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The dimer and Ising models on Klein bottles

David Cimasoni

Abstract. We study the dimer and Ising models on a finite planar weighted graph with periodic-
antiperiodic boundary conditions, i.e., on a graph � in the Klein bottle K . Let �mn denote the
graph obtained by pastingm rows and n columns of copies of � , which embeds in K for n odd
and in the torus T 2 for n even. We compute the dimer partition function Zmn of �mn for n
odd in terms of the well-known characteristic polynomial P of �12 � T 2 together with a new
characteristic polynomial R of � � K . Using this result together with the work of Kenyon,
Sun and Wilson, we show that in the bipartite case, this partition function has the asymptotic
expansion

logZmn D mn
f0

2
C fscC o.1/

form, n tending to infinity andm=n bounded below and above, where f0 is the bulk free energy
for �12 � T 2 and fsc is an explicit finite-size correction term. The remarkable feature of this
later term is its universality: it does not depend on the graph � , but only on the zeros of P on the
unit torus and on an explicit (purely imaginary) conformal shape parameter. A similar expansion
is also obtained in the non-bipartite case, assuming a conjectural condition on the zeros ofP . We
then show that this asymptotic expansion holds for the Ising partition function as well, with fsc
taking a particularly simple form: it vanishes in the subcritical regime, is equal to log.2/ in
the supercritical regime, and to an explicit function of the shape parameter at criticality. These
results are in full agreement with the conformal field theory predictions of Blöte, Cardy and
Nightingale.

1. Introduction

1.1. Background on the dimer model

A dimer configuration on a finite graph � D .V; E/ is a perfect matching on � , i.e.,
a family of edgesM � E such that each vertex v 2 V is adjacent to exactly one edge
of M . Given a non-negative edge weight system � D .�e/e2E on � , a probability

2020 Mathematics Subject Classification. 82B20.
Keywords. Dimer model, Ising model, partition function, universality, finite-size correction,
Klein bottle.

https://creativecommons.org/licenses/by/4.0/


D. Cimasoni 504

measure on the set M .�/ of dimer configurations on � is given by

P .M/ D
�.M/

Z
; where �.M/ D

Y
e2E

�e and Z D
X

M2M .�/

�.M/:

The normalization constant Z D Z.�; �/ is the partition function of the dimer model
on � .

The first breakthrough in the study of this model came with the foundational work
of Kasteleyn [32,33], Temperley and Fisher [21,51]. They showed that, in the case of
a planar graph � , the partition functionZ can be expressed as the Pfaffian of a signed,
weighted skew-adjacency matrix of � , now called a Kasteleyn matrix. In the case of
a general graph, embedded in an orientable surface of arbitrary genus g, this method
extends, but Z is equal to an alternating sum of 22g Pfaffians [16, 52]. In particular,
if � embeds in the torus T2, then Z is equal to an alternating sum of 4 Pfaffians.
Using this method, Kasteleyn [32], Fisher [21] and Ferdinand [20] were able to com-
pute successive terms in the asymptotic expansion of the partition function for the
weighted square lattice with various boundary conditions (see, e.g., [38, Section 1.1]
for details). In the case of periodic-periodic boundary conditions, i.e., when the lattice
is embedded in the torus T2, the final result reads as follows. For the m � n square
lattice with horizontal (resp. vertical) edges-weights equal to x (resp. y), periodic-
periodic boundary conditions andmn even, the corresponding partition functionZmn
satisfies

logZmn D mn f0.x; y/C fsc.�1/mCn

� nx
my

�
C o.1/;

where the bulk free energy f0 depends on the weights x, y in an explicit but compli-
cated way, while the constant order finite-size correction term fsc˙ only depends on
the shape parameter nx

my
of the torus, together with the parity of mC n.

For conformally invariant two-dimensional models on a closed surface † of van-
ishing Euler characteristic, such an asymptotic expansion is believed to hold for arbi-
trary graphs, with the finite-size correction term depending only on the universal-
ity class of the model at criticality and on the topology of the surface, but not on
the underlying graph [5, 7]. There are exactly two closed surfaces with �.†/ D 0,
namely the torus T2 and the Klein bottle K corresponding to periodic-periodic and
periodic-antiperiodic boundary conditions, respectively. Generalizing the asymptotic
expansion displayed above from the square lattice to arbitrary weighted graphs in T2

and K is no easy task, and was out of reach with the tools available in the 1960s.
The extension to bipartite toric graphs was made possible with the second break-

through in the study of the dimer model, namely the work of Kenyon and coauthors, in
particular the seminal article of Kenyon, Okounkov and Sheffield [37]. In a nutshell,
it was discovered that many large scale properties of the dimer model on a doubly
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periodic bipartite graph � can be understood from the behavior of the associated char-
acteristic polynomial P.z;w/ 2 RŒz˙1;w˙1�, defined as the determinant of a twisted
Kasteleyn matrix for � � T2. (Here, we make use of the notation of [38], where P
stands for the full polynomial which factors as P.z; w/ D Q.z; w/Q.z�1; w�1/.)
In particular, the Pfaffian formula of [52] can now be reformulated as

Z D
1

2
.˙P.1; 1/1=2 ˙ P.�1; 1/1=2 ˙ P.1;�1/1=2 ˙ P.�1;�1/1=2/; (1.1)

where the signs can be given a natural geometric interpretation [16]. A crucial role
is played by the intersection of the corresponding spectral curve, i.e., the zeros of P ,
with the unit torus S1 � S1. As proven in [36, 37], there is at most two such zeros,
and they are positive nodes.

Another important feature of this polynomial is that it behaves well with respect
to enlargement of the fundamental domain. In other words, if one considers the graph
�mn � T2 obtained by pasting m rows and n columns of copies of � , then the asso-
ciated characteristic polynomial Pmn can be computed from P11 D P via

Pmn.�; �/ D
Y
znD�

Y
wmD�

P.z;w/ (1.2)

for any �; � 2 C� (see [37, Theorem 3.3]). Note that the definition of the charac-
teristic polynomial extends to arbitrary (possibly non-bipartite) graphs � � T2, and
formula (1.2) still holds, but the corresponding spectral curve is not well-understood.
It is believed to intersect the unit torus in at most two points which are real positive
nodes (see [38, Section 1.2]), but this remains a conjecture.

With these tools in hand, the only hurdle left in the computation of the asymptotic
expansion of the partition function Zmn for arbitrary toric graphs �mn was the deter-
mination of the asymptotic behavior of Pmn for a non-negative analytic function P
on the unit torus whose only zeros are positive nodes. This was done by Kenyon, Sun
and Wilson in [38, Theorem 1], see Section 4.1 below for a summary. The resulting
asymptotic expansion for Zmn is too involved to be stated in detail here, so we refer
the reader to [38, Theorem 2] and mention that it is in full agreement with the con-
formal field theory (CFT) predictions of [5]. These results are proven for arbitrary
bipartite graphs in T2, and for non-bipartite graphs as well, assuming the aforemen-
tioned conjectural condition on the zeros of the characteristic polynomial.

While the toric case is now fully settled, the case of the Klein bottle remains very
poorly understood. To the best of our knowledge, the only available results deal with
the square lattice [30,42,43] and are partially contradictory (see Examples 4.5 and 4.9
below, where we point out inaccuracies in [43] and [30], as well as in [45]).

The main goal of the present article is to fill this gap, i.e., to compute the asymp-
totic expansion of the dimer partition function, and in particular the finite-size correc-
tion term, for arbitrary weighted graphs in the Klein bottle.
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1.2. Results on the dimer model

To understand the technical difficulties of this endeavor, let us go once again through
the list of tools used in the toric case.

The first fundamental tool is Kasteleyn’s theorem extended to toric graphs, which
can be stated as equation (1.1). Fortunately, such a formula is also available for non-
orientable surfaces: if � is embedded in a closed (possibly non-orientable) surface †,
then Z can be computed as a linear combination of 22��.†/ Pfaffians of (possibly
complex-valued) Kasteleyn matrices [52]. Furthermore, the coefficients in this lin-
ear combination can still be interpreted geometrically [10]. In particular, the partition
function of any graph embedded in K is given by 4 Pfaffians, which turn out to
be two pairs of conjugate complex numbers, so 2 well-chosen Pfaffians are suffi-
cient.

The second tool is the characteristic polynomial P , defined for graphs in T2.
Intrinsically, this polynomial should be understood as an element of the group ring
RŒH1.T2IZ/�, the choice of a basis of H1.T2IZ/ ' Z2 then leading to the more
familiar polynomial ring RŒz˙1; w˙1�. Therefore, since H1.K IZ/ ' Z ˚ Z=2Z

and the Kasteleyn matrices are now complex-valued, a naturally defined characteristic
polynomial R for graphs in the Klein bottle should be an element of the quotient
ring CŒH1.K IZ/� ' CŒz˙1; w�=.w2 � 1/, i.e., two 1-variable polynomials R.z; 1/;
R.z;�1/ 2 CŒz˙1�. The definition of such a polynomial is the first technical step
of this work, see Section 2.2. The Pfaffian formula of [52] reinterpreted in the spirit
of [10] now reads

Z D jIm.R.˙1; 1/1=2/j C jRe.R.˙1;�1/1=2/j; (1.3)

see Proposition 2.6. Remarkably, the polynomialsR of � andP of its 2-cover z� �T2

(see Figure 1) are related via

R.z;w/R.�z; w/ D P.z2; w/ (1.4)

for w D ˙1, see Proposition 2.10. Moreover, the order 2 symmetry of z� implies the
formula P.z;w/ D P.z;w�1/ for the associated polynomial.

If � is bipartite, then much more can be said, constituting the first technically
challenging results of this article. As in the toric case, the Kleinian characteristic
polynomial factors as R.z; w/ D S.z; w/S.z�1; w/ for w D ˙1, and one can use
the powerful tools of [37], namely amoebas of Harnack curves, to show that all the
zeros of P.z; w/ on the unit torus satisfy z D �1. Furthermore, we prove that all the
zeros of S.z; 1/ and S.z;�1/ are simple, purely imaginary, and interlaced along the
imaginary axis (Proposition 2.16). We also determine their behavior as one moves
along the associated amoeba (or phase diagram), see Lemma 2.17.
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Figure 1. Left: the graph � � K , pictured with periodic boundary conditions in the verti-
cal direction (black arrows) and antiperiodic boundary conditions in the horizontal one (white
arrows). Center: the 2-cover z� D �12 � T 2. Right: the associated graph �mn � K , here
with m D 2 and n D 3.

The third tool used in the toric case is the fact that P behaves well under enlarge-
ment of fundamental domains, as expressed in equation (1.2). The extension of this
result to the Kleinian case is the main technical novelty of the present work, and the
subject of the whole Section 3. But first of all, let us clarify what we mean by “enlarge-
ment of fundamental domain” in the Klein bottle. Given a weighted graph � �K ,
consider the graph �mn obtained by pasting m rows and n columns of copies of � as
illustrated in Figure 1. Observe that if n is even, then �mn embeds in the torus and
is nothing but the m � n=2 enlargement of z� D �12 � T2, a case well-understood.
However, if n is odd, then �mn embeds in the Klein bottle, and this is the case we will
focus on. Defined more intrinsically, we are looking at non-trivial covers Kmn!K
of the Klein bottle by itself (which incidentally only exist since K has vanishing
Euler characteristic), see also Section 1.5 below.

The idea now is to relate the two Kasteleyn matrices of �mn �Kmn used in (1.3),
understood as discrete operators twisted by 1-dimensional representations �, �0 of
�1.Kmn/ < �1.K /, with the associated Kasteleyn operators on � � K twisted
by the corresponding induced representations �#, .�0/# of �1.K /. This uses a gen-
eral result, Theorem 3.2 below, which is probably well known to the experts, but
whose precise statement we have not been able to find in the literature. It is there-
fore the subject of a separate note with Adrien Kassel [14], where we give a detailed
proof together with applications to other models of statistical physics. Unlike that
of the torus, the fundamental group of the Klein bottle is not abelian, so the repre-
sentations �#, .�0/# need not split as products of 1-dimensional representations as in
equation (1.2). It turns out that they split as products of representations of dimension 1
and 2. Furthermore, the determinant of the Kasteleyn matrices for � twisted by the 2-
dimensional representations can be expressed as evaluations of the toric characteristic
polynomial P of z� � T2. The final result is somewhat cumbersome, so we will not
state it here but refer the reader to Theorem 3.3. Together with equation (1.3), it yields
the following result.
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Theorem 1.1. For positive integers m, n with n odd, we have

Zmn D jsin.˛n=2/jPmn.1; 1/1=4 C jcos.˛0n=2/jPmn.1;�1/
1=4

if m is odd, and

Zmn D jsin..˛n � ˛0n/=2/jPmn.1; 1/
1=4
C Pmn.1;�1/

1=4

if m is even, where

˛n D Arg
� Y
znD1

R.z; 1/
�
; ˛0n D Arg

� Y
znD1

R.z;�1/
�
;

and Pmn.1;˙1/1=4 denotes the non-negative fourth root of Pmn.1;˙1/ � 0.

These expressions are handy for the determination of the asymptotics of Zmn,
which now boils down to two distinct problems: the computation of the asymptotics
of Pmn.1;˙1/, and of Arg.

Q
znD1 R.z;˙1//. The first question being answered

by [38, Theorem 1], we are left with the second. As it turns out, the limit of the
coefficients jsin.˛n=2/j, jcos.˛0n=2/j and jsin..˛n � ˛0n/=2/j for n odd tending to1
can only take the three possible values 0;

p
2
2

and 1. Furthermore, they are determined
by the number of roots of R.z; 1/ and R.z;�1/ outside the unit disc (see Lemmas 4.1
and 4.2 for the precise statements). Using (1.4), one can then show that these limits
are constant if the dimer weights vary continuously without P.�1;˙1/ vanishing.
This leads to an asymptotic expansion of Zmn, valid for general graphs, with the con-
jectural assumption that all the zeros of P.z; w/ on the unit torus are positive nodes
with z D �1 (see Theorem 4.3).

In the bipartite case, this assumption is known to hold. Furthermore, as outlined
above, we have a good understanding of the locations of the zeros of S.z;˙1/ along
the imaginary axis. This leads to the following result (Theorem 4.8), where #00, #01
denote Jacobi theta functions and � is the Dedekind eta function, see Section 4.1.

Theorem 1.2. Let � � K be a weighted bipartite graph embedded in the Klein
bottle. Then, we have the asymptotic expansion

logZmn D mn
f0
2
C fscC o.1/

for m and n tending to infinity with n odd and m=n bounded below and above, with

f0 D
“
S1�S1

log jQ.z;w/j
dz

2�iz

dw

2�iw

and fsc D log FSC given as follows:

(1) If Q.z;w/ has no zeros in the unit torus, then FSC D 1.
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(2) If Q.z; w/ has two zeros .�1; w0/ ¤ .�1; xw0/ in the unit torus with w0 D
exp.2�i /, then

FSC D
#00.m j�/

�.�/
C
#01.m j�/

�.�/
; where � D i

m

n

ˇ̌̌ @zQ.�1;w0/
@wQ.�1;w0/

ˇ̌̌
:

(3) If Q.z;w/ has a single (real) node at .�1;w0/ in the unit torus, then

FSC D
#00.�/

�.�/
C
#01.�/

�.�/
; where � D i

m

n

ˇ̌̌ @2zQ.�1;w0/
@2wQ.�1;w0/

ˇ̌̌1=2
:

Without surprise, the bulk free energy f0 is that of the toric graph z� � T2. On the
other hand, the finite-size correction fsc is different from the one obtained in the toric
case, and does not seem to be related to it in a simple way (see also Section 4.5).
The most remarkable aspect of this result is the universality of fsc, a term which only
depends on the phase of the model and on the (purely imaginary) conformal shape
parameter � . To the best of our knowledge, this universality feature for the Klein
bottle cannot be derived from the corresponding result for the torus. Another fact
worth mentioning is that even though Zmn depends on both polynomials P and R
(recall Theorem 1.1), its asymptotic expansion is determined by P .

As an illustration, we compute the explicit example of the square lattice. Note
that the .M � N/-square lattice in the Klein bottle is always “locally bipartite”, in
the sense that all faces have even degree, but it is bipartite if and only if M is even
and N odd: in the other cases, there exist (homologically non-trivial) cycles of odd
length. Therefore, our result is a blend of the bipartite case (see Example 4.9) and of
the non-bipartite case (see Example 4.5): the finite-size correction in the asymptotic
expansion of the dimer partition function for the .M �N/-square lattice in the Klein
bottle is given by fsc D log FSC, with

FSC D

8̂̂̂<̂
ˆ̂:
#00.�/
�.�/

for M and N even,
#00.�/
�.�/

C
#01.�/
�.�/

for M even and N odd,�
2#01.2�/
�.2�/

�1=2 for M odd and N even,

where � D i Mx
2Ny

and x (resp. y) denotes the weight of the horizontal (resp. vertical)
edges. These functions are illustrated in Figure 2. This recovers (and sometimes, cor-
rects) the aforementioned results of [30,42,43]. We also compute new examples, such
as the hexagonal and triangular lattices, see Examples 4.11 and 4.7.

A couple of consequences are discussed in Section 4.5. For instance, we show
that the limit limm;n!1

Z.�mn/
2

Z.z�mn/
is universal, in the same sense as the finite-size

corrections. Also, motivated by the CFT predictions of [5], we compute the �im!1

asymptotic of fsc and check that the result is in agreement with [5]. In particular, both
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2.5

2

1.5

1

0.5

0 1 2–1–2

even � odd

odd � even

even � even

Figure 2. Finite-size corrections fsc for theM �N square lattice on the Klein bottle, as a func-
tion of log. Mx

2Ny
/, with curves labeled according to the parity of .M;N /.

cases .2/ and .3/ in Theorem 1.2 yield the same value c D 1 for the central charge of
a conformal field theory describing the bipartite dimer model in the liquid phase.

We now turn to the Ising model.

