(B?) f K (332) preserving the Heegaard split-
ting defined by the chosen jackets, i.e., connecting the components of @ (resp. R)
surrounding v? and vg. For later convenience, we require the neighborhood of the
barycenter of s, (resp. sp) to be small enough not to intersect ds, (resp. dsp). Note
that, by construction, this also yields X7 fj X {’ . As we discussed in Section 3.2, we can
represent the boundary-connected sum of handlebodies through a line connecting the
boundaries. This is precisely the role of £,5; X fb =X{UngpUX f’ is homeomor-
phic to X{'fj X {’. The intersections q, = s, N ngp and gp = sp N nyp identify smaller
squares splitting each D3 in (D3 x S°) C dn,;. The interiors of g, and g5 now belong
to the interior of X ¢ while their boundaries define a surface

Zap = 0qa X Lap = 0qp X Lgp.

It is now straightforward to see that we just constructed the connected sum of the
surfaces dual to (82) and ¢ (i)’l?) by simply considering the following union:

[K($(B) \ gal U Sap U [K((BI) \ g5]-

With a similar construction and following the arguments of Section 3.2, it is not
hard to see that we also constructed the boundary-connected sums &g, [ @5, and
Ro, [ Ro, . Notice that the boundary-connected sum of the three-dimensional han-
dlebodies is made preserving the combinatorics defined by the chosen jacket, and this
clarifies any ambiguity due to a choice of orientation.

Since £,y is transversal to 74p, it is easy to see that it lies inside Dy, U Dy, . The
intersections (45 N Dg,) U (ngp N Dy, ) identify what shall be carved out of Dy,
and Dy, . Here, we require (145 N 0D;,) = @ (and similarly for dDy,) in order
to avoid singularities. The operation is, thus, very similar to a stabilization up to
the fact that we are identifying balls on the boundaries of two disconnected han-
dlebodies. The boundary of the (three-dimensional) carved region in Dy, U Dy, is,
again, X,5. Hence, X,; is identified as the central surface obtained through such
a carving operation.

9They are called a double pentachora in [3].
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In general, there are more than one 0-colored 3-faces sitting opposite to the same
pair 1)2 and vg; we denote this number E,p. It means that there are E,;-many embed-
ded O-colored lines connecting the two realizations of the bubbles K (!89) and K (i)’g).
Repeating the above procedure for all E,; lines not only defines the boundary-con-
nected sums @,01@; and R,[Rp, but also adds to each of them E,; — 1 extra 1-
handles via stabilization.

We are left to clarify how O = [ J, D, behaves under the iterated carving oper-
ation. Let us first notice that each £, is bounded by six rectangular faces. One, as
we defined earlier, is s and is determined by the intersection of o with the realization
of a jacket of a 0-bubble. The surface s is the only face of £, whose interior lies in
the interior of o. The interior of the other five faces lies inside the interior of one of
the five boundary faces of o. Hence, each boundary face of O, naturally carries a
single color from the colored graph §. The face carrying the color O is the one sitting
opposite to s and we call it 0. For every O, in M there is one and only one Dy
sharing 0 with 9. The union Dy U Dy can be thought of as the effective building
blocks of O and they are in one to one correspondence with the 0-colored lines of §.
These building blocks are also bounded by ten faces; in 7,5, we have: s,, sp, four
lateral faces carrying colors i # 0 coming from Dy, and four lateral faces carrying
colors i # 0 coming from D, . Note that faces of the same color coming from D,
and O, are glued to each other via a boundary edge. When we compose such blocks
to build D, each block glues to another sharing a lateral face according to the colors.

