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Dimers on Riemann surfaces I: Temperleyan forests

Nathanaël Berestycki, Benoit Laslier, and Gourab Ray

Abstract. This is the first article in a series of two papers in which we study the Temperleyan
dimer model on an arbitrary bounded Riemann surface of finite topological type. The end goal
of both papers is to prove the convergence of height fluctuations to a universal and conformally
invariant scaling limit. In this part, we show that the dimer model on the Temperleyan superpos-
ition of a graph embedded on the surface and its dual is well posed, provided that we remove an
appropriate number of punctures. We further show that the resulting dimer configuration is in
bijection with an object which we call Temperleyan forest, whose law is characterised in terms
of a certain topological condition. Finally, we discuss the relation between height differences
and Temperleyan forest and prove that the convergence of the latter (which is the subject of
the second paper in this series) implies the existence of a conformally invariant scaling limit of
height fluctuations.
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1. Introduction

1.1. Background and main result

This paper is the first part of a series of two papers in which we show universality and
conformal invariance of the Temperleyan dimer model on Riemann surfaces.

Mathematics Subject Classification 2020: 60B10 (primary); 60C05 (secondary).
Keywords: dimers, CRSF, loop soup, loop-erased random walk, Temperley.
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Given a finite graphG (with an even number of vertices) and nonnegative weights
w D .we/e2E on the edges, a dimer configuration is a perfect matching of the vertices
along the edges of G. The dimer model is the random perfect matching obtained by
sampling a dimer configuration m on G with probability proportional to the product
of the weights of the edges in the matching m:

P .m/ D
Q
e2mwe

Z
; (1.1)

where Z is the partition function. If all the weights are equal to 1, P is simply a uni-
formly picked perfect matching. Following Thurston, a particularly convenient way to
encode the dimer model on a planar bipartite graph is through a notion of height func-
tion. Informally, it is a real-valued function defined on the faces of the graph, which
is uniquely determined by the dimer configuration. This turns the dimer model into a
model of discrete random surfaces. A central question in the study of the dimer model
is to describe the fluctuations around the mean of the height function. It turns out that
the height function of the dimer model is extremely sensitive to boundary conditions
(see, for example, the quote of Kasteleyn at the beginning of [14]). In the so-called
liquid phase, the Kenyon–Okounkov conjecture predicts that the fluctuations of the
height function around its mean are asymptotically given by a Gaussian free field in
a certain nontrivial conformal gauge (see [27, Section 2.3] for details). Despite the
remarkable progress on this conjecture over the last decade, this remains an outstand-
ing problem in all but a handful of cases: see [4,19,26,34,35] for examples of models
where this is already shown, and see [7, 37] for an introduction to the Gaussian free
field. We emphasise that, given the extreme sensitivity of the model to its boundary
conditions, the occurrence of a universal limit such as the Gaussian free field is to
some extent very surprising.

The goal of this paper is to describe the fluctuations of the height function for
certain graphs embedded on Riemann surfaces of finite topological type, i.e., with
finitely many handles and holes. Our assumptions on these graphs ensure that the
dimer model is liquid on the entire Riemann surface (as opposed to having frozen or
gaseous regions, say as in the Aztec diamond) and the conformal gauge is simply the
identity; we call the resulting dimer model Temperleyan, and we say that the sequence
of graphsG#ı is a Temperleyan discretisation of the surface. Even though this assump-
tion simplifies the problem, conformal invariance in the scaling limit is by no means
obvious; for instance, in the simply connected setting and for the square lattice, this
is in fact precisely the content of Kenyon’s landmark paper [25].

Before we give a simplified statement of the main theorem, we point out that,
in the context of a Riemann surface M , the height function becomes a height one-
form h#ı : that is, the gradient rh#ı is well defined, but this gradient does not derive
itself from a single-valued function on the surface. Instead, it can be viewed as the
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gradient of a (single-valued) function defined on the universal cover of the surface. For
concreteness, we will denote by h#ı the associated function on the universal cover of
the surface. Readers who prefer it can however equivalently think of h#ı as the random
one-form on M associated to the dimer configuration. (See Sections 2.5 and 6.1 for
precise definitions.) The function h#ı is the central object of this sequence of papers,
and we still refer to it as the height function.

Our main theorem, stated informally below, confirms that the dimer model admits
a universal scaling limit on Riemann surfaces. This scaling limit is furthermore con-
formally invariant.

Theorem 1.1. Let M denote a bounded Riemann surface, possibly with a boundary,
which is not the sphere or a simply connected domain. Let G#ı be a sequence of
Temperleyan discretisations of M satisfying the invariance principle and a crossing
estimate for random walk described in Section 2.4. Let h#ı denote the height function
of the dimer model on G#ı . For all smooth compactly supported test functions f on
the universal cover of M , Z

.h#ı
� E.h#ı//f

converges as ı ! 0 in law and the limit is conformally invariant and independent of
the sequence G#ı .

The precise assumptions on the surfaceM will be given in Section 2.1; the mean-
ing of Temperleyan discretisations and our precise assumptions on the sequence G#ı

can be found in Section 2.4. Finally, note that the smooth test function f is taken on
the universal cover zM of M so that the integration takes place on zM (equipped, e.g.,
with Lebesgue measure). See Sections 2.5 and 6.1 for details. We refer to Theorem 6.1
for the complete version of the theorem.

Although we cannot find what the limiting object is, as an artefact of our proof,
we can show that the limit is nontrivial. Indeed, we prove later in Proposition 5.10
that the limiting field restricted to a small enough neighbourhood of M away from
the punctures can be coupled to the restriction of a Gaussian free field in a slightly
bigger neighbourhood, with positive probability; in particular, this field is nontrivial.
We conjecture that the limiting field is a compactified Gaussian free field with appro-
priate parameters depending only on the surfaceM and the positions of the punctures
.x1; : : : ; xk/ on M .

1.2. Relation with previous work

One of the first rigourous, works on the dimer model on Riemann surfaces is the
inspiring paper by Boutillier and de Tilière [9], who were motivated by nonrigour-
ous, physics predictions based on the Coulomb gas formalism (see, e.g., [17] and
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the references in [9]). They described the topological part of the fluctuations in the
dimer model on the honeycomb lattice on the torus. This was complemented some
years later by the fundamental paper of Dubédat [19], in which the full law of the
limiting height fluctuations was described for isoradial graphs on the flat torus, and
identified as a so-called compactified Gaussian free field. Dubédat also conjectured a
greater form of universality beyond the isoradial setting; such a universality statement
was subsequently proved by Dubédat and Gheissari [20] but only for the topological
part of fluctuations on the torus. Note that in particular our Theorem 1.1 settles this
conjecture of Dubédat.

We point out that all techniques in the paper mentioned above, based on Kasteleyn
theory (in contrast with our approach), are very specific to the case of the torus and
cannot easily be adapted to general Riemann surfaces. Cimasoni [10] shows that, for
general surfaces of genus g (and no boundary), the partition function of the dimer
model becomes a weighted (in fact, signed) sum of 22g determinants of Kasteleyn
matrices in which the orientation has been reversed along some of the 2g cycles
forming a basis of the first homology group of the surface. The signs in front of
the determinants themselves form a nontrivial algebraic topological invariant of the
surface which Cimasoni, remarkably, was able to identify in terms of the so-called
Arf invariant. (In the case of the torus and the honeycomb lattice, this goes back to
the work of Boutillier and de Tilière [9].) This illustrates the difficulty in generalising
the Kasteleyn approach to general surfaces. See also [1, 11, 12, 15] for related results.

The above difficulty illustrates the well-known fact that the dimer models become
“less integrable” as the genus of the surface increases, or at any rate integrability
becomes harder to exploit. In this paper, we will therefore follow the general strategy
of our previous work [4], which relies instead on Temperley’s bijection between the
dimer model and uniform spanning trees (in fact, see the overview of the proof in Sec-
tion 1.3 for a discussion of this strategy and the relation between the two papers). The
increased robustness of this method accounts in large part for the fact that we are able
to tackle generic Riemann surfaces. (In contrast with methods based on Kasteleyn the-
ory or interacting particle systems.) This is not to say that the difficulties caused by
the increased complexity of the surface vanish entirely, but they manifest themselves
in a different manner, which boils down to the following. As we will describe in more
details in Section 2, a Temperleyan discretisation of the surface is the graph resulting
from the superposition of a graph � embedded on the surface and its dual. The result-
ing graph is bipartite, with its black vertices being given by the vertices and faces of
� and the white vertices being given by the edges of � . However, a straightforward
calculation using Euler’s formula shows that this does not admit a dimer covering
unless we remove 2g C b � 2 D j�j many white vertices from the graph (where g
is the genus and b the number of boundary components, and � is the Euler char-
acteristic); these can be thought of as punctures in the surface, or monomers. Note
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that the number of punctures increases with the complexity of the surface, and when
the surface is a torus or an annulus, no such puncture needs to be removed. Roughly
speaking, we will see that the locally tree-like random subgraphs appearing when
we generalise Temperley’s bijection, which we will call Temperleyan self-dual pair,
have one topological constraint for each puncture. In the case of a torus or an annulus
where there is no puncture, we will see that the Temperleyan self-dual pair boils down
to the simpler notion of cycle-rooted spanning forest studied by Kassel and Kenyon
in [24].

The necessity to remove a certain number of punctures from the surface in order
to formulate the Temperleyan dimer model has a geometric flavour which is reminis-
cent of Liouville conformal field theory, in which correlation functions are only well
defined with the appropriate number of singularities (known in that context as inser-
tions). The required number of insertions is specified by the so-called Seiberg bounds;
see, e.g., [16] on the sphere and [21] for Riemann surfaces (see also [7] for an intro-
duction). As is the case here, the number of punctures is entirely specified by the
topology of the surface, but in a way that is in some sense opposite to ours: indeed the
required number of insertions is an increasing function of � in Liouville CFT, whereas
it is decreasing here.

This difference can be understood informally as follows. To first order, Liouville
CFT may be viewed as yielding a random metric which is approximately hyperbolic.
(This can, for instance, be made rigourous in the semiclassical limit where the para-
meter  ! 0; see [29].) However, on the Riemann sphere, for which the theory is
of particular interest, and on other surfaces of non-negative Euler characteristic, it is
impossible to equip the surface with a metric of constant negative scalar curvature
without first adding conical singularities at a certain number of points, as follows
from the Gauss–Bonnet theorem. By contrast, the Temperleyan dimer model is trying
to equip the surface with a flat metric, a fact which will be particularly apparent when
we relate the height function to the winding of the Temperleyan forest in Section 4.
(Note that the winding is computed on the universal cover, where we ignore the effects
of curvature; see Section 2.2.) Yet, on a hyperbolic surface (i.e., when � < 0), no flat
metric exists, again by the Gauss–Bonnet theorem. In summary, Liouville CFT may
be viewed as trying to build a hyperbolic metric on a surface which may be para-
bolic or elliptic, whereas the Temperleyan dimer model tries to impose a flat metric
on a surface which may be hyperbolic. In both cases, the difficulty is resolved by
puncturing the surface at an appropriate number of singularities. (The above parallel
between Liouville CFT and dimer model may perhaps also be compared with the two
couplings between SLE and Gaussian free fields given, respectively, by the so-called
forward and reverse couplings; the forward coupling describes Liouville conformal
field theory, whereas the reverse coupling describes imaginary geometry [32, 33].)
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1.3. Overview of the proof and organisation of the paper

As mentioned above, our general approach to study height fluctuations on Riemann
surfaces is motivated and inspired by our earlier work [4] connecting the dimer model
to imaginary geometry in the simply connected setting. Let us recall the main idea of
that work briefly in the original simply connected setting before explaining how this
relates with and differs from the case of Riemann surfaces.

• The starting point of [4] is Temperley’s bijection, which relates the dimer model
on a Temperleyan discretisation of a simply connected domain to a pair of dual
uniform spanning trees with, respectively, wired and free boundary conditions.
Furthermore, the height function of the dimer model can be determined relatively
simply from the associated pair of spanning trees: roughly speaking, the height
difference between two points is simply the total winding (sum of turning angles)
of the unique path connecting these points in either tree.

• The second observation is that, as follows from the landmark paper of Lawler,
Schramm, and Werner [30], paths between points in the wired uniform spanning
tree (UST) have a scaling limit which may be described in terms of Schramm–
Loewner Evolutions with parameter � D 2 or SLE2 for short.

• Finally, in the continuum, there is a coupling known as imaginary geometry be-
tween SLE� curves and an appropriate multiple of the Gaussian free field. In this
coupling, the values of the GFF may informally be identified as the winding of
the associated SLE curves. (Note that this requires careful interpretation, since
the Gaussian free field is not defined pointwise and SLE� paths are not smooth.)
Nevertheless, this coupling can be thought of as a continuous form of Temperley’s
bijection in the case � D 2.

The strategy of [4] is to exploit Temperley’s bijection on the one hand and ima-
ginary geometry on the other hand to show that the winding of paths in a UST is
indeed given by the appropriate multiple of the Gaussian free field asymptotically.
(Essentially, one has to show that we can exchange the order of taking limits, or that
a diagram commutes.) This strategy is very robust; in particular, it does not appeal to
the more solvable aspects of the dimer model. Indeed, the convergence of loop-erased
random walks (which describe the branches of a wired UST at the discrete level) to
SLE2 is known in great generality.

At a broad level, the approach we wish to pursue in the case of Riemann surfaces
follows similar steps. However, it should be clear that each step will be substantially
different in this new setup.

(1) To begin with, we observe that Temperley’s bijection is local, and so, it may
be applied on a Riemann surface to output a pair of random subgraphs that are
dual to one another and locally tree-like, which we call Temperleyan self-dual
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pair. While in the simply connected case, these are just dual spanning trees,
the combinatorial structure (i.e., state space) of the Temperleyan self-dual pair
on a Riemann surface is a priori not entirely clear, and its law even less so. Our
first result will be a characterisation of the Temperleyan self-dual pair. We also
describe its law explicitly, which has a simple and concise expression. It turns
out that one of the two components, which we call the Temperleyan cycle-
rooted spanning forest or Temperleyan CRSF for short, determines the other
(and hence the entire dimer configuration) almost uniquely (up to some choice
of orienting cycles), and it also has a tractable law. Essentially, a Temperleyan
CRSF is a random spanning subgraph in which every cycle is non-contractible
and satisfies a certain further topological condition. The introduction and
study of Temperleyan CRSFs take up a substantial part in both of the articles
in this series.

(2) A second problem is that the connection between height function and winding
is not as straightforward as in the simply connected case; in particular, in
addition to the already mentioned fact that only the gradient of the height
function is well defined (leading to a multivalued height function), there may
not be a path connecting two given points in the Temperleyan CRSF, even
when they are neighbours. We thus need to develop a systematic method for
computing the height function given the Temperleyan CRSF.

(3) The next difficulty is to obtain a scaling limit result for our Temperleyan
CRSF. Let us immediately note here that there are specific difficulties with
even defining variants of SLE on surfaces since the simply connected uni-
formisation theorem lies at the heart of the standard definition of SLE.

(4) Finally, if we were to follow the blueprint of [4], one would also need to
establish a version of imaginary geometry for Riemann surfaces, an endeav-
our which seems out of reach with current techniques. Fortunately, we are in
fact able to entirely bypass this step because it turns out that the (discrete)
“error” estimates needed anyway to exchange limits are strong enough to
imply convergence regardless of any information in the continuum. Clearly,
the downside of this approach that we cannot hope to describe the law of the
limit in this manner.

The topological and geometric structures of the surface M raise substantial spe-
cific difficulties at each of the steps of this roadmap. In this first paper, we develop
the relevant discrete/combinatorial arguments corresponding to the first two items
above and present the conclusion according to the last item. The second paper in this
sequence, [5], is devoted to the third bullet point, i.e., the proof of convergence of the
Temperleyan CRSF in the scaling limit. This is the most involved step which requires
several new ideas but can be read essentially independently.
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At this point, it is also useful to discuss a bit more precisely the role that the
different structures associated to a Riemann surface will play in our paper. In order
to even discuss convergence on the surface M , one needs in principle to specify a
Riemannian metric onM , and it is natural to require that this metric be consistent with
the conformal structure of M . However, ultimately, we want to prove convergence to
a conformally invariant object, so, in principle, only the conformal class of this metric
matters. (Here, we mean that two metric tensors are equivalent if we obtain one from
the other by multiplying by a smooth function e' .)

It turns out however that, after lifting to the universal cover (which in most of the
interesting cases for this paper will be the unit disc; see below for more details), it
will be more convenient for us to equip this cover with the standard Euclidean metric
instead of the a priori more natural hyperbolic metric.

This impacts the way we formulate some of our assumptions in Section 2.4. Unfor-
tunately, some of our technical estimates involve indirectly the Euclidean metric on
the unit disc: for instance, through our assumptions that the graph G has a bounded
density and each edge has a bounded winding (items (i) and (ii) in Section 2.4).
Nevertheless, changing the metric to another one in the same class only changes the
constants involved in these assumptions, and so, it does not impact the main results.
We explicitly prove this fact in Lemma 2.5.

Organisation of the paper

• In Section 2, we recall some basic facts about dimers on surfaces, and in Sec-
tion 2.3, we recall the notions of windings of curves which were developed in our
previous article [4]. Sections 2.1 and 2.2 contain small reminders about Riemann
surfaces. We introduce precisely our discrete setup in Section 2.4. As one of the
main differences with the classical case is that the height function now becomes
multivalued; we recall in Section 2.5 the language of height one-forms on graphs
which is a classical way to handle such multivalued functions. In Section 2.5, we
introduce another way to deal with multivalued functions by lifting them to single-
valued functions on the universal cover. We also illustrate how an application
of the Hodge decomposition theorem allows us to decompose the (multivalued)
height function on the surface into a single-valued function (scalar component)
and a canonical representative of the “multivalued (or topological) part”, the so-
called instanton component.

• In Section 3, we introduce the generalisation of Temperley’s bijection to Riemann
surfaces, essentially covering point (1) above. Section 3.1 contains the bijection
itself. We also provide in Section 3.2 a simple criterion for a CRSF to be Temper-
leyan which is the basis of the second paper in the series [5].
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• In Section 4, we carefully develop the relation between the height differences
and the winding of Temperleyan forests, i.e., point 2 of the overview. This is in
the spirit of the work of Kenyon–Propp–Wilson [28], who treated the (planar)
simply connected case. In that case, of course, the bijection is with a uniform span-
ning tree. Compared to that work, there are two additional points that we need to
handle. The first one is that the edges of the graph cannot be assumed to be straight
lines as in [28]. The second and more significant one is that there are additional
terms coming from the fact that the forest is not connected: given points x and y
on the universal cover, the height difference h.x/� h.y/ (which is unambiguously
defined) is essentially given by the intrinsic winding of any path connecting x to
y, plus additional discontinuities every time the path jumps between components.
The resulting key formula is stated in Theorem 4.10 (see also Lemma 4.6).

• In Section 5, we extend our local and global coupling results from [4] to the frame-
work of Riemann surfaces. This coupling is a key ingredient of our approach,
which allows us to show that given a finite number of points .zi /1�i�k on the sur-
face (or, rather, their lifts to the universal cover), the respective geometries of the
CRSF in neighbourhoods of these k points are almost independent. This is crucial
because certain types of “error terms” in our approach vanish in expectation but
are large in absolute value.

• In Section 6, we conclude by proving our main convergence result: Theorem 6.1.
Sections 6.2 and 6.3 contain some technical a priori estimates on winding of the
CRSF branches on the universal cover. Finally, in Section 6.4, we finish the proof
of Theorem 6.1.

• Finally, appendix A contains some geometric facts about spines in the CRSF (that
is, the lifts to the universal cover of a cycle of the CRSF). It is given as an appendix
because the proofs rely on slightly more involved elements of the classical theory
of Riemann surfaces than the rest of the paper and we wanted to avoid overloading
the already lengthy setup section.

2. Background and setup

2.1. Riemann surfaces and embedding

In this article, we work with a Riemann surface M (a connected, one-dimensional
complex manifold) satisfying the following properties.

• M is of finite topological type, meaning that the fundamental group �1.M/ is
finitely generated. In other words, we assume that the surface has finitely many
“handles” and “holes”.



N. Berestycki, B. Laslier, and G. Ray 10

• M can be compactified by specifying a boundary @M . We denote by xM the com-
pactified Riemann surface with the boundary. More precisely, every point is either
in the interior and hence has a local chart homeomorphic to C or is on the bound-
ary and has a local chart homeomorphic to the closed upper half-plane xH. Also,
there are finitely many such charts which cover the boundary. Note that this condi-
tion implies thatM has no punctures. (However, for future reference, we note here
that we will later introduce punctures on M which will align with the removed
vertices of Temperleyan graphs. The resulting punctured manifold will be denoted
by M 0.)

We say M is nice if M satisfies the above properties.
Given such a Riemann surfaceM , it is possible to equip it with a Riemannian met-

ric g (with associated distance function denoted by dM ) which extends continuously
to the boundary and turns M into a smooth Riemannian surface. This Riemannian
metric can be constructed by considering the hyperbolic metric on the universal cover
of the surface if it has no boundary; see [23, Section 2.4] in combination with the
uniformisation theorem ([23, Theorem 4.4.1], also recalled and discussed below). If
the surface has boundary components, we may apply the same result to the surface
obtained by gluing it to itself along the boundary – also called the double.

Note that the choice of the metric above excludes surfaces, such as the hyper-
bolic plane. This will simplify certain topological issues later when we deal with the
Schramm topology.

Classification of surfaces. Riemann surfaces can be classified into the following
classes depending on their conformal type (see, e.g., [18] for an account of the clas-
sical theory):

• Elliptic: this class consists only of the Riemann sphere, i.e., M � yC.

• Parabolic: this class includes the torus, i.e.,

M � T D C=.ZC �Z/;

where =.� > 0/, the cylinder M � C n ¹0º, and the complex plane itself (or the
Riemann sphere minus a point), M � C.

• Hyperbolic: this class contains everything else. This includes examples such as
the two-torus, the annulus, as well as proper simply connected domains in the
complex plane, etc.

The proofs in this paper (and its companion [5]) are concerned with the hyperbolic
case (subject to the above conditions) as well as the case of the torus. So, from now
on, we always assume that M is such a manifold. We note that the case of simply
connected proper domain in C is covered in our previous work [4].
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2.2. Universal cover

The universal cover zM of the Riemann surface M will play an important role in
our analysis. Recall that any Riemann surface admits a (regular) covering map by
a covering space which is simply connected. This covering space may furthermore
be endowed with a conformal structure, with respect to which the covering map is
then analytic. Being simply connected, this covering space is (by the uniformisation
theorem, see [23, Theorems 4.4.1 and 2.4.3]) conformally equivalent to a Riemann
surface zM , which is either the unit disc D � C (hyperbolic case), the whole plane
(parabolic case), or the Riemann sphere yC (elliptic case). Altogether, we obtain a
map1 p W zM !M which is both analytic and a regular covering map ofM . By defin-
ition of a covering map, p is a local homeomorphism: for every z 2M , there exists a
neighbourhood N containing z so that p is injective in every component of p�1.N /.

Recall further that in each of the three cases (elliptic, parabolic, and hyperbolic),
zM can be endowed with a metric (compatible with the complex structure) of con-

stant Gaussian curvature equal to 1, 0, and �1, respectively. Furthermore, there is a
subgroup F of conformal automorphisms on zM acting properly discontinuously and
freely – i.e., without fixed points – (see, e.g., [23, Section 2.4] for definitions) such
that p descends to a conformal equivalence between zM=F and M . Put more simply,
F is a discrete subgroup of the corresponding set of Möbius transformations describ-
ing the conformal automorphisms of zM , and M is conformally equivalent to zM=F

(i.e., to either yC=F , C=F , or D=F ).
In case of the torus, this discrete subgroup is isomorphic to Z2 and the generators

specify translations in the two directions of the torus. In the hyperbolic case, this class
of subgroups is much bigger and are known as Fuchsian groups (see, e.g., [18] for
a general account). This particular representation of a hyperbolic Riemann surface,
sometimes called a Fuchsian model, will be particularly convenient because it allows
us to describe the scaling limits of Temperleyan or cycle-rooted spanning forests in
the universal cover, rather than on the surface itself. This will allow us to import
directly a number of the ideas and results from [4] on the simply connected case.

Concretely, one of the main advantages of the Fuchsian model of a hyperbolic
Riemann surface – and more generally of a lift to the universal cover which inherits
the Euclidean metric – is that, equipped with this Euclidean metric, we have a flat
embedding in which the sum of angles around a point is 2� , the total winding of a
simple loop is 2� (see also Lemma 2.1 below). The Fuchsian structure itself plays
a more technical role; see, for instance, appendix A. We rely on this for a canonical
description of the height function in terms of the extended Temperley bijection.

1For concreteness, one can fix a point x0 in M and consider p such that p.0/ D x0. In the
hyperbolic case, fix an arbitrary choice of rotation as well.
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To conclude, moving to the universal cover allows us in a sense to trade a nat-
ural law on a graph possessing a nontrivial topology for a law with complicated
periodicity-like constraints but on a planar graph.