1.3. Background on the Ising model

The Ising model, first introduced by Lenz [39] in an attempt to understand Curie’s
temperature for ferromagnets, is one of the most famous models in statistical physics.
It can be defined as follows. Given a finite graph G D .V .G/; E.G// endowed with
a positive edge weight system J D .Je/e2E.G/, the energy of a spin configuration � 2
¹�1;C1ºV.G/ is defined by H .�/ D �

P
eDuv2E.G/ Je�u�v . Fixing an inverse tem-

perature ˇ � 0 determines a probability measure on the set �.G/ of spin configura-
tions by

�G;ˇ .�/ D
e�ˇH .�/

ZJ
ˇ
.G/

; where ZJˇ .G/ D
X

�2�.G/

e�ˇH .�/:

The normalization constant ZJ
ˇ
.G/ is called the partition function of the Ising model

on G with coupling constants J .
Once again, we are interested in the asymptotic expansion of ZJ

ˇ
.Gmn/ for an

arbitrary weighted graphG embedded in the torus or the Klein bottle. As we shall see,
this asymptotic expansion depends on the position of the parameter ˇ with respect to
some critical inverse temperature, whose definition we now briefly recall. Let G be
the infinite weighted planar graph obtained as the universal cover of G (i.e., as Gmn
with m; n ! 1). Ising probability measures can be constructed on G as limits of
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finite volume probability measures [46]: let us denote by �C
G ;ˇ

the Ising measure
at inverse temperature ˇ on G with C boundary conditions. Let us assume that the
embedded graph G is non-degenerate, i.e., that the complement of its edges consists
of topological discs. A Peierls argument [49] and the GKS inequality [25,26,34] then
classically imply that the Ising model on G exhibits a phase transition at some critical
value ˇc 2 .0;1/:

• for ˇ < ˇc , we have �C
G ;ˇ
.�v/ D 0 for any v 2 V.G /,

• for ˇ > ˇc , we have �C
G ;ˇ
.�v/ > 0 for any v 2 V.G /.

We refer to [13, 40] for computation of the critical inverse temperature for arbitrary
non-degenerate doubly periodic weighted graphs.

There is a classical two-step method to apply dimer technology to the Ising model.
First, the Ising partition function can be expressed via the high-temperature expan-
sion [53]

ZJˇ .G/ D
� Y
e2E.G/

cosh.ˇJe/
�
2jV.G/j

X
2E .G/

Y
e2

tanh.ˇJe/;

where E .G/ denotes the set of even subgraphs of G, that is, the set of subgraphs 
of G such that every vertex of G is adjacent to an even number of edges of  . The
second step is the so-called Fisher correspondence [21], which has a long and inter-
esting history with several variations on the same theme (see, e.g., [8, Section 3.1]
and references therein). Let us consider a weighted graph .G; x/ embedded in a sur-
face, and denote by .GF ; xF / the associated weighted graph obtained from .G; x/ as
illustrated in Figure 3. As one easily checks, the high-temperature expansion of the
Ising partition function on G is related to the dimer partition function on GF via

2jV.G/j
X

2E .G/

Y
e2

xe D Z.G
F ; xF /: (1.5)

In conclusion, we have the relation

ZJˇ .G/ D
� Y
e2E.G/

cosh.ˇJe/
�
Z.GF ; xF / (1.6)

between the Ising partition function on G and the dimer partition function on GF ,
where the associated weights are given by xe D tanh.ˇJe/. It allows to study the
Ising model on a graph via the dimer model on the associated Fisher graph.

However, the Fisher graph fails to be bipartite, so the very powerful tools of [37]
are a priori not available. As it turns out, a more technical mapping from the Ising
model to a bipartite dimer model exists [19], thus allowing to understand the spectral
curve of the dimer model on the Fisher graph [13,41]: it is disjoint from the unit torus
for ˇ ¤ ˇc , and meets it at a single real positive node for ˇ D ˇc . The tools of [38]
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xe

xe

11

1

Figure 3. The weighted graph .G; x/ near a vertex, and the associated weighted graph
.GF ; xF / obtained via the Fisher correspondence.

then make it a routine task to compute the asymptotic expansion of ZJ
ˇ
.Gmn/ in the

toric case, see Remark 4.17 (i) below.
What about the case of the Klein bottle? Here again, it is poorly understood: so

far, the only known results deal with the critical isotropic square lattice [9,29,44], and
are partially contradictory (see Example 4.16 below, where we recover the formula
of [44] and of [9]).

1.4. Result on the Ising model

We compute the asymptotic expansion of the Ising partition function for an arbitrary
planar graph with periodic-antiperiodic boundary conditions, as follows.

Theorem 1.3. Let .G;J / be a non-degenerate weighted graph embedded in the Klein
bottle, and let P.z; w/ be the characteristic polynomial of the associated Fisher

graph eGF � T2. Then, the Ising partition function on Gmn satisfies

logZJˇ .Gmn/ D mn
f0
2
C fscC o.1/

for m and n tending to infinity with n odd and m=n bounded below and above, with

f0 D 2
X

e2E.G/

log cosh.ˇJe/C
1

2

Z
T2

logP.z;w/
dz

2�iz

dw

2�iw

and fsc D 0 in the subcritical regime ˇ < ˇc , fsc D log.2/ in the supercritical regime
ˇ > ˇc , and

fsc D log
��#00.�/

�.�/

�1=2
C

�#01.�/
2�.�/

�1=2�
; where � D i

m

n

ˇ̌̌ @2zP.�1; 1/
@2wP.�1; 1/

ˇ̌̌1=2
in the critical regime ˇ D ˇc .
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1

0.2

0 1 2–1–2

0.4

0.6

0.8

1.2

1.4

1.6

Figure 4. Finite-size correction term fsc to the Ising partition function for an arbitrary graph on
the Klein bottle, in the critical regime ˇ D ˇc , as a function of log.j� j/.

Once again, the most remarkable feature of this result is the universality of the
finite-size correction term: it only depends on the regime of the model, and at criti-
cality, on the shape parameter � (see Figure 4). The fact that the finite-size correction
does not vanish for ˇ > ˇc might come as a surprise, see Example 4.7. Another fact
worth mentioning is that for ˇ D ˇc and �im ! 1, the asymptotic behavior of fsc
matches the CFT predictions of [5], yielding the value c D 1

2
for the central charge of

a conformal field theory describing the Ising model (see Remark 4.17 (iii)).

1.5. Further directions

The techniques developed in this article could help to produce further results, that we
now briefly outline.

More general fundamental domains. When enlarging the fundamental domain, we
have restricted our attention to rectangular ones, i.e., domains spanned by the vectors
expressed as .n; 0/ and .0; m/ with n odd, in the basis of the plane given by the two
vectors spanning the fundamental domain of � . One could study the more general
quadrangular domains spanned by vectors of the form .n; p/ and .0; m/ with n odd.
These integers also describe a finite covering of the Klein bottle by itself, so our
methods apply. For p ¤ 0, we expect more general finite-size correction terms to
appear, as in [38], where the most general form of finite coverings of the torus by
itself is considered. However, we expect the associated shape parameter � to remain
purely imaginary, see Figure 12.
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Incidentally, it is an amusing exercise in combinatorial group theory to show that
any subgroup H of finite index of �1.K / D ha; b j aba�1bi with H isomorphic
to �1.K / is of the form H D hanbp; bmi with n odd. As a consequence, all finite
coverings of the Klein bottle by itself are of the form described above.

Loop statistics. If � is a bipartite graph embedded in a surface †, then the differ-
ence of two dimer configurations on � gives a collection of oriented loops on � ,
and therefore a homology class in H1.†IZ/. In [38, Section 4], the authors consider
the case of a bipartite graph � � † D T2 whose spectral curve intersects the unit
torus in two distinct zeros, and describe the asymptotic distribution of these classes
in H1.T2IZ/ D Z2 for the covers �mn of � , as m; n ! 1. We refer the reader
to [38, Theorem 4] for the more precise, complete and general statement, and to [6]
for the previously studied case of the hexagonal lattice.

In our context, one can fix a bipartite graph � � † D K whose characteris-
tic polynomial has two conjugate zeros in the unit torus, and use the second case
of Theorem 1.2 to determine the asymptotic distribution of the homology classes
in H1.K IZ/ D Z˚ Z=2Z for the covers �mn of � , as m; n!1 with n odd.

Asymptotic expansion beyond the constant order. In [28], Ivashkevich, Izmailian
and Hu study the asymptotic expansion of the dimer and Ising partition functions for
the square lattice embedded in the torus beyond the bulk free energy and the constant
order term (see also [3]). Actually, they consider the full asymptotic expansion

logZmn D mn f0 C fsc.�/C
X
p�2

fp.�/
.mn/1�p

;

and express all the terms fp using elliptic theta functions evaluated at the conformal
parameter � . This work is extended in [30] to the dimer model on the square lattice
with various boundary conditions (see however Example 4.9 below).

It would be a worthy endeavor to use Theorem 1.1 and the good understanding of
the corresponding characteristic polynomials to try to compute subleading terms in the
asymptotic expansion of the bipartite dimer and Ising partition functions. Determining
which terms are universal and which ones are not would be of particular interest, see
the introduction of [28].

Non-bipartite dimers on the torus and Klein bottle. Together with [38, Theo-
rem 2], the present work settles the question of finite-size corrections for bipartite
dimers on the torus and Klein bottles. For non-bipartite dimers however, there is still
some work to be done.

As mentioned above, it is believed that the corresponding spectral curve intersects
the unit torus in at most two points which are real positive nodes, but this remains to
be rigorously demonstrated. Even then, the precise form of the finite-size correction
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term would require some further study, both in the torus and Klein bottle cases (see,
e.g., Example 4.7 below).

Beyond the flat case. As stated at the beginning of this introduction, the asymptotic
expansion of the dimer and Ising partition functions is believed to take a particu-
larly simple form when the graph is embedded in a closed surface † with vanishing
Euler characteristic [7]. The torus and Klein bottles being the only two such sur-
faces, this very favorable case is now settled. But what about closed surfaces with
non-vanishing Euler characteristic? For square and triangular lattices on a genus 2
surface, there is numerical evidence of the finite-size correction terms being naturally
expressed as sums of Riemann theta functions [17, 18], drawing a striking parallel
with the conformal field theory results of [1]. (See also [2] for recent advances on
conformal invariance of dimers on Riemann surfaces, and [31] for related results on
the determinant of discrete Laplacians.)

In the spirit of the present work, the study of irreducible representations of finite
quotients of �1.†/ could lead to an explicit expression for the term f0 in the asymp-
totic expansion. The presence of curvature makes it unlikely for our methods alone to
determine the universal finite-correction terms, and thus solve the outstanding prob-
lem stated above. However, we hope that they will serve as stepping stones towards
this goal.

Organisation of the article

In Section 2, we describe the general setup of our work (a weighted graph � embed-
ded in the Klein bottle), define the associated Kleinian characteristic polynomial R,
and relate it to the well-known toric characteristic polynomial P of z� � T2. In the
bipartite case, we also study the location of the roots of R.

In Section 3, we study how the polynomial Rmn of �mn can be computed from
the polynomials R and P (Theorem 3.3), and prove Theorem 1.1. This requires sub-
tle modifications of the twisted Kasteleyn matrices to ensure the periodicity of all
the ingredients (Section 3.3), as well as the identification of induced representations
of �1.K / and their factorization into irreducible ones (Section 3.4).

Section 4 deals with the resulting asymptotic expansion of the dimer and Ising
partition functions. We first consider the general (possibly non-bipartite) dimer model
in Section 4.3, before focusing on bipartite graphs and proving Theorem 1.2 in Sec-
tion 4.4. A couple of consequences are discussed in Section 4.5. Finally, in Sec-
tion 4.6, we study the Ising model and prove Theorem 1.3.
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2. Characteristic polynomials for dimers on Klein bottles

The aim of this section is to define and study two classes of characteristic polynomials
that play a fundamental role in this article. We begin in Section 2.1 by introducing the
general setup of a weighted graph embedded in the Klein bottle, together with an
appropriate orientation of its edges. This allows us to define the associated Kleinian
characteristic polynomial R in Section 2.2, which by [10] can be used to compute the
corresponding dimer partition function. In Section 2.3, we recall the definition of the
toric characteristic polynomial P of [37,38], and explain its relation with its Kleinian
counterpart. Finally, in Sections 2.4 and 2.5, we consider the special case of bipartite
graphs and show how the results of [37] on P imply strong conditions on R.

2.1. The general setup

Throughout this section, � denotes a finite connected graph with vertex set V of even
cardinality, edge set E, and non-negative edge weights � D .�e/e2E 2 Œ0;1/E . This
weighted graph is embedded in the Klein bottle K in such a way that K n � consists
of topological discs. To represent the pair � � K conveniently, we cut K open
along two well-chosen oriented simple closed curves a, b. In this way, one obtains
a rectangular fundamental domain D with horizontal sides corresponding to a and
vertical sides corresponding to b, as illustrated in Figure 5 (left). Let us write a0 �K
for the simple closed curve corresponding to the horizontal line cutting D in two,
oriented from left to right. Note that a, a0 generate the first homology group of K ,
and that a C a0 is homologous to b and hence of order 2 in H1.K IZ/. We assume
that � is in general position with respect to D , in the sense that V is disjoint from a,
a0 and b, while each edge of � intersects each of these three curves at most once, and
if so, transversally.

Let us write z� � T2 for the orientation cover of � � K , i.e., the pair obtained
by gluing two copies of the fundamental domain D along a vertical side as illustrated
in Figure 5 (right). We denote by zV , zE, z� and zD the corresponding vertex set, edge
set, edge weights and fundamental domain, respectively, and endow the torus T2 with
an orientation that is pictured counterclockwise.

Following [10], let us fix an orientationK on the edges of � satisfying the follow-
ing two conditions:

(i) If one lifts K to z� and then inverts the orientation of all the edges whose
endpoints are both contained in the upper half part of zD , the resulting ori-
entation zK is a Kasteleyn orientation on z� � T2. This means that each face
of z� � T2 has an odd number of edges in its boundary that are oriented in the
clockwise direction. (This makes sense as T2 is oriented.)
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a

a0

C 0

C

a

b

b zb zb

zb0

za

za

za0

Figure 5. Left: the graph � � K pictured in the fundamental domain D delimited by the
curves aba�1b, together with the associated curves C; C 0 � � . Right: the orientation cover
z� � T 2 pictured in the fundamental domain zD delimited by the curves zbzazb�1za�1.

(ii) Let C be the oriented closed curve in � (homologous to a) given by one
edge e 2 E intersecting a together with the oriented curve in � joining the
endpoints of e, having a to its left in the lower half of D , to its right in
the upper half of D , and meeting every vertex of � adjacent to a on this
side. Let C 0 � � be defined in the same way for a0. These curves are illus-
trated in the left part of Figure 5. We require the total number of edges of C
and C 0 where K disagrees with the orientation of these curves to be even.
(The curves C , C 0 are not uniquely defined, but it follows from the general
theory of [10] that the parity of this number does not depend on the choices
made.)

Remarks 2.1. (i) By [10, Theorem 4.3], such an orientation exists if and only
if � has an even number of vertices, which we assumed.

(ii) By this same result, such an orientation is unique up to flipping the edge
orientations around a set of vertices, and up to reversing the orientations of
all edges meeting the curve b.

(iii) Deforming the curves a, a0 (or equivalently, deforming the graph � inside
the fundamental domain D) leads to natural local transformations of the
orientation K which keep the lifted orientation zK unchanged. (In case the
deformation sweeps an odd number of vertices, one also needs to invert all
the edges meeting a in order for condition (ii) above to hold.) On the other
hand, the orientation K does not depend on the curve b �K .

Let us illustrate these conditions with the three lattices that provide the running
examples of this article.

Examples 2.2. Consider the 2 � 1 square lattice � naturally embedded in the Klein
bottle as illustrated in the left part of Figure 6. (The weights are represented as well
for later use.) The orientation K pictured on this graph satisfies condition (i) above:
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a

a0

x1

x2

y1

y2 C

C 0

Figure 6. The 2 � 1 square lattice of Example 2.2. Left: the orientation K on � � K . Middle:
the Kasteleyn orientation zK on z� � T 2. Right: the oriented curves C and C 0 in � .

this is easily checked using the middle part of Figure 6 which represents the Kaste-
leyn orientation zK on z� � T2. (On this example, the two upper horizontal edges of z�
have their orientation inverted to obtain zK.) Finally, the orientationK satisfies condi-
tion (ii) as well: the curves C , C 0 are illustrated on the right part of this same figure,
and the number of edges of C and C 0 whereK disagrees with the orientation of these
curves is equal to 2.

Consider now the 1� 2 square lattice embedded in the Klein bottle as illustrated in
the left part of Figure 7. (The curve a0 is not represented as a straight line in order for
it to intersect the graph transversally.) One easily checks that the orientation pictured
there satisfies conditions (i) and (ii).

Finally, fundamental domains for the hexagonal and triangular lattices are pictured
in the center and right parts of Figure 7, together with orientations satisfying both
conditions.

a

a0

x1x2

y1 y2

a

a0
�1

�2

�3

a

a0

Figure 7. The square, hexagonal and triangular lattices of Examples 2.2 together with appropri-
ate orientations.
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Remark 2.3. Condition (ii) is needed to normalize the orientation K, as not all
orientations satisfying condition (i) can be used to compute the dimer partition func-
tion (see Proposition 2.6 below). For simplicity, we shall furthermore assume that
the curve C (resp. C 0) used in this normalization can be chosen disjoint from a0

(resp. a). This is easily seen to hold in the first, third and fourth lattices of Exam-
ple 2.2, and can be assumed without loss of generality via vertical extension of the
fundamental domain. However, if one considers graphs that are “too small”, such
as the second lattice of Example 2.2, then this assumption is not satisfied. As we
progress, we shall explain the small modifications that need to be made in such cases
(see Remarks 3.7, 3.12 and 4.4 (iii) below).

2.2. The Kleinian characteristic polynomial

We now have a weighted graph � � K together with an orientation K of its edges.
Let us order the vertex set V of � and for z 2 C� and w D ˙1, denote by A.z;w/ D
.A.z; w/v;v0/v;v02V the associated (complex-valued, twisted) Kasteleyn matrix giv-
en by

A.z;w/v;v0 D
X

eD.v;v0/

"Kvv0.e/ i
e�aCe�a0 �e z

e�bwe�a;

where the sum is over all the oriented edges e from v 2 V to v0 2 V , the sign "Kvv0.e/
is C1 if K orients e from v to v0 and �1 otherwise, and e � c denotes the algebraic
intersection number of the oriented edge e with the oriented curve c 2 ¹a;a0; bº in K .
Here some caution is needed. We shall say that e � b D C1 if e crosses the vertical
side of the fundamental domain from left to right, while e � b D �1 it crosses it from
right to left and e � b D 0 if e and b are disjoint. (An integral intersection number
with b is indeed well-defined in the Klein bottle.) On the other hand, the intersection
number e � a does not carry a sign: we have e � aD 1 if e and ameet (once) and e � aD
0 else. The same holds for a0. (Only a Z=2Z-valued intersection number with a and a0

is defined in K .)

Definition. The characteristic polynomial of � �K is

R.z;w/ D detA.z;w/ 2 CŒz˙1; w�:

Several remarks are in order.

Remarks 2.4. (i) This polynomial is really an element of CŒz˙1;w�=.w2�1/,
the group ring of H1.K IZ/ D Z˚ Z=2Z. In other words, it only carries
relevant information for w D ˙1 and can be considered as two 1-variable
Laurent polynomials R.z; 1/; R.z;�1/ 2 CŒz˙1�.
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(ii) Given � �K with curves a, a0, b, the polynomial R.z;w/ is uniquely de-
fined up to complex conjugation. This follows from Remark 2.1 (ii) together
with the fact that a C a0 is homologous to b. Moreover, Remark 2.1 (iii)
implies that deforming the curves a, a0 (and b) leads to the additional trans-
formation R.z;w/ 7! �R.z;�w/.