It is important to realize that the embedding of O-colored lines connects opposite
faces of such building blocks, namely s, and s, therefore a tubular neighborhood of
a 0-colored line always intersects s, and sp. After carving such neighborhoods out
of O, each building block is turned into a solid torus (pictorially, we can think of
tunneling through them along a 0-colored line, see Figure 15 (a)). In 7,3, we refer to
such new effective building blocks as

DY = (D, U Do) \ b

and the resulting entire structure corresponds to
4 4
=D\ (Unab) Ui);b) =10},
Lap

Before moving on, an important remark is in order. So far we discussed the case
of v2 is diAfferent from vg. Nevertheless, it may easily happen that t,; opposes to
the same 0-colored vertex (in fact, it is sufficient that the two 4-simplices in mgp
share one more face, beside 7,5, for this to be true). In this case, as explained in
Section 4.1, most of the features we just discussed would still hold. Simply, instead
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(a) (b)

Figure 15. Structure of D’. Figure 15 (a) shows an effective building block of D', namely i)éi).
There are eight blue 2-faces which are to be glued to other effective building blocks of D’.
The yellow surface is going to be part of the central surface of the trisection and, therefore,
will constitute the boundary of D’, i.e., to be glued onto @ and R. Four pieces of the y-curves
describing 9’ are pictured in blue lines. The brown rectangle with one of the y-curves as bound-
ary represents part of a compression disc. The spine of the effective block of D’ is shown in
thick solid black loop piercing through the compression disc. Figure 15 (b) shows three effec-
tive building blocks of D’ glued along their i -colored faces (let us pick i = 1). Here we show
a y-curve in blue, circulating along all of the three effective building blocks and defining the
boundary of a compression disc (shown in brown). In this example, the y-curve is defined by
the color set {0, 1}. All the other y-curves, which we do not show, only travel through one block
and then move away on other patches of the central surface which are not shown in the picture.
As before, patches of the central surface are shown in yellow an lateral faces in blue.

of performing a connected sum between two 0-bubbles, we would be adding a 1-
handle to a single 0-bubble via stabilization (as in Figure 11) and increase by one
the genus of the central surface defined by K(J (139)). In particular, this situation
would correspond to a single building block SD;? in which two lateral faces of the
same color i are identified. One can understand such operation as the retraction to
a point of a disc on the boundary of i);?, bounded by a trivial element in the first
homotopy group of the 2-torus.” Topologically, such J)‘g? would therefore remain
a solid torus.
We are now ready to state the main result of this work.

Theorem 4.5. @', R’ and D’ are handlebodies.

Proof. The submanifolds @ and R’, as explained in Construction 4.4, are stabiliza-
tions of the boundary-connected sum of the handlebodies {@,} and {R,}, respec-
tively, and, as such, are handlebodies themselves. Their spines are defined as described

20Remember that two faces of the same color in JDL(I/Z) already share a side.
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in Sections 3.2, 3.3 and 4.1, i.e., via the bicolored paths defining the jacket, joined by
the embedded O-colored lines of §.

Note that 9’ coincides with the boundary-connected sum of the building blocks
J)(g? performed via their lateral faces. Since the 0‘02? are solid tori, £’ is a handle-
body by construction. The prescription to perform such boundary-connected sum is
encoded in the combinatorics of . Eventually, no lateral 2-face of J)ﬁ) will be left
free (for any a and b in the graph ) and the only contributions to the boundary of D’
will come from s, \ qa, Sp \ ¢p and X, (for any a and b). Its spine can be identified
by noticing that each solid torus i)g)) can be collapsed along £, onto a S! homeo-
morphic to the boundary of 0,45. Thus, the spine of £’ can be constructed by gluing
the spines of each building block.?! ]

Let us turn our attention to draw of a set of y-curves on the boundary of £’. Four
sectors of compression discs can be built in each i)é? intersecting the central surface
on X, as well as on s, \ ¢, and sp, \ gp (see Figure 15 (a)). The resulting four arcs
of y-curves correspond to arcs of four circles coplanar to the axis of revolution of the
torus boundary of each SO{%). Each arc starts from one of the sides of s, (determined
by a color i # 0), proceed along X, (therefore parallel to a 0-colored line of §), and
end on the side of s, carrying the same color as the side they started from, as depicted
in Figure 15. Here, each arc will connect to another one coming from a neighboring
building block of £’. Thanks to the combinatorics of &, inherited by the building
block of £’, the composition of a y-curve through the union of such arcs will go on
according to the {0i }-colored cycles in the graph and close after as many iteration
as the half of the length of the {0i}-cycle. Therefore, from each 0-colored tetrahe-
dron 7,4, four y-curves depart each going around a boundary triangle. We remark
here that this procedure gives us redundant y-curves.

