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Abstract. We give an asymptotic evaluation for the number of automorphic characters of an alge-
braic torus T with bounded analytic conductor. The analytic conductor is defined via the local
Langlands correspondence for tori by choosing a finite-dimensional complex algebraic representa-
tion of theL-group of T . Our results therefore fit into a general framework of counting automorphic
representations on reductive groups by analytic conductor.
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1. Introduction

1.1. Motivation and statement of results

A basic question in the analytic theory of automorphic forms is the following:

Question. Given a connected reductive algebraic group G over a global field k, how
many irreducible cuspidal automorphic representations of G are there?

To make sense of the Question, one needs to choose a positive real-valued invariant by
which to order the representations of G. Sarnak, Shin and Templier [35] have proposed
using the analytic conductor.

On the groups GLm, the analytic conductor has a standard definition [22], but over
more general reductive groups it is less well understood. The most canonical (but not
necessarily the most practical) definition is through the local Langlands conjectures. Let
r W LG ! GLm.C/ be a finite-dimensional algebraic representation of the complex L-
group of G. The local Langlands conjectures predict the existence of maps

r�;v W Av.G/! Av.GLm/

at every place v of k from the local unitary dual Av ofG to that of GLm. One then defines
the analytic conductor c.�; r/ of an irreducible automorphic representation � with respect
to r by

c.�; r/ D
Y
v

cv.r�;v�v/; (1.1)

where the conductors on the right hand side are the “classical” local analytic conductors
on GLm.

The universal counting Question seems to be quite difficult at the level of generality in
which we have stated it. Only very recently has there been progress in a few special cases.
Over an arbitrary number field, the cases G D GL1, GL2, as well GLn for n > 3 under
additional hypotheses, have been resolved in a paper of Brumley and Milićević [12]. The
case where G is a one-dimensional non-split torus over Q splitting over an imaginary
quadratic extension was treated in work of Brooks and the author [20], and Lesesvre has
studied the case where G is the unit group of a quaternion algebra [25].

In this paper, we present an answer to the Question for G D T , a torus over a number
field k, and r an arbitrary complex algebraic representation of its L-group. Even though
the groups we are dealing with are abelian, our results are not easy, as we work with
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a very general notion of conductor. Indeed, the difficulties involved are already evident
in the intricacy of the statement of the final result. As its reward, working with such a
general notion of conductor reveals some of the richness that any general answer to the
Question must exhibit. For example, the power of X in the asymptotic count of automor-
phic characters (see (1.4)) need not be an integer, but is rather a positive rational with
denominator at most m. Further, we find that arbitrary integer powers of logX are pos-
sible in the asymptotic count (see Example 1.8). Another interesting aspect of our results
is the resemblance of the automorphic counting question to the Manin conjecture, which
we present in Section 1.3.

We make some precise definitions in order to give the statement of our result. Let
T be an algebraic torus over a number field k. Let A.T / denote the group of continu-
ous unitary characters of T .k/nT .A/, where A is the adèle ring of k. We call elements
of A.T / automorphic characters; they are the basic objects of study in this paper. Let
K=k be the minimal Galois extension over which T splits, and let G D Gal.K=k/.
Let X�.T / and X�.T / be the algebraic character and cocharacter lattices of T , and
yT D Hom.X�.T /;C�/ the complex dual torus. Each of these objects admits a natural
action of G. Let LT D yT Ì G be the L-group of T , and pick r W LT ! GLm.C/, an
algebraic representation of LT . Generally, we will write n D dimT and m D dim r . Pick
a Haar measure � on the locally compact group A.T /.

The main goal of this paper is to give an asymptotic formula for �.¹� 2 A.T / W

c.�; r/6Xº/, where c.�; r/ is the analytic conductor (defined in Section 5.1), asX tends
to infinity. The statement of the result requires a few more constructions. The restriction
of r to yT breaks up as a direct sum of eigenspaces

r j yT D
M

�2X�. yT /

V�: (1.2)

Let M be the multi-set of coweights � of r , i.e. the underlying set of M is ¹� 2 X�. yT / W
V� ¤ 0º and the multiplicity of � 2 M is dim V�. Let S � M denote a subset of the
coweights with multiplicity and Sc its complement. For such an S , we define the complex
group

D.S/ D
\
�2Sc

ker� � yT : (1.3)

The restriction r j yT is faithful if and only if D.¿/ D ¹1º, and in that case we let

A D A.T; r/ D max
²

dimD.S/C 1

jS j
W S �M; D.S/ ¤ ¹1º

³
: (1.4)

Theorem 1.1. Suppose that r j yT is faithful. Then there exists a non-zero polynomial P D
PT;r;� and c D cT;r > 0 such that

�.¹� 2 A.T / W c.�; r/ 6 Xº/

D XAP.logX/COT;�;r
�
XA exp.�c.logX/3=5.log logX/�1=5/

�
: (1.5)
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If the Artin conjecture holds for the finitely many Artin L-functions specified in Theo-
rem 5.4, then the error term in (1.5) may be improved to OT;r;�.XA�ı/ for some ı D
ıT;r > 0. If r j yT is not faithful, then the left hand side of (1.5) is infinite for some finite X .

The dependence of P and the implicit constant on � is linear, since Haar measure is
unique up to scaling. Here is a simple corollary of Theorem 1.1.

Corollary 1.2. Let T be a torus of dimension n, r an m-dimensional complex represen-
tation of its L-group, and � a Haar measure on A.T /. We have

�.¹� 2 A.T / W c.�; r/ 6 Xº/�T;r;� X
nC1
m :

If r j yT is faithful, then for all " > 0 we have

�.¹� 2 A.T / W c.�; r/ 6 Xº/�";T;r;� X
2C":

Proof. By Theorem 1.1 it suffices to give uniform lower and upper bounds on A. For the
lower bound, note that D.M/ D yT , which gives A > nC1

m
: For the upper bound, observe

that since r j yT is faithful, for any S �M we have dimD.S/6 jS j, because dimD.¿/D 0
and codim ker� 6 1 for any � 2M . Therefore A 6 max ¹ jS jC1

jS j
W S ¤ ¿º 6 2.

We can give an expression for the degree of the polynomial P of Theorem 1.1, but
this requires a few more definitions. Since M was formed from the restriction of a repre-
sentation of LT , the group G acts on M , and also on the power set 2M D ¹S W S �M º:
This action preserves jS j as well as dimD.S/, so G also acts on the set

† D

²
S ¤ ¿ W

dimD.S/C 1

jS j
D A

³
: (1.6)

Let
� D lcm

S2†
j�0.D.S//j; (1.7)

where �0.D.S// denotes the group of connected components of D.S/. The group
.Z=�Z/� acts on �0.D.S// for each S 2 † by `:y D y` for y 2 �0.D.S// and
` 2 .Z=�Z/�. Let �� be a primitive �th root of unity, and let zK D K.��/ and zG D
Gal. zK=k/. The enlarged group zG acts on the fibered set with base † given by

z† D ¹.S; y/ W S 2 †; y 2 �0.D.S//º: (1.8)

Indeed, we have inclusions

zG ,! G � Gal.k.��/=k/ ,! G � .Z=�Z/� (1.9)

given by restricting automorphisms to K and to Q.��/. If g 2 zG restricts to .xg; / 2
G � .Z=�Z/�; then g acts on z† by

g:.S; y/ D .xgS; xgy /:

Finally, let
z†0 D z† X ¹.S; 1/ W dimD.S/ D 0º: (1.10)

Since the deleted set is preserved by the action of zG, we also see that zG acts on z†0.
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Theorem 1.3. The polynomial P appearing in Theorem 1.1 satisfies

degP D j zGnz†0j � 1:

Theorems 1.1 and 1.3 settle a problem of Sarnak, Shin and Templier [35, (4)] for the
universal family of automorphic characters on a torus in the greatest possible generality.

Remarks. (1) The Weyl law for tori over number fields studied in this paper has a natural
local-to-global structure. To solve the global counting problem we first address the corre-
sponding local problem in Sections 3 and 4 of the paper. We obtain fairly complete results
in the unramified non-archimedean and archimedean cases, but only need a preliminary
result (see Theorem 3.27) in the ramified non-archimedean case for our global applica-
tion. A natural further line of inquiry would be to more comprehensively investigate the
local Weyl law for tori that have a ramified non-archimedean splitting field. Similarly,
it would be interesting to investigate the counting problem over positive characteristic
global fields.

(2) We would also like to have an interpretation of the leading constant in the asymp-
totic formula in Theorem 1.1 in terms of the geometry or arithmetic of T . While in
principle our method yields an expression for the leading constant, it is not so easy to
write it down in explicit form. One difficulty is that we cannot exclude the possibility that
there are non-identity global units of T that contribute to the leading term of the poly-
nomial P (see Example 1.7). A second complication is our soft treatment of the local
counting problem at ramified primes, as indicated in the previous remark.

(3) The invariant A in Theorem 1.1 and the power of logX in Theorem 1.3 are suf-
ficiently complicated to suggest that any general answer to the Question posed at the
beginning of this paper would be quite onerous to state in full generality.

(4) A key tool in our proof of Thereom 1.1 for general r is a Brascamp–Lieb inequal-
ity due to Barthe [3]. To the author’s knowledge, this theorem from analysis has not
been used before in analytic number theory. We use the Brascamp–Lieb inequality in
two places: first in the local archimedean counting problem in Section 4.2 and then again
in the global counting problem in Section 5.6. In the first instance, the linear forms cor-
respond to the coweights � 2 M , and in the second instance the linear forms are rows
of the regulator matrix of T . The use of the Brascamp–Lieb inequality suggests that the
counting problem for a general reductive group is difficult indeed, as already in the case
of tori one needs to go much beyond an explicit understanding of the local Langlands
correspondence.

(5) Another interpretation of the families of automorphic characters studied in this
paper is the following. Let T ,K=k be as above, T _ DHom.X�.T /;Gm/ be the algebraic
dual torus, and S D ResK=k Gm. Given a faithful irreducible algebraic representation r
of LT , one obtains an injective morphism i W T _! S by restriction of r . Such an injective
map i gives rise to an L-homomorphism LT ! LS , and so Langlands predicts that there
exists a transfer of automorphic characters i� WA.T=k/!A.GL1 =K/. Conversely, given
i W T _! S , there exists a faithful irreducible algebraic representation r of LT extending i
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such thatL.s;�;r/DL.s; i��/ for all �2A.T /, where the left hand side is the Langlands
L-function and the right hand side is the Hecke L-function.

(6) The automorphic counting problem outlined at the beginning of this paper may
have applications to the Ramanujan conjecture on general reductive groups (see the sur-
veys [33,39]). Outside the caseG DGLn, the naive Ramanujan conjecture is known to be
false, but all automorphic forms for which it fails are expected to arise as functorial trans-
fers from lower rank groups. For analytic applications, one would like to show that the
Ramanujan conjecture cannot fail “too often” in a quantitative sense in terms of analytic
conductor. One way to do so would be to estimate the sizes of subfamilies of A.G/ com-
ing from functorial transfers of automorphic characters of tori, and so the present paper
paves the way for putting the above program into action.

(7) The shape of the error term in Theorem 1.1 comes from Vinogradov–Korobov-
strength zero-free regions for L-functions of Hecke characters due to Coleman [16], but
these are not essential to our method. This zero-free region is merely the best currently
available result in the literature, and e.g. using instead the classical zero-free region for
Hecke L-functions one obtains an asymptotic formula in Theorem 1.1 with the weaker
error term OT;r;�.X

A exp.�c
p

logX//.

1.2. Examples

Example 1.4. Let T D GL1 D Gm. Then yT D C� and G is trivial. We choose r D id D
z W C�! C� as a representation of the L-group. Then A.T / is the set of primitive Hecke
characters over k, and c.�; r/ is the standard notion of analytic conductor of a Hecke
character, which we denote by C.�/ in all of the examples that follow. The multiset of
coweights is the singleton M D ¹zº, and 2¹zº D ¹¿; ¹zºº: We have D.¿/ D ¹1º and
D.¹zº/ D C�; so we have A D 2, and degP D 0. Therefore there are � ckX2 primitive
Hecke characters of analytic conductor bounded by X for some constant ck > 0. An
inspection of Theorem 5.4 shows that the only Artin L-function relevant to Theorem 1.1
when T DGm and r D id is the Dedekind zeta function of k, so we obtain a power saving
error term in the asymptotic count. For general number fields k, already this result seems
to be new. A similar result with a modified notion of analytic conductor has been given
recently in a preprint of Brumley, Lesesvre, and Milićević [11].

Example 1.5. Let T DGL1DGm as above, but take the 1001-dimensional representation
r D z˚1001 W C� ! GL1001.C/. The set A.T / consists of Hecke characters � as above,
whereas r assigns to � the conductor C.�/1001. The multiset of coweights is ¹z; : : : ; zº,
where z is repeated 1001 times, and only the full set hasD.S/¤ ¹1º: Thus, AD 2=1001,
and one finds that there are � ck;rX2=1001 Hecke characters of r-conductor less than X .
This shows that the power of X in Theorem 1.1 can be arbitrarily small.

Example 1.6. Keep T D GL1 D Gm as above, but take the representation r D z2 ˚ z3 W
C� ! GL2.C/. This is a 2-dimensional faithful representation of the L-group. The
set A.T / is as in the previous two examples, but now r assigns to � the conductor
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C.�2/C.�3/. The set of coweights is ¹z2; z3º, and the subsets S and groups D.S/ are

S D ¿; ¹z2º; ¹z3º; ¹z2; z3º;

D.¿/ D ¹1º; D.¹z2º/ D �3; D.¹z3º/ D ˙1; D.¹z2; z3º/ D C�:

Therefore A D 1, and the maximum is attained on all S ¤ ¿. We have the Galois group
G D 1, but the enlarged Galois group is zG ' .Z=6Z/�. We have

z† D ¹.¹z2º; 1/; .¹z2º; �3/; .¹z
2
º; x�3/; .¹z

3
º; 1/; .¹z3º;�1/; .¹z2; z3º; 1/º;

z†0 D ¹.¹z
2
º; �3/; .¹z

2
º; x�3/; .¹z

3
º;�1/; .¹z2; z3º; 1/º:

The group zG acts on z†0 by swapping .¹z2º; �3/ and .¹z2º; x�3/ and fixing .¹z3º;�1/ and
.¹z2; z3º; 1/. Therefore there exists a constant c23 such that

�.¹� 2 A.GL1/ W C.�2/C.�3/ 6 Xº/ � c23X.logX/2:

Example 1.7. Let T D Gm � Gm. This torus has L-group equal to C� � C�. Take the
faithful 2-dimensional representation z1 ˚ z2. Classically, this corresponds to counting
pairs of primitive Hecke characters .�1; �2/ with conductor C.�1/C.�2/. There are
� c12X

2 logX pairs of Hecke characters of conductor bounded by X , for some c12 > 0.
For a general torus T , we will see in Proposition 6.1 that there is a term which poten-

tially contributes to the main term of �.¹� 2 A.T / W c.�; r/ 6 Xº/ as X !1 for each
global unit of T . In the example T D Gm �Gm over Q, there are four global units: .1; 1/,
.1;�1/, .�1; 1/ and .�1;�1/. It is interesting to note that the contribution of .1; 1/ is of
size X2 logX , each of .1;�1/ and .�1; 1/ make a contribution of size X2, and .�1;�1/
contributes a smaller power of X .

Example 1.8. Let f be an irreducible separable polynomial of degree m over a general
field k. Let ˛ be a root of f and letK be the splitting field of f . Then k.˛/=k is a degree
m extension with Galois closure K. Let G D Gal.K=k/ and T D .Resk.˛/=k Gm/=Gm;

where d W Gm! Resk.˛/=k Gm is the diagonal embedding. WriteH D Homk.k.˛/; k
sep/

for the set of embeddings of k.˛/ in its separable closure that fix k. In particular, we have
jH j D m. One has an identification

X�.Resk.˛/=k Gm/ ' ZH (1.11)

sending .a� /�2H to the morphism � W Resk.˛/=k Gm! Gm that is given on ksep points by

� W .k.˛/˝k k
sep/� ! .ksep/�; c ˝ r 7!

�Y
�2H

�.c/a�
�
r

(see [26, Lemma 12.61]). Here, G acts on ZH by permuting embeddings, i.e. by permut-
ing coordinates. Write

ZH0 WD
°
.a� / 2 ZH W

X
�2H

a� D 0
±
:
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We have the following commutative diagram with exact rows and vertical maps given by
(1.11):

0 // X�.T / // X�.Resk.˛/=k Gm/

'

��

d� // X�.Gm/

'

��

// 0

0 // ZH0 // ZH
P
� // Z // 0

Thus the isomorphism (1.11) restricts toX�.T /'ZH0 . The evaluation map gives a perfect
pairing X�.T / ˝Z X�.T / ! Z between the character and cocharacter lattices, so that
Hom.X�.T /;Z/ ' X�.T / and

yT D Hom.X�.T /;Z/˝Z C� ' X�.T /˝Z C�

'

°
.z� / 2 .C�/H W

Y
�2H

z� D 1
±
:

See Section 2.1 for more on these standard isomorphisms.
Now let us choose an enumeration �i , i D 1; : : : ; m, of the embeddings H . Define

r W LT ! GLm.C/ by setting r..1; : : : ; 1/ Ì �/ to be the permutation matrix in GLm.C/
defined by � 2 G � Sm, and

r.z Ì 1/ D

0B@z1 : : :

zm

1CA :
The set M of coweights is ¹ziºiD1;:::;m, where z 7! zi represents projection onto the i th
coordinate. For any S 2 2¹zi º we have

D.S/ D
°
z 2 yT W zi D 1 if i 2 Sc and

Y
i2S

zi D 1
±
;

so that each D.S/ is connected and dimD.S/ D jS j � 1 if S ¤ ¿. Therefore, A D 1,
† D ¹S �M W S ¤ ¿º; � D 1, and so zG D G; z† D †, and z†0 D ¹S �M W jS j > 2º.

Suppose now that k is a number field and G ' Sm. Then

zGnz†0 D
®
¹S W jS j D 2º; : : : ; ¹S W jS j D mº

¯
and so we have

�.¹� 2 A.T / W cr .�/ 6 Xº/ � cr;TX.logX/m�2:

This is an example of logarithms arising in the asymptotic formula for natural reasons,
and answers a question of Sarnak [34, Question 1]. Also note that if e.g. Œk.˛/ W k� D 4
and G 6' S4 the asymptotic is� cGX.logX/3 for some constants cG , whereas if G ' S4
it is � cS4X.logX/2. This shows that the power of logX in the asymptotic formula is
sensitive to the arithmetic of the torus.
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1.3. Relation to the Manin conjecture

The automorphic counting Question introduced at the outset of this paper is reminiscent
of the Manin conjecture on the number of rational points of bounded height on a Fano
variety. We briefly review the latter to point out a few of its features. For a more thorough
survey of the Manin conjecture, see e.g. [30, 47].

Let V be a Fano variety over k, and L a very ample line bundle. Let s0; : : : ; sm be
global sections of L with no common zeros, and � D �L;s0;:::;sm W V ! Pm be the natural
morphism associated to these data. Let H.x/ be the absolute exponential Weil height
on Pm.k/. Then h�.x/ D h.�.x// is a height function on V.k/ relative to L; s0; : : : ; sm.
If s00; : : : ; s

0
m is another choice of global sections for the same L with �0 D �L;s0

0
;:::;s0m

W

V ! Pm, then h�.x/D h�0.x/CO.1/ as x 2 V.xk/ varies [41, Theorem 3.1]. Following
Batyrev–Manin [4], for a Zariski open U � V let

NU .L; X/ D #¹x 2 U.k/ W h�.x/ 6 Xº:

Let N 1
eff.V / be the closed cone of effective divisors.

Conjecture 1.9 (Batyrev–Manin Conjecture C0). Let V be a Fano variety with canonical
bundle !V not effective. If U is sufficiently small, then

NU .L; X/ � cX
˛.L/.logX/t.L/�1

as X !1 for some positive constant c. Here,

˛.L/ D inf ¹� 2 R W �ŒL�C Œ!V � 2 N 1
effº;

and t .L/ is the codimension of the minimal face of @N 1
eff containing ˛.L/ŒL�C Œ!V �.

The analogy between the automorphic counting question and the Manin conjecture is
as follows, and should be viewed as an expression of the deep conjectures of Langlands.
The role of the ambient space is played by Pm.k/$A.GLm/, into which V.k/$A.G/

embeds. The embedding is given by the data L; s0; : : : ; sm on the Manin side, and
(conjecturally), on the automorphic side by r W LG ! GLm.C/. Indeed, L; s0; : : : ; sm
determine a morphism V ! Pm whereas the representation r (conjecturally) determines
r� WA.G/!A.GLm/. The absolute exponential Weil heightH.x/ for x 2 Pm.k/ on the
Manin side corresponds to the analytic conductor c.�/ for � 2 A.GLm/ on the automor-
phic side. The height function h�.x/ relative to � corresponds to the analytic conductor
c.�; r/ relative to r as in (1.1).

The invariant ˛.L/ appearing in the Manin conjecture and the invariant A appearing
in Theorem 1.1 are both expressible in terms of combinatorial geometry problems; see
the computations with matroids in Section 4.2 of this paper.

At least in the special case of tori, Theorems 1.1 and 1.3 suggest that t .L/ on the
Manin side corresponds to the set of orbits zGnz†0. In both cases, the power of log comes
from the possible embeddings of V or A.T / in the ambient space that are “extremal” in
the combinatorial geometry problem defining ˛.L/ or A.
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The leading constant in Manin’s conjecture has been given a conjectural interpreta-
tion in terms of adelic volumes by Peyre [29] and Chambert-Loir and Tschinkel [15].
For a discussion of the significance of the leading constant in the automorphic counting
problem, see [12, Section 1.5].

While the analogy presented here is striking, it only goes so far. In Manin’s conjecture,
there is a canonical choice of L, that is, one takes L D �!V , the anti-canonical bundle.
In the automorphic setting, there is apparently no canonical choice of complex repre-
sentation r of the L-group of G. Moreover, in the setting of Manin’s conjecture the set of
possible height functions corresponds to the ample cone of V , whereas in the automorphic
setting, the possible height functions correspond to the set of faithful finite-dimensional
complex representations of LG. The latter takes into account both the finite-dimensional
representation theory of complex connected reductive groups and of global Galois groups,
so seems to afford a more intricate set of height functions. Lastly, we remark that the
invariant t .L/ in Manin’s conjecture is an essentially global invariant of V . On the other
hand, zGnz†0 has a somewhat more local nature, as we shall see in Section 5 of this paper.

1.4. Outline of the proof

In order to make direct use of the local-to-global nature of the counting problem we work
with the global conductor zeta function Z.s/ of T; r , that is we define

Z.s/ WD

Z
A.T /

1

c.�; r/s
d�.�/:

For c > 0 let R D R.c/ D R.A; c/ � C be the region

RDR.c/DR.A;c/D

²
� C i t 2C W � >A�

c

.log.jt j C 3//2=3.log log.jt j C 16//1=3

³
:

(1.12)
The main goal of this paper is to prove the following theorem.

