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A vertex model for supersymmetric LLT polynomials

Andrew Gitlin and David Keating

Abstract. We describe a Yang–Baxter integrable vertex model, which can be realized as a de-
generation of a vertex model introduced by Aggarwal, Borodin, and Wheeler (2021). From this
vertex model, we construct a certain class of partition functions that we show are essentially
equal to the super ribbon functions of Lam. Using the vertex model formalism, we give proofs of
many properties of these polynomials, namely a Cauchy identity and generalizations of known
identities for supersymmetric Schur polynomials.

1. Introduction

LLT polynomials were originally introduced by Lascoux, Leclerc, and Thibon (for
whom the polynomials are eponymously named) in [22]. They are a class of sym-
metric polynomials and can be seen as a t -deformation of products of (skew) Schur
functions. The original motivation for LLT polynomials was to study certain plethysm
coefficients, and they were defined via a relationship with the Fock space represen-
tation of a quantum affine Lie algebra. The original definition expresses the LLT
polynomials as a sum over semistandard k-ribbon tableaux, weighted with a spin
statistic which arises naturally in this representation [19,22]. Bylund and Haiman dis-
covered an alternative way to model LLT polynomials. They constructed a family of
symmetric polynomials indexed by k-tuples of skew Young diagrams, weighted with
an inversion statistic (Remark B.1). The Bylund–Haiman model is described in more
detail in [18]. The relationship between the two definitions uses the Littlewood quo-
tient map (sometimes called the Stanton–White correspondence) [28], which sends
semistandard k-ribbon tableaux to k-tuples of semistandard Young tableaux.

Supersymmetric LLT polynomials G
.k/

�=�
.XnI YmI t / were introduced in [21] (in

which they are called super ribbon functions). As the name suggests, these polynomi-
als are supersymmetric in the X and Y variables (see Definition 4.6) and specialize
to LLT polynomials when m D 0 (see Remark B.3). They also specialize to the LLT
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polynomials (on the conjugate shape) when n D 0 (see Theorem 4.3). The super-
symmetric LLT polynomials have several other interesting specializations, including
the metaplectic symmetric functions introduced in [9] and the supersymmetric Schur
polynomials, which can be realized as characters of certain simple modules of the Lie
superalgebra gl.njm/ [5].

The goal of the present work is to study supersymmetric LLT polynomials from
the perspective of integrable vertex models. While the study of integrable systems is
a classical subject (see [3,27], for example), they have recently enjoyed an advent into
the world of (non)symmetric polynomials [7,11,29,30]. Also known as vertex models,
ice models, or multiline queues, these models have been generalized to colored vertex
models [6, 8, 10, 12, 14, 16] and polyqueue tableaux [2, 14].

It has recently been shown [1, 13, 15] that the LLT polynomials can be real-
ized as a certain class of partition functions constructed from an integrable vertex
model. In [9], the authors constructed a vertex model whose partition functions are
the metaplectic symmetric functions, a certain specialization of the supersymmetric
LLT polynomials. In this paper, we generalize these results by showing that there is an
integrable vertex model whose partition functions are the supersymmetric LLT poly-
nomials. Our vertex model is adapted from the work of [13] and can also be realized
as a degeneration of a colored vertex model introduced in [1].

The layout of our paper is as follows. In Section 2, we discuss relevant back-
ground. We define coinversion LLT polynomials and spin LLT polynomials. We de-
scribe how to relate the tuples of semistandard Young tableaux to semistandard ribbon
tableaux through the Littlewood quotient map, and we extend this map to the case of
super tableaux.

In Section 3, we introduce the vertex models we will use throughout the paper.
We show that they are integrable in the sense that they satisfy a Yang–Baxter equation
(YBE), and we define the relevant partition functions that give rise to the supersym-
metric LLT polynomials LS

�=�
.

In Section 4, we prove a variety of properties of the LS
�=�

. The main result is the
following theorem.

Theorem 1.1. The polynomials LS
�=�

.XnIYmI t / satisfy the following properties:

(1) (Symmetry, Lemma 4.4) The polynomials LS
�=�

.XnIYmI t / are symmetric in
the X and Y variables.

(2) (Cancellation, Lemma 4.5)

LS
�=�.Xn�1; r IYm�1;�r I t / D LS

�=�.Xn�1IYm�1I t /:

(3) (Homogeneity, Lemma 4.9) The polynomials LS
�=�

.XnI YmI t / are homoge-
neous in the X and Y variables of degree j�=�j D j�j � j�j.
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(4) (Restriction, Lemma 4.8)

LS
�=�.Xn�1; 0IYmI t / D LS

�=�.Xn�1IYmI t /;

LS
�=�.XnIYm�1; 0I t / D LS

�=�.XnIYm�1I t /:

(5) (Factorization, Lemma 4.10) If there exist � and � such that

�.i/ D .mC �
.i/
1 ; : : : ; mC � .i/n ; �

.i/
1 ; : : : ; �

.i/
s /

for all i , then

LS
�.XnIYmI t / D L�.XnI t / � t

g.�/L�0.YmI t
�1/ �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /:

Note the first two properties together imply that the polynomials LS
�=�

.XnIYmI t /

are supersymmetric. In the case where �D .�/ is a 1-tuple of partitions, one can show
that the supersymmetric LLT polynomial LS

�
.XnIYmI t / is exactly the supersymmet-

ric Schur polynomial s�.XnI Ym/. In fact, taking � D 0 and k D 1 in Theorem 1.1,
these properties uniquely characterize the supersymmetric Schur polynomials (see
[25, Section 2.1.2] and [24, Example I.3.23]). However, we suspect (but do not prove)
that the properties in Theorem 1.1 do not uniquely characterize the supersymmetric
LLT polynomials, even in the case � D 0.

In Section 5, we relate the coinversion supersymmetric LLT polynomials to the
ribbon supersymmetric LLT polynomials of Lam. The main result is the following
theorem.

Theorem 1.2 (Propositions 3.3 and 5.9). Suppose the k-tuple of skew shapes �=� is
the k-quotient of the skew shape �=�. Then there is a Yang–Baxter integrable vertex
model whose partition function LS

�=�
.XnIYmI t / is equal to

LS
�=�.XnIYmI t / D t

�G
.k/

�=�
.XnIYmI t

1=2/

for some half-integer � 2 1
2
Z, where G

.k/

�=�
.XnI YmI t / is the super ribbon LLT poly-

nomial.

Finally, in Section 6, we show that the supersymmetric LLT polynomials satisfy
a Cauchy identity. The main result is the next assertion.

Theorem 1.3. Let � and � be tuples of partitions, each with infinitely many parts
only finitely many of which are non-zero. Fix positive integers n, m, p, q. ThenX

�

td.�;�/LS
�=�.Xn; YmI t /L

S
�=�.Wp; ZqI t /

D �.Xn; Ym; Wp; ZqI t /
X
�

td.�;�/LS
�=�.Xn; YmI t /L

S
�=�.Wp; ZqI t /;
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where

�.Xn; Ym; Wp; ZqI t / D

k�1Y
lD0

nY
i;i 0D1

mY
j;j 0D1

pY
˛;˛0D1

qY
ˇ;ˇ 0D1

.1 � xiw˛t
l/.1 � yj 0zˇ 0 t

l/

.1C yjw˛0 t l/.1C xi 0zˇ t l/
:

2. LLT polynomials, super ribbon functions, and the Littlewood
quotient map

This section provides necessary background information and establishes some nota-
tion for the rest of this paper. First we venture into the world of tableaux on tuples
of skew shapes and define coinversion LLT polynomials. Then we venture into the
world of ribbon tableaux and define super ribbon function. Finally, we connect these
two worlds via the Littlewood quotient map.

2.1. Tuples of skew shapes and coinversion LLT polynomials

We begin by discussing semistandard Young tableaux on tuples of skew shapes, which
we use to give one formulation of LLT polynomials.

Fix a non-negative integer p. A partition with p parts is a weakly decreasing
sequence � D .�1 � � � � � �p � 0/ of p non-negative integers. Note that here we
consider our partitions to have a fixed number of parts but allow for the possibility of
parts equalling zero; later we will also consider partitions with an infinite number of
parts, only finitely many of which are non-zero. We let the length `.�/ be the number
of non-zero parts of �, and we let the size j�j be the sum �1 C � � � C �p of its parts.
We associate to � its Young (or Ferrers) diagram D.�/ � Z � Z given as

D.�/ D ¹.i; j / j 1 � i � `.�/; 1 � j � �iº:

We refer to the elements of D.�/ as cells. We draw our diagrams in French notation
in the first quadrant, with the first row on the bottom and the first column on the left,
such as

� D .4; 2; 1/; D.�/ D

�

The cell labeled above has coordinates (1,3). The content of a cell u D .i; j / in row i

and column j of any Young diagram is c.u/ D j � i . In what follows, we will use �
and D.�/ interchangeably, when it will not cause confusion.

If � and � are partitions such that D.�/ � D.�/, then the skew shape �=� is the
set of cells in D.�/ that are not in D.�/. We draw the diagram of �=� by coloring
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the cells in D.�/ gray, such as

� D .4; 2; 1/; � D .2; 1/; D.�=�/ D

The size j�=�j of �=� is j�j � j�j.
A semistandard Young tableau of shape �=� is a filling of each cell of D.�=�/

with a positive integer such that the rows are weakly increasing and the columns are
strictly increasing. We call the set of all such fillings SSYT.�=�/. Let

�=� D .�.1/=�.1/; : : : ; �.k/=�.k//

be a tuple of skew partitions. We define its size to be

j�=�j D j�.1/=�.1/j C � � � C j�.k/=�.k/j;

and we define a semistandard Young tableau of shape �=� to be a semistandard
Young tableau on each �.j /=�.j /, that is,

SSYT.�=�/ D SSYT.�.1/=�.1// � � � � � SSYT.�.k/=�.k//:

We can picture this as placing the Young diagrams diagonally “on content lines” with
the first shape in the south-west direction and the last shape in the north-east direction.

Example 2.1. Let �=� D ..3; 1/; .2; 2; 2/=.1; 1; 1/; .1/; .2; 1/=.2//. The top row
labels the contents of each line,

�3 �2 �1 0 1 2

3

7

6

4

1

8

2 5 9
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We will use tuples of skew partitions to index our formulation of LLT polynomi-
als. Given a tuple �=� of skew partitions, we say three cells u; v; w 2 Z � Z form
a triple if

(1) v 2 �=�;

(2) they are situated with v and w on the same content line and w in a later shape,
and u on a content line one smaller, in the same row as w:

u w

v

(3) if u and w are in row r of �.j /=�.j /, then u and w must be between the cells
.r; �

.j /
r / and .r; �.j /r C 1/, inclusive.

It is important to note that while v must be a cell in �=�, this is not true of u and w.
If not in �=�, then u must be at the end of some row in �, and w must be the cell
directly to the right of the end of some row in �.

Definition 2.2. Let �=� be a tuple of skew partitions and let T 2 SSYT.�=�/. Let
a, b, c be the entries in the cells of a triple u, v, w, where we set a D 0 and c D1 if
the respective cell is not in �=�. Given the triple of entries

a c

b

we say this is a coinversion (inversion) triple if a � b � c (b < a � c or a � c < b).

There are 7 coinversion triples in Example 2.1 above: (0, 2, 4), (0, 2, 7), (3,4,1),
(0,4,7), (4,5,1), (1,9,1), and (0,9,1).

With these definitions in place, we are finally able to define the coinversion LLT
polynomials.

Definition 2.3. The coinversion LLT polynomial associated to a tuple �=� of skew
partitions is the generating function

L�=�.X I t / D
X

T2SSYT.�=�/

t coinv.T /xT ;

where coinv.T / is the number of coinversion triples in T and xT D
Q

entries e in T xe .

See Appendix B for other formulations of LLT polynomials that appear in the
literature.
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2.2. Ribbon tableaux and the Littlewood quotient map

Next we discuss semistandard ribbon tableaux. We define a bijection, called the Lit-
tlewood quotient map, relating them and tuples of semistandard Young tableaux.

Fix a positive integer k. A k-ribbon is a skew shape of size k that is connected
and does not contain any 2� 2 square. The head (tail) of a k-ribbon is the most south-
east (most north-west) cell in its Young diagram. A horizontal (vertical) k-ribbon
strip of shape �=� is a tiling of �=� by k-ribbons such that the head (tail) of each
ribbon is adjacent to the southern (western) boundary of the shape. We let HRSk.�=�/
(VRSk.�=�/) denote the set of horizontal (vertical) k-ribbon strips of shape �=�.

Throughout this paper, we will omit k when it is clear from context. For example,
we will use “ribbon” and “k-ribbon” interchangeably.

Definition 2.4. A semistandard k-ribbon tableau of shape �=� is a tiling of �=� by
k-ribbons and a labeling of the k-ribbons by positive integers such that for all i ,

(1) removing all ribbons labeled j for j > i gives a valid skew shape ��i=�,
(2) the subtableau of ribbons labeled i form a horizontal k-ribbon strip of shape

��i=��i�1.

We let SSRTk.�=�/ denote the set of semistandard k-ribbon tableau of shape �=�.

Following the exposition of [26, Section 3], we now define the Littlewood k-
quotient map. This map was introduced in [23]; another (perhaps clearer) formulation,
as well as a proof that the map is a bijection, is given in [28].

We first define the k-quotient map, which is a function

¹skew partitions �=�º

!
®
k-tuples �=� D .�.0/=�.0/; : : : ; �.k�1/=�.k�1// of skew partitions

¯
:

This function can be defined graphically as follows. Given a partition �, we associate
a finite sequence .a0; : : : ; ar�1/ of eastD ı and southD � steps, called the Maya dia-
gram of �, by following the north-east boundary of � from north-west to south-east.

Example 2.5. The Maya diagram of (4,3,2,2,1) is ı � ı � � ı � ı �,

ı
�
ı
�

�
ı
�
ı
�

Remark 2.6. Observe that postpending finitely many ı’s to a Maya diagram does
not change the corresponding partition. Thus we can take the length r of the Maya
diagram .a0; : : : ; ar�1/ to be a multiple of k.
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Let � be a partition with Maya diagram .a0; : : : ; ar�1/. By the preceding remark,
we may assume s D r=k is an integer. We define the k-quotient of � to be the k-tuple
of partitions

� D .�.0/; : : : ; �.k�1//;

where, for each i , �.i/ is the partition corresponding to the Maya diagram

.ai ; akCi ; : : : ; a.s�1/kCi /:

We define the k-quotient of a skew partition �=� to be the k-tuple �=� of skew par-
titions, where � and � are the k-quotients of � and �, respectively. Here we require �
and � to have the same number of parts, padding � with zeroes if necessary.

Example 2.7. The 3-quotient of (4,3,2,2,1) is ((1,1),(0,0),(2)),

ı
�
ı
�

�
ı
�
ı
�

ı
�

�

�

�
ı

ı ı
�

We are now ready to define the Littlewood k-quotient map.