(iii) The polynomial R.iz; w/ lies in RŒz˙1; w�. Indeed, e � a C e � a0 and e � b
have the same parity since Œa C a0� D Œb� 2 H1.K IZ=2Z/. Equivalently,
we have R.�z; w/ D R.z;w/.

We now compute this characteristic polynomial for our running examples.

Examples 2.5. Let us order the vertices of the 2 � 1 square lattice of Figure 6 from
bottom to top. The corresponding Kasteleyn matrix is given by

A.z;w/ D

 
0 iy1 C iy2w C x1z C x2z

�1

�iy1 � iy2w � x1z
�1 � x2z 0

!
;

so R.z;w/ D S.z; w/S.z�1; w/, where S.z; w/ D iy1 C iy2w C x1z C x2z�1.
Ordering the vertices of the 1 � 2 square lattice of Figure 7 from left to right, we

have

A.z;w/ D

 
i2y1w � i

2y1w ix1 C x2z
�1

�ix1 � x2z i2y1w � i
2y1w

!
D

 
0 ix1 C x2z

�1

�ix1 � x2z 0

!
:

(Note that loops are counted twice, as the sum is over all oriented edges from v to v0.)
Hence, we obtain R.z; w/ D .ix1 C x2z/.ix1 C x2z

�1/ D .x22 � x
2
1/ C ix1x2 �

.z C z�1/.
For the hexagonal lattice of Figure 7, we have

A.z;w/ D

 
0 i�1 C �2z C i�3w

�i�1 � �2z
�1 � i�3w 0

!
;

so R.z;w/ D S.z; w/S.z�1; w/, where S.z; w/ D i�1 C �2z C i�3w.
Finally, for the isotropic triangular lattice of Figure 7, we have

A.z;w/ D

 
iz�1 � iz �i � iw � z � z�1

i C iw C z C z�1 iwz � iwz�1

!
;

leading to R.z;w/ D .z2 C z�2 C 2iz C 2iz�1/.1C w/ � .1C w/2 C 2.1 � w/.

Using this characteristic polynomial, the Pfaffian formula of [10] (see also [52])
can now be reformulated in the following way.
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Proposition 2.6. The dimer partition function of � is given by

Z D jIm.R.˙1; 1/1=2/j C jRe.R.˙1;�1/1=2/j:

Proof. Let us first assume that K is such that the number nK.C / of edges of C
whereK disagrees with the orientation of C is odd. (By condition (ii) above, nK.C 0/
is then odd as well.) Then, we are precisely in the setting of [10, Theorem 6.3], which
in our case amounts to the Pfaffian formula

Z D jIm.Pf.A.1; 1///C Re.Pf.A.1;�1///j:

Considering the expansion of Pf.A.1;˙1// given in [10, p. 174], one easily checks
that the formula

Z D jIm.Pf.A.1; 1///j C jRe.Pf.A.1;�1///j

holds as well, as there is no possible cancellation between these two terms. The
statement now follows from the identity Pf.A.1; w//2 D det.A.1; w// D R.1; w/

for w D ˙1, together with the equality R.�z; w/ D R.z;w/ of Remark 2.4 (iii).
If K is such that nK.C / and nK.C 0/ are both even, then it can be changed to K 0

with nK
0

.C / and nK
0

.C 0/ both odd by reversing the orientation of all edges cross-
ing b. By Remark 2.4 (iii), this amounts to replacingR.1;w/ byR.�1;w/D R.1;w/
for w D ˙1, and the proposition still holds.

2.3. The toric characteristic polynomial

A second polynomial plays a crucial role in our study: it is the characteristic poly-
nomial introduced for bipartite graphs by Kenyon, Okounkov and Sheffield in their
seminal paper [37], and extended to general toric graphs by Kenyon, Sun and Wil-
son [38]. Let us recall its definition in our context.

For z; w 2 C�, let zA.z; w/ be the Kasteleyn matrix associated with the weighted
graph z� � T2 and the Kasteleyn orientation zK (recall condition (i) above). In other
words, for v; v0 2 zV , we have

zA.z;w/v;v0 D
X

eD.v;v0/

"
zK
vv0.e/ z�e z

e�zbwe�za;

where e � za 2Z denotes the algebraic intersection number in T2 of the oriented edge e
of z� with the oriented simple closed curve za, and similarly for e � zb (recall Figure 5,
right). Concretely, we have e � za D C1 if e crosses za from bottom to top (e � za D �1
if e goes top to bottom), and e � zb D C1 if e crosses zb from left to right (e � zb D �1
if e goes right to left).
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Definition. The characteristic polynomial of z� � T2 is

P.z;w/ D det zA.z;w/ 2 RŒz˙1; w˙1�:

Remarks 2.7. (i) In the general setting of [37,38], this characteristic polynomial
depends on the choice of a Kasteleyn orientation. In our setting, it is defined
with respect to a specific orientation (recall Remark 2.1) and therefore does
not depend on such a choice.

(ii) By definition, the matrix zA is of even dimension and satisfies zA.z; w/T D
� zA.z�1; w�1/, which implies the equality P.z; w/ D P.z�1; w�1/. Since
P.z; w/ has real coefficients, this in turn implies that for z; w 2 S1, we have
P.z;w/ D P.z�1; w�1/ D P.xz; xw/ D P.z;w/ which is real.

Examples 2.8. For the 2 � 1 square lattice of Figure 6 and the hexagonal lattice of
Figure 7, we have

zA.z;w/ D

 
0 zAı�.z; w/

� zAı�.z
�1; w�1/T 0

!
;

where

zAı�.z; w/ D

 
y1 C y2w

�1 x1 C x2z
�1

�x2 � x1z y1 C y2w

!
and

zAı�.z; w/ D

 
�1 C �3w ��2

�2z �1 C �3w
�1

!
;

respectively. Hence, we obtain a factorizationP.z;w/DQ.z;w/Q.z�1;w�1/, where

Q.z;w/ D y21 C y
2
2 C 2x1x2 C y1y2.w C w

�1/C x21z C x
2
2z
�1

and
Q.z;w/ D �21 C �

2
3 C �1�3.w C w

�1/C �22z;

respectively.
Finally, for the 1 � 2 square lattice with edge weights x1 D x2 DW x and y1 D

y2 DW y, we get

P.z;w/ D y4.w � w�1/4 � 4x2y2.w � w�1/2 C x4.2C z C z�1/;

while the isotropic triangular lattice yields

P.z;w/ D .z2 C z�2/.w C w�1 C 2/C 10.w C w�1/C w2 C w�2 C 34:
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The following proposition appears to be folklore (see [38, p. 974]), holds for
arbitrary toric graphs (not necessarily covers of graphs on the Klein bottle), and is
immediate in the case of bipartite graphs. As we were unable to find a proof of the
general case in the literature, we include one here for completeness.

Proposition 2.9. Given any toric graph G � T2 and any non-negative edge weights
� 2 Œ0;1/E , the corresponding characteristic polynomial P takes non-negative val-
ues on S1 � S1.

Proof. First, note that P D P.G;�/ is left unchanged by adding edges of weight 0,
and by subdividing an edge e of weight �e into three edges of weights �e , 1, and 1.
Using these transformations, any weighted graph .G; �/ � T2 can be modified to
obtain a weighted graph with the same polynomial, but admitting a perfect matching.
Using the continuity of � 7! P.G;�/.z; w/, we can assume that all edge weights are
positive. Hence, it can be assumed that the dimer partition function of .G; �/ does not
vanish. Note that for z;wD˙1, we haveP.z;w/D Pf. zA.z;w//2� 0. An appropriate
linear combination of these four Pfaffians gives the dimer partition function [16, 52],
which we assumed not to vanish. Hence, we have P.z;w/ > 0 for at least one .z; w/
in ¹˙1º2. Applying this fact to the Z=mZ�Z=nZ covering ofG�T2 and using [37,
Theorem 3.3] (see also equation (1.2) below), we find that P.z; w/ ¤ 0 for .z; w/ in
some dense subset T � S1 � S1. For any fixed element .z; w/ of T , we hence have
the equality®

� 2 .0;1/E j P.G;�/.z; w/ � 0
¯
D
®
� 2 .0;1/E j P.G;�/.z; w/ > 0

¯
;

which is open and closed in .0;1/E by continuity of � 7! P.G;�/.z; w/. It is also
non-empty, as the choice for � of the indicator function of a perfect matching gives
the value P.G;�/.z; w/ D 1. By connectedness of .0;1/E , we conclude that

P.G;�/.z; w/ � 0

for all � and any fixed .z; w/ 2 T . The statement follows from the density of T and
the continuity of .z; w/ 7! P.z;w/.

We need further properties of these polynomials for covers of graphs on the Klein
bottle.

Proposition 2.10. (i) P.z;w/ D P.z;w�1/ 2 RŒz˙1; w˙1�.

(ii) For w D ˙1, we have the equality P.z; w/ D R.z1=2; w/R.�z1=2; w/

in CŒz˙1=2�.

(iii) P.1;w/ D jR.˙1;w/j2 for z 2 C� and w D ˙1.
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Proof. To show the first point, fix z; w 2 C� and an arbitrary square root z1=2 of z.
First, observe that P.z; w/ D det zA.z; w/ is left unchanged when replacing ze�zb by
z1=2.e�

zb�e�zb0/, where zb; zb0 � T2 denote the two lifts of b � K (recall Figure 5).
Also, multiplying by i the rows and columns of zA.z; w/ corresponding to a vertex
in the upper half of zD amounts to multiplying its determinant by .�1/jV j D 1, so
the resulting matrix zA0.z; w/ still has determinant equal to P.z; w/. However, this
new matrix is now symmetric in the following sense: if f denotes the involution
of C zV corresponding to the non-trivial deck transformation of the covering .T2; z�/!

.K ; �/, we have the f zA0.z;w/f D zA0.z;w�1/. The equality P.z;w/D P.z;w�1/
follows.

To prove the second point, consider again the modified matrix zA0.z; w/ above,
which for w D ˙1 is invariant under the involution f of C zV . Following the standard
arguments of [37, Theorem 3.3], we obtain that in the right basis, zA0.z; w/ is given
by A.z1=2; w/˚ A.�z1=2; w/. The statement follows.

The third point is a consequence of the second one and of Remark 2.4 (iii).

2.4. The bipartite case: basics

Let us now assume that the graph � is bipartite, i.e., that its vertices can be partitioned
into two sets (say, sets B and W of black and white vertices, respectively) so that no
edge joins two vertices of the same set. For such a graph to admit a perfect matching,
it is necessary to have jBj D jW j, which we assume. In such a case, the vertices can be
ordered so that the matrix A.z; w/ is block off-diagonal, leading to the characteristic
polynomial factorizing as

R.z;w/ D S.z; w/S.z�1; w/; (2.1)

where S.z; w/ 2 CŒz˙1; w� is the bipartite characteristic polynomial of � �K .

Remark 2.11. Given � � K and curves a, a0, b, the polynomial S is well-defined
up to a sign and complex conjugation: as before, this follows from Remark 2.1 (ii)
together with the fact that aC a0 is homologous to b. Moreover, by Remark 2.1 (iii),
deforming the curves a, a0 and b leads to the additional transformations S.z; w/ 7!
iS.z;�w/ and S.z; w/ 7! z˙1S.z; w/.

As one easily checks, such transformations are coherent with the properties listed
below, which can be obtained using Remark 2.4 (iii) and Proposition 2.6.

Proposition 2.12. The polynomial S.z; w/ satisfies the equalities

(i) S.�z; w/ D ˙S.z; w/ 2 CŒz˙1; w�,

(ii) Z D jIm.S.˙1; 1//j C jRe.S.˙1;�1//j.
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A bipartite structure on ��K lifts to a bipartite structure zV D zBt zW on z��T2.
As above, we then have a factorization

P.z;w/ D Q.z;w/Q.z�1; w�1/ 2 RŒz�1; w�1�; (2.2)

where Q.z; w/ is the bipartite characteristic polynomial of z� � T2, defined as the
determinant of corresponding bipartite Kasteleyn matrix zAı�.z; w/.

Remark 2.13. The polynomialQ is uniquely defined from � �K and the curves a,
a0 and b, up to a global sign depending on the ordering of the vertex set zV . Moreover,
deforming the curves a, a0 and b leads to the transformations Q.z; w/ 7! Q.z;�w/

and Q.z;w/ 7! z˙1Q.z;w/.

In this bipartite case, the proof of Proposition 2.10 extends to give the following
statement.

Proposition 2.14. The polynomial Q.z;w/ 2 RŒz˙1; w˙1� satisfies the equalities

(i) Q.z;w/ D Q.z;w�1/ 2 RŒz˙1; w˙1�,

(ii) Q.z;w/ D ˙S.z1=2; w/S.�z1=2; w/ 2 CŒz˙1=2� for w D ˙1.

By Remark 2.11 and Proposition 2.12 (i), one can choose the curves a, a0 so that

S.�z; w/ D S.z; w/ 2 CŒz˙1; w�: (2.3)

Moreover, by Remark 2.13 and Proposition 2.14 (ii), one can order the vertex set zV
so that the equality

Q.z;w/ D S.z1=2; w/S.�z1=2; w/ 2 CŒz˙1=2� (2.4)

holds for w D ˙1. As a consequence, we also have the equality

Q.z;w/ D jS.z1=2; w/j2

for w D ˙1. From now, we will assume these normalizations of Q and S .

2.5. The bipartite case: roots of S

This section contains the first technical results of this article. They play a crucial role
in our proof of Theorems 1.2 and 1.3.

For a bipartite toric graph z� � T2, there is a natural action of R2 on the set of
edge weights (the magnetic field coordinates of [37, Section 2.3.3]). In the case of
a bipartite graph � �K , there is an analogous natural action of R on edge weights,
defined as follows: for B 2 R and � D .�e/e2E 2 Œ0;1/E , set

.B � �/e D exp..e � b/B/�e;
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where e � b 2 ¹�1; 0; 1º denotes the intersection number in K of the edge e, oriented
from the white to the black vertex, with the oriented curve b (recall Figure 5). Writing
SB for the bipartite characteristic polynomial of the weighted graph .�; B � �/ �K ,
one easily checks the equality

SB.z; w/ D S.exp.B/z; w/ 2 CŒz˙1; w�:

Similarly, one obtains the equality

QB.z; w/ D Q.exp.2B/z; w/ 2 RŒz˙1; w˙1�:

We recall a couple of concepts from [37]. The Newton polygon of Q.z; w/ DP
.i;j /2Z2 aij z

iwj is defined as the convex hull of the set ¹.i;j /2Z2 j aij ¤ 0º �R2.
We shall say that � � K (and z� � T2) are non-degenerate if the Newton polygon
of the corresponding characteristic polynomial Q has a positive area. For a non-
degenerate bipartite toric graph, the associated spectral curve

C D ¹.z; w/ 2 .C�/2 j Q.z;w/ D 0º

is extremely well understood thanks to the work of Kenyon, Okounkov and Sheffield
[36, 37]. In a nutshell, it belongs to a special class of curves known as Harnack
curves [47], for which the map .C�/2 ! R2 defined by .z;w/ 7! .log jzj; log jwj/ is
at most two-to-one [48]. The image of C via this map is called the amoeba ofQ [23],
and is denoted by A.Q/.

We now use these tools to study the zeros of the characteristic polynomials Q
and S associated with a non-degenerate bipartite graph � �K .

Proposition 2.15. If ��K is a non-degenerate bipartite graph and .z;w/2 S1�S1

belongs to the spectral curve Q.z;w/ D 0, then we have z D �1.

Proof. First note that using the symmetry Q.z;w/ D Q.z;w�1/ of Proposition 2.14
together with the fact that Q has real coefficients, the elements .z; w/ 2 S1 � S1 of
the spectral curve come in groups of four: 0 D Q.z; w/ D Q.z; xw/ D Q.xz; w/ D

Q.xz; xw/. Since a Harnack curve intersects the unit torus in at most two points, we
must have z D ˙1 or w D ˙1.

Next, observe that the symmetry Q.z;w/ D Q.z;w�1/ immediately implies that
@wQ.z; w/ vanishes for all z 2 C� and w D ˙1. Also, if Q.1; w/ D 0 for some
fixed w D ˙1, then equations (2.3) and (2.4) imply that both S.1; w/ and S.�1; w/
vanish. Using (2.4) again, it follows that @zQ.1; w/ D 0. Therefore, if Q.1; w/ D 0
for some fixed w D ˙1, then we have @zQ.1;w/ D @wQ.1;w/ D 0; in other words,
this is a singularity of the spectral curve.

Having established these two facts, let us analyze the intersection of the unit torus
with the spectral curve QB.z; w/ D 0, as B varies in R; the aim is to check that
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any element .z; w/ in this intersection satisfies z D �1 (the case B D 0 giving the
proposition). This amounts to analysing the intersection of the amoeba ofQ along the
horizontal axis. If B lies outside the amoeba, then the intersection is empty and the
statement holds trivially. IfB lies on the boundary of the amoeba, then the intersection
consists in a single real point that is not a singularity (see, e.g., the last sentence of [48,
Theorem 1]). By the second fact above, it is of the form .�1;˙1/. Finally, asB travels
inside the amoeba from one boundary point B0 to another boundary point B1 > B0,
we have QB.zB ; wB/ D QB.zB ; wB/ D 0 for some .zB ; wB/ 2 S1 � S1 varying
continuously, and satisfying the following conditions:

• zB0
D zB1

D �1, and wB0
D ˙1, wB1

D ˙1;

• .zB ; wB/ ¤ .zB ; wB/ for B0 < B < B1 (except possibly at isolated real nodes);

• zB D ˙1 or wB D ˙1 for all B 2 ŒB0; B1� (by the first fact above).

By continuity of B 7! .zB ; wB/, we either have zB constant (equal to zB0
D �1,

and we are done), or wB constant (equal to some w0 D ˙1) for all B 2 ŒB0; B1�.
In the later case, we have 0 D QB.zB ; w0/ D Q.exp.2B/z; w0/, so the polynomial
map z 7!Q.z;w0/ vanishes on the arc ¹exp.2B/zB j B 2 ŒB0;B1�º. This implies that
this polynomial is zero, which is impossible for a Harnack curve.

We use a detailed study of the amoeba of the spectral curve to show the following
result.

Proposition 2.16. All the roots of S.z; 1/ and S.z;�1/ are purely imaginary, and
simple.

Proof. Let us fix w0 D ˙1 and z 2 C� such that S.z; w0/ D 0. For B 2 R such
that exp.B/D jzj, we have SB.exp.�B/z;w0/D S.z;w0/D 0with .exp.�B/z;w0/
in the unit torus. By equation (2.4), we have that QB.exp.�2B/z2; w0/ vanishes as
well, so by Proposition 2.15, we must have exp.�2B/z2 D �1. This implies that z is
purely imaginary.