Theorem 1.10. Suppose that r j yT is faithful. The generating series Z.s/ converges abso-
lutely for Re.s/ > A and extends to a meromorphic function in the open half-plane
Re.s/ > A �min.2�1; m�2/. There exists c D c.T; r/ > 0 such that the function Z.s/

� has a pole at s D A of order j zGnz†0j and no other poles in R.c/ .respectively, the
half-plane Re.s/ > A �min.2�1; m�2/ if the Artin conjecture holds/,

� grows slowly in R; i.e. there exist J D J.T; r/ > 0 and 0 < c0 D c0.T; r/ 6 c such that
for any s D � C i t 2 R.c0/ avoiding any small neighborhood U of A we have

Z.� C i t/�T;r;U .log.jt j C 3//J ;

� has moderate growth in a vertical strip if the Artin conjecture holds, i.e. there exists
K D K.T; r/ > 0 such that for any s D � C i t with � > A�min.2�1;m�2/ avoiding
any small neighborhood U of A we have Z.� C i t/�T;r;�;U .1C jt j/

K :
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Here and throughout the paper, when we ask that the Artin conjecture holds, we mean
for the finitely many representations appearing in Theorem 5.4. Theorems 1.1 and 1.3
follow from Theorem 1.10 by an appropriate Tauberian argument (see [21, Chapter III,
Section 11] or [15, Theorem A.1]).

An application of Poisson summation (Lemma 2.14) decomposes Z.s/ as a sum over
global units x 2 U.T / of generating series Z.s; x/ that factor over places v of k, i.e.

Z.s/ D
X

x2U.T /

Z.s; x/ with Z.s; x/ D
Y
vj1

Akv .s; x/
Y
v−1

Nkv .s; x/ (1.13)

for certain local archimedean and non-archimedean generating series Akv D Akv .s; x/

and Nkv D Nkv .s; x/. See Proposition 6.1 for the precise statement, which is a minor
modification of (1.13).

The location and order of the rightmost pole of each Z.s; x/ only depends on all but
finitely many of theNkv .s; x/, in particular, only on those v <1 which are unramified in
the extensionK=k splitting T . A main idea of this paper is to perform the analysis of Akv
and Nkv on the Galois side of the local Langlands correspondence for tori [24], which is
particularly simple when the torus splits over an unramified extension of non-archimedean
local fields; see Proposition 3.15.

An outline of the argument in this paper is then as follows.

(1) Show for each place v of k that the local series Nkv and Akv converge absolutely for
Re.s/ > A �m�2; see Sections 3.3 and 4.2.

(2) Compute Nkv for v unramified finely enough to obtain a group-theoretic description
of its leading terms as a local Dirichlet series; see Section 3.2.

(3) Compare the product over unramified places
Q
v 62BNkv with a finite product of global

Artin L-functions and apply the Brauer induction theorem or Artin conjecture; see
Section 5.4.

(4) Show that the leading Laurent series coefficients of Z.s; x/ at s D A are positive for
all x 2 U.T /; see Theorem 4.4 (3), Theorem 5.3 (4, 5), and Lemma 5.11.

(5) Show that the sum over U.T / in (1.13) converges absolutely; see Section 5.6.

As previously remarked, the Brascamp–Lieb inequality (Theorem 2.10) enters the picture
in step (1) for archimedean places, and leads to a problem in combinatorial optimiza-
tion of convex polyhedra. To resolve this problem, we use the theory of matroids; see
Section 4.2.2, especially Theorem 4.17.

Step (2) is the heart of the paper. Here we use the detailed conductor analysis from
Section 3.1, group theory, some algebraic geometry, and Lang–Weil bounds. The group-
theoretic description of the unramified terms thus obtained is crucial in their collection
into Artin L-functions in step (3).

The most difficult part of step (4) again turns out to be the archimedean places, see
Section 4.2.4. It is important for our method that the function x 7! .1 C jxj/�� on R
(among others) has a non-negative Fourier transform, where the 1C jxj arises from the
Iwaniec–Sarnak definition of the archimedean analytic conductor; see Lemmas 4.21, 4.22
and 4.23.
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The Brascamp–Lieb inequality is used a second time in step (5) of the proof, where it
is applied in a global context with respect to the regulator matrix of T .

1.5. Index of notation

Notation Definition Location
k a general field in §2, a number field in §1, 5 and 6 §1.1, 2.1
A; F the ring of adèles of a number field k, a local field §1.1, 2.3
T , n an algebraic torus over k or F of dimension n §1.1, §2.1
A.T /; � the Pontryagin dual of T .k/nT .A/, a Haar measure on it §1.1
X�.T /; X�.T / groups of algebraic characters and cocharacters of T §1.1, §2.1
K, L, G the splitting field of T over k, or over F , its Galois group §1.1, §2.1
yT the complex dual torus: Hom.X�.T /;C�/ §1.1, (2.5)
LT the L-group of T : yT ÌG §1.1, Def. 2.4
r;m an m-dimensional complex algebraic representation of LT §1.1, §2.1
c.�; r/ the (local or global) analytic conductor with respect to r Defs 3.1, 4.1, 5.1
�;M a coweight of r , the multi-set of coweights of r (1.2), Def. 2.5
S; 2M a subset of M , the set of all subsets of M §1.1, §2.2
D.S/ a complex diagonalizable subgroup of yT (1.3), §2.2
A the power of X in the main theorem (1.4)
† set of non-zero S �M which attain A (1.6)
� lcmS2† j�0.D.S//j (1.7)
zK, zG K adjoin the �th roots of unity, Gal. zK=k/ §1.1
z† a fibered set with base † and fiber �0.D.S// (1.8)
z†0 z† with the subset ¹.S; 1/ W dimD.S/ D 0º deleted (1.10)
C.�/ the analytic conductor of a Hecke character � §1.2
ResK=k restriction of scalars, i.e. “Weil restriction” §1.2
R.c/ D R.A; c/ a region of analytic continuation for Z.s/, Y.s/ or U.s; x/ (1.12)
ksep, Gk a separable closure of k, the absolute Galois group of k §2.1
X1 �S X2 the fiber product of schemes X1; X2 over a base S §2.1
A^ the Pontryagin dual of a locally compact abelian group A §2.3
WF , WL=F Weil group and relative Weil group of a local field §2.3, (2.7)
� the canonical map WL=F ! Gal.L=F / (2.8)
�, ' a cohomology class and a Langlands parameter ' D � Ì � §2.3
ˆ.T / the set of Langlands parameters of T §2.3
HM a polytope in Rm

>0 given by an m � n matrix M (2.13), (2.14)
qF the cardinality of the residue field of F §3.1.1
c.%/, Qc.%/ the Artin and abelian conductors of a representation % Def. 3.2, 3.5
cF .%/ the conductor of a representation % w.r.t. a filtration F Def. 3.3
Qc.�; r/ “abelian” local analytic conductor Def. 3.6
OF , OL, p, P,f , ` integers, maximal ideals, and residue fields of F and L §3.1.2
Gv , W v

L=F
higher ramification groups with upper-numbering §3.1.1

U, O
.v/
L

the standard filtration on O�
L

§3.1.1
 E=F ; �E=F the Hasse–Herbrand functions, see [38, Chapter IV, §3] §3.1.1
T the canonical integral model of a torus T over a local field §3.1.2
N the norm map, i.e. the product of Galois conjugates (3.4)
yHn.G;M/ Tate cohomology groups of a G-module M §3.1.2
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Notation Definition Location
R the restriction to O�

L
map out of H1.WL=F ; yT / (3.8)

H1.G;M/ 1st group homology group of a G-module M (3.11)
NF .s; x/ local generating series for a non-archimedian field (3.21)
N the non-negative integers §3.2
P6.c/ a finite subgroup of HomG.O�L ; yT / (3.24)
PD.c/ a “sharp” subset of P6.c/ (3.25)
…6.c; x/,…D.c;x/ character sums over P6.c/ and PD.c/ (3.26)
Dk.c/ a generalization of D.S/ (3.29)
p.V / the set of geometric components of a variety V §3.2
a.S; x/ the number of Frobenius-fixed components of ˛�1.x/ (3.36)
a.S/ a.S; 1/; the number of Frobenius-fixed points of �0.D.S// (3.38)
Sred the maximal Galois-stable subset of S (3.40)
T, n1, n2, n3 T .F / ' T D .R�/n1 � .S1/n2 � .C�/n3 , F arch. local (4.1)
T^ T^ D .iRn1 � .Z=2Z/n1/ � Zn2 � .iRn3 � Zn3/ (4.3)
..w; �/; ˛; .w0; ˛0// a typical element of T^ §4.1
.a; c; .b; b0// an element of

X�.Gm/
n1 �X�.S

1/n2 �X�.ResC=R Gm/
n3

§4.1

M a matrix with entries in Z encoding the coweights of r §4.1
Ai ; C; Bi ; B

˙
3 subblock matrices of the coweight matrix M §4.1

AF .s; x/ local generating series for an archimedean field (4.21)
B1, B1;1=2 inf ¹kxk1 W x 2 HM º, a variant involving a factor of 1=2 (4.27), (4.28)
.N; I/, r.S/ a matroid, its rank function Def. 4.10, 4.12
PI , PB the matroid polytope and matroid base polytope Def. 4.14
FG.f / Fourier transform of a measure f on an abelian group G §4.2.4
v, w a valuation of k and a unique valuation of K extending it §5.1
T1

Q
vj1 T .kv/ §6.1

NTf
Q
v−1NT.Ow / §6.1

TN;A T1 �NTf (5.3)
UN .T / T .k/ \ TN;A, the global norm-units of T (5.4)
ClN .T / T .k/TN;AnT .A/, the norm-class group of T (5.5)
V ^ ¹� 2 T ^

N;A W �.x/ D 1 for all x 2 UN .T /º (6.2)
V ^1 ¹�1 2 T

^
1 W �1.x/ D 1 for all x 2 UN .T /º (6.7)

B set of places of k with .qkv ; �/ ¤ 1 or v ramified §5.2
TS an auxiliary torus attached to S 2 2M §3.2, 5.4
˛�1.x/ fibers of a map of tori ˛ W TS ! T , see also Lemma 2.6 §3.2, 5.4
K0, L0, � field of def. of components of ˛�1.x/ for all x, Gal.K0=k/ §5.4
P0, DP, DP0 a prime of K0 above P, decomposition groups of P, P0 §5.4
� equal up to an absolutely convergent Euler product Def. 5.6
C a conjugacy class of � (5.13)
†P subset of † fixed by DP (5.14)
aC .S; x/ the number of C -fixed components of ˛�1.x/ (5.16)
†a;b set of S 2 2M such that dimD.S/ D a and jS j D b (5.19)
z†a;b similar to z†0, but with respect to †a;b (5.21)
VOD

L
i V
˚mO;i

i permutation rep. of an orbit O of � acting on z†a;b (5.22)
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2. Background and notation

2.1. Tori and groups of multiplicative type over a field

In this subsection we let k denote an arbitrary field. We take an algebraic k-group to be
as in [26, Definition 1.1].

Definition 2.1. An algebraic k-group T is called a torus if there exists a fieldK � k such
that the base change T �k SpecK of T is isomorphic to a finite product of copies of Gm,
i.e. T �k SpecK ' Gn

m;K for some non-negative integer n.

Definition 2.2. An algebraic k-group is called diagonalizable if it is isomorphic over k
to a finite product of copies of Gm and groups of roots of unity �r . More generally, an
algebraic k-group U is said to be of multiplicative type if there exists a field K � k such
that the base change U �k SpecK is isomorphic to a diagonalizable group over K.

Tori are the smooth connected groups of multiplicative type [26, Section 12.f]. If a
fieldK � k is such that U �k SpecK is diagonalizable overK, then we say that U splits
over K. In fact, any k-group of multiplicative type splits over a finite separable extension
of k [26, Corollary 12.19] and we call the minimal Galois extension of k over which U
splits the splitting field of U .

Let ksep be a separable closure of k and Gk0 D Gal.ksep=k0/ for any k � k0 � ksep.
For any group U of multiplicative type over k, letX�.U /D Hom.U;Gm/ be the group of
algebraic characters of U and X�.U / D Hom.Gm; U / be the group of algebraic cochar-
acters of U . They are finitely generated abelian groups admitting continuous actions
of Gk . These actions on X�.U / and X�.U / factor through the action of the finite group
G D Gal.K=k/, where K is the splitting field of U . A group of multiplicative type U is
an affine scheme with coordinate ring ksepŒX�.U /�Gk D KŒX�.U /�G .

Lemma 2.3. The functor X� is a contravariant equivalence of categories from the cat-
egory of algebraic k-groups of multiplicative type to the category of finitely generated
abelian groups equipped with a continuous action of Gk . The functor X� is exact, i.e. it
sends short exact sequences to short exact sequences.

Proof. See [26, Theorem 12.23].

The equivalence of categories from Lemma 2.3 given by the exact functorX� restricts
to an equivalence of categories from the category of k-tori to the category of finitely gen-
erated free Z-modules equipped with a continuous action of Gk (see [26, Remark 12.5]).

For any k � k0 � ksep and any k-group U of multiplicative type we have

U.k0/ ' HomGk0
.X�.U /; .ksep/�/ (2.1)

(see [26, Remark 12.26]). The map in (2.1) takes a continuousGk0 -equivariant homomor-
phism ` W X�.U /! .ksep/� and extends it to a k-algebra homomorphism u� W O.U / D

.ksep/ŒX�.U /�Gk0 ! k0, which defines the k0-point u W Spec k0 ! U of U .



The Weyl law for algebraic tori 2455

Let T be a k-torus. The evaluation pairing

h�; �i W X�.T /˝Z X�.T /! Z (2.2)

given by � ı � W z 7! zh�;�i is a perfect pairing between the character and cocharacter
lattices.

The perfect pairing (2.2) gives us another description for the k-rational points
of a torus. Indeed, we have X�.T / ' Hom.X�.T /; Z/ and so X�.T / ˝Z K

� '

Hom.X�.T /;Z/˝Z K
�. There is an isomorphism

� W Hom.X�.T /;Z/˝Z K
�
' Hom.X�.T /;K�/ (2.3)

given on pure tensors by �.� ˝ z/ D .� 7! z�.�// for � 2 X�.T /. (More generally,
Hom.P; R/˝M ' Hom.P;M/ for any R-module M and finitely generated projective
R-module P .) Combining these maps with (2.1) we have

T .K/ ' X�.T /˝Z K
� and T .k/ ' .X�.T /˝Z K

�/G : (2.4)

2.2. L-groups of tori and representations

For any k-torus T the group

yT WD Hom.X�.T /;C�/ ' X�.T /˝Z C� (2.5)

is called the complex dual torus of T . As a group, yT ' .C�/n and carries an action of
G D Gal.K=k/ through the Galois action on the cocharacter lattice X�.T /. We shall also
use the unit complex dual torus

yTu D Hom.X�.T /; S1/ ' X�.T /˝Z S
1:

The affine k-scheme T _ D SpecKŒX�.T /�G is called the algebraic dual torus of T .
There is a natural isomorphismX�.T /'X

�.T _/ sending � 2X�.T / to the � 2X�.T _/
defined by �� D .X 7! �/ on coordinate rings �� W ksepŒX;X�1�! ksepŒX�.T /� (see e.g.
[26, Section 12.a, Lemma 12.4]). If k is a subfield of C, then yT D T _.C/ and

X�. yT / WD Homcts. yT ;C�/ D Hom.T _;Gm/ D X
�.T _/;

so in this case we obtain a natural identification X�. yT / ' X�.T /.

Definition 2.4. Let T be a k-torus with splitting field K. We call the external semidirect
product LT D yT ÌG the L-group of T , where G D Gal.K=k/.

The L-group of T is a complex algebraic group. We call the subgroup LTu WD yTu ÌG
of LT the unit L-group of T . Caution: more commonly in the literature on the Langlands
correspondence the L-group is defined using the absolute Galois group Gk in lieu of the
finite group G. While these two definitions are ultimately equivalent, we work with finite
Galois groups mainly because Langlands so does in his paper on the correspondence for
tori [24], and some computations in group co/homology become simpler when we work
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with finite groups. Of course, the cost of working with finite G is having to keep track of
the splitting field of T .

Let r W LT !GL.V / be a finite-dimensional complex algebraic representation of LT .
The restriction of r to yT admits a weight space decomposition

r j yT D
M

�2X�. yT /

V�; (2.6)

where V� is the eigenspace of V with character �.

Definition 2.5. The multi-set M D Mr with underlying set ¹� 2 X�. yT / W V� ¤ 0º and
multiplicity of � 2M equal to dimV� is called the set of coweights of r .

Let S �M be a subset of coweights with multiplicity. Recall the definitions of D.S/
and A from (1.3) and (1.4), which make sense for general base fields.

The group G acts on the set of coweights M via its action on X�.T / (or yT /. In the
case that k is an archimedean local field, we will, after choosing coordinates on T .k/
and r , associate toM anm� nmatrix (wheremD dim r and nD dimT ), which we also
write M .

In this paper a k-variety is a reduced, separated k-scheme of finite type. In particular,
we do not assume that varieties are irreducible.

Lemma 2.6. Let ˛ W T1 ! T2 be a map of tori over a field k of characteristic zero. The
number of geometric components of ˛�1.x/ is constant on ¹x 2 T2.k/ W ˛�1.x/ is non-
emptyº. For any finitely generated subgroup ƒ of T2.k/, every component of ˛�1.x/ for
all x 2 ƒ is defined over a single finite extension of k.

Proof. For the first assertion, if ˛�1.x/ is empty, there is nothing to show, so suppose
otherwise.

Recall [26, Remark 12.5] that the tori T1, T2 as well as the group of multiplicative type
ker˛ are all reduced k-schemes, since k has characteristic zero. If k is a perfect field and
A and B are reduced k-algebras, then A˝k B is a reduced k-algebra (see [7, Chapter V,
Section 15, 5. Theorem 3 (c) and 2. Proposition 5]). Since T1 and T2 are affine, it follows
that ˛�1.x/ is reduced, hence a closed subvariety of T1. As we have already remarked,
the algebraic group ker ˛ is reduced, thus y.ker ˛/ is also a closed subvariety of T1 for
any fixed geometric point y 2 ˛�1.x/.K/ for any finite extension K=k.

For any fixed algebraic closure xk=k it is easy to check that ˛�1.xk/ D y.ker˛/.xk/, so
that by e.g. [26, Corollary 1.18], ˛�1.x/ D y.ker ˛/ as closed subschemes of T1. Then,
since y.ker ˛/ 'K ker ˛ (see e.g. [26, Proposition 5.24]) and the formation of the group
of connected (equivalently, irreducible) components �0 commutes with base change [26,
Proposition 2.37 (c)], we see that the number of components of ˛�1.x/ is independent
of x.

For the second assertion, say x1; : : : ; xr are generators of ƒ. Since T1 is abelian, all
of the irreducible components of ˛�1.x/ for x 2 ƒ are defined over the finite extension
of k obtained by adjoining the coordinates of the yi corresponding to xi (if they exist)
from the previous paragraph to the field of definition of .ker˛/ı.
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2.3. Local Langlands correspondence

For a topological abelian group A, we henceforth denote by Hom.A;C�/ the group of
continuous complex characters of A, and by A^ the subgroup of unitary characters, that
is the Pontryagin dual. For M a G-module, H 1.G; M/ denotes the first cohomology
group defined using continuous cocycles.

In this section we suppose that T is a torus over a local field F with splitting field L
and Galois group G D Gal.L=F /.

Following [6], we define the local analytic conductors c.�; r/ associated to a character
� W T .F /! C� and a representation r of LT by passing through the local Langlands
correspondence and taking the conductors from the Galois representation associated to �
and r . To that end, we now review the local Langlands correspondence for tori.

Recall the Weil group of a local field [43, Section 1.1], which is a triple .WF ; '; ¹rE º/,
and the relative Weil group

WL=F WD
WF

ŒWL; WL�
: (2.7)

The group WL=F has W ab
L as a subgroup and so can be thought of as a group extension

of G by L�, i.e. there is a short exact sequence

1! L�
rL
�! WL=F

�
�! G ! 1 (2.8)

(see [43, Section 1.2]). If L; F are non-archimedean local fields, then the map rL is the
Artin reciprocity map of class field theory [43, (1.4.1)].

Following [24], we define a Langlands parameter to be a continuous group homo-
morphism ' W WL=F !

LT for which the diagram

WL=F
'
//

�
""

LT

��

G

is commutative. Two Langlands parameters are said to be equivalent if they are yT -conju-
gate. We write ˆ.T / for the set of equivalence classes of Langlands parameters of T as
in [6, Section 8]. The local Langlands correspondence (LLC) for tori asserts that there is
a canonical bijection

Hom.T .F /;C�/ ! ˆ.T /: (2.9)

Given a Langlands parameter ' corresponding to � 2 Hom.T .F /;C�/, the composition

r ı ' W WL=F ! GL.V /

only depends on the equivalence class of '. We have thus associated a complex Galois
representation to the character � and the L-group representation r . We define the local L
and "-factors associated to finite-dimensional complex Galois representations as in [43,
Section 3]. Later, we will define local analytic conductor c.�; r/ in terms of the "-factor
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of r ı ' if F is non-archimedean (see Definition 3.1), and in terms of theL-factor of r ı '
if F is archimedean (see Definition 4.1).

To make (2.9) more explicit, we recall the cohomological interpretation of the LLC
for tori. Given a Langlands parameter ', we write '.z/ D �.z/ Ì �.z/ for z 2 WL=F ,
�.z/ 2 yT , and �.z/ 2 G. One sees that ' and '0 are equivalent if and only if � and � 0 are
cohomologous, i.e. we have a bijection

ˆ.T / ! H 1.WL=F ; yT /; (2.10)

where WL=F acts on yT via the map � W WL=F ! G of (2.8). Langlands proved [24,
Theorem 1] that there is an isomorphism

Hom.T .F /;C�/ ' H 1.WL=F ; yT / (2.11)

and moreover (2.11) restricts to

T .F /^ ' H 1.WL=F ; yTu/; (2.12)

where yTu D X�.T /^. We will use (2.12) when F is an archimedean local field.
Let dx be a Haar measure on F ,  a non-trivial additive character of F , and dx0

the dual Haar measure relative to  . Given a finite-dimensional complex representation
.%; V / of WF , Tate [43, Section 3] defines the "-factor

".V;  ; dx/ D ".%;  ; dx/

attached to these data. When we give the definition of the local analytic conductors in Sec-
tions 3.1 and 4.1, we will encounter the factor .ı. /dx=dx0/dimV . This factor is explained
in [43, Section 3.4] and we do not need to elaborate on it for the purposes of this paper.

2.4. Some tools

Let xf denote an algebraic closure of a finite field f , and let V � xf n be a variety over xf
of dimension r and degree d . The following is [23, Theorem 1].

Theorem 2.7 (Lang–Weil). If V is defined over f and irreducible as a variety over xf ,
then

jV.f /j D jf jr COn;d;r .jf j
r�1=2/:

In fact, Lang and Weil give a more explicit bound on the implied constant in their
Theorem 1, but we do not need this. We also have the following result of Lang and Weil
under weaker hypotheses [23, Lemma 1].

Lemma 2.8 (Lang–Weil). If V is defined over xf , then

jV.f /j �n;d;r jf j
r :

We need the following standard variant of the Lang–Weil bound that relaxes the geo-
metric irreducibility, definability over f , and reducedness hypotheses.
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Corollary 2.9 (Lang–Weil, alternative form). Let V be a separated xf -scheme of finite
type. Then

jV.f /j D .p.V /COn;d;r .jf j
�1=2//jf jr ;

where p.V / is the number of geometrically irreducible components of V of dimension
r D dim V that are invariant with respect to the Frobenius endomorphism x 7! xjf j

associated to f .

If in fact the dimension of V is zero, it is not hard to see that jV.f /j D p.V /:

Proof sketch following the blog post “The Lang–Weil bound” of T. Tao. We may assume
without loss of generality that V is an xf -variety by working with the underlying reduced
closed subscheme Vred, which is an xf -variety and satisfies Vred.f / D V.f /, since f has
no nilpotents.