We conclude this section by simply performing the following identifications with
respect to our Definition 4.1:

Hy; = i)/, Hyy = @/, Hy; = R

4.5. Four-dimensional handlebodies

Let us briefly comment on the four-dimensional pieces X, X», and X3 we obtained
with our prescription. As we discussed at the beginning of Section 4, theorem 4.2
implies that there is a unique cap-off of O’ U Q" U R/, i.e., there is a unique way of
defining X;, X», and X3 using only 3- and 4-handles such that the pairwise unions
D'UQ@, D UR and @' U R’, are the boundaries of X;, X5, and X3. Due to the

2'We recall that the boundary of each o, face consists of four sides carrying colors i # 0.
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Figure 16. We illustrate how we connect the isolated dual of 4-bubbles via the carving operation
explained in Section 4.4. For simplicity, the figure is an analogue in lower three dimensions
rather than four. Two S2’s on the right and on the left represent K (BS ) and K (Bz(;)) and they
are connected via a tubular neighborhood of £ (here represented with a solid black line). Part
of Hjp» is shown as a red surface, H;3 in green, and H»3 in blue. Part of the central surface
to be is depicted as lines in yellow. The three-dimensional space above the red and the blue
surfaces is an analogue of X», the one below is X3, whereas the tubular neighborhood ¢ and
the spheres constitute X. The light blue triangles represent @5, U Ry, and @4, U Ry, . (See
Figure 14.)

symmetric nature of i-handles and (d — i)-handles in d dimensions, all X;, X»,
and X3 are guaranteed to be handlebodies. The statement, therefore, is equivalent
to saying that there is a unique set of three handlebodies with the given boundaries.
Nevertheless, one might wonder whether, given a triangulation, these handlebodies
actually reconstruct the PL-manifold or not. In fact, embedding D', @' and R’ in
the triangulation as we illustrated above provides us with three four-dimensional sub-
manifolds X7, X, and X3 (see Figure 16 for a schematic representation of such an
embedding). These manifolds share the same boundaries as X;, X2, and X3 but they
are a priori different. If that were the case, X 1, X » and 73 would automatically not
be handlebodies due to the aforementioned uniqueness. In order to clarify this point
we look for the spines of X1, X, and )?3.

Corollary 4.6. Given a colored triangulation T of a manifold M, dual to a colored
graph §, and a choice of a jacket for its 0-bubbles, $(BY), Construction 4.4 defines
a trisection of M.

Proof. Since the three-dimensional handlebodies @', £’ and R’ satisfy the hypoth-
esis of Definition 4.1 by construction (i.e., they share the same boundary and their
interiors are disjoint), we can focus on the four-dimensional submanifolds X1, X»
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and X3. Their interior is disjoint by construction, therefore the only issue is to prove
that they are handlebodies. X is bounded by @ U R’. Its spine is easily found
by collapsing K(B?) to points®” and keeping the connection encoded by 0-colored
embedded lines. Therefore, X; is a handlebody by construction. X, is bounded by
@’ U D’. Bearing in mind the linear map from a A® to A® as in Section 4.2
(see Figure 12), we notice that in every four-simplex, X, can be retracted to an edge
identified by the set of colors {1, 2} via its endpoints: v! and v2. The set of these
edges therefore constitutes a spine of X,. Moreover, X» is connected since its bound-
ary dX, is connected by construction. This is enough to prove that X» is a handlebody
too. The argument for X3 follows in complete analogy with the one for X, upon
replacing the set of colors {1, 2} with {3, 4} and the boundary X, = @’ U D’ with
;=R UD

The uniqueness of the handlebodies with the given boundary implies X; = X,
X» = X, and X3 = Xj. n

4.6. Central surface and trisection diagram

In this section, we discuss the trisection diagram encoded in what we illustrated in
Section 4.