Definition 2.8. Let �=� be the k-quotient of �=�. The Littlewood k-quotient map is
a bijection

SSRTk.�=�/! SSYT.�=�/

defined as follows. Fix T 2 SSRTk.�=�/. For each i , we put an i into each cell of the
k-quotient of ��i=��i�1 (which lies inside �=�). In this fashion, we place positive
integers into the cells of �=�, resulting in

T D .T .0/; : : : ; T .k�1// 2 SSYT.�=�/:

Example 2.9. In Example 2.7, we found that the 3-quotient of � D .4; 3; 2; 2; 1/ is
� D ..1; 1/; .0; 0/; .2//. One can compute that

1

2

3

4

 !

1

2

3 4
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via the Littlewood 3-quotient map. For example, when i D 3, one can compute the
k-quotient of ��i=��i�1 as follows:

1

2

3

4

 !

1

2

3 4

Here we have drawn the Maya diagrams of both ��3 and ��2. From this, we see that
a box at coordinates .1; 1/ is added in T .2/, and we fill it with 3.

2.3. Extending the Littlewood quotient map to super tableaux

Finally, we extend the Littlewood quotient map to a bijection between super ribbon
tableaux (Definition 2.10) and semistandard super Young tableaux (Definition 2.13).
This bijection plays a pivotal role in the rest of the paper because it allows us to relate
our partition functions (Definition 3.8) to the super ribbon functions (Definition 2.11)
in Proposition 5.9.

Throughout this subsection, let AD ¹1 < 2 < � � � º and A0 D ¹10 < 20 < � � � º. Also
fix a total order on A [A0 that is compatible with the natural orders on A and A0.

Definition 2.10. A super k-ribbon tableau of shape �=� is a tiling of �=� by k-
ribbons and a labeling of the k-ribbons by the alphabet A [A0 such that

(1) for i 2 A [A0, removing all ribbons labeled j for j > i gives a valid skew
shape ��i=�;

(2) for i 2 A, the subtableau of ribbons labeled i forms a horizontal k-ribbon
strip;

(3) for i 0 2A0, the subtableau of ribbons labeled i 0 forms a vertical k-ribbon strip.

We let SRTk.�=�/ denote the set of super k-ribbon tableau of shape �=�.

Note that a SRT in the alphabet A of shape �=� is the same as a SSRT of
shape �=�. Moreover, there is a bijection between SRT in the alphabet A0 of shape
�=� and SSRT of shape �0=�0, given by conjugation (and unpriming the labels).

The height h.R/ of a ribbon R is the number of rows it contains. The spin of
a super ribbon tableau T is

spin.T / D
X
R

.h.R/ � 1/;

where the sum is taken over all ribbons R in T .
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Definition 2.11 ([21, Definition 44]). The super k-ribbon function associated to a
skew partition �=� is the generating function

G
.k/

�=�
.X IY I t / D

X
T2SRTk.�=�/

t spin.T /xweight.T /yweight0.T /:

Example 2.12. We use the ordering 1 < 2 < � � �< 10 < 20 < � � � on A[A0. Let k D 3
and �=� D .8; 7; 6; 6; 6; 4; 1/=.2/. The super ribbon tableau

1

2

1

2

3

10 20

1

10
30

30

40

has spin 14 and contributes

t14x31x
2
2x
1
3y

2
1y

1
2y

2
3y

1
4

to G
.k/

�=�
.X IY I t /.

Definition 2.13. A semistandard super Young tableau of shape �=� is a filling of
each cell of D.�/ with an element of A [A0 such that

(1) the rows and the columns are weakly increasing,

(2) the entries in A are strictly increasing along columns,

(3) the entries in A0 are strictly increasing along rows.

We let SSSYT.�=�/ denote the set of semistandard super Young tableaux of shape
�=�. Given a tuple �=� D .�.1/=�.1/; : : : ; �.k/=�.k// of skew partitions, a semi-
standard super Young tableau of shape �=� is a semistandard super Young tableau
on each �.j /=�.j /, that is,

SSSYT.�=�/ D SSSYT.�.1/=�.1// � � � � � SSSYT.�.k/=�.k//:

Note that a SSSYT in the alphabet A of shape �=� is the same as a SSYT of shape
�=�. Moreover, there is a bijection between SSSYT in the alphabet A0 of shape �=�
and SSYT of shape �0=�0, given by conjugation (and unpriming the labels).

We are now ready to extend the Littlewood k-quotient map.

Definition 2.14. The (extended) Littlewood k-quotient map is a bijection

SRTk.�=�/! SSSYT.�=�/;
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where �=� is the k-quotient of �=�. We simply take Definition 2.8 and extend the
set of labels: for each i 2 A [ A0, we put an i into each cell of the k-quotient of
��i=��i�1.

Example 2.15.

1

2

1

2

3

10 20

1

10
30

30

40

 !

1

2

1

20

30
30

3 10 1 40

2

10

The following facts can be useful in computing the Littlewood k-quotient map in
examples.

Lemma 2.16. Suppose T $ T via the Littlewood k-quotient map.

(1) A ribbon in T labeled i corresponds to a cell labeled i in T , so the number
of ribbons in T labeled i equals the number of cells labeled i in T .

(2) Two ribbons R; R0 in T whose tails u; u0 have the same content modulo k
correspond to two cells v; v0 in the same shape in T . Moreover, in this case,

c.u/ � c.u0/

k
D c.v/ � c.v0/:

Both the non-extended and the extended Littlewood k-quotient maps have these
properties. The proof for the non-extended map follows from the proof for the extend-
ed map, which is given in Appendix A.

3. Vertex models, Yang–Baxter equations, and partition functions

In this section, we introduce several types of vertex models. We show that these mod-
els are integrable in the sense that they satisfy several Yang–Baxter equations. Then
we use these vertex models to construct certain families of partition functions. Study-
ing these families of partition functions, in particular the family in Definition 3.8, will
be the main focus of the rest of the paper.

We begin with some notation. For a vector I D .I1; : : : ; Ik/ 2 Rk , we define

jI j D

kX
mD1

Ii :
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For vectors I D .I1; : : : ; Ik/;J D .J1; : : : ; Jk/ 2 Rk , we define

'.I ;J / D
X

1�i<j�k

IiJj :

For variables x and t and an integer n � 0, we define the t -Pochhammer symbol

.xI t /n D

n�1Y
mD0

.1 � xtm/:

We are now ready to define our vertices algebraically. We will define five vertices:
the L-matrix, the L0-matrix, the R-matrix, the R0-matrix, and the R00-matrix. The L-
and L0-matrices are families of functions .¹0; 1ºk/4 ! CŒx; t �, one for each integer
k � 0; theR-,R0-, andR00-matrices are families of functions .¹0; 1ºk/4!C.x; y; t/,
one for each integer k � 0. In other words, each vertex associates a weight (either
a polynomial in x, t or a rational function in x, y, t ) to every 4-tuple of vectors in
¹0; 1ºk for each integer k � 0. Table 1 gives the algebraic definitions of these vertices.

Type of
vertex

Algebraic definition

L L
.k/
x .I ;J ;K ;L/ D 1ICJDKCL

Qk
iD1 1IiCJi¤2 � x

jLjt'.L;ICJ /

L0 L0
.k/
x .I ;J ;K ;L/ D 1ICJDKCL

Qk
iD1 1Ki�Ji � xjLjt'.L;K�J /

R R
.k/

y=x
.I ;J ;K ;L/ D 1ICJDKCL

Qk
iD1 1Ji�Ki � .�1/jJ j�jK j.y=x/jJ j

� .x=yI t /jJ j�jK jt
'.J ;K�J /

R0 R0
.k/

y=x
.I ;J ;K ;L/ D 1ICJDKCL

Qk
iD1 1IiCJi¤2 � .x=y/

jLj

� .�x=yI t /�1
jK jCjLj

t'.L;KCL/

R00 R00
.k/

x=y
.I ;J ;K ;L/ D 1ICJDKCL

Qk
iD1 1Ki�Ji � .x=y/jLj

� .x=yI t /jK j�jJ jt
'.L;K�J /

Table 1. Algebraic definitions of the L-, L0-, R-, R0-, and R00-matrices.

However, it is often useful to think of a vertex graphically. We can draw a vertex
as a face with four incident edges, each labeled by an element of ¹0; 1ºk . The face
takes one of two forms,

J L

K

I

(a box) or

I

J K

L

(a cross).

The edge labels describe colored paths moving through the face south-west-to-north-
east (for a box) or left-to-right (for a cross). If an edge has the label I D .I1; : : : ; Ik/ 2
¹0; 1ºk , then for each i 2 Œk�, a path of color i is incident at the edge if and only if
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Ii D 1. For example, with k D 2 (letting blue be color 1 and red be color 2), the
path configuration associated to the edge labels I D .0; 1/, J D .1; 0/, K D .0; 1/,
L D .1; 0/ is

(for a box) or (for a cross).

The factor of 1ICJDKCL that appears in the algebraic definitions of all five ver-
tices imposes a path conservation restriction: in order for a vertex to have a non-zero
weight, the paths entering the vertex and the paths exiting the vertex must be the same.
To define the vertex weights graphically, we start by defining the weights in the case
k D 1 in Table 2.

Type of
vertex

One-color definition

L
j l

k

i

x :

L
.1/
x .i; j; k; l/: 1 x x 1 1

L0
j l

k

i

x :

L0
.1/
x .i; j; k; l/: 1 1 x 1 x

R

iy

jx k

l

:

R
.1/

y=x
.i; j; k; l/: 1 � y=x y=x 1 y=x 1

R0

iy

jx k

l

:

R0
.1/

y=x
.i; j; k; l/: 1

1Cy=x
y=x
1Cy=x

1
1Cy=x

y=x
1Cy=x

1

R00

iy

jx k

l

:

R00
.1/

x=y
.i; j; k; l/: 1 � x=y 1 x=y x=y 1

Table 2. Graphical definitions of the L-, L0-, R-, R0-, and R00-matrices in the case k D 1.
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The k-color weights are then defined in terms of the one-color weights in Table 3.

Type of vertex k-color definition

L L
.k/
x .I ;J ;K ;L/ D

Qk
iD1 L

.1/

xtıi
.Ii ; Ji ; Ki ; Li /,

where ıi D # colors greater than i that are present
L0 L0

.k/
x .I ;J ;K ;L/ D

Qk
iD1 L

0.1/

xt
ı0
i

.Ii ; Ji ; Ki ; Li /,
where ı0

i
D # colors greater than i of the form

R R
.k/

y=x
.I ;J ;K ;L/ D

Qk
iD1R

.1/

y=.xt"i /
.Ii ; Ji ; Ki ; Li /,

where "i D # colors greater than i of the form
R0 R0

.k/

y=x
.I ;J ;K ;L/ D

Qk
iD1R

0.1/

y=.xt
"0
i /
.Ii ; Ji ; Ki ; Li /,

where "0
i
D # colors greater than i that are present

R00 R00
.k/

x=y
.I ;J ;K ;L/ D

Qk
iD1R

00.1/

t
"00
i x=y

.Ii ; Ji ; Ki ; Li /,

where "00
i
D # colors greater than i of the form

Table 3. Graphical definitions of the L-, L0-, R-, R0-, and R00-matrices for general k.

We leave it as an exercise for the reader to check that the algebraic and graphical
definitions are equivalent.

We remark that the L-matrix and the R-matrix appeared in [13]. Moreover, by the
following lemma, the weights of all five vertices can be realized as degenerations of
the vertex weights Wz.A;BIC;D j r; s/ from [1, Definition 5.1.1].

Lemma 3.1. We adopt the notation of [1], except we use t in place of q. In particular,
we let Wz.A;BIC;D j r; s/ be the vertex weights from [1, Definition 5.1.1] with t in
place of q. Then

x

A

B

C

D D lim
˛!0

.�˛/d lim
ˇ!0

ˇ�2dWx=˛.A;BIC;D j .x=˛/1=2; ˇ/;

y

A

B

C

D D lim
Y!0

Y �d lim
S!0

W1.A;BIC;D j Sy�1=2; SY 1=2/;

y

x

A

B C

D
D lim
˛!0

Wx=y.A;BIC;D j .x=˛/1=2; .y=˛/1=2/;

y

x

A

B C

D
D lim
˛!0

Wx=˛.A;BIC;D j .x=˛/1=2; .�y=˛/�1=2/;

y

x

A

B C

D
D lim
S!0

W1.A;BIC;D j Sx�1=2; Sy�1=2/:
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Proof. This follows from various corollaries in [1, Section 8.3] along with the alge-
braic definitions of the matrices L (white box), L0 (purple box), R (white cross),
R0 (yellow cross), and R00 (orange cross),

• [1, Corollary 8.3.6] for the L-matrix,

• [1, Corollary 8.3.4] for the L0-matrix,

• [1, Corollary 8.3.1] (substituting s D .y=˛/1=2) for the R-matrix,

• [1, Corollary 8.3.8] (substituting s D .�y=˛/�1=2) for the R0-matrix,

• [1, Corollary 8.3.3] for the R00-matrix.

It turns out that these vertices satisfy three Yang–Baxter equations. All three
follow from [1, Proposition 5.1.4] and Lemma 3.1; for interested readers, we give
a detailed derivation of Propositions 3.3 and 3.4 in Appendix C. Proposition 3.2 is
proven in a different way in [13, Theorem 4.1].

Proposition 3.2. The L- and R-matrices satisfy the Yang–Baxter equation

X
interior paths

w

0B@
x

yJ1

I1

K1

I3

J3

K3 1CA D X
interior paths

w

0B@
y

xJ1

I1

K1

J3

I3

K3 1CA
for any choice of boundary conditions I1, J1, K1, I3, J3, K3.

Proposition 3.3. The L-, L0-, and R0-matrices satisfy the Yang–Baxter equation

X
interior paths

w

0B@
x

yJ1

I1

K1

I3

J3

K3 1CA D X
interior paths

w

0B@
y

xJ1

I1

K1

J3

I3

K3 1CA
for any choice of boundary conditions I1, J1, K1, I3, J3, K3.

Proposition 3.4. The L0- and R00-matrices satisfy the Yang–Baxter equation

X
interior paths

w

0B@
x

yJ1

I1

K1

I3

J3

K3 1CA D X
interior paths

w

0B@
y

xJ1

I1

K1

J3

I3

K3 1CA
for any choice of boundary conditions I1, J1, K1, I3, J3, K3.
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Remark 3.5. Let us say a few words about where the weightsWz [1, Definition 5.1.1]
and the YBE [1, Proposition 5.1.4] come from. Bazhanov and Shadrikov [4] con-
structed the fundamental R-matrix for the quantum affine superalgebra Uq.bsl.mjn//,
and showed that it satisfied the Yang–Baxter equation. (Although this was not the
method used in [4, Section 3], the fact that this matrix satisfies the Yang–Baxter
equation can be verified via a direct computation using the explicit formulae for its
entries.) Aggarwal, Borodin, and Wheeler [1] constructed the weights Wz by apply-
ing the fusion procedure originating in [20] to the fundamental R-matrix, special-
izing to m D 1, and applying analytic continuation. The Yang–Baxter equation for
the weights Wz falls out from the Yang–Baxter equation for the fundamental R-
matrix.