It remains to show that these roots are simple. Since QB.z; w/ has at most (real)
nodes on the unit torus, equation (2.4) and the argument above imply that the roots
of S.z; w0/ have order at most 2, with possible double roots corresponding to nodes
of QB . More precisely, a node .�1; w0/ of QB either corresponds to two conju-
gate simple roots exp.B/i and � exp.B/i of S.z; w0/, or to a single double root
of S.z;w0/ at z0 D ˙ exp.B/i . Unfortunately, such double roots cannot be excluded
using equation (2.4) alone, so we will use a careful analysis of the amoeba A.Q/ ofQ
to rule them out. When perturbing the edge weights, such a node of QB would yield
an oval in the boundary of A.Q/, meeting the horizontal axis in two points close to B
corresponding to two simple roots of S.z;w0/ close to z0. We now show that this can-
not happen, as each oval of @A.Q/ meeting the horizontal axis in two points yields
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Figure 8. Left: the intersection of a (schematized) amoeba with the horizontal axis, here
with n D 3. Right: the corresponding interlaced roots of S.z; 1/ and S.z;�1/ represented by
black and white dots, respectively.

two (simple) roots of S.z; w0/ that are located on opposite sides of the imaginary
axis.

To show this claim, let us consider Q without any node (they can be deformed
into ovals), and write

B 00 < B1 < B
0
1 < B2 < B

0
2 < � � � < Bn�1 < B

0
n�1 < Bn

for the coordinates of the intersection points of the horizontal axis with @A.Q/, as
illustrated in Figure 8 (left). Each B` (resp. B 0

`
) corresponds to a simple root z`

(resp. z0
`
) of SB`

.z; w`/ (resp. SB`
.z; w0

`
/) for some w`; w0` D ˙1. Let us first study

these w`; w0` before turning to the claim above. Due to the particular configuration of
ovals in Harnack curves, each pair of points .B`; B 0`/ is linked by an oval of @A.Q/
for 1 � ` � n. Hence, by continuity of the (real) zeros of QB corresponding to
these ovals, we have w` D w0` for all 1 � ` � n. Moreover, when moving from B 0

`

to B`C1 in the interior of A.Q/, the corresponding roots of QB in the unit torus are
of the form .�1; wB/ ¤ .�1; wB/ with wB moving along the unit circle from w`
to w`C1. The amoeba map of a Harnack curve being at most two-to-one, we necessar-
ily havew0

`
¤w`C1 for all 0� `� n. Assuming without loss of generality thatw00D 1,

we now have w` D w0` D .�1/
` for all 0 < ` < n and wn D .�1/n, thus completing

the determination of these variables. (This is illustrated by black and white dots in
Figure 8.)

Let us turn to the roots z`; z0`, and to our claim: writing s` and s0
`

for the sign of iz`
and iz0

`
, respectively, we wish to show that s` and s0

`
never coincide for 1� `� n� 1.

To do so, let us consider the following 1-parameter deformation of the model. For
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t 2 R, let �.t/ denote the edge weights on � � K obtained via multiplication of �e
by t each time the edge e meets the curve a �K (recall Figure 5). Writing Q.t/ for
the corresponding characteristic polynomial, we clearly haveQ.1/.z;w/DQ.z;w/D

Q.�1/.z;�w/, while Q.0/ only depends on z. Hence, the amoebas of Q and Q.�1/

coincide, while the (degenerate) one of Q.0/ consists in n vertical lines. More pre-
cisely, when t decreases from 1 to 0, the topology of @A.Q.t// is unchanged, but the
ovals become wider, the points B 0

`
and B`C1 grow closer, eventually meeting at one

of these vertical lines for t D 0. As t decreases further from 0 to �1, a symmetri-
cal deformation is observed, ending up with the same amoeba A.Q.�1// D A.Q/,
but with the roles of w and �w exchanged. (Note that this is consistent with the
determination of w`; w0` above.) The key observation is that during this continuous
deformation, the roots z0

`
of S.z; .�1/`/ and z`C1 of S.z; .�1/`C1/ are exchanged

without additional collisions between any of the roots z00; z1; z
0
1; : : : ; z

0
n�1; zn. Since

the norm of these roots are ordered as the corresponding B` and B 0
`
, we are in one of

the following two cases:

(i) either s00 D s1 D s
0
1 D � � � D s

0
n D s0, and the roots are ordered as their norms;

(ii) or s00 D s1 ¤ s01 D � � � D sn�1 ¤ s0n�1 D sn, and the roots of S.z; 1/ and
S.z;�1/ alternate along the imaginary axis (see Figure 8, right).

The second case yields the claim, so we are left with ruling out the first one for n � 2.
By means of contradiction, let us consider a non-degenerate bipartite graph � � K
realizing case (i) with n � 2. Then, it necessarily contains two paths winding in the
horizontal direction (since n � 2), and one winding in the vertical direction (since it
is non-degenerate). Sending the weights of the edges not contained in these paths to 0
and shrinking all degree 2 vertices of these paths (see, e.g., [24]) leads to the bipartite
square lattice of Example 2.5, which is easily seen to display a root configuration as
in case (ii) above with n D 2. Therefore, this transformation produces a continuous
deformation of the roots of S.z; 1/ and S.z;�1/ from case (i) with n � 2 to case (ii)
with n D 2, which is impossible to realize while staying in one of the two allowed
families of configurations. This concludes the proof.

Note that the proof above yields the additional remarkable fact that the real Lau-
rent polynomials S.iz;1/ and S.iz;�1/ are interlaced, i.e., have only real roots which
alternate along the real line (see, e.g., [22]).

The final result of this section requires the following notations. Since S.�z; 1/ D
S.z; 1/, the leading coefficient of S.z; 1/ has argument ��

2
for some � 2 Z. Let us

denote by r the total number of roots of S.z; 1/ with modulus > 1, counted with
multiplicities, and set A WD �C r . We shall write A0 WD �0C r 0 for the corresponding
integers associated with the polynomial S.z;�1/.
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Lemma 2.17. (1) If Q.z;w/ has no zeros in the unit torus, then AC A0 is even.

(2) If Q.z; w/ has two distinct zeros in the unit torus, then A is odd and A0 is
even.

(3) If Q.z;w/ has a node in the unit torus, then A is odd and A0 is even.

Proof. The strategy of the proof is once again to fix � and study the intersection of
the unit torus with the spectral curve QB.z; w/ D 0 as B varies in R, i.e., to analyze
the amoeba A.Q/ of Q along the horizontal axis. More precisely, we shall start by
checking that the statement holds for B big enough, and then show that it remains
true as B decreases. The crucial idea is the following one: the three cases in the state-
ment of the lemma correspond to three possible locations of B 2 R, and passing from
one to another corresponds to crossing the boundary or a node of A.Q/, i.e., a real
root .z0;w0/ ofQB , where z0D�1 by Proposition 2.15. By equation (2.4) and Propo-
sition 2.16, this corresponds to one or two simple roots of SB.z; w0/ exiting the unit
disc along the imaginary axis, which in turn corresponds to a change in the integer A
if w0 D 1, and in the integer A0 if w0 D �1. Observe also that varying continuously
the weights � 2 .0;1/E amounts to continuously deforming the amoeba A.Q/ with-
out changing its topology, as the amoeba of Harnack curve is severely constrained by
the corresponding Newton polygon (see [47], and more detail below). In particular,
this will not change the order in which we meet the roots of SB.z; 1/ and SB.z;�1/
as B decreases; in other words, this will not change the order of the moduli of the
roots of S.z; 1/ and S.z;�1/.

Before implementing this idea in detail, let us start by studying the parity of the
integers �, �0. Since S.�z; 1/ D S.z; 1/, the leading coefficient of S.z; 1/ has argu-
ment ��

2
with � of the same parity as the top-degree d of S.z; 1/. Similarly, the

integer �0 has the same parity as the top-degree d 0 of S.z;�1/. By equation (2.4),
the square of the leading coefficient of S.z; 1/ is equal to the leading coefficient
of Q.z; 1/, which is the degree d coefficient, and similarly for S.z;�1/. To describe
these coefficients explicitly, let us fix a reference matching M0 on z� , assuming with-
out loss of generality that it is disjoint from za and zb. By [37, Proposition 3.1], we have

Q.z;w/ D
X

M2M . zG/

.�1/hxhyChy�.M/zhxwhy ;

where .hx; hy/ 2 Z2 denote the coordinates of ŒM �M0� 2H1.T2IZ/D Zza˚ Zzb.
(This formula is valid for a specific Kasteleyn orientation on z� � T2, but one can
check that our conventions for zK are coherent with this choice.) Let us denote by h
the maximal value of hx over all M 2M . zG/ and write Zh0 (resp. Zh1) for the con-
tribution to the partition function of z� of the matchings with hx D h and hy even
(resp. odd). By the equality displayed above, we have d � h, and the degree h coeffi-
cient of Q.z; 1/ is equal to Zh0 �Zh1 if h is even and to Zh0 CZh1 ¤ 0 if h is odd.
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Similarly, the top degree d 0 of Q.z;�1/ is at most h, and its degree h coefficient is
equal to Zh0 CZh1 ¤ 0 if h is even and to Zh0 �Zh1 if h is odd. Let us first assume
that h is even. In such a case, we have that d 0 D h is even, while d is equal to h (and
therefore even as well) unless the weights � satisfy the equality Zh0 D Zh1, i.e.,X

M2¹M .z�/ jhxDh; hy evenº

�.M/ D
X

M2¹M .z�/ jhxDh; hy oddº

�.M/: (2.5)

Therefore, we have that �� d and �0 � d 0 are both even if the weights � are generic,
in the sense that they do not satisfy equality (2.5) above. The case of h odd is similar,
leading to � � d � h always odd, and �0 � d 0 � h odd as well for generic weights.

We now investigate the geometric meaning of equation (2.5). Consider a path
in the space of generic weights ending in non-generic weights. By the discussion
above, this corresponds to the degree h coefficient of Q.z; .�1/h/ (or equivalently,
of S.z; .�1/h/) tending to zero, with all other coefficients of S.z; 1/ and S.z;�1/
bounded away from zero. This results in the modulus of the biggest root of S.z;.�1/h/
tending to infinity and all other roots of S.z; 1/ and S.z;�1/ having bounded modu-
lus. By the observation at the beginning of the proof, this implies that the biggest root
of S.z; 1/ and S.z;�1/ belongs to S.z; .�1/h/. In other words, as B decreases within
generic weights, the first time we hit the boundary of A.Q/ corresponds to a root
of S.z; .�1/h/. Now, recall that for Harnack curves, the Newton polygon�.Q/ ofQ
allows to describe the associated amoeba A.Q/ as follows: each interval between
two adjacent points in Z2 \ @�.Q/ produces one tentacle of A.Q/ with asymptotic
direction orthogonal to this interval. The horizontal axis is generically not contained
in one of these tentacles; the only way for this to happen is if two adjacent horizontal
tentacles from either sides of this axis merge to give a single tentacle, thus sending the
right-most intersection of @A.Q/with the horizontal axis to infinity. By the discussion
above, this corresponds to the weights � varying so that the modulus of the biggest
root of S.z; .�1/h/ tends to infinity, i.e., to the non-generic case defined by equa-
tion (2.5). In summary, the non-genericity condition defined by equation (2.5) corre-
sponds precisely to some ray ŒB0;1/ of the horizontal axis being contained in A.Q/.

We are finally ready to start the actual proof of the statement. Let us first consider
the case of B big enough on the horizontal axis, with generic weights. By the discus-
sion above, we are outside A.Q/, and therefore in case (1). Since B is big, we also
have r D r 0 D 0, as all the roots of SB.z; 1/ and SB.z;�1/ have modulus < 1. There-
fore, in the generic case for B big enough, we are in case (1) and have A � A0 � h,
so the statement holds. Let us now turn to the non-generic case for B big enough.
This time, we are inside a horizontal tentacle of A.Q/, and therefore in case (2). As
discussed above, such a case can be obtained as a limit of generic weights, with the
leading coefficient of SB.z; .�1/h/ tending to zero and its biggest root tending to
infinity: this corresponds to changing the parity of the corresponding integer A or A0,
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which results in A odd and A0 even, as claimed. In any case, we see that the lemma
holds for B big enough.

We now study the behavior of A and A0 as we decrease B along the horizontal
axis. As explained earlier, the only way for A or A0 to change is if (simple) roots
of SB.z; 1/ or SB.z;�1/ cross the values ˙i along the imaginary axis. This cor-
responds to QB.�1; 1/ or QB.�1;�1/ vanishing, i.e., to B crossing the boundary
or a real node of A.Q/. Therefore, we are left with the proof that the statement of
the lemma is coherent with such phase transitions. Starting with B big enough (in the
generic case), we haveA�A0� h. Let us decreaseB until we first cross the boundary
of A.Q/, thus transitioning from case (1) to case (2). As discussed above, this corre-
sponds to the biggest root of S.z; .�1/h/ exiting the unit disc, leading toA odd andA0

even. Continuing to decrease B , we might cross once again @A.Q/, thus exiting the
amoeba, but perhaps through an oval this time (thus entering a gaseous phase). This
results in a simple root of S.z;w0/ exiting the unit disc, for somew0D˙1, and there-
fore a change in the parity of AC A0. (We know from the proof of Proposition 2.16
that w0 D .�1/hC1, but this is not needed here.) It corresponds to transitioning from
case (2) back to case (1), and we indeed have A C A0 even once again. Note how-
ever that, due to the particular topology of oval arrangements in Harnack curves, the
next time we hit @A.Q/must be through the same oval; therefore, this corresponds to
another simple root of S.z;w0/ exiting the unit disc, for the samew0 D˙1 as before.
We thus return to A odd and A0 even, which is once again consistent with the claimed
statement. The last possible phase transition is when we cross a real node .�1; w0/
inside A.Q/, which by equation (2.4) and Proposition 2.16 corresponds to two simple
roots of S.z; w0/ exiting the unit disc, and to a transition from case (2) to case (3).
The parity of the integers A and A0 is obviously unchanged, concluding the proof.

3. Enlarging the fundamental domain

The aim of this section is to show how the dimer partition function of a periodic
weighted graph �mn � K of arbitrary size can be computed from the characteristic
polynomials of the original weighted graph �11 D � � K , see Theorem 3.4. Via
the Pfaffian formula (Proposition 2.6), this can be achieved if we understand how
the Kleinian characteristic polynomial Rmn of �mn can be expressed in terms of R
and P . The answer is given in Theorem 3.3, which is the main technical achievement
of this section.

It is organized as follows. In Section 3.1, we state a recent result of Kassel and the
author [14], probably folklore, which plays a crucial role in this discussion. In Sec-
tion 3.2, we state Theorem 3.3 and show how it implies Theorem 3.4. The proof of
Theorem 3.3 is contained in Sections 3.3 to 3.5.
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3.1. Covering spaces and twisted operators

One of the main technical tools used in this article is a result due to Adrien Kassel and
the author [14], but probably known to the experts. The aim of the present section is
to succinctly explain a special case of this result adapted to our context.

As in Section 2.1, let us fix a connected graph � together with edge weights �
and an orientation K. The embedding of � in the Klein bottle K endowed with the
curves a, a0 provides an additional structure: the map !WE! Z=2Z given by !.e/D
e � a C e � a0. (Technically, this is a 1-cocycle representing the first Stiefel–Whitney
class of K .) Finally, let us fix a base vertex v0 2 V and a finite-dimensional complex
linear representation �W�1.�; v0/! GL.W /.

It is not difficult to show that any such homomorphism � can be represented by
a connection, i.e., a family ˆ D .'e/e2E 2 GL.W /E indexed by the set E of oriented
edges of � , such that 'xe D '�1e if e, xe denote the same edge with opposite orientations.
This means that for each loop  in � based at v0, the composition of the corresponding
automorphisms 'e is equal to �./. Using this data and in the spirit of [35], one can
define an associated twisted Kasteleyn operator A� D A�.�; �; K; !/ acting on the
set W V of W -valued functions on V as follows: for f 2 W V and v 2 V , set

.A�f /.v/ D
X

eD.v;v0/

"Kvv0.e/ i
!.e/ �e 'e.f .v

0//;

where the notations are as in Section 2.2.

Remarks 3.1. (i) A fixed homomorphism � can be represented by various con-
nections. However, one can show that any two such connections are gauge
equivalent. This implies that the corresponding twisted Kasteleyn operators
are conjugated by an automorphism of W V , and justifies the abuse of nota-
tion.

(ii) If �1, �2 are two representations, then the operators A�1˚�2 and A�1 ˚ A�2

are clearly conjugated by an automorphism of W V .

As a natural class of examples, consider the homomorphisms �W �1.�; v0/ !
GL.W / given by the irreducible representations that factor through the inclusion in-
duced homomorphism �1.�; v0/! �1.K ; v0/ and the abelianization �1.K ; v0/!

H1.K IZ/ ' ZŒa�˚ Z=2ZŒb�. Being abelian and irreducible, such a representation
is 1-dimensional and fully determined by the image z 2 C� of Œa� and w 2 ¹˙1º
of Œb�. The resulting twisted Kasteleyn operator is nothing but A.z; w/, as defined in
Section 2.2.

The main technical novelty of our approach is that, in order to understand the
dimer model on (bigger and bigger) Klein bottles, one needs to consider not only
these operators, but the ones twisted by 2-dimensional representations as well.
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To see this, let us consider a covering map pW y� ! � with y� a finite connected
graph. The additional data �, K, ! on � lifts uniquely to y�, yK, y! on y�; therefore,
any representation �W�1.y�; yv0/! GL.W / allows us to define yA� WD A�.y�; y�; yK; y!/
as above. Note that p being a covering map, it induces an injection p�W�1.y�; yv0/ ,!
�1.�; v0/ on fundamental groups (see, e.g., [27, Chapter 1]). Hence, one can iden-
tify �1.y�; yv0/ with a subgroup of �1.�; v0/. Finally, recall that given any linear repre-
sentation �WH !GL.W / of a subgroupH of a groupG (for example, of �1.y�; yv0/ <
�1.�;v0/), there is an induced representation �#WG!GL.Z/, well-defined up to iso-
morphism (see [50, Section 3.3] and Section 3.4 below).

The following statement is a special case of the main theorem of [14].