Decompose the variety V into geometrically irreducible components
S
i Vi . For

any Vi of dimension < r we apply Lemma 2.8 to subsume these components into the
error term. If Vi is geometrically irreducible but not defined over f , then it is not fixed by
the Frobenius endomorphism Fr. In this case, Vi \ Fr.Vi / is a proper closed subvariety of
the irreducible Vi , so is of strictly lower dimension. Since all the f -points of Vi are con-
tained in .Vi \ Fr.Vi //.f /, we again use Lemma 2.8 to subsume these components into
the error term. Lastly, each of the components Vi that remain are geometrically irreducible
and defined over f , to which we apply Theorem 2.7 to conclude the proof.

Let M 2 Mm�n.R/ be an m � n matrix with real entries, m > n. Let us write ai ;
i D 1; : : : ;m, for the rows ofM . We define a convex polytopeHM �Rm

>0 by the following
conditions:

mX
iD1

xi D n; (2.13)X
i2S

xi 6 dim span.¹ai W i 2 Sº/ (2.14)

for every subset S � ¹1; : : : ;mº. Note thatHM is non-empty if and only ifM is full-rank.
The following Brascamp–Lieb inequality is due to Barthe [3] and was restated in the

form below by [13, Section 4]. We use it in a crucial way in Section 4.2.1 and then again
in Section 5.6.

Theorem 2.10 (Brascamp–Lieb inequality). Let a1; : : : ; am be non-zero vectors in Rn

which span Rn, and letM be them� nmatrix whose rows are ai . Let xpD .p�11 ; : : : ;p�1m /

2 Rm
>0: Let xf D .fi /iD1;:::;m be an m-tuple of non-negative measurable functions fi W

R! R>0. Then Z
Rn

mY
iD1

fi .hai ; xi/ dx �m;n;M; xp

mY
iD1

kfikLpi .R/

if and only if xp 2 HM � Rm
>0. Here the implied constant depends on m; n;M; xp; but not

on xf .
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We also have the following convenient version of the Brascamp–Lieb inequality
on finitely generated abelian groups due to Bennett, Carbery, Christ and Tao [5, Theo-
rem 2.4].

Theorem 2.11 (Discrete Brascamp–Lieb inequality). Let G and ¹Gi W 1 6 i 6 mº be
finitely generated abelian groups. Let 'i W G ! Gi be homomorphisms. Let pi 2 Œ1;1�.
Then

rank.H/ 6
X
i

p�1i rank.'i .H// for every subgroup H of G (2.15)

if and only if there exists a constant C <1 such thatX
y2G

mY
iD1

.fi ı 'i /.y/ 6 C
Y
i

kfik`pi .Gi / for all fi W Gi ! Œ0;1/: (2.16)

We next recall some analytic results on L-functions of Hecke characters in t -aspect.

Lemma 2.12. For any Hecke character � over a number field there exists an effective
constant c.�/ > 0 such that L.s; �/ ¤ 0 for all s 2 R.1; c.�//.

Proof. A more general result of Coleman [16, Theorem 2] asserts that the lemma holds
apart from a possible exceptional real zero when the archimedean component of � is
trivial and �2 D 1. However, Stark’s effective lower bounds on L.1; �/ [42, Theorem 10]
bound such a potential exceptional zero away from s D 1 in terms of the discriminant of
the field of definition of �, so that by adjusting the value of c.�/ accordingly one obtains
the lemma without exceptions.

Lemma 2.13. For any Hecke character � over a number field,

1

L.� C i t; �/
�� .log.jt j C 3//2=3.log log.jt j C 16//1=3 (2.17)

uniformly for � C i t 2 R.1; c0.�// with an effective 0 < c0.�/ < c.�/.

Proof. Given [16, Theorem 1 and Section 5] the proof essentially follows that of [44,
Theorem 3.11] with �.t/ D c2.�/ log log.jt j C 16/ where c2.�/ is as in [16, Theorem 1]
and �.t/ D c0.�/

� log log.jt jC16/
log.jt jC3/

�2=3 (cf. [19, Lemma 11 and Remark 3]).

Lemma 2.14 (Poisson summation). Let H 6 G be locally compact commutative groups
such that the quotient G=H is compact. Let f 2 L1.G/ and write yf for its Fourier trans-
form

yf . / D

Z
G

f .g/ x .g/ dg:

If

(1) the restriction of yf to .G=H/^ is integrable,

(2) for all x 2 G the function y 7! f .xy/ is integrable on H ,

(3) the map x 7!
R
H
f .xy/ dy is continuous on G,
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then for all x 2 G we haveZ
H

f .xh/ dh D
1

Vol.G=H/

X
 2.G=H/^

yf . / .x/:

Proof. See [9, Chapter II, Section 1, 7. Corollary], which does not assume that G=H is
compact. This latter hypothesis is only used to write the integral over .G=H/^ as a sum
above.

Remark. There is also a more general version of Lemma 2.14 without the hypothesis
that G=H be compact or hypotheses (2) and (3), but in which the conclusion only holds
for almost every x 2 G: see [9, Chapter II, Section 1, 7. Proposition 15].

3. Local non-archimedean theory

3.1. Local Langlands correspondence, local conductors

We now restrict our attention to non-archimedean local fields F .

3.1.1. The Artin conductor. Let T be an F -torus and .WF ; '; ¹rE º/ a Weil group for
F . Let r W LT ! GL.V / be a finite-dimensional complex representation of the L-group
of T as in Section 2.2. Recall the "-factors attached to finite-dimensional complex Galois
representations of WF from Section 2.3.

Definition 3.1. If ' 2 ˆ.T / corresponds to � 2 Hom.T .F /;C�/ under the local Lang-
lands correspondence (2.9), then the quantity

c.�; r/ D j".r ı '; ; dx/j2

is called the local analytic conductor of � with respect to r .

Tate [43, Section 3.4.2] shows that ".V;  ; dx/ is additive, and in particular only
depends on the isomorphism class of V . If .%; V / is a unitary representation we have
(see [43, Section 3.4.7])

j".V;  ; dx/j2 D q
c.%/
F .ı. /dx=dx0/dimV : (3.1)

In particular, since ".V; ;dx/ only depends on the isomorphism class of .%;V /, it suffices
for (3.1) to hold that .%; V / be unitarizable. Here qF is the cardinality of the residue field
of F and c.%/ is the Artin conductor of the representation .%; V /.

In light of (3.1) we next review the definition of the Artin conductor c.%/ of a
finite-dimensional complex representation % W WF ! GL.V / of the Weil group of a
non-archimedean local field. The classical Artin conductor is an invariant of a finite-
dimensional complex representation of a finite Galois group Gal.E=F /. For more
discussion of the classical Artin conductor see [38, Chapter VI] or [48, Section 4]. We give
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a slightly non-standard definition of the Artin conductor of a finite-dimensional complex
representation of WL=F following [48] (this goes back at least to [17]).

Let ' W WF ,! GF be the inclusion given as part of the data of a Weil group (see
[43, Section 1.4.1]). For any v 2 Œ�1;1/, let W v

F be the inverse image of the (upper-
numbering) higher ramification group GvF by ' (see Serre [38] for definitions, especially
Chapter IV, Section 3, Remark 1). Let L=F be a finite extension and W v

L=F
be the image

of W v
F by the canonical projection WF � WL=F . The groups W v

L=F
therefore define a

descending filtration of WL=F with index set Œ�1;1/.

Proposition/Definition 3.2. For a finite-dimensional complex representation

% W WL=F ! GL.V /;

the number

c.%/ D

Z 1
�1

codimV
%.W v

L=F
/
dv

is called the Artin conductor of .%; V /. The value of c.%/ only depends on %jW 0
L=F

, and
extends the notion of Artin conductor for complex representations of finite Galois groups.

Proof. Since there are no breaks in the upper-numbering filtration between �1 and 0, and
the upper-numbering is left-continuous (see [38, Chapter 4, Section 3]), it follows that the
Artin conductor c.%/ only depends on the restriction of % to W 0

L=F
.

Since W 0
L=F

is compact and profinite and GL.V / has no small subgroups, it follows
thatH D ker%jW 0

L=F
is a finite index open subgroup ofW 0

L=F
. We know that %jW 0

L=F
then

factors through the finite quotientW 0
L=F

=H . From this, the inverse image ofH inW 0
F also

has finite index, and contains ŒWL; WL�, thus (see Tate [43, Section 1.4.5]) H D W 0
L=E

for some finite extension Lab=E=F . By Serre [38, Chapter IV, Proposition 14] we have

W 0
L=F

H
D
W 0
L=F

H

H
D

�
WL=F

WL=E

�0
' Gal.E=F /0

and indeed, for all v 2 .�1;1/,

W v
L=F

H \W v
L=F

'
W v
L=F

H

H
D

�
WL=F

WL=E

�v
' Gal.E=F /v:

Therefore to %jW 0
L=F

there is associated a finite extension E=F with E � Lab, and %

factors through the representation %0 W Gal.E=F / ! GL.V / given by composing with
the isomorphisms above. It is shown in [48, Section 4] for finite-dimensional complex
representations of finite Galois groups that the standard definition of the Artin conductor
matches the one given in Proposition/Definition 3.2 with the higher ramification groups
Gv.E=F / in place of the Weil group and %0 in place of %.

The Artin conductor is a special case of the following more general notion of conduc-
tor.
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Definition 3.3. For G a group endowed with a descending filtration F D .Gv/v2.�1;1/
and % W G ! GL.V / a finite-dimensional complex representation, we call

cF .%/ D

Z 1
�1

codimV %.G
v/ dv

the conductor of .%; V / with respect to F .

With G D WL=F and F given by the upper-numbering filtration, cF .%/ is the Artin
conductor of .%; V /.

Next, we introduce an “abelian” conductor Qc.%/. The Artin conductor of a represen-
tation .%; V / is controlled by the abelian conductor, and when the representation factors
through WL=F for L=F an unramified extension, the abelian conductor is identical to the
Artin conductor.

We define for any v 2 .�1;1/ the groups

O
.v/
L D

´
1C �

dve
L OL if v > 0;

O�L if �1 < v � 0:

In particular, the function v 7! O
.v/
L is locally constant on .�1;1/ � Z, and satisfies

limv!n� O
.v/
L D O

.n/
L for n 2 Z, where limv!n� denotes the one-sided limit from below.

Let  E=F and �E=F be the Hasse–Herbrand functions for an extension E=F of non-
archimedean local fields (see [38, Chapter IV, Section 3]). Recall the short exact sequence
(2.8) expressing WL=F as a group extension of G D Gal.L=F /.

Lemma 3.4. For any real number v > �1, the following diagram commutes and the
horizontal rows are short exact sequences:

1 // O
. L=F .v//

L
//

��

W v
L=F

//

��

Gv

��

// 1

1 // L�
rL // WL=F

� // G // 1

Proof. The Artin reciprocity homomorphism rL maps the subgroup O
.v/
L � L

� onto the
vth higher ramification groupW ab;v

L ofW ab
L in the upper-numbering (see Serre [38, Chap-

ter XV, Theorem 2]). We shall need an analogue of [38, Chapter IV, Proposition 2] for the
upper-numbering filtration of W ab

L , so we work with the Hasse–Herbrand functions. By
definition of the upper-numbering filtration and the transitivity of the function  under
field extensions (see [38, Chapter IV, Proposition 15]), we have

W
ab; L=F .v/
L D W ab

L; 
Lab=Lı L=F .v/

D W ab
L; 

Lab=F .v/
:

By [38, Chapter IV, Proposition 2] and converting back to the upper-numbering filtration,
we have

W ab
L; 

Lab=F .v/
D WL=F; 

Lab=F .v/
\W ab

L D W
v
L=F \W

ab
L :
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Therefore, O
. L=F .v//

L 'W
ab; L=F .v/
L �W v

L=F
, where the first' is the Artin map, so the

left hand square in the statement of the lemma commutes and all four maps are injections.
Next we compute the cokernel. By the foregoing,

W v
L=F

W
ab; L=F .v/
L

D
W v
L=F

W v
L=F
\W ab

L

'
W v
L=F

W ab
L

W ab
L

:

We apply [38, Chapter IV, Proposition 14] with G D WL=F and H D W ab
L to see that

W v
L=F

W ab
L

W ab
L

' .WL=F =W
ab
L /

v:

Finally, by the third group isomorphism theorem and [43, Section 1.1] we conclude that

.WL=F =W
ab
L /

v
' Gv;

since the canonical inclusion ' W WF ,! GF has dense image.

We are ready to give a definition of the abelian conductor Qc.%/.

Definition 3.5. Let .%; V / be a finite-dimensional complex representation of WL=F ;
W 0
L=F

; L�, or O�L , where the last two groups are viewed as subgroups of WL=F as in

Lemma 3.4. Let U be the descending filtration defined by .O.v/
L /v2.�1;1/. Then

Qc.%/ D cU.%/

is called the abelian conductor of .%; V /.

Remark. The abelian conductor Qc is additive in the sense that if % D %1 ˚ %2, then
Qc.%/ D Qc.%1/C Qc.%2/.

Definition 3.6. The abelian local analytic conductor Qc.�; r/ attached to �; r is the com-
plex number

Qc.�; r/ D q
Qc.rı'/
F .ı. /dx=dx0/dim r ;

where ' 2 ˆ.T / corresponds to � 2 Hom.T .F /;C�/ under the LLC for tori (2.9).

Finally, we note that the abelian conductor controls the Artin conductor and vice versa.
Let v0 D inf ¹v W Gv.L=F / D ¹1ºº: For example, if L=F is unramified then v0 D �1.

Lemma 3.7. We have

1

eL=F
Qc.%/ 6 c.%/ 6 Qc.%/C .v0 C 1/ dimV:

In particular, if L=F is unramified, then Qc.%/ D c.%/:

Proof. For the first inequality, we deduce from Lemma 3.4 that

codimV %.O
. L=F .v//

L
/ 6 codimV

%.W v
L=F

/
:
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Then, by [38, Chapter IV, Propositions 12, 13] we have

1

eL=F
Qc.%/ 6

Z 1
�1

codimV %.O
.u/
L
/

.G0 W Gu/
du D

Z 1
�1

�0L=F .u/ codimV %.O
.u/
L
/ du

D

Z 1
�1

codimV %.O
. L=F .v//

L
/ dv 6 c.%/:

For the second inequality, we use the fact that if v > v0 then

codimV %.O
. L=F .v//

L
/
D codimV

%.W v
L=F

/
:

We have

c.%/ D

Z v0

�1

codimV
%.W v

L=F
/
dv C

Z 1
v0

codimV
%.W v

L=F
/
dv

6 .v0 C 1/ codimV
%.W 0

L=F
/
C

Z 1
v0

codimV %.O
. L=F .v//

L
/ dv

6 .v0 C 1/ codimV
%.W 0

L=F
/
C

Z 1
�1

codimV %.O
. L=F .v//

L
/ dv

D .v0 C 1/ codimV
%.W 0

L=F
/
C

Z 1
�1

codimV %.O
.u/
L
/

.G0 W Gu/
du

6 .v0 C 1/ dimV C Qc.%/:

Corollary 3.8. For r; �; v0 as above and m D dim r we have

Qc.�; r/1=eL=F j c.�; r/ j q
.v0C1/m
F Qc.�; r/:

In particular, if L=F is unramified then Qc.�; r/ D c.�; r/.

The reason we prefer the abelian conductor is the following. Recall from Section 2.2
the set of coweightsM associated to the representation r W LT !GL.V / of dimensionm.

Proposition 3.9. Let ' be a Langlands parameter of T . Then 'jO�
L
2 HomG.O

�
L ;
yT /

depends only on the equivalence class of ' and writing � D 'jO�
L

, we have

Qc.r ı '/ D
X
�2M

c.� ı �/;

where on the right hand side c D cU as in Definition 3.3 with U being the standard
filtration of O�L .

Proof. We know that O�L � L
� maps to the trivial element of G (see (2.8)), so O�L acts

trivially on yT . By definition of a Langlands parameter 'jO�
L

takes values in yT Ì 1 � LT ,

i.e. 'jO�
L
D �jO�

L
for the � 2H 1.WL=F ; yT / corresponding to ' under the bijection (2.10).

Since O�L acts trivially on yT , we haveH 1.O�L ;
yT /DHomG.O

�
L ;
yT / and the first assertion

of the proposition follows.
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By definition, the abelian local analytic conductor of r ı ' only depends on the restric-
tion to O�L . We have

r ı 'jO�
L
D r j yT ı 'jO�L

D

M
�2M

� ı �jO�
L
;

so that the second assertion of the proposition follows by the additivity of the abelian
conductor.

3.1.2. The canonical integral model of a torus and the norm map. We begin with a brief
discussion of the work of Voskresenskiı̆ [49, Section 10.3] on the canonical integral model
of a torus T over a non-archimedean local field F . Let L be the splitting field of T with
G D Gal.L=F /. Let OF ;OL; f; ` be the rings of integers and residue fields in F; L,
respectively.

Lemma 3.10 (Voskresenskiı̆ Theorem 1). Given an F -torus T , there exists a faithfully
flat OF -algebra A of finite type endowed with a Hopf algebra structure such that T WD

SpecA is an OF -integral model for T , i.e. T �OF SpecF ' T .

The affine group scheme T of Lemma 3.10 is called the canonical integral model
of T . Voskresenskiı̆ showed that T is the unique integral model of T that may be con-
structed by choosing an F -linear embedding T ,! GL.V / and an OF -lattice in the
finite-dimensional F -vector space V that is stable by the action of the unique maxi-
mal compact subgroup of T .F /. Moreover, for any finite extension E=F one finds that
T .OE / is the unique maximal compact subgroup of T .E/, in particular

T .OL/ ' Hom.X�.T /;OL/ and T .OF / ' HomG.X
�.T /;OL/: (3.2)

Compare (3.2) with (2.1). We introduce the following abuse of notation: define

T .OL/ WD T .OL/ and T .OF / WD T .OF /: (3.3)

It is not in general true that the special fiber T �OF Spec f is itself a torus over f .
Nonetheless, we do have the following result.

Lemma 3.11 (Voskresenskiı̆ Theorem 2). If T splits over an unramified extension L=F ,
then the canonical integral model T D SpecA of T is given by A D OLŒX

�.T /�G and
Tf WD T �OF Specf is a torus over f .

If T splits over an unramified extension, we commit the abuse of notation T .f / WD
Tf .f / D T .f /:

Lemma 3.12. Let T1; T2 be two tori over a non-archimedean local field F both splitting
over some common unramified extension L=F with Galois group G. Let ˛ W T1 ! T2
and x 2 T2.OF / be an integer-valued point of T2. Then the fiber ˛�1.x/ � T1 admits an
OF -integral model ˛�1.x/0.

Proof. The G-equivariant map ˛� W X�.T2/! X�.T1/ extends to a map of OF -algebras

OLŒX
�.T2/�

G
! OLŒX

�.T1/�
G :
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Since L=F is unramified, by the explicit description of the canonical model in Lem-
ma 3.11, the map ˛ W T1 ! T2 extends to a map of the integral models ˛ W T1 ! T2
over OF . The scheme-theoretic fiber ˛�1.x/0 of ˛ W T1 ! T2 over x 2 T2.OF / is an
integral model for ˛�1.x/.

The local-to-global decomposition of Z.s/ in Section 6.1 will lead us to restrict the
local Langlands correspondence (2.11) to a compact subgroup of T .F / which has finite
index in the maximal compact subgroup T .OF /. As we will soon see in Section 3.1.3, the
natural choice is to restrict the Langlands correspondence to the image of the norm map

N W T .OL/! T .OF / (3.4)

defined by the product of Galois conjugates.
We will next prove an important lemma describing the image of N , which we write

NT.OL/. We begin with a preliminary but crucial result.

Lemma 3.13. Suppose L=F is unramified. The map N W T .OL/! T .OF / is surjective.

Proof. See [1, Corollary of Theorem 1].

Lemma 3.13 will be used to deduce the last assertion of Proposition 3.15 from the
previous ones. More generally, we have the following result.

Lemma 3.14. We have ˇ̌̌̌
T .OF /

NT .OL/

ˇ̌̌̌
6 edimT

L=F

ˇ̌̌̌
T .F /

NT .L/

ˇ̌̌̌
;

where eL=F is the ramification index of L=F . Both quotients are finite groups.

Proof. Applying the functor Hom.X�.T /;�/ to the valuation exact sequence

1! O�L ! L� ! Z! 0

yields
1! T .OL/! T .L/! Hom.X�.T /;Z/! 0; (3.5)

since X�.T / is a free abelian group, i.e. a projective Z-module (see e.g. [50, Lem-
ma 2.2.3]).

Taking G-invariants in (3.5) and using (3.2) we have

1! T .OF /! T .F /! HomG.X
�.T /;Z/! H 1.G; T .OL//

and a commutative diagram

1 // T .OL/ //

N

��

T .L/ //

N

��

Hom.X�.T /;Z/ //

N

��

0

1 // T .OF / // T .F / // HomG.X
�.T /;Z/
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The rightmost map N above is given by

N W Hom.X�.T /;Z/! Hom.X�.T /;Z/; ` 7!
X
�2G

`� ;

where `� .�/ D `.��
�1
/. Let

KDker
�
N WHom.X�.T /;Z/!Hom.X�.T /;Z/

�
D

°
`2Hom.X�.T /;Z/ W

X
�2G

`� D0
±
:

The middle map N (recall (2.1)) is given by

N W Hom.X�.T /; L�/! HomG.X
�.T /; L�/;  7!

Y
�2G

 � ;

where  � is given by  � .�/ D  .��
�1
/� : Let

T1 D ker.N W T .L/! T .F // D
°
 2 Hom.X�.T /; L�/ W

Y
�2G

 � D 1
±
:

Define the valuation map
v W T1 ! K;  7! v. /;

where v. /.�/ D v. .�//: The snake lemma gives us the exact sequence

T1
v
�! K

ı
�!

T .OF /

NT .OL/
!

T .F /

NT .L/
: (3.6)

We claim that ˇ̌̌̌
K

v.T1/

ˇ̌̌̌
6 edimT

L=F :

Indeed, let ` 2 K be arbitrary. We claim that eL=F ` 2 v.T1/. The first claim follows from
this second claim on letting ` run through a Z-basis for K, so it suffices to show this. Now
we show the second claim. Choose a uniformizer �F for F . For ` 2 K let

 ` 2 Hom.X�.T /; L�/;  `.�/ D �
`.�/
F :

Note thatY
�2G

 �` .�/ D
Y
�2G

 `.�
��1/� D

Y
�2G

�
`.��

�1
/

F D �
P
� `
��1 .�/

F D �0F D 1;

since ` 2 K. Therefore  ` 2 T1. Note also that

v. `/.�/ D v. .�// D v.�
`.�/
F / D eL=F � `.�/:

Thus we have shown that for all ` 2 K we have eL=F ` 2 v.T1/, as claimed.
By the exact sequence (3.6) we haveˇ̌̌̌

T .OF /

NT .OL/

ˇ̌̌̌
6
ˇ̌̌̌

K

v.T1/

ˇ̌̌̌
�

ˇ̌̌̌
T .F /

NT .L/

ˇ̌̌̌
6 edimT

L=F

ˇ̌̌̌
T .F /

NT .L/

ˇ̌̌̌
:
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For the second assertion, recall the definition of the Tate cohomology groups yHn from
e.g. [38, Chapter VIII]. We have

T .F /

NT .L/
D yH 0.G; T /;

and by the Nakayama–Tate theorem (see e.g. [31, Theorem 6.2])

yH 0.G; T / ' yH 2.G;X�.T //:

Since X�.T / is a finitely generated abelian group, by e.g. [2, Section 6, Corollary 2] we
have

j yH 2.G;X�.T //j <1;

and so it follows that j T.F /
NT.L/

j is finite.

