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Abstract. We study multidimensional diagrams in independent amalgamation in the framework
of abstract elementary classes (AECs). We use them to prove the eventual categoricity conjecture
for AECs, assuming a large cardinal axiom. More precisely, we show assuming the existence of
a proper class of strongly compact cardinals that an AEC which has a single model of some high
enough cardinality will have a single model in any high enough cardinal. Assuming a weak version
of the generalized continuum hypothesis, we also establish the eventual categoricity conjecture for
AECs with amalgamation.
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1. Introduction

1.1. General background and motivation

One of the most important results of modern model theory is Morley’s categoricity the-
orem [24]: a countable first-order theory categorical in some uncountable cardinal is
categorical in all uncountable cardinals. Here, we call a theory (or more generally a class
of structures) categorical in a cardinal � if it has (up to isomorphism) exactly one model
of cardinality �. Morley’s theorem generalizes the fact that algebraically closed fields of
characteristic zero are categorical in all uncountable cardinals.

The machinery developed in the proof of Morley’s theorem has proven to be impor-
tant, both for pure model theory and for applications to other fields of mathematics (on
the former, see e.g. the first author’s book [32]; on the latter, see e.g. [8]). Specifically,
the proof of Morley’s theorem shows that there is a notion of independence general-
izing algebraic independence (as well as linear independence) for the models of the
theory in question. This was later precisely generalized and studied by the first author,
who called this notion forking. Forking has now become a central concept of model
theory.

It is natural to look for extensions of Morley’s theorem, the real goal being to look
for generalizations of forking to other setups. The first author has established [26] that for
any (not necessarily countable) first-order theory T , if T is categorical in some � > jT j,
then T is categorical in all �0 > jT j. One possible next step would be to prove versions
of Morley’s theorem for infinitary logics, like L!1;! (countably many conjunctions are
allowed within a single formula). Indeed, already in the late seventies the first author
conjectured the following (see [27, Conjecture 2]).

Conjecture 1.1 (Categoricity conjecture for L!1;! , strong version). Let  be an L!1;!-
sentence. If  is categorical in some � � Æ!1 , then  is categorical in all �0 � Æ!1 .

Forty years down the road, and despite a lot of partial approximations (see the history
given in the introduction of [55]), Conjecture 1.1 is still open. The main difficulty is that
the compactness theorem fails, hence one has to work much more locally. The interest
is that one can derive a weak version of compactness from the categoricity assump-
tion itself, often combined with large cardinals or combinatorial set-theoretic assump-
tions. Thus any proof is likely to exhibit a rich interplay between set theory and model
theory.

The threshold Æ!1 appears in Conjecture 1.1 because it is provably best possible (for
lower thresholds, there is a standard counterexample due to Morley, and written down
explicitly with full details in [23, Example 4.1]). Nevertheless, the spirit of the conjecture
is captured by the following eventual version:

Conjecture 1.2 (Categoricity conjecture for L!1;! , eventual version). There is a thresh-
old cardinal � such that if  is an L!1;!-sentence categorical in some � � � , then  is
categorical in all �0 � � .
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1.2. Eventual categoricity from large cardinals

Conjecture 1.2 is also still open. In the present paper, we prove it assuming that a large
cardinal axiom holds. More precisely and generally, we prove the following.

Corollary 14.7. Let � be a strongly compact cardinal and let  be an L�;!-sentence. If
 is categorical in some � � Æ.2�/C , then  is categorical in all �0 � Æ.2�/C .

This solves Question 6.14 (1) in the first author’s list of open problems [35] and
improves on a result of Makkai and the first author [43] who proved the statement of
Corollary 14.7 under the additional assumption that the initial categoricity cardinal � is a
successor cardinal. We see this as quite a strong assumption, since it allows one to work
directly with models of a single cardinality �0 (where � D �C0 ). The gap between [43]
and Corollary 14.7 is further reflected by the several additional levels of sophistication
that we use to prove the latter. For example, we work in the framework of abstract ele-
mentary classes (AECs). This was introduced by the first author [31] as a general semantic
framework encompassing in particular classes axiomatized by “reasonable” logics. The
following version of Conjecture 1.2 has been stated in [36, Conjecture N.4.2].

Conjecture 1.3 (Eventual categoricity conjecture for AECs). An AEC categorical in
some high enough cardinal is categorical in all high enough cardinals.

In this paper, we more generally prove Conjecture 1.3 assuming a large cardinal axiom
(a proper class of strongly compact cardinals). Again, Conjecture 1.3 was known in the
special case where the starting categoricity cardinal is a successor and there is a proper
class of strongly compact cardinals (a result of Boney [3]). The second author had also
proven it for AECs closed under intersections [55, Theorem 1.7].

1.3. Multidimensional diagrams

The proof of Corollary 14.7 only tangentially uses large cardinals. We have already men-
tioned that one key step in the proof is the move to AECs: this is done because of
generality, but also because the framework has a lot of closedness, allowing us for ex-
ample to take subclasses of saturated models and still remain inside an AEC. The other
key step is the use of multidimensional diagrams in independent amalgamation. Essen-
tially, the idea is to generalize [27, 28] (which discussed L!1;! only) to AECs. This was
started in the first author’s two volume book [36,37], where the central concept of a good
�-frame was introduced. Roughly, an AEC K has a good �-frame if it has several basic
structural properties in � (amalgamation, no maximal models, and stability), and also has
a superstable-like notion of forking defined for models of cardinality �. The idea here is
that everything is assumed only for models of cardinality �. The program, roughly, is to
develop the theory of good frames so that one can start with a good �-frame, extend it to
a good �C-frame, and keep going until the structure of the whole class is understood.

In order to carry out this program in practice, one has to prove that the good �-frame
has more structural properties. Specifically, one first proves (under some conditions) that
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a notion of nonforking amalgamation can be defined (initially, the definition of a good
frame only requires a notion of nonforking for types of single elements, but here we get
one for types of models). Thus one has at least a two-dimensional notion of nonforking (it
applies to squares of models). From this, one seeks to define a three-dimensional notion
(for cubes of models), and then inductively an n-dimensional notion. It turns out that
once one has a good n-dimensional notion for all n < ! (still for models of cardinality),
then one can lift this to the whole class above �. In [27, 28], an L!1;!-sentence with all
the good n-dimensional properties was called excellent, so we naturally call an AEC with
those properties an excellent AEC. It turns out that this is truly a generalization of [27,28],
and in fact another consequence of the methods of this paper is Theorem 14.14, which
generalizes [27, 28] to any PC@0 -AEC. A particular case is that of L!1;!.Q/ classes; see
[36, Conclusion II.3.5]. In particular see [40, Conclusion 3.5] and see there reading plan 3
at the end of Section 0 how this gives results. In particular, [27,28] does indeed generalize
to L!1;!.Q/, in particular if  2 L!1;!.Q/ is categorical in @nC1 and 2@n < 2@nC1 for
n < ! then  is categorical in every � > @0. It has been a longstanding open question
whether such a generalization is possible.

The use of multidimensional diagrams has had several more applications. For ex-
ample, the main gap theorem of the first author [29] is a theorem about countable first-
order theory but was proven using multidimensional diagrams. Thus we believe that the
systematic study of multidimensional diagrams undertaken in this paper is really its key
contribution (in fact, a main gap theorem for certain AECs now also seems within reach –
the axioms of [12] hold inside KLS.K/C-sat if K is an excellent class, see Section 13 – but
we leave further explorations to future work). Let us note that multidimensional diagrams
for AECs were already studied in [36, Section III.12], but we do not rely on this here.

1.4. Eventual categoricity in AECs with amalgamation

We mention another application of multidimensional diagrams, which is really why this
paper was started. In [36, Theorem IV.7.12], it was asserted that the eventual categoricity
conjecture holds for AECs with amalgamation, assuming a weak version of the general-
ized continuum hypothesis (GCH). However, the proof relied on a claim of [36, Section
III.12] that was not proven there, but promised to appear in [38]. See also [53, Section 11]
for an exposition of the proof, modulo the claim.

We prove this missing claim1 in the present paper (Corollary 14.4). As a consequence,
we obtain the consistency of the eventual categoricity conjecture in AECs with amalga-
mation.

1A very careful expert may note that the statement of Corollary 14.4 is not exactly the same as
that of [53, Claim 11.2]. Terminology aside, the two statements are very close and the result of the
present paper is (arguably) stronger and more explicit. None of this really matters since we do not
rely in any way on how the missing claim was previously formulated.
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Corollary 14.10. Assume 2� < 2�
C

for all cardinals � . Let K be an AEC with amal-
gamation. If K is categorical in some � � Æ

.2
@

LS.K/C /C
, then K is categorical in all

�0 � Æ
.2
@

LS.K/C /C
.

Note that a similar-looking result starting with categoricity in a successor cardinal
was established (in ZFC) in [34]. There, however, only a downward transfer was obtained
(i.e. nothing was said about categoricity above the starting categoricity cardinal �). More-
over, the threshold cardinal was bigger. After the present paper was written, the second
author [58] established that the threshold cardinal in Corollary 14.10 can be lowered fur-
ther,2 all the way to Æ.2LS.K//C .

Note also that it is known (see for example [43, Proposition 1.13] or [3, Propo-
sition 7.3]) that AECs categorical above a strongly compact cardinal have (eventual)
amalgamation; an early work is [39]. Thus Corollary 14.10 can be seen as a general-
ization of Corollary 14.7. However, the two results are formally incompatible since there
are no cardinal arithmetic assumptions in the hypotheses of Corollary 14.7. By a result
of Kolman and the first author [42], some amount of amalgamation already follows from
categoricity above a measurable cardinal. In fact, this amount of amalgamation is enough
to carry out the proof of Corollary 14.10; see Theorem 14.9. Thus the present paper also
establishes that Conjecture 1.3 is consistent with a proper class of measurable cardinals.3

More precisely, we prove the following.

Corollary 14.11. Assume 2� < 2�
C

for all cardinals � . Let K be an AEC and let � >
LS.K/ be a measurable cardinal. If K is categorical in some � � Æ

.2
@
�C /C

, then K is
categorical in all �0 � Æ

.2
@
�C /C

.

See more in [21] and [38] and see Remark 14.12.

1.5. Other approaches to eventual categoricity

The eventual categoricity conjecture is known to hold under several additional assump-
tions (in addition to those already mentioned). Grossberg and VanDieren [14, 16] estab-
lished an upward categoricity transfer from categoricity in a successor in AECs (with
amalgamation) that they called tame. Roughly, orbital types in such AECs are determined
by their restrictions to small sets. This is a very desirable property which is known to
follow from large cardinals [3].

Recently, the second author [55, 56] established the eventual categoricity conjecture
for universal classes: classes of models axiomatized by a universal L1;!-sentence (or

2The reasons for the appearance of the strange cardinal Æ
.2
@

LS.K/C /C
are perhaps best

explained by the proof itself. The short version is that @LS.K/C is the minimal limit cardinal with
cofinality greater than LS.K/.

3In fact, the machinery of this paper was designed to use a measurable rather than a strongly
compact in Corollary 14.7. However, some technical points remain on how exactly to do this, so for
simplicity we focus on the strongly compact case and leave the measurable case to future work.
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alternatively, classes of models closed under isomorphism, substructure, and unions of
chains). The proof is in ZFC and the lower bound on the starting categoricity cardinal is
low (not a large cardinal). Further, the starting categoricity cardinal itself does not need
to be a successor. To prove this result, the second author established eventual categoricity
more generally in AECs that have amalgamation, are tame, and in addition have primes
over models of the form Ma [57].

Now, it is folklore that any excellent AEC (for the purpose of this discussion, an AEC
satisfying strong multidimensional amalgamation properties) should have amalgamation,
be tame, and have primes. Thus the main contribution of the present paper is to establish
excellence for the setups mentioned above (large cardinals or amalgamation with weak
GCH). Then one can essentially just cite the categoricity transfer of the second author.

Note however that even with additional locality assumptions, the known categoricity
transfers for AECs are proven using local approaches (mainly good frames or a close
variant4), and transferring the local structure upward using the tameness assumptions. The
present paper takes the local approach further by using it to prove tameness conditions,
through excellence. Of course, in the present paper we pay a price: cardinal arithmetic or
large cardinal assumptions. It remains open whether paying such a price is necessary, or
whether excellence (and therefore eventual categoricity) can be proven in ZFC.

1.6. How to prove excellence

While the present paper is admittedly complex, relying on several technical frameworks to
bootstrap itself, we can readily describe the main idea of the proof of excellence. A start-
ing point is a result of the first author [36, Theorem I.3.8]: assuming 2� < 2�

C

(the weak
diamond, see [10]), an AEC categorical in � and �C must have amalgamation in �. This
can be rephrased as follows: the 1-dimensional amalgamation property in � holds pro-
vided that a strong version of the 0-dimensional amalgamation property holds in �C (we
think of the 0-dimensional amalgamation property as joint embedding).

A key insight (a variant of which already appears in [36, Lemma III.12.30]) is that
this argument can be repeated by looking at diagrams (or systems) of models rather
than single models (we do not quite get an AEC, but enough of the properties hold).
We find, roughly, that .n C 1/-dimensional amalgamation in � follows from a strong
version of n-dimensional amalgamation in �C. Since we are talking about nonforking
amalgamation, we call these properties “uniqueness” properties rather than “amalgama-
tion” properties, but the idea remains. Parametrizing (and forgetting about the “strong”
part), we see that .�C; n/-uniqueness implies .�; nC 1/-uniqueness. The precise state-
ment is in Lemma 11.16. Note that the converse (the .�; nC 1/)-properties implying the
.�C; n/-properties) is well known and standard.

Now, it is already known how to obtain .�;1/, and even .�;2/-uniqueness. In fact, it is
known (under reasonable assumptions) how to obtain a � such that .�Cn; 2/-uniqueness

4See [53] on how the Grossberg–VanDieren result can be proven using good frames.
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holds for all n < ! (such a setup is called an !-successful frame). Assuming 2�
Cm

<

2�
C.mC1/

for all m < !, we deduce from the earlier discussion used for each �Cm that
.�Cm; 3/-uniqueness holds for allm< !. Continuing, we get .�Cm; n/-uniqueness for all
n;m < !.

The implementation of this sketch is complicated by the fact that there are other prop-
erties to consider, including extension properties. Further, we have to ensure a strong
uniqueness property (akin to categoricity) in the successor cardinal, so the induction is
much more complicated.

Forgetting this for the moment, let us explain how, assuming large cardinals, one
can remove the cardinal arithmetic assumption. For this we assume more generally that
we have an increasing sequence h�m W n < !i of cardinals such that for all m < !,
2<�mC1 D 2�m < �mC1 (in other words, �mC1 is least such that 2�m < 2�mC1 ). Let
�! WD supm<! �m. Assume that .�; 2/-uniqueness holds for all � 2 Œ�0; �!/. In the pre-
vious setup, we had �mC1 D �Cm. Now, as in [45, Theorem 1.2.4], we can generalize the
first author’s aforementioned result on getting amalgamation from two successive cardi-
nals in which it is categorical to: whenever � < �0 and 2� D 2<�

0

< 2�
0

, categoricity in �0

implies there exists an amalgamation base in Œ�; �0/. Essentially, in some � 2 Œ�; �0/,
we will have amalgamation. The n-dimensional version of this will essentially be that if
.�0; n/-uniqueness holds, then .�; nC 1/-uniqueness holds for some � 2 Œ�; �0/.

So far, we have not used large cardinals. However, we use them to “fill in the gaps”
and make sure that we have amalgamation in every cardinal below �. So let �0 <�. Fix a
triple .M0;M1;M2/ of size �0 to amalgamate. Since we have large cardinals, we can take
ultraproducts by a sufficiently complete ultrafilter to obtain an extension .M 00; M

0
1; M

0
2/

of this triple that has size �. Now using amalgamation in � we can amalgamate this new
triple, and hence get an amalgam of the original triple as well. The suitable n-dimensional
version of this argument can be carried out, and we similarly obtain .�; n/-uniqueness for
all � 2 Œ�0; �!/ and n < !.

1.7. Structure of the paper

We assume that the reader has a solid knowledge of AECs, including [1] (and preferably
at least parts of the first three chapters of [36]) but also the more recent literature. We have
tried to repeat the relevant background but still, to keep the paper to a manageable size,
we have to heavily quote and use existing arguments.

Schematically, for each n, Section n discusses a certain framework, call it frame-
work n. Framework n is more powerful than framework n � 1. Section n discusses how
to get into framework n, starting with some instances of framework n � 1. Then enough
properties of framework n are also proven so that one can develop the properties of frame-
work nC 1 in the next section. We have tried to minimize the cross-section dependencies:
the reader can often forget about previous framework and focus on the current one.

The abstraction seems unfortunately needed to make the intricate arguments work in
the end (i.e. we need to prove very general statements so that we can later move from
our AEC to e.g. an AEC of independent systems of saturated models, maybe with a fancy
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ordering). It may be easy to get lost in the maze of abstract definitions and lose track of
the big picture. The usual advice applies in this case: go back to the definition. Usually
the abstract parameters are introduced with a specialization in mind. Always keep these
in mind.

For the reader’s convenience, we add a list of frameworks that we use, each one with
an example:

(a) Abstract class (see Definition 3.1). Example: an elementary class restricted to the
rigid models in it.

(b) Skeleton (see Definition 3.8). The main example of a skeleton is that of limit/saturated
models. M �Kincomp N iff N is limit over M .

(c) � 2 L!1;!.Q/ (see Example 3.13).

(d) Fragmented AEC (see Definition 3.10 (4)). Example: the class of saturated models of
a (first order) superstable theory.

(e) Semifragmented AEC (see Definition 3.10 (7)). Note: increasing chain with union of
bigger cardinality may be omitted.

(f) Resolvable (see Definition 3.13). Note: it says we can represent M 2 K� by a chain
of smaller cardinality models.

(g) �-compact K (see Definition 4.1). Note: if � is a compact cardinal, K is closed under
ultrapowers and more; the situation is more similar to f.u.

(h) (Semi-)good frame (see Definition 6.1). Note: this is an AEC parallel to superstable,
not just for one cardinality.

(i) A two-dimensional independence relation ^ (see Definition 7.1) may be good/very
good (see Definition 7.6/Definition 11.2). Example: the class of models of a stable
first-order theory.

(j) A two-dimensional independence notion on K is good (see Definition 7.6). Note: here

we have nonforking of models, M1

M3

^
M0

M2.

(k) A multidimensional independence relation (see Definition 8.11). Note: here we have
the parallel of P -stable diagram for P � P .n/. It can be very good (see Defini-
tion 7.11) and even excellent (see Definition 13.1).

A key is that to study independent systems, it is easier to study the limit ones (i.e.
the ones that are “very saturated”). This is because they are canonical. Honestly, and
especially with claims having to do with multidimensional systems, sometimes it is better
if the reader tries to prove the claim before reading the proof. We feel that the main ideas
should be straightforward enough, even if the technical realization is involved. A dream of
the second author is that introducing category-theoretic language can simplify the proofs.

The paper is organized as follows. After some notational preliminaries, AECs and
more generally abstract classes are discussed (Section 3). Then a special framework that
will be used to deal with large cardinals, compact AECs, is introduced (Section 4). We do
some combinatorics, in particular the weak diamond argument alluded to earlier, in Sec-
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tion 5. The next framework, good frames, is discussed in Section 6. We then move on to
two-dimensional independence notions (Section 7), and multidimensional independence
notions (Section 8). Some properties of multidimensional independence notions are then
proven that are purely combinatorial, in the sense of only requiring finitely many steps
(no arguments involving unions of chains and resolutions); see Sections 9, 10. One then
moves on to looking at multidimensional independence notions with also requirements on
chains of systems (Section 11). After a section on primes (Section 12), we discuss excel-
lent AECs (Section 13) and conclude with the main theorems of this paper (Section 14).

Each section begins with a short overview of its organization and main results.

2. Preliminaries and semilattices

Our notation is standard, and essentially follows [36, 44]. While we may repeat some of
the conventions elsewhere in the paper, it does not hurt to emphasize them here: for a
structure M , we write jM j for its universe and kMk for its cardinality. We imitate this
convention for K (see Definition 3.1 and Notation 3.2): K will denote a pair .K;�K/,
where K is a class of structures and �K is a partial order on K. We will sometimes write
jKj forK, but may identify K andK when there is no danger of confusion. The following
set-theoretic function is sometimes useful:

Definition 2.1. h.�/ WD Æ.2�/C :

We write ŒA�� (respectively ŒA�<�) for the set of all subsets of A of cardinality �
(respectively strictly less than �).

Recall that a (meet) semilattice is a partial order .I;�/where any two elements have a
meet (i.e. a greatest lower bound). We will often identify I with .I;�/. We write s ^ t for
the meet of s; t 2 I . In this paper, I will almost always be finite, and in this case we write
? for ^I (when I is not empty), the least element of I . We will also use interval notation:
for u� v both in I , we write Œu;v� for the partial order with universe ¹w 2 I j u�w � vº,
and similarly for .u; v/, .u;1/, and other interval notations.

When I and J are semilattices, we write I � J to mean that I is a subsemilattice
of J . In particular, the meet operations in I and J agree on I . Notice that any initial
segment of a semilattice is a subsemilattice.

Given partial orders I and J , we write I � J for their ordered product: .i1; j1/ �
.i2; j2/ if and only if i1 � i2 and j1 � j2. When I and J are semilattices, I � J is a
semilattice: the meet is given by the meet of each coordinate.

For u a set, we write P .u/ for the semilattice .P .u/;�/, where the meet operation
is given by s ^ t D s \ t and ? D ;. We write P�.u/ for the semilattice on P .u/ n ¹uº

induced by P .u/. Very often, we will have u D n D ¹0; 1; : : : ; n � 1º. More generally,
the semilattices we will work with will usually be finite initial segments of P .!/.

Note that for any set u, P .u/ Š P .juj/, and P�.u/ Š P�.juj/. Moreover, P .n/ �

P .m/ Š P .nCm/ for n;m < !.
ı will denote a limit ordinal.
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3. Abstract classes and skeletons

The definition of an abstract class gives the minimal properties we would like any class
of structures discussed in this paper to satisfy. We also discuss the notion of a skeleton of
an abstract class: a subclass that captures many of the essential properties of the original
class but may be more manageable.

We study special kind of abstract classes. Fragmented AECs are the main new concept:
they are AECs, except that the chain axiom is weakened so that unions of chains that jump
cardinalities may not be in the class. The class of saturated models in a superstable first-
order theory is an example, and we will use them extensively to deal with such setups.

We finish this section with a review of some standard definitions and results on AECs.
Let us start with the definition of an abstract class (due to Rami Grossberg).

Definition 3.1. An abstract class is a pair KD .K;�K/ such thatK is a class of structures
in a fixed (here always finitary) vocabulary � D �.K/,�K is a partial order onK extending
the � -substructure, and K and �K are closed under isomorphisms.