2.3. Intrinsic and topological winding

The goal of this section is to recall several notions of windings of curves drawn in the
plane, which we use in this paper. We refer to [4] for a more detailed exposition. A
self-avoiding (or simple) curve in C is an injective continuous map  W Œ0; T �! C

for some T 2 Œ0;1�.
The topological winding of such a curve  around a point p … Œ0; T � is defined

as follows. We first write
.t/ � p D r.t/ei�.t/;

where the function � W Œ0;1/! R is taken to be continuous, which means that it is
unique modulo a global additive constant multiple of 2� . We define the winding for
an interval of time Œs; t �, denoted by W.Œs; t �; p/, to be

W.Œs; t �; p/ D �.t/ � �.s/:

(Note that this is uniquely defined.) Notice that if the curve has a derivative at an
endpoint of  , we can take p to be this endpoint by defining

W.Œ0; t �; .0// WD �.t/ � lim
s!0

�.s/;

and similarly,
W.Œs; T �; .T // WD lim

t!T
�.t/ � �.s/:

With this definition, winding is additive: for any 0 � s � t � T ,

W.Œ0; t �; p/ D W.Œ0; s�; p/CW.Œs; t �; p/:

The notion of intrinsic winding we describe now, also discussed in [4], is perhaps a
more natural definition of windings of curves. This notion is the continuous analogue
of the discrete winding of non-backtracking paths in Z2 which can be defined just by
the number of anticlockwise turns minus the number of clockwise turns. Notice that
we do not need to specify a reference point with respect to which we calculate the
winding; hence, our name “intrinsic” for this notion.

We call a curve smooth if the map  is smooth (continuously differentiable). Sup-
pose that  is smooth and, for all t;  0.t/ ¤ 0. We write  0.t/ D rint.t/e

i�int.t/, where
again �int W Œ0;1/! R is taken to be continuous. Then, define the intrinsic winding
in the interval Œs; t � to be

Wint.Œs; t �/ WD �int.t/ � �int.s/:
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� and �� yG G

Figure 1. The graphs �; ��; yG, and G. The graph � is pictured in red and �� in black.

The total intrinsic winding is again defined to be limt!T Wint.; Œ0; t �/ provided this
limit exists. Note that this definition does not depend on the parametrisation of 
(except for the assumption of non-zero derivative). The following topological lemma
from [4] connects the intrinsic and topological windings for smooth curves.

Lemma 2.1 ([4, Lemma 2.1]). Let Œ0; 1� be a smooth self-avoiding curve in C; then

Wint.Œ0; 1�/ D W.Œ0; 1�; .1//CW.Œ0; 1�; .0//:

Note that the right-hand side in the above expression makes sense as soon as
the endpoints of  are smooth. From now on, we therefore extend the definition of
intrinsic winding to all such curves using the equality of Lemma 2.1. Since the topo-
logical winding is clearly a continuous function on the curve away from the point
p, this extension is consistent with any regularisation procedure. We also recall the
following deformation lemma from [4, Remark 2.5].

Lemma 2.2. Let D be a domain and  � xD a simple smooth curve (or piecewise
smooth with smooth endpoints). Let  be a conformal map on D, and let arg 0.D/ be
any realisation of argument on  0.D/. Then,

Wint. .// �Wint./ D arg 0.D/. 
0..1/// � arg 0.D/. 

0..0///:

2.4. Discretisation setup

We will require the graphs we are working with to be embedded on M in a way that
preserves its topology and geometry; we make this precise now.

Let M be a Riemann surface with b holes and g handles satisfying the assump-
tions of Section 2.1. We say that a graph � is faithfully embedded in M if it satisfies
the following (see Figure 1).

• The embedding is proper; i.e., edges do not cross.
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• � is connected.

• Every face of � not intersecting @M has the topology of a disc.

• � has a marked vertex (called a boundary vertex, the set of which is denoted by
@�) for each component of @M .

Note that, with this convention, we can think of each boundary vertex as being “delo-
calised” along the whole boundary component, and indeed later, we will consider
cycle-rooted spanning forests (CRSFs) with a wired condition on each boundary com-
ponent. This “delocalised” boundary vertex is best illustrated to be sitting inside the
hole; see Figure 1.

Let �� denote the dual graph of � , defined as follows. Every face of � contains
a single vertex of �� and two vertices of �� are connected by an edge if their corres-
ponding faces share an edge of � . We also assume the following for ��.

• The embedding is proper; i.e., the edges do not cross.

• �� is connected.

• Every face of �� corresponding to a non-boundary vertex of � is a topological
disc.

• The vertices of �� corresponding to the faces of � which contain a given boundary
vertex form a simple cycle homotopic to the corresponding boundary component
of @M . We call this the boundary cycle, and we denote this by @��.

We assign an oriented weightw.e/Dw�.e/� 0 to every oriented edge of � . This
defines a continuous-time Markov chain on � , where, for every edge .x; y/ in � , the
chain jumps from x to y at rate w.x; y/, and with a slight abuse of terminology, we
will from now on refer to this chain as the random walk on � . Note that we defined it
in continuous time for simplicity, but we will in fact always be interested only in the
geometry of its paths, so its time parametrisation is mostly irrelevant. With a slight
abuse of notations, we will often identify the trajectory of the random walk (or other
processes, such as loop-erased paths) with the continuous path obtained from the set
of edges used by the walk, either seen as a path or as a subset of M . Similarly, with a
slight abuse of notation, we will use direct image notations to denote sub-paths of the
random walk; i.e., if s < t are two times, we will denote by XŒs; t � the path followed
by the random walk between times s and t . Finally, we will always stop the random
walk whenever it reaches a boundary vertex, so we assume that all oriented edges
starting at such a vertex have weight 0. We emphasise that there are no weights on the
dual graph ��, and indeed, we will never consider the random walk on the dual graph.

Remark 2.3. To explain the asymmetry between � and ��, we point out that � can
be thought of as a graph that is wired at the boundary of @M , whereas �� has free
boundary conditions.
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In order to apply locally the bijection between dimers and (a variant of) spanning
trees, we need to define the superposition of � and ��. We introduce a new set of
vertices W at each point where some edge e and dual edge e� intersect. Define the
graph yG whose vertices are V D V.�/ [ V.��/ [W and whose edges are obtained
by joining every vertex in W which is on the edge e with the endpoints of e and e�.
(In other words, each pair of edges e and e� corresponds to four edges in yG.) We
call yG the superposition graph. Then, we let G denote the graph where we remove
from yG the boundary vertices @� and its corresponding half-edges. See Figure 1 for
an illustration. Clearly, G is a bipartite graph where we take W to be the set of white
vertices and the rest to be black. Also, every non-outer face of G is bounded by 4
edges (i.e., every non-outer face is a quadrangle). We can naturally define unoriented
weights on G from the ones on � . If w is the white vertex in the middle of the edge
.x;y/ of � , we setwG.x;w/Dw�.x;y/ andwG.y;w/Dw�.y;x/whilewG.e/D 1
if e is part of an edge of ��. It will be useful later for the definition of the height (see
Section 4.1) to also choose in each face f of yG a diagonal d.f / which is just a curve
connecting the primal and dual vertices adjacent to f without exiting f , together with
a midpoint m.f / which is just a point in the interior of the diagonal. If the primal
vertex adjacent to f is a boundary point, choose the diagonal as a path connecting
the boundary and the dual vertex. It will be clear from Section 4.1 that the choice of
these diagonals and midpoints only affects some of the arbitrary conventions needed
to define the height function and that any statement on the centred height h � E.h/ is
independent of this choice.

We will prove in Section 3 that if the manifoldM is not a torus or an annulus, one
must introduce punctures in the graph G for it to even admit dimer coverings. More
precisely, we will remove finitely many white vertices from G and call a removed
vertex and the edges associated with it a puncture. (Equivalently, the puncture may
be thought of as forcing the vertex to be a monomer instead of in a dimer edge.)
Note that each puncture creates an octagon G consisting of four white vertices, two
black vertices from � , and two black vertices from �� (see Figure 2). We will call
the resulting graphs, respectively, G0; � 0; .��/0 and we call the manifold obtained
by removing the white vertices M 0. We will see later in Section 3 that the number
of punctures we remove must be k D j�j, where � is the Euler characteristic of M .
When this is the case, we will call G0 a Temperleyan graph on M or Temperleyan
discretisation of M .

When considering scaling limits, we will of course consider a sequence of graphs
�#ı ; .��/#ı , G#ı from the setup above. We now introduce our assumptions on such a
sequence.

Let p W zM ! M be a map which is both analytic and a regular covering of M
by its universal cover zM , which is either the unit disc D � C or the whole plane
C. (Recall the discussion in Section 2.2 for the existence of this map.) In the end, the
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Figure 2. Removing a white vertex (puncture) to create the dimer graph G0.

choice of this covering map does not affect the following assumptions; see Lemma 2.5
for a precise discussion about this covering map and also about the covering map for
the punctured manifold.

Recall from Section 2.1 that we equipped M with a distance function dM derived
from a Riemannian metric, which extends to the closure xM ; we still denote this exten-
ded distance function by dM .

(i) (Bounded density) There exists a constant C independent of ı such that, for
any x 2M , the number of vertices of �#ı in the ball ¹z 2M W dM .x;z/ < ıº
is smaller than C .

(ii) (Good embedding) The edges and diagonals of the graph are embedded as
smooth curves and, for every compact set K � zM , the intrinsic winding
of every edge or diagonal in the lift z�#ı intersecting K is bounded by a
constant C D CK depending only on K. (Note that this allows edges to
wind quite a bit near holes.)

(iii) (Invariance principle) As ı! 0, the continuous-time random walk ¹ zXtºt�0
on z�#ı starting from the nearest vertex to 0 satisfies

. zXt=ı2/t�0
.d/
���!
ı!0

.B�.t//t�0;

where .Bt ; t � 0/ is a two-dimensional standard Brownian motion in zM
(killed when it leaves zM , if zM DD) starting from 0, and � is a nondecreas-
ing, continuous, possibly random function satisfying

�.0/ D 0 and �.1/ D1:

The above convergence holds in law in Skorokhod topology.
We remark that the above condition is equivalent to asserting that simple
random walk from some fixed vertex converges to Brownian motion on the
Riemann surface itself up to time parametrisation (see, e.g., [22]).
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Figure 3. An illustration of the crossing condition.

(iv) (Uniform crossing estimate). Let R be the horizontal rectangle Œ0; :3� �
Œ0; :1� and R0 the vertical rectangle Œ0; :1� � Œ0; :3�. Let

B1 WD B..:05; :05/; 0:025/

be the starting ball and B2 WD B..:25; :05/; :025/ the target ball (see Fig-
ure 3).
The uniform crossing condition is the following. There exist universal con-
stants ı0; ˛0 > 0 such that, for every compact set K �M , there exists a ıK
such that for all ı 2 .0; ıK/ the following is true. Let zK D p�1.K/ be the
lifts of K. Let R00 be a set of the form cRC z, where c � ı=ı0 and z 2 R2

(i.e., a scaling and translate of R), and is, such that R00 � zK.
Let B 001 D cB1 C z and B 002 D cB2 C z. For all v 2 z�#ı \ B 001 ,

Pv. zX hits B 002 before exiting R00/ > ˛0:

We emphasise that this crossing condition is defined in the Euclidean metric
in the disc, and not the (perhaps more standard) hyperbolic metric when
dealing with the universal cover of a hyperbolic surface.
In what follows, sometimes for a compact set S � zM , we will write ıS to
mean ıp.S/ as defined above.

(v) (Punctures) We remove k D j�j many points from (the interior of) M and
call the resulting surface M 0, where � is the Euler characteristic of M . We
assume that each of the (k many) monomers (white vertices removed from
yG to obtain G0) converge to a unique puncture as ı ! 0 which is a given
point in the interior of the Riemann surface. We also assume without loss
of generality that, for all ı, the punctures are sufficiently far (say at graph
distance at least some large fixed constant) from the boundary.
Finally, we also suppose that the following holds. Let ui , vi be the endpoints
of the edge of � corresponding to the white monomer removed for 1� i � k.
Then, there exist paths ui , vi (viewed as an ordered collection of adjacent
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p

u1 v1

q
p

u1 v1

q

Figure 4. An illustration of the assumption in item (v). The paths u1 ; v1 consist of p and q,
which decompose the surface into a number of disconnected annuli: three in the first case and
two in the second. The dotted edges are the ones removed from G to get G0.

edges ..x1; x2/; .x2; x3/; : : : ; .xr�1; xr// or as a continuous path depending
on context) satisfying the following. The paths start with x1Dui or x1D vi ,
respectively, for ui ; vi , and we assume that

M n
[
1�i�k

.ui [ vi [ .ui ; vi // (2.1)

is topologically a disjoint union of annuli.

Remark 2.4. Typically, the existence of the paths ui and vi for ı small enough is
guaranteed by the crossing condition and the pants decomposition of M . In other
words, the paths decompose the surface into disjoint annuli; see Figure 4. However, it
is possible to construct pathological examples (for large ı) where there are no paths
such that (2.1) holds, so this needs to be made as a separate assumption. In fact, we
will see that (v) is equivalent to the graph G admitting a dimer cover (see Figure 1),
so we could equivalently assume the latter instead – this would be more elegant but
less concrete.

Lemma 2.5 (Conformal invariance of assumptions). The assumptions (ii), (iii), and
(iv) on the sequence .�#ı/ı>0 are invariant with respect to the choice of the cover-
ing map p in the sense that if p0 is any other analytic and regular covering of M ,
then these assumptions are satisfied for some (possibly different) choices of ı0, ˛0,
.ıK/K�M , .CK/K� zM .

Furthermore, if .�#ı/ı satisfies the assumptions (i)–(v) for a choice of covering
map p and constants C; ı0; ˛0; .ıK/K�M ; .CK/K� zM , then these assumptions are
invariant with respect to conformal transformations in the sense that if

 W .M; x1; x2; : : : ; xk/! .N; x01; x
0
2; : : : ; x

0
k/

is a conformal bijection mappingM toN and xi to x0i for 1� i � k, then . .�#ı//ı>0
also satisfies assumptions (i)–(v) for the choice of the covering map p ı  and con-
stants C; ı0; ˛0; .ı �1.K//K�M 0 , and .CK/K� zM .
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Proof. We start with the second of these two assertions, for which items (ii)–(v) are
trivial. For (i), if M has no boundary, then dM .x; y/ D dN . .x/;  .y// (essentially
because Möbius maps are isometries with respect to the hyperbolic metric on the unit
disc). Thus, (i) holds. If M has a boundary, then note that the conformal bijection  
between M and N extends to a conformal bijection x between the doubles of M;N ;
and we are back to the previous case.

Let us now prove the first assertion. Note that, by the uniformisation theorem,
there exists a conformal bijection (Möbius map) � W zM ! zM such that p ı � D p0.
Note that � is a Möbius map from the unit disc to itself in the hyperbolic case and from
the complex plane to itself in the torus case. Assumption (ii) is trivially preserved in
the torus case as Möbius maps are translations and rotations. For the hyperbolic case,
we can employ the change in winding under conformal map formula (Lemma 2.2),
and note that derivatives of Möbius maps are bounded on compact subsets of the open
unit disc. In assumption (iii), we only require convergence of the random walk up to
time change which is preserved under Möbius maps. Assumption (iv) is easily seen
to be preserved in the torus case as a Möbius map maps a rectangle to another rotated
and translated rectangle, which can be crossed by concatenating bounded number of
vertical and horizontal rectangles of smaller scales. In the hyperbolic case, a rect-
angle is mapped to a domain bounded by four circular arcs, and the starting and
target discs are mapped to discs inside this domain. Furthermore, compact sets are
mapped to compact sets. Thus, concatenating domains of this type, it is easy to see
that uniform crossing estimate holds for M , perhaps for different positive constants
ı0; ˛0; .ıK/K�M .

Remark 2.6. The invariance principle assumption (item (iii)) actually implies some-
thing stronger in combination with the other assumptions: for any point x in zM , the
random walk starting from a vertex x#ı nearest to x converges to a Brownian motion
starting from x up to a time change as above. This is a consequence of the fact that
random walk from 0 comes close to x with uniformly positive probability using the
crossing estimate and the strong Markov property of Brownian motion.

In case @M ¤ ;, recall that the set of boundary cycles .@��/#ı corresponds to the
connected components of @M . One consequence of the invariance principle assump-
tion (item (iii)) is that each boundary cycle converges in the Hausdorff metric (induced
by dM ) to the associated component of @M .

Sometimes, we drop the superscript ı from �#ı , .��/#ı for clarity, when there is
no possibility for confusion.

Remark 2.7. In the hyperbolic case, note also that while we have stated the assump-
tions (ii), (iii), and (iv) on the universal cover of M , these assumptions are also
valid for the sequence .�#ı/ı>0 on the universal cover of the punctured surface M 0
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as well if we endow it with the metric it inherits from M via inclusion. This can
be checked using the fact that there is a map from the universal cover of M 0 to
zM n p�1.¹x1; : : : ; xkº/ (where x1; : : : ; xk is the set of punctures) which is locally

a conformal bijection. Also, note that (i) is also satisfied in M 0 trivially by the choice
of the metric.

2.5. Height function and forms

A flow ! is a real-valued antisymmetric function on the oriented edges EE of G; i.e.,
for every oriented edge .u; v/, !.u; v/D �!.v; u/. The total flow out of a vertex v is
defined to be

P
w�v !.v; w/. Similarly, the total flow into a vertex v is defined to beP

w�v !.w; v/. A flow f is a closed 1-form if the sum over any oriented contractible
cycle is 0: i.e., for any oriented cycle .v0; v1; : : : ; vn D v0/ inG so that the embedding
of
Sn�1
iD0.vi ; viC1/ in M forms a contractible loop,

n�1X
iD0

!.vi ; viC1/ D 0:

It is clear that ifM is simply connected, then there exists a function f on the vertices
of G (uniquely defined up to a global constant) such that f .v/ � f .u/ D !.u; v/ for
all u � v.

We now associate to any dimer configuration m on G a closed 1-form on EE. Let
m be a dimer configuration onG, and let Ee D .w;b/ be an oriented edge, wherew is a
white vertex and b a black vertex. We define the flow !m by setting !m.Ee/ D 1¹e2mº.
Also, !m is defined in an antisymmetric way: !m..b; w// D �!m..w; b//. Note that
the total flow out of a white vertex is 1 and that out of a black vertex is �1.

To any flow ! on oriented edges one can associated a dual flow !� defined on the
oriented edges of the dual graph G�, where if e� crosses the edge e D .w; b/ with
w on its right and b on its left, then we set !�.e�/ D !.e/. Note also that if ! is
divergence free (i.e., the flow out of every vertex is 0), then !� is a closed 1-form
on EE�.

Consider any reference flow !0 which has total flow out of white vertex equal
to 1 and total flow out of a black vertex equal to �1. Then, ! D !m � !0 defines
a divergence free flow on EE. We call !� the height 1-form corresponding to m with
reference flow !0.

When G is embedded on a simply connected domain (so that, in particular, no
cycle in G� is non-contractible), every closed 1-form ! on EE� becomes exact: i.e.,
there exists a function on the faces F.G/ of G, h W F.G/ 7! R so that, for any two
adjacent faces f , f 0,

h.f 0/ � h.f / D !.f; f 0/:
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Observe further that this function is defined only up to a global constant. The function
h is then called the height function of the dimer m, admitting an abuse of terminology.

We recall the following simple but useful observation. A path in G (or G�) is a
sequence of vertices .v0; : : : ; vn/ (or faces .f0; : : : ; fn/) of G so that vi is adjacent to
viC1 (or fi is adjacent to fiC1 in G�) for all 0 � i � n � 1.

Lemma 2.8 (Unique path-lifting property). Let  D .f0; f1; : : : ; fn/ be a path (not
necessarily simple) inG�. Let Qf0 be a lift (i.e., one pre-image) of f0 to zM . Then, there
exists a unique path z D . Qf0; Qf1; : : : ; Qfn/ in zM so that Qfi is the lift of fi . Further,

n�1X
iD0

!. Qfi ; QfiC1/ D h. Qfn/ � h. Qf0/:

We now turn to the definition of height function in the more complicated case
whenM is no longer assumed to be simply connected. In that case, when we sum the
values of the height 1-form (defined above) along any non-contractible cycle, we may
get a nonzero value. One can use the Hodge decomposition theorem to isolate out the
part of the height 1-form which is encoded by the topology of the underlying surface.
The Hodge decomposition theorem works in great generality, but in the present con-
text, it takes the following simple form. For any function f on the vertices of G, we
define df to be the closed 1-form defined on EE as

df .u; v/ D f .v/ � f .u/:

A harmonic 1-form h is a closed 1-form which is divergence free so thatX
v�u

h.u; v/ D 0:

Theorem 2.9 (Hodge decomposition [2, 8, 31]). For any closed 1-form ! on G (or
G�), there exist a function f on the vertices of G and a harmonic 1-form h defined
on EE such that

! D df C h;

and f is unique up to an additive global constant, and h is unique. Furthermore, h

is completely determined by summing ! over a finite set of oriented non-contractible
cycles which forms the basis of the first homology group of M .

In this paper, we will analyse .f; h/ corresponding to the divergence free flow
!m � !0, where m is dimer configuration chosen from the law (1.1) subject to cer-
tain natural conditions and !0 is a carefully chosen reference flow. (In fact, we will
consider the height function; see Section 6 for a precise statement.) We will call h

the instanton component. We remark that changing the reference flow changes .f; h/
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by a deterministic additive factor and in particular does not affect the fluctuations of
.f; h/ around their mean. To be more precise, our main theorem (Theorem 6.1) will
be stated in terms of the single-valued function associated to !m � !0 on the uni-
versal cover of M 0. See Remark 6.16 for a statement concerning both the scalar and
instanton parts of the height function.

Throughout the paper, rather than working with the scalar and instanton compon-
ents of the height 1-form, it will be more convenient to lift the height 1-form ! to
the universal cover of M . Since the latter is always simply connected, this allows
us to work with actual functions without having to worry about the Hodge decom-
position Theorem 2.9. We will then check that the convergence of height function
on the universal cover implies convergence of each of the components in the Hodge
decomposition.

Our assumptions on the graph G where the dimer model lives are such that zG D
p�1.G/ is a planar graph embedded on zM . Moreover, the height 1-form ! on the
dual edges of G lifts to a height 1-form z! on the dual edges of zG. Since zM is simply
connected and since z! is a closed one-form on the dual edges of zG (this is a local
property, so remains true when we lift to zG), we can define a height function h D
h.m; G/ (up to a global constant) on the dual graph zG�. The instanton component h

can be related to the height function h on the universal cover by summing up the value
of z! along any path in the dual graph of zG corresponding to a non-contractible loop
in the dual edges of G. This is easier to explain on an example.

Example 2.10. If M is the flat torus T WD C=.ZC �Z/ for some complex number
� with =.�/ > 0, then the universal cover is the complex plane C. The universal
cover can be thought of as many copies of the fundamental domain (a parallelogram
determined by 1 and � ).

Fix v0 in the fundamental domain. Then, by periodicity of dh, the height function
h on zG evaluated at a point v D v0 CmC � n (where m; n 2 Z) is given by

h.v/ D h.v0 CmC in/ D h.v0/C amC bn;

for some a; b 2 R which do not depend on either v0, m; n. Let us describe what a; b
are. Consider the two loops on the torus described by L1 WD .t C 1=2� W t 2 Œ0; 1�/
and L2 WD .1=2C t� W t 2 Œ0; 1�/ in the fundamental domain (i.e., L1 and L2 are the
two non-contractible loops in the torus which form the basis of the homology group).
Then, a is the sum of the values of ! along any loop in EE� which is homotopic to L1,
whereas b is the sum of the values of ! along any loop which is homotopic to L2.
Clearly, the choice of these curves in G� does not matter since the height 1-form
is closed. Furthermore, in the Hodge decomposition of Theorem 2.9, the harmonic
1-form h is uniquely determined by the numbers a and b.
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3. Temperley’s bijection on Riemann surfaces

3.1. Notion of Temperleyan cycle-rooted spanning forest: Bijection

The goal of this section is to extend the classical Temperley bijection to graphs embed-
ded in surfaces of higher genera. The bijection is between dimer covers of certain
natural class of graphs introduced in Section 2.4 and certain objects which we call
Temperleyan forests. The main result is formulated in Theorem 3.3.

Before defining the objects in question, let us briefly recall the classical Temperley
bijection on simply connected surfaces [14]. The bijection map is local: given a dimer
cover, one “extends” (in the direction from black to white) the dimer to an oriented
edge as depicted in Figure 6. This yields two oriented trees which are dual to each
other. In the opposite direction, given a pair of trees which are dual to each other, one
can naturally orient them towards a pre-assigned “root vertex”; the dimer cover then
consists of the first half of each oriented edge in the two dual trees. The primary issue
that needs to be dealt with in higher genus is that the relevant objects are no longer
pairs of trees that are dual to each other but pairs .t; t�/ of arborescences (i.e., col-
lection of oriented edges such that there is a single outgoing edge out of every vertex,
except for boundary vertices) on � and ��, respectively, dual to each other, and where
each component contains a non-contractible oriented cycle. Thinking only about the
arborescence t on the primal graph, which we aim to ultimately understand via a vari-
ant of Wilson’s algorithm, the requirement that its planar dual t� can be endowed
with the orientation of an arborescence imposes nontrivial topological constraints on
t which will be elucidated below.