We use these vertices to construct three classes of partition functions, the first of
which was studied in [13]. Given a lattice L, the associated partition function isX

C2LC.L/

weight.C /;

where LC.L/ is the set of valid configurations on the lattice L. In what follows, let

�=� D .�.1/=�.1/; : : : ; �.k/=�.k//

be a k-tuple of skew partitions, each having p parts.

Theorem 3.6 ([13, Theorem 3.4]). The coinversion LLT polynomial L�=�.XnI t / is
the partition function associated to the lattice

Wn.�=�/ WD :::

: : :

�

�

x1

xn

Definition 3.7. We define LP
�=�

.XnI t / to be the partition function associated to the
lattice

Pn.�=�/ WD :::

: : :

�

�

x1

xn
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Definition 3.8. We define LS
�=�

.XnIYmI t / to be the partition function associated to
the lattice

Sn;m.�=�/ WD

:::

:::

: : :

�

�

x1

xn

y1

ym

Often, when it is clear from context, we will abuse notation and let the drawing of
the lattice be equal to the partition function of the vertex model on the lattice.

4. Identities of supersymmetric LLT polynomials

The main goal of this section is to establish various properties of the partition func-
tions LS

�=�
from Definition 3.8. These include four properties (summarized in The-

orem 1.1) which generalize four properties that uniquely characterize the supersym-
metric Schur polynomials.

Let P .k/p be the set of k-tuples of partitions, each having p parts. Given �;� 2
P
.k/
p and a non-negative integer n, there is a bijection

 W LC.Wn.�=�//! LC.Pn.�
0=�0//;

whereWn.�=�/ is defined in Theorem 3.6 andPn.�0=�0/ is defined in Definition 3.7.
Explicitly, .C/ is obtained fromC by inverting the vertical parts of the paths, reflect-
ing the lattice over its left edge, changing each color i to color k � i , and making the
vertices purple. For example,

! ! ! !

where we have done each step in order (and where blue is color 1 and red is color 2).
Fix �;� 2 P .k/p . Also fix a sufficiently large number of columns; specifically,

the number of columns must be larger than each p C �.i/1 and p C �.i/1 . If �=� is
a horizontal strip, then there is a unique configuration C�=� on a single white row
with top boundary �, bottom boundary �, and empty left/right boundaries. Similarly,
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if �=� is a vertical strip, then there is a unique configuration on a single purple row
with top boundary �, bottom boundary �, and empty left/right boundaries.

Lemma 4.1. There exists a function gWP .k/p ! Z�0 such that

L�=�.xI t / D t
g.�/�g.�/LP

�0=�0.xI t
�1/

for all �;� 2 P .k/p such that �=� is a horizontal strip.

Proof. Fix �;� 2 P .k/p such that �=� is a horizontal strip. Let C D C�=�. Note
that C is the unique configuration on a single white row with top boundary �, bottom
boundary �, and empty left/right boundaries. Moreover,  .C/ is the unique configu-
ration on a single purple row with top boundary �0, bottom boundary �0, and empty
left/right boundaries. Thus

L�=�.xI t / D weight.C / D x˛tˇ ;

LP
�=�.xI t / D weight. .C // D x
 tı

for some non-negative integers ˛, ˇ, 
 , ı. Note

˛ D #¹.i; j / j the i -th smallest color exits right in the b-th leftmost box in C º

D #¹.i; j / j the i -th largest color exits right in the b-th rightmost box

in  .C/º D 
:

Therefore,

L�=�.xI t / D x
˛tˇ D tˇCıx
 t�ı D tˇCıLP

�=�.xI t
�1/:

Note that

ˇ C ı D #¹.i; j; b/ j i < j , in box b of C color i exits right and color j is presentº

C #¹.i 0; j 0; b0/ j i 0 > j 0, in box b0 of  .C/ color i 0 is vertical and color j 0

exits rightº

D #¹.i; j; b/ j i < j , in box b of C color i exits right and color j is presentº

C #¹.i; j; b/ j i < j , in box b of C color i is absent and color j enters

from the leftº D
X
b

X
i<j

1b is “good” for i and j ;

where we say a box b is “good” for the colors i < j if either color i exits right and
color j is present, or color i is absent and color j enters from the left. Therefore,

L�=�.xI t / D t
zg.�=�/LP

�0=�0.xI t
�1/;
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where we have defined

zg.�=�/ WD
X

boxes b
of C�=�

X
colors
i<j

1b is “good” for i and j :

We can recursively define the desired function g by the rule

g.�/ D

8̂̂<̂
:̂
g.�/C zg.�=�/ if there exists � 2 P .k/p � ¹�º such that �=� is

a horizontal strip;

0 otherwise (i.e., if � D 0).

Provided that g.�/ is well defined (i.e., g.�/C zg.�=�/ is independent of �) for all
� 2 P

.k/
p ,

L�=�.xI t / D t
zg.�=�/LP

�0=�0.xI t
�1/ D tg.�/�g.�/LP

�0=�0.xI t
�1/

for all �;� 2 P .k/p such that �=� is a horizontal strip. To show g is well defined, we
proceed by induction on the number of cells in �. Clearly, g.0/ D 0 is well defined.
Fix � 2 P .k/p � ¹0º and assume g is well defined on elements of P .k/p with strictly
fewer boxes than �. Fix ˛;� 2 P .k/p � ¹�º such that �=˛ and �=� are horizontal
strips. There exist (not necessarily distinct)

ˇ0 D 0; : : : ; ˇr�1 D ˛; ˇr D � 2 P .k/p ;

�0 D 0; : : : ; �r�1 D �; �r D � 2 P .k/p

such that ˇi=ˇi�1 and �i=�i�1 are horizontal strips for all i . Note that each sequence
completely determines a configuration of paths on an r �M lattice with top bound-
ary � and bottom boundary 0, since they determine the state of the paths at every
row.

Since the two configurations have the same top and bottom boundaries, it is pos-
sible to get from one configuration to the other via corner flips

$

Some straightforward computations (which we verified with a computer) show that
for any configuration on a 2 � 2 white lattice and for any colors h < i < j such that
color i has the form
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in the configuration, flipping color i changes neither the number of boxes that are
“good” for h and i , nor the number of boxes that are “good” for i and j . Using the
flipping argument repeatedly, we see that the quantityX

b

X
i<j

1b is “good” for i and j

is the same for both configurations. Therefore,

zg.ˇr=ˇr�1/C zg.ˇr�1=ˇr�2/C � � � C zg.ˇ1=ˇ0/

D zg.�r=�r�1/C zg.�r�1=�r�2/C � � � C zg.�1=�0/:

Applying the inductive hypothesis, we have

zg.ˇr=ˇr�1/C g.ˇr�1/ � g.ˇr�2/C � � � C g.ˇ1/ � g.ˇ0/

D zg.�r=�r�1/C g.�r�1/ � g.�r�2/C � � � C g.�1/ � g.�0/:

The sums telescope to give

zg.ˇr=ˇr�1/C g.ˇr�1/ � g.ˇ0/ D zg.�r=�r�1/C g.�r�1/ � g.�0/;

which we can rewrite as

zg.�=˛/C g.˛/ � g.0/ D zg.�=�/C g.�/ � g.0/:

Therefore, g.˛/C zg.�=˛/ D g.�/C zg.�=�/.

Corollary 4.2. For any � 2 P .k/p , g.�/ D g.�0/.

Proof. We proceed by induction on the number of cells in �. Note that g.0/ D 0 D
g.00/. Fix � 2 P .k/p � ¹0º and assume g.�/ D g.�0/ for all � 2 P .k/p with strictly
fewer cells than �. Since �¤ 0, there exists � 2 P .k/p that can be obtained by remov-
ing a single cell u from �. We want to show g.�/ D g.�0/. It is enough to show
zg.�=�/ D zg.�0=�0/, since then

g.�/ D g.�/C zg.�=�/ D g.�0/C zg.�0=�0/ D g.�0/:

Let �.i/ be the partition to which u belongs. Since �=� consists of the single
cell u in �.i/=�.i/, every color in every box in C�=� is either vertical or absent, with
the exception of the color i in two adjacent boxes, which has the form

b bC 1
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Note thatC�0=�0 is exactly the configuration of .C�=�/with white in place of purple.
Therefore, every color in every box in C�0=�0 is either vertical or absent, with the
exception of the color i 0 D k � i in two adjacent boxes, which has the form

b0 � 1 b0

We have

zg.�=�/ D #¹j > i j j is vertical in box b of C�=�º

C #¹h < i j h is absent in box b C 1 of C�=�º

D #¹j 0 < i 0 j j 0 is absent in box b0 of C�0=�0º

C #¹h0 > i 0 j h0 is vertical in box b0 � 1 of C�0=�0º D zg.�0=�0/:

Equipped with Lemma 4.1 and Corollary 4.2, we can now prove the following
identity relating LS

�=�
and LS

�0=�0
. This is equivalent to [15, Proposition 2.2].

Theorem 4.3. For any �;� 2 P .k/p ,

LS
�=�.XnIYmI t / D t

g.�/�g.�/LS
�0=�0.YmIXnI t

�1/:

Proof. If �=� is a horizontal strip, then by Lemma 4.1, we have

L�=�.xI t / D t
g.�/�g.�/LP

�0=�0.xI t
�1/:

If �=� is a vertical strip, then by Lemma 4.1 (with t�1 in place of t and �0=�0 in
place of �=�) and Corollary 4.2, we have

LP
�=�.xI t / D t

g.�/�g.�/L�0=�0.xI t
�1/:

Using these lemmas at each row of our lattice, we have

LS
�=�.XnIYmI t / D

:::

:::

: : :

�

�

x1

xn

y1

ym

D

X
LP
�=˛mCn�1

.ymI t / � � �L
P
˛nC1=˛n

.y1I t /L˛n=˛n�1.xnI t / � � �L˛1=�.x1I t /

D

X
tg.�/�g.�/L

�0=˛mCn�1
0 .ymI t

�1/ � � �L
˛nC1

0
=˛n
0 .y1I t

�1/

�LP

˛n
0
=˛n�1

0 .xnI t
�1/ � � �LP

˛1
0
=�0
.x1I t

�1/
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D tg.�/�g.�/
X

L�0=ˇmCn�1.ymI t
�1/ � � �LˇnC1=ˇn.y1I t

�1/

�LP
ˇn=ˇn�1

.xnI t
�1/ � � �LP

ˇ1=�0
.x1I t

�1/

D tg.�/�g.�/

:::

:::

: : :

�0

�0

x1

xn

y1

ym

D tg.�/�g.�/

:::

:::

: : :

�0

�0

y1

ym

x1

xn

D LS
�0=�0.YmIXnI t

�1/;

where

• the sums in the second and third lines are over all ˛0 D �; : : : ;˛mCn D � such
that ˛i=˛i�1 is a horizontal strip for all i � n and a vertical strip for all i > n,

• the sum in the fourth line is over all ˇ0 D �0; : : : ;ˇmCn D �0 such that ˇi=ˇi�1

is a vertical strip for all i � n and a horizontal strip for all i > n,

• the second-to-last equality uses repeated applications of Proposition 3.3, as illus-
trated below:

: : :

: : :

xi

yj
D

: : :

: : :

yj

xi
D

: : :

: : :

yj

xi

D
: : :

: : :

yj

xi

The technique used to swap a white row and a purple row at the end of the previous
proof is sometimes called the “train argument.” This technique is used again to prove
the following lemma.

Lemma 4.4. The partition function associated to any lattice that can be obtained
from the lattice Sn;m (Definition 3.8) by permuting the rows equals LS

�=�
.XnIYmI t /.

In particular, LS
�=�

.XnIYmI t / is symmetric in the X and Y variables separately.

Proof. Two rows can be swapped using the train argument along with Proposition 3.2
(to swap two white rows), Proposition 3.3 (to swap a white row and a purple row), or
Proposition 3.4 (to swap two purple rows).

Lemma 4.5. Suppose n;m � 1. Then

LS
�=�.Xn�1; r IYm�1;�r I t / D LS

�=�.Xn�1IYm�1I t /:
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Proof. Using Lemma 4.4, we can write

LS
�=�.Xn�1; r IYm�1;�r I t /

:::

:::

: : :

�

�

x1

xn�1

y1

ym�1

r

�r

D

X
˛

: : :

˛

�

r

�r

:::

:::

: : :

�

˛

x1

xn�1

y1

ym�1

We will show that, for all ˛¤ �, there is an involution '˛ on the set of configurations
of the lattice

L�=˛ D
: : :

˛

�

r

�r

such that weight.'˛.C // D �weight.C / for all C . Therefore,

LS
�=�.Xn�1; r IYm�1;�r I t / D

: : :

�

�

r

�r

:::

:::

: : :

�

�

x1

xn�1

y1

ym�1

D

:::

:::

: : :

�

�

x1

xn�1

y1

ym�1

D LS
�=�.Xn�1IYm�1I t /:

Fix ˛ ¤ � and fix a configuration C on the lattice L�=˛. Since ˛ ¤ �, there exist
two consecutive columns c and c C 1 of C and a color i such that, in columns c and
c C 1 of C , color i has the form

or

Let c be the rightmost column for which there exists a color of this form in columns c
and cC 1, and let i be the largest color of this form in columns c and cC 1. We define
'˛.C / to be the result of flipping color i in columns c and c C 1

$
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Clearly, '˛ is an involution. To show

weight.'˛.C // D �weight.C /;

we need to show

weight

 
r

�r
!
D �weight

 
r

�r
!

(4.1)

regardless of the paths taken by the other colors. However, by the maximality of c
and i , we know that every color not equal to i must have the form

and every color greater than i must not have the form

or

With these constraints, some straightforward computations (which we verified with
a computer) show that equation (4.1) holds.

Combining Lemmas 4.4 and 4.5, we can now conclude that the polynomials
LS
�=�

.X IY I t / are supersymmetric in the X and Y variables.

Definition 4.6. A family of polynomials ¹p.XnI YmI t / j n; m 2 Z�0º is supersym-
metric if

• p.�.Xn/IYmI t /D p.XnIYmI t / for any permutation � 2 Sn (i.e., p.XnIYmI t / is
symmetric in the X variables),

• p.XnI �.Ym/I t /D p.XnIYmI t / for any permutation � 2 Sm (i.e., p.XnIYmI t / is
symmetric in the Y variables),

• p.Xn�1; r IYm�1;�r I t / D p.Xn�1IYm�1I t / when n;m � 1.

Theorem 4.7. The polynomials LS
�=�

.XnIYmI t / are supersymmetric in theX and Y
variables.

Now we proceed by proving a certain restriction property for the polynomials
LS
�=�

.XnIYmI t /.