We often do not distinguish between K and its underlying class, writing for example
“M 2 K”. When we need to be precise, we will use the following notation:

Notation 3.2. Let K D .K;�K/ be an abstract class.

(A) We write jKj for the underlying class K of K.

(B) Let K0 � K be a class of structures which is closed under isomorphisms. We let
K�K0 WD .K0;�K�K0/, where �K�K0 denotes the restriction of �K to K0.

We will also use the following standard notation:

Notation 3.3. Let K be an abstract class and let ‚ be a class of cardinals. We write K‚

for the abstract class K�¹M 2 K j kMk 2 ‚º. That is, it is the abstract class whose
underlying class is the class of models of K of size in ‚, ordered by the restriction of the
ordering of K. We write K� instead of K¹�º, K�� instead of KŒ0;��, etc.

We define amalgamation, orbital types and the set SK.M/ of orbital types (usually
omitting K), stability, etc. for abstract classes as in the preliminaries of [51] but we mostly
use the notation and terminology of [36]. In particular, we write tpK.

Nb=AIN/ 2S .A;N /

for the orbital type of Nb over A in N as computed inside KI this is really useful when we
have enough amalgamation. Usually, K will be clear from context, so we will omit it.

The following locality notion (also called tameness) will play an important role. It is
implicit already in [34], but is it considered to be a property of AECs per se by Grossberg
and VanDieren [15].

Definition 3.4. (1) Let K be an abstract class and let � be an infinite cardinal.

(2) p 2 S .M/ is called algebraic when p D tp.a=M IM/ for some a 2M .

(3) We say that K is .<�/-tame if for anyM 2 K and any p; q 2S.M/, if p�A D q�A
for any A 2 ŒM �<� , then p D q. We say that K is �-tame if it is .<�C/-tame.
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We will also use the following standard notions of saturation:

Definition 3.5. Let K be an abstract class and let M �K N both be in K.

(1) We say that N is universal over M if whenever N0 is such that M �K N0 and
kN0k D kMk, there exists f W N0 �!

M
N .

(2) We say that N is .�; ı/-limit over M if kMk D kN k and there exists an increasing
continuous chain hMi W i � ıi in K� such that M0 D M , Mı D N , and MiC1 is
universal over Mi for all i < ı.

(3) We say that N is limit over M if it is .�; ı/-limit over M for some � and ı.

(4) We say that N is limit over A (for A � jN j a set5) if there exists M 0 2 K such that
M 0 �K N , A� jM 0j, andN is limit overM 0. Note that it follows from the definition
that kM 0k D kN k and that the ı witnessing the length of the chain is always (a limit
ordinal and) strictly less than �C. On the other hand, A could be very small relative
to N (nevertheless, in this paper it will most often be the union of a system of models
of the same cardinality as N ).

(5) We say that N is limit if it is limit over some M 0.

(6) We say that M is �-model-homogeneous if whenever M0 �K N0 are both in K with
M0 �K M and kN0k < �, there exists f W N0 ��!

M0
M . We say that M is model-

homogeneous if it is kMk-model-homogeneous.

(7) We say thatM is �-saturated if for anyM0 �K M withM0 2 K<�, any p 2S.M0/

is realized inside M . We say that M is saturated if it is kMk-saturated.

We give the definition of a few more useful general concepts:

Definition 3.6. The domain dom.K/ of an abstract class K is the class of cardinals � such
that K� ¤ ;.

Definition 3.7. A sub-abstract class of an abstract class KD .K;�K/ is an abstract class
K� D .K�;�K�/ such that K� � K and for M;N 2 K�, M �K� N implies M �K N .

The definition of a skeleton is due to the second author [49, Definition 5.3]. We have
further weakened the requirement on chains appearing there (although the real spirit of
the definition remains!). This is useful in order to study skeletons in a purely finitary way
(i.e. without worrying about existence of colimits/unions of chains).

Definition 3.8. A skeleton of an abstract class K is a sub-abstract class K� of K such that

(A) for any M 2 K, there exists N 2 K� with M �K N ,

(B) for any M;N 2 K� with M �K N , there exists N 0 2 K� such that M �K� N
0 and

N �K� N
0.

5Pedantically, if A D jM j, M �K N , then Definition 3.5 (3) and Definition 3.5 (4) are not
equivalent, but our notion and context tell us what we mean.



S. Shelah, S. Vasey 2312

Examples of skeletons will be given later (see Fact 3.24). A simple example the reader
can keep in mind is the class of @0-saturated models of a first-order theory, ordered either
by elementary substructure or by being “universal over”.

The following apparent strengthening of the definition of a skeleton will be useful.

Lemma 3.9. Let K� be a skeleton of K. Let M 2 K, n < !, and let hMi W i < ni be a
.not necessarily increasing/ sequence of elements of K� such thatMi �K M for all i < n.
Then there exists N 2 K� such that M �K N and Mi �K� N for all i < n.

Proof. We work by induction on n. If n D 0, use (3.8) in the definition of a skeleton to
find N 2 K� with M �K N . Assume now that n D mC 1. By the induction hypothesis,
let N0 2 K� be such that M �K N0 and Mi �K� N0 for all i < m. Now apply Defini-
tion 3.8 (B) with Mm; N0 standing for M;N there. We get N 2 K� such that Nm �K� N

and N0 �K� N . By transitivity of �K� , we have Mi �K� N for all i < m, so N is as
desired.

We now give the definition of several properties that an abstract class may have. In
particular, it could be a fragmented AEC, or even just an AEC.

Definition 3.10. Let K be an abstract class.

(1) Let LS.K/ be the least cardinal � � j�.K/j C @0 such that for any M 2 K and any
A � jM j, there is M0 2 K with M0 �K M , A � jM0j, and kM0k � jAj C �. When
such a � does not exist, we write LS.K/ D1.

(2) Let Œ�1; �2/ be an interval of cardinals and let ı be a limit ordinal. We say that K is
.Œ�1; �2/; ı/-continuous if whenever hMi W i < ıi is an increasing chain in KŒ�1;�2/,
then Mı WD

S
i<ıMi is in K and M0 �K Mı . We say that K is Œ�1; �2/-continuous

if it is .Œ�1; �2/; ı/-continuous for all limit ordinals ı (note that possibly Mı 2 K�2 ).
We say that K is continuous if it is dom.K/-continuous, defined similarly.6 Note we
do not require that the union is the least upper bound: this is called smoothness later.

(3) We say that K is coherent if for all M0; M1; M2 2 K, if jM0j � jM1j � jM2j,
M0 �K M2, and M1 �K M2, then M0 �K M1 (this is Axiom IV of AEC).

(4) K is a fragmented abstract elementary class (AEC) if it satisfies::

(a) (Coherence) K is coherent.

(b) (Löwenheim–Skolem–Tarski axiom) LS.K/ <1.

(c) (Restricted chain axioms) Let hMi W i < ıi be an increasing chain in K. Let
Mı WD

S
i<ıMi .

(i) If kMik D kMık for some i < ı, then

(A) Mı 2 K,

(B) M0 �K Mı .

6Pedantically, dom.K/ may not be an interval.
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(ii) (Smoothness) If N 2 K is such that Mi �K N for all i < ı, then Mı 2 K

and Mı �K N .

(5) (a) K is an abstract elementary class (AEC) if it is a continuous fragmented AEC.

(b) Let AAEC (almost AEC) be defined similarly omitting the demand that LS.K/
exists.

(c) We say the abstract K has �-amalgamation if whenever M0 �K M` for ` D 1; 2
are from K� then there are N; f1; f2 such that M0 �K N 2 K� and f` is a
�K-embedding of M` into N over M0 for ` D 1; 2:

(d) We say K has local amalgamation if it has �-amalgamation for every �.

(e) We say K has amalgamation if whenever M0 �K M` for ` D 1; 2 are from K�,
then there are N; f1; f2 such that M0 �K N 2 K` and f` is a �K-embedding of
M` into N over M0 for ` D 1; 2.

(6) We also define the notion of a Œvery� weak Œ fragmented � AEC, where “weak” means
that in addition the smoothness axiom may not hold and “very weak” means that the
coherence axiom may not hold either.

(7) We say s is a semifragmented AEC if in part (4) we replace clause (c)(ii) by:

(ii)0 (Weak smoothness) If N 2 K is such that Mi �K N for all i < ı and Mı 2 K,
then Mı �K N (used in Example 3.11).

Compared to AECs, fragmented AECs are not required to be closed under unions of
“long” chains, i.e. those whose union is of bigger cardinality than the pieces. In some
sense, they have to be studied “cardinal by cardinal”, at least more so than AECs, and this
is why they are called “fragmented”.

The following are examples of fragmented AECs. The generalization of the first one
to AECs will play an important role in the present paper. The second will not be studied
here, but we give it as an additional motivation.

Example 3.11. Let T be a superstable first-order theory and let K be its class of sat-
urated models, ordered by elementary substructure. Then K is a semifragmented AEC
with LS.K/ � 2jT j. It is not an AEC because (for T countable say) the union of an @2-
chain of saturated models of cardinality @1 does not have to be saturated (it will only be
@1-saturated).

Example 3.12. Let � be a complete L!1;!.Q/-sentence (Q is the quantifier “there
exist uncountably many”) and let ˆ be a countable fragment of L!1;!.Q/ contain-
ing �. Assume that for every  . Nx/ 2 ˆ, there exists a predicate R . Nx/ such that
� ˆ 8x . .x/$ R .x//. Let K be the class of models M of L!;! consequences of �
which is also a model  if M uncountable and if  . Nx/ D

W
n<!  n. Nx/ belongs to ˆ,

then M omit the type ¹:R . Nx/ \ R n j n < !º. Order it by M �K N if and only if
M � N and for any  .x; Ny/ 2 ˆ, if M ˆ R:Qx .x; Ny/Œ Na�, then  .M; Na/ D  .N; Na/.
Then K is a fragmented AEC with LS.K/D @0. It is not an AEC because an @1-unionM
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of countable models in K may fail to be in K, because maybe  . Ny/ � Qx '.x; Ny/ 2 ˆ
and M ˆ  Œ Nb� but '.M; Nb/ is countable.

In any AEC, models of big cardinality can be resolved as an increasing union of
smaller models. We make this into a definition:

Definition 3.13. Let K be an abstract class and let M0;M 2 K with M0 <K M .

(1) We say that M is ı-resolvable over M0 if there exists a strictly increasing continu-
ous chain hNi W i � ıi such that

(A) N0 DM0, Nı DM ,

(B) kNik D kM0k C ji j < kMk for all i < ı (so necessarily ı D kMk, hence
cf.ı/ D cf.kMk/).

(1A) We say that M is resolvable over M0 if it is ı-resolvable over M0 for some limit
ordinal ı.

(2) We say that M is resolvable if it is resolvable over M0 for every M0 2 K with
M0 �K M and kM0k < kMk.

(3) We say that K is resolvable if any M 2 K is resolvable.

(4) K is <�-resolvable if every M 2 K� is �-resolvable whenever LS.K/ < � < �.

Remark 3.14. (1) Why do we have “semifragmented AEC” in Definition 3.10 (7); why
not using only “fragmented AEC”? Because then Example 3.11 fails K is not a fragmented
AEC as clause (c)(ii) of Definition 3.10 (4) in general fails.

(2) We can change Definition 3.13 (1) replacing clause (B) by

(B)0 kNik D kM0k C ji j for all i � ı.

Is it interesting? The difference is that we may allow kM0k D kMk; anyhow we can then
use any limit ı < kMkC.

(3) Many times we can use “semifragmented AEC” if we add “Ks is resolvable”,
and sometimes just if p 2 Ss.M/ then p does not fork over N for some N �K M of
cardinality LS.K/.

(4) Clearly a fragmented AEC K is �-resolvable for every � > LS.K/. So we may
wonder, for a semifragmented K, is every M 2 K resolvable? Let us try to prove “every
M 2 K is reasonable” assuming � < LS.K/) K� D ;. So assume M0 �K M and
kM0k< kMk. Fix��LS.K/. We try to prove by induction on �>� thatM is resolvable
when kMk D �; M0 �K M and kM0k � �. We have partial success: we are stuck when
� is (probably weakly) inaccessible. But then we give a counterexample.

Case 1: � D �C: Then by induction hypothesis, without loss of generality kM0k D �:

Let ¹a˛ j ˛ < �º list jM j with jM0j D ¹a˛ j ˛ < �º. By induction on ˛ 2 Œ�; �/
choose N˛ 2 K� such that hNˇ W ˇ � ˛i is �K-increasing continuous, N0 D M0 and
¹aˇ j ˇ < ˛º � N˛ . For ˛ D �, let N˛ D M0, for ˛ D ˇ C 1 use A D jNˇ j [ ¹aˇ º
recalling j˛j D �C j˛j � LS.K/ and ˛ < kMk. So by “LS.K/ � �” there isN �K M of
cardinality j�j which includes jNˇ j [ ¹aˇ º. As K is coherent (see Definition 3.10 (3)) and
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Nˇ �K M; jNˇ j � jN˛j we have Nˇ �K N˛ and similarly (or by transitivity) i < ˛)
Ni �K N˛ . Lastly for limit ˛, let N˛ D

S
¹Nˇ j ˇ < ˛º so as K satisfies clause (c)(ii)

of Definition 3.10, we have N0 �K N˛ 2 K� and similarly i < ˛) Ni �K N˛ . Finally,
N˛ �K M by Definition 3.10 (7)(ii)0.

Clearly we are done for this case.

Case 2: � is singular. Let �D cf.�/ < �. Let�D h�i W i < �i be an increasing continuous
sequence of cardinality � with limit � such that �0 D �. Let hAi W i < �i be an �-
increasing continuous sequence of subsets of M with union jM j such that jAi j D �i .

We choose hNn;i ; fn;i W i < �i by induction on n such that

(a) Nn;i �K M has cardinality �i ;

(b) fn;i is a 1-to-1 function from �i onto Nn;i ;

(c) Nn;i includes An;i D
S
¹f 00m;j .Mi \ �j / j m < n; j < �º [ Ai :

Why can we carry out the induction? Assuming we arrive at i; An;i is a subset of M
of cardinality �i , hence (as LS.K/ � �0 � �i ) there is Nn;i as required in (a), (c). Then
choose fn;i as in (b).

Next, let
Ni D

[
¹Nn;i j n < !º:

Now, hNn;i W n < !i is �-increasing and Nn;i �K M by (a) and K being coherent,
hence this sequence is �K-increasing. As kNn;ik D �i , we have Nn;i �K Ni 2 K for
n < !I hence by Definition 3.10 (7)(c)(ii0) also Ni �K M .

Also if i < j , then Nn;i � Nn;j , hence Ni D
S
n2! Nn;i �

S
n2! Nn;j � Nj , so as

Ni �K M , we have Nj �K N . By coherence, Ni �K Nj . As Ai � Ni , clearly
S
¹jNi j j

i < �º D jM j, so altogether M D
S
i<� Ni . Lastly, let j < � be a limit ordinal. We

should prove that
S
i<j Ni D Nj . Clearly,

S
i<j Ni � Nj . For the other inclusion, Nj DS

¹Nn;j j n < !º D
S
¹fn;j .�j / j n < !º D

S
¹fn;i .�i / j n < !; i < j º �

S
¹NnC1;i j

n < !; i < j º �
S
¹Ni j i < j º:

Case 3: � > � is a limit regular cardinal. Here it is not clear what to do, so we shall try
to build a counterexample.

Let S be a set or class of cardinals. We define K D KS as follows:

.�/1 (a) K is the class of linear orders not isomorphic to .�;</ for any � 2 S;

(b) M �K N iff M � N .

It is easy to verify (noting that if M 2 K and kMk D � then M © .�; </) that no
linear order N �M is isomorphic to .�;</ because either M is not well ordered or it is
isomorphic to .˛;</ for some ˛ 2 Œ�C 1; �C/. Hence it is easy to prove that

.�/2 K is a fragmented AEC with LS.K/ D @0.

However,
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.�/3 if � is a uncountable regular limit cardinal and � … S; � \ S is stationary, then
M D .�;</ 2 K is not resolvable.

(5) Another example: For a cardinal � we define K D KŒ�� by

(a) M 2 K iff M is a linear order, well ordered of order type in Œ�; �C�;

(b) M1 �K M2 iff M1 is an initial segment of M2.

It is known that any class of structures is contained in a smallest AEC. Indeed, by
[36, Fact I.2.19], the following holds.

Fact 3.15. Let ¹Ki j i 2 I º be a nonempty collection of AECs, all in the same vocab-
ulary � . Then

T
i2I Ki .defined as .

T
i2I jKi j;

T
i2I �Ki // is an AEC with LS.K/ �

sup ¹LS.Ki / j i 2 I º C jI j:

Fact 3.16. (1) For any abstract class K, there exists a unique smallest AAEC K� such
that K is a sub-abstract class of K� .not necessarily an AEC!/.

(2) If � D LS.K/ then K� is an AEC and LS.K�/ � �.

(3) If K is a set then K� is an AEC when LS.K�/ �
P
.dom.K//.

Proof. (1) Take the intersection of the collection of all AECs that include K as a
sub-abstract class. Note that this collection is nonempty: it contains the AEC of all
�.K/-structures, ordered by substructure. Pedantically, this is not O.K. as we quantify
on classes. Since earlier we were not accurate and to help part (2), we give full details.

First we fix �, then we define .K��;˛;�
�
�;˛/ by induction on ˛ � .2<�/C such that

(a) .K��;˛;�
�
�;˛/ is an abstract class, except that the transitivity of the order is omitted,

(b) K�;˛ is a set of �.K/-models from H .�/;

(c) ��;˛ is a two-place relation on K�;˛;

(d) if ˇ < ˛, then K�;ˇ � K�;˛ and ��;ˇ ���;˛;

(e) if M ��;˛ N , then M � N:

The induction is:

Case 1: ˛ D 0: We set
.K�;˛;��;˛/ D K�H .�/:

Case 2: ˛ a limit ordinal. We set

K�;˛ D
[
¹K�;ˇ j ˇ < ˛º and ��;˛ D

[
¹��;ˇ j ˇ < ˛º:

Case 3: ˛ D 3ˇ C 1: We set K�;˛ D ¹M 2H .�/ j for some directed partial order and
sequence hMs W s 2 I i of members of K�;3ˇ such that s �I t )Ms ��;3ˇ Mt , we have
M D

S
s2I Msº. Also, ��;˛ D ¹.M1; M2/ 2 H .�/ j for some directed partial orders

I1 � I2 and sequences xM ` D hM `
s W s 2 I2i of members of K�;3ˇ such that s �I1 t )

M `
s ��;3ˇ M

`
t , we have M` D

S
s2I`

Ms for ` D 1; 2º:
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Case 4: ˛ D 3ˇ C 2: We set K�;3ˇC2 D K�;3ˇC1 and ��;3ˇC2 D �3ˇC1 [
¹.M1;M2/ 2H .�/ jM1 �M2 are from K�;3ˇC1 and for some N 2 K�;3ˇC2, we have
M1 ��;3ˇC1 N and M2 ��;3ˇC1 N º:

Case 5: ˛ D 3ˇC 3: We setK�;3ˇC3 DK�;3ˇC2 and��;3ˇC2 D�3ˇC1 [ ¹.M1;M2/ j

M1 � M2 are from K�;3ˇC1 and for some N 2 K�;3ˇC2, we have M1 ��;3ˇC2

N ��;3ˇC2 M2º:

Having carried out the induction on �, let

� K� D .K�;˛;��;˛/ for ˛ D .2<�/C; clearly K� is almost an AAEC, the only missing
point is the case of unions which are not in K�.

However,

� if � < � , then K� � K� .

So it is easily seen that K� D
S
¹K� j � is a cardinalº is as required.

(2) For each � > LS.K/ we can prove by induction on the ordinal ˛ that K�;˛ satisfies
LS.K�;˛/. The only nontrivial case is ˛ D 3ˇ C 1, so assume M 2 K3ˇC1 n K3ˇ and
let hMs W s 2 I i be as in Case 3, let LS.K/ � � � kMk and A � M be of cardinality
� �I without loss of generality kAk D �. We can find J0 � I of cardinality � � such
that A �

S
¹Ms j s 2 J0º, also we can find J1 � I of cardinality jJ0j C @0 � � such

that J1 � J and J1 is directed. Let J � J1 be cofinal in J1 and well founded. Next let
hs" W " < "�i list J such that s" <I s� ) " < �. Now choose Ns" by induction on " < "�
such that

(a) Ns" �K Ms" ;

(b) Ns" has cardinality � �;

(c) Ns" includes
S
¹Ns" [ .A \Ms"/ j � < " and s� <I s"º:

After carrying out the easy induction, hNs" W" < "�i, i.e., hNs W s 2 J i, is�K-increasing
in .K�;3ˇ /� so by definition the set N D

S
¹Ns" j " < "�º belongs to K�;˛ . But why

N �K�;˛ M‹ Use the definition of �K�;˛ with J; I standing for I1; I2 there.
(3) Follows by (2).

Definition 3.17. (1) Let K be an abstract class. We call the AAEC K� given by Fact 3.16
the AAEC generated by K.

(2) If K� is an AEC then we may say K� is the AEC generated by K:

AECs are uniquely determined by their restrictions of size �:

Fact 3.18 ([36, Lemma II.1.23]). Let K1 and K2 be AECs with � WD LS.K1/ D LS.K2/.
If K1

��
D K2

��
, then K1 D K2.

We now look into how much of this uniqueness is carried over in fragmented AECs.
We will specifically look at totally categorical fragmented AECs (this is not such a strong
assumption, since classes of saturated models are examples).
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First, only part of the fragmented AEC suffices in order to specify the AEC it gener-
ates.

Lemma 3.19. Let K be a fragmented AEC with K<LS.K/ D ;. Then the AEC generated
by K is the same as the AEC generated by KLS.K/.

Proof. Let � WD LS.K/. Let K1 be the AEC generated by K and let K2 be the AEC
generated by K��. Since LS.K/ D �, by Fact 3.16 clearly LS.K1/ D �. Of course, we
also have LS.K2/ D �. Moreover, K1

�
D K2

�
. By Fact 3.18 and Lemma 3.19, K1 D K2.

Alternatively see the proof of Fact 3.16.

Toward studying categoricity in fragmented AECs, we look at homogeneous models.
As in [36, Conclusion I.2.5], we have the following.

Fact 3.20. Let K be a fragmented AEC and letM0 �K M`, `D 1; 2. If kM1k D kM2k>

LS.K/ and both M1 and M2 are model-homogeneous, then M1 ŠM0 M2.

Theorem 3.21. (1) Let K be a fragmented AEC with amalgamation and K<LS.K/ D ;.
Assume that for every � 2 dom.K/, K is categorical in � and stable in �. Then any
M 2 K>LS.K/ is model-homogeneous.