Let � be a graph faithfully embedded on a surface with a certain specified set
of boundary vertices. Assume that every edge e of � comes with a specified weight
w.e/ > 0. Before introducing the notion of Temperleyan forest, we start with the
simpler notion of cycle-rooted spanning forest.

Definition 3.1. A wired oriented cycle-rooted spanning forest (which we abbreviate
as wired oriented CRSF) of � with the specified boundary is an oriented subgraph t
of � , where the following hold.

• Every non-boundary vertex of � has exactly one outgoing edge in t . Every bound-
ary vertex has no outgoing edge. (As a result, any cycle of t must be consistently
orientated.)

• Every cycle of t is non-contractible.

To each CRSF t we may associate the weight
Q
e2t w.e/. We will consider the prob-

ability measure on CRSFs such that the probability of t is by definition proportional
to its weight.
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This is equivalent to the notion of essential CRSF on a graph with wired bound-
ary introduced by Kassel and Kenyon [24]. Ignoring the orientation of t gives an
unoriented graph its connected components will simply be called the connected com-
ponents of t without any additional precision. Note that if t is a wired oriented CRSF,
every connected component of t contains at most one cycle: more precisely, every
boundary component must have zero cycles, while every non-boundary component
contains exactly one cycle.

We will refer to the set of all non-contractible cycles of a wired oriented CRSF
to mean the set of unique cycles corresponding to each (non-boundary) component of
the wired oriented CRSF.

Let us come back to the setup of Section 2.4 and recall that we had the graph � ,
its dual ��, and the superposition graph G, all embedded nicely in a Riemann surface
with g handles and b holes. Compared to the planar setting, there is an immediate
topological difficulty, which is that this graph G in general does not admit a dimer
cover. Indeed, by Euler’s formula, if G has v vertices, e edges, and f many contract-
ible faces, then

v � e C f D � WD 2 � 2g � b;

where � is the Euler’s characteristic. On the other hand, if G admits a dimer cover,
one must have e D v C f since e is the number of white vertices which must match
vC f (the number of vertices and contractible faces of ��). Thus, we need to remove
k D j�j many edges from the superposition graph for it to have any chance of having
a dimer cover (see Figure 2). These removed edges can be thought of as creating
punctures in the surface. Call the graph with these punctures G0. (Recall that, as per
item (v), we assume throughout that the punctures are macroscopically far apart inM
and are away from the boundary as well and converge as ı ! 0 to a set of pairwise
distinct points in M .) Note that if M is a torus or an annulus, then � D 0, so no
punctures need to be removed. See also Ciucu–Krattenthaler [13] and Dubédat [19]
for other situations where punctured dimers arise.

To every wired oriented CRSF t of � 0 with boundary @� one can associate a
natural dual free cycle-rooted spanning forest t� (abbreviated free CRSF) of .��/0 as
follows. The vertices of t� are given by the vertices of .��/0 (i.e., it spans .��/0), and
an edge e� is present in t� if and only if its dual e is absent in t . Note that a priori
t� does not come with an orientation and that its cycles can overlap (or equivalently
a component might contain several cycles); see Figure 5 for an example. In fact, it is
not hard to see that, in cases similar to Figure 5, it is not possible to consistently orient
the free CRSF, so there is no chance to apply any version of Temperley’s bijection.
This motivates the introduction of the following definition.

Definition 3.2. We say that the wired oriented CRSF t is Temperleyan if each con-
nected component of t� contains exactly one cycle.
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t

t�

Figure 5. A non-Temperleyan CRSF (in blue). The surface M is the “pair of pants”: a domain
of the plane with two holes (in grey in the picture). In this example, t does not contain any cycle,
and hence, any connected component flows to the boundary of M . Its dual t� must contain a
component with two cycles which overlap. The cycles go around each of the two holes and
must be connected, as otherwise there would have to be a path in t separating them; however,
this is impossible as such a path would have to connect two distinct boundary points. So, t is
not Temperleyan. Note that � D 2 � 2g � b D �1 here. See Lemma 3.5 for a more general
argument.

An example of a wired oriented CRSF t that is not Temperleyan is provided in
Figure 5.

Temperleyan forests also come with a natural law, which is simply the law of the
CRSF conditioned on the event that each component of the dual contains exactly one
cycle. We will soon formulate a more explicit criterion for a CRSF t to be Temper-
leyan (see Section 3.2 and in particular Theorem 3.7). For now, observe that if t is a
Temperleyan wired oriented CRSF and t� is its dual, we can assign an orientation to
each cycle in each component of t� arbitrarily from one of the two possible choices.
Then, we orient all other edges of t� towards the cycle of that component. We call
.t; t�/ a Temperleyan pair or Temperleyan self-dual pair if t is a Temperleyan CRSF
and t� is its dual with a choice of orientation as above. We warn the reader that the
notation slightly obscures the choice of orientation needed to go from t to t� in order
to highlight the duality. Hopefully, this should not introduce any confusion since we
will always want to think of our CRSF as being oriented.

We now state the Temperley bijection for general surfaces. Recall that we assign
oriented weights we to each edge e in � 0, no weight (or unit weight) to edges of ��

and that this turns G0 into a weighted unoriented graph. Indeed, if e D .x; y/ is an
oriented edge of � 0, let w denote the white vertex in the middle of e. Then, we assign
to the unoriented edge ¹x; wº of G0 the weight w.x;y/ and to the edge ¹w; yº of G0

the weight w.y;x/.
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Figure 6. Illustration of the local transformation in Temperley’s bijection. Left: a dimer con-
figuration on a superposition graph. Right: a collection of oriented edges forming dual oriented
CRSF.

We define the measure PTemp as the measure on Temperleyan pairs with weights
inherited from the weights of � , and we will call .T ;T �/ a generic associated random
variable, i.e.,

PTemp..T ; T
�/ D .t; t�// D

1

ZTemp
1¹.t;t�/ Temperleyan pairº

Y
e2t

w.e/; (3.1)

where ZTemp is the partition function.

Theorem 3.3 (Temperley bijection on general surfaces). Let M , � 0, .��/0, G0 be as
in Section 2.4. Then, there exists a bijection  between the set of Temperleyan pairs
and the set of dimer configurations on G0. Furthermore, if .T ; T �/ has the law (3.1),
then m D  ..T ; T �// has law (1.1) with unoriented weights on G0 described above.

We emphasise that it is unclear at this point whether the measure ZTemp PTemp (and
consequently the measure on dimers) is not trivially zero as we have only deduced
that the construction of G0 is necessary but have not deduced that it is sufficient. We
prove this later in Proposition 3.4.

Proof of Theorem 3.3. We assume that the set of Temperleyan CRSF and the set of
dimer covers are both nonempty. (This assumption is validated in Proposition 3.4.)
Given a Temperleyan pair .t; t�/, we obtain a configuration of edges m D  ..t; t�//
as follows: for every oriented edge Ee 2 t (resp., Ee 2 t�), we can write Ee D e1 [ e2,
where e1; e2 are the first and second halves of Ee and set e1 2 m (see Figure 6). The
resulting m is a matching on G0 because every (non-boundary) vertex has a unique
outgoing edge in either t or t�. Furthermore, since t [ t� spans the black vertices of
G0, the matching is a perfect matching.
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Also,  is injective: if .t1; t
�
1 / and .t2; t

�
2 / are distinct, then there must be a black

vertex v on G0 (i.e., a vertex of � 0 or .��/0) such that the unique outgoing edge from
v in t1 or t�1 is different from the unique outgoing edge from v in t2 or t�2 . Hence, v
will be matched to two distinct white vertices in  ..t1; t

�
1 // and  ..t2; t

�
2 //.

We now check  is onto. Given a matching m of G0, we can obtain a pair .t; t�/
by extending the matched edges: for every non-boundary black vertex b of G0, let w
be the white vertex matched with b in m. By construction, .bw/ is a part of a unique
edge e D .bb0/ (either of � or ��), and we include the edge .bb0/ (oriented from
b to b0) in t or t� as appropriate. The fact that neither t nor t� contain contractible
cycles follows from the same argument as in the standard, planar case: if, say, t has
a contractible cycle C , then since � n C has a dimer cover, an elementary counting
argument then shows that v � e C f D 0, where v; e; f are the number of vertices,
edges, and faces of the contractible component that � n C . On the other hand, Euler’s
formula implies v � e C f D 1 (again excluding the outer face). This shows that all
cycles are non-contractible. Since every vertex v of t� has a unique outgoing edge, t�

must have exactly one cycle per component, and so, t is Temperleyan. It also easily
follows from the definition of the weights of the Temperleyan tree and the dimer
covers that the bijection is weight preserving. This concludes the proof.

3.2. Criterion for a wired CRSF to be Temperleyan

In this section, we prove the following proposition.

Proposition 3.4. The graph G0 obtained in Section 2.4 has a dimer cover. In partic-
ular, the measure PTemp defined in (3.1) is a probability measure.

As a by-product of the proof of Proposition 3.4, we derive a simple criterion for a
CRSF to be Temperleyan (Theorem 3.7). We start with a lemma about the �D 0 case.

Lemma 3.5. Let M be a nice Riemann surface with g handles and b boundary
components and �; ��; G be embedded as above (i.e., without punctures). A wired
Temperleyan oriented CRSF of � exists if and only if M has the topology of either a
torus or an annulus. Furthermore, in these cases, all oriented CRSF are Temperleyan.

Proof. Note that if M has the topology of an annulus (with all the nice properties of
Section 2.1), then finding a Temperleyan oriented CRSF is straightforward. Indeed,
any wired spanning forest in the annulus (where both boundaries are wired) is Tem-
perleyan: the dual is a graph containing a single cycle separating the two components
touching each boundary. Also, notice that, for a torus, every oriented CRSF is Tem-
perleyan [20]: essentially, an oriented CRSF must contain a cycle (since there is no
boundary on a torus), and cutting along this cycle gives us a (bounded) cylinder or
equivalently an annulus.
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For the converse, observe that the extended Temperley’s bijection (Theorem 3.3)
allows us to construct a dimer configuration from the Temperleyan CRSF and its
dual (by endowing each cycle with arbitrary orientation and orienting every other
edge towards the unique cycle of its component). Notice that although Theorem 3.3
is written for the punctured graph G0, since in the case of torus and annulus G D G0,
the same proof goes through. Now, recall that a dimer configuration exists without
removing any punctures only if � D 0 or equivalently 2g C b D 2 (as discussed in
Section 3.1). This equation has only two feasible solutions: g D 1; b D 0 (i.e., a torus)
and g D 0; b D 2 (i.e., an annulus). This completes the proof of the “only if” part.

For the last assertion, note that every oriented CRSF in the annulus divides the
annulus into several smaller disjoint annuli. The rest follows easily from the argu-
ments in the first paragraph above.

Proof of Proposition 3.4. In light of Lemma 3.5, we assume that M is neither a torus
nor an annulus. Using assumption item (v), recall that there exist a collection of paths
ui ; vi on � 0 for 1 � i � k starting, respectively, from ui and vi such that

M n
[
1�i�k

.ui [ vi [ .ui ; vi //

is topologically a disjoint union of annuli when we view the paths as continuous
curves on M and .ui ; vi / denotes the edge from ui to vi . We start building a dimer
configuration m on G0 as follows. First, for each path  in this collection, which by
definition starts from either ui or vi for some 1 � i � k, we orient it away from
the puncture from which it emanates, i.e., away from ui or vi . We then consider the
collection of dimer edges naturally associated with  formed by the first halves of
each of the oriented edges of  , as in Figure 6 and the proof of Theorem 3.3. Then,
include all these edges in m.

The remaining disjoint annuli are nice in the sense of Section 2.1, so we can apply
Lemma 3.5 to obtain a Temperleyan forest on each of these annuli, and hence by
Theorem 3.3 a dimer cover on the part of G0 corresponding to these annuli. Patching
these together gives us a dimer configuration m on all of G0, as desired.

Remark 3.6. Note that this implies that the assumption in item (v) is, as already
mentioned earlier, necessary in order for G0 to admit a dimer cover. Indeed, if there
is a dimer cover, then by applying the local mapping in Figure 6, starting from the
vertices ui and vi adjacent to the punctures, we can obtain paths as described in
item (v). Each component of the complement of these paths also has a dimer cover
but no puncture. According to Lemma 3.5, this is only possible if (2.1) is satisfied.

We now deduce from the above an extremely convenient criterion for a wired ori-
ented CRSF to be Temperleyan. Let us suppose that M is not a torus or an annulus,
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whence kD 2gC b � 2 > 0. (We already know that every CRSF is Temperleyan oth-
erwise.) Define the branch starting from a primal vertex v of � 0 to be the path obtained
by going along the unique outgoing edge from each vertex (which necessarily ends
when a loop is formed or a boundary is hit). Recall that, at a puncture (i.e., a white
monomer), there are exactly two vertices ui ; vi of � 0 on either side of the puncture.
Let Bi1;Bi2 be the branches in � 0 of ui ; vi for 1 � i � k D 2g C b � 2. We call the
union of these branches, together with the removed edges ei , the skeleton s of t . That
is,

s D

k[
iD1

.Bi1 [ ei [Bi2/:

Simply put, the skeleton of t is the union of the branches emanating out of the punc-
tures.

Theorem 3.7. Suppose thatM is not a torus. A wired oriented CRSF is Temperleyan
if and only if every component of M n s has the topology of an annulus.

(Of course, in the case of an annulus, as already noted, there are no punctures,
and so, s D ;, so the condition is automatically satisfied, as we already know.) The
criterion for a CRSF to be Temperleyan is thus just to say that the skeleton cuts the
surface into disjoint annuli. Figure 4 gives two examples on a surface M (the “pair of
pants”) where M n s consists of topological annuli, where s is the paths p; q in that
figure. (We get three annuli in the first example and two in the second one.)

Proof. Let t be a Temperleyan CRSF, and let t� be its dual with a choice of orienta-
tion. Note that the vertices (in G0) of s are all matched with each other in the dimer
configuration associated to .t; t�/. Therefore, in each component ofM n s, all vertices
are also matched with each other. By Lemma 3.5, this implies that these components
are annuli.

Conversely, note that by definition t� cannot cross s, and so, t can be restricted
to each component of M n s to form a wired CRSF. By the other implication in
Lemma 3.5, it follows that t is Temperleyan in each such component, and so, it is
globally Temperleyan.

3.3. Wilson’s algorithm to generate wired oriented CRSF

Recall the measure PTemp from (3.1), i.e., the law of .T ; T �/ on Temperleyan pairs
which is naturally associated with the dimer model. We will not study directly PTemp

but rather a slightly altered version which can be sampled through Wilson’s algorithm
and is defined as follows: we first sample a wired oriented CRSF of � with law

PWils.T D t / D
1

ZWils
1¹t Temperleyanº

Y
e2t

w.e/I
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and given T D t , we pick T �, an oriented dual uniformly among all possibilities of
orientation of the dual.

Clearly, the only difference between the two is due to the fact that any cycle of
the dual t� of a Temperleyan oriented CRSF t can be oriented in two possible ways
to determine a dual pair .t; t�/. We deduce the following relationship.

Lemma 3.8. Let .t; t�/ be a Temperleyan pair such that t� contains exactly k� non-
contractible cycles. Then, the Radon–Nikodym derivative satisfies

d PTemp

d PWils
.t; t�/ D

ZWils

ZTemp
2k
�

:

In particular, conditioned on having k� non-contractible cycles for the dual forest,
the laws PTemp and PWils coincide.

Let �;�� be faithfully embedded on a nice Riemann surfaceM . We now describe
Wilson’s algorithm to generate a wired (but not necessarily Temperleyan) oriented
CRSF on � . We prescribe an ordering of the vertices .v0; v1; : : :/ of � .

• We start from v0 and perform a loop-erased random walk until a non-contractible
cycle is created or a boundary vertex (i.e., a vertex in @�) is hit.

• We start from the next vertex in the ordering which is not included in what we
sampled so far and start a loop-erased random walk from it. We stop if we create
a non-contractible cycle or hit the part of vertices we have sampled before.

There is a natural orientation of the subgraph created since from every non-boundary
vertex there is exactly one outgoing edge through which the loop-erased walk exits a
vertex after visiting it. Let zPWils be the law of the resulting wired oriented CRSF.

Proposition 3.9. We have

zPWils.t/ D
1

zZWils

Y
e2t

w.e/: (3.2)

In particular, zPWils generates a wired oriented CRSF of � as described by Defini-
tion 3.1 with law given by (3.2). Furthermore, conditionally on being Temperleyan,
zPWils coincides with the first marginal of PWils.

Proof. This follows from Theorem 1 and Remark 2 of Kassel–Kenyon [24].

As a consequence of the result of this section, we obtain a relatively usable de-
scription of the law PTemp of interest: start with zPWils, which can be sampled via
Wilson’s algorithm, and condition on the topological event described in Theorem 3.7.
(In the second paper [5], we denote this conditioning event by AM.) Finally, bias the
law by the Radon–Nikodym derivative coming from Lemma 3.8. One of the main
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difficulties in [5] stems from the fact that AM is asymptotically degenerate (i.e., the
probability of AM for a wired CRSF tends to zero as the “mesh size” ı tends to zero).
The Radon–Nikodym derivative in Lemma 3.8 on the other hand is relatively benign
and does not introduce much further complication.

4. Winding and height function

In this section, we explain the connecting between winding of the Temperleyan forest
and height function in our setup. In the process, we develop a systematic way to relate
these two notions in a very general setting which we believe is of interest even in
simply connected domains.

A first difficulty is that measuring angles and computing the total angle along
say, a simple loop is well known to be more complicated on a surface than on a
plane. In the following, we will sidestep completely this issue by only establishing
the connection for the lifts of the Temperleyan forest and the height function where
we will be able to use the usual planar theory of angles and winding. This will also
have the advantage that the dimer height become an actual function instead of a one-
form.

Using this approach, we are left with a situation analogous to the original gen-
eralised Temperley’s bijection in [28]: there is a fixed graph with a given planar
embedding and we have to relate the dimer height to the winding of the associated
“tree” at a deterministic level. (We also point out that a version on a torus already
appeared in [38].) In particular, the fact that in our current setting the graphs (and
trees) arise as lifts and therefore have many symmetries should not play a significant
role. (Recall that [28] is valid in great generality.)

There are however still significant technicalities to work out. First, we cannot
assume that our embedding uses only straight lines (since in the hyperbolic case,
the lift of an edge cannot be a straight line simultaneously in different copies of the
fundamental domain). Second, our “tree” objects are actually forests, so the winding
between vertices belonging to different components must be properly defined. Third,
we need to check that the objects defined on the lift can be reasonably mapped back
to the surface and state any simplification of the general theory that would arise spe-
cifically in our setting.

Finally, the way the connection is phrased in [28] is relatively unwieldy, so it
would be nice to make it more “user-friendly”, for example, to make it symmetric
with respect to the primal and dual forests. Recall that the winding field is naturally
defined on either primal or dual vertices, while the dimer height function is naturally
defined on faces of the superposition graph, so we need some natural local rule to
move between faces and vertices. Our solution for this technicality will be to extend
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both the primal and dual trees along the diagonal of each face, up to the midpoint of
that face, a construction which results in what we call augmented trees. We will see
that, with this construction, the primal and dual trees play a completely symmetric
role, as desired.

Our strategy in this section will be to proceed by successive generalisations from
the definition of a winding field on a single deterministic embedded tree to dual pairs
of spanning tree and the relation to dimer height function in Section 4.1. Section 4.2
covers the situation specific to our Riemann surface setting, with the main result of
this section stated as Theorem 4.10. Finally, Section 4.3 treats the relation between
the instanton component and the set of non-contractible loops.

4.1. Winding field of embedded trees and choice of reference flow

Embedded tree. We temporarily forget about dimers and Temperleyan forests and
focus on how to compute the winding field of a deterministic tree.

Consider a graph (finite or infinite) which is a tree oriented towards either a leaf
or one of its ends. Embed it on C with smooth edges (although having points of non-
differentiability at the vertices, which we call corners, is allowed so that the branches
are only piecewise smooth). Call the embedding T ; we want to think of it as a union
of smooth curves in C. Recall that, using Lemma 2.1, the intrinsic winding of any
finite self-avoiding path in this tree is well defined. From every point x on T , we let
x be the unique path from x following the orientation (so it stops either at a leaf or
at the end towards which the tree is oriented) and call it the branch of x. Suppose for
now that

jWint.x/j <1 for all x 2 T : (4.1)

We can then define a winding field ¹hT .x/ W x 2 T º of the tree simply as hT .x/ WD

Wint.x/.
The first generalisation step is to extend the definition of hT even if (4.1) is not

satisfied which follows from the following elementary lemma. If x … y and y … x ,
notice that x and y eventually merge and y merges either to the right or to the left
of x (since the tree is embedded in C, this makes sense). Let xy be the unique path
connecting x and y in T .

Lemma 4.1. In the above setup, if y merges with x to its right, then

hT .x/ � hT .y/ D Wint.xy/C �:

If y merges with x to its left, then

hT .x/ � hT .y/ D Wint.xy/ � �:
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If y 2 x and y is not a corner (or x 2 .y/ and x is not a corner), then

hT .x/ � hT .y/ D Wint.xy/:

Proof. Notice that the last assertion follows simply from additivity of intrinsic wind-
ing. Indeed, for example, if y 2 x , there is no discontinuity of intrinsic winding at y
since y is not a corner.

For the rest, take m 2 x \ y . Notice that, by additivity of winding,

hT .x/ � hT .y/ D Wint.xm/ �Wint.ym/

D Wint.xm/CWint.my/

D Wint.xy/C "�;

where "DC1 (or "D�1) if y merges with x to its right (or left). This is clear since
we need to do a half-turn to move from xm to my at m and the turn is clockwise if
y merges to the right of x and anticlockwise otherwise.

We remark that the last assertion of the above lemma could be made to work even
at corners by adding the appropriate angle; however, in what follows, we avoid using
winding field at corners, so we do not need to introduce these additional difficulties.
Finally, the formulas for h.x/ � h.y/ described in Lemma 4.1 can be taken to be
the definition of the winding field (or rather its gradient) for any tree embedded with
piecewise smooth edges, even if (4.1) is not satisfied. This will be the typical situation
for our setup.

Dual pairs and dimers. Take an infinite planar graph � , properly embedded in C

with smooth edges, and suppose that the embedding is locally finite in the sense that
every vertex and face have finite degree, every face is a topological disc, and any
bounded set intersects only finitely many edges. Let T be a one ended spanning tree
of � . (We emphasise that we are still considering a spanning tree for the moment and
not yet a forest.) Since � is locally finite, T admits a dual T � which is also a one-
ended spanning tree of the dual graph ��. Let G be the superposition graph (in C), as
introduced in Section 2.4 (with the obvious modifications to take into account that our
graph is infinite and without creating any puncture). It will be useful to augment the
trees T and T � as follows. Recall that, in Section 2.4, for each face f of G, we fixed
a diagonal d.f / which is just a smooth simple curve connecting the primal and dual
vertex staying inside the face and a midpoint m.f / which was just a point in d.f /.
For each face, add to T (resp., T �) the portion of the diagonal d.f / connecting the
point m.f / to the unique primal (dual) vertex touching d.f /. This way the primal
and dual trees meet in each face f at the (smooth) point m.f / on the diagonal d.f /
of that face. With a small abuse of notation, we will still denote by T and T � these
augmented trees.
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d.fl/

w

m.fl/

b

m.fr/

d.fr/

Figure 7. The definition of the height function in terms of winding.

Note that we can orient T ; T � towards their respective ends. This allows us to
define two winding fields as above (one for T and one for T �). Having oriented T

and T �, we can also apply the local operation of Figure 6 as described in Section 3.1
to obtain a dimer covering of G. We will first need to define a suitable reference flow
on G, which will then allow us to speak of the height function associated to the dimer
configuration and then show the relation between this dimer height function and the
two above winding fields.

Definition 4.2 (Reference flow). Let w, b be two adjacent white and black vertices,
and let fl , fr be the faces to the left and right of the oriented edge .bw/. Define

!ref.wb/ D
1

2�

�
Wint

�
.m.fr/; b/ [ .b;m.fl//

�
C �

�
; (4.2)

where .m.fl/;b/ is the portion of d.fl/ joiningm.fl/ and b, and similarly .m.fr/;b/.
Define !ref.bw/ D �!ref.wb/ (see Figure 7).

Lemma 4.3. !ref defined above is a valid reference flow. That is, the total mass sent
out of any white vertex w,

P
b�w !ref.wb/, is equal to 1; and the total mass received

by any black vertex b,
P
w�b !ref.wb/, is also 1.

Proof. Let w be a white vertex. Notice that, in
P
b�w !ref.wb/, the oriented diagon-

als form a clockwise loop whose total winding is �2� . Adding C� for each of the
surrounding black vertices and dividing by 2� , we see that the total flow out of w is
indeed 1 as desired.