Lemma 4.8 (Restriction). We have

LS
�=�.Xn�1; 0IYmI t / D LS

�=�.Xn�1IYmI t /;

LS
�=�.XnIYm�1; 0I t / D LS

�=�.XnIYm�1I t /:
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Proof. Using Lemma 4.4, we can write

LS
�=�.Xn�1; 0IYmI t / D

:::

:::

: : :

�

�

x1

xn�1

y1

ym

0

D

X
˛

: : :

˛

�

0

:::

:::

: : :

�

˛

x1

xn�1

y1

ym

It is easy to see that

: : :

˛

�

0 D 1�D˛:

Therefore,

LS
�=�.Xn�1; 0IYmI t / D

:::

:::

: : :

�

�

x1

xn�1

y1

ym

D LS
�=�.Xn�1IYmI t /: (4.2)

A similar argument shows that

LS
�=�.XnIYm�1; 0I t / D LS

�=�.XnIYm�1I t /:

Alternatively, we can deduce

LS
�=�.XnIYm�1; 0I t /

Theorem 4.3
D tg.�/�g.�/LS

�0=�0.Ym�1; 0IXnI t
�1/

(4.2)
D tg.�/�g.�/LS

�0=�0.Ym�1IXnI t
�1/

Theorem 4.3
D tg.�/�g.�/.t�1/g.�

0/�g.�0/LS
�=�.XnIYm�1I t /

Corollary 4.2
D LS

�=�.XnIYm�1I t /:

Lemma 4.9. The polynomial LS
�=�

.XnIYmI t / is homogeneous in the X and Y vari-
ables of degree

j�=�j D j�j � j�j;

that is,
LS
�=�.rXnI rYmI t / D r

j�=�jLS
�=�.XnIYmI t /:
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Proof. This follows from the fact that in any configuration of the lattice

:::

:::

: : :

�

�

rx1

rxn

ry1

rym

the total number of right steps taken by the paths is j�=�j.

4.1. The factorization property

The goal of this subsection is to prove the following lemma.

Lemma 4.10 (Factorization). Fix � 2 P .k/p . Suppose there exist � and � such that for
all i ,

�.i/ D .mC �
.i/
1 ; : : : ; mC � .i/n ; �

.i/
1 ; : : : ; �

.i/
s /;

where s D p � n. Then

LS
�.XnIYmI t / D L�.XnI t / � t

g.�/L�0.YmI t
�1/ �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /:

Throughout this subsection, let �, �, and � be as in the above lemma. Moreover,
it is easy to see that the above lemma holds if n D 0 or m D 0, so we will assume
n;m � 1 throughout the rest of this subsection. To prove the above lemma, we need
two smaller lemmas.

Lemma 4.11. Let �, �, and � be as in Lemma 4.10. The polynomial

tg.�/L�0.YmI t
�1/ D LP

� .YmI t /

is a factor of the polynomial LS
�
.XnIYmI t /. In fact,

LS
�.XnIYmI t / D LP

� .YmI t / �L
S
mC�.XnIYmI t /;

where .mC �/.i/j D mC �
.i/
j for all i and j .

Lemma 4.12. Let �, �, and � be as in Lemma 4.10. Then

LS
�.Xn�1; r IYm�1;�t

lr I t / D 0

for all l 2 ¹0; : : : ; k � 1º.

Given these two lemmas, let us prove Lemma 4.10.
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Proof of Lemma 4.10. Fix l 2 ¹0; : : : ; k � 1º. Since

LS
�.Xn�1; r IYm�1;�t

lr I t / D 0;

by Lemma 4.12, we know that t lxn C ym is a factor of LS
�
.XnI YmI t /. Thus, since

LS
�
.XnI YmI t / is symmetric in the X and Y variables separately by Lemma 4.4, we

know that
nY
iD1

mY
jD1

.t lxi C yj /

is a factor of LS
�
.XnIYmI t /. Since this holds for all l 2 ¹0; : : : ; k � 1º, we know that

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /

is a factor of LS
�
.XnI YmI t /. Moreover, since the polynomial tg.�/L�0.YmI t�1/ is

a factor of LS
�
.XnIYmI t / by Lemma 4.11, we know that

tg.�/L�0.YmI t
�1/ �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /

is a factor of LS
�
.XnIYmI t /. Thus there is a polynomial f .XnIYmI t / such that

LS
�.XnIYmI t / D f .XnIYmI t / � t

g.�/L�0.YmI t
�1/ �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /: (4.3)

It remains to show f .XnIYmI t / D L�.XnI t /.
Combining equation (4.3) with Lemma 4.11, we get

LS
mC�.XnIYmI t / D f .XnIYmI t / �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /: (4.4)

Given a polynomial p.XnI YmI t /, let degY .p.XnIYmI t // be the total degree of
p.XnI YmI t / in the Y variables. Recall LS

mC�.XnI YmI t / is the partition function
associated to the lattice Sn;m.mC �/ from Definition 3.8.

In any configuration of this lattice, a given path can take at most one step to the
right in a purple row. Thus, since there are m purple rows and since there are n paths
of each of the k colors, we have

degY .L
S
mC�.XnIYmI t // � mnk D degY

� k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /

�
:

This inequality along with equation (4.4) implies f .XnI YmI t / D h.XnI t / for some
polynomial h.XnI t /. It remains to show h.XnI t / D L�.XnI t /.
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We can rewrite equation (4.4) as

:::

:::

: : :

0

mC �

x1

xn

y1

ym

D h.XnI t / �

k�1Y
lD0

nY
iD1

mY
jD1

.t lxi C yj /:

We interpret both sides of this equation as polynomials in the Y variables. On the
right-hand side, the coefficient of ynk1 � � � y

nk
m is h.XnI t /. For the lattice on the left-

hand side, a configuration has a weight of the form p.XnI t / � y
nk
1 � � � y

nk
m for some

polynomial p.XnI t / if and only if each path of each color takes one step to the right
in each purple row. Thus the ynk1 � � �y

nk
m term on the left-hand side is exactly

:::

:::

: : :

0

mC �

�

x1

xn

y1

ym

D :::

: : :

0

�

x1

xn

� :::

: : :

mC �

�

y1

ym

D L�.XnI t / � y
nk
1 � � �y

nk
m :

(Here, each path takes one step to the right in each purple row.) Thus

h.XnI t / D L�.XnI t /:

We are left to prove Lemmas 4.11 and 4.12.

Proof of Lemma 4.11. Using Theorem 4.3 and the fact that g.0/ D 0, we have

LP
� .YmI t / D LS

� . � IYmI t / D t
g.�/LS

�0.YmI � I t
�1/ D tg.�/L�0.YmI t

�1/:

Recall LS
�
.XnIYmI t / is the partition function associated to the lattice

:::

:::

: : :

0

�

x1

xn

y1

ym
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Any configuration of this lattice must have the form

:::

:::

: : :

0

�

x1

xn

y1

ym

p : : : nC1n n�1 : : : 2 1

where we have labeled the columns for convenience. Fix j 2 ¹1; : : : ; mº. Note that
a path can take at most one step to the right in a given purple row. Since

�.i/n D mC �
.i/
n � m

for all i , the paths starting in column n must exit the m-th purple row weakly right
of column n � m, so the paths starting in column n must exit the j -th purple row
weakly right of column n� j . Since the paths starting in column nC 1 enter the first
purple row in column n C 1, they must exit the j -th purple row weakly to the left
of column nC 1 � j . This argument shows that the remainder of the paths starting
in columns nC 1; : : : ; p and the remainder of the paths starting in columns 1; : : : ; n
can be chosen independently of each other, and that the weight of the overall config-
uration is the weight of the configuration consisting of the paths starting in columns
nC 1; : : : ; p times the weight of the configuration consisting of the paths starting in
columns 1; : : : ; n.

It follows that

LS
�.XnIYmI t / D

:::

:::

: : :

0

�¹nC1;:::;pº

x1

xn

y1

ym

p : : : nC1n n�1 : : : 2 1

�

:::

:::

: : :

0

�¹1;:::;nº

x1

xn

y1

ym

p : : : nC1n n�1 : : : 2 1

where for a set S D ¹s1 < � � � < sj º � ¹1; : : : ; pº, we define

�S D .�
.1/
S ; : : : ; �

.k/
S / with �.i/S D .�

.k/
s1
; : : : ; �.k/sj /:



A. Gitlin and D. Keating 600

Since �¹nC1;:::;pº D �, the first factor is exactly

:::

:::

: : :

0

�

x1

xn

y1

ym

p : : :nC1nn�1: : : 2 1

D :::

: : :

0

�

y1

ym
D LP

� .YmI t /:

Since �¹1;:::;nº D mC �, the second factor is exactly

:::

:::

: : :

0

mC �

x1

xn

y1

ym

p : : :nC1nn�1: : : 2 1

D

:::

:::

: : :

0

mC �

x1

xn

y1

ym

D LS
mC�.XnIYmI t /:

Proof of Lemma 4.12. By Lemma 4.4, LS
�
.Xn�1; r I Ym�1; �t

lr I t / is the partition
function associated to the lattice

:::

:::

: : :

0

�

x1

xn�1

y1

ym�1

r

�t lr

Any configuration of this lattice must have the form

:::

:::

: : :

0

�

x1

xn�1

y1

ym�1

r

�t lr

p : : :nC1nn�1: : : 2 1
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where we have labeled the columns for convenience. In a configuration, if there exists
a color i such that the path of color i starting in column 1 goes vertically in the bottom
two rows, then color i must have the form

:::

:::

: : :

0

�

x1

xn�1

y1

ym�1

r

�t lr

p : : : nC1 n n�1 : : : 2 1

A path can take at most one step to the right in a given purple row, so the path of
color i starting in column n can make at most m � 1 total steps to the right in the
lattice. However, since

�.i/n D mC �
.i/
n � m;

the path of color i starting in column n must make at leastm total steps to the right in
the lattice. This is a contradiction, which means that in any configuration, every path
starting in column 1 must make at least one step to the right somewhere in the bottom
two rows. Therefore,

LS
�=�.Xn�1; r IYm�1;�t

lr I t /
:::

:::

: : :

0

�

x1

xn�1

y1

ym�1

r

�t lr

D

X
˛

: : :

0

˛

r

�t lr

:::

:::

: : :

˛

�

x1

xn�1

y1

ym�1

where the sum is over all ˛ such that ˛.i/1 > 0 for all i . We will show that for all
such ˛, there is an involution '˛ on the set of configurations of the lattice

L˛ D
: : :

0

˛

r

�t lr

such that weight.'˛.C // D �weight.C / for all C . Therefore,

LS
�=�.Xn�1; r IYm�1;�r I t / D 0:
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Fix ˛ with ˛.i/1 > 0 for all i and fix a configuration C on the lattice L˛. We label
the columns for convenience as follows:

: : :

p : : : 2 1 0 �1 : : :

0

˛

r

�t lr

Given a color i , let ci be the column in which the path of color i starting in column 1
exits the lattice through the top. Since every path starting in column 1 must make at
least one step to the right, we have ci � 0 for all i . We define an ordering � on the
colors by

i � j , ci > cj or ci D cj and i < j:

Let i be the .l C 1/-th largest color in this ordering (so that l D #¹j j i � j º). In
columns ci C 1 and ci of C , color i has the form

or

We define '˛.C / to be the result of flipping color i in columns ci C 1 and ci

$

Clearly, '˛ is an involution. To show weight.'˛.C // D �weight.C /, we need to
show

weight

 
r

�t lr

!
D �weight

 
r

�t lr

!
(4.5)

regardless of the paths taken by the other colors. We label the boxes for convenience
as follows:

12

3 4

Compared to the configuration with color i absent, the presence of color i in the form

r

�t lr

contributes �t lr � ta to the overall weight, where

a D #¹j > i j j is vertical in box 2º C #¹j < i j j exits right in box 3º:
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Compared to the configuration with color i absent, the presence of color i in the form

r

�t lr

contributes r � tb to the overall weight, where

b D #¹j > i j j appears in box 3º C #¹j < i j j exits right in box 1º

C #¹j < i j j exits right in box 3º

C #¹j < i j j exits right in box 4º:

It is easy to see that

b � a D #¹j > i j j appears in box 3º � #¹j > i j j is vertical in box 2º

C #¹j < i j j exits right in box 1º

C #¹j < i j j exits right in box 4º

D #¹j > i j ci � cj º C #¹j < i j ci > cj º D #¹j j j � iº D l:

Therefore,

weight

 
r

�t lr

!

weight

 
r

�t lr

! D �t lr � ta
r � tb

D �t lCa�b D �1:

Thus equation (4.5) holds.

4.2. Swapping single rows

In this subsection, we prove an identity of the supersymmetric LLT polynomials in the
case p D 1 and � D 0. Since p D 1, � can be written as ..�1/; : : : ; .�k//. Moreover,
in any configuration of the lattice Sn;m.�/, there is exactly one path of each of the k
colors, and these paths enter the lattice through the bottom in the same column. Given
non-negative integers �1; : : : ; �k , we define

Inv..�1/; : : : ; .�k// D #¹a < b j �a > �bº:

Given � 2 P .k/1 , we say that � 2 P .k/1 is a rearrangement of � if there exists a permu-
tation � 2 Sk such that �i D ��.i/ for all i 2 ¹1; : : : ; kº.
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Proposition 4.13. Let � 2 P .k/1 . If � 2 P .k/1 is a rearrangement of �, then

LS
�.XnIYmI t / D t

Inv.�/�Inv.�/LS
� .XnIYmI t /:

Proof. We start with some simple reductions. It is enough to consider the case where
�1 � � � � � �k . Thus it is enough to show that, given i 2 ¹1; : : : ; k � 1º,

LS
�.XnIYmI t / D t �L

S
� .XnIYmI t /;

where �1 � � � � � �i > �iC1 � � � � � �k and

�j D

8̂̂<̂
:̂
�j ; j ¤ i; i C 1;

�iC1; j D i;

�i ; j D i C 1:

We will let blue be color i and red be color i C 1.
We will now define a bijection

�W LC.Sn;m.�//! LC.Sn;m.�//:

Fix a configuration C 2 Sn;m.�/. Since �i � �iC1, the column in which color i exits
the lattice is strictly to the right of the column in which color i C 1 exits the lattice.
Therefore, since color i and color i C 1 enter the lattice in the same column, C must
have a row in which color i enters weakly from the left and exits strictly to the right
of color i C 1. Thus C must have a vertex of the form

or

Consider the north-eastern-most vertex V of this form. Swap color i and color i C 1
in every vertex north-east of V . For example,

7!

and

7!
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The result is a configuration �.C / 2 LC.Sn;m.�//. It is clear that � is a bijection. We
will now compare weight.C / with weight.�.C //. There are four types of vertices to
consider.

(1) For the vertex V itself, the effect of applying � is

7! or 7!

In either case, it is easy to see that the weight before applying � is t times the
weight after applying �.

(2) For any vertex that is not north-east of V , � does not change the configuration,
so the weight is not changed.