Let us slowly reveal the topological information somewhat deeply hidden in our
construction. From our construction, in general, the genus of the central surface will
not coincide with the trisection genus. In a rare case the genus of the central surface
is equal to the trisection genus, one could imagine it being a very special type of
triangulation and is suppressed in the statistical theory dictated by the tensor model.
This is not necessarily a dramatic problem, provided that there is a clear understanding
of a-, B- and y-curves. This information of curves, however, is also not necessarily
trivial to extract since we generate many copies of the same curve which, in principle,
intersect other curves on the diagram differently and choosing one curve over the other
corresponds to a different diagram with the same central surface.”” Nevertheless, we
are hopeful that future works might unentangle this information and overcome this
ambiguity.

To start, we look at the genus of the central surface. Let us define the following
graph € derived from a colored graph §. Starting from the original colored graph §,
we collapse all the 0-bubbles to points which will become the nodes of €. Then, we
connect these nodes via the 0-colored lines of § encoding the same combinatorics

22For the moment we are only dealing with manifolds rather than pseudo-manifolds therefore
this just represents the retraction of a topological ball to its center.

ZTherefore, connected by a series of handle slides and by as many handle addition as handle
cancellations.
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of the original graph §. Effectively, the O-colored lines of § simply become the lines
of . Note that the number of connected components of a graph is preserved under this
operation; if § is connected, € is connected. The number of loops** of g corresponds
to the dimension of its first homology group and evaluates to

L=[&|=|VI+1,

where || is the number of lines and |'V| is the number of nodes of §. By construction,
|'V| corresponds to the number of different 0-bubbles which, in turn, is the number of
vertices opposing to 0-colored tetrahedra. The number |&|, on the other hand, corre-
sponds to the number of 0-colored tetrahedra and evaluates to p/2 for a triangulation
of p simplices.”

Proposition 4.7. Construction 4.4 defines a trisection with a central surface X of

genus g given by
V|

ge = Zlgg(ﬂg) +L, @.1)
a=

with 8480 being the genus of the jacket (1 2y(3,4y of the bubble 32.

Notice that g, is invariant under the insertion of 4-dipoles in the 0-colored lines,
while inserting a 4-dipole in a line of color i # 0 increases L, and therefore g., by
one. In fact, as we show in the Appendix A, the elementary melon yields the genus-1
trisection diagram for S* and the insertion of a 4-dipole can be understood as the
connected sum with the elementary melon at the level of the colored graph.

Let us look at the curves we have drawn on X. We remark that the genus g,
also corresponds to the number of independent «-, 8- and y-curves. The y-curves
are obtained as paths on ¥ and composed by segments parallel to the lines of €, and
segments crossing the boundaries between different s’s, according to an associated
color i # 0. The composition of these segments according to the combinatorics of §
forces the y curve to close in a loop (see Figure 15 (b)). This tells us that the y-curves
are isomorphic to embedded {0i }-cycles in 7. Note that by representing the graph §
in stranded notation, these curves are literally drawn on the surface.’®

24We refer here to the notion of loops of a graph that is commonly used in physics in the
framework of Feynman diagrams, not to the graph theoretical notion of a line connecting a node
to itself. What we refer to as loop is, in graph theory, sometimes referred to as independent
cycles.

ZNote that we consider only orientable manifolds and, therefore, the original graph & is
bipartite. R

2Note that every vertex of § corresponds to a square in the surface dual to ¢(8°) and
the 0-colored embedded lines are interpreted as handles. Therefore, the {0i}-strand is really
isomorphic to one of the y-curves.
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Figure 17. This sub-3-simplex is an element in the triangulation dual to a 0-bubble. We can
identify «-curve (red line) and S-curve (green line) on the central surface (yellow square) by
projecting the edges (red and green) of the sub-3-simplex sitting opposite to the central surface
down to the central surface itself. These edges become part of the spine of the corresponding
three-dimensional handlebodies. Part of compression discs are shown in pink (light blue) which
is bounded by an a-curve (B-curve). We highlight the matrix model dual to a jacket 3(136).
The yellow square which is part of central surface is nothing but the quadrangulation dual to
a jacket g (BY). We illustrate that these trisection curves (a-curve in red and S-curve in green)
coincide with drawing the strands of the original graph directly on the quadrangulation of the
central surface.