For a black vertex b, the argument is better explained by considering a picture
(see Figure 8). Fatten the “star” formed by the half-diagonals incident to b into a star
shaped domain. Then, notice that the total flow out of b is simply the limit of the
total winding, divided by 2� , of the boundary of this domain (again in the clockwise
orientation this time), as the domain thins into the “star”. Indeed, the �� term in the



Dimers on Riemann surfaces I: Temperleyan forests 35

Figure 8. Proof of Lemma 4.3.

definition of !ref in (4.2) counts the half-turn as we move from the left side to the right
side of a half-diagonal. Since the total winding of such a curve is �2� , it follows that
the total flow out of b is �1, as desired.

We are now ready to relate the three notions of height function defined by the pair
of dual spanning trees T ; T �. To do so, note that we can extend the definition of the
winding field of both T and T � from Lemma 4.1 to the augmented trees.

Proposition 4.4. In the above setup, let hT and hT � be the winding field of T and T �,
respectively. Let hdim be the height function corresponding to the dimer configuration
obtained from .T ; T �/ with reference flow !ref. For any two faces f , f 0,

hT .m.f
0// � hT .m.f // D hT �.m.f

0// � hT �.m.f // D 2�
�
hdim.f

0/ � hdim.f /
�
:

Remark 4.5. The winding fields in T and T � now play a completely symmetric role.

Proof. For a face f , we define f (respectively, �
f

) to be the branch of the augmented
tree T (resp., T �) starting from m.f /. Fix faces f and f 0 and assume without loss
of generality that f 0 is to the right of f when they merge. Note that this means that

�

f 0
is to the left of �

f
. Let ff 0 and �

f 0f
denote the paths in T and T � connecting,

respectively, m.f / to m.f 0/ and m.f 0/ to m.f /. With the above convention on the
relative position of f and f 0 , the concatenation of ff 0 with �

f 0f
has to be a simple

clockwise loop and there is no jump of the winding at m.f / and m.f 0/ because by
assumption the midpoint m.f / is a smooth point of d.f /, so

Wint.ff 0/CWint.
�

f 0f
/ D �2�

The first equality easily follows by applying the definition of winding field from
Lemma 4.1.

For the last equality, let fl , fr be adjacent faces. Let the common (oriented) edge
be .bw/ with b being the black and w the white vertex, and let fr lie to its right. We



N. Berestycki, B. Laslier, and G. Ray 36

m.f /Dx1Dm
C
0

to1

y1 x2

m�1 m
C

1

to1

to1

to1

y2
m�2 m

C

2

x3

m.f 0/ D y3 D m
�
3

to1

Figure 9. An example for the computation of the height along an arbitrary trajectory. The path
P in � is the union of solid blue and dashed blue edges, and here, it is composed of k D 3

partitions. The solid blue denotes the segments in the tree T with arrows giving the orientation
of each edge. The union of solid red and solid blue edges is the modified path. The orange
dotted paths denote the direction in which the primal tree goes off to 1 and the green dotted
path denotes the same for the dual tree. This determines the "0

i
s and ı0

i
s. Here, "1 D�1, "2 D 1,

"3 D �1, and ı1 D 1; ı2 D �1.

assume without loss of generality that b is a primal vertex. From the definition of !ref

and recalling the sign convention of the flow defining the height function (Section 2.5),

2�.hdim.fr/ � hdim.fl// D !ref.wb/ � 2�1.bw/ occupied by dimer

D Wint..fr ; b/ [ .b; fl//C � � 2�1.bw/ occupied by dimer:

Note that fr and fl merge at b. Also, note from Temperley bijection that if .bw/ is
occupied by a dimer, then b starts by using the (half) edge bw which implies that
fl lies to the left of fr . Otherwise, fl lies to the left of fr . We conclude using the
definition of winding field from Lemma 4.1 and the above equation.

From tree to forest. One can think of Proposition 4.4 as giving a way to compute the
(gradient of the) winding field by following the path between two vertices in the tree.
Before dealing with forests, we generalise the above by showing how to compute a
height difference along an arbitrary path in � , which might use edges not in the tree.

We advise the reader to look at Figure 9 while reading the following definitions.
Fix f , f 0 two faces of G, and let P be a self avoiding path starting at m.f /, going
along d.f / up to the vertex of � adjacent to f , then moving along edges of � up
to f 0, and finally following d.f 0/ up to m.f 0/. Partition this path into connected
components belonging to T (called segments from now on) separated by edges not
belonging to T , allowing for the segments to be reduced to a single vertex (so any two
segments are joined by a single edge). We call these segments and edges, respectively,
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.P1; : : : ; Pk/ and .e1; : : : ; ek�1/, and we let .xi ; yi / be the starting and ending points
of Pi and zi be the white intersection vertex in ei .

If xi ¤ yi , let "i D C1 (resp., �1) if yi lies to the right (resp., left) of xi for
1 � i � k. If xi D yi (i.e., when Pi is a single vertex), then let "i DC1 (resp., �1) if
xi starts to the left (resp., right) of P . Note that by definition the edges ei are not in
T , so zi are all in T �. We let ıi D C1 (resp., �1) if �zi starts to the left (resp., right)
of P .

Lemma 4.6. Under the above setup,

hT .m.f // � hT .m.f
0// D Wint.P /C �

 
kX
iD1

"i C

k�1X
iD1

ıi

!
D 2�.hdim.f / � hdim.f

0//:

Proof. Modify P as follows. Observe that the oriented edges ei D .yi ; xiC1/ has
two faces of G to their left. Call the one incident to yi , f �i and the one incident
to xiC1, f Ci and m�i ; m

C

i the respective midpoints of the diagonals of these faces.
By convention, also call x1 D mC0 and yk D m�k . We also join yi to xiC1 using the
diagonal segments of f �i and f Ci . Finally, we delete the edges ei . This completes
the modification of the path P , and note that this modification does not change the
intrinsic winding, so we are still going to denote the modified path P (see Figure 9).

Note that, after this modification, connected components connecting diagonal
midpoints staying in T alternate with components connecting diagonal midpoints
staying in T �, so we can apply Lemma 4.1 and Proposition 4.4 for all such con-
nected components. The terms "i and ıi match the ˙� terms in Lemma 4.1, so we
obtain the result.

We now define the winding field given by a dual pair of spanning forests. We are
in the same setup as above for the graphs � , ��, except that T , T � are not necessarily
spanning trees but spanning forests, and they are dual to each other.

Definition 4.7. Suppose that we are in the above setup and .T ; T �/ is a dual pair of
spanning forests where each component is oriented towards one of its ends. The wind-
ing field of .T ;T �/ is a function defined on all diagonal midpoints which satisfies the
first equality from Lemma 4.6. It is well defined and unique up to a global shift in R.

Proof of Definition 4.7 being consistent. Once we show consistency, uniqueness up
to a global shift by R is clear. To that end, note that one can apply Temperley’s bijec-
tion to .T ; T �/ to obtain a dimer configuration whose height function is always well
defined up to a global shift in R and which can be computed along any path. The
second equality of Lemma 4.6 shows that the definition is consistent.
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Remark 4.8. Note that there is no assumption about the number of ends of .T ; T �/

in the above definition: it makes sense as long as an orientation is fixed towards a
unique end in each component. Further, note that, in the above proof, we only need
the pair .T ; T �/ to be associated to a dimer configuration by Temperley’s bijection,
so Definition 4.7 also extends to the case where � and .T ;T �/ are obtained by lifting
a graph and a Temperleyan pair .t; t�/ (satisfying the assumptions in Section 2.4)
from the manifold M 0 to its cover. Note however that we need to be a bit careful
with the boundary vertices of � as they are somewhat special. In order not to deal
with boundary components separately, we replace the boundary vertex by a cycle
whose length is the same as the degree of the vertex, and with every vertex in the
cycle having one neighbour in � (see Figure 10). It is not too hard to see that the
neighbours can be chosen so that the embedding of � still satisfies the first three
items of the definition of faithful embedding (see Section 2.4). Let us call these the
boundary cycles of � . (The boundary cycles defined in Section 2.4 belonged to ��,
so this should not cause confusion.) We now replace the boundary vertex in t by this
cycle in a natural way. In this setup, every component of t , t� has a unique non-
contractible cycle, with the boundary component of t corresponding to the boundary
cycles we just defined. It is clear from the unique path lifting property that an oriented
loop in t , t� corresponds to a collection of bi-infinite simple paths in the lift, each
one obtained by going along the loop infinitely many times in clockwise and anti-
clockwise direction. Hence, after the above surgery of the boundary vertex, t , t� lift
to a forest T , T � with every component having exactly two ends. Fixing an arbitrary
orientation of the boundary cycles, we can also orient the lifts towards one of its ends.
We can then readily apply Definition 4.7.

4.2. Winding of CRSF and height function

In this section, we give further details on the connections between winding and height
functions which are specific to our setting, i.e., graphs and spanning forests obtained
as lifts. More precisely, our main goal will be to provide for every pair of faces f; f 0

a canonical path ff 0 that makes the formula from Lemma 4.6 as simple as possible;
see Theorem 4.10 for the final statement.

At this point, we need to spare a few words related to the removal of white ver-
tices from the graph G to obtain a graph with a dimer cover. This operation can be
interpreted as inserting certain discrete version of magnetic operators on the free field
(e.g., in the sense of [19]). If we want to interpret the height function as winding, the
height function would be additively multivalued where it picks up an additional˙2�
winding when it goes around a removed white vertex. Recall that we introduced a
puncture corresponding to each face obtained by the removal of a white vertex (cf.
Figure 2) and that the new manifold is called M 0. According to the above discussion,
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Figure 10. Splitting of the boundary vertex of � (red graph) into a cycle. The black graph is ��.

�1 1

y 7! 2
�

log
�
1Cy

1�y

�

w 7! eiw

Figure 11. The conformal maps between an annulus and its universal cover. The dotted lines
separate different copies of the fundamental domain. The blue and red curves show two loops
in the surface and the associated spines in the cover.

it is natural to lift G0 to the universal cover zM 0 of M 0 and not the cover of M (for
the rest of this section, when we speak of lift or cover, we will always refer to zM 0)
and call it zG0. Note that punctures are mapped to the boundary of the disc and every
non-outer face of G0 is mapped to a quadrangle.

Fix a Temperleyan CRSF t of � 0 and its oriented dual t�, both augmented by
joining the midpoints of diagonals as explained in Section 4.1. Each component of
t or t� contains either a single cycle (which is oriented) or a boundary component.
Using the surgery in Remark 4.8, each boundary component of t also has a unique
non-contractible cycle. We call each component of the lift of a cycle a spine. Note
that, by definition, each spine is a bi-infinite path oriented towards one of its ends.

We now state a useful lemma about the geometry of spines.
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Lemma 4.9. If M is hyperbolic, then any spine S is either a simple path in D con-
necting two points in @D or a simple loop containing a unique point in @D.

IfM is the torus, any spine S is a bi-infinite periodic path and all spines and dual
spines have the same asymptotic direction.

The proof of the first part of Lemma 4.9 uses tools from the theory of Riemann
surfaces, so we postpone it to appendix A in order to not disrupt the rest of the argu-
ment too much. For now, the reader may refer to Figure 11 for an illustration of the
annulus case.

By Lemma 4.9, we see that .T ; T �/ form a dual pair of spanning forest of z� 0 and
its dual so Section 4.1 applies to them. We now turn to the definition of the terms
involved in our main statement, Theorem 4.10.

Given two spines S and S 0, we have a well-defined region �S;S 0 between them
which is bounded by S , S 0 and (in the hyperbolic case) two portions of @D. (If S and
S 0 are loops, then these portions of @D are understood as only prime ends associated
with the same point.) We say that a spine or dual spine S 00 separates S from S 0 if it
connects these two portions of @D. Since the graph zG0 only has accumulation points
on @D, it is easy to see that two spines can only be separated by finitely many others.
Furthermore, two adjacent dual spines must be separated by a primal spine.

Now, pick two faces f , f 0 of zG0, and let S , S 0 be the spines of the components
of T containing m.f /, m.f 0/. Let �S;S 0 be the component between them as above.
Draw a simple curve connecting S and S 0 in �S;S 0 and oriented from S to S 0. For
each primal spine � � �S;S 0 (hence not including S and S 0), let "� be the algebraic
number of times � is crossed by this curve (with the convention of counting C1 if �
is crossed from its left to its right by the curve and �1 otherwise). If � is not crossed,
define "� to be 0. Define ı� similarly for primal spines. Notice thatX

���S;S0

"� C ı� (4.3)

is a topological term which does not depend on the choice of the curve (where the
sum is over all primal and dual spines contained in �S;S 0). Also, its only dependence
on f and f 0 is through the spines S and S 0.

For any face f , recall that f is the infinite oriented path in T starting fromm.f /

and going off to infinity along the unique outgoing oriented edges. Let � be the limit
point of f (which exists due to Lemma 4.9). Let �0 be the limiting endpoint of S 0

which lies in the same connected component of @ zM \�S;S 0 as �. Note that we are
not defining �0 to be the limit point of f 0 as it could be the case that � and �0 might
lie in different boundary components of @ zM \�S;S 0 (depending on the orientation
of S 0). In case S , S 0 are loops through the same boundary point, we want � and �0 to
be in the same prime end of �S;S 0 .
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• If the limit point of f 0 does not lie in the same component of @ zM \�S;S 0 as �
and f 0 is in �S;S 0 , then we set "S 0 D �1.

• In all other cases, define "S 0 D C1.

Finally, define "S D C1.
Let .�; �0/ be the arc joining � and �0 (which could be a single point if � D �0)

in @ zM in the hyperbolic case. Let hdim be the dimer configuration corresponding to
the pair .T ; T �/ with reference flow given by Definition 4.2. We can now state the
following final result relating the dimer height function to the winding of trees.

Theorem 4.10. In the hyperbolic case, let  WD ff 0 be the curve formed by con-
catenating f , .�; �0/ and the path in T joining �0 to m.f 0/. Orient  from m.f / to
m.f 0/. We have the following deterministic relation:

hT .m.f
0// � hT .m.f // D 2�.hdim.f

0/ � hdim.f //

D W.;m.f //CW.;m.f 0//

C �
X

�2x�S;S0

."� C ı� /: (4.4)

Here, the sum
P
�2x�S;S0

"� C ı� is as in (4.3) but also includes S and S 0.
In the case of the torus, we have

hT .m.f
0// � hT .m.f // D �2�.hdim.f

0/ � hdim.f //

D W.f ; m.f // �W.f 0 ; m.f //CW.f ; m.f
0//

�W.f 0 ; m.f
0//C �

X
�2x�S;S0

."� C ı� /: (4.5)

Proof. Let us consider the hyperbolic case first. Take two vertices x, x0 in S , S 0,
respectively. Observe that we can find a path joining x, x0 which goes along the primal
components and moves from one component to the other by “jumping” over dual
spines (i.e., going along edges whose dual belongs to a dual spine). Also, one can
make sure that the path is minimal, in the sense that every component between those
of x, x0 (i.e., components which separate S , S 0) is visited at most once. Call this path
.x; x0/. Now, letting x! � and x0! �0, we can also ensure that the portion of �S;S 0
bounded by .x; x0/; .�; �0/ and the spines S , S 0 contains none of f or f 0. Note that,
for this path, the choice of the "S ; "S 0 exactly matches with the choice defined for
Lemma 4.6. We refer the readers to the second figure of Figure 12 for the case when
the limit point of f 0 does not lie in the same component of @ zM \�S;S 0 and f 0 lies
in �S;S 0 , in which case

"S 0 D �1:
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S S S

S 0 S 0 S 0

�S;S 0 �S;S 0 �S;S 0

�S;S 00

S 00

Figure 12. An illustration of spines in the hyperbolic case. The spines S and S 0 are separated
by a dual spine drawn in dashed blue. This spine also separates S 00 and S 0 (left). The second
and third figures from the left illustrate the choice of "S in Theorem 4.10: in the second, "S D
1 D �"S 0 . In the third figure (note that the orientation of S 0 is reversed), "S D "S 0 D 1.

Let z be the path obtained by concatenating .m.f /; x/, .x; x0/, .x0;m.f 0//. From
Lemma 4.6, it is clear that

2�.hdim.f
0/ � hdim.f // D Wint.z/C �

X
S

."S C ıS /:

Indeed, notice that since the path is minimal, the "S ; ıS terms are defined so as to
match with the definition of "i ; ıi in Lemma 4.6. Furthermore, Wint.z/ D Wint./

because of the above choice of x, x0. We finish the proof using Lemma 2.1 and the
fact that the topological winding of z and  are equal.

For the torus case, the same proof applies by noticing that W..x; x0/; m.f //C
W..x; x0/; m.f 0// converges to 0 as x and x0 go to infinity along S , S 0 in the same
asymptotic direction. (The signs in (4.5) come from the fact that one goes along f 0
in the opposite direction.)

Finally, the fact that the term �
P
S ."S C ıS / converges follows simply from

the fact that the number of non-contractible components is a.s. finite in the limiting
CRSF (and hence so is the number of spines which separates S , S 0 into different
components).

4.3. Mapping back to the manifold

In this subsection, we briefly explain how the notion of height function constructed
above on the universal cover corresponds to a height one-form on the surface coming
from the dimer cover. We also describe how the instanton component is a function of
only the non-contractible loops of the Temperleyan CRSF.

Suppose that  is a path inM 0 connecting two faces f , f 0, and let h.f;f 0/ denote
the height difference in M 0 calculated along  . Now, imagine two copies of the lift
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of  to the universal cover zM 0 and observe that, using our formula ((4.4) or (4.5)) for
computing the height difference along the lifts in the universal cover, it is not clear
how these quantities are related for different lifts and how these formulas map back
to the surface M 0. In our next lemma, we show that this difference among different
copies can be explicitly calculated and is deterministic, so it does not contribute to the
fluctuations of the height function, which is the quantity of interest in this article.

Recall from Sections 2.2 and 2.4 that the covering map p maps zM 0=F to zM 0,
where F is a subgroup of Z2 in the torus case, and is a Fuchsian group (a discrete
subgroup of the Möbius group) in the hyperbolic case. Thus, one can map one lift of
a path in G0 to another copy simply by using an element from F , which is either a
translation in the torus case or a Möbius map in the hyperbolic case. In the following
lemma, we show how this mapping affects the winding. We encourage the reader to
recall the formulas in Section 2.3 before reading the lemma.

Lemma 4.11. Suppose that we are in the hyperbolic case, so zM 0 D D. For any
Möbius map � from D to itself, mapping zG0 to itself, for any two diagonal midpoints
m, m0,

hT .�.m
0// � hT .�.m// D hT .m

0/ � hT .m/C arg�0.D/.�
0.m.f ///

� arg�0.D/.�
0.m.f 0///:

In particular, hT � arg.�0/ can be mapped back as a one-form on the dual ofG0, away
from vertices corresponding to punctures. In the parabolic case, the same identity
holds with no argument terms.

Proof. We focus on the hyperbolic case since the case of the torus is trivial. If � is a
conformal map mapping zG0 to itself, then it must also map T to itself and in particular

�.f /�.f 0/ D �.ff 0/

in the notations of Theorem 4.10. Clearly, the topological terms �� , ı� from The-
orem 4.10 are invariant under �:X

�2�S;S0

.�� C ı� / D
X

�2��.S/;�.S0/

.�� C ı� /:

For the term W.;m.f //CW.;m.f 0//, it transforms as an intrinsic winding under
conformal maps, so by Lemma 2.2

W.�./; �.m.f ///CW.�./; �.m.f 0///

D W.;m.f //CW.;m.f 0//C arg�0.D/.�
0.m.f /// � arg�0.D/.�

0.m.f 0///;

which concludes the proof.
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Remark 4.12. A consequence of Lemma 4.11 is the following. Fix any two faces f ,
g of G0 and any path  in the dual of G0 starting at f and ending at g. Let h.f; g/
be the sum of the height one-form calculated along  . Suppose that z and z 0 are two
copies of the lifts of  with endpoints Qf , Qg and Qf 0, Qg0, respectively. Recalling the
definition of height function hdim from Sections 4.1 and 4.2, observe that

hdim. Qf / � hdim. Qg/ � E.hdim. Qf / � hdim. Qg//

D hdim. Qf
0/ � hdim. Qg

0/ � E.hdim. Qf
0/ � hdim. Qg

0//

since the arg terms cancel. In other words, the dimer height fluctuation does not
depend on the choice of the copy of  used in the cover and hence can be mapped
back into M 0 without any ambiguity.

Let us now consider the instanton component. Intuitively, it should be completely
determined by the homology class of the non-contractible loops of the Temperleyan
forests (and in particular it should be determined by the spines). To that end, take
a rooted loop �, and consider the height difference along a particular choice of the
lift of the loop, starting and ending at copies of the root; call this h.�/. Lemma 4.11
tells us that we can compute h.�/ unambiguously on any choice of the lift, but we
should in fact be able to say more. In particular, computing h.�/ using (4.4) and (4.5)
a priori requires more precise geometric information involving windings. The follow-
ing lemma shows that in fact the computation of h.�/ does not involve any winding
term and that the instanton component is at least a “reasonable” function of the non-
contractible loops.

Take an ordered finite set of continuous simple loops which forms the basis of the
first homology group of M 0, all endowed with a fixed orientation. Let H be the finite
set of numbers which denote the height change along these loops. It is well known
(see Theorem 2.9) that h is completely determined by H (at the discrete level).

Lemma 4.13. Let .C;C�/ be the set of oriented non-contractible loops of the primal
and dual Temperleyan CRSF. Let h be the instanton component of the height 1-form
of the dimer configuration corresponding to this CRSF pair given by the extended
Temperley bijection. Then, h is a function of .C;C�/ only.

Proof. We focus first on the hyperbolic case. Let � be a loop from the basis of the
homology group considered above; without loss of generality, we can assume that �
starts in a diagonal midpoint. Choose an arbitrary lift of � and call its starting and
ending points m and m0 and the corresponding faces f and f 0.

Let � be the Mobius map sending m to m0 and mapping zG0 to itself. By The-
orem 4.10 and Lemma 2.1, hT .m

0/� hT .m/DWint./C�
P
�2x�S;S0

.�� C ı� /with
 obtained in this case by concatenating f , the arc .�; �0/ and the time reverse of f 0 .
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(We assume for a brief moment that  is smooth close to � and �0, and therefore
piece-wise smooth everywhere.) By additivity of the intrinsic winding, we have

Wint./ D Wint.f /CWint..�; �
0// �Wint.f 0/;

but since f 0 D �.f /, by Lemma 2.2,

Wint.f / �Wint.f 0/ D � arg.�0.�//C arg.�0.m//:

Clearly, the above argument extends by taking an arbitrary regularisation of  if it is
not smooth near � and �0 (since the right-hand side is independent of the regularisation
procedure). Thus, we have proved that

hT .m
0/ � hT .m/ D arg.�0.m// � arg.�0.�//CWint..�; �

0//

C �
X
�2x�

.�� C ı� /: (4.6)

The function � only depends on � and the choice of lift m for its starting point. Also,
clearly, �, �0, x�S;S 0 , and the �� , ı� only depend on the set of spines which concludes
the proof of the hyperbolic case.

The proof for the parabolic case is identical and in fact even simpler since f
and f 0 are translate of each other and there is no term for the winding of .�; �0/ in
Theorem 4.10.

We record now the following corollary regarding the weak limit of H as the mesh
size goes to 0. For this corollary, we need to rely on results from the second article in
the series [5] (and is not a deterministic result like the rest of this section) which will
be reproduced later in the paper in Theorem 6.3. We write a superscript ı to account
for the dependence in ı as in Section 2.4.

Corollary 4.14. H#ı described above converges in law as ı ! 0 to some H which is
measurable with respect to the limit of .C#ı ; .C�/#ı/.

Proof. The term arg.�0.m//� arg.�0.�//CWint..�; �
0// is clearly a continuous func-

tion of .C;C�/. Since .C#ı ; .C�/#ı/ converges to an almost surely disjoint set of loops
using Theorem 6.3,

P
�2x�.�� C ı� / in the right-hand side of (4.6) also converges in

law, thereby completing the proof.

5. Local coupling

In this section, we prove a local discrete coupling result which extends the ideas of [4]
to the setup of Riemann surfaces. Roughly speaking, the goal of such a result is to
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show that the local geometry in a small neighbourhood of a Temperleyan CRSF is
given by that of a uniform spanning tree in the surface or, alternatively (and more
usefully), in some reference planar domain. Moreover, locally, around a finite number
of given points, the configurations can be coupled to independent such USTs.

Recall that the actual Temperleyan CRSFs cannot be completely sampled using
the standard Wilson’s algorithm. However, due to Theorem 3.7, given the skeleton s

emanating from either side of the punctures, the rest of the Temperleyan CRSF can be
sampled from Wilson’s algorithm. The main result in this section is Proposition 5.10.

The argument follows the same line of arguments as in [4], so let us first recall the
strategy there. This consists of two main steps. Consider k points v1; : : : ; vk in .� 0/#ı .
In the first step, we choose cutsets at a small but macroscopic distance around each
of the k points such that the cutsets separate the points from each other and from the
rest of the graph. We reveal all the branches emanating from these cutsets. This leaves
k unexplored subgraphs �#ı

i , one around each point. In this step, the key point is to
make sure that the �#ı

i are macroscopic (e.g., contain a ball of a radius roughly of the
same order of magnitude as the distance to the cutsets). Clearly, the conditional law
of the tree in each �#ı

i is that of a wired UST. Moreover, these wired USTs are also
independent conditionally given the cutset exploration. (Of course, unconditionally
there is still some dependence.) The second step is then to say that, in each �#ı

i , one
can couple a wired UST with a full plane one, which shows, among other things, that
the unconditional distribution is close to being independent.