(3) For any vertex that is north-east of V such that either color i or color i C 1
is absent in this vertex, � swaps color i or color i C 1, but the weight is not
changed.

(4) For any vertex that is north-east of V such that both color i and color i C 1
are present in this vertex, this vertex must have the form

Applying � swaps color i and color i C 1, resulting in

It is easy to see that the weight is not changed.

Therefore,
weight.C / D t � weight.�.C //

and the proposition follows.

Remark 4.14. The above proposition extends [13, Proposition 5.5], and in fact these
two propositions are proven in nearly identical ways.

5. Relating LS to G

The goal of this section is to relate the partition function LS
�=�

from Definition 3.8
to the super ribbon function G

.k/

�=�
from Definition 2.11. In [15], the authors con-

struct a lattice model whose partition function is equal to the spin LLT polynomials.
Lemma 5.6 below, which relates our vertex model to the spin LLT polynomials, can
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also be interpreted as a mapping between our vertex model and the one in [15] (see
Remark 5.7). We will adopt the following conventions. Fix a positive integer k. Let
�=� be the k-quotient of �=�. Let A D ¹1 < 2 < � � � < nº and A0 D ¹10 < 20 <

� � �< m0º. We use the ordering 1 < 2 < � � � < n < 10 < 20 < � � � < m0 on A [A0.
We begin by constructing a bijection

SSSYT.�=�/! LC.Sn;m.�=�//;

where LC.Sn;m.�=�// is the set of configurations on the lattice Sn;m.�=�/ from
Definition 3.8. We do this in the usual way in which each row of i -th tableaux maps
to a path of color i . Precisely, given T D .T .1/; : : : ; T .k// 2 SSSYT.�=�/, the cor-
responding C 2 LC.Sn;m.�=�// is constructed as follows. Fix i 2 Œk� and fix a row

c c C 1::: c C j � 1

:::

::: e1 e2 ::: ej T .i/

:::

in T .i/. (Here we have labeled the diagonal content lines going through the row.) The
corresponding path in C has color i , enters the lattice via the bottom of column c,
exits the lattice via the top of column c C j , and crosses from column c C l � 1 to
column c C l at ´

the a-th white row if el D a 2 A;

the a-th purple row if el D a0 2 A0

for each index l 2 Œj �. Recall that the Littlewood k-quotient map is a bijection

SRTk.�=�/! SSSYT.�=�/:

The composition of these two bijections gives a bijection

� W SRTk.�=�/! LC.Sn;m.�=�//:

Example 5.1. Let n D 3, m D 4, and k D 3. Recall Example 2.15.

1

2

1

2

3

10 20

1

10

30

30

40

 !

1

2

1

20

30

30

3 10 1 40

2

10
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The corresponding configuration is

x1

x2

x3

y1

y2

y3

y4

where blue is color 1, green is color 2, and red is color 3.

Remark 5.2. WhenmD 0, the bijection SSSYT.�=�/!LC.Sn;m.�=�// becomes
a bijection

SSYT.�=�/! LC.Wn.�=�//:

This bijection was used in [13] to prove Theorem 3.6.

Remark 5.3. The bijection � restricts to bijections

HRSk.�=�/! LC.W1.�=�//; VRSk.�=�/! LC.P1.�=�//

by artificially labeling each ribbon in a horizontal (vertical) k-ribbon strip with a 1 (10).

For the rest of this section, we will switch to drawing our Young diagrams in Rus-
sian convention, so that rows are oriented south-west-to-north-east and columns are
oriented south-east-to-north-west. The reason for this switch is to allow for an elegant
graphical interpretation of � . Let T 2 SRTk.�=�/ and C D �.T / 2LC.Sn;m.�=�//.
By the construction of � , we note that

(1) for each i 2 A, the horizontal ribbon strip ��i=��i�1 of ribbons labeled i
in T corresponds to the i -th white row in C ;

(2) for each i 0 2A0, the vertical ribbon strip ��i=��i�1 of ribbons labeled i 0 in T
corresponds to the i -th purple row in C .

Given a horizontal (vertical) ribbon strip inside T , we “drop down” the Maya dia-
grams of the top and bottom boundaries to obtain the top and bottom boundaries of
the corresponding white (purple) row in C . Moreover, the top and bottom boundaries
of the row uniquely determine the path configuration of the row.

Example 5.4. Take k D 3. Let blue be color 1, green color 2, and red color 3. Con-
sider the following horizontal 3-ribbon strip of shape .6; 6; 3; 0; 0; 0/=.0; 0; 0; 0; 0; 0/:
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We now color the steps on the top and bottom boundaries from left to right. A south-
east step in position i mod k gets color i . North-east steps are not colored,

We now “drop down” the steps on the top and bottom boundaries of the horizontal
3-ribbon strip to obtain the top and bottom boundaries of the corresponding white
row. The steps in positions .j � 1/k C 1; : : : ; .j � 1/k C k correspond to the j -th
leftmost vertex. A step of color i corresponds to a particle of color i , indicating that
a path of color i is incident at the edge,

With these top and bottom boundary conditions (and requiring that no paths be inci-
dent at the left and right edges of the row), there is a unique path configuration,
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Remark 5.5. We leave it as an exercise for the reader to verify that our graphical
interpretation of � is correct (see Lemma 2.16). We also leave it as an exercise for the
reader to check that the diagram

HRSk.�=�/ VRSk.�0=�0/

LC.W1.�=�// LC.P1.�
0=�0//

conjugate

� �

 

commutes. Here  is the bijection defined at the beginning of Section 4. (This result
is not needed in the rest of this paper.)

In order to relate LS
�=�

to G
.k/

�=�
, we must consider how the spin

spin.T / D
X

ribbonsR in T

.h.R/ � 1/

of a horizontal (vertical) ribbon strip T appears in the corresponding path configu-
ration �.T / of a single white (purple) row. Clearly, spin.T / equals the number of
positions that the tile

(two cells in the same column and ribbon) can be placed in T . For example, if T is

1

2

3

4

5

64

5

6

7

8

9

there are 4 such positions—cells 1 and 2, cells 2 and 3, cells 4 and 5, and cells 8
and 9—and indeed the spin is 4. We can count these positions according to the “slice”
containing the middle of each tile. In our example, the slices are given by

1 2 3 4 5 6 7 8 9
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so slices 2, 3, 4, and 6 each contribute 1 to the spin, and the other slices do not
contribute to the spin. In each slice, there are only four shapes that can appear:

(1) a column parallelogram (two adjacent halves of cells in the same column and
ribbon),

(2) a row parallelogram (two adjacent halves of cells in the same row and ribbon),

(3) a head triangle (half of the head of a ribbon),

(4) a tail triangle (half of the tail of a ribbon),

.1/ .2/ .3/ .4/

(Of course, a slice could also consist of a single south-east step or a single north-
east step.) Any other shapes cannot appear in a slice because otherwise the ribbon
containing the shape would either contain a 2� 2 square or not be a valid skew shape.
It is clear that the contribution of a slice to the spin equals the number of column
parallelograms in the slice.

In the following two lemmas, we use the above discussion to characterize the spin
in terms of �.T /, when T is a horizontal/vertical ribbon strip.

Lemma 5.6. Let T be a horizontal k-ribbon strip. In the corresponding white
row �.T /,

spin.T / D
X
a<b

�
# C # C # C #

�
;

where blue is color a and red is color b.

Proof. The fact that T is a horizontal ribbon strip restricts the possible forms of the
slices:

(1) If a head triangle appears, it must be at the bottom of the slice. This is because
the head of a ribbon must touch the south-east boundary.

(2) If a tail triangle appears, it must be at the top of the slice. Suppose the tail
triangle of ribbon R appears below a shape in ribbon S in slice i . Then, in
all slices in which both R and S appear, S is above R. Note that R appears
in slices i; : : : ; i C k as every ribbon has length k. Similarly, S appears in
slices i � j; : : : ; i � j C k for some j 2 ¹0; : : : ; kº. In particular, in slice
i � j C k, the head triangle of S appears above R, which contradicts the first
restriction.

With these restrictions in mind, one can show that each slice must have one of the
following five forms:
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:::

:::
:::

:::

:::

H1 H2 H3 H4 H5

Here
::: indicates arbitrarily many (possibly 0) copies of the shape, and south-east steps

on the top/bottom boundaries are colored as in our graphical interpretation of � (see
Example 5.4).

Remark 5.7. The five types of slices we draw here are in bijection with the five types
of allowed vertices given in [15, Figure 14]. To see this, suppose we are looking at
a slice whose top and bottom boundaries correspond to color a. Then we can map it
to a vertex of the form given in [15] by assigning arrows to the edges of the vertex
according to the rules:

(1) If the top boundary of the slice is a north-east (south-east) step, then the top
edge of the vertex gets a down (up) arrow. Similarly for the bottom boundary
of the slice.

(2) If the slice contains a head triangle, assign a left arrow to the k-th eastern
horizontal edge. If the slice contains a tail triangle, assign a left arrow to the
1-st western horizontal edge.

(3) If a ribbon whose head is in a slice of color b passes through the slice, then
assign left arrows to the .b C k � a mod k/-th eastern horizontal edge and
the ..b C k � a mod k/C 1/-st western horizontal edge.

(4) Otherwise, assign right arrows to the horizontal edges.

Assigning each slice a weight of x if there is a head triangle, and t#column parallelogram,
makes this a weight-preserving bijection. Through the bijection � defined above, the
rest of this lemma can be seen as giving a weight-preserving bijection between our
vertex model and that of [15].

We claim that there is a one-to-one correspondence between the five possible
forms of a slice in T and the five possible path configurations of the corresponding
color in the corresponding white vertex in �.T /,

H1$ W1, H2$ W2,

H3$ W3, H4$ W4, H5$ W5.



A. Gitlin and D. Keating 612

The correspondence is obvious for H3, H4, and H5 from the top/bottom boundary
conditions. Moreover, from the top/bottom boundary conditions, slices of the form H1
or H2 correspond to path configurations of the form W1 or W2. To show the corre-
spondence for H1 and H2, we will show that a slice of the form H2 always gives
a configuration of the form W2 and vice versa.

• Suppose slice i has the form H2. It contains the head triangle of a ribbon, so slice
i � k will contain the tail triangle of this ribbon. This slice then must have the
form H2 or H4. If slice i � k has the form H2, then we can repeat this argument
to show that slice i � 2k has the form H2 or H4. Since there are finitely many rib-
bons, eventually we find that slice i � jk has the form H4, for some positive inte-
ger j , and slices i � .j � 1/k; : : : ; i � k; i have the form H2. Since slice i � jk has
the form H4, the corresponding path configuration has the form W4, in which the
path exits right. Thus the path configuration corresponding to slice i � .j � 1/k
must have the path entering from the left, so it must have the form W2, in which
the path exits right. Repeating, we conclude that the path configuration corre-
sponding to slice i has the form W2.

• Suppose slice i corresponds to a path configuration of the form W2. We know
a path enters the slice from the left, so slice i � k must correspond to a path
configuration in which the path exits right. This path configuration must have
the form W2 or W4. If slice i � k corresponds to a path configuration of the
form W2, then we can repeat this argument to show that slice i � 2k corresponds
to a path configuration of the form W2 or W4. Since there are finitely many ver-
tices, eventually we find that slice i � jk corresponds to a path configuration of
the form W4 and slices i � .j � 1/k; : : : ; i � k; i correspond to path configura-
tions of the form W2, for some positive integer j . Since slice i � jk corresponds
to a path configuration of the form W4, it must have the form H4, so it contains the
tail triangle of a ribbon. We see that slice i � .j � 1/k contains the head triangle
of this ribbon, so this slice has the form H2. It follows that slice i � .j � 1/k also
contains the tail triangle of a ribbon. Repeating, we conclude that slice i has the
form H2.

Recall that slice i D .j � 1/k C a in T corresponds to color a in the j -th left-
most vertex V in �.T /. The contribution of this slice to spin.T / equals the number
of column parallelograms in the slice. Looking at the five possible forms of a slice,
we see that this equals zero if slice i has the form H1, which is equivalent to color a
being absent in V . Otherwise, it equals the number of ribbons R that appear in slice i
but whose head/tail triangles do not.

Let R be such a ribbon, and let slice s be the slice that contains the tail triangle
ofR. Since slice a contains a column parallelogram ofR but not the head/tail triangle
of R, we have s < i < s C k. Let b 2 ¹1; : : : ; kº be such that b � s mod k, and note
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that b ¤ a. If b < a, then the tail triangle of R appears in slice .j � 1/k C b, so slice
.j � 1/ � k C b has the form H2 or H4, so the path configuration of color b in V has
the form W2 or W4, so color b exits V to the right. If b > a, then the head triangle
of R appears in slice .j � 1/k C b, so slice .j � 1/k C b has the form H2 or H5, so
the path configuration of color b in V has the form W2 or W5, so color b enters V
from the right.

We can now conclude that

spin.T / D
X
V

X
a

1a appears in V �

�X
b<a

1b exits V to the right C
X
b>a

1b enters V from the left

�
D

X
a<b

�
# C #

�
C

X
a<b

�
# C #

�

D

X
a<b

�
# C # C # C #

�
;

where V varies over the vertices in �.T /, and a and b vary over the colors.

Lemma 5.8. Let T be a vertical k-ribbon strip. In the corresponding purple
row �.T /,

spin.T / D
X
a<b

�
# C # C # C #

�
;

where blue is color a and red is color b.

Proof. We follow the same ideas as in the proof of the previous lemma. The fact
that T is a vertical ribbon strip restricts the possible forms of the slices:

(1) If a tail triangle appears, it must be at the bottom of the slice.

(2) If a head triangle appears, it must be at the top of the slice.

With these restrictions in mind, we see that each slice must have one of the following
five forms:

:::

:::
:::

:::
:::

V1 V2 V3 V4 V5
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Arguing similarly to Lemma 5.6, one can show that there is a one-to-one corre-
spondence between the five possible forms of a slice in T and the five possible path
configurations of the corresponding color in the corresponding purple vertex of �.T /,

V1$ P1, V2$ P2,

V3$ P3, V4$ P4, V5$ P5.

Recall that slice i D .j � 1/kC a in T corresponds to color a in the j -th leftmost
vertex V in �.T /. The contribution of this slice to spin.T / equals the number of
column parallelograms in the slice. Looking at the five possible forms of a slice, we
see that this equals zero unless slice i has the form V1, which is equivalent to the
path configuration of color a having form P1 in V , that is, color a being vertical in V .
In that case, the contribution to the spin equals the number of ribbonsR that appear in
slice i but whose head/tail triangles do not. One can show that this equals the number
of smaller colors b < a that exits V to the right plus the number of larger colors b > a
that enter V from the left.

From this we conclude

spin.T / D
X
V

X
a

1a is vertical in V �

�X
b<a

1b exits V to the right C
X
b>a

1b enters V from the left

�
D

X
a<b

�
# C #

�
C

X
a<b

�
# C #

�
D

X
a<b

�
# C # C # C #

�
;

where V varies over the vertices in �.T / and a and b vary over the colors.