(2) This also holds for semifragmented K:

Proof. Let � 2 dom.K/ \ .LS.K/;1/ and let M 2 K�. Pick M0 �K N0 in K<� with
M0 �K M .

(1) By categoricity and stability in �, M is .�; �/-limit. If � is regular, this means
that we can find M 0 2 K� such that M0 �K M 0 and M is universal over M 0. Now by
amalgamation, there exist N 0 2 K� and f WN0 ��!

M0
N 0 such that M 0 �K N 0. Now by

the universality of M over M0, let gWN 0 ��!
M0

M . Then gf embeds N0 into M over M0.

If � is singular, let � WD kN0k. Pick M 0 �K M with M 0 2 K�C and M 0 contain-
ing M0. By the previous case, N0 embeds into M 0 (and hence into M ) over M0, as
desired.

(2) Also for semifragmented AEC, let�DkN0kCLS.K/. So clearly kM0kCLS.K/
� � < �, hence there is M1 2 K� such that M0 �K M1 �K M . As clearly kM1k D

� < � D kMk, there is M2 2 K�C such that M1 �K M2 �K M and as K is cate-
gorical in �C; � and stable in �, necessarily M2 is universal over M1. So there is an
�K-embedding of N0 into M2 over M0, so we are done.

Theorem 3.22 (Canonicity of categorical fragmented AECs). Let K1 and K2 be frag-
mented AECs with ‚ WD dom.K1/ D dom.K2/ and LS.K1/ D LS.K2/. Suppose that
for ` D 1; 2, K` has amalgamation and is stable and categorical in every � 2 ‚. If
K1
�LS.K1/

D K2
�LS.K2/

, then K1 D K2.

Proof. Without loss of generality, K`
<LS.K`/

D ; for `D 1; 2. Let � > LS.K/ be such that

� 2‚ and assume inductively that we know K1
<�
DK2

<�
. We know that the modelM ` of

cardinality � in K` is model-homogeneous (Theorem 3.21) for ` D 1; 2. By categoricity
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and the inductive assumption, there existsM` 2 K` of cardinality strictly less than � with
M` �K M ` and f W M1 Š M2. Now use the proof of Fact 3.20 (the usual back and
forth argument) to conclude that M 1 Š M 2. This implies that jK1

�
j D jK2

�
j. To see that

K1
�
D K2

�
(that is, the orderings also coincide), observe that the AECs generated by K1

and K2 must be the same (Fact 3.18 and Lemma 3.19), hence the orderings must coincide
on all models there.

Definition 3.23. Let K be an abstract class.

(1) We write K�-sat for the abstract class K�¹M 2 K j M is �-saturatedº of �-saturated
models in K ordered by the restriction of the ordering of K.

(2) We write Ksat for the abstract class K�¹M 2 K jM is saturatedº.

(3) We write Klim for the abstract class with jKlimj D ¹M 2 K j M is limitº ordered by
M �Klim N if and only if M �K N and one of the following conditions holds:

(a) M D N .

(b) kMk < kN k.

(c) N is limit over M (so kMk D kN k).

It is known [54, Corollary 5.7] that an AEC with amalgamation categorical in a high
enough cardinal will satisfy a weak version of tameness, and unions of chains of �-
saturated models will be �-saturated there. This gives several examples of fragmented
AECs and skeletons. Note that these results have a long history (detailed for example
in [53]), with contributions of, among others, both the first and second author.

Fact 3.24 (Structure of categorical AECs with amalgamation). Let K be an AEC with
arbitrarily large models. Let � > LS.K/. Assume that K is categorical in � and K<� has
amalgamation and no maximal models.

(1) If � � h.LS.K//, then there exists � 2 .LS.K/; �/ such that Ksat
.�;�/

is �-tame.

(2) Let � � �. If cf.�/ � LS.K/C, then there exists � 2 .LS.K/; �/ such that Ksat
.�;�/

is
�-tame.

(3) For any � 2 .LS.K/;��, K�-sat is an AEC with Löwenheim–Skolem–Tarski number �.
In particular, Ksat

.LS.K/;�� is a fragmented AEC with Löwenheim–Skolem–Tarski num-
ber LS.K/C. Moreover, Ksat

.LS.K/;�� is categorical in every � 2 .LS.K/; �/ and it is a
skeleton of K.LS.K/;��.

(4) Let ‚ WD ŒLS.K/; �/. Then

� Klim
‚ is a fragmented very weak AEC which is ŒLS.K/; �/-continuous and categor-

ical in � for every � 2 ‚,

� Klim
‚ is a skeleton of K‚,

� jKlim
.LS.K/;�/j D jK

sat
.LS.K/;�/j and Klim

.LS.K/;�/ is a sub-abstract class of Ksat
.LS.K/;�/.
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Regarding categoricity transfers we will use the following two known results. The first
can be traced back to the presentation theorem of the first author. See [53, Fact 9.2] for a
full proof.

Fact 3.25 (The AEC omitting type theorem). Let K be an AEC with amalgamation and
let�> LS.K/. If every model in K� is LS.K/C-saturated, then there exists �<h.LS.K//
such that every model in K�� is LS.K/C-saturated.

The second result is due to the second author. It is a consequence of an omitting type
theorem of the first author (see [53] for history).

Fact 3.26 ([53, Theorem 9.8]). Let K be an LS.K/-tame AEC with amalgamation and
arbitrarily large models. If K is categorical in some � > LS.K/, then K is categorical in
a proper class of cardinals.

4. Compact abstract elementary classes

Compact AECs are an axiomatization of the AECs “essentially below �” introduced
by Boney [3, Definition 2.10]. They encompass classes of models of an L�;!-sentence,
� strongly compact, and more generally AECs closed under �-complete ultraproducts,
� a strongly compact cardinal below (yes, below!) the Löwenheim–Skolem–Tarski num-
ber. The reader who does not want to process yet another abstract definition can with little
loss think of:

.�/ K�� , where K is an AEC and � > LS.K/ is a strongly compact cardinal.7

Why is .�/ chosen? Restricting ourselves as in .�/ is natural as we consider only
models of cardinality � � and in many cases LS.K/� �. This disappears for �-compact.
An additional point is that elementary classes become a special case when we allow
� D @0:

Definition 4.1. Let K be an AEC and let � be a strongly compact cardinal (we allow
� D @0). We call K �-compact if

(A) � � LS.K/ and K<LS.K/ D ;,

(B) K is closed under �-complete ultraproducts; more precisely, if U is a �-complete
ultrafilter on some index set I and hMi W i 2 I i is a sequence in K, then

(a)
Q
i2I Mi=U is in K,

(b) if hNi W i 2 I i is another sequence in K and Mi �K Ni for all i 2 I , thenQ
i2I Mi=U �K

Q
i2I Ni=U ,

7With a little care, one could adapt the definitions to work also with almost strongly compact
cardinals, see [9]. Since there are no obvious benefits, we have not bothered.
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(c) if i 2 I ) Mi D M , then the canonical embedding of M into M I=U DQ
i2I Mi=U is a �K-embedding.

We call K compact if it is �-compact for some strongly compact cardinal �.

Immediately from the definition, we have the following.

Remark 4.2. Let K be a �-compact AEC.
(1) K has no maximal models (just take an ultrapower).
(2) For any cardinal �, K�� is a �-compact AEC.
(3) The conclusion of [3, Theorem 4.3] says: K is closed under ultraproducts in a

strong sense (for example, not only is the ultraproduct of members of K in K, but the
canonical embeddings are themselves K-embeddings).

(4) But (in connection with (3)) we have an example. Assume that � is a compact
cardinal. We define K D .K;�K/ by

(a) �K D ¹<º;

(b) K is the class of linear orders with initial segments isomorphic to .�; </;

(c) �K D ¹.M;N / WM �N are linear orders from K such thatM ¤N )M © .�;</º:

Now check that K satisfies the requirements of being a �-compact AEC, provided that
we omit clause (B)(c) in Definition 4.1; and part (3) fails.

The two main examples are the following.

Fact 4.3. (1) Let � be a strongly compact cardinal .we allow � D @0/ and let T be a
theory in L�;! . Let ˆ be a fragment containing T . Let K be the class of models of T ,
ordered by M �K N if and only if M �ˆ N . Then K�� is a �-compact AEC with
LS.K��/ � jˆj C j�.ˆ/j C �.

(2) Let K be an AEC and let � > LS.K/ be a strongly compact cardinal. Then K�� is
�-compact.

The following is an important property of compact AECs. Using the terminology of
[3, Definition 3.3], it should be called “fully .<�/-tame and short over the empty set”. We
prefer the shorter “.<�/-short” here.

Definition 4.4. We say that an abstract class K is .<�/-short if for anyM1;M2 2 K, any
ordinal ˛, and any Na` 2 ˛M`, ` D 1; 2, if tp. Na1�I=;IM1/ D tp. Na2�I=;IM2/ for any
I 2 Œ˛�<� , then tp. Na1=;IM1/ D tp. Na2=;IM2/. We say that K is �-short if it is .<�C/-
short. We say that K is short if it is .<�/-short for some �.

Remark 4.5 ([3, Theorem 3.4]). If an abstract class K is .<�/-short, then it is .<�/-tame
(put an enumeration of M as part of both Nb1 and Nb2).

Fact 4.6 ([3, Theorem 4.5]). If K is a �-compact AEC, then K is .<�/-short.

Finally, we note that categorical compact AECs have amalgamation:
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Fact 4.7. Let K be a compact AEC. If K is categorical in some � > LS.K/, then K has
amalgamation.

Proof. By [21], a revised version of8 [42], K<� has amalgamation. Now as in the proof of
[2, Theorem 2.3], we can use sufficiently complete fine ultrafilters to push amalgamation
up and get that K has amalgamation.

Thus we find that categorical compact AECs already have quite a lot of structure.

Corollary 4.8. Let K be a compact AEC. If K is categorical in some � > LS.K/, then K

has amalgamation, no maximal models, is .<LS.K//-short, and is categorical in a proper
class of cardinals.

Proof. Say K is �-compact. By Fact 4.7, K has amalgamation. By Remark 4.2, K has no
maximal models. By Fact 4.6, K is .<�/-short, hence by Remark 4.5 it is LS.K/-tame.
Now apply Fact 3.26.

5. Combinatorics of abstract classes

In addition to a few technical lemmas, the main result of this section is a generalization of
the “amalgamation from categoricity and weak diamond” theorem of the first author [36,
Theorem I.3.8]. The proof is essentially the same, but the axioms of AECs that were not
used are dropped (as in the study of nice categories in [13, Section 4]), and an additional
parametrization in the spirit of classification theory over a predicate [25,30] is introduced:
we consider the �-amalgamation property to mean essentially that we can amalgamate
while fixing the set defined by the formula �.

First, we recall a generally useful folklore fact about increasing continuous chains
reflecting on a club.

Lemma 5.1. Let � be a regular uncountable cardinal. Let hAi W i � �i, hBi W i � �i be
increasing continuous sequences of sets such that

(1) A� D B�,

(2) jAi j C jBi j < � for all i < �.

Then the set C WD ¹i < � j Ai D Biº is club.

Proof. C is clearly closed by continuity of the chains. To see unboundedness, let i < �.
We build an increasing sequence hjk W k < !i of ordinals below � such that j0 D i , and
for all k < !, Bjk � AjkC1 and Ajk � BjkC1 . This is straightforward using regularity
of �, A� D B�, jAj j C jBj j < � for all j , and the fact that the chains are increasing. Now
by continuity of the chains, j WD supk<! jk is in C , as desired.

8The referee pointed out that [42] is about L�;! while we work in the more general context of
AECs. This is true, and [21] answers the referee’s request.
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We use this to prove a result about chains of structures that are not even necessarily
ordered by substructure:

Definition 5.2. For � -structuresM and N , we writeM �� N (M is a weak substructure
of N ) if jM j � jN j, for all relation symbols R in � , RM � RN , and for all function
symbols f (including those of arity 0), f M D f N�M:

Lemma 5.3. Let � be a regular uncountable cardinal. Let � be a vocabulary of cardinal-
ity < � and let hMi W i � �i and hNi W i � �i be ��-increasing continuous sequences of
� -structures. Assume that

(1) M� D N�,

(2) j� j < �,

(3) kMik C kNik < � for all i < �.

Then the set C WD ¹i < � jMi D Niº is club.

Proof. ExpandingMi andNi if necessary, we may assume without loss of generality that
there is a unary predicate P in � such that PMi D Mi and PNi D Ni for all i < �. For
each R 2 � , the set CR WD ¹i < � j RMi D RNi º is club by Lemma 5.1. Now observe that
C D

T
R2� CR.

The following technical criterion for being resolvable (Definition 3.13) is used in the
proof of Lemma 11.9 below.

Lemma 5.4. Let K be an abstract class. Assume:

(1) LS.K/ <1, K<LS.K/ D ;.

(2) For any � 2 dom.K/, K is ŒLS.K/; �/-continuous.

(3) (Coherence for models of different sizes) For M0; M1; M2 2 K with M0 �K M2,
M1 �K M2, jM0j � jM1j, and kM0k < kM1k < kM2k, we have M0 �K M1.

(4) (Smoothness for big extensions) If hMi W i � ıi is increasing and N 2 K is such
that Mi �K N for all i < ı and kMık < kN k, then Mı �K N .

(5) (Resolvability for successors) If � � LS.K/, M �K N are such that M 2 K� and
N 2 K�C , then there exists hMi W i < �

Ci increasing continuous in K� such that
M0 DM and

S
i<�CMi D N .

Then K is resolvable.

Proof. Let M0 �K M be given with kM0k < kMk. Write � WD kM0k, � WD kMk. We
show by induction on � that M is resolvable over M . If � D �C, this is clause .5/ of
the assumption. Assume now that �C < �. For any such �;M0; M , if � is a successor,
say �C0 , use the fact that LS.K/ � � to pick M1 such that M1 �K M , jM0j � jM1j, and
�< kM1kD�0. By coherence for models of different sizes,M0 �K M1. By the induction
hypothesis, there is a resolution hM0;i W i < ı0i ofM1 overM0. By assumption (5), there
is also a resolution hM1;i W i < ı1i ofM overM1. Now concatenate these two resolutions.
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Thus we can assume that� is limit. Let ı WD cf.�/ and let hAi W i < ıi be an increasing
sequence of sets such that jAi j<� for all i < ı and

S
i<�Ai DM . We build hMi W i < ıi

increasing continuous such that for all i < ı,

� M0 DM ,

� Ai � jMiC1j,

� kMik < kMiC1k < kMk.

This is possible using the coherence and smoothness assumptions. This is enough. At the
end,

S
i<ıMi DM . We can then take a resolution ofMiC1 overMi for each i < ı (using

the induction hypothesis), and concatenate all these resolutions to obtain the final desired
resolution.

Instead of giving the definition of the weak diamond principle, we will use the follow-
ing form of it (the proof is the same as in [10, Section 6.1]; or see the appendix of [33]).

Fact 5.5. Let � be an infinite cardinal and suppose that there is an infinite cardinal
�0 <� such that 2�0 D 2<� <2�. Then .� is regular uncountable and/ for every sequence
hf� 2

�� W � 2 �2i, there exists � 2 �2 such that the set

S� WD ¹ı < � j 9� 2
�2 W f��ı D f��ı; ��ı D ��ı; ��.ı C 1/ ¤ ��.ı C 1/º

is stationary.

The following notions relativize the usual amalgamation, categoricity, and universality
properties to a formula �. The goal it to relativize and generalize the following result of
the first author [36, Theorem I.3.8]: if an AEC K with � � LS.K/ is categorical in �,
has a universal model in �C, and 2� < 2�

C

, then K has amalgamation in �. This will be
obtained from Theorem 5.8 below by setting K D K�, �1 D LS.K/ D �, �2 D LS.K/C,
�.x/ WD x ¤ x and � D 1.

Definition 5.6. Let K be an abstract class in a vocabulary � D �.K/ and let �.x/ be a
quantifier-free L!;!.�/-formula and for parts (2)–(5), let � 2 ¹1; 2º.

(1) ForM;N 2K, we sayM andN are �-equal if �ŒM�D �ŒN �, which means �.M/D

�.N / and RM��.M/ D RN��.N / for every relation and function symbols R of � .
In other words, the (partial) � -structures induced by � on M and N are equal (if a
function ofM takes an element out of �.M/, we require that itsM version also takes
the element out, but not necessarily that the functions agree).

(2) A �-span� is a triple .M0;M1;M2/ such thatM0 �K M`, `D 1; 2, �.M1/D �.M2/

and � D 1) �.M`/ D �.M0/ and � D 2) �ŒM`� ¤ �ŒM0�.

(3) A �-amalgam� of a �-span� .M0;M1;M2/ is a triple .N;f1; f2/ such thatN 2K and
f` WM` ��!

M0
N are such that f1��.M1/ D f2��.M2/ and f1�M0 D f2�M0:

(4) We say that M is a �-amalgamation� base .in K/ if M 2 K and every �-span�
.M;M1;M2/ has a �-amalgam�.
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(5) We say that K has the �-amalgamation� property if every M 2 K is a �-amalgama-
tion� base.

(6) We say thatN 2K� is �-universal if wheneverM 2K� and f W �ŒM�Š �ŒN �, there
exists g WM ! N which extends f .

(7) We say that K has �-uniqueness if whenever M0;M1;M2 2 K are such that M0 <K

M`, ` D 1; 2, there is f W �ŒM1� Š�.M0/ �ŒM2� and f �M0 D id.

(8) We say that K� is �-categorical if whenever M;N 2 K�, we have �ŒM� Š �ŒN �.

(9) K is .Œ�1; �2/; �; ı/-continuous if whenever hM˛ W ˛ < ıi is �KŒ�1;�2/
-increasing

continuous, we haveMı D
S
˛M˛ 2K. Omitting ı means “for every limit ordinal ı”.

Remark 5.7. (1) Letting � D 1 and setting �.x/ to be x ¤ x, we recover the usual defi-
nitions of the amalgamation property and of a universal model.

(2) Setting �.x/ to be x D x in Definition 5.6 (8) we recover the usual definition of
categoricity.

Theorem 5.8. Let K and K� be abstract classes such that jKj D jK�j and M �K N

implies M �K� N . Let � be a quantifier-free L!;!.�.K//-formula, � 2 ¹1; 2º, and let
‚ D Œ�1; �2� be an interval of cardinals. Assume 2�1 D 2<�2 < 2�2 .

(1) Let � D 1 and suppose that

(A) K is Œ�1; �2/-continuous,

(B) there is a �-universal model in K�
�2

,

(C) K�2 is �-categorical,

(D) for any � 2 Œ�1; �2/,

(a) K� has �-uniqueness,

(b) for any �-span� NM D .M0;M1;M2/ in K�, if NM has a �-amalgam� in K�,
then NM has a �-amalgam� in K�.

Then for any M 2 KŒ�1;�2/, there exists N 2 KŒ�1;�2/ such that M �K N and N is
a �-amalgamation� base in KkNk.

(2) If � D 2, we get the conclusion of part .1/ if (A)–(C) there hold and

(D)2 if M� 2 KŒ�1;�2/ there are NN;N such that

(a) N 2 ¹�.M/ jM 2 K�2º;

(b) NN D hNi W i < �2i is a ¨-increasing sequence of �.�.M//-models,

(c)
S
i Ni D N and i < �2) kNik < �2;

(d) N0 D �.M�/;

(e) if i < �2, M0 2 KŒ�1;�2/, �.M0/ D Ni and M0 \ N D Ni , then there
are M1;M2 such that .M0;M1;M2/ is a �-span� and �.M`/ D NiC1 for
` D 1; 2.
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Proof. (1) Suppose M is a counterexample. We shall build an increasing continuous tree
hM� W � 2

��22i such that for all � 2 ��22,

�1 Mhi DM ,

�2 M� 2 K�Clg.�/, where � D kMk,

�3 jM�j � �2,

�4 if � D 1, then �.M�/ D �.M�/ for all � 2 �`.�/2, and if � D 2 then �.M�ah0i/ D

�.M�ah1i/,

�5 if �D 2, then in K�1Cjlg.�/j, .M�;M�a0;M�a1/ is a �-span� that has no �-amalgam�,

�6 hM��" W " � lg.�/i is �K-increasing continuous.

We choose M� for � 2 ˛2 by induction on ˛ � �2:

Case 1: ˛ D 0: Let Mhi DM:

Case 2: ˛DˇC 1 and �2 ˇ2. ThenM� cannot be a �-amalgamation� base (by the choice
of M D Mhi), so by Definition 5.6 (4) there is a �-span� .M�;M�a0;M�a1/ which has
no �-amalgamation (for K) and kM�a`k D kM�k D �C jlg.�/j:

It follows that .M�;M�a0;M�a1/ has no �-amalgamation� in K�, and also �.M�a`/

D �.M�/ D �.Mhi/ by Definition 5.6 (3). Renaming without loss of generality jM�a1j

is an ordinal so < �2:

Case 3: ˛ limit ordinal. For � 2 ˛2 let M� D
S
¹M��ˇ j ˇ < ˛º, note M� 2 K�Cjlg.�/j

by clause (1) of the assumption, and also �.M�/ D
S
¹M��ˇ j ˇ < ˛º D �.Mhi/ by the

induction hypothesis. So we have carried out the induction step.

Let A be the �.K/-structure induced by �.M�/ for some (or any, see requirement �4/
� 2 �22. Let C 2 K�

�2
be �-universal in K�

�2
. By �-categoricity (that is, clause (1) (C) of

the claim), pick h W A Š �.N /. For each � 2 �22, pick a K�-embedding g� W M� ! C

extending h. We have jM�j � �2, so we can extend each g� arbitrarily to f� 2 �2�2.
By Fact 5.5, there exists � 2 �22 such that the set S� described there is stationary. Let

C� WD ¹ı < �2 j jM��ı j � ıº. This is a club (by Lemma 5.1 applied to hM��ı W ı < �2i,
hM��ı \ ı W ı < �2i), so let ı 2 S� \ C� . Then there is � 2 �22 such that �0 WD ��ı D
��ı, ��.ı C 1/ ¤ ��.ı C 1/, and (in particular) g� and g� agree on M�0 . Moreover,
g� and g� also extend h, so must in particular agree on �.M��.ıC1//. This means that
.N; g��M��.ıC1/; g��M��.ıC1// is a �-amalgam of .M�; M��.ıC1/; M��.ıC1// in K�.
By assumption (D)(b), this means there is such a �-amalgam in K�1Cjıj, a contradiction
to requirement �5.

(2) Similarly.

6. Good frames

Good frames are a local notion of “bare bone” superstability, introduced by the first author
[36, Chapter II]. Essentially, an AEC K has a good �-frame if it looks superstable in �
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in the sense that K� has some reasonable structural properties (like amalgamation), and
there is a forking-like notion for types of singletons over models.

In this section, we give the definition we will use and state some fundamental results
(most of them known or folklore) about good frames.