To adapt this strategy to Riemann surfaces, if the �#ı
i are sufficiently small so

that it is simply connected, then the conditional law of the CRSF in each �#ı
i will

also be that of a wired UST so that the second step can be used directly. For the first
step however (cutset exploration), we will need to redo parts of the proof to take into
account the possible loops in the CRSF.

We first state few useful lemmas from the second article [5, Lemmas 2.5 and 2.6].

Lemma 5.1 (Beurling-type estimate). For all r; " > 0, there exists � > 0 such that
for any ı < ı.�/ and for any vertex v 2 �#ı such that �=2 < dM .v; @M/ < �, the
probability that a simple random walk exits

BM .v; r/ WD ¹z 2M W dM .z; v/ < rº

before hitting @�#ı is at most ".

Lemma 5.2. LetK0 �K 00 �M be open connected sets, and letK �K 00;K
0 be com-

pact sets which are the closures ofK0;K 00. Also, assume thatK contains a loop which
is non-contractible in M . Then, there exist ıK;K0 > 0 and ˛K;K0 > 0 depending only
on K;K 0 such that for all ı < ıK;K0 and all v 2 �#ı such that v 2 K, simple random
walk starting from v has probability at least ˛K;K0 of forming a non-contractible loop
before exiting K 0.
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Next, we recall a lemma from [5] about the regularity of the skeleton branches
away from the punctures. As mentioned above, the skeleton s cannot be directly
sampled using Wilson’s algorithm; however, the following (technical) result from [5]
guarantees that it will not be qualitatively different from a regular loop-erased random
walk away from the punctures. Let x�M denote the law of s. Let

�r WD
®
�.i/r D .�

.i/
r;1; �

.i/
r;2/
¯
1�i�k

denote the portion of the branches of the skeleton until they exit a ball of radius r
around the puncture, where r is some fixed small quantity. For each such path �.i/r;j
(with 1� i � k, j D 1;2), run independent simple random walks from their tips, where
each walk is conditioned to exit the ball of radius r 0 > r before hitting �.i/r;j for another
small choice of r 0. After hitting r 0, the walks are allowed to run unconditionally until
they either hit �r or .@� 0/#ı or their loop erasure creates a non-contractible loop. Let
z�r;r 0 denote the joint law of the loop erasures of the resulting pair of walks.

Proposition 5.3 ([5, Proposition 6.5]). For any event E which is measurable with
respect to s n �r ,

�M.E/ � C

 vuut 2kX
jD1

sup
�
r=2j

z�M
r=2j ;r=2j�1

.E/

!
;

where the supremum is over all possible �r=2j .

Thanks to that proposition, we will be able to use Wilson’s algorithm to prove
estimates about all the branches in Temperleyan CRSF, including the skeleton.

5.1. Cutset exploration

We now describe the construction more precisely. Fix k points v1; : : : ; vk in .� 0/#ı ,
and let Nvi be small enough neighbourhoods around each vi such that ¹Nvi º1�i�k do
not intersect each other or the pre-specified boundary @�#ı of �#ı (if the boundary is
non-empty) and for each 1 � i � k, p�1.Nvi / is a disjoint union of sets in zM such
that p restricted to each component is a homeomorphism to its image. Also, for each
i , fix one pre-image Qvi of vi , and let zNQvi denote the component of zvi in p�1.Nvi /. Let
R. Qvi ; zNQvi / be the inradius seen from Qvi in zM with respect to the Euclidean metric,
and call

r D min
1�i�k

R. Qvi I zNQvi /: (5.1)

(We point out that in our setup it is natural to define these quantities with respect to
Euclidean geometry on zM and project toM because our assumption and in particular
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the uniform crossing condition are stated with respect to this geometry, whereas the
intrinsic geometry of M does not really appear in our setup.)

We denote by Beuc. Qv; r/ the Euclidean ball of radius r around Qv, and for r 0 > r ,
let Aeuc. Qv; r; r

0/ D Beuc. Qv; r
0/ n Beuc. Qv; r/ be the Euclidean annulus of inradius r

and outer radius r 0. Let Hi be a set of vertices in p.Aeuc. Qvi ; r=2; r// \ .�
0/#ı which

disconnects vi from @Nvi . The cutset exploration is done in two steps.

(a) First sample the skeleton according to the correct law (i.e., according to
CRSF branches with the global conditioning that the branches divide the
manifold into annuli).

(b) Then, reveal all the branches from Hi , 1 � i � k, using (unconditioned)
Wilson’s algorithm, resulting in a subgraph T #ı

Hi
, 1 � i � k.

We say a vertex vj has cutset isolation radius 6�kr at scale r if

p.Beuc. Qvj ; 6
�kr// does not contain any vertex from T #ı

Hi
:

Let us define Jvj as the minimum value such that vj has isolation radius 6�Jvj r , and
let J D maxj Jvj .

We want to show that J has exponential tail (which results in polynomial tail
of the isolation radius). To this end, we rely on the following bound on the distance
between a loop-erased walk and a point, which is a version of [4, Proposition 4.11].

Lemma 5.4. Let  be a loop-erased random walk starting from a vertex v until it hits
.@� 0/#ı or a non-contractible loop is created. Let u ¤ v be another vertex, and let Qu
be one of the images under p�1 of u. Let r be small enough such that U WD xBeuc. Qu; r/

is contained in the pre-image of Nu which contains Qu. Then, there exist constants
˛; c > 0 (depending only on the initial assumptions of the graph) such that, for all
ı < ıU and all n 2 .0; log2.

Crı0
ı
/� 1/, where ıU ; ı0 are as in the crossing condition

(assumption (iv)),
P . \ p.Beuc. Qu; 2

�nr// ¤ ;/ < c˛n:

Proof. This is almost identical to [4, Lemma 4.11] except we now need to take into
account the topology as well. To emphasise the differences with Lemma 4.11 in [4],
we recall the strategy there. The idea is that if the loop-erased walk on the manifold
comes inside p.Beuc. Qu; 2

�nr//, then some lift of the random walk must necessar-
ily come within Beuc. Qu; 2

�nr/ – call this region (exponential) scale n. Furthermore,
after the last such visit, this (lift of the) random walk must cross n many annuli
without making a loop around Qu (which we called a “full turn”). This has a prob-
ability bounded by e�cn.

In the current situation, however, the random walk might form a non-contractible
loop before exiting U , and therefore its relevant lift described above does not neces-
sarily have to cross nmany annuli (see, e.g., Figure 13) after coming within Euclidean
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X�nc

Qv

Figure 13. A schematic representation (in solid line) of the lift of the loop erasure of the random
walk on the torus until a non-contractible loop is formed. Call this path z , and let  D p.z/.
The dashed square denotes the fundamental domain and the dashed paths denote some other
lifts of  . In this case, z stops inside the fundamental domain.

distance 2�nr of Qu before we stop it. Thus, we cannot simply apply the argument of
the previous paper. We overcome this using the following idea which we first explain
informally. The random walk on the manifold may visit p.Beuc. Qu; r// multiple times.
Consider one such time when it enters p.Beuc. Qu; r// (not necessarily the first time)
and suppose its relevant lift zX which also enters Beuc. Qu; r/ at that time. Let X 0 be
the portion of the loop erasure of X on M at that time such that if the random
walk hits X 0 later on, then a non-contractible loop in M is formed. Assume that
X 0 comes inside p.Beuc. Qu; 2

�mr//. In order for the whole loop erasure  to come
inside p.Beuc. Qu; 2

�nr//, the following events must take place on one such visit. First,
the lift zX has to cross the first m scales without performing a full turn (otherwise, it
would close a non-contractible loop on the manifold and stop); this has a probability
bounded by e�cm. Then, zX needs to come within Euclidean distance 2�nr of Qu, but
we bound crudely the probability of this event by 1. Finally, zX needs to come back
out after the last visit to Beuc. Qu; 2

�nr/ in such a way that no full turn occurs between
distances 2�nr and 2�mr (for the same reason as in the simply connected case). The
probability of this event can be bounded by e�c.n�m/. The intersection of these three
events gives the right overall upper bound:

e�cme�c.n�m/ D e�cn:

Let us fill in the details. Let Ci be the Euclidean circle of radius ri WD 2�ir around
Qu for i � 0. We start a random walk X from v (to emphasise again: X is on the
manifoldM ). Let ¹�kº be a sequence of stopping times defined inductively as follows.
Set �0 D 0. Having defined �k to be a time when the random walk X crosses or hits
some circle p.Ci.k//, define �kC1 to be the smallest time after �k when the random
walk crosses or hits either p.Ci.k/�1/ or p.Ci.k/C1/; this defines �k by induction
for every k � 1. If i.k/ D 0, define �kC1 to be the smallest time after �k when the
random walk crosses or hits p.Ci.k/C1/. Let kexit be the smallest integer such that in
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the interval Œ�kexit ; �kexitC1� either a non-contractible loop is created by the loop erasure
of the random walk or the random walk hits the boundary @�#ı . Let �0; �1; : : : ; �N
be the set of indices k < kexit C 1 when X�k has crossed or hit p.C0/. Also, note that
the portions XŒ��0C1; ��1 �, XŒ��1C1; ��2 �; : : : are contained inside p.C0/, while the
portionsXŒ��0 ; ��0C1�;XŒ��1 ; ��1C1�; : : : are contained outside p.C1/. Our first claim
is that N has exponential tail, i.e., 9˛1 2 .0; 1/, such that, for all n � 1,

P .N > n/ < ˛n1 : (5.2)

Indeed, using Lemma 5.2, every time the walk hits p.C0/, there is a positive prob-
ability independent of the past that the walk creates a non-contractible loop before
returning to p.C1/. Therefore, N has geometric tail. This proves (5.2).

Let � be the set of points ¹X.�k/ºk�1. Note that, given � , the pieces of random
walk ¹XŒ�k; �kC1�º are independent of each other. We call such pieces elementary
pieces of the walk. If i.k/ ¤ 0, XŒ�k; �kC1� is (given �) a random walk starting from
X�k conditioned to exit the annulus p.Aeuc. Qu; ri.k/�1; ri.k/C1// atX�kC1 . If i.k/D 0,
XŒ�k; �kC1� is a random walk which is conditioned to next hit p.Beuc. Qu; r=2// at
X�kC1 . (Note that this property is lost if we solely condition on ¹X.�k/ºk��N since
the conditioning on N is complicated.) By [4, Lemma 4.7], conditionally on � , each
random walk piece XŒ�k; �kC1� has a uniformly positive probability to do a full turn
in the annulus p.Aeuc. Qu; ri.k/�1; ri.k/// for ı � ıU and given range of n (where ıU
comes from the uniform crossing assumption). Here, we define a full turn to be the
event that the random walk crosses every curve joining the inner and outer boundary
in the specified annulus. Indeed, although [4, Lemma 4.7] gives the uniform positive
probability estimate for crossing in the Euclidean plane, the estimate is valid here
by considering the relevant lift of XŒ�k; �kC1� which is inside xBeuc. Qu; r/ D U and
applying the uniform crossing estimate in the universal cover. Let us also point out
that ı is chosen small enough so that the uniform crossing estimate is valid inside U .

We now define certain low probability events E1; : : : ; En such that one of them
must take place if the loop erasure of X is to enter Bn WD p.Beuc. Qu; 2

�nr//. Let us
condition on � . We say the event Ej occurs if the following hold.

(i) The portion XŒ��j�1C1; ��j � intersects Bn. We then let �j be the smallest k
in Œ��j�1C1; ��j � such that X�k crosses (or hits) p.Cn/.

(ii) Let X 0j be the portion of the loop erasure of XŒ0; ��j�1C1� such that if the
walk XŒ��j�1C1; ��j � intersects X 0j , a non-contractible loop would be cre-
ated. Letm be the maximum index such thatX 0 intersects the circle p.Cm/.
Then, for the event Ej to hold, we also require, in addition to the previ-
ous point, that, for any �j�1 C 1 � k � �j , if i.k/ < m, then the walk
XŒ�k; �kC1� does not perform a full turn in p.Aeuc. Qu; ri.k/�1; ri.k///. If no
such m exists (e.g., if X 0j is empty), we do not require anything further.
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(iii) Let j̀ be the last k before �j such thatX�k crosses (or hits) p.Cn/. Let `0j be
the first time after j̀ that the walk intersects p.CmC1/: Then, in addition to
the previous two points, for Ej to hold we require that the walk XŒ�k; �kC1�
does not perform a full turn for any j̀ � k � `

0
j .

From the discussion above, it is clear that we have the following lemma.

Lemma 5.5. We have

¹ \ Bn ¤ ;º �

´
N � n;

n[
jD1

Ej

µ
[ ¹N > nº:

Thus, all we need to show is that the event on the right-hand side of Lemma 5.5
has exponential tail bound. Now, we claim that

P .Ej j�/ � e�c
0n; and so, P .Ej / � e�c

0n:

This is justified using the uniform positive probability of the walkX performing a
full turn, even conditionally given � . Indeed, conditioned on � , we have that the event
(ii) in the definition of Ej has probability at most e�c

0m, and conditioned on event
in (ii), the event in (iii) has probability at most e�c

00.n�m/ since, conditionally given � ,
the random walk portions XŒ�k; �kC1� are independent. Thus, the overall probability
given � is at most e�cn with c D c0 ^ c00. All in all, using (5.2), Lemma 5.5, and a
union bound, we obtain

P .¹ \ Bn ¤ ;º/ � ne
�c0n
C e�c

0n
� ce�c

0n:

thereby concluding the proof.

Lemma 5.6. Let s denote the skeleton. Let u be a vertex which is not one of the
punctures, and let Qu be one of the images under p�1 of u. Let s be small enough such
that U WD xBeuc. Qu; s/ is contained in the pre-image of Nu which contains Qu. Then,
there exist constants ˛; c > 0 (depending only on the initial assumptions of the graph)
such that for all ı < ıU and all n 2 .0; log2.

Csı0
ı
/ � 1/, where ıU ; ı0 are as in the

crossing condition (assumption (iv)),

P .s \ p.Beuc. Qu; 2
�ns// ¤ ;/ < c˛n:

Proof. This is a corollary of Proposition 5.3 and Lemma 5.4. Consider the case kD 1
and recall the notations from Proposition 5.3. It is easy to see, using the Markov prop-
erty of the independent random walks used to sample z�r=2;r that after hitting r , the
result of Lemma 5.4 kicks in, yielding the required exponential bound for z�r=2;r.E/.
The same argument obviously applies to z�r=4;r=2.E/, yielding the desired statement.

The case k > 1 is analogous. We skip the details here.



N. Berestycki, B. Laslier, and G. Ray 52

We now state the result showing an exponential tail of J , which is a combination
of Lemmas 5.4 and 5.6 and Schramm’s lemma, and is identical to the proof of [4,
Lemma 4.20] (see also the proof of [4, Theorem 4.21]); as it is identical, we skip the
proof here.

Lemma 5.7. There exist constants c; c0 > 0 such that the following holds. Let zD be
a compact set containing B. Qvi ; r/ for 1 � i � k, where r is as in (5.1). Then, for all
ı 2 .0; ı zD/ and for all m 2 .0; log6.ı0r=ı/ � 1/,

P .J > m/ � ce�c
0m:

Finally, we state a lemma which says that with exponentially high probability,
a branch of the CRSF, after entering an exponential scale t , does not backtrack to
a smaller scale. Such a lemma for SLE curves can be found in [36] (see also [4,
Lemma 3.4] in the simply connected case).

Lemma 5.8. Fix u, U , ıU as in Lemma 5.4. Suppose that  is the loop erasure of a
simple random walk in �#ı starting from vertex u until it hits the boundary or creates
a non-contractible loop. Suppose that z is the lift of  started from Qu (parametrised
from Qu to its endpoint). There exist constants c; c0 > 0 (depending only on the initial
assumptions of the graph) such that for all ı < ıU and all n 2 .0; log2.

Crı0
ı
/ � 1/

P .z enters Beuc. Qu; r2
�n/ after exiting Beuc. Qu; r2

�n=2// � ce�c
0n:

Proof. Let E be the event that z enters Beuc. Qu; r2
�n/ after exiting Beuc. Qu; r2

�n=2/.
Let r be as in Lemma 5.4, and assume that n is even without loss of generality. The
argument for this is very similar to Lemma 5.4 and in fact simpler, so we content
ourselves with a sketch. Let r , Ci , Bi be as in the proof of Lemma 5.4. We look at
the lift zX of the simple random walk X starting at Qu, and we stop when either X hits
the boundary or a non-contractible loop is created. Let �k be the set of stopping times
defined as in the proof of Lemma 5.4 but for the lift zX instead of X , and let � be
the set ¹ zX.�k/ºk�1. Observe that lift of the loop erasure of X is the loop erasure of
zX since erasing contractible loops commutes with lifting to the universal cover. If the

loop erasure of zX has to backtrack to scale n, the random walk has to necessarily enter
scale n after leaving scale n=2. Let J be the largest j such that zX�j crosses or hits Cn
after leaving Cn=2, and let I be the largest index i smaller than J when zX�i crosses or
hits Cn=2. Conditioned on � , if E occurs, then zX enters Bn at least once after leaving
Bn=2, and none of the elementary pieces of the walk between �I and �J can perform
a full turn. But again, conditioned on � , there is a uniformly positive probability to
do a full turn for each elementary piece. Since there are at least n=4 such elementary
pieces contained in Œ�I ; �J �, we conclude the proof of the lemma applying the upper
bound on the full-turn estimate on each elementary piece.
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5.2. Full coupling

The results of the previous section covered the first step in the proof of the coupling.
As we mentioned above, the second step is identical to the simply connected case, so
we only recall the main statements.

We first recall the result which we will need from [4]. We use the notations and
assumptions already in force. Let zD � zD0 � zM 0 be two simply connected compact
domains, and fix Qv 2 zD#ı . Let T

zD0 , T
zD denote the wired UST, respectively, in . zD0/#ı

and zD#ı . Let rQv denote R. Qv; zNQv/ as in (5.1) (the largest Euclidean radius so that p is
injective).

Lemma 5.9 ([4, Theorem 4.21]). There exists c; c0 > 0 such that the following holds.
Fix Qv; zD; zD0 as above. There exists a coupling between T

zD and T
zD0 and a random

variable R0 > 0 such that

T
zD0
\ Beuc. Qv;R

0/#ı D T
zD
\ Beuc. Qv;R

0/#ı :

Furthermore, for all ı < ı zD0 and for all m 2 .0; log6.ı0rQv=ı/ � 1/, if we write R0 D
6�Kvr

Qv; zD , where r
Qv; zD is the minimum of rQv and the Euclidean distance between Qv

and @ zD, then
P .Kv � m/ � ce

�c0m:

We now put together the cutset exploration with the above one-point coupling
from the simply connected case as follows. Recall the notations from Section 5.1. Let
T #ı
Hi

be the branches revealed in the cutset exploration around each vi . Let

T #ı
H D

k[
iD1

T #ı
Hi
:

Let �#ı
i be the connected component of .� 0/#ı n T #ı

H containing vi . Observe that,
given T #ı

H , the law of T #ı \ �#ı
i is independent wired UST in �#ı

i (with the natural
boundary) by the generalised Wilson algorithm. Applying the coupling of Lemma 5.9
in the lift of �#ı

i to zM 0 and some fixed compact zD in zM 0 containing some lifts
Qv1; : : : ; Qvk of points v1; : : : ; vk , we obtain a coupling of the oriented CRSF in �#ı

and independent wired USTs .T zDi /1�i�k in zD. Furthermore, the r in (5.1) and rQv
in Lemma 5.9 differ by a constant multiplicative factor which depends only on the
choice of lifts of the vertices. Furthermore, we may (and will) choose the .T zDi /1�i�k

to be independent of T #ı
H . In fact, note that, for each 1 � i � k, T

zD
i may be chosen

independent of the restriction of T #ı to
S
j¤i p.B. Qvj ; r=2//.

Proposition 5.10. The above coupling has the following properties: there exist ran-
dom variables R1; : : : ; Rk such that

T #ı
\ p.B. Qvi ; Ri // D p.T

zD
i \ B. Qvi ; Ri //: (5.3)
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Furthermore, if we write Ri D 6�Ivi ri , where ri is the minimum of r as in (5.1) and
the distance between Qvi and @ zD, then for all ı � ı zD , and for all 1 � i � k, for all
n 2 .0; log6.ı0ri=ı/ � 1/,

P .Ivi � n/ � ce
�c0n

for some constants c; c0 > 0 (depending only on the initial assumptions on the graph).
In particular, P .Ivi � n/ � ce

�c0n _ ıc
0

.
The set of non-contractible loops of T #ı is measurable with respect to T #ı

H . In
particular, .T zDi /1�i�k are also independent of the set of oriented non-contractible
loops in the oriented CRSF.

Observe that when Ivi is very big or ri is very small, it is possible that the ball
B.vi ; Ri / is reduced to a point so the statement (5.3) is trivial (that is, (5.3) holds for
a single vertex). This happens with a probability which is at most ıc

0

for some c0.

Proof. This follows immediately from Lemma 5.7 and Lemma 5.9 once we observe
that Ivi is within O.1/ of the sum of Jvi in Lemma 5.7 and Kvi in Lemma 5.9, both
of which have exponential tails.

The proof of the final assertion is a topological fact. Indeed, conditioned on T #ı
H , it

is a deterministic fact that none of the oriented non-contractible loops pass through the
portion of the CRSF in �#ı

i (which is a wired UST). Indeed, otherwise, we would have
a path joining two points of the wired boundary of a wired UST which is impossible.
Thus, the wired UST in each �#ı

i is conditionally independent of the non-contractible
loops and hence so are T

zD
i s.

6. Convergence of height function and forms

In this section, we precisely state our main result (that is Theorem 6.1) and then prove
it. Recalling the sketch from Section 1.3, we see that what remains to be done is to
go from the convergence of the Temperleyan CRSF to the convergence of its winding
field using the coupling of Section 5. The global idea is the same as in [4], but some
of the estimates on winding of LERW have to be redone. The primary difficulty is that
spines are made of multiple copies of LERW, and hence, Wilson’s algorithm cannot
be used to estimate the winding of all the copies. These are dealt with in Sections 6.2
and 6.3. The proof of the main result is finally concluded in Section 6.4.

6.1. Precise statement of the result

From now on, we work with the manifold M 0. Recall that it is obtained by removing
2g C b � 2 points from the interior of M and that the white vertices removed from
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G#ı to obtain a Temperleyan graph in Theorem 3.7 will converge to these points.
Denote by zM 0 the universal cover of M 0; in the sequel, “lift” refers to lift on zM 0. Let
h#ı be the height function defined as in Section 4 sampled using (1.1). Recall that h#ı

is a function from the dual of . zG0/#ı to R which is defined up to a global additive
constant and Nh#ı WD h#ı � E.h#ı/ is independent of the choice of the reference flow
(see Remark 4.12). Recall the probability measures PWils and PTemp from Section 3.3.

First, we extend h#ı to a function h#ı
ext W
zM 0!R by defining h#ı

ext.x/ to be the value
of h#ı on the face containing x. Recall the graphs .�#ı/0; .��;#ı/0 from Section 2.4.
Let T #ı be the Temperleyan forest sampled using PTemp. Recall that we endowed M
with a Riemannian metric dM as in Section 2, and we equip M 0 with the same metric
via the inclusion map. This induces a volume form d� in zM 0.

Theorem 6.1. Let Qf W zM 0 ! R be a smooth compactly supported function withR
zM 0
Qf d� D 0. Suppose the assumptions in Section 2.4 hold. Then,�Z

Qf .x/ Nh#ı
ext.x/d�.x/; T

#ı
�

converges jointly in law as ı ! 0. The first coordinate also converges in the sense of
all moments. Furthermore, the limit of the first coordinate is measurable with respect
to the limit T of T #ı , is universal (in the sense that it does not depend on the graph
sequence .G0/#ı ), and is conformally invariant.

To clarify, convergence in the sense of all moments means that, for all i , denoting
X#ı WD

R
Qf .x/ Nh#ı

ext.x/d�.x/, E.jX#ı ji / converges as ı ! 0. Notice also that sinceR
Qf d� D 0, the fact that Nh#ı

ext.x/ is defined only up to a global additive constant is
irrelevant.

Let us explain briefly what is meant by conformal invariance in our setting. Sup-
pose j�j D k and .M; x1; x2; : : : ; xk/ and .N; y1; : : : ; yk/ are conformally equivalent
in the sense that there is a map � WM ! N so that �.xi / D yi for all 1 � i � k and
� is a conformal bijection between the two Riemann surfaces. Note that if pM and
pN are their respective covering maps (satisfying the properties in Section 2.4), then
there exists a Möbius map  such that pN D pM ı  . Let hM (resp., hN ) denote the
limit field obtained in the setup of Theorem 6.1 with the punctures being xi and yi
for 1 � i � k. Then, hN D hM ı in the sense that, for any compactly supported test
function f on the universal cover as in Theorem 6.1,

R
hMf d� has the same law asR

hN .f ı  
�1/j. �1/0j2d�.