Similarly, given a chosen jacket gy; jy(k,13- the (i, j)- and (k,[)-strands of § give
the «- and B-curves (see Figure 17). Furthermore, we shall add one «- and one f8-
curve for every line €. These last additions correspond to the attaching curves of the
Heegaard splitting of S! x S? in the genus-1 trisection diagram of S* (see Section 4.1).

As we stated above, not all these curves are independent. Each of them is a viable
attaching curve, but not all of them should be considered at the same time. For the
a-curves (and similarly for the B-curves), we can constrain slightly more; the inde-
pendent ones should be chosen to be g (80 Mmany in each realization of a 0-bubble
plus L-many among the extra ones we draw around the now embedded lines of g
(up to Heegaard moves). Remember that attaching curves of a graph are defined by
the condition that cutting along them we obtain a connected punctured sphere (see
Figure 5). L is by construction the maximal number of lines we can cut before dis-
connecting the graph €. Once these first L curves are cut, we can proceed identifying
the rest of the a-curves given by each of the |'V|-many 0-bubbles through ¢ (30)

So far, we have treated color 0 to be special, however, of course that is an arbitrary
choice for an easy illustration, and any other color choice will suffice. Hence, there are
15 possible trisections (up to handle slides) that can be generated with our construc-
tion (5 choices of 4-bubbles and 3 choices of jackets per each choice of 4-bubble).

A final remark is in order. If we compare our results with the one presented in [29],
the genus of the central surface we obtain is obviously higher and less indicative of the
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topological invariant. A more striking difference is that we have an extra combinato-
rial contribution. By construction, and due to the properties of the graphs considered,
the result presented in [29] is only affected by the Heegaard splitting of an embedded
3-manifolds, in particular, the Heegaard splitting of the link of a vertex. Moreover, for
a closed compact 4-manifold M, such link is always PL-homeomorphic to S3. Thus,
we can understand the trisection genus of a manifold M, which is a smooth invariant,
as a lower bound for the possible Heegaard splittings of embedded spheres induced
by colored triangulations of M. In our construction, however, an extra contribution
to the genus of the central surface is produced in the form of L in equation (4.1).
One may wonder whether this contribution is actually necessary or just an artifact of
our construction of trisections. In other words, if the relevant topological information
could indeed be rephrased in terms of Heegaard splittings of embedded 3-manifolds,
it might be enough to consider the connected sum of the realizations of 4-bubbles,
without systematically stabilizing the trisection with L extra of 1-handles.

4.7. Singular manifolds

What we have discussed so far strictly applies only to manifolds, i.e., to graphs where
all i -bubbles are dual to PL-spheres. Nevertheless, colored graphs generated by a col-
ored tensor model of form (2.1) encode pseudo-manifolds as well. It is natural to
wonder whether our construction might encode any sensible topological information
for such wider class of graphs. In [29] such an extension has been made clear starting
from crystallization graphs. We will follow similar steps in order to extend the same
construction beyond graphs encoding closed compact manifolds.

Let us restrict to the case of M = K (&) being singular manifolds. Then, all the
i -bubbles are dual to PL-manifolds and the singularity is only around vertices in T
(rather then higher-dimensional simplices). One can obtain a compact manifold M
out of M by simply removing open neighborhoods of the singular vertices in . The
number of connected components of dM will increase by the number of singular
vertices with respect to the number of connected components of M. Conversely, one
can obtain a singular manifold by coning all the boundary components of a manifold
with (non-spherical) boundary. If § is a closed graph, then the above correspondence
is a bijection between the set of manifolds with non-spherical boundary components
and singular manifolds.