Theorem 3.2. There is an isomorphism W
yV ! ZV that conjugates yA� and A�

#
.

To illustrate this result, consider the simpler case of a toric graph � � T2 and
the associated (real-valued) Kasteleyn matrix. Let y� D �mn denote the lift of � by
the m � n cover T2

mn ! T2 of the torus by itself. This covering being normal, the
trivial representation of �1.�mn/ is easily seen to induce the representation of �1.�/
given by the composition

�1.�/
i�
�! �1.T

2/
pr
�! �1.T

2/=�1.T
2
mn/ ' Gal.y�=�/

�reg
�! GL.Z/;

where i� denotes the inclusion induced homomorphism, pr the canonical projection,
and �reg the regular representation of the Galois group Gal.y�=�/ ' Z=mZ �Z=nZ

of this covering. For such a finite group, this regular representation is known to
split as the direct sum of all irreducible representations of Gal.y�=�/ (see [50, Sec-
tion 2.4]). In our case, this group being abelian, all the irreducible representations
are 1-dimensional so �reg splits as

�reg D
M
znD1

M
wmD1

�.z; w/;

with �.z; w/ mapping a fixed generator of Z=mZ (resp. Z=nZ) to w 2 C� (resp.
z 2 C�). Using the version of Theorem 3.2 adapted to this context together with Re-
mark 3.1 (ii) above, we obtain the following fact: the (untwisted) Kasteleyn operator
associated with �mn � T2 is conjugate to the direct sum of the Kasteleyn operators
associated with � � T2 twisted by �.z;w/, the product being over all z;w 2C� such
that zn D 1 and wm D 1. Taking the determinant, and writing Pmn for the character-
istic polynomial of �mn � T2, we get

Pmn.1; 1/ D
Y
znD1

Y
wmD1

P.z;w/;

which is nothing but a special case of equation (1.2).
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The section of [37] containing this latter statement is entitled “enlarging the fun-
damental domain”. We borrowed this title for the present section, whose aim is to
perform the same action, no longer on tori, but on Klein bottles.

3.2. Covering the Klein bottle by itself

As in the introduction, let us fix a weighted graph � � K , two positive integers m
and n with n odd, and denote by �mn � Kmn the lift of � � K by the m � n
cover Kmn ! K of the Klein bottle by itself (recall Figure 1). The edge weights
on � lift to edge weights on �mn, so one can consider the associated Kleinian and
toric characteristic polynomials Rmn.z;w/ and Pmn.z;w/, as explained in Section 2.

The main result of this section is the expression of Rmn in terms of R11 D R

and P11 D P , as follows.

Theorem 3.3. For any positive integers m, n with n odd, we have

Rmn.1; 1/ D

8<:
Q
znD1

�
R.z; 1/

Q
1�k�m�1; k even P.z; �

k/
�

if m is odd,Q
znD1

�
R.z; 1/R.z;�1/

Q
1�k�m�1; k even P.z; �

k/
�

if m is even,

and

Rmn.1;�1/ D

8<:
Q
znD1

�
R.z;�1/

Q
1�k�m�1; k odd P.z; �

k/
�

if m is odd,Q
znD1

Q
1�k�m�1; k odd P.z; �

k/ if m is even,

where � stands for exp.�i=m/.

We postpone the proof of this theorem to Sections 3.3 to 3.5.
WritingZmn for the dimer partition function of the weighted graph �mn, it allows

us to prove Theorem 1.1, that we now recall for the reader’s convenience. Note that
since Pmn can be computed in terms of P via equation (1.2), this theorem shows
that Zmn can be expressed using the polynomials P and R alone.

Theorem 3.4. For positive integers m, n with n odd, we have

Zmn D jsin.˛n=2/jPmn.1; 1/1=4 C jcos.˛0n=2/jPmn.1;�1/
1=4

if m is odd, and

Zmn D jsin..˛n � ˛0n/=2/jPmn.1; 1/
1=4
C Pmn.1;�1/

1=4

if m is even, where

˛n D Arg
� Y
znD1

R.z; 1/
�
; ˛0n D Arg

� Y
znD1

R.z;�1/
�
;

and Pmn.1;˙1/1=4 denotes the non-negative fourth root of Pmn.1;˙1/ � 0.
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Proof of Theorem 3.4. Applying Proposition 2.6 to �mn gives

Zmn D jIm.Rmn.1; 1/1=2/j C jRe.Rmn.1;�1/1=2/j:

In the case of m odd, Theorem 3.3 and Proposition 2.9 yield

Zmn D jsin.˛n=2/jjRmn.1; 1/j1=2 C jcos.˛0n=2/jjRmn.1;�1/j
1=2;

where ˛n and ˛0n are as in the statement above. The final formula follows from Propo-
sition 2.10 (iii) applied to �mn. The case of m even is similar.

In the case of a bipartite graph, Theorem 3.4 can be reformulated as follows.

Corollary 3.5. For positive integers m, n with n odd, we have

Zmn D jsin.ˇn/jjQmn.1; 1/j1=2 C jcos.ˇ0n/jjQmn.1;�1/j
1=2

if m is odd, and

Zmn D jsin.ˇn � ˇ0n/jjQmn.1; 1/j
1=2
C jQmn.1;�1/j

1=2

if m is even, where

ˇn D Arg
� Y
znD1

S.z; 1/
�

and ˇ0n D Arg
� Y
znD1

S.z;�1/
�
:

Proof. Equation (2.2) applied to �mn and z; w 2 S1 leads to the equality

Pmn.z; w/ D Qmn.z; w/Qmn.xz; xw/ D jQmn.z; w/j
2:

Furthermore, equation (2.1) applied to � and w D ˙1 yieldsY
znD1

R.z;w/ D
Y
znD1

S.z; w/
Y
znD1

S.z�1; w/ D
Y
znD1

S.z; w/2:

Corollary 3.5 is an immediate consequence of Theorem 3.4 together with the equali-
ties displayed above.

Example 3.6. Consider the bipartite square lattice illustrated in Figure 6 with weights
x1 D x2 DW x and y1 D y2 DW y. As computed in Examples 2.5 and 2.8, we have

S.z; w/ D x.z C z�1/C iy.1C w/;

Q.z;w/ D x2.z C z�1 C 2/C y2.w C w�1 C 2/:

Since S.z;�1/ is always real for z 2 S1, Corollary 3.5 now takes the simpler form

Zmn D jsin.ˇn/jjQmn.1; 1/j1=2 C jQmn.1;�1/j1=2:
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As a reality check, let us computeZ21 using this formula together with equation (1.2).
It yields

Z21 D
yp

x2 C y2
j4.x2 C y2/4x2j1=2 C j.4x2 C 2y2/.4x2 C 2y2/j1=2

D 4x2 C 4xy C 2y2;

which can easily be checked by hand. Note that on this example of a 4 � 1 square
lattice, [45, (5)] yields the incorrect result 4x2 C 2y2, an error that propagates to [30]
(see Example 4.9 below).

The rest of this section is devoted to the proof of Theorem 3.3. It is divided into
three parts. In Section 3.3, we show how the orientation K and cocycle ! on �mn
can be made periodic, so that Theorem 3.2 can be used. In Section 3.4, we analyze
the two induced representations of �1.K / and show that they split as direct sums
of 1- and 2-dimensional irreducible representations. Finally, Section 3.5 builds upon
the two previous ones to complete the proof of Theorem 3.3.

3.3. Making the orientation and the cocycle periodic

Let us start by reformulating the definition of Rmn.1;˙1/ using the language of
twisted operators introduced in Section 3.2, in order to apply Theorem 3.2.

Let � � K be a graph endowed with edge weights �, an orientation K sat-
isfying conditions (i) and (ii) from Section 2.1, and the 1-cocycle !WE ! Z=2Z

given by !.e/ D e � .a C a0/. Let � be the trivial representation of �1.�/, and �0

denote the 1-dimensional representation determined by the connection .'e/e given by
'e D .�1/

e�a. Then, the associated twisted Kasteleyn matrices A� D A�.�; �;K; !/
and A�

0

satisfy R.1; 1/ D det.A�/ and R.1;�1/ D det.A�
0

/.
If y� WD �mn is the graph considered above, then �, K and ! lift to edge weights

y� D �mn, an orientation yK, and a 1-cocycle y! on �mn � Kmn. Theorem 3.2 can be
applied to compute yA� D A�.y�; y�; yK; y!/ and yA�

0

. However, in order to ensure that
these matrices can be used to compute Rmn.1;˙1/, we must ensure that yK and y!
can be transformed to Kmn and !mn satisfying the necessary properties explained in
Section 2.1.

To see this, let us denote by amn; a0mn � Kmn the two parallel cycles gener-
ating H1.KmnIZ/ as described in Figure 5, and define !mnWE.�mn/ DW Emn !
Z=2Z by !mn.e/ D e � .amn C a0mn/. The two cycles a; a0 � K lift to 2m parallel
cycles ya; ya0 �Kmn such that y!.e/D e � .yaC ya0/. Obviously, the 1-cycles amn C a0mn
and ya C ya0 only coincide if m D 1. However, they are always homologous in
H1.KmnIZ=2Z/; indeed, their difference bounds a surface † consisting of bm�1

2
c

cylinders, plus one Möbius strip if m is even. The cases m D 2 and m D 3 are
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illustrated in Figure 9. (Note that n is irrelevant in this argument.) Therefore, the
cocycles !mn and y! are cohomologous: they can be obtained from each other by, for
each vertex v in †, flipping the value of all the edges adjacent to v. At the level of
Kasteleyn matrices, this amounts to multiplying by �i the rows and columns of yA�

and yA�
0

corresponding to the vertices in†. As† contains bm=2cnjV j vertices and jV j
is even, the determinant is left unchanged by this operation.

Figure 9. The cycles amn, a0mn in full lines, ya, ya0 in dashed lines, in the cases m D 2 (left)
and m D 3 (right). The surface † bounded by their difference is shaded.

However, this operation also implies that the lifted orientation yK is inverted along
each edge both of whose endpoints are contained in †, thus creating a new orienta-
tion Kmn on �mn � Kmn. It now remains to check that Kmn satisfies conditions (i)
and (ii) of Section 2.1, whose notations and terminology we assume. Once this is
verified, we will able to use A�mn WD A�.�mn; �mn; Kmn; !mn/ and A�

0

mn to com-
pute Rmn.1;˙1/ and apply Theorem 3.2 to obtain the equalities

Rmn.1; 1/ D det.A�mn/ D det. yA�/ D det.A�
#
/; (3.1)

Rmn.1;�1/ D det.A�
0

mn/ D det. yA�
0

/ D det.A.�
0/#/: (3.2)

To check the first condition, consider the commutative diagram of covering maps

.Kmn; �mn/

��

.T2
mn;
z�mn/oo

��

.K ; �/ .T2; z�/:oo

Note that the orientation eKmn on e�mn D z�mn � T2
mn is equal to the lift ofK from the

bottom-left to the upper-right of the above diagram, followed by the inversion of the
edges both of whose endpoints belong to the lift of the upper half of zD via T2

mn!T2.
Hence, eKmn is nothing but the lift of the orientation zK on z� � T2 via T2

mn ! T2.
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The latter orientation being Kasteleyn by definition of K, so is the former, and the
first condition is satisfied.

To check the second condition, let us denote by nK.ı/ the (parity of the) number of
edges of an oriented curve ı whereK disagrees with the orientation of ı. By assump-
tion, we have that nK.C /C nK.C 0/ is even, where C , C 0 are oriented curves in �
associated with a, a0 as explained in Section 2.1 and illustrated in Figures 5 and 10.
We need to check that nKmn.Cmn/C n

Kmn.C 0mn/ is even, with Kmn as above, and
Cmn, C 0mn oriented curves in �mn associated with amn, a0mn, respectively.

Cmn

C 0mn
C 0mn

Cmn


 0

C

C 0

Figure 10. The curves Cmn and C 0mn for n D 3 and m D 2 in the left part and m D 3 in the
middle part. These curves can be constructed from copies of the curves C , C 0 and  ,  0 given
to the right.

By construction, the oriented curve Cmn � �mn � Kmn can be obtained by a
lift of C � � together with .n � 1/=2 lifts of the oriented closed curve  � � �K
illustrated in the right part of Figure 10. (This curve can be defined as the oriented
boundary of the Möbius band obtained by all the 2-cells of K meeting the curve a.)
By the assumption of Remark 2.3, the curve Cmn is located in the portion of Kmn

where the orientation Kmn coincides with the lift yK of K (unshaded in Figure 10).
Hence, we have

nKmn.Cmn/ D n
yK.Cmn/ D n

K.C /C
n � 1

2
nK./:

If m is even (Figure 10, left), then C 0mn can be obtained by a lift of �C together
with .n � 1/=2 lifts of � . But these curves are located in the portion of Kmn

where Kmn and yK disagree (shaded in Figure 10). Hence, we have

nKmn.C 0mn/ D n
� yK.C 0mn/ D n

�K.�C/C
n � 1

2
n�K.�/

D nK.C /C
n � 1

2
nK./:
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Ifm is odd (Figure 10, middle), thenC 0mn can be obtained by a lift ofC 0 and .n� 1/=2
lifts of the oriented curve  0�� �K illustrated in right part of Figure 10. SinceKmn
coincides with yK along C 0mn, we obtain

nKmn.C 0mn/ D n
yK.C 0mn/ D n

K.C 0/C
n � 1

2
nK. 0/:

By the first two equations displayed above, we see that nKmn.Cmn/C n
Kmn.C 0mn/ is

always even for m even. For m odd, the first and third equations above together with
the fact that nK.C /C nK.C 0/ is even imply that we are left with the proof that nK./
and nK. 0/ have the same parity.

This can be checked as follows. The curves ;  0 � � � K lift to closed curves
z; z 0 � z� in the lower half-part of zD , bounding a cylinder C � T2 containing the
same number of vertices as � . Since K coincides with zK there, we have

nK./C nK. 0/ D n
zK.z/C n

zK.z 0/ D n
zK.@C /:

The fact that n zK.@C / is even follows from the standard argument of Kasteleyn since
zK is a Kasteleyn orientation, the cylinder C contains an even number of vertices, and

has even Euler characteristic (see, e.g., [33]).

Remark 3.7. When the graph is “too small”, it might happen that the curvesC andC 0

cannot be chosen to be disjoint from a0 and a, respectively (recall Remark 2.3). Form
even, a mild extension of the argument above shows that nKmn.Cmn/C n

Kmn.C 0mn/

is nevertheless always even. For m odd, this might no longer hold: the square lattice
of Figure 5 is an example of such a phenomenon. We shall deal with the necessary
modifications in due time (see Remarks 3.12 and 4.4 (iii) below).

3.4. Identifying and factorising the induced representations

We now proceed to the computation of the representations of �1.K / induced by
the 1-dimensional representations of �1.Kmn/ arising in equations (3.1) and (3.2).

To do so, recall (following [50, Section 3.3]) that given a representation �WH !
GL.W / of a subgroupH <G, the induced representation �#WG!GL.Z/ is uniquely
determined up to isomorphism by the following properties. IfR�G denotes a system
of representatives of G=H (i.e., each g 2 G can be written uniquely as g D rh 2 G
with r 2 R and h 2 H ), then Z is given by the direct sum

Z D
M
r2R

�#
r.W /;

and for any g 2G andw 2W , we have �#
g.�

#
r.w//D �

#
r 0.�h.w//, where gr D r 0h2G

with r 0 2 R and h 2 H .
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In our case, the covering map pWKmn ! K determines the inclusion of funda-
mental groups

�1.Kmn/ D ha
n; bm j anbma�nbmi

p�
�! ha; b j aba�1bi D �1.K /:

Furthermore, a natural system of representatives of the quotient �1.K /=�1.Kmn/ is
given by R D ¹biaj j 0 � i < m; 0 � j < nº. Hence, we need for g D a and g D b
to express g � biaj 2 �1.K / in the form r � h with r 2 R and h 2 �1.Kmn/. Using
the relation aba�1b D 1 (or equivalently, the relation a�1b˙1a D b�1), we find

b � .biaj / D

8̂̂<̂
:̂
biC1aj � 1 if i < m � 1,

bmaj D aj .a�j bmaj / D aj .a�j baj /m

D aj � bm.�1/
j

if i D m � 1,

and for i > 0,

a � .biaj / D b�iajC1 D bm�iajC1.a�j�1b�majC1/

D

´
bm�iajC1 � bm.�1/

j
if j < n � 1,

bm�i � anbm.�1/
j

if j D n � 1,

while for i D 0,

a � .b0aj / D

´
ajC1 � 1 if j < n � 1,

1 � an if j D n � 1.

For � D 1 the trivial representation of �1.Kmn/ and �0 given by

�0an D 1 and �0bm D �1;

we hence obtain the following result.

Lemma 3.8. Let Z be the vector space with basis ¹e.i; j / j 0 � i < m; 0 � j < nº.
Then, the induced representations �#; .�0/#W�1.K /D ha; b j aba�1bi ! GL.Z/ are
determined by

�#
a.e.i; j // D

8̂̂̂̂
<̂
ˆ̂̂:
e.m � i; j C 1/ if i > 0; j < n � 1,

e.m � i; 0/ if i > 0; j D n � 1,

e.0; j C 1/ if i D 0; j < n � 1,

e.0; 0/ if i D 0; j D n � 1,

�#
b.e.i; j // D

´
e.i C 1; j / if i < m � 1,

e.0; j / if i D m � 1,
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and

.�0/#a.e.i; j // D

8̂̂̂̂
<̂
ˆ̂̂:
�e.m � i; j C 1/ if i > 0; j < n � 1,

�e.m � i; 0/ if i > 0; j D n � 1,

e.0; j C 1/ if i D 0; j < n � 1,

e.0; 0/ if i D 0; j D n � 1,

.�0/#b.e.i; j // D

´
e.i C 1; j / if i < m � 1,

�e.0; j / if i D m � 1.

Arranging the basis vectors ¹e.i; j / j 0 � i < m; 0 � j < nº as the vertices of
an .m� n/-grid with periodic-antiperiodic boundary conditions, we can understand �#

as the representation permuting these vertices as illustrated in Figure 11. Similarly, we
can understand .�0/# as a signed permutation representation, with the signs given in
Figure 11.

The next step is to determine the factorization of the mn-dimensional repre-
sentations �# and .�0/# into irreducible representations. To do so, first observe that
Lemma 3.8 implies the equalities �#

a2n D �
#
bm D idZ (this is clear from Figure 11). As

a consequence, the representation �# factors through the natural projection of �1.K /

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - -

- - -

e.0; 0/

e.1; 0/

e.2; 0/

e.3; 0/

e.0; 0/

e.2; 0/

e.1; 0/

e.0; 0/

e.3; 0/

e.0; 0/
e.0; 1/ e.0; 2/ e.0; 3/ e.0; 4/

e.0; 1/ e.0; 2/ e.0; 3/ e.0; 4/

e.3; 1/ e.1; 2/ e.3; 3/ e.1; 4/

e.2; 1/ e.2; 2/ e.2; 3/ e.2; 4/

e.1; 1/ e.3; 2/ e.1; 3/ e.3; 4/

Figure 11. The induced representation �# as a permutation representation, in the case m D 4,
n D 5. The horizontal arrows correspond to the action of a, the vertical ones to the action of b.
The circled minus signs - indicate how .�0/# differs from �#.
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onto the finite group given by the semi-direct product of two cyclic groups of orderm
and 2n:

�1.K / D ha; b j aba�1bi� ha; b j a2n; bm; aba�1bi D Cm Ì C2n:

Similarly, one checks that .�0/#
a2n D .�0/#

b2m D idZ , so .�0/# factors through the
natural projection of �1.K / onto C2m Ì C2n. By abuse of notation, we shall sim-
ply denote by �# (resp. .�0/#) the corresponding representation of Cm Ì C2n (resp.
C2m Ì C2n), and we now need to understand the irreducible representations of the
finite group

ha; b j a2n; bM ; aba�1bi D CM Ì C2n:

Writing �M D exp.2i�=M/ and �2n D exp.i�=n/, the following assignments clearly
define such representations:

• For 1 � ` � 2n, the homomorphism �`W CM Ì C2n ! C� given by a 7! �`2n
and b 7! 1.