Remark 6.2. Before we start giving the details, we remark that the upcoming proof
of the theorem goes through if we can establish the convergence of the Temperleyan
CRSF (in the Schramm sense) to a conformally invariant limit in which all curves are
a.s. simple, together with a few additional ingredients. In addition to the assumptions
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on the discretisation of the surface described in Section 2.4 and in particular the cross-
ing assumption, these are the following: for each fixed vertex v 2 .� 0/#ı , let v be the
branch of the Temperleyan forest starting from v. Then, we require that v satisfies
Lemma 5.4 (the branch does not come close to a given point) as well as the moments
on winding of Lemma 6.9 and Lemma 6.10. Note that the convergence to Brownian
motion in item (iii) is not really needed here; instead, convergence of random walk
to a process which is absolutely continuous with respect to Brownian motion would
be sufficient. Stated this way, we note that Theorem 6.1 is novel even in the simply
connected case. For instance, this result is applied in [3] and in the forthcoming [6].

For ease of reference, let us assemble in a single statement the convergence results
from the second paper in the series that are needed in the following (see [5, The-
orem 3.1, Corollary 3.14, and Proposition 6.1]).

Theorem 6.3. LetM be a Riemann surface satisfying the assumptions of Section 2.1,
which we equip with the distance dM described in Section 2.1. Let .�#ı/ı>0 be
a sequence of graphs with boundary @�#ı faithfully embedded in M satisfying the
assumptions of Section 2.4. Then, the limit in law as ı! 0 of the Temperleyan CRSF
sampled using PWils or PTemp exists in the Schramm topology relative to dM . Both
limits are independent of the sequence �#ı subject to the assumptions in Section 2.4.
These limits are also conformally invariant.

Furthermore, letK#ı (resp., .K�/#ı ) denote the number of non-contractible loops
in the CRSF (resp., its dual). Then, for any q > 1, there exists a constant Cq > 0

independent of ı such that
EWils.q

K#ı
/ � Cq;

where EWils denotes the expectation under PWils. The same bound holds also withK#ı

replaced by .K�/#ı .
Furthermore, let .C #ı

1 ; : : : ; C
#ı
K#ı / be the set of non-contractible cycles of the Tem-

perleyan CRSF,

.C #ı
1 ; : : : ; C

#ı
K#ı /

.d/
���!
ı!0

.C1; C2; : : : ; CK/;

where C1; : : : ; CK#ı are almost surely disjoint non-contractible simple loops in M .

6.2. Some a priori tail estimates on winding

The goal of this section is to obtain tail estimates on the winding of a branch of a
Temperleyan forest. This will be achieved in Lemma 6.7 which is the main result
of this section. Conceptually, the arguments are similar to [4, Section 4]. However,
as in Section 5, there are additional difficulties linked with the fact that Wilson’s
algorithm can stop because of the formation of a non-contractible loop. Furthermore,
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we ultimately want to consider the winding of entire spines; yet only one copy of the
lift of a loop is directly connected to a loop-erased random walk path. We first treat
the part directly obtained by loop erasure in this section and defer estimates on the
copies for the next section.

Throughout this section, we deal with a CRSF sampled from PWils (cf. Section 3.3).
First, we sample the skeleton (cf. Theorem 3.7) which we denote by s. Let Qs be the lift
of s to zM 0. Recall that s decomposes M 0 into a finite number of disjoint annuli and
that, conditionally on s, in each of them we can sample the rest of the Temperleyan
CRSF using Wilson’s algorithm.

We now work conditionally on s. Let v be the branch of the CRSF starting from
v (which can thus be sampled using Wilson’s algorithm). For any vertex Qv 2 p�1.v/,
let zQv be the lift of v starting from Qv and up until the time when v closes a non-
contractible loop or hits the boundary @�#ı [ s. Let �nc be the stopping time when the
simple random walk generating zQv creates a non-contractible loop or hits the bound-
ary. Recalling the definition of spines from Section 4, note that zQv will include a part
of a spine whenever the random walk does not hit @�#ı [ s when it stops (see Fig-
ure 13).

Let us orient zQv starting from Qv and going away from it in some continuous manner
in Œ0; 1�. For t > 0, if zQv exits B. Qv; e�t�1/, let t1 be the first time zQv exits B. Qv; e�t�1/,
and let t2 be the last time it exits B. Qv; e�t /. In this case, if zQv ends in B. Qv; e�t / we
set t2 D 1.

We first state a simple deterministic lemma connecting the winding of curves
avoiding each other.

Lemma 6.4. Consider the annulus A D ¹z 2 C W r < jz � xj < Rº, where r > 0

and R 2 .r;1�, and let 0 be a simple curve in A connecting the outer and inner
boundaries of A, assumed to be parametrised in Œ0; 1�. Then, for any simple curve 
in A n 0, we have

jW.; x/j � sup
0�s1<s2�1

jW.0Œs1; s2�; x/j C 4�:

For R D 1, the statement is interpreted as 0 connects the boundary of the B.x; r/
to1.

Note that in the above lemma we do not need any assumption on the regularity of
the curves beyond continuity.

Proof. Observe that any two points in an annulus can be joined by a smooth curve
lying completely in a half-annulus containing those two points. Join each endpoint of
 to its nearest points (with its intrinsic metric inherited from the Euclidean plane) in
0 using smooth curves �1; �2 satisfying the above-mentioned property. Assume that
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�1 and �2 intersect 0 at 0Œs1� and 0Œs2�, respectively. Consider the loop L obtained
by  , �1, �2, and 0Œs1; s2�. Note that L might be non-simple, but any loop which
is created by the union of  and the two geodesics lie in the annulus A slitted by 0
which is simply connected and does not contain x. Hence, all these loops contribute
winding 0 around x. Furthermore, it is easy to see that erasing all these loops (say in a
chronological manner starting from one of the tips of  ) creates a simple loop. Since
the winding of L after erasing these loops is 0 or˙2� , the total winding of L around
x is also either 0 or˙2� . Since by definition �1 and �2 lie in the smaller half-annulus
containing the two points, its winding at most � . Using this observation, the proof of
the lemma is complete.

Assume without loss of generality and to simplify notations that t is an integer.
Let rQv be such that B. Qv; 10rQv/ does not intersect Qs and p is injective in B. Qv; rQv/. (This
is a slight modification of the previous definition of rQv .) Let

e�t0 D rQv:

We consider concentric circles Cj of radius ¹e�t0�j º0�j�tC2 (with Bj the ball inside
it) around Qv. Take a random walk X in .� 0/#ı starting from Qv stopped when it hits
.@� 0/#ı [ s. In case .@� 0/#ı [ s D ; (i.e., in the case of the torus), the random walk
continues forever. Let zX be the lift of this walk starting from Qv. Now, let ¹�kºk�0 be
the set of stopping times as described in the proof of Lemma 5.4 for the random walk
zX . That is, if we hit or cross the circle Ci.k/ at time �k , we wait until we hit or cross
Ci.k/˙1 at time �kC1. If i.k/ D 0 (or t C 2), we wait until we hit or cross C1 (or
CtC1). Let Bi denote the disc inside Ci .

Let �i1 ; �i2 ; : : : be the successive times in the sequence .�k/k�1 when the walk hits
C0. Note that the interval Œ�ij ; �ijC1/ is spent completely outside B1. We now claim
that the random walk cannot wind too much outside B1.

Lemma 6.5. There exist c; c0 > 0 such that for all ı < ıp. xB0/, n � 1, j � 1, and
u 2 B1 such that P .X�ijC1 D u/ > 0,

P
�

sup
Y� zXŒ�ij ;�ijC1�

jW.Y; Qv/j > n j X�ijC1
D u

�
� ce�c

0n;

P
�

sup
Y� zXŒ�ij ;�ijC1�

jW.Y; Qv/j > n j X�ijC1
2 @�#ı

[ s
�
� ce�c

0n:

Here, the supremum is over all continuous paths obtained by erasing portions of
zXŒ�ij ; �ijC1�.

Proof. The proof of Lemma 6.5 is very similar to [4, Lemma 4.8]. But it needs an
input from Riemannian geometry to control the winding of the spines near the bound-
ary of the universal cover. We postpone this proof to appendix A.
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Lemma 6.5 takes care of the winding of the excursions outside B1. For excursions
inside, most of the technical work was done in [4]. Let zY j be the loop erasure of
zXŒ0; j �. For any j , we parametrise zY j in some continuous way away from Qv. Fix
m � 1, and let t1 be the first time zY �im exits B. Qv; e�t�1/ and t2 the last time zY �im
exits B. Qv; e�t /.

Lemma 6.6. There exist C; c > 0 such that, for all ı < ıp. xB0/; t 2 .t0; log.Cı0=ı//,
and n � 1, m � 1,

P
�

sup
Y�zY

�im Œt1;t2�\B.Qv;e�t�1/c

jW.Y; Qv/j > nj�im <1
�
< Ce�cn:

We emphasise that, in the above lemma, m is non-random as it is going to be
important in what follows.

Proof. The proof of this lemma is identical to that of [4, Lemma 4.13], and the
only difference is in the setup, which we point out. In [4], we were working with
a simply connected domain and we waited until the random walk exited it. The argu-
ment proceeds by conditioning on the positions � WD ¹ zX�k ºk�1 and arguing that, in
each interval of walk between successive points in � , the winding of any continu-
ous subpath has exponential tail. Then, we proved that we only need to look at a
random number of intervals which itself has exponential tail. In the present setup,
we can condition on � so that �im <1 is satisfied. The exponential tail of winding
inside any inner annulus follows from [4, Lemma 4.7] (this is exactly the same as the
simply connected case), and for the outer annulus, we use Lemma 6.5. The number
of relevant intervals to consider also has exponential tail following verbatim the proof
of [4, Lemma 4.15].

With these lemmas, we can now state and prove the main result of this section,
which controls the (topological) winding in an annulus.

Lemma 6.7. There exist constants C;C 0; c > 0 so that for all n � 1, for all Qv, for all
ı < ı xB.Qv;r Qv/, and for all 0 < t < log.C 0rQvı0=ı/,

P
�

max
Y�z QvŒt1;t2�\B.Qv;r Qve

�t�1/c
jW.Y; Qv/j > n

�
< Ce�cn

1=3

; (6.1)

where the maximum is taken over all continuous segments from zQvŒt1; t2�. Also,

P
�

max
Y�z Qv\B.Qv;r Qve

�1/c
jW.Y; Qv/j > n

�
< Ce�cn: (6.2)

A few remarks are in order. Firstly, the stretched exponential tail is an artefact of
the proof, and we believe that an exponential tail bound could be proved with more
care if necessary. Secondly, note that the intersection in the argument of the max above
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is used so that we do not need to look into what happens very close to Qv. This is a
technicality which simplifies the proof, but later it is not going to matter. In the end,
we can decompose the whole path zQv into a disjoint union over t of Œt 01; t

0
2�, where t 01 is

the last exit of B. Qv; e�t�1/ and t 02 is the last exit of B. Qv; e�t / which will accomplish
the desired moment bound of truncated winding by exploiting the moment bound for
each of these segments. We also emphasise that, although the non-contractible loop
in the component containing v could be a branch from the skeleton, zQv itself does
not contain any portion of the skeleton. This is simply because we have sampled the
skeleton first before defining v .

Proof of Lemma 6.7. The main idea is to use a union bound for the winding of each
excursion between annuli. One difficulty with working with zQv is that if we condition
on where or when a non-contractible loop is formed then we break the independence
between the pieces of random walk. Indeed, a walk conditioned on not forming a non-
contractible loop will avoid certain portions of its previous trajectory, which a priori
might bias it to have a lot of winding. Recall that, at the point when a non-contractible
loop is formed, the walk could be very close to the starting point. Thus, the idea is
to run the random walk until the boundary .@� 0/#ı is hit (which could be potentially
longer than dictated by Wilson’s algorithm) and control the winding of its loop erasure
uniformly over all scales using Lemmas 6.5 and 6.6. After this, we need to separately
compare the winding made by the last excursion into the ball to the previous estimate.

Recall that t0 satisfies e�t0 D QrQv . Note that (6.2) follows easily from Lemma 6.5.
Indeed, let us call �nc the first time where a non-contractible loop is created and, let �@
be the first hitting of the boundary. Fix N D max¹j W �ij < �nc ^ �@º. Recall that N
has exponential tail since every time we hit C0, conditioned on what happened before,
we have a positive probability to create a non-contractible loop or hit the boundary
before hitting C1, by Lemma 5.2. Thus, we can work on the event N � n at a cost
which is exponentially small in n. Now, Lemma 6.5 entails that on each of the n
pieces, the winding has uniform exponential tail. This completes the proof of (6.2).
We emphasise here that, to bound portions of the loop erasure outside radius e�1, we
can run the random walk until it hits the boundary .@� 0/#ı and not worry about the
case when the walk stops deep inside the ball, as the loop erasure outside radius e�1

is already taken care of.
Now, we turn to (6.1). As before, let � WD ¹ zX�k ºk�1. The idea is to compare the

winding of zQv to the winding of zY �im because there the conditioning on � preserves
the independence and Lemma 6.6 controls the winding. The main work will be to do a
case-by-case analysis of what can be erased and created between �im and the creation
of a non-contractible loop.

Let N be as above, and note that using the same idea of exponential tail of N
and exponential tail of winding up to a fixed number of hits of the outermost circle
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(Lemma 6.6), we get

P
�

sup
Y�zY

�iN Œt1;t2�\B.Qv;e�t�1/c

jW.Y; Qv/j > n
�
< Ce�c

0n: (6.3)

Let �1 and �2 be, respectively, the first time zY �iN exits B. Qv; e�t�1/ and the last
time zY �iN exitsB. Qv;e�t /. To ease notations, from now on, all maximums in this proof
come with the additional condition that the paths stay outside B. Qv; e�t�1/ without
writing it explicitly. We will also assume without loss of generality that the paramet-
risations of zQv and zY �iN are identical up to the first point where their traces differ.

We now consider two possible cases. If a non-contractible cycle is created or the
boundary is hit in the interval Œ�iN ;�.iNC1/�, then, since zXŒ�iN ;�.iNC1/� does not inter-
sect B. Qv; e�t0�1/, only pieces of zY �iNŒ0; �2� can be erased and nothing can be added
in the time interval Œ�iN;�.iNC1/� to get zQvŒ0; t2�. In particular, we see that in this case

max
t1<s1<s2<t2

jW.zQv.s1; s2/; Qv/j � max
�1<s1<s2<�2

jW. zY �iN .s1; s2/; Qv/j;

and we are done using (6.3).
The only other possibility is that a non-contractible cycle is created between

�.iNC1/ and �i.NC1/ (otherwise that would contradict the maximality ofN ). Since p is
injective in B. Qv; e�t0/, this occurs if and only if the walk hits a copy inside B. Qv; e�t0/
of a portion of the walk that is further away from Qv, as illustrated schematically in
Figure 14. From now on, we assume that we are on this event.

First, we make a topological observation. Let ˇ be the first exit time of B. Qv; e�t0/
by zY �iN . We claim that zXŒ�iNC1; �nc� cannot hit zY �iN Œ0; ˇ�. Indeed, suppose by
contradiction that it does so at some time T 2 Œ�iNC1; �nc�. Then, after erasure, we
are left with a path completely contained in B. Qv; e�t0/, where p is injective. No non-
contractible loop can then be created before �iNC1 , which contradicts the maximality
of N as explained above.

Let knc be the index during which the non-contractible loop happens, i.e., the
unique index k such that �nc 2 Œ�k; �kC1�. By the topological claim in the previous
paragraph, no full turn can occur in any of the intervals Œ�k; �kC1� for iN � k < knc .
However, by [4, Corollary 4.5], a full turn can occur in any interval Œ�k; �kC1� inde-
pendently with uniformly positive probability given � . Hence, there exist constants c,
C depending only on the crossing estimate such that

P .knc � iN > n/ � P .knc � iN > n;N � n/C P .N > n/ � Ce�cn:

Combining the above with [4, Lemma 4.7] (which bounds the winding of the ran-
dom walk during an interval of the type Œ�i ; �iC1�), we obtain the following stretched
exponential tail bound:

P
�

max
Y� zXŒ�iN ;�nc �

jW.Y; Qv/j > n
�
� Ce�c

p
n (6.4)



N. Berestycki, B. Laslier, and G. Ray 62

�nc

t2

�1 D t1

�2
�E

�iN

ˇ

Figure 14. The concatenation of the red and blue curves is zY �iN and the green part is
zXŒ�iN ; �nc �. The dotted path denotes a copy of zY �iN so overall the event represented is one

where a non-contractible loop is formed inside B. Qv; e�t0/.

for some C; c > 0 depending only on the crossing estimate and where, as before, Y

is any continuous portion obtained from XŒ�iN ; �nc� which preserves the order of the
random walk path. In particular, this gives a good control of the winding of the piece
of zQv added to Y �iN .

However, we are still not done as illustrated in Figure 14: the times t1, t2 (which
were first entry, last exit times for zQv) may be different from �1, �2 (which were the
first entry, last exit of zY �iN ), so we need additional arguments. Let

�E WD inf¹� W 9t 2 Œ�iN ; �nc�; zY
�iN .�/ D zX.t/º

be the last time in zY �iN which is not erased. Note that with this notation we showed
above that �E � ˇ. This implies immediately that

t1 D �1:

Now, we need to consider several cases depending on where �E is in relation to �2.

• If �E 2 Œ�1; �2�, then zQvŒt1; t2� can be decomposed as the union of a piece of
zY �iN Œ�1; �2� and some erasure of XŒ�iN ; �nc�, so on that event

max
t1<s1<s2<t2

jW.zQv.s1; s2/; Qv/j � max
�1<s1<s2<�2

jW. zY �iN .s1; s2/; Qv/j C�;

where � is a variable with stretched exponential tail using (6.4).

• If �E � �2 and zQv.�E ; t2� (the loop erasure after �E ) does not enter B. Qv; e�t /,
then zQvŒt1; t2� D zY �iN Œ�1; �2� and there is nothing more to prove.
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• If �E � �2 and zQv.�E ; t2� enters B. Qv; e�t / (this is the case pictured in Fig-
ure 14), then we decompose zQv as the union of zY �iN Œ�1; �2�, zY �iN Œ�2; �E �, and
zQvŒ�E ; t2�. The winding of any continuous portion of the first part has exponential
tail by (6.3). The winding of any continuous portion of the last part has stretched
exponential tail since it is bounded by � as in the first case. So, we only need to
take care of the middle part.
To that end, we decompose zY �iN Œ�2; �E � into excursions inside and outside B0
as follows:

zY �iN Œ�2; �E �

D zY �iN Œ�2; ˇ0� [ zY
�iN Œˇ0; ˇ1� [ zY

�iN Œˇ1; ˇ2� [ � � � [ zY
�iN Œˇk0 ; �E �; (6.5)

where ˇ0 D ˇ, and for k � 1, ˇ2k is the first exit of B. Qv; e�t0/ after ˇ2k�1
and ˇ2k�1 is the first entry into B. Qv; e�t0�1/ after ˇ2k�2. Note that any por-
tion of zY �iN Œˇ2k; ˇ2kC1� is outside B. Qv; e�t0�1/, so its winding has exponential
tail using Lemma 6.5. Note also that zY �iN Œˇ2kC1; ˇ2kC2� lies inside the annulus
bounded between Ct and C0 and never intersects the curve zXŒ�iN ; �nc� by max-
imality of �E . Let Y 0 be the loop erasure of the portion of zX from �iN until its
first hit of Ct . Hence, using Lemma 6.4,

max
ˇ2k<s1<s2<ˇ2kC1

jW. zY �iN .s1; s2/; Qv/j � max
s1<s2

jW.Y 0Œs1; s2�; Qv/j C 4�:

Note that the right-hand side has stretched exponential tail by (6.4). Thus, each
term in the decomposition (6.5) has stretched exponential tail, and clearly, the
number of terms is bounded by N which itself has exponential tail. Combining
these two, we can conclude that the absolute value of winding of any continu-
ous portion of zY �iN Œ�2; �E � has stretched exponential tail (with exponent 1=3),
thereby completing the proof of this case.

This concludes the proof of Lemma 6.7.

6.3. From partial path to the full spine

As shown in Theorem 4.10, the path zQv defined above is only a part of what is needed
to compute the height function. Recall the notion of spine from Section 4.2 and that
when we follow the outgoing edges in the Temperleyan forest from any given Qv, we
always end up in a unique spine (since boundary loops have been added around every
hole).

Recall from Theorem 4.10 that we are interested in the winding of the path start-
ing from Qv and then moving along the spine to infinity or the boundary of the disc.
Observe that the initial portion of this path is zQv (Figure 13), and then, it moves along
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copies of the non-contractible loop in the component of Qv in the Temperleyan CRSF.
In this section, we will call this path pQv (i.e., zQv followed by a semi-infinite piece of the
spine). Observe that this notation is in contrast to the notation used in Theorem 4.10,
where the path pQv was called f , whereas here we emphasise that zQv denotes what
is sampled from Wilson’s algorithm given the skeleton. When we apply Wilson’s
algorithm to sample zQv , given the skeleton, we may form a new non-contractible loop,
in which case we have discovered a portion of a spine (the unique spine attached to
Qv). The winding of this portion is controlled by Lemma 6.7. However, we also need
to control the winding of the rest of pQv . The purpose of this section is precisely to
achieve this (done in Lemma 6.8). We also need to control the winding of the other
semi-infinite piece of the spine attached to Qv, which is done in Lemma 6.9. Finally, if
we want to control the height gap between Qu and Qv, we need to control the winding of
p Qu around Qv as well, which is done in Lemma 6.10.

Let us parametrise pQv in Œ0;1/ in any continuous manner away from Qv. Let t0 be
as in Section 6.2, i.e., e�t0 D QrQv . For t � t0, let t1 be the first exit time of pQv from
B. Qv; e�t�1/, and let t2 be the last exit time of the same from B. Qv; e�t /. Note again
that here it is possible that the unique spine attached to Qv could be the same as the
spine corresponding to a skeleton branch.

Lemma 6.8. For all k � 1, there exists a constantm> 0 so that, for all ı < ı xB.Qv;e�t0 /
and for all t0 � t < log.C 0ı0=ı/,

E
�

max
Y�p QvŒt1;t2�\B.Qv;e�t�1/c

jW.Y; Qv/jk
�
� m;

where the supremum is taken over all continuous segments. Also,

E
�

max
Y�p Qv\B.Qv;e�t0 /c

jW.Y; Qv/jk
�
� m:

Proof. In this proof, we write pQv D p to lighten notation. Let us first consider the case
when p does not contain a portion of the spine corresponding to the skeleton.

We parametrise zQv in Œ0;1� as before and assume that the parametrisation of zQv and
p is the same until they start to differ. We drop Qv and write zQv D  throughout the rest
of this proof for notational clarity. To differentiate the first and last exit times for these
two parametrisations, we write t1.p/ (resp., t2.p/) for the first exit of B. Qv; e�t�1/
(resp., last exit of B. Qv; e�t /) of p. We also write t1 D t1./ and t2 D t2./ for clarity.

Note that it is always the case that t1./ D t1.p/ and that t2./ � t2.p/. On the
event t2.p/ D t2./, the maximum in this lemma is over the same set as the one in
Lemma 6.7, so there is nothing to prove. We focus now on the case where t2.p/ >
t2./, meaning that a part of the spine comes back close to x on the cover zM 0 after
the time that a non-contractible loop was created.
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We start with the case of the torus. Let us denote by S the spine attached to Qv
(meaning the full bi-infinite path). Since S is a periodic path, it has a well-defined
direction d (say represented by a unit vector in R2) and separates the plane into two
sets right and left of S . Let us assume without loss of generality that the direction d
is horizontal and that Qv is below S . Let � be a time at which the vertical coordinate
of  reaches its maximum (for topological reasons, this has to occur on the spine S ),
and let us define  0 by appending to Œ0; �� a vertical segment going up to infinity.

Now, it is easy to see that the winding of a straight segment around a point is
bounded by � , so

max
Y� 0\B.Qv;e�t�1/c

jW.Y; Qv/j � max
Y�\B.Qv;e�t�1/c

jW.Y; Qv/j C �: (6.6)

Using Lemma 6.4, this implies that we can always bound

max
Y�p Qv\B.Qv;e�t�1/c

jW.Y; Qv/j � max
Y� 0\B.Qv;e�t�1/c

jW.Y; Qv/j C 4�

� max
Y�\B.Qv;e�t�1/c

jW.Y; Qv/j C 5�: (6.7)

By Lemma 6.7 (the zQv there is  here) applied to all scales up to scale t , the right-hand
side is a sum of O.t/ variables with uniform stretched exponential tails.