We are now ready to relate LS
�=�

to G
.k/

�=�
.

Proposition 5.9. Let �=� be the k-quotient of �=�. Then

LS
�=�.XnIYmI t / D t

�G
.k/

�=�
.XnIYmI t

1=2/

for some half-integer � 2 1
2
Z. In fact, in any configuration of the lattice Sn;m.�=�/,

� D
1

2

X
a<b

�
# C # � # � #

�
C
1

2

X
a<b

�
# � #

�
:
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Proof. Recall the bijection � W SRTk.�=�/! LC.Sn;m.�=�//. It is enough to show
that weight.�.T // D t�t spin.T /xweight.T /yweight0.T / for all T 2 SRTk.�=�/, for some
half-integer � that does not depend on T . Fix a super ribbon tableaux T 2 SRTk.�=�/
and let C D �.T / 2 LC.Sn;m.�=�// be the corresponding path configuration. It is
clear that the x weights (y weights) match, since each ribbon labeled a 2A (a0 2A0)
in T corresponds to a path taking a step to the right in the a-th white (purple) row
of C . We are left to consider the powers of t . From the previous lemmas, we see that

spin.T / D
X
a<b

�
# C # C # C #

�
C

X
a<b

�
# C # C # C #

�
D

X
a<b

�
2 � # C # C #

�
C

X
a<b

�
# C # C # C #

�
D 2 coinv.C / �

X
a<b

�
# � #

�
C 2 coinv0.C / �

X
a<b

�
# C # � # � #

�
;

where
coinv.C / D

X
a<b

�
# C #

�
is the power of t coming from the white boxes in C and

coinv0.C / D
X
a<b

�
# C #

�
is the power of t coming from the purple boxes in C . Thus

1

2
spin.T /C � D coinv.C /C coinv0.C /;

where

� D
1

2

X
a<b

�
# C # � # � #

�
C
1

2

X
a<b

�
# � #

�
:
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If we can show that � is independent of the configuration C , then the result follows.
It is enough to check this for two colors. This can be shown with a standard corner
flipping argument, which we verified with a computer.

6. Cauchy identity

Recall from [1, 13, 21] that the LLT polynomials satisfy a Cauchy identity. We would
like to prove a similar theorem for the supersymmetric LLT polynomials. We will do
so in the style of [13, 30].

We will need the following change of variables for the L and L0 weights, which
we represent as a gray face and a pink face, respectively:

I

K

J Lxx WD xkt .
k
2/L

.k/
xx .I ;J IK ;L/;

I

K

J Lxx WD xkL
0.k/

1=x
.I ;J IK ;L/:

Here
xx D

1

xtk�1
:

This change of variable is chosen in part so that the gray face, in which every color
appears as a horizontal path, and the pink face, in which every color appears as a
cross, have weight one,

D 1; D 1:

It will also be useful to define P .k/
l1;l2

, for 0 � l1; l2 � 1, to be the set of k-tuples of
partitions with l1 parts whose largest part is less than or equal to l2.

6.1. Single rows

In order to construct our Cauchy identity, we will employ infinitely long rows of
vertices. For the white and purple vertices, it is relatively easy to define a row of
infinite length. We start by defining the following finite length rows, where the allowed
states on the top and bottom boundaries are indexed by partitions P .k/

l1;l2
.
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Pictorially these are given by

�

�

 l1 !  l2 !

and
�

�

 l1 !  l2 !

Each row has length l1 C l2, and we explicitly mark the zero content line. We can
increase l1 by extending the partitions indexing the boundary states with zero parts;
similarly, we can increase l2 by adding empty faces to the right. Note that increasing l1
adds faces of the form

or

on the left, while increasing l2 adds faces of the form

or

on the right; since these vertices have weight 1, increasing l1 and l2 does not change
the weight of the row. In fact, we may take l1; l2 !1 and allow the boundary states
to be indexed by partitions with infinitely many parts as long as only finitely many
parts are non-zero.

For the gray and pink vertices, we must be slightly more careful. Note that

D xkt .
k
2/; D 1; D 1; D xk :

For the gray faces, we consider a row of finite length, such that the allowed states
on the bottom are indexed by partitions in P .k/

l1;l2
, and the allowed states on the top are

indexed by partitions in P .k/
l1�1;l2

. We draw this as

�

�

 l1 !  l2 !

The boundary condition on the right allows us to increase l2 by adding faces where
every path is horizontal without changing the weight of the row. However, increas-
ing l1 by adding zero parts to the partitions does affect the weight since faces where
all the paths are vertical have a non-trivial contribution due to the change of vari-
able.
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For the pink faces, we consider a row of finite length such that the allowed states
on the bottom are indexed by partitions in P .k/

l1;l2
, and the allowed states on the top are

indexed by partitions in P .k/
l1C1;l2�1

. We draw this as

�

�

 l1 !  l2 !

In this case, we can increase l1 by adding zero parts to the partitions without changing
the weight of the row, as this amounts to adding faces on the left, where every color
is a cross. However, increasing l2 by adding empty faces on the right does affect the
weight. We will see later that the contribution to the weight coming from increasing l1
in the case of the gray faces, and the contribution to the weight coming from increas-
ing l2 in the case of the pink faces, cancels out in the Cauchy identity, allowing us to
circumvent this issue.

Remark 6.1. Suppose the bottom boundary of a row is indexed by � while the top
boundary is indexed by �. Recall that, for the white faces, in order for the row to have
a non-zero weight, �must be obtained from � by adding a horizontal strip. Similarly,
for the purple faces, � must be obtained from � by adding a vertical strip. For the
gray faces, � must be obtained from � by removing a horizontal strip. For the pink
faces, � must be obtained from � by removing a vertical strip.

6.2. Some partition functions

Here we will construct certain lattice models using the single rows above, whose
partition functions will be used in our Cauchy identities. In what follows, we will
always consider our partitions � and� to be k-tuples of partitions, each of which with
a infinitely many parts, only finitely many of which are non-zero. We will truncate the
partitions, removing only zero parts, to limit the number of parts as needed.

Given � and �, choose positive integers l1, l2 such that each partition has at
most l1 non-zero parts and largest part at most l2. Truncate � and � so that they are
in P .k/

l1;l2
. Recall from Section 3 that for the white faces, we have

L�=�.XmI t / D :::

�

�

�

�

�

�

x1

xm

 l1 !  l2 !
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and for the purple faces, we have

LP
�=�.XmI t / D :::

�

�

�

�

�

�

x1

xm

 l1 !  l2 !

where both are independent of the choice of l1 and l2. In particular, the limit as
l1; l2 !1 of these partition functions is well defined.

For the gray faces, fix the number of variables m. This time, given � and �,
choose positive integers l1, l2 such that each partition of � has � l1 non-zero parts,
each partition of � has � l1 �m non-zero parts, and each partition of both tuples has
largest part � l2. Truncate the partitions so that � 2 P .k/

l1;l2
and � 2 P .k/

l1�m;l2
. Define

L��=�.XmI t / WD
:::

�

�

�

�

�

�

xx1

xxm

 l1 !  l2 !

We have the following proposition.

Proposition 6.2. We have

L��=�.XmI t / D .x1 : : : xm/
.l1�m/k.x�m/ktm.2l1�m�1/.

k
2/td.�;�/L�=�.XmI t /;

where d.�;�/ and L�=� are independent of l1 and l2. Furthermore, d.�;�/ is giv-
en by

d.�;�/ D
X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº

�

X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº:

The proof is essentially identical to that of [13, Proposition 6.11], for which this
is a slight generalization. (We can recover [13, Proposition 6.11] by taking �D 0 and
l1 D m D n.) Note that L� is independent of l2, and we may take l2 !1.

For the pink faces, again fix the number of variables m. Given � and �, choose
positive integers l1, l2 such that the number of non-zero parts of each partition of



A. Gitlin and D. Keating 620

both tuples is � l1, the largest part of every partition in � is � l2, and the largest part
of every partition in � is � l2 � m. Truncate the partitions so that � 2 P .k/

l1;l2
, and

� 2 P
.k/

l1Cm;l2�m
. Define

.LP /��=�.XmI t / WD
:::

�

�
�

�

�

�

x�11

x�1m

 l1 !  l2 !

We would like to be able to write .LP /� in terms of LP . In order to do so, we will
prove a series of lemmas.

Definition 6.3. Let N , n, k be non-negative integers. Given a partition � with n non-
negative parts, each of which is � N , we define its complement in an n � N box to
be the partition

�c D .N � �n; : : : ; N � �1/:

Given � 2 P kn , we define its complement in an N � n box to be the k-tuple of parti-
tions �c D ..�c/.1/; : : : ; .�c/.k//, where

.�c/.i/ D .�.k�i//c :

In other words, we complement each partition and reverse their order in the tuple.

Lemma 6.4. Fix � 2P .k/
l1;l2

and� 2P .k/
l1;l2�m

. Let z� 2P .k/
l1;l2

be the tuple of partitions
one gets by adding m to every part of every partition in �. Then

LP
z�=�.XmI t / D t

dP .�;�/LP
�c=z�c .XmI t /;

where complements are taken in an l1 � l2 box and dP .�;�/ D d.�;�/ is indepen-
dent of l1, l2.

Proof. There is a bijection between configurations with bottom boundary � and top
boundary z� and configurations with bottom boundary z�c and top boundary �c , given
by rotating 180 degrees and reversing the order of the colors. For example, with

� D ..2; 1; 0/; .1; 1; 1//; � D ..1; 0; 0/; .1; 1; 0//; l1 D m D 3; l2 D 4;

we have

�c D ..3; 3; 3/; .4; 3; 2//; z� D ..4; 3; 3/; .4; 4; 3//; z�c D ..1; 0; 0/; .1; 1; 0//:
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For a particular configuration, we would map

x2

�

�

�

�

x1

x3

�

z�

7! x2

�

�

�

�

x1

x3

�c

z�c

It is easy to show that under this bijection the x weight does not change, up to
switching xi and xm�iC1, as horizontal steps in row i become horizontal steps in row
m � i C 1. A corner flipping argument shows that the difference in the power of t
before and after the mapping does not depend on the configuration. This shows that

LP
z�=�.XmI t / D t

dP .�;�/LP
�c=z�c .xm; : : : ; x1I t / D t

dP .�;�/LP
�c=z�c .XmI t /;

where the last equality uses the symmetry of LP . Note that increasing l1 by adding
zero parts to � and parts of size m to z� does not change the power of t on either side
of the bijection as this only adds paths that staircase (i.e., take one step to the right
in each row). Similarly, increasing l2 by adding empty columns does not affect the
power of t on either side. Thus dP .�;�/ is independent of l1 and l2. As shown in the
next lemma, dP .�;�/ D d.�;�/.

Lemma 6.5. Let �, � be as in the previous lemma. Then

dP .�;�/ D
X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº �

X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº:

Proof. First let us assume that�D 0 and kD 2. In this case, every part in z� equalsm.
We can calculate dP .�;�/ using any choice of configuration. We will pick the config-
uration T of z�=� such all the paths are as low as possible. In this case, each path will
begin as a staircase going right until it reaches the column in which it ends, and will
then travel vertically to its endpoint. Consider a single path of the first color (blue)
corresponding to the j -th row of the skew shape. For it to contribute a power of t ,
a path of the second color (red) must travel vertically in a face in which the blue path
exits right. Suppose we have such a red path, corresponding to the i -th row. As a path
travels vertically only in the column in which it ends, the blue path must end to the
right of the red path, i.e., j < i . Further, in order for the red path to cross the blue
path while traveling vertically its staircase must be weakly below the blue staircase,
so the blue path must start weakly to the left of the red path, i.e., �.1/j � j � �

.2/
i � i .

We see that
coinv0.T / D #¹j < i j �.1/j � j � �

.2/
i � iº;

where coinv0.T / is the power of t in the configuration T .
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Using our mapping, the configuration T gets mapped to a configuration T 0 of
�c=z�c in which all the paths are as high as possible. In this case, the paths all begin
traveling vertically and then staircase to their endpoint. Similar reasoning shows that
for the j -th blue path to exit right while the i -th red path is vertical, the blue path
must begin weakly to the left of the red path, and the blue path must end to the right
of the red path. This gives

coinv0.T 0/ D #¹j � i j .�c/.1/j � j > .�
c/
.2/
i � iº D #¹j � i j �.1/j � j > �

.2/
i � iº:

From this we find

dP .�; 0/ D #¹j < i j �.1/j � j � �
.2/
i � iº � #¹j � i j �.1/j � j > �

.2/
i � iº

D #¹j < i j �.1/j � j � �
.2/
i � iº C #¹j < i j �.1/j � j > �

.2/
i � iº

� #¹j < i j �.1/j � j > �
.2/
i � iº � #¹j � i j �.1/j � j > �

.2/
i � iº

D #¹j < iº � #¹i; j j �.1/j � j > �
.2/
i � iº:

Noting that #¹i; j j �.1/j � j > �
.2/
i � iº D #¹j < iº when � D 0, we get the result

in the case � D 0 and k D 2. Summing over all pairs of colors a < b gives the result
in the case � D 0 and k general.

To prove the general case, let � and � be as in the statement of the lemma. Con-
sider a lattice with nCm rows. Let � D 0, so that every part of z� equals nCm. From
the above calculation, we know that

dP .�; 0/ D
X
a<b

#¹j < iº �
X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº:

This can be calculated using any configuration of �=z�. Let us choose a configuration
such that the top boundary of them-th row is given by z�. Then the contribution to the
change in power of t from the rows above the m-th row is given by

dP .z�; 0/ D
X
a<b

#¹j < iº �
X
a<b

#¹i; j j z�.a/j � j > z�
.b/
i � iº;

while the contribution from the m-th row and below is given by dP .�;�/. Since the
contribution from the two pieces must equal the overall change in power of t , we see
that

dP .�;�/ D dP .�; 0/ � dP .z�; 0/

D

X
a<b

#¹i; j j z�.a/j � j > z�
.b/
i � iº �

X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº

D

X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº �

X
a<b

#¹i; j j �.a/j � j > �
.b/
i � iº

as desired.
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Lemma 6.6. Let �, �, m, l1, l2 be as in Lemma 6.4. Then

:::

�

z�

�

�

�

�

x�11

x�1m

 l1 !  l2 !

D .x1 : : : xm/
k.l1Cl2/tdP .�;�/LP

�c=z�c .X
�1
m I t /:

Proof. We start with Lemma 6.4. To change from purple faces to pink faces, for each
i 2 Œm�, we take xi 7! 1

xi
and multiply every face in the i -th row by xki . This gives

the desired equation.

Lemma 6.7. Let �, �, m, l1, l2 be as in the previous lemma, except now consider �
as an element of P .k/

l1Cm;l2
(i.e., add m more parts equal to 0). Then

:::

�

�

�

�

�

�

x�11

x�1m

 l1 !  l2 !