The definition we give here allows good frames in several cardinals (as in [50, Def-
inition 2.21]) but using fragmented AECs (so also allowing “shrinking frames” [53,
Appendix A]). The frames in this paper will always be type-full (i.e. all nonalgebraic
types will be basic), so we will drop the adjective and ignore basic types in the definition.

Definition 6.1. A .type-full/ good frame (or a semigood frame) is a pair s D .K; F / D

.Ks; Fs/, where:

(1) K is a fragmented AEC (or a semifragmented AEC) such that

(a) K ¤ ;,

(b) K<LS.K/ D ;,

(c) K has amalgamation, joint embedding, and no maximal models,

(d) for every M 2 K, there is N 2 K that is universal over M and kN k D kMk.

(2) F is a binary relation taking as input pairs .p;M/, where p is an orbital type and M
is a model in K. We write p does not fork over M (or p does not s-fork over M )
instead of F.p;M/, and require that F satisfies the following:

(a) If p does not fork over M , then p 2 S.N / for some N �K M .

(b) Invariance: if f W N Š N 0 and p 2S.N / does not fork overM , then f .p/ does
not fork over f ŒM�.

(c) Monotonicity: if p 2 S.N / does not fork over M and M �K M 0 �K N , then
p�M 0 does not fork over M and p does not fork over M 0.

(d) Disjointness: if p 2 S.N / does not fork over M , then p�M is algebraic if and
only if p is algebraic.

(e) Extension: for anyM �K N and any p 2S.M/ there exists q 2S.N / such that
q extends p and q does not fork over M .

(f) Uniqueness: for anyM �K N and any p; q 2S.N /, if both p and q do not fork
over M and p�M D q�M , then p D q.

(g) Local character: If hMi W i � ıi is increasing continuous in K and p 2 S.Mı/,
then there exists i < ı such that p does not fork over Mi .

(h) Symmetry: If p D tp.a=N IN 0/ does not fork over M and b 2 jN j, then there
exist M 0; N 00 2 K such that N 0 �K N

00, M �K M
0, a 2M 0, and tp.b=M 0IN 00/

does not fork over M .

We write Ks for the class of the frame s. We say that s is on K� if Ks D K�. The domain
of a good frame s is the domain of Ks (see Definition 3.6). For � 2 dom.s/, we say that s

is categorical in � if Ks is categorical in �. We say that s is categorical if it is categorical
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in all � 2 dom.s/. We also define restrictions to smaller classes of models such as s� in
the natural way. We say that s is a good �-frame if s D s�.

We will use the following construction of a good frame.

Fact 6.2. Let K be an AEC with arbitrarily large models. Let � > LS.K/ and let � � �.
Assume that K<� has amalgamation and no maximal models. Assume further that K is
categorical in � and Ksat

.LS.K/;�/ is LS.K/-tame. Then there is a .categorical/ good frame
on Ksat

.LS.K/;�/.

Proof. By [54, Corollary 5.7 (1)], K is LS.K/-superstable and has LS.K/-symmetry. The
result now follows from [53, proof of Theorem A.3].

Remark 6.3. Combining local character, transitivity, and uniqueness, we find that if s is
a good frame, then Ks is min.dom.s//-tame.

Disjointness follows from the other properties if the frame is categorical.

Lemma 6.4. If s satisfies all the properties of good frames, except perhaps disjointness,
and s is categorical, then s satisfies disjointness as well.

Proof. By the conjugation property [36, Claim III.1.21] (whose proof never uses disjoint-
ness).

We now state and prove canonicity of the framework. First, frames with the same
restriction in their low cardinals are the same:

Lemma 6.5. Let s and t be good frames with KsDKt. Let � WDmin.dom.s//. If s�D t�,
then s D t.

Proof. Let K WD Ks D Kt. Let M �K N be in K and let p 2 S.N /. Assume that p
does not s-fork over M . We show that p does not t-fork over M , and the converse
is symmetric. First, by local character and transitivity there exists M0 2 K� such that
p does not s-fork over M0. In particular, (by monotonicity) for every N0 2 K� with
M0 �K N0 �K N , p�N0 does not s-fork overM0. Since s� D t�, p�N0 does not t-fork
over M0. Now pick N 00 2 K� such that p does not t-fork over N 00 and (by monotonicity),
enlarge it so that M0 �K N 00. Then by transitivity, p does not t-fork over M0, hence (by
monotonicity) over M , as desired.

Remark 6.6. Disjointness and symmetry are not used in the proof. Regarding local char-
acter, we only use the fact that any type does not fork over a model of size �.

Fact 6.7 (Canonicity of categorical good frames). Let s and t be categorical good frames
with dom.s/ D dom.t/. Let � WD min.dom.s//. If .Ks/� D .Kt/�, then s D t.

Proof. By [49, Theorem 9.7], s� D t�. By canonicity of categorical fragmented AECs
(Theorem 3.22), Ks D Kt. By Lemma 6.5, s D t.
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Categoricity of a good frame may seem a strong assumption. However, we have the
following.

Fact 6.8. Let s be a good frame and let � WD min.dom.s//. If s is categorical in �, then
there is a categorical good frame t with dom.t/ D dom.s/ and .Kt/� D .Ks/�.

Proof. By the proof of [53, Proposition A.2]: that is, just restrict to saturated models (note
that this gives fragmented AEC, not necessarily an AEC, but this is allowed by the above
definition of a good frame).

We recall the following result about categoricity transfers in good frames.

Discussion 6.9. (1) The following assertion appears as a claim in earlier versions, but
the referee pointed out that using [53, Theorem A.9] is not convincing as there K is not
fragmented. As we prefer not to resolve it, we changed the proof of Lemma 14.3 below,
the only place where it was used.

(2) The assertion was: Assume that s is a good frame with fragmented AEC K. Let
‚ WD dom.K/, let � WD min.‚/, and let � 2‚. Assume that K is categorical in �. Let K�

be the AEC generated by K�. If K� is categorical in �C, then

(A) K is � -continuous for every � 2 ‚,

(B) K is categorical in every �0 2 ‚.

(3) The asserted proof was: By Fact 6.8, we might as well assume that s is categorical.
We are then in the setup of [53, Theorem A.9], which gives the result we want.

We will also use the following upward frame transfer:

Definition 6.10 ([36, Definitions II.2.4, II.2.5]). Let s be a good �-frame and let K be the
AEC generated by Ks. We let sup WD .K; F /, where F is the following binary relation on
pairs .p;M/, where p is an orbital type and M is a model in K: F.p;M/ if and only if
p 2 S.N / for some M �K N , and there exists M0 2 Ks such that M0 �K M and for
all N0 2 Ks with M0 �K N0 �K N , p�N0 does not s-fork over M0.

Fact 6.11. Let s be a good �-frame.

(1) .[36, Claim II.2.11]/ sup satisfies all the axioms from the definition of a type-full
good frame except ((c)), ((d)), ((e)), ((f)), and ((h)) in Definition 6.1.

(2) .[6, Corollary 6.9]/ If Ksup is �-tame and has amalgamation, then sup is a good
frame.

7. Two-dimensional independence notions

While good frames describe a forking-like relation for types of singletons over mod-
els, two-dimensional independence notions describe a forking-like relation for types of
models over models. At that point, it seems more convenient to think of such a relation
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as a 4-ary relation on squares of models.9 Squares in nonforking amalgamation form the
simplest nontrivial example of an independent system (a concept defined in the next sec-
tion).

This section studies abstract frameworks for two-dimensional independence, while
the next section will look at higher dimensions. We state the important properties of two-
dimensional independence relations. We look also at their canonicity (Theorem 7.14).
Two key questions are when a two-dimensional independence relation can be built from
a good frame, and when a two-dimensional independence relation for models of size
� implies the existence of a good �C-frame (these themes are present already in [36,
Chapters II, III]). Frames that are well behaved in these respects are called extendible
(Definition 7.15). A frame that can be extended !-many steps is called .<!/-extendible.
These correspond (but are slightly more convenient to work with than) the !-successful
good frames in [36, Chapter III]. We give conditions under which such frames exist, both
in the compact (Fact 7.21) and noncompact (Fact 7.16) cases. For the latter result, the
weak diamond (a weakening of the generalized continuum hypothesis) is assumed.

Definition 7.1. Let K be an abstract class. A two-dimensional independence relation (or
notion/ on K is a 4-ary relation ^ on K satisfying:

(A) ^.M0; M1; M2; M3/ implies M0 �K M` �K M3 for ` D 1; 2. We may write

M1

M3

^
M0

M2 instead of ^.M0;M1;M2;M3/.

(B) IfM0 �K M` �K M3, `D 1;2 and f WM3!M 03 is a K-embedding, thenM1

M3

^
M0

M2

if and only if f ŒM1�

M 0
3

^
f ŒM0�

f ŒM2�.

(C) Monotonicity: if M1

M3

^
M0

M2 and M0 �K M 01 �K M1, then M 01
M3

^
M0

M2.

(D) Disjointness: if M1

M3

^
M0

M2, then M1 \M2 DM0.

(E) Symmetry: if M1

M3

^
M0

M2, then M2

M3

^
M0

M1.

(F) Transitivity: if M1

M3

^
M0

M2 and M3

M5

^
M2

M4, then M1

M5

^
M0

M4.

9The referee asks: why does 4-ary correspond to two-dimensional? For the same reason that
a square is two-dimensional despite having four vertices: 4 D 22. More explicitly, ^ is a 4-place
relation, and ^.M0;M1;M2;M3/ implies M0 �K M` �K M3 (and M1 \M2 D M0). But we
can express this as “M1; M2 are independent over M0 inside M3”; said in this form, it appears
as a 2-place relation. Alternatively we can write “ NN D hNu W u 2 P .n/i is independent” where
N; DM0; N¹0º DM1; N¹1º DM2; N¹0;1º DM3I in this form the 2 appears in P .2/ and later is
generalized to hNu W u 2 P .n/i and is called n-dimensional and is used to analyze models in �Cn.
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(G) Extension: wheneverM0 �K M`, `D 1; 2, there existM3 2 K and f` WM` ��!
M0

M3

such that f1ŒM1�
M3

^
M0

f2ŒM2�.

(H) Uniqueness: whenever M `
1

M`
3

^
M`
0

M `
2 for ` D 0; 1 and fk WM 0

k
ŠM 1

k
, k < 3, are such

that f0� f1, f0� f2, then there existsM 2
3 2K withM 1

3 �K M
2
3 and f3 WM 0

3 !M 2
3

such that fk � f3 for all k < 3.

Definition 7.2. Let ^ be a two-dimensional independence notion on K. If s is a good

frame on K, we say that ^ respects s if whenever M1

M3

^
M0

M2 and a 2 jM1j, then

tp.a=M2IM3/ does not s-fork over M0.

As in Lemma 6.4, note that disjointness is not really needed in some cases.

Lemma 7.3. Assume that ^ has all the properties of a two-dimensional independence
notion on K, except perhaps for disjointness. Assume that ^ respects a good frame s

on K. Then ^ satisfies disjointness.

Proof. Because s satisfies disjointness.

It is sometimes useful to extend ^ to take sets on the left and right hand sides. This
is the content of the next definition, versions of which were already considered by both
the first author [36, Definition II.6.35] and the second author (in joint work with Boney,
Grossberg, and Kolesnikov) [5]. See also the recent work of Lieberman, Rosický, and the
second author [22, Definition 8.2].

Definition 7.4. Let ^ be a two-dimensional independence relation on K.

(1) Define a 4-ary relation ^ as follows: A
N

^
M

B holds if and only if M �K N , A; B �

jN j, and there existM1;M2;M3 2K such thatN �K M3, A� jM1j, B � jM2j, and

M1

M3

^
M

M2.

(2) For p an orbital type, we say that p does not fork over M if M 2 K and there exist

b;A;M3 such that p D tp.b=AIM3/ and b
M3

^
M

A.

(3) Define a binary relation F DF.^/ taking as input pairs .p;M/, where p is an orbital
type and M is a model in K, as follows: pFM if p 2 S.N / for some N �K M and
p does not fork over M . We let s.^/ WD .K; F .^//.

Properties of ^ generalize to ^ as follows.

Fact 7.5 ([22, Fact 8.4, Theorem 8.5]). Let ^ be a two-dimensional independence rela-
tion on K.
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(1) Let M0 �K M` �K M3 for ` D 1; 2. Then M1

M3

^
M0

M2 if and only if M1

M3

^
M0

M2.

(2) (Preservation under K-embeddings) Given M0 �K M3, A; B � jM3j, and f W

M3 ! N3, we have A
M3

^
M0

B if and only if f ŒA�
N3

^
f ŒM0�

f ŒB�.

(3) (Monotonicity) If A
M3

^
M0

B and A0 � A, B0 � B , then A0
M3

^
M0

B0.

(4) (Normality) A
M3

^
M0

B if and only if AM0

M3

^
M0

BM0.

(5) (Base monotonicity) If A
M3

^
M0

B , M0 �K M2 �K M3, and jM2j � B , then A
M3

^
M2

B .

(6) (Extension) Whenever M �K N and p 2 S <1.M/, there exists q 2 S <1.N /

extending p such that q does not fork over M .

(7) (Symmetry) A
N

^
M

B holds if and only if B
N

^
M

A holds.

(8) (Uniqueness) Given p; q 2 S <1.BIN/ with M �K N and jM j � B � jN j, if
p�M D q�M and p, q do not fork over M , then p D q.

(9) (Transitivity) If M0 �K M2 �K M3, A
M3

^
M0

M2 and A
M3

^
M2

B , then A
M3

^
M0

B .

For a general two-dimensional independence relation^, s.^/may not induce a good
frame (because e.g. such a relation also exists in strictly stable first-order theories). We
call the ones that do (and satisfy a few more convenient properties) good.

Definition 7.6. A two-dimensional independence notion ^ on K is good if it has the
following properties:

(1) s.^/ is a good frame on K (in particular, K is a fragmented AEC).

(2) Long transitivity: if ı is a limit ordinal, hMi W i � ıi, hNi W i � ıi are increasing con-

tinuous in K and Ni
NiC1

^
Mi

MiC1 for all i < ı, then N0
Nı

^
M0

Mı .

(3) Local character: if M �K N and A � jN j, then there exists M0 �K N0 such that

N0
N

^
M0

M , A � jN0j, and kN0k � jAj C LS.K/.

Note that the local character property of two-dimensional independence notions is
vacuous in case the relation is on K�. In this case, the following replacement is useful
(this is related to the definition of successful goodC in [36, Chapter III], see [7, Fact 2.14];
the “reflects down” terminology appears in [53, Definition 3.7 (2)]):

Definition 7.7. A good two-dimensional independence notion ^ on K reflects down
if for any � 2 dom.K/ and any two �K-increasing continuous chains hMi W i < �

Ci,
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hNi W i < �
Ci in K� andMi �K Ni for i < �C, there is a club C � �C such that for any

i < j in C , Ni
Nj

^
Mi

Mj (note that this implies Mi �K Ni ).

Remark 7.8. If ^ is a good two-dimensional independence notion on K and �; �C 2
dom.K/, then by local character ^�K� reflects down.

We will use the following very useful fact about good two-dimensional independence
notions: a union of independent limit squares is limit.

Fact 7.9 ([36, Claim II.6.29]). Let ^ be a good two-dimensional independence notion
on K. Let hMi W i � ıi and hNi W i � ıi be increasing continuous in K such that

Ni

NiC1

^
Mi

MiC1 for all i < ı. If NiC1 is limit over Mi [ Ni .see Definition 3.5 (4)/ for

all i < ı, then Nı is limit over Mı [N0.

Regarding limit models, one can also resolve them in a nice way.

Fact 7.10 ([36, Claim III.1.17]). Let ^ be a good two-dimensional independence notion
on K. Let � 2 dom.K/ be such that �C 2 dom.K/. Let M;N 2 K�C be limit such that
N is limit over M . Then there exist increasing continuous resolutions hMi W i < �

Ci,
hNi W i < �

Ci of M and N in K� such that Mi is limit and Ni is limit over Mi for all
i < �C.

Being good and reflecting down is useful, but one sometimes wants more than the
long transitivity property. This is the content of the next definition.

Definition 7.11. A two-dimensional independence notion ^ on K is very good if it
is good, resolvable, reflects down and satisfies in addition strong continuity: whenever

hM i
`
W i � ıi are increasing continuous in K, ` < 4, and M i

1

M i
3

^
M i
0

M i
2 for all i < ı, then

M ı
1

M ı
3

^
M ı
0

M ı
2 .

We now proceed to show that very good categorical two-dimensional independence
notions are canonical. This is essentially [5], but since the setup here is not as global as
there, we use a slightly different road.

Lemma 7.12. If
1

^ and
2

^ are very good two-dimensional independence notions on K

and
1

^�K� D

2

^�K� for all � 2 dom.K/, then
1

^ D
2

^.

Proof. Assume that
1

^.M0;M1;M2;M3/. We show that
2

^.M0;M1;M2;M3/, and the
converse will be symmetric. We proceed by induction on kM3k. If kM0k D kM3k, then

by assumption
2

^.M0;M1;M2;M3/. Assume now that kM0k < kM3k. Let ı WD kM3k.
For ` D 1; 2; 3, build hM i

`
W i � ıi increasing continuous such that for all i � ı,
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� kM i
`
k D kM0k C ji j for ` D 1; 2; 3,

�

1

^.M0;M
i
1 ;M

i
2 ;M

i
3/,

� M ı
`
DM` for ` D 1; 2; 3.

This is possible using monotonicity and the fact that K is a fragmented AEC. This is

enough: by the induction hypothesis,
1

^.M0;M
i
1 ;M

i
2 ;M

i
3/ for all i < ı. By strong con-

tinuity,
2

^.M0;M1;M2;M3/, as desired.

Fact 7.13. Let K be a fragmented AEC and let � � LS.K/. Let
1

^ and
2

^ be two good
two-dimensional independence notions on K� which reflect down. If K is categorical in �,

then
1

^ D
2

^.

Proof. Let s` WD s.
`

^/. By canonicity of categorical good frames (Fact 6.7), s1 D s2, so
write s WD s1. By [53, Corollary 3.11], s has the existence property for uniqueness triples

(see [36, Definition II.5.3 (3)]). By [36, Claim II.6.3 (3)],
1

^ D
2

^.

Theorem 7.14 (Canonicity). If
1

^ and
2

^ are two very good two-dimensional indepen-

dence notions on K, and K is categorical in every � 2 dom.K/, then
1

^ D
2

^.

Proof. By Fact 7.13,
1

^�K� D

2

^�K� for every � 2 dom.K/. Now apply Lemma 7.12.

The next topic is when (very) good two-dimensional independence notions exist. It is
natural to construct them from good frames, since we already have sufficient conditions
for the existence of good frames (Fact 6.2). A good frame that can be extended to a good
two-dimensional independence relation which reflects down will be called extendible. See
Fact 7.17 for another justification of the name.

Definition 7.15. We say a good frame s is extendible if there is a good two-dimensional
independence notion ^ on Ks which reflects down. We say that s is very good if in
addition we can find such an ^ which is also very good.

We will use the following sufficient condition for a good frame to be extendible.

Fact 7.16. Let s be a good frame and let � 2 dom.s/. If 2� < 2�
C

, s is categorical in �,
and �C 2 dom.s/, then s� is extendible.

Proof. Since �C 2 dom.s/, every model in K�C has a universal model over it. Thus
by [53, Theorem E.8] (the main idea of the argument is due to the first author, see [36,
p. 798]), s� has what is called the existence property for uniqueness triples. By [36, Main
Conclusion II.6.34], there is a two-dimensional independence relation ^ on K� which
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satisfies long transitivity and respects s�. Now, any time a type does not s.^/-fork, this
implies that it does not s�-fork as^ respects s�. But we know that s satisfies uniqueness
and s.^/ satisfies extension (see Fact 7.5), so by the proof of [5, Lemma 4.1], sD s.^/.
We have shown that ^ is good (since we only consider it as a relation on K�, local
character is not relevant).

It remains to see that ^ reflects down. Since s is a good frame and �C 2 dom.s/, we
find that .Ks/Œ�;�C� is �-tame (Remark 6.3). Thus we can apply [18, Theorem 7.15] to
conclude that ^ reflects down, as desired.

Note also that being extendible implies that the frame itself can be extended (this is
the main idea in [36, end of Chapter II]):

Fact 7.17. If s is an extendible categorical good �-frame, then there exists a .unique/
categorical good frame t such that dom.t/ D ¹�; �Cº and t� D s�.

Proof. Let K be the AEC generated by Ks. By [36, Claim III.1.6 (2)] (or see [19, Theorem
10.1.9]), there is a good �C-frame sC on Ksat

�C
. Since by [36, Claim III.1.10], Ksat

�C
is �-

tame, nonforking in sC must be generated by nonforking in s (i.e. sC D sup�Ksat
�C

). Thus
letting t WD sup�.Ksat

�C
[K�/, we get the result.

Definition 7.18. For s an extendible categorical good �-frame, we write sC for t�C ,
where t is as given by Fact 7.17.

Since we now know how to extend a frame to the next cardinal, it makes sense to
define when one can do this successively.

Definition 7.19 ([36, Definition III.1.12]). Let s be a categorical good �-frame. We define
by induction on n < ! what it means for s to be n-extendible as well as a good �Cn-
frame sCn:

(1) s is always 0-extendible and sC0 D s,

(2) s is .nC 1/-extendible if it is n-extendible and sCn is extendible,

(3) if s is .nC 1/-extendible, let sC.nC1/ WD .sCn/C.

We say that s is .<!/-extendible if s is n-extendible for all n < !.

When a good �-frame is .<!/-extendible, then after taking its successor a few times,
it becomes very good. Moreover, after this is done one can “connect” forking between the
cardinals, getting a good Œ�; �<!/-frame.

Fact 7.20. Let s be a categorical good �-frame.

(1) If s is !-successful and goodC .in the sense of [36, Section III.1]), then s is .<!/-
extendible.

(2) If s is 4-extendible, then sC3 is very good.

(3) If s is very good and 2-extendible, then sC is very good.
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(4) If s is very good and .<!/-extendible, then there exists a .unique/ very good cate-
gorical frame t such that dom.t/ D Œ�; �C!/ and t�Cn D sCn for all n < !.

Proof. (1) Essentially follows from [7, Fact 2.14].
(2) By [36, Claim III.8.19] (see [49, proof of Fact 12.14]). The four levels of

extendibility are used to get a “better” frame each time we go from sCk to sC.kC1/.
Strong continuity is the hard part to obtain in this process, and Shelah’s proof uses quite
sophisticated orthogonality calculus.

(3) Also by [36, Claim III.8.19].
(4) Let t WD sup�.Ks [ Ksat

Œ�C;�C!/
/. As in the proof of Fact 7.17, we have enough

tameness for nonforking to connect, so this works (see also [53, Appendix A]).

While in general, it is not known how to build extendible good frames without using
the weak diamond (Fact 7.16), in the compact case it is possible.