3.1.3. The Langlands pairing. The goal of this section is to restrict (2.11) to the com-
pact subgroup NT.OL/ of T .F /. To do this, we reformulate the Langlands correspon-
dence [24] as a perfect pairing

T .F /˝H 1.WL=F ; yT /! C�; (3.7)

which we call the Langlands pairing. We write G0 for the inertia subgroup of G. The
following is the main result of this section.

Proposition 3.15. Write R.H 1/ for the image of the restriction to O�L map

R W H 1.WL=F ; yT /! HomG.O
�
L ;
yT /: (3.8)

The subgroup R.H 1/ of HomG.O
�
L ;
yT / is of index at most jH 1.G0; yT /j � jH 2.G0; yT /j.

The Langlands pairing restricts to a perfect pairing

NT.OL/˝R.H
1/! C�:

In particular, if L=F is unramified, the Langlands pairing restricts to a perfect pairing

T .OF /˝ HomG.O
�
L ;
yT /! C�: (3.9)

Corollary 3.16. The abelian local analytic conductor Qc.�; r/ only depends on �jNT.OL/.

Lemma 3.17. H i .G0; yT / is a finite group for all i > 1.

Lemma 3.17 follows from a result of Cartan and Eilenberg, which we recall now since
it will also be useful for other purposes later. Recall the Tate cohomology groups yHn (see
e.g. [38, Chapter VIII]).

Theorem 3.18 (Duality Theorem). LetG be a finite group, A aG-module and C a divis-
ible abelian group. For any i 2 Z there exists a perfect pairing

[ W yH i .G;A/˝ yH�i�1.G;Hom.A; C //! C:
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Proof. See [14, Chapter XII, Theorems 4.1 and 6.4].

Proof of Lemma 3.17. In Theorem 3.18 we take G D G0, A D yT , and C D C� to find
for i > 1 that

H i .G0; yT /˝Hi .G
0; X�.T //! C� (3.10)

is a perfect pairing. Now, by [2, Section 6, Corollary 1], H i .G0; yT / is a group of finite
exponent. Furthermore, X�.T / is a finitely generated G0-module, so by [2, Section 6,
Corollary 2], Hi .G0; X�.T // is a finite group. The result now follows from the duality
theorem.

In the unramified case, we also have the following version of the Langlands corre-
spondence over finite fields.

Proposition 3.19. If L=F is unramified, then the Langlands pairing restricts to a perfect
pairing

T .f /˝ HomG.`
�; yT /! C�:

We give the proof of Proposition 3.19 at the end of this section after first proving
Proposition 3.15.

To prepare for the proof of Proposition 3.15, we review the proof of the Langlands
correspondence (2.11). To do so, we recall the following explicit descriptions of group
cohomology and homology (the same exposition appeared in the appendix of [20]).

For this subsection, let G be a group and M a left G-module. Computing via the
inhomogeneous resolution gives the usual description of group cohomology

H 1.G;M/ D
¹� W G !M j �.gh/ D �.g/C g�.h/º

¹� W G !M j �.g/ D gm �m for some m 2M º
:

If
L
S N is a direct sum of copies of an abelian group N indexed by a set S , let

ıs.n/ 2
L
S N be the element which is n in the sth entry and 0 elsewhere. Computing via

the inhomogeneous resolution then gives the following description of group homology:

H1.G;M/ D
¹.mg/g2G j

P
g.g
�1mg �mg/ D 0º

d.
L
G�GM/

; (3.11)

where d.ıg;h.m// D ıh.g
�1m/ � ıgh.m/ C ıg.m/. If G is abelian and acts trivially

on M , then we have H1.G;M/ ' G ˝Z M .
IfG0 <G is a finite index normal subgroup, there is an action ofG=G0 onH1.G0;M/

by the rule g � ıg0.m/ D ıgg0g�1.gm/. There also exists a natural map

Trace W H1.G;M/! H1.G
0;M/G=G

0

;

which may be computed as follows. Pick coset representatives g1; : : : ; gn forG=G0. Then
any g 2 G determines a permutation � 2 Sn by the rule gig D g0g�.i/ (where g0 2 G0),
and

Trace.ıg.m// D
X
i

ıgigg�1�.i/
.gim/:
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Now we return to our review of the Langlands correspondence (2.11). In particular,
G D Gal.L=F / again. Since L� is abelian and acts trivially (recall (2.8)) onX�.T /, from
the “standard isomorphisms” (2.1) and (2.3) and the above explicit description of group
homology we have

T .L/ ' H1.L
�; X�.T // and T .F / ' H1.L

�; X�.T //
G : (3.12)

Langlands proves the following mild extension of the Duality Theorem 3.18. Let
˛ 2 WL=F and � 2 X�.T / be such that ı˛.�/ is a cycle representing a class in
H1.WL=F ; X�.T //. Let � be a cocycle representing a class in H 1.WL=F ; yT /. Langlands
[24, pp. 233–234] shows that the pairing

[ W H1.WL=F ; X�.T //˝H
1.WL=F ; yT /! C�; ı˛.�/˝ � 7! �.�.˛//; (3.13)

is a perfect pairing.
The difficult part of Langlands’s proof of his correspondence (2.11) is that the map

Trace W H1.WL=F ; X�.T //! H1.L
�; X�.T //

G (3.14)

is an isomorphism. Combining (3.12)–(3.13), we obtain the Langlands pairing (3.7).
We now discuss the connection between the Langlands pairing and the norm map. The

Artin map (see (2.8)) induces a map

rL;� W H1.L
�; X�.T //! H1.WL=F ; X�.T // (3.15)

so that the triangle

H1.L
�; X�.T //

N //

rL;�
))

H1.L
�; X�.T //

G

H1.WL=F ; X�.T //

'

OO

commutes. Here N is the norm map defined as a product of Galois conjugates, and the
vertical map is the trace map (3.14). Composing with the isomorphisms (3.12), we see that
the norm mapN W T .L/! T .F / factors through the homology groupH1.WL=F ;X�.T //:

T .L/
N //

''

T .F /

H1.WL=F ; X�.T //

'

OO

(3.16)

Proof of Proposition 3.15. Let

Ann.NT .OL// � H 1.WL=F ; yT /

be the annihilator of NT.OL/ with respect to the Langlands pairing (3.7). To prove the
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proposition, it suffices to compute Ann.NT .OL//, and show that

H 1.WL=F ; yT /

Ann.NT .OL//
' R.H 1/;

is as described in the statement of the proposition.

Lemma 3.20. Let
R W H 1.WL=F ; yT /! HomG.O

�
L ;
yT / (3.17)

be the restriction to O�L map .recall O�L acts trivially on yT /. Then

Ann.NT .OL// D kerR:

Proof. Let t W H1.WL=F ; X�.T //! T .F / be the isomorphism obtained by composing
the trace map (3.14) with the isomorphism (3.12). The first step is to give an explicit
description for the inverse image t�1.NT .OL// 6 H1.WL=F ; X�.T //. Later, we use the
explicit description for the cup product pairing (3.13) to compute Ann.NT .OL//.

The main trick to compute t�1.NT .OL// is to use the commuting triangle (3.16), as
the trace map is difficult to work with directly. Restricting (3.16) to the maximal compact
of T .L/ we obtain

T .OL/
N // //

&& &&

NT.OL/

t�1.NT .OL//

'

OO

where all arrows are surjective. Since we understand the diagonal arrow much better than
the vertical one, this yields a description for t�1.NT .OL//. In the above explicit descrip-
tion for group homology, it is the subgroup of H1.WL=F ; X�.T // generated by sums of
all possible homology classes ı˛.�/ as ˛ runs over ˛ 2 O�L � WL=F .

We now use the description t�1.NT .OL// D hı˛.�/i˛2O�
L

and compute the annihi-
lator

Ann.NT .OL// D Ann.t�1.NT .OL/// � H 1.WL=F ; yT /

with respect to (3.13).
First we prove Ann.NT .OL// � kerR. Let � represent a class in kerR. Then � van-

ishes on O�L by definition, and we have � [ ı˛.�/ D 1 for all ı˛.�/ with ˛ 2 O�L by the
definition (3.13) of [. It follows from the description t�1.NT .OL// D hı˛.�/i˛2O�

L
that

� [ x D 1 for all 1-cycles x 2 t�1.NT .OL//. Therefore kerR � Ann.t�1.NT .OL///:
Now we prove Ann.NT .OL//� kerR. Suppose � 2H 1.WL=F ; yT / does not represent

any class in kerR. Then there exists a ˇ 2 O�L for which �.ˇ/ ¤ 1. Since �.ˇ/ ¤ 1 there
exists � 2 X�.T / not vanishing on �.ˇ/ 2 yT . Since O�L acts trivially on X�.T /, we see
that �ˇ is a cycle, and thus represents a homology class. Thus ıˇ .�/ 2 t�1.NT .OL// and
� [ ıˇ .�/¤ 1, so � 62 Ann.t�1.NT .OL///. Therefore .kerR/c � Ann.t�1.NT .OL///c ,
so we have kerR D Ann.t�1.NT .OL///.
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By Lemma 3.20 we have shown that

NT.OL/˝
H 1.WL=F ; yT /

kerR
! C�

is a perfect pairing. It now suffices to show that

H 1.WL=F ; yT /

kerR
' R.H 1/ 6 HomG.O

�
L ;
yT /

is of index at most jH 1.G0; yT /j � jH 2.G0; yT /j, as in the statement of Proposition 3.15.
Consider the inertia group W 0

L=F
acting on yT , and the exact sequence

1! O�L ! W 0
L=F
! G0 ! 1

as in Lemma 3.4. We take the inflation-restriction-transgression exact sequence (see e.g.
[27, (1.6.7) Proposition]) attached to these data

1! H 1.G0; yT /
i
�! H 1.W 0

L=F
; yT /

r
�! HomG0.O

�
L ;
yT /

g
�! H 2.G0; yT /: (3.18)

These give

1! H 1.G0; yT /
i
�! H 1.W 0

L=F
; yT /

r
�! kerg! 1;

where ker g is a subgroup of HomG0.O
�
L ;
yT / of index at most jH 2.G0; yT /j. We take

Frobenius invariants of this to obtain a sequence

1! H 1.G0; yT /Z
i 0

�! H 1.W 0
L=F

; yT /Z
r 0

�! .kerg/Z ! H 1.Z;H 1.G0; yT //;

where 1 2 Z acts by arithmetic Frobenius on yT . Since a cocycle is determined by its value
on a generator, we have

jH 1.Z;H 1.G0; yT //j 6 jH 1.G0; yT /j:

Therefore r 0.H 1.W 0
L=F

; yT /Z/ has index at most jH 1.G0; yT /j in .ker g/Z, and ker g has

index at most jH 2.G0; yT /j in HomG0.O
�
L ;
yT /, so .kerg/Z has index at most jH 2.G0; yT /j

in HomG.O
�
L ;
yT /. Thus r 0.H 1.W 0

L=F
; yT /Z/ has index at most jH 1.G0; yT /j � jH 2.G0; yT /j

in HomG.O
�
L ;
yT /.

Consider again WL=F acting on yT , and take the exact sequence

1! W 0
L=F ! WL=F ! Z! 1:

Taking the inflation-restriction exact sequence associated to these data, we have

1! H 1.Z; yT G0/
i 00

�! H 1.WL=F ; yT /
r 00

�! H 1.W 0
L=F

; yT /Z ! 1:
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Here the term H 2.Z; yT G0/ vanishes because the cohomological dimension of Z is 1 (see
[10, Chapter VIII, Section 2]). We have R.H 1/ D .r 0 ı r 00/.H 1.WL=F ; yT //; and by the
above remarks we conclude that R.H 1/ has index at most jH 1.G0; yT /j � jH 2.G0; yT /j in
HomG.O

�
L ;
yT /, as was to be shown.

When L=F is an unramified extension, we have G0 D ¹1º, so that the first part
of Proposition 3.15 gives R.H 1/ D HomG.O

�
L ;
yT /. We have NT.OL/ D T .OF / by

Lemma 3.13, so that the Langlands pairing restricts to the perfect pairing (3.9).

Proof of Proposition 3.19. We again use the description of the local Langlands correspon-
dence in terms of group homology described above. First, recall [28, Proposition 2.3.1]
that we have an exact sequence

1! HomG.X
�.T /; 1CPL/! T .OF /! T .f /! 1:

By the standard isomorphisms (3.2), the left half of this exact sequence can be reinter-
preted in terms of group homology. That is, we have the following commutative diagram:

HomG.X
�.T /; 1CPL/

� � //

'

��

T .OF /

'

��

H1.1CPL; X�.T //
G �
�

// H1.O
�
L ; X�.T //

G

Recall that in the course of the proof of Lemma 3.20 we showed that there is a commuting
triangle

H1.O
�
L ; X�.T //

rL;�
(( ((

N // H1.O
�
L ; X�.T //

G

hı˛.�/i˛2O�
L

Trace'

OO

(3.19)

where hı˛.�/i˛2O�
L

is the subgroup of H1.WL=F ; X�.T // generated by sums of all pos-
sible homology classes ı˛.�/ as ˛ runs over O�L , N is the norm map, Trace is the map
defined in (3.14), and rL;� is induced by the Artin reciprocity map rL (see (3.15)). Since
L=F is unramified by hypothesis, N is surjective by Lemma 3.13.

We determine the inverse image of the subgroup H1.1C PL; X�.T //
G by the trace

map. Set
H1.T / WD hı˛.�/i˛21CPL � H1.WL=F ; X�.T //

to be the subgroup of H1.WL=F ; X�.T // generated by sums of all possible homology
classes ı˛.�/ as ˛ runs over 1CPL. We find that

N�1.H1.1CPL; X�.T //
G/ D H1.1CPL; X�.T //

since L=F is unramified [1, Proposition 1], so that

Trace W H1.T /! H1.1CPL; X�.T //
G

is an isomorphism by chasing the diagram (3.19).
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In summary, we have a short exact sequence

1! H1.T /! T .OF /! T .f /! 1: (3.20)

By exactness of the dual functor, we have the short exact sequence “on the automorphic
side” of the local Langlands correspondence

1! T .f /^ ! T .OF /
^ ! Hom.H1.T /;C�/! 1:

The strategy of the proof is now to write down another exact sequence “on the Galois
side” of the local Langlands correspondence, and by the five lemma, conclude the local
Langlands correspondence over finite fields. We start with the short exact sequence

1! 1CPL ! O�L ! `� ! 1:

Since yT is a divisible group, the functor Hom.�; yT / is exact [50, Corollary 2.3.2, Lem-
ma 2.3.4] and we obtain the short exact sequence

1! Hom.`�; yT /! Hom.O�L ; yT /! Hom.1CPL; yT /! 1:

Taking the long exact sequence in cohomology we get

1! HomG.`
�; yT /! HomG.O

�
L ;
yT /

R
�! HomG.1CPL; yT /:

Our goal now is to show that the image of the map R is isomorphic to
Hom.H1.T /;C�/. Recall the annihilator

Ann.H1.T // WD ¹� 2 HomG.O
�
L ;
yT / W x [ � D 1 for all x 2 H1.T /º;

where [ is Langlands’s cup product pairing (3.13). We claim that

Ann.H1.T // D kerR:

Indeed, if � is in the kernel of R, then � is trivial on 1C PL, and then for any cycle of
the form ı˛.�/ with ˛ 2 1 C PL we have �.˛/ D 1, so of course �.�.˛// D 1 for all
� 2 X�.T /, i.e. � 2 Ann.H1.T //. On the other hand, if � 2 Ann.H1.T //, then x [ � D 1
for all x 2 H1.T /, so in particular �.�.˛// D 1 for all ˛ 2 1CPL and � 2 X�. yT /. This
can only be the case if �.˛/ D 1 for all ˛ 2 1CPL, i.e. � 2 kerR.

By the perfect pairing T .OF /˝ HomG.O
�
L ;
yT /! C� of Proposition 3.15, we have

Hom.H1.T /;C�/ '
HomG.O

�
L ;
yT /

Ann.H1.T //
' R.HomG.O

�
L ;
yT // � HomG.1CPL; yT /:

Thus, we have a commutative diagram

1 // T .f /^ // T .OF /
^ //

'

��

Hom.H1;C�/

'

��

// 1

1 // HomG.`
�; yT / // HomG.O

�
L ;
yT / // R.HomG.O

�
L ;
yT // // 1

with short exact rows, where the first vertical ' is Proposition 3.15 and the second ' is
the one just established. The proposition now follows from the five lemma.
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3.2. Local conductor zeta function, unramified case

In this section, T is a torus over a non-archimedean local field F with splitting fieldL and
Galois groupG DGal.L=F /. Let P be the prime ideal of OL, ` the residue field ofL, and
char.`/ its characteristic. We assume throughout this section that the representation r j yT
is faithful.

Let � be a character of T .F / that is trivial on the subgroupNT.OL/ and x 2NT.OL/.
In this section and the next, we consider the (twisted) generating series

NF .s; x/ WD
X

�2NT.OL/^

�.x/

c.��; r/s
: (3.21)

Now, and for the rest of Section 3.2, we assume that the extension L=F is unram-
ified. Thus, the results of Section 3.1 afford us several immediate reductions. We have
NT.OL/ D T .OF / (Lemma 3.13), c.��; r/ D Qc.��; r/ (Corollary 3.8), and Qc.��; r/ D
Qc.�; r/ (Corollary 3.16), so that

NF .s; x/ D
X

�2T.OF /^

�.x/

Qc.�; r/s
:

Recall the local Langlands isomorphism on integral points from Proposition 3.15,

HomG.O
�
L ;
yT / ' T .OF /

^; � 7! �� : (3.22)

Proposition 3.9 then gives us a more hands-on way of working with the abelian conductor
Qc.�; r/ in terms of characters on the Galois side of the integral local Langlands isomor-
phism. Changing variables by (3.22) we have

NF .s; x/ D .ı. /dx=dx
0/m

X
�2HomG.O�L ; yT /

��.x/q
�s

P
� c.�ı�/

F : (3.23)

Recall the setM of coweights of r from Definition 2.5. Recall the set of non-negative
integers N, and let us index the coordinates of NM by�2M . For each cD.c�/�2M 2NM ,
consider the following sets of Langlands parameters (restricted to O�L):

P6.c/ D ¹� 2 HomG.O
�
L ;
yT / W c.� ı �/ 6 c� for all � 2M º; (3.24)

PD.c/ D ¹� 2 HomG.O
�
L ;
yT / W c.� ı �/ D c� for all � 2M º: (3.25)

Since � W yT ! C� is a group homomorphism � ı .�1:�2/ D .� ı �1/:.� ı �2/ and P6.c/

is an abelian group. Since r j yT is faithful, the abelian group P6.c/ is finite and so the
subset PD.c/ is finite as well. Indeed, if � 2 P6.c/ then � ı �.1C Pmax c�/ D 1 for all
� 2M , so that

r ı �.1CPmax c�/ D
Y
�2M

� ı �.1CPmax c�/ D 1:

Since r j yT is faithful, we must have �.1CPmax c�/ D 1 for all � 2 P6.c/. Then P6.c/ is
finite as .OL=Pmax c�/� is finite and yT has only finitely many elements of order dividing
j.OL=P

max c�/�j.
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We consider the character sums over P6.c/ and PD.c/,

…6.c; x/ D
X

�2P6.c/

��.x/ and …D.c; x/ D
X

�2PD.c/

��.x/: (3.26)

For example, …6.c; 1/ D jP6.c/j and …D.c; 1/ D jPD.c/j.
Writing jcj D

P
� c�, the sums …D.c; x/ are the coefficients of NF .s; x/ as a local

Dirichlet series, i.e.

NF .s; x/ D .ı. /dx=dx
0/m

X
c2NM

…D.c; x/

q
sjcj
F

: (3.27)

We begin our analysis with the sums …6.c; x/ in order to make use of the group
structure of P6.c/. The two functions …6.c; x/ and …D.c; x/ are related by inclusion-
exclusion:

…D.c; x/ D
X

b2¹0;1ºM

.�1/jbj…6..c � b/; x/: (3.28)

Recall that the set M of coweights admits an action of G. We also let G act on NM

by permuting coordinates and let Dk.c/ be the complex diagonalizable group defined by

Dk.c/ D
\
�2M
c�6k

ker� � yT ; (3.29)

i.e. Dk.c/ D D.S/ for S D ¹� 2 M W c� > kº. If c is G-fixed then Dk.c/ admits an
action of G. Note that Dk.c/ is monotonic in c, i.e. if c0 6 c coordinatewise then for any
k > 0 we have

Dk.c
0/ � Dk.c/:

The main result of this section is the following.

Proposition 3.21. Suppose r j yT is faithful, c 2 NM is G-fixed, L=F is unramified, and
.qF ; �/ D 1. If ��.x/ D 1 for all � 2 P6.c/; then

…6.c; x/ D jHomG.`
�;D0.c//j

1Y
kD1

char.`/dimDk.c/;

and if there exists � 2 P6.c/ such that ��.x/ ¤ 1 then …6.c; x/ D 0.

Proof. Suppose that ��.x/D 1 for all � 2P6.c/. Then…6.c;x/D jP6.c/j and it suffices
to count the latter set. Since r j yT is faithful, we have Dk.c/ D ¹1º for sufficiently large
k 2 N, and so there exists

k0 D k0.c/ D min
®
k 2 N W Dk.c/ D ¹1º

¯
:

Thus the product in the statement of the proposition is finite, running up to k0 � 1.
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We have

P6.c/ D
\
�2M

¹� 2 HomG.O
�
L ;
yT / W c.� ı �/ 6 c�º

D

\
�2M

1\
kD0
c�6k

¹� 2 HomG.O
�
L ;
yT / W � ı �.1CPk/ D 1º

D

1\
kD0

\
�2M
c�6k

¹� 2 HomG.O
�
L ;
yT / W �.1CPk/ � ker�º

D

1\
kD0

¹� 2 HomG.O
�
L ;
yT / W �.1CPk/ � Dk.c/º:

That is, � 2 P6.c/ if and only if �.1C Pk/ � Dk.c/ for all k 2 N. In particular, every
� 2P6.c/ is trivial on 1CPk0 . We inductively construct all of the � 2P6.c/ by extending
the trivial homomorphism 1CPk0 ! yT backwards along the standard filtration.

Consider two base cases: k0D 0 and k0D 1. If c is such that k0D 0 thenDk.c/D ¹1º
for all k 2 N and P6.c/D ¹1º, so the formula in the statement of the proposition holds. If
c is such that k0 D 1 then �.1CP/ D ¹1º for all � 2 P6.c/, and the possible extensions
of � to O�L are parameterized by

HomG.O
�
L=.1CP/;D0.c// D HomG.`

�;D0.c//:

So the formula in the statement of the proposition holds.
Now suppose as the induction hypothesis that

jP6.c/j D jHomG.`
�;D0.c//j

k0�1Y
kD1

jHomG.`;Dk.c//j (3.30)

for all c such that k0 6 K. Consider c such that k0 D K C 1. Then all � 2 P6.c/ sat-
isfy �.1CPKC1/ D ¹1º, and the possible extensions the trivial map 1CPKC1 ! yT to
elements of HomG.1CPK ;DK.c// are parameterized by

HomG

�
.1CPK/=.1CPKC1/;DK.c/

�
' HomG.`;DK.c//;

sinceL=F is unramified. Therefore (3.30) holds for c such that k0DKC 1. By induction,
(3.30) holds for all c 2 NM .