D .x1 : : : xm/
k.l1Cl2C1/tdP .�;�/LP

�c=z�c .X
�1
m I t /:

Proof. Starting with the lattice from the previous lemma, we add a path of each color
on the left edge of each row. The paths entering from the left must end packed to the
left at the top. This, along with the shift to the right by m of the zero content line,
means that the top boundary is now given by �. Adding the paths entering from the
left changes the weight by the factor .x1 : : : xm/k .

Finally, we must relate the LLT polynomial of a skew partition with that of its
complement.

Lemma 6.8. Let � 2 P .k/
l1;l2

and� 2 P .k/
l1;l2�m

. Let z� 2 P .k/
l1;l2

be the tuple of partitions
one gets by adding m to every part of every partition in �. We have

LP
�=�.XmI t / D .x1 : : : xm/

kl1LP
�c=z�c .X

�1
m I t /:

Proof. We construct a bijection SSYT.�=�/! SSYT.�c=z�c/ as follows. For each
skew partition in �=�, draw it inside an l1 � l2 box. Given any SSYT of the skew
shape, go from left to right, row-by-row, and fill the cells of the box with the largest
available integer not already used in that row. After rotating by 180 degrees, the newly
filled cells of the box are a SSYT of the corresponding skew partition in �c=z�c . For
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example, let � D .3; 3; 1; 0/, � D .1; 0; 0; 0/, l1 D m D 4; l2 D 6. Then we have
�c D .6; 5; 3; 3/ and z�c D .2; 2; 2; 1/. Consider the filling

2

2 3 4

1 2

!

4 3 2 1

2 4 3 1

2 3 4 1

1 2 4 3

!

3 4

1

1 3 4

1 2 3 4

Note that under this map the x weights transform as xT 7! .x1 : : : xm/
kl1.xT /�1.

We are left to determine what happens to the powers of t . It is easy to check that,
in terms of lattice paths, flipping a corner of color a up (down) on one side of the
bijection corresponds to flipping a corner of color k � a C 1 down (up) on the other
side. As the space of configurations on both sides is connected under corner flips,
a corner flipping argument shows the difference in the powers of t does not depend on
the configuration. Thus there is some overall power of t difference, call it zdP .�;�/,
so that

LP
�=�.XmI t / D .x1 : : : xm/

kl1 t
zdP .�;�/LP

�c=z�c .X
�1
m I t /:

We need only to compute the difference in the power of t for a specific choice of
configurations to compute zdP .�;�/. A similar argument to the one used in the proof
of Lemma 6.5 shows zdP .�;�/ D 0.

Combining all the above lemmas leads to the following proposition.

Proposition 6.9. We have

.LP /��=�.XmI t / D .x1 : : : xm/
k.l2C1/tdP .�;�/LP

�=�.XmI t /;

where the whole thing is independent of l1, and dP .�;�/ and LP
�=�

are also inde-
pendent of l2.

6.3. Cauchy identities

Using the above, we will now prove several Cauchy identities for L and LP .

Proposition 6.10. Let � and � be tuples of partitions, each with infinitely many parts
only a finitely many of which are non-zero. ThenX

�

td.�;�/L�=�.YmI t /L
P
�=�.XnI t /

D

�Y
i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

td.�;�/LP
�=�.XnI t /L�=�.YmI t /:
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Proof. Given � and �, choose positive integers l1 and l2 such that maximum number
of non-zero parts of a partition in � is less than l1 � m and the largest part of any
partition in � is less than l2 C m. Note that this ensures that l1 is greater than the
maximum number of non-zero parts of a partition in � and that l2 is greater than
the largest part of any partition in �. Truncate the partitions so that � 2 P .k/

l1;l2
and

� 2 P
.k/

l1�m;l2Cm
. Consider the following partition function:

�

�

xy1

: :
:
xym

x1

: : :

xn

This can be split into three pieces as follows:

xy1

: :
:
xym

x1

: : :

xn

X
�

:::

�

�

�

�

�

�

Ny1

Nym

 l1 !  l2 !

�
:::

�

�

�

�

�

�

x1

xn

 l1 �m! l2 Cm!

From the previous subsection, in particular Proposition 6.2, every piece is independent
of l2, so we may take l2 !1. Here the crosses have weight one. Using the YBE to
move the crosses to the other side gives

�

�

x1

:::

xn

xy1

:::

xym

: : :

Since we have taken l2!1 and paths cannot travel horizontally across a purple face,
we know that the paths originating from the bottom boundary must exit from the gray
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faces at the right boundary. Splitting this into parts, we get

X
�

:::

�

�

�

�

�

�

Ny1

Nym

 l1 !

: : :

�
:::

�

�

�

�

�

�

x1

xn

 l1 !

: : :

�

Nym

:::

Ny1

xn

:::

x1

Equating the two sums results inX
�

L��=�.YmI t /L
P
�=�.XnI t /

D

�Y
i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

LP
�=�.XnI t /L

�
�=�.YmI t /;

where the prefactor on the right-hand side comes from the crosses. Using Proposi-
tion 6.2, we getX

�

.y1 : : : ym/
.l1�m/k.y�m/ktm.2l1�m�1/.

k
2/td.�;�/L�=�.YmI t /L

P
�=�.XnI t /

D

�Y
i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

.y1 � � �ym/
.l1�m/k.y�m/k

� tm.2l1�m�1/.
k
2/td.�;�/LP

�=�.XnI t /L�=�.YmI t /:

Many terms (in particular, all the terms involving l1) cancel, and we can then take
l1 !1, giving the proposition.

An analogous proof, using white boxes in place of purple boxes and white crosses
in place of yellow crosses, gives the following proposition.

Proposition 6.11. Let � and � be tuples of partitions, each with infinitely many parts
only finitely many of which are non-zero. ThenX

�

td.�;�/L�=�.XnI t /L�=�.YmI t /

D

Y
i;j

k�1Y
lD0

.1 � xiyj t
l/
X
�

td.�;�/L�=�.XnI t /L�=�.YmI t /:

This is a slight generalization of [13, Proposition 6.12] (which we can recover by
taking � D 0, setting m D n, and swapping X and Y ).

Using the white faces and the pink faces, we have the following.
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Proposition 6.12. Let � and � be tuples of partitions, each with infinitely many parts
only finitely many of which are non-zero. Then�Y

i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

tdP .�;�/L�=�.YmI t /L
P
�=�.XnI t /

D

X
�

tdP .�;�/LP
�=�.XnI t /L�=�.YmI t /:

Proof. Given � and �, choose positive integers l1, l2 such that l1 is greater than or
equal to the number of non-zero parts in � and �, l2 is greater than or equal to the
largest part in �, and l2 � n is greater than or equal to the largest part in �. Consider
the following partition function:

�

�

x�11

:::

x�1n

y1

:::

ym

This can be split as

:::

�

�

�

�

�

�

x�11

x�1n

 l1 !  l2 !

�
:::

�

�

�

�

�

�

y1

ym

 l1 C n ! l2 � n !

�

ym

:::

y1

x�1n

:::

x�11

From the previous subsection, in particular Proposition 6.9, every piece is independent
of l1, so we may take l1 !1. We can use the YBE to move the crosses to the other
side to get

�

�: : :

y1
: :
:ym

x�11

: : :
x�1n
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which we split into

y1
: :
:ym

x�11

: : :
x�1n

X
�

:::

�

�

�

�

�

�

y1

ym

 l2 !

: : :

�
:::

�

�

�

�

�

�

xx1

xxn

 l2 !

: : :

(Sufficiently far to the left in the white faces, every column is dense with vertical
paths, so the paths from the cross must enter in the pink faces.) Setting this equal to
the other sum gives�Y

i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

L�=�.YmI t /.L
P /��=�.XnI t /

D

X
�

.LP /��=�.XnI t /L�=�.YmI t /;

where the prefactor on the left-hand side comes from the crosses. Using Proposi-
tion 6.9, we have�Y

i;j

k�1Y
lD0

.1C xiyj t
l/�1

�X
�

.x1 � � � xn/
k.l2C1/tdP .�;�/L�=�.YmI t /L

P
�=�.XnI t /

D

X
�

.x1 � � � xn/
k.l2C1/tdP .�;�/LP

�=�.XnI t /L�=�.YmI t /:

Canceling the terms involving l2 gives the proposition.

Changing the white faces to purple faces, a similar computation to the above leads
to the following assertion.

Proposition 6.13. Let � and � be tuples of partitions, each with infinitely many parts
only finitely many of which are non-zero. Then�Y

i;j

k�1Y
lD0

.1 � xiyj t
l/

�X
�

tdP .�;�/LP
�=�.YmI t /L

P
�=�.XnI t /

D

X
�

tdP .�;�/LP
�=�.XnI t /L

P
�=�.YmI t /:

(One must be careful to only consider terms with finite degrees in y; this forces
the paths to only travel from the south-west to the south-east on the cross.)

Combining these identities, we now come to the main result of this section:
a Cauchy identity for the supersymmetric LLT polynomials.
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Theorem 6.14. Let � and � be tuples of partitions, each with infinitely many parts
only finitely many of which are non-zero. Fix positive integers n, m, p, q. ThenX

�

td.�;�/LS
�=�.Xn; YmI t /L

S
�=�.Wp; ZqI t /

D

k�1Y
lD0

nY
i;i 0D1

mY
j;j 0D1

pY
˛;˛0D1

qY
ˇ;ˇ 0D1

.1 � xiw˛t
l/.1 � yj 0zˇ 0 t

l/

.1C yjw˛0 t l/.1C xi 0zˇ t l/

�

X
�

td.�;�/LS
�=�.Xn; YmI t /L

S
�=�.Wp; ZqI t /:

Proof. We can rewrite the left-hand side as

l:h:s: D
X
�;� ;�

LP
�=�.YmI t /L�=�.XnI t /t

dP .�;� /LP
�=� .ZqI t /t

d.� ;�/L�=�.WpI t /;

where we use the fact that

d.�;�/ D dP .�; � /C d.� ;�/:

Applying Proposition 6.11 to the sum over � with the second and fourth LLT polyno-
mials gives

l:h:s: D
k�1Y
lD0

nY
iD1

pY
˛D1

.1 � xiw˛t
l/

�

X
�;� ;�

LP
�=�.YmI t /L�=� .XnI t /t

dP .�;� /LP
�=� .ZqI t /t

d.�;�/L�=�.WpI t /:

Applying Proposition 6.10 on the sum over � with the first and fourth LLT polynomi-
als results in

l:h:s: D
k�1Y
lD0

nY
iD1

mY
jD1

pY
˛;˛0D1

1 � xiw˛t
l

1C yjw˛0 t l

�

X
�;� ;�

LP
�=�.YmI t /L�=� .XnI t /t

dP .�;� /LP
�=� .ZqI t /t

d.�;�/L�=�.WpI t /:

Applying Proposition 6.12 on the sum over � with the second and third LLT polyno-
mials gives

l:h:s: D
k�1Y
lD0

nY
i;i 0D1

mY
jD1

pY
˛;˛0D1

qY
ˇD1

1 � xiw˛t
l

.1C yjw˛0 t l/.1C xi 0zˇ t l/

�

X
�;� ;�

LP
�=�.YmI t /L�=�.XnI t /t

dP .� ;�/LP
�=�.ZqI t /t

d.�;�/L�=�.WpI t /:
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Finally, applying Proposition 6.13 on the sum over � with the first and third LLT
polynomials leads to

l:h:s: D
k�1Y
lD0

nY
i;i 0D1

mY
j;j 0D1

pY
˛;˛0D1

qY
ˇ;ˇ 0D1

.1 � xiw˛t
l/.1 � yj 0zˇ 0 t

l/

.1C yjw˛0 t l/.1C xi 0zˇ t l/

�

X
�;� ;�

LP
�=� .YmI t /L�=�.XnI t /t

dP .�;�/LP
�=�.ZqI t /t

d.�;�/L�=�.WpI t /

which can be combined into

l:h:s: D
k�1Y
lD0

nY
i;i 0D1

mY
j;j 0D1

pY
˛;˛0D1

qY
ˇ;ˇ 0D1

.1 � xiw˛t
l/.1 � yj 0zˇ 0 t

l/

.1C yjw˛0 t l/.1C xi 0zˇ t l/

�

X
�

td.�;�/LS
�=�.Xn; YmI t /L

S
�=�.Wp; ZqI t / D r:h:s:;

where we again use the fact that

d.�; �/ D dP .�;�/C d.�; �/:

Appendices

A. Proof of Lemma 2.16

Throughout this section, whenever we consider a skew shape ˛=ˇ, we assume ˛ and ˇ
have the same number of parts `.˛=ˇ/. Moreover, using Remark 2.6, we can take the
Maya diagrams of ˛ and ˇ to have the same length. Also let fk.˛=ˇ/ denote the
k-quotient of ˛=ˇ.

Let �=� be a skew shape, and let �=� D .�.0/=�.0/; : : : ; �.k�1/=�.k�1// be its
k-quotient. Let

T 2 SSRTk.�=�/$ T D .T .0/; : : : ; T .k�1// 2 SSSYTk.�=�/

via the Littlewood k-quotient map. We want to prove the following two claims:

(1) A ribbon in T labeled i corresponds to a cell labeled i in T , so the number of
ribbons in T labeled i equals the number of cells labeled i in T .

(2) Two ribbons R, R0 in T whose tails u, u0 have the same content modulo k
correspond to two cells v, v0 of the same shape in T . Moreover, in this case,

c.u/ � c.u0/

k
D c.v/ � c.v0/:
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We begin by discussing Maya diagrams and content lines. Let ˛=ˇ be a skew shape,
and let .a0; : : : ; as�1/, .b0; : : : ; bs�1/ be the Maya diagrams of ˛, ˇ, respectively.
Given a cell u in ˛=ˇ, we define its adjusted content to be

ac.u/ WD c.u/C `.˛=ˇ/ � 1;

where c.u/ is its content. The following facts are straightforward:

(A) The skew shape ˛=ˇ consists of a single cell u if and only if ai D biC1 D E,
aiC1 D bi D S , and aj D bj for j ¤ i; i C 1 for some i . In this case, if u is
the single cell in ˛=ˇ, we have ac.u/ D i .

(B) The skew shape ˛=ˇ consists of a single ribbon if and only if ai D biCk DE,
aiCk D bi D S , and aj D bj for j ¤ i; i C k for some i . In this case, if u is
the tail of the single ribbon in ˛=ˇ, we have ac.u/ D i .

The claims will follow from the next lemma.

Lemma A.1. If �=� is a k-ribbon, then �=� consists of a single cell, i.e., j�=�j D 1.
Let u be the tail of the ribbon in �=�, and let v be the cell in �=�. Write ac.u/ D
qk C r , where 0 � r < k. Then v appears in �.r/=�.r/ and has adjusted content
ac.v/ D q.