Let us now bound P .t2.p/ > t2./I p \ s D ;/. Note that, on the event t2.p/ >
t2./, Qv has to be at a distance less that e�t of its spine. Using the fact that we can
sample points in any order in Wilson’s algorithm, we can bound that probability by
first doing a cutset exploration around Qv at scale rQv . After this cutset exploration, the
probability that any of the branches sampled intersectsB. Qv;e�t / is at mostCe�c.t�t0/

for some constantsC;c (see Lemma 5.7). However, after the cutset exploration around
Qv, the spine attached to Qv is necessarily fully sampled (see, e.g., Proposition 5.10, final
assertion). Hence,

P .t2.p/ > t2./I p \ s D ;/ � Ce�c.t�t0/: (6.8)

Thus, overall, either maxY�pŒt1;t2�\B.Qv;e�t�1/c jW.Y; Qv/j is the same as the variable in
Lemma 6.7, or with probability at most Ce�c.t�t0/, it is at most a sum of O.t/ vari-
ables with uniform stretched exponential tail. The moment bound now easily follows.

For the case where the universal cover is the unit disc, a similar argument can be
done provided that we can construct a path  0 which is nice and avoids the spine. Let
us also introduce �S as the first time  hits the spine and �nc as the ending time of
 . As recalled in more detail in appendix A, it is a well-known fact from Riemann
surfaces that there exists a Möbius transform � D �;Qv such that

p.v/ D Œ0; �S � [
[
n�0

�.n/..�S ; �nc�/;
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where �.n/ D � ı � � � ı � and the union is disjoint. In other words, we keep applying
the same Möbius transform to obtain all the copies. Furthermore, � can be written as
� Dˆ�1 ı� ıˆ, whereˆ is a Möbius map from the unit disc to the upper half-plane
and � is either the translation by˙1 or a multiplication by � > 1.

If it is a translation, we use the same argument as before. Otherwise, it is a scaling
by � > 1 in which case �.S/ necessarily converges to infinity. Furthermore, let � be
the time at which =.ˆ.// reaches its minimum; we define  0 by appending a straight
vertical segment ` from ˆ..�// to R (note that this segment may not intersect ˆ./
nor the subsequent scalings of the image of the portion of the spine ˆ..Œ�S ; �nc�//
and then mappingˆ.Œ0; ��[ `/ back to the disc byˆ�1. By construction, it is trivial
to check that ˆ. 0/ does not intersect ˆ.p.�;1//, so  0 does not intersect p.�;1/.
On the other hand, ˆ�1 is the image of a line segment by a Möbius transform, so it
is a circular arc, and therefore, its winding around any point is bounded by 2� . We
can then conclude using exactly the same reasoning as in the torus case, with only
the constant � replaced by 2� on the right-hand side of (6.6), and hence obtain the
analogue of (6.7).

Finally, let us consider the case when p contains a portion of the spine correspond-
ing to the skeleton. Note that the whole argument was geometric and the only place
where we used the probability was in (6.8) which is provided by Lemma 5.6.

Lemma 6.9. For all k � 1, there exists a constant C > 0 such that the following
holds. Fix a compact set K � zM 0. Suppose that we are in the setup of Lemma 6.8.
Let p D pQv be as above and Np the curve which starts at Qv, hits the spine, and then
goes to infinity in the direction opposite to the orientation of the spine. Orient and
parametrise both p; Np from Qv to1 so that t2 is the last time they exit B. Qv; e�t /. Then,
for all ı < ıK ; t 2 Œt0;1�; Qv 2 K,

E
�

sup
Y�pŒt2;1/

jW.Y; Qv/jk
�
� C..1C t / ^ log.1=ı//k;

E
�

sup
Y�NpŒt2;1/

jW.Y; Qv/jk
�
� C..1C t / ^ log.1=ı//k :

We emphasise here that the spine might be identical to a spine of a skeleton
branch.

Proof. First, we tackle the case of p. If t < log.C 0ı0=ı/, we need to add O.t/ many
variables given by Lemma 6.8, and hence, we are done by Minkowski’s inequality.
If t > log.C 0ı0=ı/, first, we apply the previous bound up to t D log.C 0ı0=ı/. For
the remainder, we can simply bound the winding by the volume of the ball of radius
C 0ı=ı0 around Qv which is O.1/ by our assumptions on the graph (see assumption (i)
in Section 2.4). Indeed, this quantity is bounded by the number of times p crosses a
straight line joining Qv to the boundary of the ball, which is simply bounded by the
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volume of the ball. For Np, we can use Lemma 6.4 and the bound for p and the proof is
complete.

Lemma 6.10. For all k, there exist C; c > 0 such that for all points Qu; Qv, for all
compact sets zK containing Qu; Qv 2 zM 0, for all ı < ı zK ,

E
�
jW.p Qu; Qv/jk

�
� C.j1C log j Qu � Qvjj ^ log.1=ı//c :

Proof. Fix T D log.C
0ı0
ı
/ with C 0 as in Lemma 6.8. We parametrise pQv , p Qu as in

Lemma 6.9. If j Qu � Qvj < e�T , we use Lemmas 6.4 and 6.9 to conclude.
If j Qu� Qvj � e�T , we take t D� log j Qu� Qvj. Then, using Lemma 6.4, we can write

jW.p Qu; Qv/j � 2� C
1X
kDt

sup
Y�p QvŒk2;1/

jW.Y; Qv/j1jp Qu�Qvj2Œe�k ;e�k�1�;

where k2 is the last exit from the B. Qv; e�k/ by p Qu. Using Lemma 5.4 or Lemma 5.6
whichever is appropriate, we get an exponential bound on the expectation of the indic-
ator event above. (Notice that, for scales k > log.C 0ı0=ı/, the probability actually
becomes 0, so this is a finite sum.) Therefore, we can again use Lemma 6.9 and
Cauchy–Schwarz to conclude.

6.4. Convergence of height function

In this section, we prove Theorem 6.1.
Let us describe informally the general structure of the proof. Most of the work

will be in the universal cover to obtain the convergence of expressions of the form
E
Q
i .h. Qzi / � h. Qwi // for distinct points Qzi and Qwi (Lemma 6.12). By integrating this

expression, we will then obtain the convergence of the height function, seen as a
function on the universal cover.

For the first part, the idea is to introduce a regularised height function h#ı
t which

is a continuous function of the CRSF so that the convergence of h#ı
t as ı ! 0 is

immediate. This leaves us with two issues: the comparison between h#ı and h#ı
t for

fixed ı and the convergence of ht as t !1 in the limit. Both questions are actually
solved simultaneously by the estimate of Lemma 6.12 which compares h#ı and h#ı

t

with an error term that becomes small both in ı and t independently.

Setup and notations. Recall that our goal is to prove thatZ
zM 0

Nh#ı
ext.z/

Qf .z/d�.z/ (6.9)

converges in law and also in the sense of moments as ı! 0. (Recall that xX denotes the
centred random variable xX D X � E.X/ whenever this expectation is well defined.)
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Implicitly, h#ı is sampled according to the dimer law (1.1). In other words, by The-
orem 3.3, we need to first sample a Temperleyan pair .T ; T �/ and apply the bijection
 in that theorem.

However, it turns out to be more convenient in the proof to work with a pair
.T ; T �/ sampled from PWils. To this pair .T ; T �/ we can apply the bijection  from
Theorem 3.3 and obtain a dimer configuration m whose centred height function can
be studied. We will first prove (6.9) for PWils and then later explain how this implies
the same for PTemp.

Recall that since
R
zM 0
Qf .z/d�.z/D0, the expression in (6.9) is in fact well defined.

We wish to compute the moments of this integral but only in terms of height differ-
ences since the field is a priori defined only up to constant. To do this, we use the
following trick. Note that sinceZ

Qf d� D 0;

Z
Qf Cd� D

Z
Qf �d� DW Z. Qf /;

where f C D max¹f; 0º and f � D �min¹f; 0º. Now, we can writeZ
zK

Nh#ı
ext.z/

Qf .z/d�.z/ D

Z
zK� zK

. Nh#ı
ext.z/ �

Nh#ı
ext.w//

Qf C.z/ Qf �.w/

Z. Qf /
d�.z/d�.w/;

(6.10)
which implies�Z

zK

Nh#ı
ext.z/

Qf .z/d�.z/

�k
D

Z
zK2k

kY
iD1

. Nh#ı
ext.zi / �

Nh#ı
ext.wi //

Qf C.zi / Qf
�.wi /

Z. Qf /
d�.zi /d�.wi /: (6.11)

Therefore, we are interested in the k-point function, EŒ
Qk
iD1.
Nh#ı
ext.zi / �

Nh#ı
ext.wi //�.

Pick k distinct pairs of points

.z1; w1/; : : : ; .zk; wk/ 2 zK;

and let .f .z1/; f .w1//; : : : ; .f .zk/; f .wk// be the faces containing them. Let z#ı
i ,

w#ı
i be the midpoint of the diagonals of f .zi /, f .wi /.

Now, recall Theorem 4.10 which relates the dimer height difference between two
faces f and f 0 to the winding of a specific path f;f 0 connecting m.f / and m.f 0/
and additional terms of the form˙� associated with jumping over components of the
CRSF. Let #ı

i be the path f;f 0 when f D f .zi / and f 0 D f .wi /, and orient it from
z#ı
i to w#ı

i . Then, with these notations, Theorem 4.10 says that

h.z#ı
i / � h.w

#ı
i / D W.

#ı
i ; z

#ı
i /CW.

#ı
i ; w

#ı
i /C‰

#ı
i ; (6.12)
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where ‰#ı
i is the �

P
S ."S C ıS / term in Theorem 4.10. We drop the superscript ı

from now on for clarity. Thus, from now on, we focus on proving convergence of

EWils

 
kY
iD1

. xW .i ; zi /C xW .i ; wi /C x‰i /

!
: (6.13)

Let

X D ¹zi ; wi W 1 � i � kº; and assume p.u/ ¤ p.v/ for all u ¤ v 2 X:

Clearly, (6.13) can be expanded as a sum of 2k many terms of the form

EWils

� Y
x2S

. xW .x; x/C x‰x=2/
�
DW EWils

� Y
x2S

xFx.x/
�
; (6.14)

where S is a subset of vertices of X with distinct indices and x is i for some i such
that x D zi or wi . (Of course, the products in the expansion of (6.14) have further
restrictions, but we ignore that for clarity.)

We are interested in estimating and proving convergence of (6.14). To that end, we
employ an idea similar to that in [4]: we truncate the CRSF branch at a macroscopic
scale and deal with the truncated macroscopic winding and the remaining microscopic
winding part separately.

We now fill in the details. Parametrise  D x . Define .x.t//t�1 to be x from the
first entry time into the ball B.x; e�t /. (Note that at the moment, the balls B.x; e�t /
might overlap for different x 2 X.) We emphasise here that we parametrise  in the
opposite direction compared to Sections 6.2 and 6.3 to be consistent with [4]. With an
abuse of notation, we will denote by x.�1; t � the whole path from the opposite end
of  up until x.t/. Define the regularised term and the error term as

xFx.x; t / WD xW .x.�1; t �; x/C x‰x=2;

Nex.t/ WD xW .x; x/ � xW .x.�1; t �; x/ D xFx.x/ � xFx.x; t /:

When we want to emphasise the role of z; w, we write zw , ‰zw , Fz.zw/ in place
of the above. We start with a general moment bound for the truncated winding.

Lemma 6.11. For all m, there exist constants c D c. zK;m/, ˛ D ˛.m/ such that, for
all z; w; ı < ı zK , t � 0,

EWils.j xFz.zw ; t /j
m/ � cj.1C t C jlogjz � wjj/ ^ log.1=ı/j˛:

Proof. The proof is immediate from Lemmas 6.9 and 6.10 and the fact that ‰zw
is bounded by a constant c.K/ times the number of non-contractible loops in the
CRSF. Indeed, this is clear from the fact that for a fixed compact set zK � zM there
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exists a constant c. zK/ such that any curve P � zK will cross at most c. zK/ copies
of a given spine (or lift of a loop). Since the number of non-contractible loops has
superexponential tail by Theorem 6.3, the moment bound of ‰zw is immediate.

By compactness, choose r zK small enough so that p is injective in B.z; r zK/ for all
z 2 zK. Now, let rX be defined as in (5.1) but for the set of vertices p.X/ (which are
all distinct by assumption on X). We observe that rX � c. zK/minx¤y2X jx � yj for
some constant c. zK/. We set

� D �.X/ D
1

10
.rX ^ r zK/: (6.15)

Lemma 6.12. There exist constants c; c0 > 0 such that for all m;m0 � 1 there exists
˛ > 0 such that the following holds. Let S �X; S 0 �X be disjoint. Also, assume that
jS j Dm, jS 0j Dm0 � 0. Let� be as in (6.15). Then, for all ı < ı zK and t � log.r zK=�/,ˇ̌̌

EWils

�Y
x2S

Nex.t/
Y
x2S 0

xFx.t/
�ˇ̌̌
� cj1C t j˛.e�c.t�log.r zK=�// C ıc

0

/:

Proof. For simplicity, we first assume that S 0 is empty. Recall that we can sample
a CRSF from PWils by first sampling the branches s and then the rest by Wilson’s
algorithm. Note that Lemma 5.6 tells us that the isolation radius corresponding to
each vertex in S with respect to the skeleton has polynomial tail. Since after sampling
the skeleton the rest of the branches are sampled simply by Wilson’s algorithm, we
can conclude that the application of Proposition 5.10 is valid with � in place of ri .

We perform the coupling in Section 5.2 (in particular Proposition 5.10) with points
p.X/ and their lift X and a compact domain D � zM 0 containing all points in X so
that the minimal Euclidean distance between any point in X and @D is at least rX .
Note that we can choose rX for the r in (5.1) there. Call .T D

x /x2X the resulting
independent UST in D. For x 2 X, let Dx be the branch in the UST T D

x joining x to
@D. Let Dx .t/ be parametrised so that Dx enters B.x; e�tr zK/ for the first time (going
from the outside to x) at time t .

LetRx be the isolation radius of x in the application of Proposition 5.10 and write
Rx D e

�Ix r zK . Let I Dmaxx2X Ix . (Note that, for notational clarity, I here is shifted
by log.r zK=�/ from the one in Section 5.2.) We now decompose

ex.t/ D xW .
D
x .t;1/; x/„ ƒ‚ …
˛x

C . xW .x.t;1/; x/ � xW .
D
x .t;1/; x//„ ƒ‚ …

�x

:

Therefore, we need to deal with expectation of products of ˛x , �x for different indices
x. Let C be the sigma algebra generated by the cutset exploration. We will first
compute the conditional expectation and then take the overall expectation. Note that
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T D
x are independent for different x and also independent of C, and hence, any term

involving ˛x is 0. Thus, we only have to deal with terms involving �x; x 2 S .
Letƒ be the last time x entersB.x; e�I r zK/. In the coupling, x; Dx agree inside

B.x; e�I r zK/, so in particular x.ƒ;1/ D Dx .ƒ;1/, so

�x D xW .x.t; ƒ/; x/ � xW .
D
x .t; ƒ/; x/:

Let G be the event that �x without the bar (meaning without the expectation terms)
is 0. Observe that ifG does not occur, then one of the following events happen. Either

I � log.r zK=�/ > .t � log.r zK=�//=2

which has probability at most e�c.t�log.r zK=�// _ ıc � .e�c.t�log.r zK=�// C ıc/ (Pro-
position 5.10). Otherwise, x has to exit B.x; e�I r zK/ after hitting e�tr zK . This also
has probability at most e�c.t�log.r zK=�// (Lemma 5.8). Now, we bound the moments
of �x . Notice that we can write

EWils.j�xj
k/ �

1X
jDt=2Clog.r zK=�/=2

E.j�xj
k1j�I�jC1/C ce

�c.t�log.r zK=�//

�

1X
jDt=2Clog.r zK=�/=2

j1C j jk.e�c.j�log.r zK=�// C ıc/;

where we first used Cauchy–Schwarz and then used Lemma 6.9 to bound the moment
and Proposition 5.10. Thus, overall,

EWils.j�xj
k/ � j1C t jk.e�c.t�log.r zK=�// C ıc/:

We have a product of at mostm terms, and so, using Hölder’s inequality, taking ˛Dm
works.

Finally, if S 0 is non-empty, the proof is exactly the same as the vertices in S 0 are
distinct from S , and hence, local independence from the coupling still holds. We then
use Lemma 6.11 to conclude using Cauchy–Schwarz. Details are left to the reader.

Corollary 6.13. Let S � X containing vertices with distinct indices such that
jS j D m. There exists a constant c D c. zK;m/; ˛ D ˛.m/ such that, for all ı < ı zK ,ˇ̌̌

EWils

� Y
x2S

xFx.x/
�ˇ̌̌
� cj1C log˛.�/j:

Proof. Decompose

EWils

�Y
x2S

xFx.x/
�
D EWils

�Y
x2S

. xFx.x; t /C Nex.t//
�
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with t D 2 log.r zK=�/. Then, this is a straightforward application of Lemmas 6.11
and 6.12.

Now, we prove a convergence of the height function integrated against f in the
sense of moments (still for the Wilson law PWils). Recall that Xı converges in the
sense of moments as ı ! 0 if, for all k, E.Xk

ı
/ converges as ı ! 0.

Lemma 6.14.
R
zK
Nh#ı
ext.z/

Qf .z/d�.z/ converges in the sense of moments under the law
PWils. Furthermore, the limit does not depend on the sequence .G0/#ı .

Proof. Using (6.11), (6.13), and (6.14), we need to prove the convergence as ı ! 0

of Z
zK2k

EWils

�Y
x2S

xFx.
#ı
x /
� Qf C.zi / Qf �.wi /

Z. Qf /
d�.zi /d�.wi /: (6.16)

We use Fubini to bring the expectation inside the integral in the above display. We first
observe that integrating (6.16) over all sets of vertices S so that p.x/ ¤ p.y/ for all
x ¤ y 2 S is enough. (Recall that p W zM 0 7!M 0 is the covering map.) Indeed, using
Lemma 6.11 and the fact that kf k1 <1, we see that the integrand can be bounded
by O.log˛.1=ı//. Since the volume of ¹S � zK2k W p.x/ D p.y/ for some x; y 2 Sº
isO.ı/ (indeed the number of pre-images of any vertex in zK is bounded by a constant
depending only on zK), we see that the integral over this set is O.ı log˛.1=ı//.

Thus, we now concentrate on the integral (6.16) over

A. zK/ D ¹sets of vertices S so that p.x/ ¤ p.y/ for all x ¤ y 2 Sº: (6.17)

We now use Corollary 6.13 and dominated convergence theorem. Since kf k1 <

1 and logm.�/ is integrable for any m > 0, we need to prove the convergence of the
expectation inside the integral above. Now, we claim that the regularised part

EWils

�Y
x2S

xFx.
#ı
x ; t /

�
(6.18)

converges as ı! 0. This follows from our assumption of a.s. convergence of Temper-
leyan CRSF and because the term inside the expectation is a.s. continuous function of
the Temperleyan CRSF. The same can be said about the skeleton using the absolute
continuity statement given by Proposition 5.3. Indeed, this follows from a.s. continu-
ity properties of SLE2 and the fact that the CRSF branches are made a.s. from finitely
many chunks of SLE2; in particular, for a fixed t , the SLE curve is a.s. not a tan-
gent to the boundary of circle of radius e�t . (We refer to [5, Section 3] for details.)
Lemma 6.11 tells us that the random variable in (6.18) is uniformly integrable which
completes the proof of convergence of the regularised term (6.18).
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Now, given a fixed S , choose t � log.r zK=�/. Now, we claim that the error term
satisfiesˇ̌̌

EWils

�Y
x2S

xFx.x/
�
� EWils

�Y
x2S

xFx.x; t /
�ˇ̌̌
< cj1C t j˛.e�c.t�log.r zK=�// C ıc

0

/:

(6.19)
Indeed, (6.19) follows by writing xFx.x/ D xFx.x; t / C Nex.t/ and then expanding
and using the bounds in Lemmas 6.11 and 6.12. To finish the proof of the lemma, fix
" > 0. First, choose t large enough and then ı small enough so that the right-hand side
of (6.19) is less than ". Next, choose a smaller ı if needed so that, for all ı0 < ı,ˇ̌̌

EWils

�Y
x

xF .#ı0
x ; t /

�
� EWils

�Y
x

xFx.
#ı
x ; t /

�ˇ̌̌
< "

via the convergence of the regularised term. This completes the proof as " is arbitrary.
Observe that (6.19) completes the proof that the limit does not depend on the

sequence ..G0/#ı/ı>0 since the main term (6.18) is measurable with respect to the
limiting continuum Temperleyan CRSF which is universal by Theorem 6.3.

It remains to prove convergence in law (still for PWils for now). For this, we need to
alter the definition of truncation slightly. Given t > 0, take a cover ¹Beuc.x; r zKe

�10t / W

x 2 zKº of zK and take a finite subcover. Let c.z/; c.w/ denote the centre of one
of the balls (chosen arbitrarily) in the finite subcover to which z, w belong. Define
Fx.t/; ex.t/ to be the same as Fx.t/ and ex.t/, but we cut off the first time x enters
B.c.x/; e�t /. (So compared to the above, the centre of the cutoff ball is shifted by an
amount which is at most e�10t .) However, in this definition, we still measure winding
around x, not c.x/.

Lemma 6.15. The statements of Lemmas 6.11 and 6.12 still hold if we replace F; e
by F; e everywhere.

Proof. For Lemma 6.11, the proof identically follows from Lemmas 6.9 and 6.10 by
noticing that the supremum over all continuous subpaths contains the portion of the
branch until it first hits the shifted ball. Notice also that we shift only by an additive
term in the exponential scale which is O.t/.

For Lemma 6.12, the proof is also identical; in particular, we still consider the
coupling around the points in S . Because we still shift only byO.t/ in the exponential
scale, the proof readily follows.

We can now complete the proof of Theorem 6.1.

Proof of Theorem 6.1. Again, we first prove this under PWils before explaining how to
extend this and concluding the proof of Theorem 6.1 to PTemp. We write r D r zK and
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pick a t > 0 to be taken large later. Recall from (6.10) and (6.12) thatZ
zK

Nh#ı
ext.z/

Qf .z/d�.z/

D

Z
zK� zK

. xW .z#ı
zw ; z/C

xW .z#ı
zw ; w/C

x‰zw/
Qf C.z/ Qf �.w/

Z. Qf /
d�.z/d�.w/:

Here, Z. Qf / is a deterministic constant, so we can assume it to be 1 from now on
without loss of generality. Firstly, we recall that we only need to integrate over the set
A. zK/ as in (6.17) as the integral over the remaining part is O.ı logc.1=ı//. Let us
denote by Y D Y.ı/ the above integral over A. zK/. Introduce

X.ı; t/ WD

Z
A. QK/

.xFc.z/c.w/.t/CxFc.w/c.z/.t//1jc.z/�c.w/j>re�t=10

� Qf C.z/ Qf �.w/d�.z/d�.w/:

Note that X.ı; t/ is a sum of regularised winding of finitely many branches and hence
converges in law (as ı ! 0 and t is fixed) by our assumption.

Now, we show that, for all t > 0 and ı < C 0ı0e�t ,

E.Y.ı/ �X.ı; t//2 � c.1C t /˛e�c
0t :

We expand the above square to get an integral over .z; w; z0; w0/ 2 A. zK/2. We can
again without loss of generality restrict to the set A2. zK/ such that the projection p
of all four points .z; w; z0; w0/ maps to pairwise distinct points on M . In that case,
let � D �.z; w; z0; w0/ be as in (6.15). We now argue that this integral over the set
� � e�t=11 is exponentially small in t . Indeed, we are integrating over a set which
has exponentially small measure with respect to �4, and furthermore, the moments
are integrable using Corollary 6.13 and Lemma 6.15.

For the rest of the integral, we write

. xW .z#ı
zw ; z/C

xW .z#ı
zw ; w/C

x‰zw/ D xFzw.t/CxFwz.t/C Nezw.t/C Newz.t/;

and we expand again the product inside the integral to get products of terms of the
form

Nezw.t/C Newz.t/I xFzw.t/CxFwz.t/ �xFc.z/c.w/.t/ �xFc.w/c.z/.t/:

Note here that the indicator over jc.z/� c.w/j > e�t=10 is included in� > e�t=11, so
we can get rid of the indicator. Products containing at least one e are small because of
Lemma 6.15. Also, note that on� > e�t=11, jz �wj > c. zK/e�t=11. Thus, we need to
show that

E.jxFzw.t/ �xFc.w/c.z/.t/j
21
jz�wj>c. zK/e�t=11/ � c.1C t /

˛e�c
0t :
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Observe that

.xFzw.t/ �xFc.z/c.w/.t//1jz�wj>c. zK/e�t=11

D .xFzw.t/ �xFc.z/w.t//1jz�wj>c. zK/e�t=11

C .xFc.z/w.t/ �xFc.z/c.w/.t//1jz�wj>c. zK/e�t=11 :

If p.z/ and p.c.z// merge before exiting B.c.z/; e�5t /, then the paths we need to
consider are identical outside B.c.z/; e�t /; only the centres around which we meas-
ure the topological winding are different. This difference in winding is therefore
deterministically O.e�9t /. On the other hand, the paths we need to consider are not
identical outside B.c.z/; e�5t / if and only if a simple random walk from z does not
hit p.c.z// before exiting B.c.z/; e�5t / which has probability exponentially small in
t by a Beurling-type lemma (Lemma 5.1). Hence, we can conclude using Cauchy–
Schwarz and Lemma 6.15. (Note that here the shifted cutoff is particularly useful
since the cutoff point is the same for both z and c.z/.)