Although such bijection allows us to work with manifolds in a larger class of
graphs, the definition of trisections as formulated in Definition 4.1 only applies to
closed manifolds. Hence, we shall extend it to include boundary components in order
to connect with our combinatorial construction. Following [29], we define a B-trisec-
tion by allowing one of the four-dimensional submanifolds not to be a handlebody.
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Definition 4.8. Let M be an orientable, connected 4-manifold with n boundary com-

ponents dMy, ..., dM,. A B-trisection of M is a collection of three submanifolds

X1, X2, X3 C M such that:

* each X; and X, are four-dimensional handlebodies of genus g; and g5, respec-
tively,

X is a compression body with topology 1”_, (M, x [0, 1]) [ J4L, hy, where hy
being 1-handles,

* X;’s have pairwise disjoint interiors 0X; D (X; N X;) C dX; and M = |, X;,

» the intersections X; N X; = H;; are three-dimensional handlebodies,

¢ the intersection of all the four-dimensional handlebodies X; N X, N X3 is a closed

connected surface X called central surface.

Let us further denote with G§O)

one 0-bubble and with all ;-bubbles dual to topological spheres, and let us denote

the set of connected 5-colored graphs with only

with 6§°) the set of connected 5-colored graphs whose only non-spherical bubbles
are O-bubbles (but we do not restrict the number of such bubbles). Obviously, an ele-
ment in G S(O) describes a manifold that can be decomposed into the connected sum of
realizations of elements of G S(O). The connected sum, in this case, can be performed at
the level of two graphs ; and 9, by cutting a O-colored line in each graph and con-
necting the open lines of & to the open lines of §,. The construction of trisections we
illustrated in the previous sections can be straightforwardly applied to graphs in GS(O)
and it is easy to see that the outcome satisfies the conditions in Definition 4.8. In this
regard, the result is the simplest generalization of the result presented in [29]. A more
complicated extension would require the inclusion of singular vertices defined by dif-
ferent color sets; we leave such study for future works.

5. Conclusions

We have formulated trisections in the colored triangulations encoded in colored ten-
sor models, restricting to the ones which are realized by manifolds (as opposed to
pseudo-manifolds). We utilized the embedding of colored tensor model graphs in their
dual triangulations to facilitate our construction of trisections. Generally speaking, the
genus of the central surface of the trisection, given a colored tensor model graph, is
higher as the graph is bigger (i.e., the number of nodes is larger). Therefore, statis-
tically speaking, it is unlikely to obtain the trisection genus (which is a topological
invariant) of the corresponding manifold of a given colored tensor model graph. Nev-
ertheless, it would be interesting to investigate whether the construction of trisections
might lead to new insights on the organization of the partition function of colored
tensor models.
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With the Gurau degree classifying tensor model graphs, we can achieve a large N
limit, where we only select the dominating melonic graphs which are a subclass of
spheres. Melons in the continuum limit have been shown to behave like branched
polymers with Hausdorff dimension 2 and the spectral dimension 4/3 [20, 65]. Re-
flecting and motivated by the quantum gravity context, we dream of a possibility of
finding a new parameter for colored tensor model that can classify the graphs in a new
large N limit, which may then give some new critical behavior. There have been works
in this direction [13, 15, 16, 18], where the authors studied how to achieve different
universality classes than the melonic branched polymer (tree). In [83], given random
discrete spaces obtained by gluing families of polytopes together in all possible ways,
with a systematic study of different building blocks, the author achieved the right
scalings for the associated tensor models to have a well-behaved 1/N expansion. So
far, one could achieve in addition to the tree-like phase, a two-dimensional quantum
gravity planar phase, and a phase transition between them which may be interpreted
as a proliferation of baby universes [84]. In [1,28,40,41,106], they have defined a new
large N expansion parameter, based on an enhanced large N scaling of the coupling
constants. These are called generalized melons, however, this class of graphs is not
yet completely classified, and it is not proven yet what kind of universality class they
belong to in the continuum limit, but strong hints point toward branched polymers.
In the present case, knowing that in rank 3, the realisation of a jacket is identified
to be a Heegaard surface, and knowing that jackets govern the Gurau degree which
is responsible for the melonic large N limit, it is tempting to delve further into the
possibility of finding a specific parameter for rank-4 colored tensor model based on
trisections which may classify the graphs in the large N limit. Our next hope is to
explore possibilities around trisections to find such a parameter.