Fact 7.21. Let K be a compact AEC. If K is categorical in some � > LS.K/, then there
exists a .unique/ categorical very good frame on Ksat

�LS.K/C6
.

Proof. Let � be such that K is �-compact. By Corollary 4.8, K has amalgamation, no
maximal models, is .<�/-short, and is categorical in a proper class of cardinals. By essen-
tially the main result of [49], and more precisely by [55, Corollary A.16], K�-sat is what
is called there fully good. Here, we have set � WD .LS.K/<�/C5. Since � is strongly
compact, by a result of Solovay (see [20, proof of Theorem (Solovay) 20.8]) we have
LS.K/<� � LS.K/C (of course this also holds if � D @0). Thus � � LS.K/C6. Checking
the definition of fully good in [49, Definition 8.4], we see that this implies that Ksat

�LS.K/C6

carries a very good two-dimensional independence relation, as desired.

8. Multidimensional independence

We define here the main notion of this paper: multidimensional independence relations.
This section contains mostly definitions and easy lemmas. A result of importance is how
to build multidimensional independence relations from two-dimensional relations (Theo-
rem 8.20).

8.1. Systems

We start by defining what is meant by a system of models.

Definition 8.1. For K an abstract class and I D .I;�/ a partial order, an .I;K/-system
is a sequence m D hMu W u 2 I i such that u � v implies Mu �K Mv . A K-system is
an .I;K/-system for some I . For m a K-system, we write I.m/ for the unique I such
that m is an .I;K/-system. When K is clear from context, we omit it from all the above
definitions.
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In practice, I is quite often P�.n/ or P .n/. Nevertheless to easily carry out induction
in the study of the combinatorial properties of these systems, we need to consider general
orders.

We will often be interested in systems where all extensions are strict. In fact, a
strengthening of this, being proper, is more useful (one can see it as an abstract version of
Definition 3.5 (4), when we take A to consist of the union of several models):

Definition 8.2. Let m D hMu W u 2 I i be an I -system. Let K� be a skeleton of K (the
reader can think of K� D K at first reading, but the interesting case is K�, the class of
saturated models, in a good frame and M <K� N iff M �K N and N is limit over M ).

(1) Let u 2 I . We say that u is K�-proper in m ifMu 2K� and there existsN 2K� such
that

(a) for all v 2 I , v < u implies Mv �K N <K� Mu (note that the last inequality is
strict!),

(b) for all v 2 I , if v < u and Mv 2 K�, then Mv �K� N .

(2) For I0 a suborder of I , we say that m is .I0;K�/-proper if every u 2 I0 is K�-proper
in m. When K� D K, we omit it and when I0 D I we may omit it.

Note that a system where all extensions are strict may not be proper.

Example 8.3. Let K be the AEC of all infinite sets, ordered by subset. Let A � B be
two countably infinite sets with B n A infinite. Partition B n A into two nonempty sets
C1 and C2 with C1 finite, so C2 infinite, and let A` WD A [ C`. Then the P .2/-system
.A;A1; A2; B/ is not proper but all the extensions are strict.

The next two lemmas are easy properties of proper systems: being proper does not
depend on the exact indexing set, and proper systems can be built.

Lemma 8.4. Let I0 � I1 � I all be partial orders and let m be an I -system. Let K� be
a skeleton of K. If m is .I0;K�/-proper, then m�I1 is .I0;K�/-proper.

Proof. Straightforward.

Lemma 8.5. Let K� be a skeleton of K .Definition 3.8/. Let m D hMu W u 2 I i be an I -
system with I a finite partial order and let v be maximal in I . If K has no maximal models,
then there exists N 2 K such that Mv �K N and v is K�-proper in m�.I n ¹vº/ a hN i
(restriction of a system means what is expected and is defined right after this lemma).

Proof. Using the fact that K has no maximal models, let M 2K be such that Mv <K M .
Now apply Lemma 3.9 withM , ¹Mu 2K� ju<vº standing forM , hMi W i < ni there.

It is now time to define how systems can relate to each other, in particular how they
can be isomorphic, extensions, etc.

Definition 8.6. (1) Let I � J be partial orders and let mD hMu W u 2 J i be a J -system.
Then m�I WD hMu W u 2 I i.
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(2) For m`D hM
`
u W u 2 I i, `D 1;2, both I -systems, we write m1 �K m2 ifM 1

u �K M
2
u

for all u 2 I . We say that m2 is a disjoint extension of m1 (written m1 �
d
K m2) if

m1 �K m2 and M 2
u \M

1
v �M

1
u when u �I v.

(3) ([36, Definition III.12.14 (4)] For k < !, m` D hM
`
u W u 2 I i, ` < k, all I -systems

with m0 �K m1 �K � � � �K mk�1, let m WD m0 � m1 � � � � � mk�1 be the system
defined as follows:

(a) It is indexed by J WD I � k ordered lexicographically, so m D hMu W u 2 J i.

(b) For all u 2 I and i < k, M.u;i/ DM
i
u.

(4) For m` D hM
`
u W u 2 I i, ` D 1; 2, both I -systems, we say f is a system embed-

ding from m1 to m2 and write f W m1 ! m2 if f D hfu W u 2 I i, each fu is a
K-embedding from M 1

u to M 2
u , and u � v implies fu � fv .

(5) For m` D hM
`
u W u 2 I i, ` D 1; 2, both I -systems, we say f is an isomorphism from

m1 to m2 and write f W m1 Š m2 if f D hfu W u 2 I i is a system embedding from
m1 to m2 and each fu is an isomorphism from M 1

u onto M 2
u .

(6) For � W I1 Š I2 an isomorphism of partial orders and m D hMu W u 2 I1i an I1-
system, let �.m/ denote the I2-system hM��1.v/ W v 2 I2i.

(7) A system m D hMu W u 2 I i is called disjoint if whenever u; v; w; u� 2 I are such
that u � v � u� and u � w � u� and v \ w D u, we have Mu DMv \Mw .

(8) A system m D hMu W u 2 I i is called fully disjoint if whenever u; v; w 2 I are such
that u � v; v \ w D u and u � w, we have Mu DMv \Mw .

Remark 8.7. Every disjoint system is isomorphic to a fully disjoint system.

It is often useful to code systems as an abstract class:

Definition 8.8. Let K be an abstract class and let I be a partial order. The vocabulary of
.K; I /-systems is �I WD �.K/[ ¹Pi j i 2 I º, where each Pi is a new unary predicate. The
abstract class of .K; I /-systems is the abstract class KI D .KI ;�KI / defined as follows:

(1) KI consists of all the �I -structures M such that hMPi W i 2 I i forms a fully disjoint
.K; I /-system (we see MPi as a �.K/-structure). We identify the elements of KI

with the corresponding systems.

(2) m1 �KI m2 if and only if m1 �
d
K m2 (see Definition 8.6 (2)).

8.2. Multidimensional independence relations

Multidimensional independence relations consist of systems indexed by a certain class of
semilattices. For reasons that will become apparent, we require that this class has a certain
amount of closedness.

Definition 8.9. A class I of semilattices is called closed if

(A) I is closed under isomorphisms,
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(B) I is closed under taking initial segments,

(C) for any I 2 I and any u 2 I n ¹?º, Œu;1/I � ¹0; 1º 2 I,

(D) (follows) if I0 � ¹0; 1º 2 I, then I0 2 I (I is isomorphic to an initial segment of
I0 � ¹0; 1º).

The main examples of a closed class of semilattice are the following.

Lemma 8.10. Let n < ! and let I be the class of all initial semilattices isomorphic to an
initial segment of P .n/. Then I is closed.

Proof. The third condition of Definition 8.9 is the only nontrivial one. Let I 2 I, and
identify it with an initial segment of P .n/. Let u 2 I n ¹?º (so u ¤ ;). Then Œu;1/I is
the set of all subsets of P .n/ extending u; as a semilattice, it is isomorphic to P .n n u/Š

P .n� juj/. Thus Œu;1/I � ¹0; 1º Š P .n� juj/�P .1/Š P .n� juj C 1/, which since
juj � 1 is an initial segment of P .n/.

A multidimensional independence relation consists of an abstract class K, a closed
class of finite semilattices, and a class of systems indexed by these semilattices. Several
properties are required, akin to the requirements in the definition of a two-dimensional
independence relation. A complication arises in the monotonicity properties: there are
several and may not always seem natural (it may help to jump ahead and come back
once the properties are used; for example a good hint to understand the definition of
monotonocity 4 is to look at the proof of Lemma 8.13). Nevertheless, they will hold for
the relation we construct and are all used in the next section. Note that we do not know
whether multidimensional independence relations are canonical (i.e. whether under rea-
sonable conditions, also involving the existence and uniqueness properties to be defined
later, there can be at most one satisfying this list of axioms).

Definition 8.11. A multidimensional independence relation .or notion/ is a triple i D

.K; I;NF/, where K D Ki is an abstract class, I D Ii is a class of semilattices, and
every element of NF D NFi is a .K; I /-system with I 2 I. We call the members of
NF independent systems, and write NF.m/ instead of m 2 NF. We require the following
properties:

(1) I is a closed class of finite semilattices.

(2) Invariance: If m and m0 are systems and f W m Š m0, then NF.m/ if and only if
NF.m0/.

(3) Nontriviality: NF ¤ ; and for every I 2 I and every M 2 K, there exists an inde-
pendent I -system containing M .

(4) Disjointness: Every independent system is disjoint (see Definition 8.6 (7)).

(5) Symmetry: If I1; I2 2 I, � W I1 Š I2 is an isomorphism, and m is an I1-system, then
NF.m/ if and only if NF.�.m//, where �.m/ is the I2-system naturally induced
by � (see Definition 8.6 (6)).
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(6) Transitivity: If m0 �K m1 �K m2, m0 �m1 is independent, and m1 �m2 is inde-
pendent, then m0 �m2 is independent.

(7) Monotonicity 1: If m is an I -system, NF.m/, and J � I is such that J 2 I, then
NF.m�J /.

(8) Monotonicity 2: If m D hMu W u 2 I i is an I -system, v is a maximal element in I ,
and Mv �K N , then m is independent if and only if hMu W u 2 I n ¹vºi a hN i is
independent.

(9) Monotonicity 3: If m is an I -system, then m is independent if and only if for any
maximal v 2 I , m�¹u 2 I W u � vº is independent.

(10) Monotonicity 4: Let I1; I2 � I all be in I. Let m be an I -system. If

(a) I1 is an initial segment of I ,

(b) I1 \ I2 is cofinal in I1,

(c) I1 [ I2 D I ,

(d) m�I1 and m�I2 are independent,

then m is independent.

(11) Monotonicity 5: Let I 2 I, let u 2 I n ¹?º, and let I0 WD Œu;1/I . Let m, m0 be
I -systems, m0 WDm�I0 be independent, and m00 WDm0�I0 be such that m0 �K m00
and m0 �m00 is independent. Assume that m�.I n I0/ D m0�.I n I0/. Then m is
independent if and only if m0 is independent.

The natural restrictions can be defined on a multidimensional independence relation.

Definition 8.12. Let i D .K; I;NF/ be a multidimensional independence relation.

(1) For J � I a class of partial orders, we let i�J denote the multidimensional indepen-
dence relation j D .K;J;NF�J/, where NF�J denotes the class of systems in NF
that are J -systems for J 2 J.

(2) For K� a sub-abstract class of K, let i�K� denote the multidimensional independence
relation j D .K�; I;NF�K�/, where NF�K� denotes the class of systems in NF that
are also K�-systems. We may write i� instead of i�K�.

The next lemma shows that, under some closedness conditions on I, transitivity fol-
lows from the other axioms:

Lemma 8.13. Let i be a multidimensional independence relation but with transitivity not
assumed. Let m0;m1;m2 be I -systems with I 2 Ii. If m0 �Ki

m1 �Ki
m2, m0 �m1 is

independent, m1 �m2 is independent, and I � 3 2 Ii, then m0 �m1 �m2 is independent.
In particular, if Ii is closed under products, the transitivity axiom follows from the others.

Proof. Say the m`’s are I -systems. Let J WD I � 3. Recalling Definition 8.6 (3) let m WD
m0 � m1 � m2. We check that m is independent by using monotonicity 4: Let I1 WD
I � ¹0; 1º and let I2 WD I � ¹1; 2º. We have m�I1 �m1 and m�I2 D m1 �m2. Both are
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independent by assumption. Moreover, I1 [ I2 D J , I1 is an initial segment of J , and
I1 \ I2 D I � ¹1º is cofinal in I1. Thus monotonicity 4 implies that m is independent.
The “in particular” part follows from monotonicity 1.

One wants to order systems so that if m2 extends m1, then the entire resulting diagram
is independent. This is formalized by looking at m1 �m2.

Definition 8.14. Let i be a multidimensional independence relation. We define a binary
relation �i on NFi as follows: m1 �i m2 if and only if m1 �K m2 (so in particular
I.m1/ D I.m2/) and NFi.m1 �m2/. Let Ki;I be the sub-abstract class of KI (Defini-
tion 8.8) consisting of all independent I -systems and ordered by �i.

One may want in addition to require that the system m1 �m2 is proper:

Definition 8.15. Let i be a multidimensional independence relation. Let I 2 Ii. We let
K

proper
i;I be the class of proper independent I -systems ordered by m1 �K

proper
i;I

m2 if and
only if either m1 D m2 or m1 �m2 is a proper independent system.

Absent from the properties in Definition 8.11 were any kind of extension or unique-
ness. We define these now. Note that existence says there is a system, and extension that
an existing system can be extended. Strong uniqueness will hold only in classes of limit
models, where also the extensions are limit: it says in particular that there is only one
proper system indexed by a given lattice. Uniqueness is the property that will hold in
the original class: it says that each independent system has at most one completion, in
the sense that any two completions amalgamate (so this can apply only when we fix the
cardinality).

Definition 8.16. Let i D .K; I;NF/ be a multidimensional independence relation. The
following are additional properties that i may have:

(1) Existence: For any I 2 I there exists a proper independent I -system.

(2) Extension: For any I; J 2 I with I an initial segment of J , if m is an indepen-
dent I -system, then there exists a .J n I /-proper independent J -system m0 such that
m Š m0�I .

(3) Strong uniqueness: Let m1, m2 be independent J -systems and let I be an initial
segment of J with I 2 I. Let f W m1�I Š m2�I . If m1 and m2 are .J n I /-proper
(Definition 8.2), then there exists g W m1 Š m2 extending f .

(4) Uniqueness: Let m1, m2 be independent J -systems and let I be an initial segment
of J with J D I [ ¹vº, I < v. Let f W m1�I Š m2�I . Then there exists an inde-
pendent J -system m and system embeddings (see Definition 8.6 (4)) g`Wm` ! m,
` D 1; 2, such that g1 extends f and g2 extends f �1.

Any reasonable multidimensional independence relation induces a two-dimensional
independence relation.
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Definition 8.17. Let i be a multidimensional independence relation with P .2/ 2 Ii.

Define a 4-ary relation ^ D^.i/ by M1

M3

^
M0

M2 if and only if .M0;M1;M2;M3/ (seen

as a system indexed by P .2/) is an independent system.

Note that ^.i/ is morally the same as i restricted to P .2/ but they are different for
boring reasons (the first is basically a 4-ary on K, the second is basically a map from P .2/

to K).

Lemma 8.18. If i is a multidimensional independence relation with existence, exten-
sion, and uniqueness such that P .2/ 2 Ii, then ^.i/ . from Definition 8.17/ is a two-
dimensional independence notion on Ki.

Proof. The least trivial axioms to prove are monotonicity and symmetry. Symmetry can
be obtained by using the symmetry property of multidimensional independence relations
with the automorphism of P .2/ swapping ¹0º and ¹1º. Monotonicity actually follows
from the other axioms: see [22, Lemma 3.23].

8.3. Building a multidimensional independence relation

Starting from a two-dimensional independence relation, one can also build a multidimen-
sional independence relation in the natural way:

Definition 8.19. (1) Let ^ be a two-dimensional independence notion on an abstract
class K. Let i D i.^/ be the following multidimensional independence relation:

(A) Ki D K.

(B) Ii is the class of all finite semilattices.

(C) For I 2 Ii and m D hMu W u 2 I i an I -system, m 2 NFi if and only if whenever

u1; u2; v 2 I and u1; u2 � v, then Mu1

Mv

^
Mu1^u2

Mu2 .

(2) We say K has uniqueness (applies mainly to K� above) if whenever M <K� N`
both have the same cardinality for ` D 1; 2 then N1;N2 are isomorphic overM (soK� is
just10 an abstract class). The default11 case isK� being the class of saturated models, and
M <K� N iff M �K N and N is limit over M:

Theorem 8.20. If ^ is a two-dimensional independence notion on an abstract class K

with no maximal models, then i D i.^/ is a multidimensional independence notion such
that ^.i/ D^. Moreover, i restricted to the class of initial segments of P .2/ has exis-
tence, extension, and uniqueness.

10Here K� D K is not a reasonable choice as in the usual case, K�
�

cannot be an AEC.
11Earlier it was suggested K� D KI but for uniqueness to make sense we need this e.g. in Theo-

rem 8.20.
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Proof. Most of the axioms follow directly from the definitions. We only prove:

� Monotonicity 4: Let I1; I2, mDhMu W u 2 I i be as in the statement of monotonicity 4.
Let u1; u2; v 2 I with u1; u2 � v. We have to see that

Mu1

Mv

^
Mu1^u2

Mu2 :

If both u1 and u2 are in I1, or both in I2, then this is immediate from the assump-
tions that m�I1 and m�I2 are both independent (and from preservation of ^ under
K-embeddings). Assume now that one is in I1 n I2 and the other in I2 n I1. By sym-
metry, without loss of generality u1 2 I1 n I2 and u2 2 I2 n I1.

By assumption, I1 \ I2 is maximal in I and I D I1 [ I2, so there exists u0 2 I2 such
that u1 � u0. Let u01 WD ^¹u

0 2 I2 \ I1 j u1 � u
0º. In other words, u01 is the minimal ele-

ment of I1 \ I2 such that u1 � u01. By minimality, we must have u01 � v (otherwise, con-
sider u001 WD u

0
1 ^ v; since I1 is an initial segment, this is in I1 ^ I2 and is still above u1).

By the previous paragraph, we have Mu0
1

Mv

^
M
u0
1
^u2

Mu2 . Also by the previous paragraph

(recalling that I1 is an initial segment, so u01 ^ u2 2 I1 \ I2), Mu1

M
u0
1

^
M
u1^u

0
1
^u2

Mu0
1
^u2

.

By transitivity for^,Mu1

Mv

^
M
u1^u

0
1
^u2

Mu2 . Now note that u1 � u01 by assumption, hence

u1 ^ u
0
1 ^ u2 D u1 ^ u2, as desired.

� Monotonicity 5: Fix the data given by the statement of monotonicity 5. Write m D
hMu W u 2 I i and m0 D hM 0u W u 2 I i.

We first show that m0 independent implies that m is independent. Let u1; u2; u3 2 I

be such that u1; u2 � u3. We want to see that Mu1

Mu3

^
Mu1^u2

Mu2 . There are several cases:

� If u1; u2 … I0, then u1 ^ u2 … I0 (as I n I0 � I ), hence the result follows directly from

the assumption that M 0u1

M 0u3

^
M 0u1^u2

M 0u2 and from ambient monotonicity.

� If u1; u2 2 I0, then apply transitivity.

� If u1 2 I0, u2 … I0, and u1 ^ u2 2 I0, apply transitivity again.

� If u1 2 I0, u2 … I0, and u1 ^ u2 … I0, use monotonicity.

Assume now that m is independent. Let u1; u2; u3 2 I be such that u1; u2 � u3. We

want to see thatM 0u1

M 0u3

^
M 0u1^u2

M 0u2 and we again split into cases. The cases u1; u2 … I0 and

u1; u2 2 I0 are similar to before. If u1 2 I0 and u2 … I0, then u3 2 I0 since I0 is an end
segment. Thus we can apply transitivity and we are done.

� Transitivity: follows from Lemma 8.13.
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That i restricted to the class of initial segments of P .2/ has existence, extension,
and uniqueness follows from the corresponding properties of ^: we only have to note

that a P .2/-system hMu W u 2 P .2/i is independent if and only if M¹0º
M2

^
M;

M¹1º, by the

symmetry axiom of ^.

9. Finite combinatorics of multidimensional independence

In this section, we assume the following.

Hypothesis 9.1. i D .K; I;NF/ is a multidimensional independence relation.

We consider properties of i that are finitary in nature. That is, they do not depend on
any kind of closedness under unions of chains. This allows us to work at a high level of
generality (for example, K is just assumed to be an abstract class). A crucial question is
whether properties (such as extension or uniqueness) that hold for limit systems (that is,
for systems consisting of limit models, ordered by being “limit over”) will also hold for
the other systems not necessarily limit. We prove general positive results in this direction
(Theorems 9.12 and 9.15). The statements use the notion of a skeleton. This is also a place
where we use the fact that I is closed (Definition 8.9), as well as the monotonicity axioms
of Definition 8.11.

We start by proving a few easy consequences of the definition of a multidimensional
independence relation. First, P .1/-systems are trivial.

Lemma 9.2. Let M �K N both be in K. If P .1/ 2 I, then hM;N i is an independent
I -system.

Proof. By nontriviality, there is an independent P .1/-system m containing M . Write
m D hM;N 0i. By monotonicity 2, hM;M i is independent. By monotonicity 2 again,
hM;N i is independent.

It is also easy to see that existence is weaker than extension.

Lemma 9.3. If i has extension, then i has existence.

Proof. Let I 2 I. Start with the empty system and extend it to a proper independent
I -system.

Uniqueness is also weaker than strong uniqueness.

Lemma 9.4. If i has strong uniqueness and K has no maximal models, then i has unique-
ness.

Proof. Given two models M1;M2 to amalgamate over an independent system m, take a
strict extension M 0

`
of M` and use strong uniqueness to see that M 01 is isomorphic to M 02

over m, hence M1 and M2 amalgamate over m.
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9.1. Skeletons of independence relations

It is natural to consider what happens to i when restricting it to a skeleton of K. We
overload terminology and also call such restrictions skeletons of i.

Definition 9.5. Let i and i� be independence relations. We say that i� is a skeleton of i if

(A) Ki� is a skeleton of Ki,

(B) i� D i�Ki� .

Remark 9.6. If K� is a skeleton of K, then it is straightforward to check that i�K� will
be a multidimensional independence relation.

We will consider the following localized versions of extension and uniqueness.

Definition 9.7. Let m be an independent I -system and let K� be a skeleton of K.

(1) We call m a K�-extension base in i if for any J 2 I such that J D I [ ¹vº and
I < v, there exists an independent J -system m0 such that v is K�-proper in m0 and
m Š m0�I . When K� D K and i is clear from context, we omit them and call m an
extension base.