The proof of the rest of the statements is a simple consequence of the fact that
the main term X.ı; t/ is an a.s. continuous function of T #ı for a fixed t . So, trivially,
.X.ı; t/; T #ı/ converges jointly in law; the limit does not depend on the sequence
.G0/#ı and is conformally invariant. It is a simple exercise to show that the L2 bound
on the error term Y.ı/ � X.ı; t/ as shown above is enough to conclude the proof of
the theorem (i.e., the proof of the same claim as in the previous sentence for the pair
. Nh#ı

ext.z/; T
#ı/ ).

We have proved convergence in law of . Nh#ı
ext.z/; T

#ı/ for the PWils law. We now
explain how to convert the result so that it holds under the Temperleyan law PTemp.
Recall that if T is sampled by performing Wilson’s algorithm (after sampling the
skeleton) and T � is sampled from the uniform distribution among all oriented duals
of T , then the Radon–Nikodym derivative of .T ; T �/ with respect to PTemp is Z D
2K

�
=EWils.2

K�/, where K� is the number of nontrivial cycles of T � by Lemma 3.8.
Now, observe that Z is measurable with respect to T #ı , so .Z; . Nhext; Qf // jointly con-
verges in law under PWils by the above. Furthermore, all moments ofZ and of . Nhext; Qf /
are bounded under PWils, and therefore, we conclude that�Z

zM

.hext.z/ � EWils.hext.z/// Qf .z/�.dz/I T
#ı
�

converges in law and in the sense of moments under PTemp. In particular, taking ex-
pectation (under PTemp) of the first quantity, we also deduce that

R
zM
.ETemp.hext.z//�

EWils.hext.z/// Qf .z/�.dz/ converges. Taking the difference, it follows that�Z
zM

.hext.z/ � ETemp.hext.z/// Qf .z/�.dz/I T
#ı
�
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converges in law and in the sense of moment under PTemp, as desired. Furthermore,
since the limit of T #ı is independent of the chosen graph sequence (subject to the
assumptions in Section 2.4), so is the limit of

R
Qf .x/ Nh#ı

ext.x/d�.x/.

Remark 6.16. In fact, with some more work, the convergence in Theorem 6.1 can
be upgraded to specifically include information about the instanton component. More
precisely, using Lemma 4.13, we obtain the following.

Take an ordered finite set of continuous simple loops which forms the basis of the
first homology group ofM 0, all endowed with a fixed orientation. Let H#ı 2R4gC2b�4

denote the vector of height differences along these loops (i.e., for each such loop,
record the height accumulated by going along the loop once in the prescribed orient-
ation). Consider the one-form

d Nh#ı.e/ WD Nh#ı. QeC/ � Nh#ı. Qe�/:

It is well known (see Theorem 2.9) that the instanton component of the above one-
form is completely determined by H#ı . Then, we have�Z

Qf .x/ Nh#ı
ext.x/d�.x/;H

#ı ; T #ı
�

converging jointly in law as ı ! 0. The first two coordinates also jointly converge in
the sense of all moments. Furthermore,

lim
ı!0

�Z
Qf .x/ Nh#ı

ext.x/d�.x/;H
#ı
�

is measurable with respect to the limit T of T #ı . We do not go into the details of these
claims for the sake of brevity.

A. Geometry of spines

In this section, we prove Lemma 4.9 and Lemma 6.5. But before getting into the
proofs, we remind the readers of certain basic facts from the classical theory of
Riemann surfaces.

By the uniformisation theorem of Riemann surfaces (Section 2.2), recall that there
exists a conformal map from the Riemann surface D=g to M 0, where g is a Fuchsian
group which is a discrete subgroup of the group of Möbius transforms. Furthermore,
such a conformal map is unique up to conformal automorphisms (i.e., Möbius trans-
forms) of the unit disc. In other words, if g;g0 are two Fuchsian groups such that M 0

is conformally equivalent to both D=g and D=g0, then there exists a Möbius map

� W D 7! D
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such that

g0 D ��1 ı g ı �:

Since we have fixed a canonical lift, we have defined � uniquely.
It is further known that g is isomorphic to the fundamental group �1.M 0; x/.

(Topologically, this is also known as the group of deck transformations.) This connec-
tion is described as follows: choose a base point in the manifold x0 and a particular lift
of Qx0; then any simple loop ` based in x0 can be lifted to a simple curve z̀ in D start-
ing from Qx0, with the endpoint Qx1 depending only on the homotopy class of the loop.
Then, to ` we associate the map �`; Qx0 2 g that sends Qx0 to Qx1. Note then that �`; Qx0. z̀/
is a curve which projects via p to the same curve ` in M 0 since M 0 is conformally
equivalent to D=g (and in particular is homeomorphic) and it does not intersect z̀since
` is a simple loop. Furthermore, since the endpoint of �`; Qx0. z̀/ is �`; Qx0 ı �`; Qx0. Qx0/, by
the unique path lifting property, the curve z̀[ �`; Qx0. z̀/ is the unique lift obtained by
going around ` twice in the same direction. Iterating, we obtain that the infinite path
obtained by going around ` in the same direction is given by

S1
nD0 �

.n/

`; Qx0
. z̀/, where

�
.n/

`; Qx0
is the n-fold composition of �`; Qx0 and that the union is a disjoint union.

We can actually say more using the classification of Möbius maps according to
their trace. Recall that Möbius maps preserving the unit disc have the form

�.z/ D ei�
z � a

Naz � 1
I jaj < 1I � 2 Œ0; 2�/

and can be classified (up to conjugation with Möbius transforms) depending upon the
behaviour of the trace as follows.

• If jei� � 1j2 D 4.jaj2 � 1/2, then �.z/ is conjugate to either z C 1 or z � 1, seen
as maps from H to H.

• If jei� � 1j2 > 4.jaj2 � 1/2, then �.z/ is conjugate to �z, where � > 1, seen as
maps from H to H.

• If jei� � 1j2 < 4.jaj2 � 1/2, then � is conjugate to a rotation of the unit disc.

Thus, there is a Möbius map ˆ from D to D or H such that

� D ˆ�1 ı �� ıˆ;

where �� is either a translation by ˙1 or a scaling by � (in case ˆ maps D to H) or
a rotation (in case ˆ maps D to D).

We argue that, for any loop `, ��`; Qx0 cannot be a rotation. Indeed, if a map �`; Qx0
was conjugate to a rotation, then its iterates would be either periodic or a dense set
(on the image of a circle). Being periodic is forbidden because of path lifting property,
and being dense is forbidden because g is discrete. From the two remaining cases, we
can complete the proof of Lemma 4.9.
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Proof of Lemma 4.9. Let S be a spine; we can choose a point x0 on p.S/ and a lift Qx0
on S . Then, we see that the previous general theory applies, so we can find an open
path z̀ (a certain lift of the path going once around a non-contractible loop) and a map
�p.S/; Qx0 such that

S D
[
n2Z

�
.n/

p.S/; Qx0
. z̀/;

and the map �p.S/; Qx0 is conjugate to either a scaling or a translation. The case of
a scaling clearly gives a simple path between two different points (the image of 0
and1), while the case of a translation gives a simple loop where the image of1 is
the unique point of @D on the loop.

In the case of the torus, the map �p.S/ is simply a translation in C, so the result is
trivially true.

We now prove Lemma 6.5 which provides bounds on the macroscopic winding of
the spines. We repeat the statement of the lemma here for convenience.

Lemma (Restating Lemma 6.5). Fix a compact set zK � zM 0. There exist constants
c; c0 > 0 such that for all Qv 2 zK, for all ı < ıp. xB0/, n � 1, j � 1, and u 2 B1 such
that P .X�ijC1 D u/ > 0,

P
�

sup
Y� zXŒ�ij ;�ijC1�

jW.Y; Qv/j > n j X�ijC1
D u

�
� ce�c

0n;

P
�

sup
Y� zXŒ�ij ;�ijC1�

jW.Y; Qv/j > n j X�ijC1
2 @.G0/#ı [ s

�
� ce�c

0n:

Here, the supremum is over all continuous paths obtained by erasing portions of
zXŒ�ij ; �ijC1�.

Proof. We are going to borrow the notations from Section 6.2. Take a non-contractible
simple loop ` in M 0 through v and find a continuous path `#ı in G#ı which approx-
imates this loop in the sense that it stays within distance cı=ı0 from `. (This is
guaranteed to exist by the uniform crossing estimate for small enough ı depending
on `.) Notice that the lift starting from Qv of a curve which winds infinitely many times
in the clockwise (resp., anti-clockwise) direction of `#ı defines an infinite path z̀C
(resp., z̀�) which converges to the boundary in the hyperbolic case (Lemma 4.9) or
goes to infinity in an asymptotic direction in case of the torus. Let z̀0

˙
denote the

portion of z̀˙ from the last exit of B1 to infinity (given an arbitrary parametrisation
starting from Qv). Notice that . z̀0� [ z̀

0
C/ divides the annulus zM 0 n B1 into two simply

connected domains. By compactness, we can find a constant C such that the winding
of z̀0C around Qv is bounded by C , uniformly over all points Qv 2 zK for a suitable choice
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of loop `. Let �C;1 be the first hitting time of z̀0C in the interval Œ�ij ; �ijC1�, and by
induction, define ��;i to be the first hitting time of z̀0� after �C;i and define �C;i to be
the hitting time of z̀0C after ��;i�1. Let IC be the number of �C;i before �ijC1, i.e.,

IC D j¹i j�C;i � �ijC1ºj:

We now use the deterministic bound

sup
Y� zXŒ�ij ;�ijC1�

jW.Y; Qv/j � .C C 2�/.IC C 1/

and observe that conditionally, on either ¹X�ijC1 D uº or ¹X�ijC1 2 @.G
0/#ı [ sº,

IC has an exponential tail. The proof of this fact is essentially the same as the second
item of [4, Lemma 4.8]. Indeed, we need to show that once the random walk intersects
z̀0C outside B1, there is a positive probability (uniform in ı) for the walk to create a
non-contractible loop without intersecting z̀0� (as in the proof of Lemma 5.2). This is
intuitively clear, but a complete proof of this needs an input from Riemannian geo-
metry. The issue at hand is that, too close to the boundary, the uniform crossing ceases
to hold uniformly in ı. We control the winding of this portion of this walk as follows.

Consider a compact set A �M 0 containing ` which forms an approximation of `
in the sense that topologically K is an annulus with ` being non-contractible in K.
Recall from the proof of Lemma 5.2 that the simple random walk has a uniform
positive probability to create a non-contractible loop inside K by winding around
exactly once, and we stop the simple random walk if this happens. But, in this process,
we can assume without loss of generality on ` that the lift of the walk stays inside
at most four consecutive copies of K (where these four copies are mapped to each
other by Möbius transforms). So, if the walk is on z̀C at a copy of zA which is more
than four copies away from Qv and z̀�, the lift of that walk cannot intersect `� in this
process. On the other hand, applying four copies of the corresponding Möbius map to
an arbitrary Qv 2 zK yields by compactness of zK a slightly bigger compact zK 0. Applying
the uniform crossing property for the given choice of ı to zK 0, we now simply apply
the argument of [4, Lemma 4.8].

Acknowledgements. The authors are grateful to A. Dahlqvist and J. Dubédat for
a number of useful discussions. Finally, they thank the anonymous referee for their
valuable feedback on an earlier version of the manuscript.

Funding. NB’s research is supported by FWF Grant P33083, “Scaling limits in ran-
dom conformal geometry”. This paper was finished while NB was in residence at
the Mathematical Sciences Research Institute in Berkeley, California, USA, during
the Spring 2022 semester on Analysis and Geometry of Random Spaces, which was



N. Berestycki, B. Laslier, and G. Ray 80

supported by the National Science Foundation under Grant no. DMS-1928930. GR’s
research is supported by NSERC 50311-57400. BL’s research is supported by ANR-
18-CE40-0033 “Dimers”.

References

[1] A. Ahn, M. Russkikh, and R. Van Peski, Lozenge tilings and the Gaussian free field on a
cylinder. Comm. Math. Phys. 396 (2022), no. 3, 1221–1275 Zbl 7620657 MR 4507921

[2] J. Aru, The geometry of the Gaussian free field combined with SLE processes and the KPZ
relation. Ph.D. thesis, Ecole normale supérieure de Lyon, 2015

[3] N. Berestycki and L. Haunschmid-Sibitz, Near-critical dimers and massive SLE. 2022,
arXiv:2203.15717

[4] N. Berestycki, B. Laslier, and G. Ray, Dimers and imaginary geometry. Ann. Probab. 48
(2020), no. 1, 1–52 Zbl 1445.60014 MR 4079430

[5] N. Berestycki, B. Laslier, and G. Ray, Dimers on Riemann surfaces II: Conformal invari-
ance and scaling limits. 2022, arXiv:2207.09875

[6] N. Berestycki and M. Liu, Piecewise Temperleyan dimers and a multiple SLE8. 2023,
arXiv:2301.08513

[7] N. Berestycki and E. Powell, Gaussian free field, Gaussian multiplicative chaos and
Liouville quantum gravity. 2015, book in preparation

[8] R. Bott and L. W. Tu, Differential forms in algebraic topology. Grad. Texts in Math. 82,
Springer, New York, 1982 Zbl 0496.55001 MR 658304

[9] C. Boutillier and B. de Tilière, Loop statistics in the toroidal honeycomb dimer model.
Ann. Probab. 37 (2009), no. 5, 1747–1777 Zbl 1179.60065 MR 2561433

[10] D. Cimasoni, Discrete Dirac operators on Riemann surfaces and Kasteleyn matrices.
J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1209–1244 Zbl 1243.82017 MR 2928849

[11] D. Cimasoni and N. Reshetikhin, Dimers on surface graphs and spin structures. I. Comm.
Math. Phys. 275 (2007), no. 1, 187–208 Zbl 1135.82006 MR 2335773

[12] D. Cimasoni and N. Reshetikhin, Dimers on surface graphs and spin structures. II. Comm.
Math. Phys. 281 (2008), no. 2, 445–468 Zbl 1168.82012 MR 2410902

[13] M. Ciucu and C. Krattenthaler, A factorization theorem for lozenge tilings of a hexagon
with triangular holes. Trans. Amer. Math. Soc. 369 (2017), no. 5, 3655–3672
Zbl 1355.05072 MR 3605983

[14] H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings. J. Amer.
Math. Soc. 14 (2001), no. 2, 297–346 Zbl 1037.82016 MR 1815214

[15] R. Costa-Santos and B. M. McCoy, Dimers and the critical Ising model on lattices of genus
> 1. Nuclear Phys. B 623 (2002), no. 3, 439–473 Zbl 1097.82518 MR 1883057

[16] F. David, A. Kupiainen, R. Rhodes, and V. Vargas, Liouville quantum gravity on the
Riemann sphere. Comm. Math. Phys. 342 (2016), no. 3, 869–907 Zbl 1336.83042
MR 3465434

[17] P. Di Francesco, H. Saleur, and J.-B. Zuber, Relations between the Coulomb gas picture
and conformal invariance of two-dimensional critical models. J. Statist. Phys. 49 (1987),
no. 1-2, 57–79 Zbl 0960.82507 MR 0923852

https://doi.org/10.1007/s00220-022-04491-x
https://doi.org/10.1007/s00220-022-04491-x
https://zbmath.org/?q=an:7620657
https://mathscinet.ams.org/mathscinet-getitem?mr=4507921
https://arxiv.org/abs/2203.15717
https://doi.org/10.1214/18-AOP1326
https://zbmath.org/?q=an:1445.60014
https://mathscinet.ams.org/mathscinet-getitem?mr=4079430
https://arxiv.org/abs/2207.09875
https://arxiv.org/abs/2301.08513
https://doi.org/10.1007/978-1-4757-3951-0
https://zbmath.org/?q=an:0496.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=658304
https://doi.org/10.1214/09-AOP453
https://zbmath.org/?q=an:1179.60065
https://mathscinet.ams.org/mathscinet-getitem?mr=2561433
https://doi.org/10.4171/JEMS/331
https://zbmath.org/?q=an:1243.82017
https://mathscinet.ams.org/mathscinet-getitem?mr=2928849
https://doi.org/10.1007/s00220-007-0302-7
https://zbmath.org/?q=an:1135.82006
https://mathscinet.ams.org/mathscinet-getitem?mr=2335773
https://doi.org/10.1007/s00220-008-0488-3
https://zbmath.org/?q=an:1168.82012
https://mathscinet.ams.org/mathscinet-getitem?mr=2410902
https://doi.org/10.1090/tran/7047
https://doi.org/10.1090/tran/7047
https://zbmath.org/?q=an:1355.05072
https://mathscinet.ams.org/mathscinet-getitem?mr=3605983
https://doi.org/10.1090/S0894-0347-00-00355-6
https://zbmath.org/?q=an:1037.82016
https://mathscinet.ams.org/mathscinet-getitem?mr=1815214
https://doi.org/10.1016/S0550-3213(01)00611-3
https://doi.org/10.1016/S0550-3213(01)00611-3
https://zbmath.org/?q=an:1097.82518
https://mathscinet.ams.org/mathscinet-getitem?mr=1883057
https://doi.org/10.1007/s00220-016-2572-4
https://doi.org/10.1007/s00220-016-2572-4
https://zbmath.org/?q=an:1336.83042
https://mathscinet.ams.org/mathscinet-getitem?mr=3465434
https://doi.org/10.1007/BF01009954
https://doi.org/10.1007/BF01009954
https://zbmath.org/?q=an:0960.82507
https://mathscinet.ams.org/mathscinet-getitem?mr=0923852


Dimers on Riemann surfaces I: Temperleyan forests 81

[18] S. Donaldson, Riemann surfaces. Oxf. Grad. Texts Math. 22, Oxford University Press,
Oxford, 2011 Zbl 1235.30001 MR 2856237

[19] J. Dubédat, Dimers and families of Cauchy–Riemann operators I. J. Amer. Math. Soc. 28
(2015), no. 4, 1063–1167 Zbl 1321.82011 MR 3369909

[20] J. Dubédat and R. Gheissari, Asymptotics of height change on toroidal Temperleyan dimer
models. J. Stat. Phys. 159 (2015), no. 1, 75–100 Zbl 1319.82009 MR 3320952

[21] C. Guillarmou, A. Kupiainen, R. Rhodes, and V. Vargas, Segal’s axioms and bootstrap for
Liouville theory. 2021, arXiv:2112.14859

[22] E. P. Hsu, Stochastic analysis on manifolds. Grad. Stud. Math. 38, American Mathematical
Society, Providence, RI, 2002 Zbl 0994.58019 MR 1882015

[23] J. Jost, Compact Riemann surfaces. 3rd edn., Universitext, Springer, Berlin, 2006
Zbl 1125.30033 MR 2247485

[24] A. Kassel and R. Kenyon, Random curves on surfaces induced from the Laplacian determ-
inant. Ann. Probab. 45 (2017), no. 2, 932–964 Zbl 1377.82037 MR 3630290

[25] R. Kenyon, Conformal invariance of domino tiling. Ann. Probab. 28 (2000), no. 2, 759–
795 Zbl 1043.52014 MR 1782431

[26] R. Kenyon, Dominos and the Gaussian free field. Ann. Probab. 29 (2001), no. 3, 1128–
1137 Zbl 1034.82021 MR 1872739

[27] R. Kenyon and A. Okounkov, Limit shapes and the complex Burgers equation. Acta Math.
199 (2007), no. 2, 263–302 Zbl 1156.14029 MR 2358053

[28] R. W. Kenyon, J. G. Propp, and D. B. Wilson, Trees and matchings. Electron. J. Combin.
7 (2000), article no. 25 Zbl 0939.05066 MR 1756162

[29] H. Lacoin, R. Rhodes, and V. Vargas, Semiclassical limit of Liouville field theory. J. Funct.
Anal. 273 (2017), no. 3, 875–916 Zbl 1367.81068 MR 3653942

[30] G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased
random walks and uniform spanning trees. Ann. Probab. 32 (2004), no. 1B, 939–995
Zbl 1126.82011 MR 2044671

[31] C. Mercat, Discrete Riemann surfaces. In Handbook of Teichmüller theory. Vol. I, pp.
541–575, IRMA Lect. Math. Theor. Phys. 11, European Mathematical Society, Zürich,
2007 Zbl 1136.30315 MR 2349680

[32] J. Miller and S. Sheffield, Imaginary geometry I: Interacting SLEs. Probab. Theory
Related Fields 164 (2016), no. 3-4, 553–705 Zbl 1336.60162 MR 3477777

[33] J. Miller and S. Sheffield, Imaginary geometry IV: Interior rays, whole-plane reversibility,
and space-filling trees. Probab. Theory Related Fields 169 (2017), no. 3-4, 729–869
Zbl 1378.60108 MR 3719057

[34] L. Petrov, Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free
field. Ann. Probab. 43 (2015), no. 1, 1–43 Zbl 1315.60062 MR 3298467

[35] M. Russkikh, Dimers in piecewise Temperleyan domains. Comm. Math. Phys. 359 (2018),
no. 1, 189–222 Zbl 1395.82060 MR 3781449

[36] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees.
Israel J. Math. 118 (2000), 221–288 Zbl 0968.60093 MR 1776084

[37] S. Sheffield, Gaussian free fields for mathematicians. Probab. Theory Related Fields 139
(2007), no. 3-4, 521–541 Zbl 1132.60072 MR 2322706

https://doi.org/10.1093/acprof:oso/9780198526391.001.0001
https://zbmath.org/?q=an:1235.30001
https://mathscinet.ams.org/mathscinet-getitem?mr=2856237
https://doi.org/10.1090/jams/824
https://zbmath.org/?q=an:1321.82011
https://mathscinet.ams.org/mathscinet-getitem?mr=3369909
https://doi.org/10.1007/s10955-014-1181-x
https://doi.org/10.1007/s10955-014-1181-x
https://zbmath.org/?q=an:1319.82009
https://mathscinet.ams.org/mathscinet-getitem?mr=3320952
https://arxiv.org/abs/2112.14859
https://doi.org/10.1090/gsm/038
https://zbmath.org/?q=an:0994.58019
https://mathscinet.ams.org/mathscinet-getitem?mr=1882015
https://doi.org/10.1007/978-3-540-33067-7
https://zbmath.org/?q=an:1125.30033
https://mathscinet.ams.org/mathscinet-getitem?mr=2247485
https://doi.org/10.1214/15-AOP1078
https://doi.org/10.1214/15-AOP1078
https://zbmath.org/?q=an:1377.82037
https://mathscinet.ams.org/mathscinet-getitem?mr=3630290
https://doi.org/10.1214/aop/1019160260
https://zbmath.org/?q=an:1043.52014
https://mathscinet.ams.org/mathscinet-getitem?mr=1782431
https://doi.org/10.1214/aop/1015345599
https://zbmath.org/?q=an:1034.82021
https://mathscinet.ams.org/mathscinet-getitem?mr=1872739
https://doi.org/10.1007/s11511-007-0021-0
https://zbmath.org/?q=an:1156.14029
https://mathscinet.ams.org/mathscinet-getitem?mr=2358053
https://doi.org/10.37236/1503
https://zbmath.org/?q=an:0939.05066
https://mathscinet.ams.org/mathscinet-getitem?mr=1756162
https://doi.org/10.1016/j.jfa.2017.04.012
https://zbmath.org/?q=an:1367.81068
https://mathscinet.ams.org/mathscinet-getitem?mr=3653942
https://doi.org/10.1214/aop/1079021469
https://doi.org/10.1214/aop/1079021469
https://zbmath.org/?q=an:1126.82011
https://mathscinet.ams.org/mathscinet-getitem?mr=2044671
https://doi.org/10.4171/029-1/14
https://zbmath.org/?q=an:1136.30315
https://mathscinet.ams.org/mathscinet-getitem?mr=2349680
https://doi.org/10.1007/s00440-016-0698-0
https://zbmath.org/?q=an:1336.60162
https://mathscinet.ams.org/mathscinet-getitem?mr=3477777
https://doi.org/10.1007/s00440-017-0780-2
https://doi.org/10.1007/s00440-017-0780-2
https://zbmath.org/?q=an:1378.60108
https://mathscinet.ams.org/mathscinet-getitem?mr=3719057
https://doi.org/10.1214/12-AOP823
https://doi.org/10.1214/12-AOP823
https://zbmath.org/?q=an:1315.60062
https://mathscinet.ams.org/mathscinet-getitem?mr=3298467
https://doi.org/10.1007/s00220-018-3113-0
https://zbmath.org/?q=an:1395.82060
https://mathscinet.ams.org/mathscinet-getitem?mr=3781449
https://doi.org/10.1007/BF02803524
https://zbmath.org/?q=an:0968.60093
https://mathscinet.ams.org/mathscinet-getitem?mr=1776084
https://doi.org/10.1007/s00440-006-0050-1
https://zbmath.org/?q=an:1132.60072
https://mathscinet.ams.org/mathscinet-getitem?mr=2322706


N. Berestycki, B. Laslier, and G. Ray 82

[38] W. Sun, Toroidal dimer model and Temperley’s bijection. 2016, arXiv:1603.00690

Communicated by Adrian Tanasă
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