Looking at the structure of equation (4.1) and its properties under d -dipoles inser-
tion/contraction we expect melons to persist in dominating the large N . Nevertheless,
a different parameter of topological origin might be induced by the above construc-
tion. An example is the intersection form, which we plan to investigate in the future
following [39]. Hopefully investigations in this direction might shed some light on the
path integral of tensor models beyond the leading order in the large N.

A. Examples

In this section, we present some particularly simple examples of trisections con-
structed via our procedure. We also show how to relate the diagrams obtained through
our formulation to actual trisection diagrams for the manifolds we consider. In gen-
eral, our prescription generates an excess amount of -, 8-, and y-curves. One would
like to get rid of the excess so that for each set of curves, we obtain a homotopically
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0-colored line

2 2
g S T

Figure 18. Construction of a trisection diagram for S* starting from the elementary melon. The
first three picture represent, from left to right, the colored graph, the Heegaard surface for the 0-
bubble, the torus obtained after carving a regular neighborhood of the 0-colored line. The fourth
picture represents the y-curves (on top) and the - and B-curves one has to add by hand when
stabilizing (on the bottom). The last picture represents the trisection diagram after the redundant
y-curves have been removed.

independent system. This will give a trisection diagram for the corresponding mani-
fold for the colored tensor model graph under consideration. We comment on how to
retrieve such independent systems on some examples.

The first graph we consider is the elementary melon, shown in Figure 18. This
is the simplest graph we can draw and consists of only two nodes sharing all the
lines. In fact, this is the graph corresponding to the crystallization of S*. Due to the
melonic nature of this graph, we know that all the jackets are spheres. Also, all the
bubbles are melons as well. Therefore, it affords the perfect playground to understand
advantages and disadvantages of the procedure presented in Section 4.4, as well as the
differences with the work presented in [29]. As we know from the smooth case, the
trisection genus of S* is gg4 = 0. Following [29], the trisection genus can be directly
computed through the jackets of a bubble B’. Since all the bubbles are melons as
well, their jackets have indeed genus gg = 0. Following our construction, we add an
extra handle to the central surface tracing the i-colored line. As shown in Figure 18,
this step comes with the introduction of attaching curves. Following the conventions
of the main text, we add one a-curve and one S-curve parallel to each other (red and
green in the figure), and four y-curves (in blue). Since these curves should represent
the boundary of compression discs for handlebodies, homotopically equivalent curves
are to be identified. Therefore, we collapse the four y-curves to the same one. As
anticipated, the result is one of the genus-1 trisection diagrams for S* that can be used
to stabilize a trisection diagram.

Figure 18 does not take into account the attaching curves coming from the jacket.
This can be justified by the fact that the jacket is spherical and, therefore, every closed
curve on it is homotopically trivial. Nevertheless, one may wonder whether retaining
such curves until the end of the construction gives rise to further possibilities. In this
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6-O-0- Q-

(£0) K(g (;80)) 0-colored line

Figure 19. Alternative construction of a central surface for S* starting from the elementary
melon. We repeat the same construction as in Figure 18, however this time we highlight the o-
and B-curves induced by the jacket choice. From the rightmost picture, we see these curves are
either trivial or isotopic to the curves induced by the stabilization.

| ,,,,,,,,,,,,,,, -0- colored lme

0. colored line

Figure 20. Construction of a trisection diagram for S* starting from the pillow diagram. We
consider a melonic insertion in the 0-colored line of the elementary melon. When splitting the
two connected components of B we get two 2-spheres connected by two 0-colored lines as
shown in the second picture from the left. The third picture from the left represents the surface
obtained after the carving operation with all the a-, 8- and y-curves produced by the procedure.
In this case, the central surface obtained after removing the redundant curves coincides with the
one in Figure 18.

example, we see easily from Figure 19 that the curves obtained by the spherical jacket
of 8% end up being either redundant (i.e., homotopic to another curve of the same set)
or trivial (i.e., homotopic to a point). The independent curves resulting from Figure 19
coincide with the red and green curves in the last diagram of Figure 18. We remind
the reader that the number of curves in each set has to be equal to the genus of the
surface for the diagram to be a trisection diagram.