(2) We call m a K�-strong uniqueness base in i if for any J 2 I such that J D I [ ¹vº and
I < v and for any two independent J -systems m1;m2 such that m1�I Dm2�I Dm
and v is K�-proper in both m1 and m2, we have m1Šm m2. As before, when K�DK

and i is clear from context, we may omit them.

(3) We call m a uniqueness base in i if for any J 2 I such that J D I [ ¹vº and I < v
and for any two independent J -systems m1;m2 such that m1�I Dm2�I Dm, there
is an i-independent J -system m� and system embeddings f` Wm` �!m

m� for `D 1; 2.
When i is clear from context, we may omit it.

It turns out that the parameter K� in the definition of a K�-extension base can safely
be omitted. This will be used without comment.

Lemma 9.8. Let m be an i-independent system and let K� be a skeleton of K. Let i� WD

i�K�.

(1) m is a K-extension base in i if and only if m is a K�-extension base in i.

(2) If m is i�-independent, then m is a K�-extension base in i� if and only if m is a
K�-extension base in i.

Proof. Use monotonicity 2 and play with the definition of a skeleton (as in the proof of
Lemma 8.5).

Of course, having extension is the same as all independent systems being extension
bases, and similarly for the other properties.

Lemma 9.9. i has extension Œuniqueness� Œstrong uniqueness� if and only if every inde-
pendent system is an extension Œuniqueness� Œstrong uniqueness� base.
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Proof. Straightforward.

Note also that the uniqueness properties transfer down from i to i�.

Lemma 9.10. Let i� be a skeleton of i. If i has Œstrong� uniqueness, then i� has Œstrong�
uniqueness.

Proof. Straightforward using the basic properties of a skeleton.

The extension property also transfers. In fact, more can be said.

Lemma 9.11. Let i� be a skeleton of i. Write K WD Ki and K� WD Ki� . Assume that i

has extension. Let I; J 2 I with I an initial segment of J . Let m be an i-independent
I -system. There exists an i-independent J -system m0 such that

(1) m Š m0�J ,

(2) m0 is .J n I /-K�-proper .see Definition 8.2/.

In particular, i� has extension.

Proof. Play with skeletons as in the proof of Lemma 8.5.

We now turn to the harder problem of getting the properties in i if we know them
in the skeleton. For extension, this can be done provided that the underlying class is the
same (the ordering may be different). The example to keep in mind is K being the class
of saturated models of cardinality � in a given AEC, and K� consisting of the same class,
but ordered by “being limit over”. Note however that the theorem below also has content
when i D i�: it says that it is enough to prove that proper systems are extension bases.

Theorem 9.12. Let i� be a skeleton of i such that jKi� j D jKij. If every proper i�-
independent system is an extension base, then i has extension.

Proof. Write K WD Ki and K� WD Ki� . For m an i-independent I -system, let k.m/ be
the number of u 2 I which are not K�-proper in m. We prove that every i-independent
system m is an extension base by induction on k.m/.

Let m be an independent I -system and let J D I [ ¹vº 2 I with I < v. If k.m/D 0,
then m is an extension base by assumption. Assume now that k.m/ > 0. Let u 2 I be
such that u is not K�-proper in m. Note that u ¤ ? (minimal elements are proper). Let
I0 WD Œu;1/I and m0 WD m�I0. Note that

(A) I0 � I and I0 � ¹0; 1º 2 I (by (1) in the definition of a multidimensional indepen-
dence relation), hence also I0 2 I (see Definition 8.9: m0 is isomorphic to an initial
segment of I0 � ¹0; 1º),

(B) I n I0 is an initial segment of I , hence is in I,

(C) k.m0/ < k.m/, since u is minimal in I0, hence (since jK�j D jKj) K�-proper in m0

(we are also using the fact that properness is preserved when passing to subsystems,
i.e. Lemma 8.4).
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Let m00 be an i�-independent proper I0-system such that m0 �i m00.
[Why? Let hv` W ` < jI ji list I0 with no repetition such that v` <I vk ) ` < k and

for k � jI j, let Ik WD I�¹v` j ` < kº. Now by induction on k � jI j we choose b0
k

such
that

(a) b0
k

is a .Jk � ¹0; 1º; �/-system,

(b) b0
k
�Jk � ¹uº is isomorphic to bk�Jk over � W Jk � ¹0º Š Jk ;

(c) m0
k
�.Jk � ¹1º/ is ��-independent from Ik � ¹1º-system.

We can carry out the induction and for k D jI j we fulfill the promise above.]
Write m00 D hNu W u 2 I2i. For u 2 I , let M 0u WD Nu if u … I0 and M 0u WD Nu oth-

erwise. Let m0 WD hM 0u W u 2 I i. By monotonicity 5, m0 is i-independent. Moreover,
k.m0/ < k.m/ because u is proper in m0. By the induction hypothesis, m0 must be an
extension base. Let m00 be an independent J -system such that v is proper in m00 and there
is f W m0 Š m00�I . Let m000 be the unique J -system such that m000�¹vº D m00�¹vº and
f �mŠm000�I . By monotonicity 5, m000 is independent, and hence witnesses that m is an
extension base.

This implies a way to obtain extension from existence, provided that the skeleton
satisfies strong uniqueness (in case Ki� consists of limit models, ordered by being limit
over, it turns out that in reasonable cases strong uniqueness will hold in i�, though there
is no hope of it holding in i).

Corollary 9.13. Let i� be a skeleton of i with jKi� j D jKij. If i� has strong uniqueness
and existence, then i has extension.

Proof. By Theorem 9.12, it suffices to show that every proper i�-independent I -system
m is an extension base. So let J D I [ ¹vº 2 I with I < v. By existence, there is a
proper i�-independent J -system m�. By strong uniqueness, m��I is isomorphic to m,
and clearly m��I is an extension base, so m must be one as well.

We now turn to studying under what conditions uniqueness in a skeleton implies
uniqueness in the original independence relation. We are unable to prove the full ana-
log of Theorem 9.12, so we make the additional assumption that I is closed under certain
products. The following is the key lemma.

Lemma 9.14. Let i� be a skeleton of i. Assume that i has extension. Let J 2 Ii be such
that J D I [ ¹vº for I < v. If J � ¹0; 1º 2 Ii and any proper i�-independent I -system
is a uniqueness base, then any i-independent I -system is a uniqueness base.

Proof. Let m D hMu W u 2 I i be an i-independent I -system. Let m1; m2 both be
i-independent J -systems, m` D hM

`
u W u 2 J i, ` D 1; 2 and without loss of generality

m1�I D m2�I D m. We want to find an amalgam of M 1
v and M 2

v fixing m.
Let J 0 WD J � ¹0; 1º, I 0 WD I � ¹0; 1º. Identify J with J � ¹0º. By Lemma 9.11,

we can find an I 0-independent system m0 such that m0�I D m which is .I 0 n I /-K�-
proper. For ` D 1; 2, let m0

`
be the I 0 [ ¹.v; 0/º-system obtained by adding M `

v to m0.
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By monotonicity 2 and 3, m0
`

is still independent. By extension and some renaming, one
can find a J 0-independent system m00

`
such that m00

`
�.I 0 [ ¹.v; 0/º/ D m0

`
. Moreover, we

can arrange that m00
`

is .J 0 n J /-K�-proper. Now let J � WD J � ¹1º and I � WD I � ¹1º.
We have m� WD m001�I � D m002�I �. Moreover, for ` D 1; 2, m�

`
WD m00

`
�J � is a proper

i�-independent system by construction. Thus it is a uniqueness base, so m�1 and m�2 amal-
gamate over m�. This implies that M 1

v and M 2
v amalgamate over m, as desired.

Theorem 9.15. Assume that Ii is closed under products. Let i� be a skeleton of i with
jKij D jKi� j. If i� has strong uniqueness and existence, then i has uniqueness and exten-
sion.

Proof. By Corollary 9.13, i has extension. We have to see that for every I 2 I, every
i-independent I -system is a uniqueness base; but this is immediate from Lemma 9.14.

The following more local result will be used in the proof of Theorem 10.16. It says
roughly that if a uniqueness base is changed by making one of the models on the boundary
smaller, then it is still a uniqueness base. A version of it appears in [36, Claim III.12.26].

Lemma 9.16. Let m D hMu W u 2 I i be an independent I -system. Let u� 2 I be maxi-
mal. Let Nu� 2 K be such that Mu� �K Nu� . Let m� WD m�.I n ¹u�º/ a Nu� . If ^.i/
has extension and m� is a uniqueness base, then m is a uniqueness base.

Proof. Let J D I [ ¹vº 2 I with I < v. Let m` D hM
`
u W u 2 J i for `D 1; 2 be indepen-

dent systems with m`�I D m for ` D 1; 2. We want to amalgamate M 1
v and M 2

v over m.
Let ^ WD^.i/.

Using the extension property for^, find f`;N `
v , `D 1;2, such that f` WNu� ���!

Mu�
N `
v

andM `
v

N `v

^
Mu�

f`ŒNu� �. Let m0
`
WDh.M `

u/
0 W u 2 J i be defined by .M `

u/
0 WDMu if u2I n¹u�º,

.M `
u�/
0 WD f`ŒNu� �, and .M `

v /
0 WD N `

v . By monotonicity 4, m0
`

is an independent system.
Let f WD f2f

�1
1 �.M 1

u�/
0. Then f W m01�I Š m02I and since m01 Š m� and m� is

a uniqueness base, we know that there exists g extending f amalgamating N 1
v and N 2

v .
Such an f also amalgamates M 1

v and M 2
v over m, as desired.

10. The multidimensional amalgamation properties

Throughout this section, we continue to assume the following.

Hypothesis 10.1. i D .K; I;NF/ is a multidimensional independence relation.

We study the existence and uniqueness properties restricted to systems indexed
by P .n/ for some n < !. We show (Lemma 10.9, Theorem 10.10) that once we
have those, we can (under reasonable conditions), obtain the properties for systems
indexed by other sets. We also give a relationship between extension and existence
using strong uniqueness, akin to Corollary 9.13 but stronger: we only use strong unique-
ness for smaller systems. This is Theorem 10.11. Finally, we give sufficient conditions
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for the n-dimensional properties in terms of amalgamation properties inside classes of
n-dimensional systems. The most important of these results is Theorem 10.16.

It will be convenient to restrict oneself to systems indexed by finite initial segments
of P .!/. Independence relations considering only such systems will be called okay.
We then define the n-dimensional properties by saying that they must hold for systems
indexed by initial segments of P .n/.

Definition 10.2. (1) For n < !, let In be the class of all partial orders isomorphic to an
initial segment of P .n/. Let I<! WD

S
n<! In.

(2) We say that i is okay if I � I<! . We say that i is n-okay if it is okay and P .n/ 2 Ii.

(3) For P a property from Definition 8.16 and n < !, we say that i has n-P if i is n-okay
and i�In has P . We say that i has .<n/-P if it has m-P for all m < n.

(4) For P a property, � an infinite cardinal and n < !, we say that i has .�;n/-P if i�K�

has n-P . We say that i has .�; <n/-P if it has .�; m/-P for all m < n. Similarly
define variations like .‚; n/-P for ‚ an interval of cardinals.

Remark 10.3. Since i is closed under initial segments, if i is n-okay then In � I, so i is
m-okay for any m < n.

Note that i�I<! is always an okay independence relation, so replacing i by i�I<! ,
we assume for the rest of this section that i is okay.

Hypothesis 10.4. i is okay.

It is easy to characterize the low-dimensional amalgamation properties in terms of
familiar properties.

Lemma 10.5. (1) i has 0-existence if and only if i has 0-extension if and only if K ¤ ;.

(2) i has strong 0-uniqueness if and only if K has at most one model up to isomorphism.

(3) i has 0-uniqueness if and only if K has joint embedding.

(4) i has 1-extension if and only if i is 1-okay, K is not empty, and K has no maximal
models.

(5) i has 1-uniqueness if and only if i is 1-okay and K has amalgamation and joint
embedding.

(6) If i has 2-extension, then K has disjoint amalgamation.

Proof. Immediate.

Interestingly, strong 1-uniqueness together with uniqueness already implies strong
uniqueness. In case we are considering classes of limit models ordered by being limit
over, strong 1-uniqueness is exactly the uniqueness of limit models, a key property studied
in many papers [17, 45–48].

Lemma 10.6. If i has strong 1-uniqueness and uniqueness, then i has strong uniqueness.
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Proof. We use Lemma 9.9. Let m` D hM
`
u W u 2 J i, `D 1; 2, be independent J -systems.

Let v be a top element of J and let I WD J n ¹vº. Assume that m WDm1�I Dm2�I and v
is proper in both m1 and m2. We show thatM 1

v andM 2
v are isomorphic over m. By defini-

tion of being proper, we can pickN `
v <K M

`
v so thatM `

u �K N
`
v , `D 1;2. By uniqueness,

there existM 2 K and f` W N `
v !M with f` fixing m, `D 1; 2. If jJ j � 2, there is noth-

ing to prove so assume that jJ j > 2. ThenM 1
v must be a proper extension ofM 1

u for each
u<v. By strong 0-uniqueness, K must have no maximal models. Thus we can pickN 2K

with M <K N . By strong 1-uniqueness and some renaming there exists g` W M `
v Š N

extending f`, ` D 1; 2. In the end, g WD g�12 g1 is the desired isomorphism.

We now want to show that it is enough to prove that P�.n/-systems are extension
bases to get n-extension. To this end, the following invariance of a semilattice will be
useful.

Definition 10.7. For I 2 I<! and u 2 I , let n.I;u/ be the cardinality of f .u/, where f W
I !P .!/ is any semilattice embedding such that f ŒI � is an initial segment of P .!/. Let
n.I / be the maximum of n.I; u/ for all u 2 I . When I is empty, we specify n.;/ D �1.

Lemma 10.8. Let n < ! and I; J 2 I<! be nonempty.

(1) If I � J , then n.I / � n.J /.

(2) n.P .n// D n.

(3) n.P�.n// D n � 1.

(4) n.I � ¹0; 1º/ D n.I /C 1.

(5) If I 2 In, then n.I / � n.

Proof. Straightforward.

Lemma 10.9. Let I; J 2 I<! and let I be an initial segment of J . Let n WD n.J /.

(1) If for every m � n, every proper P�.m/-system is an extension base, then every
proper independent I -system can be extended to a proper independent J -system.

(2) If for every m � n, every proper P�.m/-system is a strong uniqueness base, then for
any proper independent J -systems m1;m2 and any isomorphism f Wm1�I Šm2�I ,
there is an isomorphism g W m1 Š m2 extending f .

Proof. Identify J with an initial segment of P .!/.
(1) Let m be a proper independent I -system. Let u 2 J n I be such that J0 WD I [ ¹uº

is an initial segment of J . It is enough to show that m can be extended to a proper inde-
pendent J0-system. Let m WD juj. Note that m � n. Let � W u! m be a bijection. Since
J0 is an initial segment of P .!/, � induces an isomorphism from .�1; u� D P .u/

onto P .m/. In particular, m�P�.u/ is an extension base. Now extend it to P .u/ and use
monotonicity to argue that this induces an extension of m to J0.

(2) Similar.
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Theorem 10.10. Let n < ! and assume that i is n-okay. If for everym � n, every proper
P�.m/-system is an extension base, then i has n-extension.

Proof. Directly from Theorem 9.12 and Lemma 10.9.

The following result will be useful to obtain extension from existence and strong
uniqueness for lower-dimensional systems:

Theorem 10.11. Let n < ! and assume that i is n-okay. If i has strong .<n/-uniqueness,
then i has n-existence if and only if has n-extension.

Proof. If i has n-extension, then by Lemma 9.3 it always has n-existence (this does not
use strong uniqueness). Assume now that i has n-existence. By Theorem 10.10, it suffices
to show that for everym� n, every proper P�.m/-system is an extension base. Letm� n
and let m be a proper P�.m/-system. By n-existence, there is a proper P .m/-system m0.
By strong .<n/-uniqueness and Lemma 10.9, m0�P�.m/ Š m. Since m0�P�.m/ is an
extension base, so is m.

We would like to establish a criterion to obtain uniqueness from a kind of amalga-
mation in the class K

proper
i;P .n/

(Definition 8.15). It turns out that a slightly finer version of
K

proper
i;P .n/

is useful for this purpose: the idea is that we require the interior of the system
to be limit but allow the boundary not to extend the rest in a limit way (of course this is
formulated abstractly using skeletons).

Definition 10.12. (1) Let n < ! and assume that i is n-okay. Let i� be a skeleton of i.
Let K� be the class of proper i-independent P .n/-systems m such that m�P�.n/ is
i�-independent. Let K

proper
i;i�;P .n/

be the abstract class whose underlying class is K� and
whose ordering is m1 �K

proper
i;i�;P .n/

m2 if and only if either m1 D m2, or whenever m` D

m�
`
aM` with m�

`
WDm`�P�.n/, `D 1; 2, we have m1 �i m2,M1 andM2 are in Ki� ,

M1 <Ki�
M2, and m1�P�.n/ <K

proper
i�;P�.n/

m2�P�.n/.
(2) Assume I ¨ J are finite initial segments of P .!/; n WD n.J / and I D ¹u 2 J j

juj < nº. We repeat the definition in part (1) with I; J playing the roles of P�.n/;P .n/:

Remark 10.13. K
proper
i�;P .n/

� K
proper
i;i�;P .n/

� K
proper
i;P .n/

. In particular, K
proper
i;i;P .n/

D K
proper
i;P .n/

.

Definition 10.14. For n < !, we let �n.x/ be the formula in the vocabulary of systems
(Definition 8.8) which holds inside a P .n/-system hMu W u 2 P .n/i if and only if a 2S
u¨nMu. That is, �n.x/ is

W
u¨nPu.x/, wherePu is the predicate corresponding toMu.

The following easy relationships hold between the n-dimensional properties and
classes of proper n-dimensional systems. See Definition 5.6 for the definitions of �-
categoricity, �-amalgamation, �-uniqueness, etc.

Lemma 10.15. Let n < !. Assume that i is .nC 1/-okay and let i� be a skeleton of i.

(1) For any m1 2 K
proper
i;i�;P .n/

, there exists m2 2 K
proper
i�;P .n/

such that m1 �Ki
m2 and

m1�P�.n/ D m2�P�.n/.
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(2) If i� has strong .<n/-uniqueness, then K
proper
i;i�;P .n/

is �n-categorical.

(3) If i� has strong n-uniqueness, then any m 2 K
proper
i�;P .n/

is �n-universal in
.jK

proper
i;i�;P .n/

j;�dKi
/.

(4) If i� has strong n-uniqueness, then K
proper
i;i�;P .n/

has �n-uniqueness.

(5) Let NmD .m0;m1;m2/ be a �n-span in K
proper
i;i�;P .n/

, and write m` D hM
`
u W u 2 P .n/i,

` D 0; 1; 2. Then Nm has a �n-amalgam in K
proper
i;i�;P .n/

if and only if there exist N 2 Ki

and f` WM `
P .n/
��!
m0

N , ` D 1; 2, such that f1�M 1
u D f2�M 2

u for all u 2 P�.n/.

(6) If m is a �n-amalgamation base in K
proper
i;i�;P .n/

, then for any m0 2 K
proper
i;i�;P .n/

with
m �K

proper
i;i�;P .n/

m0, .m �m0/�P�.nC 1/ is a uniqueness base in i.

Proof. (1) By the basic properties of a skeleton.
(2) Since i� has strong .<n/-uniqueness, any two i�-independent P�.n/-systems are

isomorphic.
(3) By the first part and strong n-uniqueness.
(4) Expanding the definitions, it suffices to show that if m1, m2 are P�.n C 1/-

systems such that m1�P�.n/Dm2�P�.n/, then there is an isomorphism f Wm1 Šm2

fixing m1�P�.n/. This is implied by strong n-uniqueness, because n.P�.nC 1// D n.
(5) By monotonicity.
(6) Expand the definitions.

The following result (used in the proof of Lemma 11.16) will be crucial: under the
assumption of density of certain amalgamation bases in the class of .nC 1/-dimensional
systems, it implies that the whole independence relation has .n C 1/-uniqueness. More
precisely, we also assume that n � 2, work inside a skeleton, and assume that the skeleton
has strong n-uniqueness and .nC 1/-extension (in the case of interest, these will hold).

Theorem 10.16. Let n 2 Œ2; !/. Let i be a multidimensional independence notion and let
i� be a skeleton of i. If

(A) i� has .nC 1/-extension and strong n-uniqueness,

(B) for any m0 2 K
proper
i�;P .n/

, there exists a �n-amalgamation base m1 2 K
proper
i;i�;P .n/

such
that m0 �K

proper
i;i�;P .n/

m1,

then i� has .nC 1/-uniqueness.

Proof. By Theorem 9.12, i has .nC 1/-extension. By Lemma 9.14, the proof of Lemma
10.6, and Lemma 10.9, it suffices to show that every proper i�-independent P�.nC 1/-
system is a uniqueness base (essentially we are reducing uniqueness to uniqueness for
proper systems). Note that n.P�.nC 1// D n, so by Lemma 10.9 again, any two proper
i�-independent P�.n C 1/-systems are isomorphic. Thus it suffices to show that some
proper i�-independent P�.nC 1/-system is a uniqueness base.

Pick any m0 2 K
proper
i�;P .n/

(exists by extension in i�). By assumption, there is a
�n-amalgamation base m1 in K

proper
i;i�;P .n/

which extends m0. By .n C 1/-extension,
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there exists m2 2 K
proper
i;i�;P .n/

such that m1 <K
proper
i;i�;P .n/

m2. By Lemma 10.15 (6), m WD
.m1 � m2/�P�.n C 1/ is a uniqueness base (but may not be proper, so we have to
work more). Write m D hMu W u 2 P�.nC 1/i and let m0 D hM 0u W u 2 P�.nC 1/i be
defined as follows: let I0 WD P�.nC 1/ n ¹nº, m0�I0 WD .m0 �m2/�I0,M 0n DMn. It is
easy to check that m0 is an independent system and a uniqueness base as well: anytime a
model N extends all the elements of m0, it extends all the elements of m.

Now let m� be a P�.nC 1/-system defined as follows: m��I0Dm0�I0 and m��¹nº
D m0�¹nº. Note that then m��P .n/ D m0, and it is easy to check that m� is a proper
i�-independent system. Moreover, m��¹nº �K m0�¹nº by definition of m0, so by Lem-
ma 9.16, m� is a uniqueness base, as desired.

11. Continuous independence relations

This section is central. We define here the conditions a multidimensional independence
relation should satisfy to be well behaved with respect to increasing chains. In particular,
it should be closed under unions of those. We call such multidimensional independence
relations very good. They are the ones we really want to study. We prove the construction
theorem (Theorem 11.3), which says that from a very good two-dimensional indepen-
dence relation, we can build a very good multidimensional independence relation.