By the normal basis theorem, there exists ˛ 2 ` such that

¹˛; ˛qF ; ˛q
2
F ; : : : ; ˛q

ŒLWF��1
F º

is a basis for ` over the residue field of F . A G-equivariant homomorphism in
HomG.`; Dk.c// is determined by its value on ˛, which is of additive order char ` in `.
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Since .qF ; �/ D 1, the element ˛ cannot map non-trivially into the component group of
any Dk.c/. There are

.char `/dimDk.c/

elements of order dividing char ` in the connected component of the identity of Dk.c/.
Hence

jHomG.`;Dk.c//j D .char `/dimDk.c/;

and we have shown the first part of the Proposition.
If there exists � 2P6.c/ such that ��.x/¤ 1, then it immediately follows from orthog-

onality of characters that …6.c; x/ D 0, giving the second part of the proposition.

Proposition 3.21 is only valid for G-fixed c 2 NM (since otherwise Dk.c/ is not a
G-module, andG-equivariant homomorphisms intoDk.c/ do not make sense). However,
we can always reduce to the case that c is G-fixed by the following lemma.

Lemma 3.22. If c 2 NM is not G-fixed, then …D.c; x/ D 0.

Proof. Suppose c is not fixed by G, so that jM j > 2. Without loss of generality suppose
there exists � 2 G such that �� D �0 but that c�0 > c�. Suppose for a contradiction that
there exists � 2 HomG.O

�
L ;
yT / such that c.� ı �/ D c� and c.�0 ı �/ D c�0 . If z 2 O�L

then the Galois equivariance of � says

� ı �.�z/ D �0 ı �.z/:

If z 2 1C Pc� , then we also have �z 2 1C Pc� : But then c.� ı �/ 6 c� implies that
c.� ı � ı �/ 6 c�; and c.�0 ı �/ D c.� ı � ı �/; so that c�0 D c.�0 ı �/ 6 c�; a contra-
diction.

Before moving on, we include one more auxiliary result, which will be used in Sec-
tion 5.4 to show that only those c 2 NM with all entries either 0 or 1 will matter for the
location and order of the rightmost pole of the global generating series Z.s/. For more
details, see Lemma 5.8.

Lemma 3.23. If c D .c�/ 2 NM is such that max c� > 2 and …D.c; x/ ¤ 0 then
dimDk.c/ > 1 for all k D 0; : : : ;max� c� � 1.

Proof. Let us choose an ordering of the � 2M , say �1; : : : ; �m, and write ci D c�i . We
choose the ordering such that c1 is maximal among c1; : : : ; cm, thus c1 > 2. By (3.28),

…D.c; x/ D
X
d26c2

� � �

X
dm6cm

�.2d2/ � � ��.2dm/

�
�
…6.c � .0; d2; : : : ; dm/; x/ �…6.c � .1; d2; : : : ; dm/; x/

�
:

Since …D.c; x/ ¤ 0, there exist d2; : : : ; dm 2 ¹0; 1º such that

…6.c � .0; d2; : : : ; dm/; x/ ¤ …6.c � .1; d2; : : : ; dm/; x/: (3.31)
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By Proposition 3.21 we have

…6.c; x/ D jHomDP
..OL=P/

�;D0.c//j

1Y
kD1

.char O=p/dimDk.c/:

Thus, since c1 > 2 we have

…6.c � .0; d2; : : : ; dm//

…6.c � .1; d2; : : : ; dm//
D .char O=p/dimDc1�1.c�.0;d2;:::;dm//�dimDc1�1.c�.1;d2;:::;dm//:

(3.32)

By (3.31) the quantity in (3.32) is¤ 1. Since Dk.c/ is monotonic in c, we have

.char O=p/dimDc1�1.c�.0;d2;:::;dm//�dimDc1�1.c�.1;d2;:::;dm// > 1;

from which we conclude

1 6 dimDc1�1.c � .0; d2; : : : ; dm// � dimDc1�1.c � .1; d2; : : : ; dm//

6 dimDc1�1.c � .0; d2; : : : ; dm// 6 dimDc1�1.c/ 6 dimDk.c/

for all 1 6 k 6 c1 � 1.

We focus on the case where all the entries of c are 0 or 1 for the rest of the section.
Under this condition on c,Dk.c/D ¹1º for all k > 1 by the faithfulness of r j yT . Therefore
we restrict our attention to the case k D 0. We make a change of variables, and instead
consider subsets S � M as in the introduction. The change of variables is given by the
G-equivariant bijection

¹0; 1ºm ' 2M ; (3.33)

c $ S D ¹� W c� D 1º; (3.34)

withG acting on 2M as in the introduction. Define the quantities…6.S;x/ and…D.S;x/
via the above bijection c $ S in terms of …6.c; x/ and …D.c; x/, and define D.S/ D
D0.c/ as in the introduction.

Let Fr 2 G denote the Frobenius element. By Lemma 3.22, it is no loss of generality
to suppose that Fr S D S . Define an F -torus TS by taking its cocharacter lattice to be
ZjSc j with coordinates indexed by � 2 Sc , and G acting by permuting these. We define a
map of F -tori ˛ W TS ! T by the map of cocharacter lattices

˛� W ZjS
c j
! X�.T /; .0; : : : ; 1; : : : ; 0/ 7! �; (3.35)

where the 1 is in the �-slot and the other coordinates are all 0; see Lemma 2.3 and (2.2).
The construction of TS and ˛ is compatible with a global construction that we will intro-
duce in Section 5.

Let x 2 T .OF / and take the scheme-theoretic fiber ˛�1.x/ of ˛ above x. By Lem-
ma 3.12, the fiber ˛�1.x/ has an integral model over OF , which we write ˛�1.x/0. We
may take the base change of ˛�1.x/0 to the residue field f of F to obtain a separated
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f -scheme of finite type ˛�1.x/f (which may fail in general to be reduced). Let us abuse
notation by writing ˛�1.x/.f /D ˛�1.x/f .f / and recall the abuses of notation T .f / and
TS .f / from Section 3.1.2. Note that by (2.1) we also have T .f / ' HomG.X

�.T /; `�/

and TS .f / ' HomG.X
�.TS /; `

�/ since X�.T / ' X�.Tf / with the same action by
Gal.L=F / ' Gal.`=f /, and similarly for TS .

Letƒ be a finitely generated subgroup of T .OF /. (Later in Section 5.4, we will takeƒ
to be a finite index subgroup of the global units of a torus over a number field.) Let L0=F
be a Galois extension with L � L0 such that all geometric components of ˛�1.x/ for
all x 2 ƒ are defined over L0. Let p.˛�1.x// be the finite set of geometric components.
There is a continuous action of Gal.L0=F / on p.˛�1.x//. Let Fr0 2 Gal.L0=F / denote a
Frobenius automorphism, and write

a.S; x/ D #¹y 2 p.˛�1.x// W Fr0 y D yº: (3.36)

The number a.S; x/ does not depend on the choice of Fr0, since the inertia subgroup of
Gal.L0=F / acts trivially on ˛�1.x/.

Lemma 3.24. Suppose FrS D S . Then

…6.S; x/ D

´
.a.S; x/COT;r .q

�1=2
F //q

dimD.S/
F if dimD.S/ > 1;

a.S; x/ if D.S/ is finite.

Proof. By definition of T and TS , we have exact sequences

1! D.S/! yT ! yTS ;

1! HomG.`
�;D.S//! HomG.`

�; yT /! HomG.`
�; yTS /:

By Pontryagin duality applied to ˛ W TS .f /! T .f / we have an exact sequence

1! .T .f /=˛.TS .f ///
^ ! T .f /^ ! TS .f /

^ :

The local Langlands correspondence for tori over finite fields (Proposition 3.19) asserts
that

T .f /^ ' HomG.`
�; yT /;

and likewise for TS , since they both split over L=F , which is unramified. Therefore we
have a commutative diagram

1 // HomG.`
�;D.S// // HomG.`

�; yT / //

'

��

HomG.`
�; yTS /

'

��

1 // .T .f /=˛.TS .f ///
^ // T .f /^ // TS .f /

^

By the five lemma, we conclude that

HomG.`
�;D.S// ' .T .f /=˛.TS .f ///

^:
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By orthogonality of characters we have

…6.S; x/ D
X

�2HomG.`�;D.S//

��.x/

D

´
jHomG.`

�;D.S//j if x 2 ˛.TS .f // � T .f /;

0 if x 62 ˛.TS .f //:

If x 2 ˛.TS .f //, then

…6.S; x/ D jHomG.`
�;D.S//j D

jT .f /j

j˛.TS .f //j
D
jT .f /j

jTS .f /j
jker.˛ W TS .f /! T .f //j:

In either case, of x 2 ˛.TS .f // or not, we have

…6.S; x/ D
jT .f /j

jTS .f /j
j˛�1.x/.f /j: (3.37)

We use the Lang–Weil theorem in the form of Corollary 2.9 to count the number of
points on ˛�1.x/ over finite fields. The quantities n, r , and d associated to ˛�1.x/f as in
Theorem 2.7 are bounded uniformly as x varies over T .OF /, in terms of the degree of the
equations cutting out TS and ˛, and dim T and dim r . Since there are only finitely many
possibilities for S for a given T; r , the error term in our application of Corollary 2.9 only
depends on T; r .

By e.g. [26, Theorem 1.72, Definition 1.73], ˛ factors as ˛ W TS ! ˛.TS /! T , with
the first map faithfully flat and the second a closed immersion. For any x 2 ˛.TS /, by e.g.
[26, Theorem A.73] we have

dim˛�1.x/C dim˛.TS / D dimTS ;

and by [26, Remark 5.42],

dimD.S/ D dimT � dim˛.TS /:

Combining these, we have

dimT � dimTS C dim˛�1.x/ D dimD.S/:

Applying the Lang–Weil theorem (Corollary 2.9) to (3.37), we conclude the proof.

In the special case x D 1 we state the leading constant in Lemma 3.24 in a more
convenient fashion. Let Fr 2 G and

a.S/ D j¹y 2 �0.D.S// W FryqF D yºj: (3.38)

Lemma 3.25. Suppose FrS D S . Then

…6.S; 1/ D

´
a.S/q

dimD.S/
F .1COT;r .q

�1
F // if dimD.S/ > 1;

a.S/ if D.S/ is finite.
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Proof. We give an alternative computation of jHomG.`
�; yT /j. Let x denote a generator

for the cyclic group `�. Then HomG.`
�; D.S// is in bijection with the set ¹z 2 D.S/ W

Fr z D zqF º of possible images of x in D.S/. This set is equal to the kernel J of the
G-equivariant homomorphism

D.S/! D.S/; z 7!
zqF

Fr z
:

We have an exact sequence of G-modules

X�.D.S//
'
�! X�.D.S//! X�.J /! 1:

The map ' is given by '.�/ D qF � � �Fr, where we have written X�.D.S// in additive
notation. Our goal is to compute the cardinality of X�.J /, which equals the cardinality
of J itself.

Write X D X�.D.S//, Xt for the torsion subgroup, and Xf D X=Xt . The map ' W
X ! X induces maps Xt ! Xt and Xf ! Xf , both of which we also denote '. We
write Q D X�.J / for the cokernel of ' W X ! X , Qt for the cokernel of ' W Xt ! Xt ,
and Qf for the cokernel of ' W Xf ! Xf . In summary, we have a commutative diagram

1 // Xt //

'

��

X //

'

��

Xf //

'

��

1

1 // Xt //

��

X
� //

��

Xf //

q

��

1

Qt
// Q

�Q
// Qf

The map �Q is surjective since � and q are both surjective.
We show that the top right ' is injective. Indeed, let � 2 Xf satisfy '.�/D 0. Since '

is G-equivariant, we also have '.�Fri /D 0 for all i . Since '.�/D 0 we have qF �D �Fr,
and so �Fr � 0 .mod qF /. But similarly, since '.�Fr/ D 0 we have �Fr2 � 0 .mod q2F /.
Therefore � � 0 .mod qjGjF /. Repeating this process ad infinitum, we conclude that � D
0 2 Xf , so the top right ' is injective.

Then by the snake lemma we see thatQt ,!Q, and so the bottom row of the diagram
is an exact sequence of finitely generated abelian groups. We deduce that Q is finite if
both Qt and Qf are, and in this case jQj D jQt j jQf j.

Let us begin with Qf . The map ' on Xf is given in matrices by qF I � A, where A
is some matrix of integers for which AjGj D I . Putting qF I � A in Smith normal form
qF I � A D UDV with U; V 2 GLdimD.S/.Z/, we have

Qf '
Z
d1Z
� � � � �

Z
ddimD.S/Z

;

with each di equal to qF ˙ 1, and so jQf j D q
dimD.S/
F .1C O.q�1F // if dimD.S/ > 1

and jQf j D 1 if dimD.S/ D 0.
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Now we compute jQt j. For any endomorphism f W A! A of a finite abelian group,
we have jker f j D jcoker f j. Let Jt be the kernel of ' W Xt ! Xt , which therefore has
the same cardinality as Qt . But the cardinality of Jt is exactly the quantity a.S/ defined
above the statement of the lemma.

We have shown that jQt j D a.S/ and

jQf j D

´
q

dimD.S/
F .1CO.q�1F // if dimD.S/ > 1;
1 if dimD.S/ D 0:

Since jQj D jQt j jQf j, we conclude the proof.

Finally, we apply the foregoing results on …6.S; x/ to derive the final results for
…D.S; x/. Let

�.i 2 T / D

´
1 if i 62 T;

�1 if i 2 T:

The main tool is (3.28), which we restate for the sets S as

…D.S; x/ D
X
T�S

�.1 2 T / � � ��.m 2 T /…6.S � T; x/: (3.39)

For a set S we denote

Sred D ¹� 2 S W �� 2 S for all � 2 Gº: (3.40)

The set Sred is now G-fixed, and by (3.39) and Lemma 3.22 we have

…6.S; x/ D …6.Sred; x/: (3.41)

Recall from (1.4) that for faithful r j yT we defined

A D max
²

dimD.S/C 1

jS j
W S �M; D.S/ ¤ ¹1º

³
:

Lemma 3.26. For any ¿ ¤ S �M such that FrS D S and

dimD.S/C 1

jS j
> A;

we have

…D.S; x/

D

8̂̂<̂
:̂
.a.S; x/COT;r .q

�1=2
F //q

dimD.S/
F if dimD.S/ > 1;

a.S; x/ � 1 if dimD.S/ D 0 and D.S/ ¤ ¹1º;

0 if D.S/ D ¹1º:

(3.42)

If x D 1 then instances of a.S; 1/ in (3.42) may be replaced by a.S/.
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Proof. Suppose first that dimD.S/ D 0 and a.S; x/ ¤ 0. Then for any T � S we also
have dimD.T / D 0 since D.T / � D.S/. By (3.39) and (3.41) we have

…D.S; x/ D
X
T�S

�.1 2 T / � � ��.m 2 T /…6..S � T /red; x/:

Since a.S; x/ ¤ 0, by Lemma 3.24 and Proposition 3.21 we deduce that ��.x/ D 1 for
all � 2 P6.S/. Then for any S 0 � S we also have ��.x/ D 1 for all � 2 P6.S

0/. Using
Proposition 3.21 and Lemma 3.24 again, we have

…D.S; x/ D a.S; x/C
X

¿¤T�S

�.1 2 T / � � ��.m 2 T /a..S � T /red; x/:

For any ¿ ¤ T ¨ S ,

dimD.T /C 1

jT j
D

1

jT j
>

1

jS j
D

dimD.S/C 1

jS j
> A;

thus D.T / D ¹1º by definition of A. For all T ¤ ¿, we have .S � T /red ¨ S . Thus, if
.S � T /red ¤ ¿, then D..S � T /red/ D ¹1º. On the other hand, if .S � T /red D ¿, then
also D..S � T /red/ D ¹1º by the faithfulness of r j yT . Therefore

…D.S; x/ D a.S; x/C
X

¿¤T�S

�.1 2 T / � � ��.m 2 T /

D a.S; x/ � 1C
X
T�S

�.1 2 T / � � ��.m 2 T / D a.S; x/ � 1;

since we assumed S ¤ ¿. Note that a.S; 1/ D a.S/ by Lemmas 3.24 and 3.25 when
dimD.S/ D 0.

Now suppose that dimD.S/ > 1 and a.S; x/¤ 0. As above, by (3.39), (3.41), Propo-
sition 3.21 and Lemma 3.24 we have

…D.S; x/ D
X
T�S

�.1 2 T / � � ��.m 2 T /…6..S � T /red; x/

D q
dimD.S/
F .1CO.q

�1=2
F //

�

X
T�S

dimD..S�T /red/DdimD.S/

�.1 2 T / � � ��.m 2 T /a..S � T /red; x/: (3.43)

If x D 1 then we may use Lemma 3.25 in lieu of Lemma 3.24 to obtain (3.43) with
a..S � T /red/ in lieu of a..S � T /red; 1/.

Suppose that T is such that dimD..S � T /red/ D dimD.S/. If .S � T /red D ¿, then

1 6 dimD.S/ D dimD..S � T /red/ D 0;

which contradicts the faithfulness of r j yT . Therefore we may assume that .S � T /red ¤¿.
If T ¤ ¿ then

dimD..S � T /red/C 1

j.S � T /redj
D

dimD.S/C 1

j.S � T /redj
>

dimD.S/C 1

jS j
> A:
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ThereforeD..S � T /red/D ¹1º, which contradicts dimD..S � T /red/D dimD.S/. Thus,
the only T � S which satisfies dimD..S � T /red/ D dimD.S/ is T D ¿, from which
we deduce the statement of the lemma.

Now suppose a.S; x/ D 0, in particular x ¤ 1. If dimD.S/ > 1 then by (3.39),
Lemma 3.24 and the triangle inequality, the statement of the lemma holds.

To finish the proof of the lemma, it remains to consider the case dimD.S/ D 0. If
D.S/D ¹1º, then we must have a.S;x/¤ 0, so suppose dimD.S/D 0 andD.S/¤ ¹1º.
Suppose jS j> 2 and S is maximal such that dimD.S/D 0 andD.S/¤ ¹1º. There exists
� 62 S , since D.M/ D yT . We claim that dimD.S [ �/ > 1. Indeed, by maximality,
either dimD.S [ �/ > 1 or D.S [ �/ D ¹1º. But the latter case cannot happen since
D.S/ ¤ ¹1º already, and D.�/ is monotonic. So dimD.S [ �/ > 1. But then

dimD.S [ �/C 1

jS [ �j
>

2

jS j C 1
>

1

jS j
> A;

since jS j > 2. This contradicts the definition of A. Hence, jS j D 1. Then

…D.S; x/ D
X
T�S

�.1 2 T / � � ��.m 2 T /…6..S � T /red; x/

D …6.S; x/ �…6.¿; x/ D �1:

Here, …6.S; x/ D 0 by the assumption that there exists � 2 P6.S/ with ��.x/ ¤ 1, and
…6.¿; x/ D 1 since only the trivial character appears in the definition of …6.¿; x/.

3.3. Local conductor zeta function, ramified case

In this section, T is a torus over a non-archimedean local field F and splitting over a
finite Galois extension L with ramification index e D eL=F not necessarily equal to 1. Let
G D Gal.L=F / be the corresponding group. Let p;P be the maximal ideals of OF ;OL
and choose a uniformizer � of OF . Let NT.OL/ be the image of the norm map N W
T .OL/! T .OF /. Recall the definition of NF .s; x/ from (3.21).

Theorem 3.27. Suppose that r j yT is faithful. For any x 2 NT.OL/ and character � of
T .F / that is trivial on NT.OL/, the series NF .s; x/ converges absolutely and uniformly
on compacta in the region

Re.s/ > max
²

dimD.S/

jS j
W D.S/ ¤ ¹1º

³
;

where S and D.S/ are as in Section 2.2 and in formula (1.3).

Proof. By Corollary 3.8, Corollary 3.16, and Proposition 3.9 we have

jNF .s; x/j 6
X

�2NT.OL/^

1

jQc.��; r/jRe.s/=e
D

X
�2NT.OL/^

1

jQc.�; r/jRe.s/=e

6 .ı. /dx=dx0/m
X

�2HomG.O�L ; yT /

q
�Re.s/

P
� c.�ı�/=e

F : (3.44)
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The conductor c appearing in the last line of (3.44) is in fact c D cU of Definition 3.3,
where U is the standard filtration on O�L (see Definition 3.5). Next, we construct yet
another filtration and compare it to U.

By the normal basis theorem, there exists an element ˛ 2 L such that ¹˛g W g 2 Gº is
a basis for L=F . The ¹˛gº all have the same valuation (e.g. [38, Chapter 2, Corollary 3]),
so by clearing numerators or denominators, there exists ˇ 2 O�L such that ¹ˇg W g 2 Gº
is a basis for L. We define an injective map of OF ŒG�-modules

f W OF ŒG� ,! OL

by f .1/ D ˇ. Its image has finite index in OL since ¹ˇgº span L.
Let � > 1 be sufficiently large so that the P-adic exponential function

exp W Pe�
! 1CPe�

is well-defined and an isomorphism. Then let g W OF ŒG� ,! O�L be defined as the com-
position of the following sequence of injective OF ŒG�-module homomorphisms:

g W OF ŒG� ,!
f

OL
'
���!
���

Pe� '
��!
exp

1CPe� ,! O�L :

The homomorphism g has finite cokernel. Let V n D g.pnOF ŒG�/ and V D .V n/ be the
corresponding filtration of O�L . For all n > 0 we have

V n � O
.e�Cen/
L : (3.45)

Indeed, if x 2 pnOF ŒG� then we write x as

x D
X
g2G

agg

with ag 2 pn for all g 2 G. So we have

f .x/ D
X
g2G

agˇ
g
2 pn D Pen;

so that f .pnOF ŒG�/ � Pen.
Now let us consider the conductor cV of a character � of O�L with respect to the

filtration V (see Definition 3.3) and compare cU and cV . If �j
O
.n/
L

D 1 then cU.�/ 6 n,
and if �j

O
.n/
L

¤ 1 then cU.�/ > n C 1. Similarly, if �jV n D 1 then cV .�/ 6 n, and if
�jV n ¤ 1 then cV .�/ > nC 1. Therefore by (3.45) we have

cU.�/ > ecV .�/C e� � e C 1:

ThenX
�2HomG.O�L ; yT /

q
�Re.s/

P
� cU.�ı�/=e

F 6 q�Re.s/m.��1C1=e/
F

X
�2HomG.O�L ; yT /

q
�Re.s/

P
� cV .�ı�/

F :



I. Petrow 2488

But now the summand only depends on the restriction of � to V 0. We have an exact
sequence

1! HomG.O
�
L=V

0; yT /! HomG.O
�
L ;
yT /! HomG.V

0; yT /! � � � :

The kernel is a finite group, since O�L=V
0 is a finite group and yT has only finitely many

points of order dividing the cardinality of this group. ThusX
�2HomG.O�L ; yT /

q
�Re.s/

P
� cV .�ı�/

F 6 jHomG.O
�
L=V

0; yT /j
X

�2HomG.V 0; yT /

q
�Re.s/

P
� cV .�ı�/

F :

But also
HomG.V

0; yT / ' HomG.OF ŒG�; yT / ' Hom.OF ; yT /:

If �$ � 2 Hom.OF ; yT / under this isomorphism, then cV .� ı �/D cW .� ı �/; where the
latter is the conductor with respect to the filtration W D .pn/ of the additive group OF .