• If M is even, for 1 � ` � 2n, the homomorphism �0`WCM Ì C2n ! C� given
by a 7! �`2n and b 7! �1.

• For 1 � k <M=2 and 1 � ` � n, the homomorphism �k;`WCM ÌC2n! GL2.C/
given by

a 7!

 
0 �`2n
�`2n 0

!
and b 7!

 
�kM 0

0 x�kM

!
:

To avoid very cumbersome notations, we do not include the index M in �k;`.
However, the reader should keep in mind that the expression �k;` will refer to the
above representation, sometimes withM Dm (when dealing with �#), and sometimes
with M D 2m (when dealing with .�0/#).

Lemma 3.9. The representations ¹�`; �0`º` and ¹�k;`ºk;` above give the full list of
irreducible representations of CM Ì C2n up to isomorphism.

Proof. The abelianization of CM Ì C2n is given by ha j a2ni if M is odd and by
ha j a2ni � hb j b2i if M is even. This immediately implies that the full list of 1-
dimensional representations of CM Ì C2n is given by ¹�`; �0`º` as above.

To analyze the 2-dimensional representations, denote by �k;`W CM Ì C2n ! C

the character of �k;` (see [50, Chapter 2]). By definition, we get for 0 � i � M � 1
and 0 � j � 2n � 1

�k;`.b
iaj / D

´
�
j̀
2n.�

ki
M C

x�kiM / if j is even,

0 if j is odd.
(3.3)
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For any 1 � k; k0 < M=2 and 1 � `; `0 � n, this leads to

.�k;`j�k0;`0/ WD
1

2nM

M�1X
iD0

2n�1X
jD0

�k;`.b
iaj /�k0;`0.biaj /

D
1

n

n�1X
jD0

�.`�`
0/j

n

1

2M

M�1X
iD0

.�
.kCk0/i
M C x�

.kCk0/i
M C �

.k�k0/i
M C x�

.k�k0/i
M /

D

´
1 if k D k0 and ` D `0,

0 else.

In other words, the characters �k;` are orthogonal with respect to the usual scalar
product. By [50, Section 2.3], this implies that the representations ¹�k;`ºk;` are irre-
ducible and pairwise non-isomorphic.

Finally, note that the sum of the square of the degrees of the representations listed
above gives, for M odd,

2n � 12 C n
jM � 1

2

k
� 22 D 2nC 2n.M � 1/ D 2nM D jCM Ì C2nj

and for M even,

4n � 12 C n
jM � 1

2

k
� 22 D 4nC 4n

�M
2
� 1

�
D 2nM D jCM Ì C2nj:

By [50, Corollary 2], this shows that the above list is complete.

We are now ready to compute the decomposition of the induced representations
into irreducible ones. This is the content of the next lemma.

Lemma 3.10. The decomposition of the representation �# of Cm Ì C2n into irre-
ducible representations is given by

�#
D

nM
`D1

�
�2` ˚

M
1�k<m

2

�k;`
�

if m is odd, and by

�#
D

nM
`D1

�
�2` ˚ �02` ˚

M
1�k<m

2

�k;`
�

if m is even. The decomposition of the representation .�0/# of C2m Ì C2n into irre-
ducible representations is given by

.�0/# D

nM
`D1

�
�02` ˚

M
1�k�m�1

k odd

�k;`
�
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if m is odd, and by

.�0/# D

nM
`D1

M
1�k�m�1

k odd

�k;`

if m is even.

Proof. The idea is to use once again the theory of characters. More precisely, we
shall determine the character � of �# and compute its scalar product with the charac-
ters �`; �0` and �k;` of the representations �`; �0` and �k;`, respectively. This scalar
product is nothing but the number of times that the corresponding irreducible repre-
sentation appears in the decomposition of �# (see [50, Chapter 2]).

Understanding �# as a permutation representation (recall the square grid of Fig-
ure 11), one sees that �.biaj / WD Tr.�#

biaj / is simply given by the number of vertices
of the grid that are fixed by the action of biaj . For 0 � i < m and 0 � j < 2n, this
leads to

�.biaj / D

8̂̂̂̂
<̂
ˆ̂̂:
mn for i D j D 0,

n for 0 � i < m and j D n, if m is odd,

2n for 0 � i < m even and j D n, if m is even,

0 else.

Hence, for any character  of Cm Ì C2n, we have

.�j / D
1

2mn

�
mn .b0a0/C n

m�1X
iD0

 .bian/

�
D
1

2
 .b0a0/C

1

2m

m�1X
iD0

 .bian/

if m is odd, and

.�j / D
1

2
 .b0a0/C

1

m

X
0�i�m�1

i even

 .bian/

if m is even. Applying this to  D �` which satisfies �`.b0a0/ D 1 and �`.bian/ D
.�1/`, we obtain

.�j�`/ D

´
1 if ` is even,

0 if ` is odd.

If m is even, then the exact same computation holds for �0
`

as well. Finally, equa-
tion (3.3) applied toM Dm gives �k;`.b0a0/D 2 and �k;`.bian/D 0 since n is odd,
so .�j�k;`/ D 1 for all 1 � ` � n and 1 � k < m=2. This concludes the proof of the
first assertion. (As a reality check, note that the degree of the right-hand side is equal
to n.1C 2m�1

2
/ D nm ifm is odd and to n.2C 2.m

2
� 1// D nm ifm is even, which

is indeed the degree of �#.)
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Let us now turn to the representation .�0/# of C2m Ì C2n. As described in Lem-
ma 3.8, this is no longer a simple permutation representation, but a signed one. There-
fore, the associated character �0 evaluated at biaj is not simply given by the number
of vertices fixed by the action of biaj : it is equal to the signed sum of these fixed
vertices, with the signs given by Lemma 3.8 (see also Figure 11). For 0 � i < 2m

and 0 � j < 2n, we obtain

�0.biaj / D

8̂̂̂̂
<̂
ˆ̂̂:
mn for i D j D 0,

�mn for i D m and j D 0,

.�1/in for 0 � i < 2m and j D n, if m is odd,

0 else.

Hence, for any character  of C2m Ì C2n, we have

.�0j / D

´
1
4
. .b0a0/ �  .bma0//C 1

4m

P2m�1
iD0 .�1/i .bian/ if m is odd,

1
4
. .b0a0/ �  .bma0// if m is even.

Applying this to  D �` which satisfies �`.b0a0/ D �.bma0/ D 1 and �`.bian/ D
.�1/`, we obtain .�0j�`/ D 0. On the other hand, the character �0

`
satisfies

�0`.b
0a0/ D 1; �0.bma0/ D .�1/m and �`.b

ian/ D .�1/iC`;

so we get

.�0j�0`/ D

´
1 if m is odd and ` is even,

0 else.

Finally, equation (3.3) applied to M D 2m gives the values

�k;`.b
0a0/ D 2; �k;`.b

ma0/ D 2.�1/k and �k;`.b
ian/ D 0

for all 1 � ` � n and 1 � k < m. This leads to

.�0j�k;`/ D

´
1 if k is odd,

0 if k is even,

and concludes the proof of the lemma. (Once again, one easily checks that the degree
of the right-hand side is equal to nm, which is the degree of .�0/#.)

3.5. Proof of Theorem 3.3

We start with the first part of Theorem 3.3. By equation (3.1), Lemma 3.10 and
Remark 3.1 (ii), we have

Rmn.1; 1/ D

´Qn
`D1.det.A�

2`
/
Q
1�k<m=2 det.A�

k;`
// if m is odd,Qn

`D1.det.A�
2`
/ det.A�

02`
/
Q
1�k<m=2 det.A�

k;`
// if m is even,
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where �2`, �02` and �k;` are the representations of �1.K / D ha; b j aba�1bi deter-
mined by

�2`a D �
02`
a D �

`
n; �

2`
b D 1; �

02`
b D �1; �

k;`
a D

 
0 �`2n
�`2n 0

!
; �

k;`
b
D

 
�km 0

0 x�km

!
:

It is easy to check that any representation �W �1.K /! GL.W / can be represented
by the following connection ˆ D .'e/e2E on the oriented edges of �:

'e D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�ab if e crosses a vertical side of the fundamental domain D

from left to right,

��1
ab

if e crosses a vertical side of D from right to left,

�b if e crosses a horizontal side of D from bottom to top,

��1
b

if e crosses a horizontal side of D from top to bottom,

idW else.

(Observe that the loop based at the point of K , corresponding to the corners of the
square and following the curve a0, is homotopic to ab, hence the first equality above.)
As mentioned in Remark 3.1 (i), there are other possible choices of connections for �,
but the determinants of the resulting twisted operators will coincide. Using this choice
of connection and the definition of R, we obtain the equalities

det.A�
2`

/ D R.�`n; 1/ and det.A�
02`

/ D R.��`n;�1/:

The first part of Theorem 3.3 now follows from one final lemma.

Lemma 3.11. For any 1� `� n and 1� k < m=2, we have det.A�
k;`
/D P.�`n; �

k
m/.

Proof. This proof is analogous to the demonstration of the second point of Proposi-
tion 2.10, whose notation we assume. For any z; w 2 C�, observe that P.z2; w/ D
det zA.z2;w/ is left unchanged when replacing z2.e�zb/ by z.e�zb�e�zb

0/, where zb; zb0 � T2

denote the two lifts of b �K illustrated in Figure 5. Also, multiplying by i the rows
and columns of zA.z2; w/ corresponding to a vertex in the upper half of zD amounts to
multiplying its determinant by .�1/jV j D 1, so the resulting matrix zA0.z2; w/ still
has determinant equal to P.z2; w/. However, numbering the vertices of z� in the
right way, we see that zA0.z2; w/ is nothing but the twisted Kasteleyn matrix A�.z;w/,
with �.z; w/ the representation of �1.K / given by ab 7!

�
0 z
z 0

�
, b 7!

�
w 0
0 w�1

�
. For

any fixed z; w 2 C�, this representation is easily seen to be conjugate to �.z; w/0

given by

a 7!

 
0 z

z 0

!
; b 7!

 
w 0

0 w�1

!
:



D. Cimasoni 548

Applying the resulting equality P.z2; w/ D det.A�.z;w/
0

/ to .z; w/ D .�`2n; �
k
m/ con-

cludes the proof.

The proof of the second part of Theorem 3.3 is similar: simply use equation (3.2)
instead of equation (3.1), the second part of Lemma 3.10 instead of the first one,
and replace �m by �2m in the definition of �k;` (which is now defined on CM Ì C2n
with M D 2m and no longer m DM ). The statement corresponding to Lemma 3.11
now reads det.A�

k;`
/ D P.�`n; �

k
2m/, and the desired expression for Rmn.1;�1/ fol-

lows readily.
This concludes the proof of Theorem 3.3.

Remark 3.12. As mentioned in Remark 2.3, we made the additional assumption
that the curve C and C 0 can be chosen disjoint from a0 and a, respectively, in order
for Theorems 3.3 and 3.4 to hold as stated. When the graph is “too small”, such as
the 1 � 2 square lattice of Figure 7, this assumption is not satisfied, and these state-
ments need some adjustments.

For m even, the orientation Kmn always satisfied Condition (ii) of Section 2.1
(recall Remark 3.7), so Theorems 3.3 and 3.4 hold unchanged. For m odd, it can hap-
pen that Kmn does not satisfy Condition (ii). In such a case, the roles of Rmn.1; 1/
and Rmn.1;�1/ are exchanged in the statement of Theorem 3.3. As a direct conse-
quence, Theorem 3.4 for m odd now reads

Zmn D jsin.˛0n=2/jPmn.1; 1/
1=4
C jcos.˛n=2/jPmn.1;�1/1=4: (3.4)

We shall use this amended formula in Remark 4.4 (iii) and Example 4.5 below.

4. On the asymptotics of the dimer and Ising models on Klein bottles

Our main result so far (Theorem 3.4) gives an exact expression for the dimer partition
function Zmn for all m, n in terms of a finite set of data, namely the characteristic
polynomialsR andP . This expression turns out to be well suited for the determination
of the asymptotics of Zmn, which is the subject of this section.

It is organized as follows. In Section 4.1, we recall [38, Theorem 1] as well as the
numerous notations required for this statement: this deals with the contribution of P
to Zmn. Section 4.2 contains some technical statements on the asymptotics of the
product of evaluations of a polynomial at roots of unity, dealing with the contribution
of R to Zmn. In Section 4.3, we give the general form of the asymptotics of Zmn for
arbitrary weighted graphs in the Klein bottle, assuming a conjecture of [38] on the
zeros of the characteristic polynomial P in the non-bipartite case. In Section 4.4, we
give the explicit form of this asymptotics for bipartite graphs. Section 4.5 deals with
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some consequences of these results for the dimer model. Finally, in Section 4.6, we
compute the asymptotic expansion of the Ising partition function.

4.1. The work of Kenyon, Sun and Wilson

The aim of this section is to recall a special case of [38, Theorem 1], namely an
asymptotic expansion of

Pmn.�; �/ D
Y
znD�

Y
wmD�

P.z;w/;

where P is an analytic non-negative function defined on the unit torus S1 � S1. We
then explain the simpler form of this expansion when P.z;w/ is a characteristic poly-
nomial of the form studied in our work.

It will be assumed that P does not vanish except at positive nodes, i.e., ele-
ments .e�ir0 ; e�is0/ of the unit torus such that

P.e�i.r0Cr/; e�i.s0Cs// D �2.Azr
2
C 2Brs C Aws

2/CO.k.r; s/k3/

with Az; Aw > 0 and D WD
p
AzAw � B2 > 0. To such a node, let us associate the

parameter

� D
�B C iD

Aw
(4.1)

in the complex upper-half plane. If ¹.zj ; wj / j 1 � j � `º denote the zeros of P
and ¹�j j 1 � j � `º the associated parameters multiplied by m

n
, then for all .�; �/ 2

S1 � S1 that are not zeros of P , Kenyon, Sun and Wilson showed that

logPmn.�; �/ D 2mn f0 C
X̀
jD1

2 log„
� �
znj
;
�

wmj

ˇ̌̌
�j

�
C o.1/ (4.2)

for m and n tending to infinity with m
n

bounded below and above, where

f0 D
1

2

“
S1�S1

logP.z;w/
dz

2�iz

dw

2�iw
(4.3)

and „ is the explicit function defined by

„.� exp.2�i�/;� exp.2�i /j�/ D
ˇ̌̌#.�� �  j�/ exp.�i��2/

�.�/

ˇ̌̌
:

Here,
#.�j�/ D

X
j2Z

exp.�i.j 2� C 2j�//
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is the Jacobi theta function and

�.�/ D exp.�i �
12
/
Q
j�1.1 � exp.2�ij�//

is the Dedekind eta function.
We refer to [38] for a more general form of this result, its proof, and for properties

of these special functions. See also [38, Section 3.3] for an interpretation of � as the
shape parameter of the torus in its natural conformal embedding. Let us recall that
there are three other Jacobi theta functions related to # D #00 by

#01.�j�/ D #
�
� C

1

2

ˇ̌̌
�
�
;

#10.�j�/ D exp
�
�i
�
� C

�

4

��
#
�
� C

�

2

ˇ̌̌
�
�
;

#11.�j�/ D i exp
�
�i
�
� C

�

4

��
#
�
� C

�

2
C
1

2

ˇ̌̌
�
�
:

For later use, we also recall the equalities

2�.�/3 D #00.�/#10.�/#01.�/; (4.4)

where #rs.�/ stands for #rs.0j�/, and

#00.�/#01.�/

�.�/2
D
#01.2�/

�.2�/
; (4.5)

see, e.g., [38, Lemma 2.5].
We will apply equation (4.2) to the characteristic polynomial P , which by Propo-

sition 2.10 satisfies the equality P.z; w�1/ D P.z; w/. Furthermore, we know from
Proposition 2.15 that if � is bipartite, then any zero .zj ; wj / of P on the unit torus
satisfy zj D �1. We conjecture that this still holds in the non-bipartite case:

Conjecture. For any graph in the Klein bottle, all the zeros of the characteristic
polynomial P are positive nodes of the form .�1;w0/.

This fact is known to hold for Fisher graphs, see Lemma 4.13 below. Note also
that this is coherent with the conjecture of [38, Section 1.2], which states that for
an arbitrary non-bipartite toric graph, the associated characteristic polynomial either
never vanishes on the unit torus, or admits zeros that are positive real nodes.

These two properties of P easily imply that at any zero of P , the associated
parameter � from equation (4.1) is purely imaginary. Note that this can also be moti-
vated geometrically since any torus made up of two copies of a Klein bottle is rect-
angular, as illustrated in Figure 12. (Thanks are due to Andrea Sportiello for this
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D

Figure 12. A (slanted) Klein bottle together with its torus double cover, which by a cut-and-
paste argument is seen to be rectangular. (The triangular lattice is only drawn for concreteness.)

observation.) More precisely, the parameter �j associated with the zero .�1;wj / of P
is simply given by

�j D i
m

n

ˇ̌̌ @2zP.�1;wj /
@2wP.�1;wj /

ˇ̌̌1=2
: (4.6)

In the bipartite case, it takes the yet simpler form

�j D i
m

n

ˇ̌̌ @zQ.�1;wj /
@wQ.�1;wj /

ˇ̌̌
: (4.7)

Note that we will only need to apply equation (4.2) for .�; �/ D .1;˙1/. Since
zj D �1 and n is odd, we will only make use of evaluations at .�1; �

wm
j

/ of the func-

tion „, which are of the form

„.�1;� exp.2�i /j�/ D
ˇ̌̌#.� j�/

�.�/

ˇ̌̌
D
#. j�/

�.�/
> 0; (4.8)

since �.�/ and #. j�/ are strictly positive for  real and � purely imaginary.

4.2. Product of evaluations of a polynomial at roots of unity

For any weighted graph in T2, we saw in Proposition 2.9 that the associated charac-
teristic polynomialP is non-negative on the unit torus. Furthermore, it is proven in the
bipartite case [37] and conjectured in the general case [38] that all the zeros of P in
the unit torus are positive nodes. Therefore, in view of Theorem 3.4 and equation (4.2)
above, we are left with the analysis of the asymptotics of

Arg
� Y
znD1

R.z; 1/
�

and Arg
� Y
znD1

R.z;�1/
�

for n odd tending to infinity. This is the subject of this section.
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Let us assume that a given polynomial R.z/ 2 CŒz˙1� satisfies R.iz/ 2 RŒz˙1�.
Then, the argument of its leading coefficient is of the form ��

2
for some � 2 Z=4Z.