We study an important subclass of independent systems: the limit ones (Defini-
tion 11.7). We show that they are quite well behaved under unions and resolvability
(Lemma 11.9). There are some technical issues here, since we do not know that the class
of n-dimensional limit systems is closed under unions until we have proven .n C 1/-
dimensional uniqueness, but we want to use the former in the proof of the latter. We use
the class K

proper
i;i�;P .n/

(Definition 10.12) to get around this.
We prove the n-dimensional properties by studying the class of limit systems and

using the weak diamond (or a strongly compact cardinal). Crucial is the stepping up
lemma (Lemma 11.16) which shows how to go from the n-dimensional properties to the
.nC 1/-dimensional properties (for limit systems). It leads directly to the limit excellence
theorem (Theorem 11.17) giving sufficient conditions for the n-dimensional properties.
Of course, once we have the properties for limit systems, we will be able to get them for
regular systems using the results of Section 9.

The first definition is the multidimensional analog of Definition 7.11.

Definition 11.1. We say that a multidimensional independence relation i has strong con-
tinuity if whenever hmi W i � ıi is a �K-increasing continuous chain of .I;Ki/-systems
and mi is independent for all i < ı, then mı is independent.

Definition 11.2. Let i be a multidimensional independence relation. We say that i is very
good if

(A) i is n-okay for all n < ! (so Ii D I<!) (see Definition 10.2),

(B) ^.i/ is very good,
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(C) i has strong continuity,

(D) For any I 2 I, both Ki;I and the class K� of independent I -systems ordered by �dK
(see Definition 8.6 (2)) are fragmented AECs; moreover, the AECs they generate have
the same models.12

Very good multidimensional independence relations are obtained by taking a very
good two-dimensional independence notion and applying the construction described in
Definition 8.19 (and proven to have some good properties in Theorem 8.20).

Theorem 11.3 (The construction theorem). If ^ is a very good two-dimensional inde-
pendence notion on K, then13 i.^/�I<! (see Definition 10.2) is a very good multidimen-
sional independence notion.

Proof. Let i WD i.^/�I<! . By Theorem 8.20, i is a multidimensional independence
notion. By definition, i is n-okay for all n < ! and ^.i/ D ^ (see the statement of
Theorem 8.20), which is very good by assumption. It also follows from the definition of i

that it has strong continuity, since ^ does. It remains to see that for any I 2 I, both Ki;I

and K� (the class of independent I -systems ordered by �dK) are fragmented AECs that
generate the same models. Now K is a fragmented AEC because ^ is very good. Thus
by strong continuity it follows immediately that K� is a fragmented AEC, and that Ki;I

is a fragmented AEC similarly follows from the definition of ^. It remains to check that
those two classes generate the same class of models. Let � WD min.‚/, let K1 be the AEC
generated by Ki;I , and let K2 be the AEC generated by K�. Note that jK1

�
j D jK2

�
j, and

�K1
�
D�.Ki;I /� ,�K2 D�

d
K. Since�K� extends�Ki;I

, we have jK1j � jK2j. To see the

other direction, let m 2K2. We claim that there exists m0 in K1
�

such that for any subsetA
of m of size � there is m1 2K1

�
with m0 �K1 m1, m1 �K2 m, and m1 containing A. This

will suffice by the usual directed system argument. Suppose that the claim fails. We build
hmi W i < �

Ci �K2 -increasing continuous in K1
�

such that for all i < �, mi 6�K1 miC1.
This is possible by failure of the claim. This is enough: we know that ^ is very good,
hence reflects down. From the definition of i, there must be a club of i < �C such that
mi �i;I miC1, a contradiction.

Note that a very good multidimensional independence relation has underlying class
a fragmented AEC, which may possibly “shrink” (e.g. it could be a class of saturated
models). The next lemma shows that the AEC generated by this fragmented AEC also
carries a multidimensional independence relation (which is quite nice, but may fail to be
very good because of the requirement that ^.i/ be very good, hence has extension and
uniqueness).

Definition 11.4. We call a multidimensional independence relation i almost very good if

(A) imin.dom.i// is very good,

12This is a multidimensional analog of reflecting down (Definition 7.7).
13Note that Ii.^/

is a class of latices, whereas I is a countable set of latices included in it.
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(B) i satisfies all the properties in the definition of very good, except that ^.i/ may not
be very good.

Lemma 11.5. Let i be a very good multidimensional independence notion. Let � WD
min.dom.Ki//. Then there exists a .unique/ multidimensional independence notion i0

such that

(A) imin.dom.i// is very good,

(B) � D min.dom.Ki0// and i� D i0
�

,

(C) i0 is almost very good.

Proof. Let K be the AEC generated by .Ki/�. More generally, for each I 2 I, let KI be
the AEC generated by .Ki;I /�. We let i0 be defined as follows: Ki0 DK, Ii0 D Ii, and for
any .K; I /-system m, m is i0-independent if and only if m 2 KI . It is a straightforward
(but long) argument to check that i0 is indeed the desired multidimensional independence
relation.

Note that if we have all the n-dimensional properties at a fixed cardinal �, we can
transfer them up.

Lemma 11.6. Let i be an almost very good multidimensional independence relation with
domain Œ�1; �2� . for �1 < �2/ and let n < !.

(1) If i has .Œ�1; �2/; nC 1/-extension, then i has .Œ�1; �2�; n/-extension.

(2) If i has .Œ�1; �2/; n C 1/-uniqueness and .Œ�1; �2/; n C 1/-extension, then i has
.Œ�1; �2�; n/-uniqueness.

In particular, if i has .�1; <!/-extension and .�1; <!/-uniqueness, then i has extension
and uniqueness.

Proof. This is quite standard, and the definitions are tailored to make this work, so we do
not replay the arguments here. See [28, Section 5] for example. As a warmup, the reader
may want to prove that no maximal model and disjoint amalgamation in � imply no max-
imal models in �C (this is a combinatorial version of .�; 2/-extension implying .�C; 1/-
extension – disjoint amalgamation plays the role of low-dimensional independence).

Limit systems are candidates for strong uniqueness, so are an important object of
study. In fact, they are our main example of proper systems and we are now finally shifting
to specializing our results to them.

Definition 11.7. Let i be a very good multidimensional independence relation. We define
a multidimensional independence relation ilim as follows:

(A) Kilim coincides with Klim
i , the class of limit models in Ki, ordered by being limit over

(see Definition 3.23).

(B) Iilim D Ii.

(C) NFilim D NFi�Kilim .



S. Shelah, S. Vasey 2356

We call a proper ilim-independent system a limit i-independent system.

Definition 11.8. Let i be a very good multidimensional independence relation and let i�

be a skeleton of i. For I 2 Ii, we let K
proper;�
i;i�;I be the sub-abstract class of K

proper
i;i�;I (as in

Definition 10.12 (2)) with the same ordering but consisting only of the systems where all
models have the same cardinality. Similarly define K

proper;�
i�;I to be the sub-abstract class

of K
proper
i�;I (Definition 8.15) consisting of systems with all models of the same cardinality.

The class of limit systems satisfies the following properties:

Lemma 11.9. Let i be a very good multidimensional independence relation with
domain ‚.

(1) ilim is a skeleton of i.

(2) For any � 2 ‚, ilim has strong .�; 2/-uniqueness and .�; 2/-existence.

(3) For any subinterval ‚0 of ‚, .i‚0/
lim D .ilim/‚0 .

(4) For any I 2 Ii, K
proper;�
ilim;I

is a resolvable abstract class with LST number min.‚/.

(5) Let ‚� WD ¹� 2 ‚ j �C 2 ‚º.

(a) Let I 2 Ii and let n WD n.I /. If for any � 2 ‚�, ilim has strong .�; n C 1/-
uniqueness and .�; nC 1/-extension, then K

proper;�
i�;I is ‚�-continuous.

(b) Let n < !. If for any � 2 ‚�, ilim has strong .�; n/-uniqueness and .�; n/-
extension, then K

proper;�
i;i�;P .n/

is ‚�-continuous.

Proof. (1) Directly from the definitions and the (easy) fact that Klim
i is a skeleton of Ki.

(2) Because i has these properties by definition of very good. That is, any relevant
property for ilim is such property for iI and applying the property for i we know that there
a solution and it is easy to “convert” it to a solution in ilim.

(3) Immediate from the definitions.
(4) We leave it to the reader to verify that the LST number is min.‚/. We prove

that K
proper;�
ilim;I

is resolvable. We check that the conditions of Lemma 5.4 are satisfied. All
the conditions are easy, except for resolvability for successors. So let m 2 K

proper;�
ilim;I

have
cardinality �C and let m0 �K

proper;�
ilim;I

m1 have cardinality �, with �;�C 2‚. Since Ki;I is a

fragmented AEC, it is resolvable, hence there exists a resolution hmi W i < �
Ci of m over

m0 in Ki;I . Write mi D hM
i
u W u 2 I i. What are we missing to make this a resolution in

K
proper;�
ilim;I

? We want the mi ’s to be limit, and in fact we also want mi �miC1 to be limit.
From the properties of being limit, it is in fact enough to show that there is a club C
of �C such that hmi W i 2 C i is an increasing chain in K

proper;�
ilim;I

. To get this club, first get

a club C1 (using Lemma 5.3) such that for i < j both in C1, M i
u is limit and M j

u is limit
over M i

u (this is possible since M�C

u is limit, hence saturated). Next, use Fact 7.10 on
each pair of models in m and intersect clubs to find that on a club C , for all i 2 C , M i

v

is limit over M i
u whenever u < v. This is not enough to make mi limit, as we need for

each u 2 I an intermediateM such thatM i
u is limit overM andM is limit over eachM i

v ,
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v < u. Now by assumption m�C is limit, so for each u 2 I there existsM �u withM �u limit
over M�C

v and M�C

u limit over M �u . Resolve m�C a M �u as before to obtain a club Cu
and a resolution hM �;iu W i 2 Cui of M �u such that M �;iu is limit over M i

v for each v < u
and M i

u is limit over M �;iu . Note that we can further require that for i < j both in Cu,
M
�;j
u is limit overM �;iu , hence the corresponding part of the system mi �mj is also limit.

Now intersect all the Cu’s and intersect further with C1 to get the desired club.
(5) Clause (a): Let hmi W i < ıi be an increasing chain in .Kproper;�

i�;I /‚� . Let mı WDS
i<ı mi . Then mı is an independent system, and the only issue is to prove that it is limit

(that is, the extensions between the models are limit). Once this is done, it will immedi-
ately follow that mı extends m0. Write mi D hM

i
u W u 2 I i. By Fact 7.9, we directly see

that M ı
v is limit over M ı

u for each u < v. However, we need more: for a fixed u 2 I ,
we want M ı

u to be limit over
S
v<uM

ı
v . Recall (Definition 3.5 (4)) that this means that

there is M such that M is limit over each M ı
v , v < u, and M ı

u is limit over M . In fact, it
suffices to findM � such thatM extends eachM ı

v , v < u, andM ı
u is limit overM � (then

pick M limit over M � such that M ı
u is limit over M ).

We proceed by induction on ı. So we can assume that ı D cf.ı/ and the chain
hmi W i < ıi is continuous. Fix u 2 I and write Ai WD

S
v<uM

i
v . We build an increasing

continuous chain hMi W i � ıi of limit models such that for all i < ı,

(1) MiC1 is limit over Mi ,

(2) Ai � jMi j,

(3) M i
u is limit over Mi ,

(4) M i
u

M
iC1
u

^
Mi

MiC1 (where ^ D^.i/).

This is enough: by Fact 7.9, Mı is as desired. This is possible: The base case uses
the fact that m0 is itself a limit system. At limits, take unions (and use Fact 7.9). For
the successor step, assume we are given i < ı. Let I0 WD ¹v 2 I j v � uº, and let J WD
I0 [ ¹v

�º, where v� is a new element such that v� < u and v < v� for all v 2 I with
v < u.

Let m�i D hM
�
v W v 2 J i be the J -system such that m�i �I0 Dmi�I0 andM �v� DMi .

It is easy to check that this is a limit independent system. We now use .nC 1/-extension
to build a limit independent J -system m�� with m� �K K

proper;�
ilim;J

m�. We do this in two
steps: first we build an I -system extending m��I (using extension on I � ¹0;1º, note that
n.I � ¹0; 1º/ D n.I /C 1 D nC 1), then using two-dimensional extension to complete
this to an extension m��. Now by strong .nC 1/-uniqueness (again applied in two steps),
there is f Wm�� Šmi miC1. LetMiC1 WD f ŒM

��
v� �, whereM ��v� is the v�-indexed element

of m��.
Clause (b): immediate from the previous part applied to I D P�.n/.

As hinted at before, limit models are well behaved with respect to the n-dimensional
properties: strong uniqueness is equivalent to uniqueness, and existence is equivalent to
extension (assuming lower-dimensional uniqueness).
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Lemma 11.10. Let i be a very good independence relation. Let � 2 dom.i/ and let n<!.

(1) ilim has strong .�; n/-uniqueness if and only if ilim has .�; n/-uniqueness.

(2) If ilim has .�; <n/-uniqueness, then ilim has .�; n/-existence if and only if ilim has
.�; n/-extension.

Proof. (1) By Lemmas 10.6 and 11.9 (2).
(2) By Theorem 10.11 and the previous part.

In compact classes, one can take an ultraproduct of limit systems and it will still be
limit. In fact, we will see that the existence of such a uniform extension is very powerful,
so we call independence relations with this property nice.

Definition 11.11. Let i be a very good multidimensional independence relation. For
m1;m2 2Ki;I , say with m`D hM

`
u W u 2 I i, we say that m2 is limit over m1 if m1 �i m2

and M 2
u is limit over M 1

u for all u 2 I .

Definition 11.12. A very good multidimensional independence relation i is nice if

(A) Ki is categorical in every � 2 dom.i/,

(B) for any n < ! and any m1, m2 2Ki;P .n/ with m1�P�.n/Dm2�P�.n/, there exist
independent m01;m

0
2 such that

(a) m0
`

is limit over m`,

(b) m01�P�.n/ D m02�P�.n/,
(c) if m` D hM

`
u W u 2 P .n/i, m0

`
D hN `

u W u 2 P .n/i, then kM `
uk D kN

`
uk for all

u 2 P .n/ and ` D 1; 2.

Compact AECs have a nice independence notion.

Theorem 11.13. Let K be a compact AEC. If K is categorical in some � > LS.K/,
then there exists a nice very good multidimensional independence notion i with
Ki D Ksat

�LS.K/C6
.

Proof. By Fact 7.21, there is a categorical very good frame s on Ksat
�LS.K/C6

. Let ^ be
the very good two-dimensional independence notion associated with s. Let i WD i.^/. By
Theorem 11.3, i is very good; we only have to check that it is nice. From the definition,
Ki is indeed categorical in all cardinals, so we have to check the second clause in the
definition of being nice. Let m1;m2 be as there. Write m` D hM

`
u W u 2 P .n/i. Using

[3, Corollary 4.11], we can build a �-complete ultrafilter U such that for each u 2 P .n/

and ` D 1; 2, the U -ultrapower N `
u of M `

u (seen as an extension of M `
u) is limit over M `

u .
Let m0

`
WD hN `

u W u 2 P .n/i. We show that m` �i m0
`
. It is then not difficult to show, using

a downward Löwenheim–Skolem-like argument, that one can take appropriate submodels
of the N `

u ’s to be of the same size as the M `
u’s and satisfy the requirements.

Essentially by [4, 5] (and more precisely by the proof of [5, Corollary 6.8]), the two-
dimensional independence relation on i is given by �-coheir (see [4, Definition 3.2]). Thus
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it follows from the claim before the proof of [4, Theorem 8.2] and some forking calculus
that m` �i m0

`
.

We now start working toward the key stepping up lemma, allowing us to move from
a .�; nC 1/-property to a .�C; n/-property. Existence is the easiest: to find a .�; nC 1/-
system, one can simply resolve a .�C; n/-system. This is formalized by the following
lemma.

Lemma 11.14. Let i be a very good multidimensional independence notion with domain
¹�; �Cº. If ilim has .�C; n/-existence, then ilim has .�; nC 1/-existence.

Proof. By .�C; n/-existence, pick a limit independent .�C;P .n//-system m. By Lemma
11.9 (4), K

proper;�
ilim;P .n/

is resolvable, so there exists a strictly increasing continuous chain
hmi W i < �

Ci in K
proper
ilim;P .n/

where for each i < �C, mi is a limit independent .�;P .n//-
system, and m D

S
i<�C mi . Now by definition of �K

proper
ilim;P .n/

, m0 �m1 is a limit inde-

pendent .�;P .nC 1//-system, as desired.

Thus we obtain the existence properties for free if the interval of cardinals we are
working in is closed under the successor operation.

Lemma 11.15. Let i be a very good independence notion with domain ‚ WD Œ�1; �2/. If
�2 is a limit cardinal, then for any � 2 ‚, ilim has .�;<!/-existence.

Proof. We prove by induction on n<! that for any �2‚, ilim has .�;n/-existence. When
n D 0, this is part of Lemma 11.9. Assume now inductively that ilim has .�; n/-existence
for all � 2 ‚. Let � 2 ‚. Since �2 is limit, �C 2 ‚. By the induction hypothesis, ilim has
.�C; n/-existence. By Lemma 11.14 (applied to i�¹�;�Cº), ilim has .�;nC 1/-existence,
as desired.

We now attack the harder issue of obtaining .nC 1/-dimensional uniqueness from the
n-dimensional properties. This is done using the weak diamond.

Lemma 11.16 (The stepping up lemma). Let �1 and �2 be infinite cardinals such that
2�1 D 2<�2 < 2�2 . Let i be a very good independence relation with domain‚ WD Œ�1;�2�.
Assume that for all � 2 ‚, ilim has .�; n/-existence and .�; n/-uniqueness. Then:

(1) For all � 2 Œ�1; �2/, ilim has .�; nC 1/-existence.

(2) There exists � 2 Œ�1; �2/ such that ilim has .�; nC 1/-uniqueness.

(3) If i is nice and ilim has .�2; nC 1/-existence, then ilim has .�; nC 1/-uniqueness for
all � 2 Œ�1; �2/.

Proof. (1) By Lemma 11.14 applied to i�¹�; �Cº.
(2) By Lemma 11.10, for every � 2 Œ�1; �2�, ilim has strong .�; n/-uniqueness and

.�; n/-extension, and for every � 2 Œ�1; �2/, ilim also has .�; n C 1/-extension. Write
K� WD K

proper;�
i;ilim;P .n/

(Definition 11.8).

Claim. There is N 2 K�
Œ�1;�2/

which is a �n-amalgamation base in K�
kNk

.
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Proof of Claim. Let K�� be jK�j ordered by m �K�� m0 if and only if m �dK m0 (Def-
inition 8.6 (2)). We apply Theorem 5.8 with K�, K��; �n standing for K, K�; � there
(recalling Definition 10.14). Note first that K�

Œ�1;�2/
is not empty since ilim has .�;nC 1/-

existence for each � 2 Œ�1; �2/. Thus if we can check that the hypotheses of Theorem 5.8,
the � D 2 version, hold, we will obtain the conclusion of the claim. First observe that
K� is Œ�1; �2/-continuous by Lemma 11.9 (5). Next, there is a �n-universal model in
K��
�2

by Lemma 10.15 (3). Further, K��
�2

is �n-categorical by Lemma 10.15 (2). More-
over, for any � 2 Œ�1; �2/, K�

�
has �n-uniqueness (Lemma 10.15 (4)). Finally, for any

� 2 Œ�1; �2/, if we can �n-amalgamate in K��, then we can �n-amalgamate in K� by
Lemma 10.15 (5). Claim

Now let � WD kN k, and apply Theorem 10.16 with i�; .i
lim/� standing for i; i� there.

We find that ilim has .�; nC 1/-uniqueness, as desired.
(3) Assume that i is nice and ilim has .�2; n C 1/-existence. It is enough to show

that ilim has .�1; n C 1/-uniqueness. Then given an arbitrary � 2 Œ�1; �2/, we can run
the same argument with Œ�; �2� playing the role of ‚. By the previous part, there is
� 2 Œ�1; �2/ such that ilim has .�; n C 1/-uniqueness. Let m0 be a limit independent
P�.n C 1/ system in �1 and let m1;m2 be limit independent P .n C 1/-systems in
�1 such that m1�P�.nC 1/ D m2�P�.nC 1/ D m0. We build hmi

`
W i � �i, strictly

increasing continuous in Ki;P .nC1/, such that for all i < �,

(a) m0
`
D m`, ` D 1; 2,

(b) all the models in mi
`

have cardinality �1 C ji j,

(c) miC1
`

is limit over mi
`

for ` D 1; 2,

(d) mi
1�P�.nC 1/ D mi

2�P�.nC 1/.

This is possible by definition of niceness (since the extensions are limit, we can take
unions at limits). Now let m� WD m�

1�P�.nC 1/ D m�
2�P�.nC 1/. We claim that m�

is a uniqueness base. From that it will directly follow that m0 is also a uniqueness base,
as desired. We would like to use ilim having .�; n C 1/-uniqueness, but we cannot do
so directly since m� may not be limit (all the models in the system are limit, but the
extensions between the models may not be). We want to apply Lemma 9.14 with i��InC2,
.ilim/��InC2;P .nC 1/ standing for i; i�; J there. To apply it, we need to check that i

has .�; nC 2/-extension.
By Lemma 9.12 and categoricity, it is enough to check that ilim has .�; n C 2/-

extension. We already know that ilim has .�0; nC 1/-existence for all �0 2 Œ�1; �2� (when
�0 D �2, this is a hypothesis, and when �0 2 Œ�1; �2/, this was derived in (1)). In particu-
lar, ilim has .�C; nC 1/-existence. By Lemma 11.14, ilim has .�; nC 2/-existence. Since
ilim has .�; nC 1/-uniqueness, Lemma 11.10 implies that ilim has .�; nC 2/-extension,
as desired.

We obtain two sufficient conditions to have all the n-dimensional properties: weak
GCH or niceness.
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Theorem 11.17 (The limit excellence theorem). Let h�n W n < !i be an increasing
sequence of infinite cardinals such that 2�n D 2<�nC1 < 2�nC1 for all n < !. Let
�! WD supn<! �n and let ‚ WD Œ�0; �!/. Let i be a very good independence notion with
domain ‚. Assume that

(1) i is nice, or

(2) �nC1 D �Cn for all n < !.

Then for all � 2 ‚, ilim has .�;<!/-existence and .�;<!/-uniqueness.

Proof. By Lemma 11.15 (with �0; �! standing for �1; �2 there), for any � 2 ‚, ilim has
.�; <!/-existence. Next, we prove by induction on n < ! that for all � 2 ‚, ilim has
.�; n/-uniqueness. When n D 0, this is part of Lemma 11.9. Assume now that for all
� 2 ‚, i has .�; n/-uniqueness. Fix k < !. By Lemma 11.16 (with �k ; �kC1 standing for
�1; �2 there), ilim has .�; nC 1/-uniqueness for all � 2 Œ�k ; �kC1/. Since k was arbitrary,
this shows that ilim has .�; nC 1/-uniqueness for all � 2 ‚.