Therefore

jNF .s; x/j

.ı. /dx=dx0/m

6 q�Re.s/m.��1C1=e/
F jHomG.O

�
L=V

0; yT /j
X

�2Hom.OF ; yT /

q
�Re.s/

P
� cW .�ı�/

F :

Then one computes as in Section 3.2. Let (cf. (3.24))

…6.c/ D j¹� 2 Hom.OF ; yT / W cW .� ı �/ 6 c� for all � 2M ºj:

Recall the complex diagonalizable groupsDk.c/ from (3.29). If r j yT is faithful and c2NM

is G-fixed then

…6.c/ D

1Y
kD0

jHom.pk�1=pk ;Dk.c//j D
1Y
kD0

q
dimDk.c/
F :

By the faithfulness of r j yT , the product is actually a finite product.
Hence we have

jNF .s; x/j

.ı. /dx=dx0/m

6 q�Re.s/m.��1C1=e/
F jHomG.O

�
L=V

0; yT /j.1 � q
�Re.s/=e
F /m

X
c2NM

Q1
kD0 q

dimDk.c/
F

q
Re.s/jcj
F

:

Therefore, Rv.s; x/ converges absolutely and uniformly on compacta for

Re.s/ > lim sup
c2NM

jcj�1
X
k>0

dimDk.c/:
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Now, recall that for any positive real a; a0; b; b0 with say a=b < a0=b0 we have a=b 6
.aC a0/=.b C b0/ 6 a0=b0. For any c 2 NM we write

jcj D
X
�2M

c� D
X
k>0

#¹� W c� > kº:

Then

jcj�1
X
k>0

dimDk.c/ D

P
k>0 dimDk.c/P

k>0 #¹� W c� > kº

6 max
k>0

Dk.c/

#¹� W c� > kº
D max

k>0

D.¹� W c� > kº/

#¹� W c� > kº
:

Thus,

lim sup
c2NM

jcj�1
X
k>0

dimDk.c/ 6 max
²

dimD.S/

jS j
W D.S/ ¤ ¹1º

³
:

4. Local archimedean theory

4.1. Local Langlands correspondence, local conductors

We assume in this section that F; L are archimedean local fields, and T is an F -torus
splitting over L. Let �R.s/ D ��s=2�.s=2/ and �C.s/ D 2.2�/�s�.s/. If .%; V / is a
complex Galois representation of the groupWF , then the L-factor of .%;V / is of the form

L.s; V / D
Y
i

�Fi .s C �%;i /;

where each Fi is R or C, dimV D
P
i ŒFi W F �, and �%;i 2C (see [18, Section 3.7]). Recall

the discussion of the local Langlands correspondence for tori from Section 2.3.

Definition 4.1. Suppose F is an archimedean local field. If ' is the Langlands parameter
associated to � 2 Hom.T .F /;C�/ by (2.9), then the quantity

c.�; r/ D
Y
i

.j�rı';i j C 1/
ŒFi WR�.ı. /dx=dx0/dim r

is called the archimedean local analytic conductor of � with respect to the finite-dimen-
sional complex representation r of LT .

Note that our definition differs slightly from the standard definition in that the C1
above is sometimes replaced by aC2 orC3. The reason some authors preferC2 orC3 is
to ensure that as dimV varies, there are only a finite number of representations of bounded
conductor. Since we will always consider dim r to be fixed in this paper, we preferC1 as
it makes some of the computations in Section 4.2 more elegant.

The definition of theL-factorL.s;V / for archimedean places is given in [43, Sections
3.1.1, 3.1.2 and 3.3.1] in terms of the classification of the finite-dimensional irreducible
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representations of WF given in Section 2.2.2 there. Therefore, we must make explicit
parameterizations of the possible Langlands parameters ' W WL=F ! LT , as well as the
possible representations r W LT ! GL.V /, in order to be able to find their compositions
among the classification [43, Section 2.2.2].

We assume until further notice that F D R and briefly discuss the easier case F D C
at the end of this section.

An F -torus splits over a quadratic extensionL'C, and soG DGal.L=F / is a group
of order 2, whose elements we write ¹1; �º. Let us recall the explicit description of the
Weil groups for archimedean local fields. We have

WF D L
�
t L�j and WL D L

�;

where we write elements of WF as words in z and j and we have the rules jzj�1 D �z
and j 2 D �1. We also have

� W WF=F D W
ab
F ' F

�;

where the isomorphism � is given by

�.z/ D jzj2 and �.j / D �1:

Also note that
WL=F D WF :

Now we choose isomorphisms L ' C and

T .F / ' T D .R�/n1 � .S1/n2 � .C�/n3 (4.1)

so that dim T D n D n1 C n2 C 2n3: By computing with the inflation-restriction exact
sequence and using facts about the group cohomology of finite cyclic groups, we have
an explicit parameterization of the L-equivalence classes of Langlands parameters ' W
WL=F !

LTu. They are given by

'.z/ D�
jzjw1 ; : : : ; jzjwn1 ;

�
jzj

z

�˛1
; : : : ;

�
jzj

z

�˛n2
;

��
jzj

z

�˛0
1

jzjw
0
1
�˛0
1 ;

�
jzj

z

��˛0
1

jzjw
0
1
�˛0
1

�
;

: : : ;

��
jzj

z

�˛0n3
jzj
w0n3
�˛0n3 ;

�
jzj

z

��˛0n3
jzj
w0n3
�˛0n3

��
Ì 1 (4.2)

and

'.j / D
�
.�1/�1 ; : : : ; .�1/�n1 ; 1 : : : ; 1; .1; .�1/˛

0
1/; : : : ; .1; .�1/

˛0n3 /
�
Ì �:

Here, wi 2 iR, �i 2 ¹0; 1º, ˛i 2 Z, ˛0i 2 Z, and w0i 2 C with w0i � ˛
0
i 2 iR. We write

T^ D .iRn1 � .Z=2Z/n1/ � Zn2 � .iRn3 � Zn3/; (4.3)

so that Langlands parameters may be parameterized by ..w; �/; ˛; .w0; ˛0// 2 T^.
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We also need an explicit description of the representation r . The representation r
decomposes into irreducible representations, and we can parameterize all irreducible rep-
resentations of LT by the set of orbits GnX�. yT / using Mackey theory (see [37, Sec-
tion 8.2]). We now study this parameterization explicitly. Corresponding to (4.1) we have
an isomorphism of G-modules

X�. yT / ' X D X�.Gm/
n1 �X�.S

1/n2 �X�.ResC=R Gm/
n3 ;

�x $ x;
(4.4)

where X�.Gm/ D Z with G acting trivially, X�.S1/ D Z with � 2 G acting by sending
�1 to 1, and X�.ResC=R Gm/ D Z2 with � 2 G acting by swapping the two factors. Each
x 2 X is contained in a G-orbit of size 1 or 2. We have the following three types of
isomorphism classes of irreducible representations of LT :

(1a) If x is fixed byG, i.e. is in an orbit of size 1, then �x is an irreducible representation
of LT .

(1b) If x is fixed by G, i.e. is in an orbit of size 1, then �x ˝ .sign/ is an irreducible
representation of LT .

(2) If x is not fixed byG, i.e. is in an orbit of size 2, then Vx D Ind
LT
yT
�x is an irreducible

representation of dimension 2 of LT . It only depends on the orbit of x. That is,
Vx ' V�x and this representation is not isomorphic to any other Vx0 , x0 ¤ x; �x.

Therefore we get a decomposition

r jLT D

m1M
iD1

�xi ˚

m2M
iD1

.�x0
i
˝ .sign//˚

m3M
iD1

Vx00
i

for some xi ; x0i which are fixed by G and some x00i which are not fixed by G, and where
m1 Cm2 C 2m3 D m D dim r .

To work out the archimedean L-factor for each Langlands parameter ' (as in (4.2))
and each irreducible representation of LT (as in (1a), (1b), (2), above), we must com-
pute these representations of WF explicitly enough to be able to recognize them in the
classification of irreducible representations given in [43, Section 2.2.2].

(1a) Suppose x is fixed by G. Then

x D .a1; : : : ; an1 ; 0; : : : ; 0; .b1; b1/; : : : ; .bn3 ; bn3//: (4.5)

The representation of WL=F associated to �x ; ' is

.�x ı '/.z/ D

n1Y
iD1

jzjaiwi
n3Y
iD1

jzj2bi .w
0
i
�˛0
i
/
D .�.z//

1
2

Pn1
iD1

aiwiC
Pn3
iD1

bi .w
0
i
�a0
i
/;

.�x ı '/.j / D .�1/
Pn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi D .�.j //

Pn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi :

As a character of F � this is�
jyj

y

�Pn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi

jyj
1
2

Pn1
iD1

aiwiC
Pn3
iD1

bi .w
0
i
�˛0
1
/:
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Following [43, Section 3.1.1], the L-function of this character of WL=F is

L.s; �x ı '/

D �R

�
s C

1

2

n1X
iD1

aiwi C

n3X
iD1

bi .w
0
i � ˛

0
i /C

� n1X
iD1

ai�i C

n3X
iD1

˛0ibi .mod 2/
��
:

Here and below, by .n .mod 2// we mean the integer 0 or 1 according to the value of n
modulo 2.

(1b) Suppose x is fixed by G. Then x is as in (4.5), and we have the characters
of WL=F

.�x ˝ .sign/ ı '/.z/ D
n1Y
iD1

jzjaiwi
n3Y
iD1

jzj2bi .w
0
i
�˛0
i
/

D .�.z//
1
2

Pn1
iD1

aiwiC
Pn3
iD1

bi .w
0
i
�˛0
1
/;

.�x ˝ .sign/ ı '/.j / D �.�1/
Pn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi D .�.j //1C

Pn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi :

As a character of F � this is�
jyj

y

�1CPn1
iD1

ai �iC
Pn3
iD1

˛0
i
bi

jyj
1
2

Pn1
iD1

aiwiC
Pn3
iD1

bi .w
0
i
�˛0
1
/:

Following [43, Section 3.1.1], the L-function of this character of WL=F is

L.s; �x ˝ .sign/ ı '/

D �R

�
s C

1

2

n1X
iD1

aiwi C

n3X
iD1

bi .w
0
i � ˛

0
i /C

�
1C

n1X
iD1

ai�i C

n3X
iD1

˛0ibi .mod 2/
��
:

(2) Suppose x is not fixed by G. Then

x D
�
a1; : : : ; an1 ; c1; : : : ; cn; .b1; b

0
1/; : : : ; .bn3 ; b

0
n3
/
�
;

where ci ¤ 0 at least one i or one of the bi ¤ b0i for at least one i . Then

.Vx ı '/.z/ D

�
.�x ı '/.z/ 0

0 .��x ı '/.z/

�
;

.Vx ı '/.j / D

�
.�x ı '/.j / 0

0 .��x ı '/.j /

��
0 1

1 0

�
:

In order to find this representation in the classification of [43, Section 2.2.2], we must
recognize it as the induction of some character. We have

.�x ı '/.z/ D

n1Y
iD1

jzjaiwi
n2Y
iD1

z�˛ici jzj˛ici
n3Y
iD1

z�˛
0
i
.bi�b

0
i
/
jzjw

0
i
.biCb

0
i
/�2b0

i
˛0
i ;

.��x ı '/.z/ D

n1Y
iD1

jzjaiwi
n2Y
iD1

z˛ici jzj�˛ici
n3Y
iD1

z˛
0
i
.bi�b

0
i
/
jzjw

0
i
.biCb

0
i
/�2bi˛

0
i :
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The power of z in .�x ı '/.z/ is

�

n2X
iD1

˛ici �

n3X
iD1

˛0i .bi � b
0
i /

and the power of z in .��x ı '/.z/ is

n1X
iD1

˛ici C

n3X
iD1

˛0i .bi � b
0
i /:

Exactly one of these two is negative. Following Tate, the rule for recognizing which char-
acter this representation is induced from is: choose .�x ı '/.z/ or .��x ı '/.z/ according
to which has a negative power of z. Then the representation is induced from that character.

The power of jzj in .�x ı '/.z/ is

n1X
iD1

aiwi C

n2X
iD1

˛ici C

n3X
iD1

w0i .bi C b
0
i / � 2

n3X
iD2

b0i˛
0
i

and the power of jzj in .��x ı '/.z/ is

n1X
iD1

aiwi �

n2X
iD1

˛ici C

n3X
iD1

w0i .bi C b
0
i / � 2

n3X
iD2

bi˛
0
i :

Note thatX
˛ici � 2

X
b0i˛
0
i D

�X
˛ici C

X
˛0i .bi � b

0
i /
�
�

X
˛0ibi �

X
˛0ib
0
i ;

�

X
˛ici � 2

X
bi˛
0
i D

�
�

X
˛ici �

X
˛0i .bi � b

0
i /
�
�

X
˛0ibi �

X
˛0ib
0
i :

Therefore if the power of z in .�x ı '/.z/ is negative then the power of jzj in it is

n1X
iD1

aiwi C

n3X
iD1

w0i .bi C b
0
i /C

ˇ̌̌ n2X
iD1

˛ici C

n3X
iD1

˛0i .bi � b
0
i /
ˇ̌̌
�

n3X
iD1

˛0i .bi C b
0
i /;

and if the power of z in .��x ı '/.z/ is negative then the power of jzj in it is given
by exactly the same formula. So the representation Vx ı ' of WL=F is induced from the
character of WL given by z�ajzjb where

a D
ˇ̌̌ n2X
iD1

˛ici C

n3X
iD1

˛0i .bi � b
0
i /
ˇ̌̌
;

n1X
iD1

aiwi C

n3X
iD1

.w0i � ˛
0
i /.bi C b

0
i /C

ˇ̌̌ n2X
iD1

˛ici C

n3X
iD1

˛0i .bi � b
0
i /
ˇ̌̌
:

Then by [43, Section 3.3.1] we conclude that

L.s;';Vx/D�C

�
sC

n1X
iD1

aiwi C

n3X
iD1

.w0i �˛
0
i /.bi C b

0
i /C

ˇ̌̌ n2X
iD1

˛ici C

n3X
iD1

˛0i .bi � b
0
i /
ˇ̌̌�
:
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We now collect the above results in a more compact form. Given a representation r
we determine a 3 � 3 block matrix M DM.r/ as follows. Take a decomposition

r jLT D

m1M
iD1

�xi ˚

m2M
iD1

.�x0
i
˝ .sign//˚

m3M
iD1

Vx00
i
; (4.6)

where each xi ; x0i 2 X are fixed by the action of G and each x00i 2 X is in a G-orbit of
cardinality 2. We may write explicitly

xi D
�
ai1; ai2; : : : ; ain1 ; 0; : : : ; 0; .bi1; bi1/; : : : ; .bin3 ; bin3/

�
; (4.7)

and similarly for x0i . Likewise we may write

x00i D
�
ai1; ai2; : : : ; ain1 ; ci1; : : : ; cin2 ; .bi1; b

0
i1/; : : : ; .bin3 ; b

0
in3
/
�
; (4.8)

with at least one cij ¤ 0 or bij ¤ b0ij . Now define the matrix

M DM.r/ D

0@A1 0 B1
A2 0 B2
A3 C B3

1A (4.9)

where A1 2Mm1�n1.Z/ is given by A1 D .aij / with aij as in (4.7), B1 2Mm1�n3.Z/ is
given by B1 D .bij / where bij is also as in (4.7). Next, A2 and B2 are defined similarly
to A1 and B1 but using the coordinates for x0i instead of those of xi as in (4.7). Finally,
A3 2 Mm3�n1.Z/ is given by .aij / where aij are taken from (4.8), C 2 Mm3�n2.Z/ is
given by C D .cij / where cij are taken from (4.8), and B3 2Mm3�n3.Z � Z/ is given by
B3 D ..bij ; b

0
ij //, where .bij ; b0ij / is also taken from (4.8).

We can write the elements ' as length n1 C n2 C n3 block column vectors, i.e. as0@ .w; �/

˛

.w0; ˛0/

1A 2 .Cn1 � .Z=2/n1/ � Zn2 � .Cn3 � Zn3/:

We define block-matrix multiplication as follows. Matrices of the form A multiplied by
an element .w; �/ 2 .iR/n1 � .Z=2/n1 are defined to be

A1.w; �/ D
1
2
A1w C .A1� .mod 2//;

A2.w; �/ D
1
2
A2w C .A2� .mod 2//;

A3.w; �/ D A3w;

where the products on the right hand sides are the usual matrix products. A matrix of the
form C multiplied by an element .˛/ 2 Zn2 is defined to be the standard matrix prod-
uct C˛. For .w0; ˛0/ 2 Cn3 � Zn3 we also define the product B1.w0; ˛0/ D B1.w0 � ˛0/
where on the right hand side we have the usual matrix product. We also define the multi-
plication of B2 in exactly the same way. So, in summary,
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.A1j0jB1/

0@ .w; �/

˛

.w0; ˛0/

1A D 1
2
A1w C B1.w

0
� ˛0/

C .A1� C B1˛
0 .mod 2// 2 .iR � ¹0; 1º/m1 (4.10)

and

.A2j0jB2/

0@ .w; �/

˛

.w0; ˛0/

1A D 1
2
A2w C B2.w

0
� ˛0/

C .A2� C B2˛
0 .mod 2// 2 .iR � ¹0; 1º/m2 : (4.11)

Finally, we define the multiplication of .A3jC jB3/ by ..w; �/; ˛; .w0; ˛0// as follows.
Let BC3 2Mm3�n3.Z/ be the matrix .bij C b0ij / formed from the entries of B3 and B�3 2
Mm3�n3.Z/ the matrix with entries .bij � b0ij /. Then we define

.A3jC jB3/

0@ .w; �/

˛

.w0; ˛0/

1ADA3wCBC3 .w0 � ˛0/CC˛CB�3 .˛0/ 2 .iR�Z/m3 : (4.12)

The above multiplication rules for M define a continuous group homomorphism

M W T^ ! .iR � ¹0; 1º/m1Cm2 � .iR � Z/m3 ;0@ .w; �/

˛

.w0; ˛0/

1A 7!M' D

0@A1 0 B1
A2 0 B2
A3 C B3

1A0@ .w; �/

˛

.w0; ˛0/

1A : (4.13)

Let j � j .mod2/ W iR � Z! C be defined by

j.i t; n/j .mod2/ D

´
i t if n is even,

i t C 1 if n is odd:

Let j � jre W iR � Z! C be defined by j.i t; n/jre D i t C jnj. If M D M.r/ is as above,
and ' is a Langlands parameter in the explicit form (4.2), let .M'/i be the i th entry of
M' as in (4.13).

Proposition 4.2. Let F be a real archimedean local field. With notation and definitions
as above, the archimedean local Langlands L-function L.s; �; r/ associated to a repre-
sentation r and a unitary character � 2 Hom.T .F /; S1/ is given in explicit terms by

L.s; r ı '/ D

m1Y
iD1

�R
�
s C j.M'/i j .mod2/

� m1Cm2Y
iDm1C1

�R
�
s C j.M'/i C .0; 1/j .mod2/

�
�

m1Cm2Cm3Y
iDm1Cm2C1

�C.s C j.M'/i jre/; (4.14)

where ' is the Langlands parameter corresponding to � by the local Langlands corre-
spondence for tori (2.9).
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Let x 2 T .F /, which according to the isomorphism (4.1) can be expressed as

x 7! .: : : ; xj ; : : : ; x
0
j ; : : : ; x

00
j ; : : :/ 2 .R

�/n1 � .S1/n2 � .C�/n3 ;

where xj 2 R� for j D 1; : : : ; n1, x0j 2 S
1 for j D 1; : : : ; n2, and x00j 2 C� for j D

1; : : : ; n3. If � 2 T .F /^ corresponds to the Langlands parameter ' with parameterization
(4.2) under the Langlands correspondence (2.12), then � is given explicitly by

�.x/ D .sgn x1/�1 � � � .sgn xn1/
�n1 jx1j

w1 � � � jxn1 j
wn1x

0˛1
1 � � � x

0˛n2
n2

�

�
jx001 j

x001

�˛0
1

jx001 j
w0
1
�˛0
1 � � �

�
jx00n3 j

x00n3

�˛0n3
jx00n3 j

w0n3
�˛0n3 : (4.15)

We briefly discuss the case where F is a complex archimedean local field. We have
WF D F

� and WF=F D W ab
F D WF . Let us choose isomorphisms F ' C and T .F / '

.C�/n. The Langlands parameters ' W WF ! yTu are given explicitly by

'.z/ D

��
jzj

z

�˛1
jzjw1�˛1 ; : : : ;

�
jzj

z

�˛n
jzjwn�˛n

�
(4.16)

for some wj 2 C and j̨ 2 Z with wj � j̨ 2 iR. We write T^ D .iR � Z/n, so that
Langlands parameters are parameterized by .w; ˛/ 2 T^. The irreducible algebraic rep-
resentations are merely the characters of yT , i.e. X�. yT / ' X D X�.Gm/

n D Zn. If r j yT
decomposes as

r j yT D

mM
iD1

�xi (4.17)

for xi D .bi1; : : : ; bin/ 2 X , then define the m � n matrix M D .bij /. Then M is a
continuous group homomorphism M W T^ ! .iR � Z/m given by

.w; ˛/ 7!M' DM.w; ˛/ D
� nX
jD1

bij .wj � j̨ /C

nX
jD1

bij j̨

�
iD1;:::;m

: (4.18)

Proposition 4.3. Let F be a complex archimedean local field. With notation and defini-
tions as above, the archimedean local Langlands L-function L.s; �; r/ associated to a
representation r and a unitary character � 2 Hom.T .F /; S1/ is given in explicit terms
by

L.s; r ı '/ D

mY
iD1

�C.s C j.M'/i jre/; (4.19)

where ' is the Langlands parameter corresponding to � by the local Langlands corre-
spondence for tori (2.9).

Let x 2 T .F / correspond to .x1; : : : ; xn/ 2 .C�/n by the chosen isomorphism T .F /

' .C�/n. If � 2 T .F /^ corresponds to a Langlands parameter ' with parameter .w; ˛/
under the Langlands correspondence (2.12), then � is given by

�.x/ D '.x/; (4.20)

where the latter is expressible in explicit terms by (4.16).
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4.2. Local conductor zeta function, archimedean case

In this section, F denotes an archimedean local field and T and F -torus. Choose a Haar
measure � on the Pontryagin dual T .F /^. Let

AF .s; x/ D

Z
T.F /^

�.x/

c.�; r/s
d�.�/: (4.21)

We assume that F 'R until further notice and briefly discuss the simpler case F 'C
at the end of the section. Recall (4.1) that we have chosen an isomorphism

T .kv/ ' T D .R�/n1 � .S1/n2 � .C�/n3 ;
x 7! .: : : ; xj ; : : : ; x

0
j ; : : : ; x

00
j ; : : :/;

(4.22)

with xj 2 R�; x0j 2 S
1, and x00j 2 C�.

Theorem 4.4. Suppose that r j yT is faithful.

(1) The integralAF .s;x/ converges absolutely and uniformly on compacta in the domain

Re.s/ > �0 D max
²

dimD.S/

jS j
W dimD.S/ > 1

³
:

(2) For s in the above region of absolute convergence, we have

AF .s; x/�T;r;s

Y
16j6n1

1

1C
ˇ̌
log jxj j

ˇ̌ Y
16j6n3

1

1C 2
ˇ̌
log jx00j j

ˇ̌ ;
with at most polynomial growth in s in vertical strips.