Proof of Lemma A.1. Let u be the tail of the ribbon �=�. Let .a0; : : : ; as�1/ and
.b0; : : : ; bs�1/ be the Maya diagrams of � and �, respectively. By Remark 2.6, we
may assume that t D s=k is an integer. By fact (B), for some i , we have

ac.u/ D i; ai D biCk D E; aiCk D bi D S; aj D bj for j ¤ i; i C k:

Let .a.j /0 ; : : : ;a
.j /
t�1/, .b

.j /
0 ; : : : ;b

.j /
t�1/ be the Maya diagrams of �.j /,�.j /, respectively,

for each j . By the definition of the k-quotient map, we have

a
.j /

l
D alkCj and b

.j /

l
D blkCj

for each j and l . Since aj D bj for j ¤ i; i C k,

.a
.j /
0 ; : : : ; a

.j /
t�1/ D .b

.j /
0 ; : : : ; b

.j /
t�1/ for j ¤ r;

and thus �.j / D �.j / for j ¤ r . Since ai D biCk D E, aiCk D bi D S , and aj D bj
for j ¤ i; i C k,

a.r/q D b
.r/
qC1 D E; a

.r/
qC1 D b

.r/
q D S; and a

.r/
j D b

.r/
j for j ¤ q; q C 1:

Therefore, by fact (A), �.r/=�.r/ consists of a single cell v with adjusted content
ac.v/ D q.
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We now prove claim (1) using Lemma A.1. Suppose that there are m ribbons
R1; : : : ; Rm labeled i in T . Then we can construct a series of partitions

˛.0/ D ��i�1; : : : ; ˛.m/ D ��i

such that ˛.j /=˛.j�1/ D Rj for each j 2 Œm�. Using the lemma,

jfk.��i=��i�1/j D jfk.˛
.m/=˛.0//j

D

mX
jD1

jfk.˛
.j /=˛.j�1//j D

mX
jD1

jfk.Rj /j D

mX
jD1

1 D m:

However, by the definition of the Littlewood k-quotient map, fk.��i=��i�1/ (lying
inside �=�) consists of exactly the cells labeled i in T , so there are m cells labeled i
in T .

We now prove claim (2) again using Lemma A.1. Write ac.u/ D qk C r and
ac.u0/ D q0k C r 0, where 0 � r; r 0 < k. Since u and u0 have the same content mod-
ulo k, they have the same adjusted content modulo k, hence r D r 0. Thus, by the
lemma, both v and v0 appear in the same shape in T , namely T .r/ D T .r

0/. Moreover,
again using the lemma, we obtain

c.u/ � c.u0/

k
D
ac.u/ � ac.u0/

k
D q � q0

D ac.v/ � ac.v0/ D c.v/ � c.v0/:

B. Other formulations of LLT polynomials

We describe the relationship between coinversion LLT polynomials (Definition 2.3)
and other formulations of LLT polynomials that appear in the literature.

Remark B.1. The inversion LLT polynomial, as in [17], is given by

LHHL
�=�.X I t / D

X
T2SSYT.�=�/

t inv.T /xT :

We have the relationship

L�=�.X I t / D t
mLHHL

�=�.X I t
�1/;

where

m D # triples in �=� D max
U2SSYT.�=�/

coinv.U /C min
U2SSYT.�=�/

inv.U /

D min
U2SSYT.�=�/

coinv.U /C max
T2SSYT.�=�/

inv.U /:

More explicit formulae for m are given in [13, Section 5].
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Remark B.2. Define the sp LLT polynomial by

L
sp
�=�

.X I t / D
X

T2SSRTk.�=�/

t sp.T /xT ;

where

sp.T / D
spin.T /
2

� min
U2SSRTk.�=�/

spin.U /
2

:

If �=� is the k-quotient of �=�, then

L�=�.X I t / D t
m�eL

sp

�=�
.X I t /;

where
e D max

U2SSYT.�=�/
inv.U /; m � e D min

U2SSYT.�=�/
coinv.U /:

Remark B.3. The spin LLT polynomial, as in [9, 15, 21], is given by

LLam
�=�.X I t / D

X
T2SSRTk.�=�/

t spin.T /xT :

If �=� is the k-quotient of �=�, then

L�=�.X I t / D t
m�e��LLam

�=�.X I t
1=2/;

where

� D min
U2SSRTk.�=�/

spin.U /
2

:

It is clear from the definitions that

LLam
�=�.X I t / D G

.k/

�=�
.X I � I t /:

Remark B.4. Define the cosp LLT polynomial by

LLLT
�=�.X I t / D

X
T2SSRTk.�=�/

t cosp.T /xT ;

where

cosp.T / D max
U2SSRTk.�=�/

spin.U /
2

�
spin.T /
2

:

Historically, this was the original formulation of LLT polynomials [22]. If �=� is the
k-quotient of �=�, then

L�=�.X I t / D t
m�eC���LLLT

�=�.X I t
�1/;

where

� D max
U2SSRTk.�=�/

spin.U /
2

:
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C. Proofs of Propositions 3.3 and 3.4

We adopt the notation of [1] throughout this section, except we use t in place of q.
In particular, we let Wz.A; BI C; D j r; s/ be the vertex weights from [1, Defini-
tion 5.1.1] with t in place of q.

The proofs of Propositions 3.3 and 3.4 utilize [1, Proposition 5.1.4], which statesX
I2;J2;K2

W�=
 .I1;J1I I2;J2 j r; s/W�=z.K1;J2IK2;J3 j r; t/

�W
=z.K2; I2IK3; I3 j s; t/

D

X
I2;J2;K2

W
=z.K1; I1IK2; I2 j s; t/W�=z.K2;J1IK3;J2 j r; t/

�W�=
 .I2;J2I I3;J3 j r; s/ (C.1)

for all �;
;z; r; s; t 2C for any choice of boundary conditions I1;J1;K1;I3;J3;K3 2
¹0; 1ºk .

Proof of Proposition 3.3. Fix S; Y; x; y 2 C and let ˛ D �S2 and ˇ D SY 1=2. Sub-
stituting �D x, 
 D ˛, z D ˛, r D .x=˛/1=2, s D Sy�1=2, and t D SY 1=2 into (C.1)
gives X

I2;J2;K2

Wx=˛.I1;J1I I2;J2 j .x=˛/
1=2; Sy�1=2/

�Wx=˛.K1;J2IK2;J3 j .x=˛/
1=2; SY �1=2/

�W1.K2; I2IK3; I3 j Sy
�1=2; SY 1=2/

D

X
I2;J2;K2

W1.K1; I1IK2; I2 j Sy
�1=2; SY 1=2/

�Wx=˛.K2;J1IK3;J2 j .x=˛/
1=2; SY 1=2/

�Wx=˛.I2;J2I I3;J3 j .x=˛/
1=2; Sy�1=2/:

Multiplying both sides by .�˛/jJ3j.SY 1=2/�2jJ3jY �jI3j leads toX
I2;J2;K2

Wx=˛.I1;J1I I2;J2 j .x=˛/
1=2; Sy�1=2/.�˛/jJ3j.SY 1=2/�2jJ3j

�Wx=˛.K1;J2IK2;J3 j .x=˛/
1=2; SY �1=2/

� Y �jI3jW1.K2; I2IK3; I3 j Sy
�1=2; SY 1=2/

D

X
I2;J2;K2

Y �jI2jW1.K1; I1IK2; I2 j Sy
�1=2; SY 1=2/.�˛/jJ2j.SY 1=2/�2jJ2j

�Wx=˛.K2;J1IK3;J2 j .x=˛/
1=2; SY 1=2/.�˛/jJ3j�jJ2jS�2jJ3jC2jJ2j

�Wx=˛.I2;J2I I3;J3 j .x=˛/
1=2; Sy�1=2/;
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where we have used jI2j C jJ2j D jI3j C jJ3j by path conservation on the right-hand
side. Substituting ˛ D �S2 and ˇ D SY 1=2 givesX

I2;J2;K2

Wx=˛.I1;J1I I2;J2 j .x=˛/
1=2; .�y=˛/�1=2/.�˛/jJ3jˇ�2jJ3j

�Wx=˛.K1;J2IK2;J3 j .x=˛/
1=2; ˇ/Y �jI3j

�W1.K2; I2IK3; I3 j Sy
�1=2; SY 1=2/

D

X
I2;J2;K2

Y �jI2jW1.K1; I1IK2; I2 j Sy
�1=2; SY 1=2/.�˛/jJ2jˇ�2jJ2j

�Wx=˛.K2;J1IK3;J2 j .x=˛/
1=2; ˇ/

�Wx=˛.I2;J2I I3;J3 j .x=˛/
1=2; .�y=˛/�1=2/:

Taking S ! 0 and Y ! 0 (hence also ˛ D �S2! 0 and ˇ D SY 1=2! 0) and then
applying Lemma 3.1 leads to the desired YBEX

I2;J2;K2

R0y=x.I1;J1I I2;J2/
zLx.K1;J2IK2;J3/zL

0
y.K2; I2IK3; I3/

D

X
I2;J2;K2

L0y.K1; I1IK2; I2/Lx.K2;J1IK3;J2/R
0
y=x.I2;J2I I3;J3/:

Proof of Proposition 3.4. Fix S; Y; x; y 2 C and let ˛ D �S2 and ˇ D SY 1=2. Sub-
stituting � D 1, 
 D 1, z D 1, r D Sx�1=2, s D Sy�1=2, and t D SY �1=2 into (C.1)
givesX
I2;J2;K2

W1.I1;J1I I2;J2 j Sx
�1=2; Sy�1=2/W1.K1;J2IK2;J3 j Sx

�1=2; SY �1=2/

�W1.K2; I2IK3; I3 j Sy
�1=2; SY 1=2/

D

X
I2;J2;K2

W1.K1; I1IK2; I2 j Sy
�1=2; SY 1=2/

�W1.K2;J1IK3;J2 j Sx
�1=2; SY 1=2/W1.I2;J2I I3;J3 j Sx

�1=2; Sy�1=2/:

Multiplying both sides by Y �jI3j�jJ3j results inX
I2;J2;K2

W1.I1;J1I I2;J2 j Sx
�1=2; Sy�1=2/Y �jJ3j

�W1.K1;J2IK2;J3 j Sx
�1=2; SY �1=2/Y �jI3j

�W1.K2; I2IK3; I3 j Sy
�1=2; SY 1=2/

D

X
I2;J2;K2

Y �jI2jW1.K1; I1IK2; I2 j Sy
�1=2; SY 1=2/Y �jJ2j

�W1.K2;J1IK3;J2 j Sx
�1=2; SY 1=2/W1.I2;J2I I3;J3 j Sx

�1=2; Sy�1=2/;
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where we have used jI2j C jJ2j D jI3j C jJ3j by path conservation on the right-hand
side. Taking S ! 0 and Y ! 0 and then applying Lemma 3.1 gives the desired YBEX

I2;J2;K2

R00x=y.I1;J1I I2;J2/L
0
x.K1;J2IK2;J3/L

0
y.K2; I2IK3; I3/

D

X
I2;J2;K2

L0y.K1; I1IK2; I2/L
0
x.K2;J1IK3;J2/R

00
x=y.I2;J2I I3;J3/:

D. Example computations of LS and G

D.1. Example 1

The 2-quotient of � D .4; 2/ is � D ..1/; .2//,

ı ı
�
ı ı
�

ı
�
ı

ı ı
�

Therefore, by Proposition 5.9, we must have

LS
�.x1Iy1I t / D t

�G
.2/

�
.x1Iy1I t

1=2/

for some half-integer � 2 1
2
Z. To compute LS

�
.x1I y1I t /, we note that there are 4

configurations of the lattice S1;1.�/,

x1

y1

x1

y1

x1

y1

x1

y1
.

x21y1 x1y
2
1 tx31 tx21y1

Therefore,
LS
�.x1Iy1I t / D x

2
1y1 C x1y

2
1 C tx

3
1 C tx

2
1y1:

To compute G
.2/

�
.x1I y1I t

1=2/, we note that there are 4 super 2-ribbon tableaux of
shape � in the alphabet ¹1 < 10º,

1

10

1 1

10

10

1 1

1

1 1

10

x21y1 x1y
2
1 t2x31 t2x21y1

Therefore, G
.2/

�
.x1I y1I t

1=2/ D x21y1 C x1y
2
1 C t

2x31 C t
2x21y1. (The way we have

ordered the lattice configurations and the super ribbon tableaux agrees with the bijec-
tion � from Section 5, so that the i -th lattice configuration corresponds to the i -th
super ribbon tableaux via � .) We see that

LS
�.x1Iy1I t / D G

.2/

�
.x1Iy1I t

1=2/;
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so in fact � D 0 in this case. This agrees with the fact that the quantity

� D
1

2

X
a<b

�
# C # � # � #

�
C
1

2

X
a<b

�
# � #

�
is equal to 0 in each of these 4 configurations.

D.2. Example 2

The 3-quotient of � D .8; 7; 3/ is � D ..1/; .3/; .2//,

ı ı ı
�
ı ı ı ı

�
ı
�
ı

ı
�
ı ı

ı ı ı
�

ı ı
�
ı

Therefore, by Proposition 5.9, we must have

LS
�.x1Iy1I t / D t

�G
.3/

�
.x1Iy1I t

1=2/

for some half-integer � 2 1
2
Z. We can thus compute G

.3/

�
.x1I y1I t

1=2/ by computing
LS
�
.x1Iy1I t / and �. To compute LS

�
.x1Iy1I t /, we note that there are 8 configurations

of the lattice S1;1.�/,

x1

y1

x1

y1

x1

y1

x1

y1

t3x51y1 t2x41y
2
1 t5x61 t4x51y1

x1

y1

x1

y1

x1

y1

x1

y1

t3x41y
2
1 t2x31y

3
1 t5x51y1 t4x41y

2
1

Therefore,

LS
�.x1Iy1I t / D t

3x51y1 C t
2x41y

2
1 C t

5x61 C t
4x51y1 C t

3x41y
2
1

C t2x31y
3
1 C t

5x51y1 C t
4x41y

2
1 :

We can also observe that the quantity

� D
1

2

X
a<b

�
# C # � # � #

�
C
1

2

X
a<b

�
# � #

�
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is equal to 1
2

in each of these 8 configurations, so � D 1
2

. We can now compute

G
.3/

�
.x1Iy1I t / D t

�2�LS
�.x1Iy1I t

2/ D t5x51y1 C t
3x41y

2
1 C t

9x61

C t7x51y1 C t
5x41y

2
1 C t

3x31y
3
1 C t

9x51y1 C t
7x41y

2
1 :

We see this agrees with the result obtained from explicitly computing all the super
3-ribbon tableaux of shape � in the alphabet ¹1 < 10º,

1 1 1 1 1
10

1 1 1 10

1

10 1 1 1
1 1 1

1 1 1
1 10

1

t5x51y1 t3x41y
2
1 t9x61 t7x51y1

1 1 1 1 10
10

1 1 1 10

10

10 1 1 1
1 1 10

1 1 1
1 10

10

t5x41y
2
1 t3x31y

3
1 t9x51y1 t7x41y

2
1

(Again, the way we have ordered the lattice configurations and the super ribbon
tableaux agrees with the bijection � from Section 5.)
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