Furthermore, its roots are either purely imaginary, or paired up as ¹iz; ixzº. Let us
denote by p the number of such pairs with modulus > 1 and by rC (resp. r�) the
number of roots in the positive (resp. negative) imaginary axis with modulus > 1,
counted with multiplicity. Finally, let us assume that the only roots of R on the unit
circle are i and �i , and write mC and m� for the respective multiplicities.

Lemma 4.1. With the notations and assumptions above, we have

Arg
� Y
znD1

R.z/
�
D
�
.�C 2p C r� � rC/nC .�1/

n�1
2
m��mC

2

�
�
2
C o.1/ 2 Z=2�Z

as n odd tends to infinity.

Proof. If ¹�kºk denotes the set of roots of R.z/ and mk the multiplicity of �k , then
we have R.z/ D c zd i�

Q
k.z � �k/

mk for some positive real number c and d 2 Z.
Therefore, the equality

Q
znD1.z � �/ D 1 � �

n leads toY
znD1

R.z/ D cn
� Y
znD1

z
�d
i�n

Y
k

� Y
znD1

.z � �k/
�mk

D cn i�n
Y
k

.1 � �nk/
mk :

It follows that

Arg
� Y
znD1

R.z/
�
D �n

�

2
C

X
k

mk Arg.1 � �nk/ 2 Z=2�Z;

and we are left with the analysis of Arg.1 � �n/ as n tends to infinity for various
� 2 C.

If a root � has modulus j�j < 1, then Arg.1 � �n/ D o.1/ does not contribute in
the limit. On the other hand, if � D rei' with r > 1, then

ei Arg.1��n/
D

1 � �n

j1 � �nj
D

1 � rnein'

j1 � rnein' j
D

r�n � ein'

jr�n � ein' j
D �ei.n'Co.1//;

so Arg.1��n/D .Arg.�/C �/nC o.1/ since n is odd. Therefore, each pair ¹iz; ixzº
with jzj>1 contributes Arg.iz/nCArg.ixz/nD �n, each root�2 iR>0 with j�j>1
contributes ��

2
n and each root � 2 iR<0 with j�j > 1 contributes �

2
n. We end up

with the total contribution of the roots of modulus > 1 equal to .2p � rC C r�/n�2 ,
as expected. Finally, since n is odd, each root � D i (resp. � D �i ) contributes
Arg.1 � in/ D .�1/

nC1
2

�
4

(resp. Arg.1C in/ D .�1/
n�1

2
�
4

).

We need one last lemma.
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Lemma 4.2. Let pt .z/ 2 RŒz˙1� be a 1-parameter family of non-zero Laurent poly-
nomials having no roots in the unit circle, with the coefficients of pt given by contin-
uous functions of t . Consider the associated integer

At WD .s � 1 � d/C 2p C r� � rC;

where d is the top-degree of pt , s 2 ¹˙1º denotes the sign of its leading coefficient,
and rC (resp. r�, p) the number of real roots z > 1 of pt (resp. real roots z <�1, resp.
the number of pairs of conjugate roots with modulus> 1), counted with multiplicities.
Then, the congruence class of At modulo 4 does not depend on t .

Proof. Let us first assume that the leading coefficient of pt does not vanish. Since
the roots of pt depend continuously on t and are not allowed to cross the unit circle,
the congruence class of At modulo 4 is indeed constant: this is trivial unless a pair of
conjugate roots merges into a double real root z > 1, in which caseAt changes by�4.

Let us now assume that the leading coefficient cd of pt vanishes at t D t 0, but the
next coefficient cd�1 does not vanish at t D t 0. There are 4 cases to be considered,
depending on the possible values of the signs s of cd for t 2 .t 0 � "; t 0/ and s0 of cd�1
at t 0. Let us first assume that .s; s0/ D .1; 1/. Then, as t tends to t 0, the largest root
of pt tends to �1 along the real axis. Hence, both integers r� and d drop by 1 while
all the other integers stay constant, leading toAt DAt 0 . The case of .s; s0/D .�1;�1/
is identical. For .s; s0/ D .1;�1/, the largest root of pt tends to C1 along the real
axis, leading to rC and d dropping by 1, which is compensated by s dropping by 2.
The final case is .s; s0/ D .�1;�1/, where the largest root of pt tends to �1 along
the real axis, leading to rC and d dropping by 1 and s dropping by 2. As a result, we
have At 0 D At C 4, and the residue modulo 4 is constant indeed.

In general, it might well happen that the coefficients cd ; cd�1; : : : ; cd�`C1 of pt
simultaneously vanish at t D t 0 for some ` � 1, with cd�` ¤ 0 since pt is never iden-
tically zero. However, by a small perturbation of the coefficients, it can be assumed
that cd vanishes first, followed by cd�1 at a later time, then by cd�2, and so one.
Therefore, ` successive applications of the case studied above leads to the proof of
the general case.

4.3. Dimer asymptotics in the general case

We are now ready to state and prove the main result of this section in its most gen-
eral form, valid for arbitrary (possibly non-bipartite) graphs in the Klein bottle. The
bipartite case is the topic of the next section.

Let � �K be a weighted graph embedded in the Klein bottle, and let R.z;˙1/
denote the associated Kleinian polynomials. Let us write

A WD �C 2p C r� � rC C
m��mC

2
; (4.9)
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where the integers �; p; r˙ and m˙ are associated to the polynomial R.z; 1/ as in
Lemma 4.1, and let us denote by A0 the corresponding quantity for R.z;�1/. We first
assume that � �K is not “too small” in the sense of Remark 2.3, and deal with the
“too small” case in Remark 4.4 (iii).

Theorem 4.3. Let � � K be a weighted graph embedded in the Klein bottle, and
let us assume that all the zeros in the unit torus of the associated characteristic poly-
nomial P are positive nodes of the form ¹.�1; exp.2�i j // j 1 � j � `º. Then, we
have the asymptotic expansion

logZmn D mn
f0
2
C fscC o.1/

for m and n tending to infinity with n odd and m=n bounded below and above,
where f0 is as in (4.3) and fsc D log FSC with

FSC D
ˇ̌̌
sin
�
A
�

4

�ˇ̌̌ Ỳ
jD1

�#01.m j j�j /
�.�j /

� 1
2

C

ˇ̌̌
cos

�
A0
�

4

�ˇ̌̌ Ỳ
jD1

�#00.m j j�j /
�.�j /

� 1
2

if m is odd, and

FSC D
ˇ̌̌
sin
�
.A � A0/

�

4

�ˇ̌̌ Ỳ
jD1

�#01.m j j�j /
�.�j /

� 1
2

C

Ỳ
jD1

�#00.m j j�j /
�.�j /

� 1
2

if m is even. Here, the parameter �j is given by i m
n
j
@2

zP.�1;wj /

@2
wP.�1;wj /

j1=2, while A and A0

are the modulo 4 integers determined by R.z; 1/ and R.z � 1/ as in (4.9). Finally,
if the dimer weights vary continuously so that P.�1; 1/ ¤ 0 (resp, P.�1;�1/ ¤ 0),
then the modulo 4 integer A (resp. A0) stays constant.

Proof. Let us apply Theorem 3.4 to � �K , and the work of Kenyon, Sun and Wilson
in the form of equation (4.2) to P.�; �/ D P.1;˙1/, together with equations (4.6)
and (4.8). This yields the expected asymptotic expansion of logZmn, with angles ˛n,
˛0n to be determined.

By Remark 2.4 (i), the polynomial R.iz; 1/ belongs to RŒz˙1�. Furthermore, the
equality P.z2; 1/ D R.z; 1/R.�z; 1/ of Proposition 2.10 shows that the roots of
R.z; 1/ in S1 correspond to roots of P in the unit torus, i.e., satisfy z D ˙i by
hypothesis. Since such a root is a node of P , the roots i and �i of R.z; 1/ have total
multiplicity mC C m� D 2, so mC�m�

2
is an integer. Therefore, Lemma 4.1 can be

applied to R.z; 1/, leading to

˛n

2
D

Arg.
Q
znD1R.z; 1//

2

D

�
.�C 2p C r� � rC/nC .�1/

n�1
2
m� �mC

2

��
4
C o.1/ 2 Z=�Z;
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and similarly for R.z;�1/. Moreover, since n is odd, we have the modulo 4 equality

.�C 2p C r� � rC/nC .�1/
n�1

2
m� �mC

2
�

�
�C 2p C r� � rC C

m� �mC

2

�
n

D A � n 2 Z=4Z;

and similarly for A0. The result follows from the observation that jsin.An�
4
/j and

jcos.An�
4
/j are independent of n odd.

Finally, let us consider the 1-parameter family of polynomials pt .z/ D R.iz; 1/
given by a continuous path in the dimer weights of � , assuming that P.�1; 1/ D
R.i; 1/R.�i; 1/ never vanishes. In such as case, we have mC D m� D 0, and the
modulo 4 integer � associated withR.z;1/ translates to s � 1� d for pt .z/, leading to
the identification of A from equation (4.9) with At from Lemma 4.2. The coefficients
of R.iz; 1/ being continuous functions of the dimer weights, the last sentence of the
theorem now follows from Lemma 4.2. The proof for A0 is identical.

Remarks 4.4. (i) The only contribution of the characteristic polynomial R
to FSC is in the coefficients jsin.A�

4
/j, jcos.A�

4
/j and jsin..A � A0/�

4
/j,

which take the values in ¹0;
p
2
2
; 1º.

(ii) It is conjectured in the non-bipartite case and proven in the bipartite case and
for Fisher graphs that P admits at most two zeros on the unit torus, that are
positive nodes of the form .�1; w0/. (This follows from [37] together with
Proposition 2.15 in the bipartite case, and from Lemma 4.13 for Fisher
graphs.) Together with the previous remark, this implies that there is a finite
number of possible finite-size corrections. In the bipartite case and for Fish-
er graphs, this statement can be made much more precise, see Theorems 4.8
and 4.12 below.

(iii) As mentioned in Remarks 2.3, 3.7 and 3.12, some graphs are “too small”,
and Theorem 3.4 needs some minor adjustment. In Theorem 4.3 above, by
equation (3.4), this simply amounts to exchanging the roles of A and A0.

We conclude this section with two explicit non-bipartite examples.

Example 4.5. Consider the .1� 2/-square lattice of Figure 7 with horizontal weights
x1 D x2 DW x and vertical weights y1 D y2 DW y. As computed in Example 2.5, we
have

R.z; 1/ D R.z;�1/ D ix2.z C z�1/:

This polynomial has leading coefficient of argument �
2

and roots˙i of multiplicity 1;
with the notations of Lemma 4.1, this gives �D 1, p D rC D r� D 0,mC Dm� D 1
and leads to A D A0 D 1. Furthermore, as computed in Example 2.8, we have

P.z;w/ D y4.w � w�1/4 � 4x2y2.w � w�1/2 C x4.2C z C z�1/:
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This polynomial has two roots in S1�S1, namely .z1;w1/D .�1;�1/ and .z2;w2/D
.�1;1/, both of which are positive nodes with associated parameters �1D �2D i mn

x
4y

.
Applying Theorem 4.3 to this example (with M D m and N D 2n) together with
equation (4.5), we get the following result. (Note that Remark 4.4 (iii) needs to be
applied, but has no effect on the final formula.)

Corollary 4.6. For N � 2 .mod 4/, the finite-size corrections in the asymptotic ex-
pansion of the dimer partition function for the .M � N/-square lattice in the Klein
bottle are given by FSCD .2#01.2�/

�.2�/
/1=2 ifM is odd, and by FSCD #00.�/

�.�/
ifM is even,

where � D i Mx
2Ny

.

Note that this result can be extended to any even N by considering the more gen-
eral fundamental domain given by the .1� 2k/-square lattice with k � 1. Its Kleinian
characteristic polynomial is given by R.z; w/ D ix2

k
.z C z�1/. Its toric one, which

can easily be computed inductively, has the two roots .�1;˙1/ in the unit torus, and
satisfies @2zP.�1;˙1/ D 2x

2kC1
and @2wP.�1;˙1/ D 2

2kC3x2
kC1�2y2, leading to

the parameters �1 D �2 D i mn
x

2kC1y
. Setting M D m and N D 2kn thus leads to the

same result as above, now valid for any even N .
Using (4.4) and the other standard notation #2 WD #10, #3 WD #00, #4 WD #01, the

logarithm of these finite-size corrections can be written as

fsc D
1

2
log 2C

1

6
log

2#4.2�/
2

#2.2�/#3.2�/

for M odd, and

fsc D
1

3
log

2#3.�/
2

#2.�/#4.�/

forM even. This coincides with the formulas (80), (81) and (76), (77) of [30], respec-
tively. (For M even, it does not coincide with [43, (35), (41)].)

Example 4.7. Consider the isotropic triangular lattice of Figure 7. By Example 2.5,
we have

R.z; 1/ D 2.z2 C z�2/C 4i.z C z�1/ � 4 and R.z;�1/ D 4:

The first polynomial has two roots of modulus > 1, namely 1
2
.
p
3 C 1/.˙1 � i/,

and two roots of modulus < 1, namely 1
2
.
p
3 � 1/.˙1 C i/. With the notations of

Lemma 4.1, this gives �D 0, pD 1, rCD r�DmCDm�D 0 and leads toAD 2. On
the other hand, we obviously have A0 D 0. Furthermore, as computed in Example 2.8,
we have

P.z;w/ D .z2 C z�2/.w C w�1 C 2/C 10.w C w�1/C w2 C w�2 C 34;
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which is strictly positive on the unit torus. Applying Theorem 4.3 to this example, we
get the asymptotic expansion

logZmn D mn
f0
2
C log.2/C o.1/:

Hence, we see that the finite-size correction term might be non-zero even when the
spectral curve does not meet the unit torus. As we shall see in Theorems 4.8 and 4.12,
this never occurs in the bipartite case, but it does occur for Fisher graphs.

Note that this phenomenon is not specific to the Klein bottle, as it does also appear
in the toric (non-bipartite) case. The first such example was computed in [4], thus
proving the first sentence of [38, Theorem 2] to be incorrect, see also Remark 4.17 (i)
below.

4.4. Dimer asymptotics in the bipartite case

Let us now consider a bipartite graph � embedded in K . In this case, we know from
the work of Kenyon, Okounkov and Sheffield [37] together with Proposition 2.15 that
the associated toric characteristic polynomial Q.z; w/ has at most two (conjugate)
zeros .�1; w0/ and .�1; xw0/ in the unit torus S1 � S1, that might coincide to form
a single real node. This leads to three cases in the asymptotic expansion of the asso-
ciated dimer partition function, as already stated in Theorem 1.2. We now recall this
result for the reader’s convenience and give the proof.

Theorem 4.8. Let � � K be a weighted bipartite graph embedded in the Klein
bottle. Then, we have the asymptotic expansion

logZmn D mn
f0
2
C fscC o.1/

for m and n tending to infinity with n odd and m=n bounded below and above, with

f0 D
“
S1�S1

log jQ.z;w/j
dz

2�iz

dw

2�iw

and fsc D log FSC given as follows:

(1) If Q.z;w/ has no zeros in the unit torus, then FSC D 1.

(2) If Q.z; w/ has two zeros .�1; w0/ ¤ .�1; xw0/ in the unit torus with w0 D
exp.2�i /, then

FSC D
#00.m j�/

�.�/
C
#01.m j�/

�.�/
; where � D i

m

n

ˇ̌̌ @zQ.�1;w0/
@wQ.�1;w0/

ˇ̌̌
:

(3) If Q.z;w/ has a single (real) node at .�1;w0/ in the unit torus, then

FSC D
#00.�/

�.�/
C
#01.�/

�.�/
; where � D i

m

n

ˇ̌̌ @2zQ.�1;w0/
@2wQ.�1;w0/

ˇ̌̌1=2
:
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Proof. Corollary 3.5 expresses Zmn in terms of two contributions, jQmn.1;˙1/j1=2

and Arg.
Q
znD1 S.z;˙1//, whose asymptotics we now analyze.

First, let us apply equation (4.2) to P.z;w/DQ.z;w/Q.z�1;w�1/. This leads to

1

2
log jQmn.1; �/j D

1

4
logPmn.1; �/ D mn

f0
2
C fsc.�/C o.1/ for � D ˙1,

where

f0 D
1

2

“
S1�S1

logP.z;w/
dz

2�iz

dw

2�iw
D

“
S1�S1

log jQ.z;w/j
dz

2�iz

dw

2�iw
;

and fsc.�/ D log FSC.�/ given as follows:

(1) If Q has no zeros in S1 � S1, then FSC.�/ D 1.

(2) If Q.z;w/ has two distinct zeros .�1;w0/ ¤ .�1; xw0/ in S1 � S1, then

FSC.�/ D „..�1/n; � xwm0 j�/
1=2„..�1/n; �wm0 j�/

1=2
D „.�1; �wm0 j�/;

since n is odd and # is an even function.

(3) If Q.z;w/ has a single real node at .�1;w0/ in S1 � S1, then

FSC.�/ D „.�1; �wm0 j�/:

We now apply Lemma 4.1, whose notation we assume, to the polynomial S.z;1/2
CŒz˙1�. By equation (2.3), we know that S.iz; 1/ belongs to RŒz˙1�. By Proposi-
tion 2.16, all the roots of S.z; 1/ are simple and purely imaginary, so Lemma 4.1 can
indeed be applied, with p D 0. By Proposition 2.16 and equation (2.4), the roots i
and �i of S.z; 1/ have multiplicitiesmC D m�. With these observations, Lemma 4.1
now reads

ˇn D Arg
� Y
znD1

S.z; 1/
�
D An

�

2
C o.1/;

where A D � C r� � rC. By Corollary 3.5, we are only concerned with the parity
of An. Since n is odd, this parity is simply given by A D �C r , where r D rC C r�
denotes the number of roots of S.z; 1/ with modulus > 1. The same argument obvi-
ously holds for S.z;�1/, and we denote by A0 D �0 C r 0 the corresponding integers.

To summarize, Corollary 3.5, equation (4.2) and Lemma 4.1 lead to the statement
of the theorem, with finite-size corrections given by

FSC D

´
jsin.A�

2
/ jFSC.1/C jcos.A0 �

2
/j FSC.�1/ for m odd,

jsin..AC A0/�
2
/j FSC.1/C FSC.�1/ for m even,

where A; A0 are as in Lemma 2.17 and FSC.˙1/ as described above, depending on
the cases (1)–(3). The statement now follows from Lemma 2.17 together with equa-
tions (4.6)–(4.8) and the relation #00.� C 1

2
j�/ D #01.�j�/.
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We conclude this section with two examples realizing the three cases in the state-
ment of this theorem.