(3) For any real �0 < � 6 2, AF .�; x/ is non-negative real.

From part (1) of Theorem 4.4 we extract the following corollary.

Corollary 4.5. Let F be an archimedean local field and � a Haar measure on the Pon-
tryagin dual T .F /^ of the archimedean torus T .F /. Suppose that r j yT is faithful. For any
" > 0 we have

�.¹� 2 T .F /^ W c.�; r/ 6 Xº/�T;r;�;" X
�0C": (4.23)

The proof of Theorem 4.4 will occupy the remainder of Section 4.2. In Section 4.2.1
we reduce assertion (1) to a problem in combinatorial geometry (see Proposition 4.8).
The main input in the proof of assertion (1) is a Brascamp–Lieb inequality (see Theo-
rems 2.10 and 2.11). In Section 4.2.2, we give some background information on matroids
and polymatroids, and in Section 4.2.3 we solve the combinatorial geometry problem.
Assertion (2) follows immediately. Finally, in Section 4.2.4 we prove assertion (3) of
Theorem 4.4.

Recall that in Section 4.1 we worked out explicitly the local Langlands correspon-
dence for tori over archimedean local fields. Specifically, in (4.2) we explicitly param-
eterized (with respect to choices Kw ' C and (4.22)) equivalence classes of Langlands
parameters ' W WL=F ! LTu by

..w; �/; ˛; .w0; ˛0// 2 .iRn1 � .Z=2Z/n1/ � Zn2 � .iRn3 � Zn3/ D T^: (4.24)
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Recall the definition (4.9) of the matrix M D M.r/, which gives by (4.13) a map M W
T^! .iR � ¹0; 1º/m1Cm2 � .iR � Z/m3 . By Definition 4.1, (4.14), and (4.15), for some
constant a depending only on the choice of � we have

AF .s; x/ D

a
X
˛2Zn2
˛02Zn3

X
�2¹0;1ºn1

“
w2iRn1
w02iRn3

�w;�;˛;w0;˛0.x/Qm1Cm2
iD1 .j.M'/i jC1/s

Qm1Cm2Cm3
iDm1Cm2C1

.j.M'/i jC1/2s
dw dw0;

(4.25)

where �w;�;˛;w0;˛0 is the unitary character of T D .R�/n1 � .S1/n2 � .C�/n3 that was
given explicitly in terms of w; �; ˛; w0; ˛0 in (4.15).

4.2.1. Convergence. We apply the triangle inequality toAF .s;x/. For iD1; : : : ;m1Cm2,
we have .M'/i 2 iR � ¹0; 1º by inspection of (4.10), (4.11). For such i we apply the
inequality

1
p
x2 C 1C 1

6
1

jxj C 1
:

Then we make the change of variableswj 7! iwj andw0j � ˛
0
j 7! iw0j ; so that � 2 T .kv/^

unitary implies that wj ; w0j 2 R.
We introduce some notation to record the result (see (4.26)) of the aforementioned

manipulations of AF .s; x/. Let Mre denote the .m1 Cm2 Cm3/ � .n1 C n3/ matrix

Mre D

0@A1 B1
A2 B2
A3 BC3

1A ;
where A1; A2; A3; B1; B2; BC3 were defined in Section 4.1. Such a matrix acts on xw D
.w;w0/ 2 Rn1Cn3 by the usual multiplication of matrices. Let also

Mint D .C B�3 /;

where C and B�3 were also defined in Section 4.1. The integral m3 � .n2 C n3/ matrix
Mint acts on x̨ D .˛; ˛0/ 2 Zn2Cn3 by the usual multiplication of matrices.

The result of our inequalities and changes of variable is

AF .s; x/�
X

x̨2Zn2Cn3

“
xw2Rn1Cn3

m1Cm2Y
iD1

1

.j.Mre xw/i j C 1/Re.s/

�

m1Cm2Cm3Y
iDm1Cm2C1

1

...Mre xw/
2
i C .Mint x̨/

2
i /
1=2 C 1/2Re.s/

d xw: (4.26)

Before proceeding with the estimation of (4.26), we first describe a result in combi-
natorial geometry. Let M 2Mm�n.R/ with m > n.
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Definition 4.6. For any ˛ > ˇ > 1 we say that M is .˛Iˇ/-biased if there exist ˛ rows
of M such that any basis of Rn formed from rows of M contains at least ˇ of the distin-
guished ˛ rows.

For example, any full-rank m � n matrix is .mIn/-biased.
We also have the following minor variation on .˛Iˇ/-bias.

Definition 4.7. LetM be anm� nmatrix with real entries along with a partitionR1 tR2
of its rows. For any ˛1; ˛2 > 0 and ˇ satisfying ˛1 C ˛2 > ˇ > 1, we say that M is
.˛1; ˛2I ˇ/-biased if there exist ˛1 rows from R1 and ˛2 rows from R2 such that any
basis of Rn formed from rows of M contains at least ˇ of the distinguished ˛1 C ˛2
rows.

Recall the convex polytope HM associated to a matrix M from Section 2.4. Write
k � k1 for the L1-norm on Rm, i.e. for x 2 Rm we set

kxk1 D max.jx1j; : : : ; jxmj/:

The norm k � k1 is a convex and piecewise-linear function on Rm. Let

B1 D B1.M/ D inf ¹kxk1 W x 2 HM º: (4.27)

Proposition 4.8. Let M be any full-rank m � n matrix with real entries. Then

B1 D max ¹ˇ=˛ WM is .˛Iˇ/-biasedº:

The proof of Proposition 4.8 will be given in Section 4.2.3.
We also need a version of Proposition 4.8 for .˛1; ˛2Iˇ/-bias, and now spell this out

in detail. For x 2 Rm and a partition of the coordinates of Rm into two subsets R1 t R2,
let

kxk1;1=2 D max
�
¹jxi j W i 2 R1º [

®
1
2
jxj j W j 2 R2

¯�
:

The function k � k1;1=2 is a convex and piecewise-linear function on Rm. Let

B1;1=2 D B1;1=2.M/ D inf ¹kxk1;1=2 W x 2 HM º: (4.28)

Proposition 4.9. Let M be any full-rank m � n matrix with real entries equipped with a
partition R1 tR2 of its rows. Then

B1;1=2 D max
²

ˇ

˛1 C 2˛2
WM is .˛1; ˛2Iˇ/-biased

³
:

We now give the proof of assertion (1) of Theorem 4.4, assuming Propositions 4.8
and 4.9. We begin to estimate AF .s; x/ by applying the Brascamp–Lieb inequality (see
Section 2.4) to the integral over xw in (4.26). Let m D m1 Cm2 Cm3, n D n1 C n3 and
M D Mre. Partition the rows of M into the first m1 C m2 and the last m3 rows, as in
Definition 4.7 and Proposition 4.9. The polytope HMre is compact and non-empty, so the
infimum in (4.28) is attained, say by xB D .B1; : : : ; Bm1Cm2Cm3/ 2 HMre .
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We apply the Brascamp–Lieb inequality of Theorem 2.10 to the interior integral of
(4.26) with ai equal to the rows of M DMre, xp D xB ,

f1.x/ D � � � D fm1Cm2.x/ D
1

.jxj C 1/Re.s/
;

fi .x/ D
1

..x2 C .Mint x̨/
2
i /
1=2 C 1/2Re.s/

for i D m1 Cm2 C 1; : : : ; m1 Cm2 Cm3:

With these choices, Theorem 2.10 shows that

AF .s; x/�r;T

m1Cm2Y
iD1

k.jxj C 1/�Re.s/
k
L
B�1
i .R/

�

X
x̨2Zn2Cn3

m1Cm2Cm3Y
iDm1Cm2C1

k..x2 C .Mint x̨/
2
i /
1=2
C 1/�2Re.s/

k
L
B�1
i .R/

: (4.29)

Next we use the discrete Brascamp–Lieb inequality (Theorem 2.11) to bound the sum
over x̨ in (4.29). Since Mint is full-rank, the infimum in (4.27) is attained, say by xB 0 D
.B 0m1Cm2C1; : : : ; B

0
m1Cm2Cm3

/ 2 HMint . Let ai , i D 1; : : : ; m3, denote the rows of Mint.
We find that x 2 HMint if and only if

m3X
iD1

xi D n2 C n3; (4.30)X
i2S

xi 6 rank.spanZ.¹ai W i 2 Sº// for all S � ¹1; : : : ; m3º, (4.31)

by tensoring with R. Let 'i W Zn2Cn3 ! Z be given by x 7! hai ; xi. The discussion in
[5, p. 649] shows that (4.30) and (4.31) imply that

rank.H/ 6
m3X
iD1

xi rank.'i .H// for every subgroup H of Zn2Cn3 : (4.32)

We apply Theorem 2.11 with G D Zn2Cn3 , Gi D Z, 'i as above, pi D B 0i
�1, and

fi .x/ D

 1

.
p
x2 C ˛2 C 1/2Re.s/


L
B�1
m1Cm2Ci .R/

for i D 1; : : : ; m3;

to deduce from (4.29) that

AF .s; x/�r;T

m1Cm2Y
iD1

k.jxj C 1/�Re.s/
k
L
B�1
i .R/

�

m1Cm2Cm3Y
iDm1Cm2C1

k.px2 C ˛2 C 1/�2Re.s/
k
L
B�1
i .R/


`
B0
i
�1

.Z/
: (4.33)
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The right hand side converges as long as

Re.s/ > max
�

max
iD1;:::;m1Cm2

.Bi /; max
iDm1Cm2C1;:::;m1Cm2Cm3

1
2

max.Bi ; B 0i /
�

D max
�
B1;1=2.Mre/;

1
2
B1.Mint/

�
: (4.34)

Since r j yT is faithful, the matrices Mre and Mint are full-rank and so by Propositions
4.8 and 4.9, AF .s; x/ converges absolutely when

Re.s/ >

max
�

max
²

ˇ

˛1 C 2˛2
WMre is .˛1; ˛2Iˇ/-biased

³
;
1

2
max

²
ˇ

˛
WMint is .˛Iˇ/-biased

³�
:

(4.35)

Let

M 0 D

0BB@
A1 0 B1 B1
A2 0 B2 B2
A3 C BC3 C B

�
3 BC3 � B

�
3

A3 �C BC3 � B
�
3 BC3 C B

�
3

1CCA :
We claim that

max
�

max
²

ˇ

˛1 C 2˛2
WMre is .˛Iˇ/-biased

³
;
1

2
max

²
ˇ

˛
WMint is .˛Iˇ/-biased

³�
6 B1.M 0/: (4.36)

Indeed, suppose the first maximum on the left hand side is larger. Then there are ˛ D
˛1 C ˛2 distinguished rows of Mre, ˛1 of which are among the first m1 Cm2 rows, and
˛2 are among the last m3 rows. Choose the corresponding ˛1 rows of M 0 among the first
m1 Cm2 rows, and the corresponding 2˛2 rows, i.e. ˛2 pairs of rows of M 0 from among
the last 2m3 rows. This set of ˛1 C 2˛2 rows of M 0 shows that M 0 is .˛1 C 2˛2I ˇ/-
biased. So by another application of Proposition 4.8,

max
²

ˇ

˛1 C 2˛2
WMre is .˛Iˇ/-biased

³
6 B1.M 0/:

Similarly, suppose the second maximum on the left hand side of (4.36) is larger. Then
there are ˛ distinguished rows of Mint, and we choose the corresponding 2˛ rows, i.e.
˛ pairs of rows from among the last 2m3 rows of M 0. This distinguished set of 2˛ rows
of M 0 shows that M 0 is .2˛Iˇ/-biased. So

1
2

max ¹ˇ=˛ WMint is .˛Iˇ/-biasedº 6 B1.M 0/;

which finishes the proof of (4.36).
Finally, there is a bijection between the rows of M 0 and the coweights of r via the

isomorphism (4.4). Under this isomorphism, sets of rows of M 0 correspond bijectively to
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subsets S � M of coweights of r , and jS j D ˛ and dimD.S/ D ˇ. This concludes the
proof of assertion (1) of Theorem 4.4.

Assertion (2) now follows immediately. Indeed, returning to (4.25), we integrate by
parts once in each variable wi ;w0i , and apply part (1) of the theorem. We artificially insert
the factor of 2 on the complex places as j � j2 is the natural absolute value on them from the
point of view of algebraic number theory. This factor of 2 serves to make the computations
for final estimate in Section 5.6 more elegant.

Before moving on to the purely matroid-theoretic Sections 4.2.2 and 4.2.3, we remark
that Theorem 4.4 (1, 2) also holds when kv ' C is a complex place upon taking n1 D
n2 D 0 andm1 D m2 D 0, and n D n3 D dimT andm D m3 D dim r . Indeed, by (4.19)
and (4.20) in place of (4.14) and (4.15), the generating series AF .s; x/ is equal to the
expression in (4.25) with n1 D n2 D 0 and m1 D m2 D 0, the matrix M as defined
between (4.17) and (4.18).

Continuing as above, the integral that we need to bound is given by (4.26) withMre D

Mint D M , n1 D n2 D 0, m1 D m2 D 0. Following the same steps as above, we have
absolute convergence when s satisfies (4.34) with m1 D m2 D 0, which simply equals
1
2
B1.M/. Since r j yT is faithful, the matrixM is full-rank, so Proposition 4.8 implies that
AF .s; x/ converges absolutely whenever

Re.s/ > max ¹ˇ=˛ WM is .˛Iˇ/-biasedº/:

Since there is a bijection between the rows of M and the coweights of r via the isomor-
phism

X�. yT / ' X�.Gm/
n
D Zn

(see the penultimate paragraph of Section 4.1), we deduce the first assertion of Theorem
4.4, as before. Note that we did not need to use the “variations” in Definition 4.7 or
Proposition 4.9, nor the paragraph containing the definition of M 0 in the case kv ' C.

4.2.2. Background on matroids and polymatroids. The key observation in the proof of
Proposition 4.8 is that the definition of .˛; ˇ/-bias makes sense more generally for
matroids, and HM is exactly the matroid base polytope associated to the matroid M . To
this end, we next recall some background on matroids and polymatroids. The following
exposition was communicated to the author by R. Zenklusen.

Definition 4.10 (Matroid). A matroid is a pair .N;I/ where N is a finite set and I � 2N

is a family of “independent” subsets of N satisfying the following axioms:

(1) I ¤ ¿.

(2) If I 2 I and J � I then J 2 I.

(3) If I; J 2 I and jJ j > jI j then there exists e 2 J X I such that I [ ¹eº 2 I.

Example 4.11 (Linear matroid). If N is a finite set of vectors spanning a vector space,
and I is the set of linearly independent subsets of N , then .N; I/ is a matroid. One calls
such a matroid a linear matroid.
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If .N; I/ is a matroid, then the set of bases B � I is the set of maximal subsets of I,
ordered by inclusion. If .N; I/ is a linear matroid, then B consists of subsets of vectors
which form a basis.

Definition 4.12. The rank function of a matroid is the function r W 2N ! Z>0 given by

r.S/ D max ¹jI j W I 2 I; I � Sº:

If .N; I/ is a linear matroid, then r.S/ is the dimension of the space spanned by the
vectors in S . By the definitions of B and r we have

B D ¹I 2 I W r.I / D r.N /º:

Lemma 4.13. The rank function of a matroid .N; I/ satisfies the following properties:

� r W 2N ! Z.

� r is submodular:
r.A/C r.B/ > r.A [ B/C r.A \ B/:

� r is monotone: r.A/ > r.B/ for all B � A � N .

� r is non-negative: r.A/ > 0 for all A � N .

� r.A [ ¹eº/ 6 r.A/C 1 for all A � N and e 2 N .

If r W 2N ! Z is any function enjoying these five properties, then there exists a unique
I � 2N such that .N; I/ is a matroid whose rank function is r .

Proof. See [36, Section 39.7].

Let .N; I/ be a matroid and let 1I 2 ¹0; 1ºN be the indicator function of I . If S is a
finite set of points in RN , then we write conv.S/ for its convex hull.

Definition 4.14. The matroid polytope of .N; I/ is

PI D conv.¹1I W I 2 Iº/ � RN

and the matroid base polytope is

PB D conv.¹1B W B 2 Bº/ � RN :

We can also express the matroid polytope and matroid base polytope in terms of the
rank function as follows. Let x 2 RN

>0, e 2 N and xe be the eth component of x. For
a subset S � N we set x.S/ D

P
e2S xe . In terms of x.S/, we have (see [36, Corol-

lary 40.2b])
PI D ¹x 2 RN>0 W x.S/ 6 r.S/ for all S � N º:

Then PB is one face of the matroid polytope PI given by a supporting hyperplane, i.e.
(see [36, Corollary 40.2d])

PB D PI \ ¹x 2 RN W x.N / D r.N /º: (4.37)
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Theorem 4.15 (Matroid intersection). Let .N; I1/ and .N; I2/ be two matroids on the
same ground set. Then

max ¹jI j W I 2 I1 \ I2º D min
A�N
¹r1.A/C r2.N X A/º:

Proof. See [36, Theorem 41.1].

In fact, we shall need the following polyhedral generalization of matroids.

Definition 4.16 (Polymatroid). A polymatroid on N is a polytope

Pf D ¹x 2 RN>0 W x.S/ 6 f .S/ for all S � N º

where f W 2N ! R>0 is a submodular and monotone function.

Theorem 4.17 (Polymatroid intersection). Let f1; f2 W 2N ! R>0 be two submodular
and monotone functions. Then

sup ¹x.N / W x 2 Pf1 \ Pf2º D min
A�N
¹f1.A/C f2.N X A/º:

Proof. See [36, Corollary 46.1b].

The following definition generalizes Definition 4.6 from linear matroids to matroids.

Definition 4.18 (.˛I ˇ/-bias for matroids). We say a matroid .N; I/ is .˛I ˇ/-biased if
there exists S � N with jS j D ˛ such that

jB \ S j > ˇ for all bases B � N .

Similarly, if N is equipped with a partition N D R1 tR2, then we say that a matroid
.N; I/ is .˛1; ˛2I ˇ/-biased if there exists S � N with jS \ R1j D ˛1, jS \ R2j D ˛2
and jB \ S j > ˇ for all bases B � N .

Lemma 4.19. A subset S �N satisfies r.N /� r.N X S/> ˇ if and only if for any basis
B � N we have jB \ S j > ˇ.

Proof. “Only if”: Let B � N be any basis. By the submodularity of the rank function,

r.B \ S/C r.N X S/ > r..B \ S/ [ .N X S//:

Since B � .B \ S/ [ .N X S/, we have

r..B \ S/ [ .N X S// D r.N /:

However, B \ S is independent, so

jB \ S j D r.B \ S/ > r.N / � r.N X S/ > ˇ:

“If”: Suppose that B 2 B is such that jB \ S j is minimal as we range over all bases.
Equivalently, B is such that jB X S j is maximal. We claim that B X S is under by inclu-
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sion among independent sets which are disjoint from S . From this claim it follows by
definition of the rank function that

jB X S j D r.N X S/;

and so r.N / � r.N X S/ D jB \ S j > ˇ.
If the claim were false, then there would exist e 62 S [ B such that the set

.B X S/ [ ¹eº D .B [ ¹eº/ X .B \ S/

is independent, by matroid axiom (3). Since the set .B X S/ [ ¹eº is independent and
r.B [ ¹eº/ D r.N /, we can complete .B X S/ [ ¹eº to a basis zB � B [ ¹eº. But then

.B [ ¹eº/ X .B \ S/ D zB X S;

from which it follows that

j zB X S j D j.B [ ¹eº/ X .B \ S/j D jB X S j C 1:

This contradicts the minimality of jB \ S j among all bases B 2 B. Therefore the claim
is true.

Corollary 4.20. A matroid .N; I/ is .˛Iˇ/-biased if and only if there exists S � N with
jS j D ˛ and r.N / � r.N X S/ > ˇ. A matroid .N; I/ with a partition N D R1 t R2 is
.˛1; ˛2Iˇ/-biased if and only if there exists S � N with jS \ R1j D ˛1, jS \ R2j D ˛2
and r.N / � r.N X S/ > ˇ.

4.2.3. Proofs of Propositions 4.8 and 4.9. We begin with the proof of Proposition 4.8.
Considering the level sets of the L1 norm, B1 defined in (4.27) becomes

B1 D inf ¹� > 0 W PB \ Œ0; ��
N
¤ ¿º:

(Aside: compare this and (4.37) to the discussion of the Manin conjecture in Section 1.3.)
From the description (4.37) of the matroid basis polytope in terms of the rank function,
we have

B1 D inf ¹� > 0 W sup ¹x.N / W x 2 PI \ Œ0; ��
N
º D r.N /º:

Now we re-interpret Œ0; ��N as the polymatroid defined by the function

f W 2N ! R>0; f .S/ D �jS j:

Then, by the polymatroid intersection theorem (Theorem 4.17), we have

sup ¹x.N / W x 2 PI \ Œ0; ��
N
º D min

A�N
¹r.A/C f .N X A/º D min

A�N
¹r.A/C �jN X Ajº:

Since this last min is always 6 r.N /, to characterize B1 it suffices to find the smallest
� > 0 such that for all A � N ,

r.A/C �jN X Aj > r.N /; (4.38)
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that is,
B1 D inf ¹� > 0 W r.A/C �jN X Aj > r.N / for all A � N º:

It changes nothing to swap A with N X A, so

B1 D inf ¹� > 0 W r.N X A/C �jAj > r.N / for all A � N º:

If AD ¿ then the inequality is satisfied for all �, so suppose not. Then by Corollary 4.20,

B1 D max
A�N

²
r.N / � r.N X A/

jAj
W A ¤ ¿

³
D max

˛;ˇ
¹ˇ=˛ W .N; I/ is .˛Iˇ/-biasedº:

This concludes the proof of Proposition 4.8.
The proof of Proposition 4.9 is identical, with the following substitutions. The poly-

tope Œ0; ��N should be replaced by the polytopeY
e2N

Œ0; ce��; where ce D

´
1 if e 2 R1;

2 if e 2 R2:

The corresponding function f W 2N ! R>0 is given by f .S/ D �
P
e2S ce . Instances of

jAj or jN X Aj should be replaced by
P
e2A ce or

P
e2NXA ce , respectively.

4.2.4. Positivity. To prove assertion (3) of Theorem 4.4 we first establish one-variable
versions of the result.

Lemma 4.21. For all real 0 < � 6 2 the Fourier transforms of the following functions
are positive orC1:

f .x/ D
1

.
p
x2 C 1C 1/�

; g.x/ D
1

.jxj C 1/�
�

1

.
p
x2 C 1C 1/�

:

Proof. When � > 0 we have by contour shifting

yf .�/ D

Z 1
�1

e.��x/

.
p
x2 C 1C 1/�

dx

D i

Z 1
1

e�2��x
�

1

.i
p
x2 � 1C 1/�

�
1

.�i
p
x2 � 1C 1/�

�
dx

D i

Z 1
1

e�2��x

x2�

�
.�i
p

x2 � 1C 1/� � .i
p

x2 � 1C 1/�
�
dx

D 2

Z 1
1

sin.� arctan
p
x2 � 1/

x�
e�2��x dx > 0:

The value yf .0/ is clearly positive if it converges, and if � < 0 we follow the same steps
as above, shifting the contour up instead of down.