12. Building primes

In this section, we show that prime models over independent systems can be built pro-
vided that we have the n-dimensional extension and uniqueness properties. This is the
prime extension theorem, Theorem 12.5. Recall that a model is prime over a base if it is
“minimal” over that base in some sense (see Definition 13.8). It is well known that prime
models are important to categoricity proof. The intuition is that they allow us to describe
a model as being built “point by point”, analogous to how a vector space is spanned by a
basis.

To build primes, we need the following technical concept, which says that a system
can in a sense only be extended in an independent way. This is similar to the definition of
a reduced tower [45, Definition 3.1.11]. The differences are that we work with systems
and are slightly more local (we work inside a given system).

Definition 12.1. Let i D .K; I;NF/ be a multidimensional independence relation and
let m be an independent I -system with I D J [ ¹vº, J < v. Let m� be an independent
J -system. We say that m is reduced inside m� if

(1) m�J �i m�,
(2) whenever m0 is an independent I -system and f Wm!m0 is a system embedding, and

(a) f is the identity on J ,

(b) m�J �i m0�J ,

(c) m0�J �i m�,
then f .m/ �i m0.

We now prove that reduced systems exist.



S. Shelah, S. Vasey 2362

Lemma 12.2 (Existence of reduced systems). Let i be a very good multidimensional
independence notion. Let ‚ WD dom.Ki/. Let I D J [ ¹vº be in Ii with J < v. Assume
that I is an initial segment of P .n/. Let � 2‚ be such that �C 2‚ and i has .�; nC 1/-
extension.

For any independent J -system m in i�C , there exists a �i-increasing chain of I -
systems hmi W i < �

Ci in i� such that each mi is reduced in m and
S
i<�C mi�J D m.

Proof. Without loss of generality, � D min.‚/. Let i0 be as given by Lemma 11.5. Let
hai W i < �

Ci be an enumeration of m. We build hm0
i W i < �

Ci a �i-increasing continu-
ous chain of independent J -systems in i�, hNi W i < �Ci in Ki� , and hfi;j W i � j < �Ci
such that for all i < �C,

(1) fi;j W Ni ! Nj form a continuous directed system,

(2) m0
i a Ni is an independent I -system,

(3) fi;j fixes m0
i ,

(4) m0
iC1 contains ai ,

(5) if m0
i a Ni is not reduced in m, then m0

iC1, NiC1, and fi;iC1 witness it, that is,
m0
i a fi;iC1ŒNi � 6�i m0

iC1 a NiC1.

This is possible using the extension property and taking direct limits at limits (we
use strong continuity to see that the direct limit is still an independent system).
This is enough: let m0

�C
, fi;�C , N�C be the direct limit of the system. Note that

m0
�C
a N�C is an independent I -system in i0, and since Ki0;I is an AEC, this sys-

tem can be �i-resolved into independent systems of cardinality �. By Lemma 5.3,
this implies that there is a club C � �C such that for any i 2 C , m0

i a fi;�C ŒNi � �i

m0
�C
a N�C . Now if i 2 C and m0

i a Ni is not reduced in m, then by property (5),
m0
i a fi;iC1ŒNi � 6�i m0

iC1 aNiC1. Taking the image of this statement under fiC1;�C , we
see that m0

i a fi;�C ŒNi � 6�i m0
iC1 a fiC1;�C ŒNiC1�. By monotonicity 2, this means that

m0
i a fi;�C ŒNi � 6�i m0

iC1 aN�C , a contradiction. Thus for any i 2C , m0
i aNi is reduced

in m. Let h˛i W i < �Ci be a normal enumeration of C and let mi WD m0
˛i
a N˛i .

We use reduced systems to build prime ones.

Definition 12.3. Let i be a multidimensional independence relation.

(1) Let I D J [ ¹vº be in Ii with J < v, and let m be an independent I -system. We
say that m is prime if whenever m0 is an independent J -system with m�J D m0�J ,
there exists a system embedding f W m! m0 fixing m�J .

(2) We say that i has prime extension if for any I D J [ ¹vº 2 Ii with J < v and any
independent J -system m, there is a prime I -system m0 such that m Š m0�J . We
define variations such as .�; n/-prime extension as in Definition 10.2.

Lemma 12.4. Let i be a very good multidimensional independence notion, and let ‚ WD
dom.Ki/. Let I D J [ ¹vº be in Ii with J < v. Assume that I is an initial segment
of P .n/. Let � 2 ‚ be such that �C 2 ‚, and i has .�; nC 1/-extension and .�; nC 1/-
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uniqueness. If Ki is categorical in �C, then any independent J -system m in i�C can be
extended to a prime independent I -system in i�C .

Proof. Similar to [36, Claim III.4.9] (or [52, Theorem 3.6]), using Lemma 12.2 to get the
resolution into reduced triples.

Theorem 12.5 (The prime extension theorem). Let i be a very good multidimensional
independence notion, and let ‚ WD dom.Ki/. Let � 2 ‚ be such that �C 2 ‚ and Ki is
categorical in �C. If i has .�; n/-extension and .�; n/-uniqueness, then it has .�C; <n/-
prime extension.

Proof. Immediate from Lemma 12.4.

13. Excellent classes

In this section, we introduce the definition of an excellent AEC (this generalizes the def-
inition in [27, 28]). We show how to obtain excellent AECs from the setups considered
earlier (Lemma 13.3) and explain why excellent classes are tame and have primes (Theo-
rem 13.9), hence (as we will see in the next section) admit categoricity transfers. We also
show how to get excellence in compact AECs (Theorem 13.7) and in .<!/-extendible
good frames, using the weak diamond (Theorem 13.6).

Definition 13.1. Let i be a multidimensional independence relation. We call i excellent
if

(1) Ki is an AEC,

(2) i is very good,

(3) i has extension and uniqueness.

We say that an AEC K is excellent if there exists an excellent multidimensional indepen-
dence relation i such that K D Ki.

Reasonable multidimensional independence relations will be tame.

Lemma 13.2. Let i be a multidimensional independence relation. If Ki is an AEC, i has
extension and uniqueness, and i satisfies the definition of being very good, except possibly
for s.^.i// being a good frame, then Ki is LS.Ki/-tame.

Proof. As in [36, Claim III.1.10] (see also [11]).

The next two lemmas tell us how to derive excellence from the conclusion of the limit
excellence theorem (Theorem 11.17).

Lemma 13.3. Let i be a very good multidimensional independence relation. Let � WD
min.dom.i//. If i has .�; <!/-extension and .�; <!/-uniqueness, then there exists a
unique excellent multidimensional independence relation i0 such that .i0/� D i�. In par-
ticular, the AEC generated by .Ki/� is excellent.
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Proof. Let K be the AEC generated by .Ki/�. Let i0 be as described by Lemma 11.5. It
satisfies all the conditions in the definition of being very good, except perhaps for exis-
tence, uniqueness, and s.^.i

0// being a good frame. By Lemma 11.6, i0 has extension
and uniqueness. By Lemma 13.2, K is LS.K/-tame. Since i0 has extension, K has in par-
ticular amalgamation. By Fact 6.11, there is a good frame s with underlying class K. Let
t WD s.^.i

0//. It is clear from the definition that s� D t�. Moreover, t satisfies most of
the axioms of a good frame (Fact 7.5). The only axiom that can fail is local character.
However, since ^.i0/ is very good, it has local character, so no type t-forks over a model
of size �. By Lemma 6.5 and Remark 6.6, this implies that s D t, so t is a good frame.
Thus i0 is very good, and hence excellent.

Lemma 13.4. Let i be a very good multidimensional independence notion and let ‚ WD
dom.i/. Let � WD min.‚/ and let K be the AEC generated by .Ki/�. If

(A) K is categorical in �,

(B) ilim has .�;<!/-existence and .�;<!/-uniqueness,

then K is excellent.

Proof. By Lemma 11.10, i� also has strong .�;<!/-uniqueness. By Theorems 9.12 and
9.15, i also has .�;<!/-extension and .�;<!/-uniqueness. Now apply Lemma 13.3.

Assuming a weak version of the generalized continuum hypothesis, we obtain excel-
lence in .<!/-extendible very good frames. We will use the following notation:

Definition 13.5. For S a class of cardinals, we write WGCH.S/ for the statement
“2� < 2�

C

for all � 2 S”. We write WGCH instead of WGCH.Card/, where Card is
the class of all cardinals.

Theorem 13.6. Let s be a .<!/-extendible categorical very good �-frame. Let K be the
AEC generated by Ks. If WGCH.Œ�; �C!// holds, then K is excellent.

Proof. Let‚ WD Œ�; �C!/. By Fact 7.20 (4), there is a very good categorical frame t such
that dom.t/ D ‚ and t�Cn D sCn for all n < !. By definition of being very good, there
is a very good two-dimensional independence notion ^ on Kt.

Fix i and i� satisfying the conclusion of Theorem 11.3. By Lemma 11.17, i� has
.�;<!/-existence and .�;<!/-uniqueness. Now apply Lemma 13.4.

In a compact AEC, excellence follows from categoricity (without any cardinal arith-
metic hypothesis).

Theorem 13.7. Let K be a compact AEC. If K is categorical in some � > LS.K/, then
KLS.K/C6-sat is an excellent AEC.

Proof. By Corollary 4.8, K is categorical in a proper class of cardinals, so we might as
well assume that � � Æ!.LS.K//. Fix i satisfying the conclusion of Theorem 11.13. Let
‚ WD ŒLS.K/C6;Æ!.LS.K///. By Lemma 11.17, ilim has .LS.K/C6; <!/-existence and
.LS.K/C6; <!/-uniqueness. The result now follows from Lemma 13.4.
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An appropriate subclass of saturated models of an excellent class will always have
primes in the following sense.

Definition 13.8 ([36, Definition III.3.2]). Let K be an abstract class.

(1) A prime triple is a triple .a; M; N / such that M �K N , a 2 jN j, and whenever
tp.b=M IN 0/ D tp.a=M IN/, there exists a K-embedding f W N �!

M
N 0 such that

f .b/ D a.

(2) K has primes if for any p 2 S.M/ there exists a prime triple .a;M; N / such that
p D tp.a=M IN/.

Theorem 13.9 (Structure of excellent AECs). If K is an excellent AEC, then K is not
empty, has amalgamation, joint embedding, no maximal models, and is LS.K/-tame.
Moreover, KLS.K/C-sat has primes.

Proof. Let � WD LS.K/. Let i be an excellent multidimensional independence relation
with Ki DK. Then K is not empty and has no maximal models because i has 1-extension,
and K has amalgamation and joint embedding because i has 1-uniqueness (see Lemma
10.5). By Lemma 13.2, K is LS.K/-tame. Let i� be the restriction of i to the fragmented
AEC K� such that K�

��
D K� and K�

>�
D K�C-sat. It is easy to check that i� is still

a very good multidimensional independence relation with extension and uniqueness. By
Theorem 12.5, i� has .�C; <!/-prime extension. By standard arguments similar to those
in [28, Section 5], i�

��C
has prime extension.

Now by [36, Claim III.4.9] (see also [52, Theorem 3.6]), K�
�C

has primes. It remains
to check that K�

>�C
has primes. Let M 2 K�

>�C
and let p 2S.M/. Let N 2 K� be such

that M �K N and N realizes p, say with a. By local character for ^ WD ^.i�/, there

existM0;N0 2 K�
�

such that a 2 jN0j andM
N

^
M0

N0. Since K�
�C

has primes, we may pick

N �0 �K N0 such that .a;M0; N0/ is a prime triple in K�. By monotonicity, we still have

M
N

^
M0

N �0 ;

so by prime extension (applied to the independent system m consisting of M0, M ,
and N �0 ), there exists a prime model N � over m, which can be taken to be contained
inside N . Now check that .a;M;N �/ is a prime triple.

14. Excellence and categoricity: The main theorems

In this section, we combine the results derived so far about excellence with known cate-
goricity transfers to obtain the main theorems of this paper. In addition to Facts 3.25 and
3.26, the facts we will use about categoricity are the following.

Fact 14.1. Let K be an LS.K/-tame AEC with amalgamation, and arbitrarily large
models. Assume that K is categorical in some � > LS.K/.
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(1) ([53, Corollary 10.9])14 If K has primes then K is categorical in all �0 � �.

(2) ([53, Corollary 10.3, Remark 10.4])15 If K is categorical in LS.K/ and � is a suc-
cessor, then K is categorical in all �0 � LS.K/.

We obtain the following categoricity transfer for excellent classes (recall Defini-
tion 2.1).

Theorem 14.2. Let K be an excellent AEC. If K is categorical in some � > LS.K/, then
there exists � < h.LS.K// such that K is categorical in all �0 � min.�; �/. If in addition
K is categorical in LS.K/, then K is categorical in all �0 > LS.K/.

Proof. By Fact 3.26, we may assume that � > LS.K/C. By Fact 14.1 and Theorem 13.9,
KLS.K/C-sat is categorical on a tail of cardinals. By Fact 3.25, K is categorical in all �0 �
min.�; �/. If K is categorical in LS.K/, then it will be categorical in a successor, hence
by Fact 14.1 again, K will be categorical in all cardinals above LS.K/.

When working inside a .<!/-extendible categorical good �-frame, it is known how
to transfer categoricity across finite successors of �, so we can be more precise.

Lemma 14.3. Let s be a .<!/-extendible categorical good �-frame. Let K be the AEC
generated by Ks. If there exists n < ! such that the AEC generated by KsCn is excellent,
then

(1) K has arbitrarily large models,

(2) if in addition K is categorical in some � > �, then K is categorical in all �0 > �,
K�� has amalgamation, no maximal models, and is �-tame.

Proof. Fix n < ! such that the AEC K� generated by KsCn is excellent. Let

.�/1 K` be the AEC generated by sC`, so K` is categorical in �C`.

Now,

.�/2 (a) if ` < !, then K` is categorical in �`C1 iff K` is categorical in �`C2,

(b) if 0 < ` < n then K`�1 is categorical in �C`C1 iff K` is categorical in �C`C1

iff M 2 K�C`C1 )M 2 K`�1 ŠM 2 K`:

[Why? By [53, Theorem A.9]; here the doubts about its use (see Discussion 6.9) do not
arise.] Hence,

.�/ either for all ` < k < !, K` is categorical in �C1, or for all ` < k < !, K` is not
categorical in �Ck :

14The main ideas of the proof appear in [55, 57].
15The upward part of the transfer (i.e. getting categoricity in �0 � �) is due to Grossberg and

VanDieren [14, 16].
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So if the first case in .�/ holds, by Theorem 14.2 we are done. So we can assume the
second case in .�/ holds, hence necessarily�� �C! . Still K�DKn is categorical in �Cn,
hence by Theorem 14.2 it is categorical in �nCnC1 – but this contradicts “the second case
in .�/ holds”, so we are done.

Thus assuming some instances of the weak diamond, we obtain the following eventual
categoricity transfer for .<!/-extendible frames.

Corollary 14.4. Let s be a .<!/-extendible categorical good �-frame. Let K be the
AEC generated by Ks. Assume WGCH.Œ�Cn; �C!// holds for some n < !. Then K has
arbitrarily large models and if K is categorical in some � > �, then K is categorical in
all �0 > � and moreover K�� has amalgamation, no maximal models, and is �-tame.

Proof. Let t WD sC.nC3/. By Fact 7.20 (2), t is very good. By Theorem 13.6, the AEC K�

generated by Kt is excellent. Now apply Lemma 14.3.

Specializing to compact AECs, we get the following.

Theorem 14.5. Let K be a compact AEC. Let � > LS.K/. If K is categorical in �, then
there exists � < h.LS.K// such that K is categorical in all �0 � min.�; �/.

Proof. By Corollary 4.8, K has amalgamation, no maximal models, and is categorical
in a proper class of cardinals. We will also use without comment Fact 3.24, which says
in particular that K�-sat is an AEC for any � > LS.K/. By Theorem 13.7, KLS.K/C6-sat is
excellent. By Theorem 14.2, KLS.K/C6-sat is categorical in all high enough cardinals. Since
K itself is categorical in a proper class of cardinals, this implies that KLS.K/C-sat is also
categorical in all high enough cardinals, and so in particular in a high enough successor
cardinal. Now KLS.K/C-sat is categorical in LS.K/C D LS.KLS.K/C-sat/, and hence by Fact
14.1 it is categorical in all�0 � LS.K/C. Now apply the AEC omitting type theorem (Fact
3.25) to get the desired conclusion about categoricity in K.

Corollary 14.6. Let K be a compact AEC. If K is categorical in some � � h.LS.K//,
then K is categorical in all �0 � h.LS.K//.

Proof. This is a special case of Theorem 14.5.

Corollary 14.7. (1) Let K be an AEC and let � > LS.K/ be a strongly compact cardinal.
If K is categorical in some � � h.�/, then K is categorical in all �0 � h.�/.

(2) Let T be a theory in L�;! with � a strongly compact cardinal. If T is categorical in
some�� h.jT j C j�.T /j C �/, then T is categorical in all�0 � h.jT j C j�.T /j C �/.

(3) Let  be an L�;!-sentence and � a strongly compact cardinal. If  is categorical in
some � � h.�/, then  is categorical in all �0 � h.�/.

Proof. The first two parts are by Fact 4.3 and Corollary 14.6. The third part follows from
the second because an L�;!-sentence has a vocabulary of size strictly less than �.
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Regarding AECs with amalgamation, the following lemma says that (assuming
WGCH) with a little bit of tameness, we can transfer categoricity. Note that the proof
only uses amalgamation below the categoricity cardinal, but transfers it above.

Lemma 14.8. Let K be an AEC with arbitrarily large models. Assume that
WGCH.ŒLS.K/;LS.K/C!// holds. Let � > LS.K/C and assume that K<max.�;LS.K/C!/

has amalgamation and no maximal models. If Ksat
.LS.K/;LS.K/C!/

is LS.K/-tame and
K is categorical in �, then there is � < h.LS.K// such that K is categorical in all
�0 � min.�; �/.

Proof. We use without further comment (Fact 3.24) that for any � 2 .LS.K/;��, K�-sat is
an AEC with Löwenheim–Skolem–Tarski number �. In particular, the model of cardinal-
ity � is saturated. By Fact 6.2, there is a (categorical) good frame s on Ksat

ŒLS.K/C;LS.K/C!/
.

By Fact 7.16, s is .<!/-extendible. By Corollary 14.4, KLS.K/C-sat is categorical in all
�0 � LS.K/C and has amalgamation above �. In particular, K is categorical in all �0 � �
and K�� has amalgamation. Since we knew that K<� had amalgamation, so does K.
By the AEC omitting type theorem (Fact 3.25), there is � < h.LS.K// such that K is
categorical in all �0 � min.�; �/.

Since tameness can be derived from high enough categoricity, we obtain the following
result.

Theorem 14.9. Let K be an AEC with arbitrarily large models. Let��@LS.K/C . Assume
there exist unboundedly many � < @LS.K/C such that WGCH.Œ�; �C!// holds. If K is
categorical in � and K<� has amalgamation and no maximal models, then there exists
� < @LS.K/C such that K is categorical in all �0 � min.h.�/; �/.

Proof. By Fact 3.24 (2) (with @LS.K/C standing for � there), there is �0 < @LS.K/C such
that Ksat

.�0;@LS.K/C /
is �0-tame. By Lemma 14.8 applied to K��0 , we get the result.

Corollary 14.10. Assume WGCH (see Definition 13.5). Let K be an AEC with amal-
gamation. If K is categorical in some � � h.@LS.K/C/, then K is categorical in all
�0 � h.@LS.K/C/.

Proof. This is a special case of Theorem 14.9. It is well known that AECs with a model in
h.LS.K// have arbitrarily large models. Moreover, by considering the equivalence rela-
tion “M and N embed into a common model”, we can partition the AEC into disjoint
classes, each of which has joint embedding. One can then work inside the unique class
with arbitrarily large models, which will have joint embedding and no maximal models.
It is then easy to see that the original class must also be categorical in all high enough
cardinals. See for example [49, Remark 10.13] for the details of this argument.

Corollary 14.11. Assume 2� < 2�
C

for all cardinals � . Let K be an AEC and let � >
LS.K/ be a measurable cardinal. If K is categorical in some � � Æ

.2
@
�C /C

, then K is
categorical in all �0 � Æ

.2
@
�C /C

:
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Proof. By the main theorem of [21], KŒ�;�/ has amalgamation and K�� has no maximal
models. Apply Theorem 14.9.

We can also obtain results from completely local hypotheses about the number of
models in the �Cn’s. This was already stated in [36, Conclusion III.12.43]. Below, I.K;�/
denotes the number of models (up to isomorphism) in K�. On �unif, see [37, Defini-
tion VII.0.4] for the definition and [37, Theorem VII.9.4] for what is known (morally,
�unif.�

C; 2�/ D 2�
C

when 2� < 2�
C

).

Remark 14.12. Recall for comparison (see [41, Theorem 7.12])

.�/ For some cardinal �� <� and a cardinal ��� <Æ1;1.�C!� / above ��;K is categorical
in every cardinal � � ��� but in no � 2 .��; ���/ provided that

(a) K is an AEC categorical in �;

(b) K has amalgamation and JEP in every � < @�; � � LS.K/;

(c) � is a limit cardinal, cf.�/ > LS.K/, and for arbitrarily large � < � the sequence
h2�
Cn
W n < !i is increasing,

(d) � > Æ1;1.�/ for every � < �, hence � � @�;

(e) every M 2 K<@� has a �K-extension in K�:

Theorem 14.13. Let K be an AEC and let � � LS.K/ be such that WGCH.Œ�; �C!//
holds. Assume that K is categorical in �, �C, K�CC ¤ ;, and

I.K; �Cn/ < �unif.�
Cn; 2�

C.n�1/

/

for all n 2 Œ2; !/. Then K is categorical in all � > �.

Proof. As in the proof of [36, Theorem II.9.2], there is an !-successful goodC �-frame s

on K�. This implies (Fact 7.20 (1)) that s is .<!/-extendible. Now apply Lemma 14.3.

When � D @0, the hypotheses can be weakened and we obtain the following general-
ization of the main result of [27, 28].

Theorem 14.14. Let K be a PC@0 AEC .so LS.K/ D @0/. Assume WGCH.Œ@0; @!//.
Assume that K is categorical in @0, 1� I.K;@1/ < 2@1 , and I.K;@n/ < �unif.@n; 2

@n�1/

for all n 2 Œ2; !/. Then K has arbitrarily large models. Moreover, if K is categorical in
some uncountable cardinal, then K is categorical in all uncountable cardinals.

Proof. As in the proof of Theorem 14.13, using [36, Theorem II.9.3] instead of [36, The-
orem II.9.2].
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