Another interesting example is given by the pillow diagram. This diagram is mel-
onic and results from inserting a d-dipole into the elementary melon. Holding on to
our choice of having 0 as the special color, we have two possible ways of inserting
such a dipole: inserting the dipole in a 0-colored line or inserting it in a i -colored line
for i # 0. As discussed in Section 4.6, such choices lead to different results. In Fig-
ure 20, one can see how inserting a dipole in a 0-colored leads to the same diagram
we found before. Figure 21, on the other hand, shows the construction of a trisection
diagram with genus g = 2, due to the insertion of a 4-dipole in an i -colored line of the
elementary melon, for i # 0. Here, we observe that, up to isotopy, we can obtain five
different trisection diagrams of genus-2 for the sphere S* that, again, are obtained by
considering only pairs of homotopically independent curves in each set. Nevertheless,
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Figure 21. We consider a melonic insertion in the i -colored line of the elementary melon. In this
case, we obtain a genus-2 central surface. In the top line of figures we obtain the Heegaard
surface for 89 and show the corresponding jacket. In the second line, we insert the O-colored
lines and obtain the central surface with all the (redundant) curves. Finally, we display the five
possible choices of trisection diagrams.

one may notice that, as expected, all these diagrams are connected by an appropriate
handle slide. In fact, (2) is obtained starting from (1) by a handle slide of one of the
blue curves, (3) is obtained from (1) by a handle slide of one of the red curves, while
(4) and (5) are different handle slides of a red curve in (2). Note that the handle slides
of the red curves relate a curve coming from the quadrangulation dual to the jacket
with one of those added through stabilization.

Finally, let us look at the graph shown in Figure 22. Although not melonic, this
diagram still corresponds to a sphere. Out of the fifteen possible choices for construct-
ing a central surface, we look at the less trivial one. Removing either the color 3 or
the color 4, leads to a surface of genus-2. On the contrary, removing the color 0 (or
equivalently the colors 1 or 2), leads to a necklace-like bubble. Such bubbles have one
jacket which is not spherical, but rather dual to a torus. This is the choice we con-
sider in the example shown in Figure 22. Let us note how, already for such a simple
graph, we obtain a huge proliferation of redundant attaching curves, leading to differ-
ent trisection diagrams. In particular, looking at the different ways we have to choose
the attaching curves in this example, we obtain sixteen possible trisection diagrams
of genus-3 for the sphere S*, all out of a single combinatorial choice (out of fifteen
possible choices).
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Figure 22. Example of trisection diagrams for S* obtained by the necklace diagram §. We
choose the only toroidal jacket of B°. In the second line, we show how this jacket leads to
the genus-1 Heegaard diagram for S3. The third line of pictures shows the introduction of the
0-colored line and the central surface comprised of all the redundant information. Then, we
display the possible choices of compatible curves for each set of attaching curves.

To understand this, we show in Figure 22 the viable choices for each of the three
sets of curves. We remind the reader that cutting along the attaching curves we are not
allowed to disconnect the surface; this would mean that we are either cutting along
a curve that does not define a 1-handle or that is not homotopically independent of
those already considered. For example, considering the red curves, we only have two
choices since the two meridian curves for the central hole cannot be chosen at the
same time (they are indeed connected by two handle slides). A similar consideration
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takes place for the set of green curves. For example, considering diagram (1) for
green curves and substituting the meridian curve on the left for the meridian curve
on the rightmost handle (appearing in diagram (2) for the green curves) would split
the surface. This is precisely because the resulting curves would not be homotopically
independent. In the same way, a close inspection on the blue curves leave us with only
four possible choices. As a result, one can obtain 2 x 2 x 4 = 16 possible trisection
diagrams of genus-3 for the same manifold.
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