Example 4.9. Consider the 2 � 1 square lattice of Figure 6 with x1 D x2 DW x and
y1 D y2 DW y. Its toric characteristic polynomial Q.z; w/ D x2.z C z�1 C 2/ C

y2.wCw�1 C 2/ has a single real node at .�1;�1/, and the corresponding Kleinian
polynomial S.z; �1/ D x.z C z�1/ has simple roots at ˙i . We are therefore in
case (3), with

� D i
m

n

ˇ̌̌ @2zQ.�1;�1/
@2wQ.�1;�1/

ˇ̌̌1=2
D i

mx

ny
:

Applying Theorem 4.8 with M D 2m and N D n, we get the following result.

Corollary 4.10. For M even and N odd, the finite-size correction in the asymptotic
expansion of the dimer partition function for the .M �N/-square lattice in the Klein
bottle is given by

FSC D
#00.�/

�.�/
C
#01.�/

�.�/
; where � D i

Mx

2Ny
:

Note that this result does not coincide with the finite-size corrections obtained
in [30, (82), (83)], and for a good reason: as mentioned in Example 3.6, these com-
putations are based on the incorrect formula for the dimer partition function (see
[45, (5)]).

Example 4.11. Consider the hexagonal lattice of Figure 7, whose characteristic poly-
nomial is given byQ.z;w/D �21 C �

2
3 C �1�3.wCw

�1/C �22z. If the edge weights
are so that �1 C �3 < �2 or �2 < j�1 � �3j, then Q never vanishes on the unit torus
and we are in case (1), so FSC D 1.

On the other hand, if the edge weights satisfy j�1 � �3j < �2 < �1 C �3, then we
are in case (2) where

FSC D
#00.m j�/

�.�/
C
#01.m j�/

�.�/

with w0 D exp.2�i / such that

�21 C �
2
3 C �1�3.w0 C w

�1
0 / D �22 and � D i

m

n

�22
�1�3j1 � w

2
0 j
:

For example, the isotropic case �1 D �2 D �3 leads to

FSC D
#00.

m
3
j�/

�.�/
C
#01.

m
3
j�/

�.�/
; where � D i

m

n

p
3

3
:
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4.5. Consequences for the dimer model

We now explore some consequences of Theorems 4.3 and 4.8 for the dimer model.
Analogous results hold for the Ising model as well, see Remark 4.17 below.

Asymptotic for �im ! 1. In [5], Blöte, Cardy and Nightingale argue that for a con-
formally invariant model at criticality on an infinitely long strip, the amplitude of the
finite-size corrections to the free energy is linearly related to the central charge c of
the model. We now compare our results to these predictions.

As explained in [38, Section 3.4], the function „ satisfies

„.�1;� exp.2�i /j�/ D
#. j�/

�.�/
D exp.��im=12C o.1//

in the limit �im !1. As a consequence, Theorem 4.8 implies that if � is bipartite
and the dimer model is in the liquid phase (i.e., if the spectral curve intersects the unit
torus), then the partition function satisfies the asymptotic expansion

logZmn D mn
f0
2
C
��im

12
C C C o.1/ (4.10)

for m, n and �im tending to infinity with n odd and m=n bounded below and above,
with C D log.2/. Such an expansion also holds for the non-bipartite examples con-
sidered in Section 4.3, with C D log.2/

2
(resp. C D 0) for the M � N square lattice

with N even and M odd (resp. M even).
Let us now compare this result to the CFT predictions of [5], where the authors

consider the asymptotic expansion of the free energy per unit length of an infinitely
long strip of width L at criticality. They claim it to be of the form

F D fLC
�

L
C f � C � � �

with f the bulk free energy per unit area, 1
2
f � the surface free energy, and � a uni-

versal term is explicitly given by

� D

´
��c=6 for periodic boundary conditions;

��c=24 for free or fixed boundary conditions:

Coming back to our setting, let us assume that the strip has antiperiodic horizontal
boundary conditions (and periodic vertical ones). The term f � vanishes as the Klein
bottle has no boundary, while f corresponds to � f0

2
. Writing L0 for the length of the

strip, we have

logZ D �L0F D L0L
f0
2
��

L0

L
C � � � : (4.11)



The dimer and Ising models on Klein bottles 561

Observe that the shape parameter � of the corresponding torus is given by � D i L
0

2L
.

Therefore, the comparison of expansions (4.10) and (4.11) leads to�D ��=24. This
is consistent with “fixed” boundary conditions including antiperiodic ones, and with
the value c D 1 for the central charge of a conformal field theory describing the bipar-
tite dimer model.

The analogous discussion applied to the Ising model is presented below in Re-
mark 4.17 (iii) .

Ratios of partition functions. Let us now consider an arbitrary weighted graph �
embedded in the Klein bottle K , and denote by z� its 2-cover embedded in the
torus T2. As usual, let us write �mn � K and z�mn � T2 for the relevant covers,
for m, n integers with n odd. Finally, let us denote by Z.�mn/ and Z.z�mn/ the cor-
responding dimer partition functions.

By the results of Section 4, we have

logZ.�mn/ D mn
f0
2
C fscK .�/C o.1/;

where f0 can be computed via (4.3) and fscK is a function of an explicit parameter � ,
a function which falls within a finite number of classes (recall Remark 4.4 (ii)). Also,
by [38, Theorem 2], we have

logZ.z�mn/ D mn f0 C fscT .�/C o.1/;

where f0 is as above and fscT is a function of the same parameter � which falls within
the same classes. As an immediate consequence, the limit

lim
m;n!1

Z.�mn/
2

Z.z�mn/
D

fscK .�/2

fscT .�/

is given by some explicit function of � which only depends on the relevant class.
The bipartite case is completely described by Theorem 4.8 and [38, Theorem 2 (b)

and (c)], yielding the following result:

(1) If Q.z;w/ has no zeros in the unit torus, then limm;n!1
Z.�mn/

2

Z.z�mn/
D 1.

(2) If Q.z; w/ has two zeros .�1; w0/ ¤ .�1; xw0/ in the unit torus with w0 D
exp.2�i /, then

lim
m;n!1

Z.�mn/
2

Z.z�mn/

D
2.#00.m j�/C #01.m j�//

2

#00.m j�/2 C #01.m j�/2 C #10.m j�/2 C #11.m j�/2
;

where

� D i
m

n

ˇ̌̌ @zQ.�1;w0/
@wQ.�1;w0/

ˇ̌̌
:
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(3) If Q.z;w/ has a single (real) node at .�1;w0/ in the unit torus, then

lim
m;n!1

Z.�mn/
2

Z.z�mn/
D

2.#00.�/C #01.�//
2

#00.�/2 C #01.�/2 C #10.�/2
;

where

� D i
m

n

ˇ̌̌ @2zQ.�1;w0/
@2wQ.�1;w0/

ˇ̌̌1=2
:

The non-bipartite case yields additional possible limits. For instance, Example 4.5
and [38, Theorem 2 (d)] yield the following result. If �MN is theM �N -square lattice
with N and M even, then

lim
M;N!1

Z.�MN /
2

Z.z�MN /
D

2#00.�/
2

#00.�/2 C #01.�/2 C #10.�/2
; where � D i

Mx

2Ny
;

while for N even and M odd, we simply get

lim
M;N!1

Z.�MN /
2

Z.z�MN /
D 2:

This latter result can be seen as a reality check for our computations, since the equal-
ity Z.�MN /2 D 2Z.z�MN / actually holds for theM �N -square lattice with N even
and M odd. We refer to [30, (66)] for the first occurrence of this non-trivial result,
and to [15, Theorem 1.6] for an extension to a wider class of graphs.

4.6. Asymptotics of the Ising partition function

We now apply our results and methods to the study of the Ising model on a graph
G �K as in Section 1.3, whose notation we assume.

Let us first note that, with the help of the well-known equation (1.6), it is a triv-
ial task to translate Theorem 3.4 from the dimer to the Ising model, thus providing
a closed formula for the Ising partition function on the cover Gmn of an arbitrary
weighted graph G embedded in the Klein bottle. We shall not state this result explic-
itly, but directly move to the study of the resulting asymptotic expansion, in the form
of Theorem 1.3 whose statement we now recall.

Theorem 4.12. Let .G; J / be a non-degenerate weighted graph embedded in the
Klein bottle, and let P.z;w/ be the characteristic polynomial of the associated Fisher

graph eGF � T2. Then, the Ising partition function on Gmn satisfies

logZJˇ .Gmn/ D mn
f0
2
C fscC o.1/
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for m and n tending to infinity with n odd and m=n bounded below and above, with

f0 D 2
X

e2E.G/

log cosh.ˇJe/C
1

2

Z
T2

logP.z;w/
dz

2�iz

dw

2�iw

and fsc D 0 in the subcritical regime ˇ < ˇc , fsc D log.2/ in the supercritical regime
ˇ > ˇc , and

fsc D log
��#00.�/

�.�/

�1=2
C

�#01.�/
2�.�/

�1=2�
; where � D i

m

n

ˇ̌̌ @2zP.�1; 1/
@2wP.�1; 1/

ˇ̌̌1=2
in the critical regime ˇ D ˇc .

We break down the proof into a series of lemmas. The first one is a direct conse-
quence of [13] (see also [41]) and of our conventions for Kasteleyn orientations.

Lemma 4.13. Let .G;J / be a non-degenerate weighted graph embedded in the Klein
bottle, and let P.z; w/ be the characteristic polynomial of the associated Fisher
graph eGF � T2. For ˇ ¤ ˇc , this polynomial never vanishes on the unit torus, while
for ˇ D ˇc , it only vanishes at the positive node .z0; w0/ D .�1; 1/.

Proof. Up to a non-vanishing multiplicative constant, the polynomial P.z; w/ coin-
cides with the characteristic polynomial of zG � T2 obtained using the Kac–Ward
matrix (see [11, Section 4.3] or [8, Section 3.1] for details). As shown in [13, The-
orem 3.1], this polynomial coincides up to a non-vanishing multiplicative constant
with the characteristic polynomialQ.z;w/ of an associated bipartite graph zGC �T2.
(This result is already present in essence in [19].) Moreover, it is also shown in [13]
that Q.z; w/ never vanishes on the unit torus for ˇ ¤ ˇc , and does so at a unique
real positive node for ˇ D ˇc . It only remains to check that, with the conventions of
Section 2.1, this zero can only be located at .�1; 1/. (Note that this is consistent with
Proposition 2.15.)

One way to do so is to use the geometric interpretation of Kasteleyn orientations
of [10, 16]. In a nutshell, the powers of i (resp. the signs) appearing in the Pfaffian
expansion of R.z0; w0/ (resp. P.z0; w0/) with z0; w0 2 ¹˙1º are described by maps
qWH1.K IZ/! Z=4Z (resp zqWH1.T2IZ/! Z=2Z) called quadratic forms (resp.
quadratic enhancements). Using this language, condition (ii) in Section 2.2 can be
translated as follows: the quadratic enhancement corresponding to K is determined
by q.a/ D q.a0/ D 1 or q.a/ D q.a0/ D 3. Using [15, Section 3], the quadratic
form corresponding to the associated Kasteleyn orientation zK satisfies zq.za/ D 0 and
zq.zb/ D 1. As shown in [13] in the context of Kac–Ward determinants, the real node
of P corresponds to the unique odd quadratic form, i.e., the one mapping za and zb to 1.



D. Cimasoni 564

By the computation above, this corresponds to changing the parity of zq.za/, i.e., twist-
ing the determinant of the Kasteleyn matrix by .z0; w0/ D .�1; 1/. This completes
the proof.

We can now apply equation (1.6) to Gmn and Theorem 4.3 to the dimer model
on � D GF � K . This yields the asymptotic expansion of logZJ

ˇ
.Gmn/ with free

energy f0 as described in the statement, and fscD logFSC given as follows: for ˇ¤ ˇc ,
we have

FSC D

´
jsin.A�

4
/j C jcos.A0 �

4
/j for m odd,

jsin..A � A0/�
4
/j C 1 for m even,

(4.12)

while for ˇ D ˇc , we have

FSC D

´
jsin.A�

4
/j.#01.�/

�.�/
/

1
2 C jcos.A0 �

4
/j.#00.�/

�.�/
/

1
2 for m odd,

jsin..A � A0/�
4
/j.#01.�/

�.�/
/

1
2 C .#00.�/

�.�/
/

1
2 for m even,

(4.13)

where

� D i
m

n

ˇ̌̌ @2zP.�1; 1/
@2wP.�1; 1/

ˇ̌̌1=2
:

Hence, we are now left with the computation of A;A0 2 Z=4Z.
First note that by the last sentence of Theorem 4.3 together with Lemma 4.13,

A0 is independent of ˇ while A can only change at ˇ D ˇc . Furthermore, for extremal
values of ˇ 2 Œ0;1�, these modulo 4 integers can be determined by the following
result.

Lemma 4.14. We have fsc D 0 for ˇ D 0 and fsc D log.2/ for ˇ D1.

Proof. Recall that we have the asymptotic expansion

logZ.GFmn; x
F / D mn

I

4
C fscC o.1/; where I D

Z
T2

logP.z;w/
dz

2�iz

dw

2�iw
:

Let us start with ˇ D 0, corresponding to the dimer weights xe D tanh.ˇJe/ D 0.
In this case, we have

Z.GFmn; x
F / D 2jV.Gmn/j D 2mnjV.G/j;

while the characteristic polynomial is constant equal to

P.z;w/ D Z.eGF ; xF /2 D .2jV. zG/j/2 D 24jV.G/j;

yielding I D 4jV.G/j log.2/. Comparing this with the asymptotic expansion dis-
played above, we see that for ˇ D 0, we have fsc D 0.
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Let us now consider the extremal value ˇ D 1, which gives the dimer weights
xe D 1. By equation (1.5), the corresponding dimer partition function is given by

Z.GFmn; x
F / D 2jV.Gmn/jjE .Gmn/j D 2

mnjV.G/jCdimH1.Gmn/:

The graph Gmn being connected, we have the Euler characteristic computation

1 � dimH1.Gmn/ D �.Gmn/ D jV.Gmn/j � jE.Gmn/j D mn.jV.G/j � jE.G/j/;

leading to
Z.GFmn; x

F / D 21CmnjE.G/j:

A possible way of computing the corresponding polynomial P.z; w/ is to recall
that it is equal to 22jV. zG/j times the twisted Kac–Ward determinant (see [8, Sec-
tion 3.1]), which for x D 1, is equal to 2�jV. zG/jCjE. zG/j times the characteristic poly-
nomial Q.z; w/ (see [13, Theorem 3.1]). Since this later polynomial is given by
Q.z; w/ D 2jF.

zG/j for x D 1, where F. zG/ denotes the faces of zG � T2, the Euler
characteristic computation jV. zG/j � jE. zG/j C jF. zG/j D �.T2/ D 0 now leads to

P.z;w/ D 22jE.
zG/j
D 24jE.G/j;

yielding I D 4jE.G/j log.2/. Comparing these results with the asymptotic expansion
displayed above leads to the value fsc D log.2/.

Theorem 4.12 now follows equations (4.12) and (4.13) together with one final
lemma.

Lemma 4.15. (i) For all ˇ 2 Œ0;1�, we have A0 D 0 2 Z=4Z.

(ii) The modulo 4 integer A is equal to 0 for ˇ < ˇc , to 2 for ˇ > ˇc , and to ˙1
for ˇ D ˇc .

Proof. First observe that Lemma 4.14 and equation (4.12) imply that A0 D 0 for
ˇ D1. Since this modulo 4 integer is known to be constant, the first point follows.
By the same Lemma 4.14 and equation (4.12), now with A0 D 0, we have A D 0

for ˇD 0 andAD 2 for ˇD1. SinceA remains constant as ˇ varies in Œ0;1� n ¹ˇcº,
the second point is proven for ˇ ¤ ˇc , and we are left with the determination of A
at ˇ D ˇc . To do so, let us recall the identities

R.z1=2;˙1/R.�z1=2;˙1/ D P.z;˙1/ and P.z;w/ D k �Q.z;w/

of Proposition 2.10 and of the proof of Lemma 4.13, with k 2 R� and Q.z; w/ the
characteristic polynomial of a bipartite toric graph zGC . With these two equalities, the
proof of Propositions 2.15 and 2.16 and Lemma 2.17 extend verbatim, with Q.z; w/
replaced by P.z; w/ and S.z;˙1/ by R.z;˙1/. By Lemma 4.13, we know that
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for ˇ D ˇc , the polynomial P.z; w/ has a node in the unit torus. The third point
of Lemma 2.17 then implies that A is odd, i.e., congruent to˙1 modulo 4.

We conclude this article with an explicit example, and remarks.

Example 4.16. Consider the only case previously studied in the literature, that of the
isotropic square lattice. Standard computations lead to the value � D i m

2n
at the critical

temperature ˇc D 1
2

log.
p
2C 1/. The corresponding value of fsc from Theorem 4.12

is easily seen to coincide with [44, (59)] (and also with the result of [9]). However, it
does not coincide with [29, (41)].

Remarks 4.17. (i) The statement of Lemma 4.14 holds in the case of a toric
graph G � T2 as well, with the exact same proof. By continuity, this deter-
mines the finite-size corrections for all ˇ ¤ ˇc , and completes the determi-
nation of the asymptotic expansion of the Ising partition function on Gmn
given in [12, Corollary 3.5]. In particular, Fisher graphs in the supercritical
regime form a wide class of graphs with fsc ¤ 0 even though the spectral
curve is disjoint from the unit torus, see also the discussion at the end of
Example 4.7.

(ii) In the spirit of Section 4.5, we can consider the ratio of partition functions
ZJ
ˇ
.Gmn/

2=ZJ
ˇ
. zGmn/ for an arbitrary non-degenerate graphG �K . The-

orem 4.12 and the remark above imply that it tends to 1 for ˇ ¤ ˇc , and to
the following universal limit at criticality:

lim
m;n!1

ZJ
ˇ
.Gmn/

2

ZJ
ˇ
. zGmn/

D
2#00.�/C .2#00.�/#01.�//

1=2 C #01.�/

#00.�/C #01.�/C #10.�/
:

(iii) Considering the �im ! 1 limit as in Section 4.5 leads to the asymptotic
expansion

logZJˇ .Gmn/ D mn
f0
2
C
��im

48
� log.2 �

p
2/C o.1/:

Comparing it with (4.11) leads to � D ��=24, i.e., to the value c D 1
2

for
the central charge of a conformal field theory describing the Ising model.
Therefore, our results are in full agreement with the predictions of [5].
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[3] P. Bleher, B. Elwood, and D. Petrović, Dimer model: full asymptotic expansion of the
partition function. J. Math. Phys. 59 (2018), no. 9, paper no. 091407 Zbl 1406.82005
MR 3843635
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