Now we show yg.�/ is positive orC1. For a real parameter 0 6 ˇ 6 1 define

ygˇ .�/ D

Z 1
�1

e.��x/

.
p
x2 C ˇ2 C 1/�

dx; (4.39)
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so that yg.�/ D yg0.�/ � yg1.�/: We have

yg.�/D

Z 0

1

d

dˇ
ygˇ .�/ dˇ D �

Z 1

0

ˇ

Z 1
�1

e.��x/p
x2Cˇ2.

p
x2Cˇ2C1/�C1

dx dˇ: (4.40)

Suppose that � > 0. The inner integral has a branch cut from �iˇ to �i1. To evaluate
the integral, we shift the contour around this branch. We haveZ 1
�1

e.��x/p
x2 C ˇ2.

p
x2 C ˇ2 C 1/�C1

dx

D

Z 1
ˇ

e�2��x
�

1p
x2�ˇ2.i

p
x2�ˇ2C1/�C1

C
1p

x2�ˇ2.�i
p
x2�ˇ2C1/�C1

�
dx

D 2

Z 1
ˇ

e�2��xp
x2�ˇ2.x2�ˇ2C1/

�C1
2

cos..�C1/ arctan.
p
x2�ˇ2// dx

D 2

Z �=2

0

e�2��
p

tan2 �Cˇ2p
tan2 �Cˇ2

.cos �/��1 cos..�C1/�/ d�:

Now we return to (4.40), change the order of integration, and change variablesp
tan2 � C ˇ2 ! y to find

yg.�/ D 2�

Z �=2

0

Z sec �

tan �
e�2��y dy .cos �/��1 cos..� C 1/�/ d�:

Let h� .�/ be the anti-derivative of .cos �/��1 cos..� C 1/�/. By integrating by parts we
have

yg.�/ D �2�

Z �=2

0

1

cos2 �

�
.sin �/e�2�� sec �

� e�2�� tan ��h� .�/ d�:
Observe that .sin �/e�2�� sec � � e�2�� tan � 6 0, while h� .�/ > 0 for all 0 < � 6 2 and
0 6 � 6 �=2. Thus yg.�/ > 0 for � > 0. The case � D 0 is obvious and � < 0 follows by
a similar calculation.

It follows from Lemma 4.21 that the Fourier transforms of

1

.jxj C 1/�
and

1

.jxj C 1/�
C

1

.
p
x2 C 1C 1/�

are also everywhere positive orC1.

Lemma 4.22. For all real 0 < � 6 2, a 2 Z>1 and � 2 R=Z, the Fourier seriesX
ˇ2Z

e.ˇ�/

.1C ajˇj/�

is positive orC1.
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Proof. Recall the Dirichlet and Fejér kernels

Du.x/ D
X
jnj6u

e.nx/ and Fn.x/ D
1

n

n�1X
kD0

Dk.x/:

By summing by parts twice we haveX
ˇ2Z

e.ˇ�/

.1C ajˇj/�

D

1X
nD0

�
1

.a.nC 2/C 1/�
� 2

1

.a.nC 1/C 1/�
C

1

.anC 1/�

�
.nC 1/FnC1.�/:

The factor inside the parentheses above is positive by the mean value theorem. The Fejér
kernel is also positive, and therefore the sum of the series is positive whenever the series
converges.

Lemma 4.23. For all real 0 < � 6 2, a 2 Z>1 and � 2 C�, the functionX
ˇ2Z

�
j�j

�

�ˇ Z
R

e.�j�jx/

.
p
x2 C .aˇ/2 C 1/�

dx

is positive orC1.

Proof. By summation by parts twice and the positivity of the Fejér kernel, it suffices to
show that the second forward difference in ˇ of

f .ˇ; �/ D

Z
R

e.�j�jx/

.
p
x2 C .aˇ/2 C 1/�

dx

is positive. Recall the definition of ygˇ .�/ from (4.39), in terms of which we have

f .ˇ C 2; �/ � 2f .ˇ C 1; �/C f .ˇ; �/ D

Z ˇC1

ˇ

d

d

Z C1



d

d˛
yga˛.j�j/ d˛ d:

As in the proof of Lemma 4.21, we have

f .ˇ C 2; �/ � 2f .ˇ C 1; �/C f .ˇ; �/

D ��a

Z ˇC1

ˇ

d

d

Z C1



a˛

Z 1
�1

e.�j�jx/p
x2C.a˛/2.

p
x2C.a˛/2C1/�C1

dx d˛ d

D �2�

Z ˇC1

ˇ

d

d

Z �=2

0

Z ptan2 �C.aC1/2

p
tan2 �C.a/2

e�2�j�jy dy .cos �/��1 cos..�C1/�/ d� d

D �2�a

Z �=2

0

Z ˇC1

ˇ

�
.aC1/e�2�j�j

p
tan2 �C.aC1/2p

tan2 �C.aC1/2
�
ae�2�j�j

p
tan2 �C.a/2p

tan2 �C.a/2

�
d

� .cos �/��1 cos..� C 1/�/ d�:
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Recall h� .�/> 0 is defined to be the anti-derivative of .cos�/��1 cos..� C 1/�/. Let also

H.ˇ;�;�/D

Z ˇC1

ˇ

d

d�

�
.aC1/e�2�j�j

p
tan2 �C.aC1/2p

tan2 �C.aC1/2
�
ae�2�j�j

p
tan2 �C.a/2p

tan2 �C.a/2

�
d:

Then, by integrating by parts,

f .ˇ C 2; �/ � 2f .ˇ C 1; �/C f .ˇ; �/ D 2�a

Z �=2

0

H.ˇ; �; �/h� .�/ d�:

To prove the lemma, it suffices to show that H.ˇ; �; �/ is non-negative for all ˇ 2 N;
a 2 Z>1, � 2 C�, and 0 6 � 6 �=2. Set

N.; �; �/ D e�2�j�j
p

tan2 �C2 tan � sec2 � �
2�j�j

p
tan2 � C 2 C 1p

tan2 � C 2
3

so that

H.ˇ; �; �/ D

Z ˇC1

ˇ

.N.a; �; �/ �N.a C 1; �; �// d

D a�1 tan � sec2 � �
�Z ptan2 �C.aˇC1/2

p
tan2 �C.aˇ/2

�

Z ptan2 �C.a.ˇC1/C1/2

p
tan2 �C.a.ˇC1//2

�
� e�2�j�jy

2�j�jy C 1

y2
dy: (4.41)

Note that
d

dy
e�2�j�jy �

2�j�jy C 1

y2
D �

e�2�j�jy

y
;

so that the difference of integrals in (4.41) equals, by the mean value theorem,

e�2�j�j
p

tan2 �Cu2
�
2�j�j

p
tan2 � C u2 C 1

tan2 � C u2
y1

p
tan2 � C u2

�ˇ̌̌̌y2
y1

(4.42)

for some y2 2 Œaˇ; aˇ C 1� and y1 2 Œa.ˇ C 1/; a.ˇ C 1/C 1�. Since the function of u
in (4.42) is decreasing for all u > 0, we conclude that

H.ˇ; �; �/ > 0:

We assume that kv is real until further notice. Consider the Fourier dual pair

T D .R�/n1 � .S1/n2 � .C�/n3 $ .iRn1 � .Z=2Z/n1/ � Zn2 � .iRn3 � Zn3/ D T^

and the spaces � 0.T/ and � 0.T^/ of tempered distributions. Recall M and M' from
Section 4.1. Let 0 < � 6 2 and fi 2 � 0.T^/ be given for i D 1; : : : ; m1 C m2 by the
function

fi .w; �; ˛; w
0; ˛0/ D

1

.j.M'/i j C 1/�
;
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and for i D m1 Cm2 C 1; : : : ; m1 Cm2 Cm3 by the function

fi .w; �; ˛; w
0; ˛0/ D

1

.j.M'/i j C 1/2�
;

where .M'/i denotes the i th entry of M' (see (4.13)).
Let FG.f / denote the Fourier transform of a bounded measure f on a locally com-

pact abelian group G following [9, Chapter II, Section 1, 2. Definition 3]. The Fourier
transform FT^.fi / of each of the functions fi 2 � 0.T^/ is also a tempered distribution,
i.e. FT^.fi / 2 � 0.T/: Recall that a tempered distribution L 2 � 0.T/ is called positive
if for all non-negative-valued  2 �.T/ one has L. / > 0. We shall next show that
FT^.fi / 2 � 0.T/ are positive distributions.

Let K � T^ be the kernel of the homomorphism

.M'/i W T^ !

´
iR � ¹0; 1º if i D 1; : : : ; m1 Cm2;

iR � Z if i D m1 Cm2 C 1; : : : ; m1 Cm2 Cm3:

Then, for any non-negative-valued  2 �.T/ we have

FT^.fi /. / WD

Z
T^
fi .'/FT. /.'/ d' D

Z
T^=K

fi .x'/

Z
K

FT. /.x'k/ dk d x':

Let TK WD ¹x 2 T W k.x/D 1 for all k 2Kº so that by Poisson summation (see the remark
following Lemma 2.14), for almost every x' 2 T^=K we haveZ

K

FT. /.x'k/ dk D

Z
TK
 .t/x'.t/ dt D FTK . /.x'/:

Now let us consider the group T^=K. It is canonically isomorphic to the dual of TK by
Pontryagin duality; also the map .M'/i identifies T^=K with a subgroup of iR� ¹0;1º or
iR�Z. The Fourier transform FT^=K.fi /may then be considered as a tempered distribu-
tion on TK . Since jfi .x'/j 6 1 for all x' 2 T^=K, we have jFT^=K.fi /.g/j 6 kgkL1.TK /
for all g 2 �.TK/. By the Hahn–Banach theorem FT^=K.fi / extends to a linear functional
on C0.TK/ (the continuous functions vanishing at infinity) satisfying jFT^=K.fi /.g/j 6
kgkL1.TK / for all g 2 C0.TK/. By the Riesz–Markov–Kakutani theorem (see e.g. [32,
6.19 Theorem]), the tempered distribution FT^=K.fi / is given by integration against a
regular Borel measure on TK , which we continue to write FT^=K.fi /. Lemmas 4.21–
4.23 now show that the measure FT^=K.fi / is non-negative and has total mass 1. By the
Plancherel theorem (see [9, Chapter II, Section 1, 5. Proposition 13]) we have

FT^.fi /. / D

Z
T^=K

fi .x'/FTK . /.x'/ d x' D

Z
TK

FT^=K.fi /.t/ .t/ dt:

Therefore, the tempered distribution F .fi / itself is a positive distribution.
By applying the Hahn–Banach and Riesz–Markov–Kakutani theorems again to

FT^.fi /, we obtain a regular non-negative Borel measure�i on T for each i D 1; : : :m1C
m2 Cm3 such that FT^.fi /.g/ D

R
T g.x/ d�i .x/ for all g 2 �.T/. By Theorem 4.4 (1)
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and formula (4.25) for AF .s; x/, the .m1 Cm2 Cm3/-fold convolution of the measures
�i is given by a function and in particular we have

AF .�; x/ D a
�m1Cm2Cm3©

iD1

�i

�
.x/

for all x 2 T, where a is the positive real factor appearing in (4.25). Since the convolution
of non-negative measures is non-negative, AF .�; x/ takes non-negative values for �0 <
� 6 2 and all x 2 T .kv/, as was to be shown.

The case kv ' C follows in an identical way by taking n1 D n2 D m1 D m2 D 0,
n3 D dimT , and m3 D dim r .

5. Global theory

5.1. Global analytic conductor

In this section, we return to the notation of the introduction. That is, we are given a num-
ber field k and a k-torus T with splitting field K and Galois group G D Gal.K=k/. We
choose a finite-dimensional complex algebraic representation r of the L-group LT (see
Section 2.2 for definitions). Let v be a place of k and denote by kv the completion of k
at v. Let Tv D T �k Spec kv be the base change of T to kv . For each v there exists a
valuation w of K extending v such that Kw is the splitting field of Tv . We know that
X�.Tv/D X

�.T / as abelian groups, but the Galois action onX�.Tv/ is given by restrict-
ing the action ofG to the embedded copy of Gal.Kw=kv/. Thus, we obtain an embedding
ofL-groups LTv ,! LT for each place v of k. The representation r of LT then determines
representations of each LTv by restriction.

An automorphic character � 2 A.T / admits a factorization

� D
O
v

�v

in which all but finitely many of the �v are trivial on the maximal compact subgroup
of T .kv/.

Definition 5.1. The analytic conductor c.�; r/ is an invariant of A.T / defined by

c.�; r/ D
Y
v

cv.�v; r jLTv /; (5.1)

where cv.�v; r jLTv / are local analytic conductors (see Definitions 3.1 and 4.1), all but
finitely many of which are equal to 1.

5.2. Algebraic number theory for tori

We next review the standard theorems of algebraic number theory in the context of tori.
Let Ow and Ov be the rings of integers in Kw and kv . Let S1 be the set of archimedean
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places of k. Recall the notation

TA WD
Y
v2S1

T .kv/ �
Y
v 62S1

T .Ov/

and the global units U.T / of the torus T defined by

U.T / WD T .k/ \ TA:

According to Dirichlet’s units theorem [40], the abelian group U.T / is finitely generated.
We also have a short exact sequence of locally compact Hausdorff abelian groups

1! T .k/TA ! T .A/! Cl.T /! 1; (5.2)

where the cokernel is by definition the (finite) class group of T [28, Theorem 3.1].
Instead of U.T / and Cl.T /, we need the following minor variants of these objects.

Let NT.Ow/ be the image of the norm map N W T .Ow/! T .Ov/. Let

TN;A WD
Y
v2S1

T .kv/ �
Y
v 62S1

NT.Ow/: (5.3)

We call the set
UN .T / WD T .k/ \ TN;A (5.4)

the global norm-units of the torus T . Recall that for all unramified non-archimedean
places of k we have

NT.Ow/ D T .Ov/

by Lemma 3.13, and for all ramified non-archimediean places NT.Ow/ is a finite index
subgroup of T .Ov/ by Lemma 3.14. Thus, the global norm-units UN .T / is a finite index
subgroup of the global units U.T / and thus a finitely generated abelian group itself. We
also have the short exact sequence

1! T .k/TN;A ! T .A/! ClN .T /! 1 (5.5)

with finite cokernel ClN .T /. We call ClN .T / the norm-class group of T .

5.3. Global conductor zeta function

Recall the (twisted) local generating series NF and AF from (3.21) and (4.21). Let

Y.s/ WD
1

Vol.UN .T /^/

X
�2ClN .T /^

X
x2UN .T /

Y
v2S1

Akv .s; x/
Y
v 62S1

Nkv .s; x/: (5.6)

In Section 6.1 we will prove that Y.s/ equals the global generating series Z.s/ of Theo-
rem 1.10 up to a constant depending only on the choices of Haar measures on A.T / and
T .kv/

^ for v archimedean.
Recall A; zG; z†0; m D dim r from Section 1.1 and R D R.c/ from (1.12). The goal

of this section is to prove the following theorem (cf. Theorem 1.10).
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Theorem 5.2. Suppose that r j yT is faithful. The series Y.s/ converges absolutely for
Re.s/ > A and extends to a meromorphic function in the open half-plane Re.s/ >
A �min.2�1; m�2/. There exists c D c.T; r/ > 0 such that the function Y.s/

� has a pole at s D A of order j zGnz†0j and no other poles in R.c/ .respectively, in the
half-plane Re.s/ > A �min.2�1; m�2/ if the Artin conjecture holds/,

� grows slowly in R, i.e. there exist J D J.T; r/ > 0 and 0 < c0 D c0.T; r/ 6 c such that
for any s D � C i t 2 R.c0/ avoiding any small neighborhood U of A we have

Y.� C i t/�T;r;U .log.jt j C 3//J ;

� has moderate growth in a vertical strip if the Artin conjecture holds, i.e. there exists
K D K.T; r/ > 0 such that for any s D � C i t with � > A�min.2�1;m�2/ avoiding
any small neighborhood U of A we have Z.� C i t/�T;r;�;U .1C jt j/

K :

Convention: In Theorem 5.2 and throughout the paper, whenever we say “the Artin
conjecture holds”, we mean that the finitely many (depending on T; r) Artin L-functions
associated to the complex Galois representations in the hypothesis of Theorem 5.4 are
entire (except that a pole at s D 1 is possible when the representation is trivial).

Following Tate [43, Section 3.5] we take  to be a non-trivial additive character of
A=k and dx the Haar measure on A such that

R
A=k dxD 1. Let v be the local component

of at a place v, dxD
Q
v dxv be any factorization of dx into a product of local measures

such that the ring of integers Ov at all but finitely many v gets measure 1, and ı. v/ be
the function defined in [43, Section 3.4.5].

Recall the positive integer � from (1.7). Denote by B the set of finite places v of k for
which either

� v is ramified in K=k, or

� .�; qkv / ¤ 1.

Let

U.s; x/ D
Y

v 62B[S1

.ı. v/dxv=dx
0
v/
smNkv .s; x/;

R.s; x/ D
X

�2ClN .T /^

Y
v2B

�
ı. v/dxv=dx

0
v

�sm
Nkv .s; x/;

A.s; x/ D
Y
v2S1

�
ı. v/dxv=dx

0
v

�sm
Akv .s; x/:

Recalling (3.23) that Nkv .s; x/ does not depend on �v when v is unramified, we see by
definition that

Y.s/ D
1

Vol.UN .T /^/

Y
v

�
ı. v/dxv=dx

0
v

��sm X
x2UN .T /

A.s; x/U.s; x/R.s; x/: (5.7)

By [43, Section 3.5] the product Y
v

�
ı. v/dxv=dx

0
v

�
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does not depend on the factorization of the global dx, nor on the choice of global additive
character  , but only on k. To determine the analytic properties of Y.s/, it suffices there-
fore to determine the analytic properties of A.s; x/, U.s; x/, andR.s; x/, and to show that
the sum over x 2 UN .T / in (5.7) converges absolutely.

5.4. Unramified places

Set
Umax.s/ WD sup

x2UN .T /

jU.s; x/j:

Theorem 5.3. Suppose that r j yT is faithful.

(1) The series U.s; x/ converges absolutely and uniformly on compacta in the right
half-plane Re.s/ > A. It admits a meromorphic continuation to ¹s W Re.s/ >
A �min.2�1; m�2/º and Umax.s/ is finite whenever s is not equal to a pole of some
U.s; x/ for any x 2 UN .T /.

(2) There exists an effective constant 0 < c 6min.2�1;m�2/ depending on r; T but inde-
pendent of s; x such that the only pole of U.s; x/ in the region R.c/ is at s D A.

(3) There exist effective constants J >0 and 0< c06 c depending on r;T but independent
of s such that for all s 2 R.c0/ avoiding a small neighborhood N surrounding A we
have

Umax.s/�T;r;N .log.jIm.s/j C 3//J :

(4) The series U.s; 1/ has a pole at s D A of order j zGnz†0j with positive leading constant
in its Laurent series expansion.

(5) The possible pole of U.s; x/ at s D A is of order 6 j zGnz†0j, has positive leading
coefficient, and Laurent series expansion bounded by that of U.s; 1/ at s D A.

Theorem 5.4. Suppose that r j yT is faithful and that the Artin L-functions of the irre-
ducible representations Vi of � D Gal.K 0=k/ that arise in (5.22) are entire up to a
possible pole at s D 1, where K 0 is given in Definition 5.5.

(1) The only pole of U.s; x/ when Re.s/ > A �min.2�1; m�2/ is at s D A.

(2) There exists K D K.T; r/ > 0 such that for all s with Re.s/ > A � min.2�1; m�2/
and avoiding a small neighborhood N surrounding A we have

Umax.s/�T;r;N;Re.s/ .1C jIm.s/j/K :

We devote the rest of this section to proving Theorems 5.3 and 5.4.
First, let us reintroduce some of the structures of Section 3.2 in our global context. Let

M be the multi-set of coweights of r (recall Definition 2.5) and S be a subset of M . Let
GS D StabG S � G D Gal.K=k/: Then GS acts on S , and also on its complement Sc .
Let KS be the intermediate field in the extension K=k corresponding to GS under the
Galois correspondence.
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Define theKS -torus TS by taking its cocharacter lattice to be ZjSc j, where the coordi-
nates are indexed by � 2 Sc with GS acting by permuting these. Let ˛ W TS ! T be the
map of KS -tori given by the map of cocharacter lattices

˛� W ZjS
c j
! X�.T /; .0; : : : ; 1; : : : ; 0/ 7! �; (5.8)

where the 1 is in the �th entry and the other coordinates are all 0 (see Lemma 2.3 and the
evaluation pairing (2.2)). Given aKS -point x of T , let ˛�1.x/ be the fiber of ˛ over x and
let p.˛�1.x// denote its set of irreducible components. Recall the constant � from (1.7).

Definition 5.5. LetK 0=k be the minimal Galois extension over which all geometric com-
ponents of ˛�1.x/ for all S and x 2 UN .T / are defined and which contains the �th roots
of unity.

Note that Lemma 2.6 guarantees the existence of K 0, and that the Galois extension
zK D K.��/ is contained in K 0, where K is the splitting field of T and �� is the group

of �th roots of unity. Let � D Gal.K 0=k/: The finite group � acts on the set p.˛�1.x//
of irreducible components for any x. We will show later that if x D 1, the action of � on
p.˛�1.1// D �0.ker˛/ factors through � ! zG.

Now let us consider a place v of k, which we assume for the rest of this section
satisfies v 62 S1 [ B . To each such place there is associated a prime ideal p of k, and we
have qkv D N.p/, the absolute ideal norm of p. The valuation w extending v introduced
in Section 5.1 determines a unique prime P of K lying over p. If FrP 2 G fixes S , then
since p is unramified we may base change the KS -tori TS and T to kv , so that the results
of Section 3.2 apply to TS;kv , Tkv , and ˛�1.x/kv with the decomposition groupDP � G

at p playing the role of the local Galois group Gal.L=F /.
For each such P we also choose a prime P0 of K 0 lying over P. The decomposition

groupDP0 � � at p plays the role of the local Galois group Gal.L0=F / from Section 3.2.
All of the geometric components of ˛�1.x/kv for all x 2 UN .T / are defined over OP0

and can be base-changed to the finite residue field of the completion K 0P0 .
We have the restriction map �!G under which FrP0 7! FrP :When x D 1 2 UN .T /

we will also use the map

zG ,! G � Gal.k.��/=k/; FrP0 7! .FrP; N.p//; (5.9)

where N.p/ 2 Gal.k.��/=k/ denotes the automorphism of k.��/ sending a primitive �th
root of unity �� to �N.p/

�
(see (1.9)). In particular, the value of N.p/ modulo � is deter-

mined by FrP0 2
zG.

By (3.27) we have

U.s; x/ D
Y
p 62B

X
c2NM

…D.c; x/

N.p/sjcj
:

Definition 5.6. If F1.s/ and F2.s/ are meromorphic functions defined in Re.s/ > �i ,
i D 1; 2 and there exists an analytic function G.s/ given by an absolutely and uniformly
convergent Euler product in Re.s/ > �0 such that F1.s/ D G.s/F2.s/, then we say that
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F1 equals F2 up to an absolutely convergent Euler product in Re.s/ > �0 and write
F1 � F2 in Re.s/ > �0.

Lemma 5.7. Suppose F1 and F2 are as in Definition 5.6.

(1) If F1 � F2 in Re.s/ > �0, then F1 admits a meromorphic continuation to Re.s/ >
max.�0;min.�1; �2//:

(2) The relation� defines an equivalence relation on meromorphic functions on Re.s/ >
max.�0;min.�1; �2//:

(3) If F1 � F2 in Re.s/ > �0, then F1 and F2 have the same poles of the same orders in
the domain Re.s/ > max.�0;min.�1; �2//:

The proofs are easy exercises, so we omit them. Since we do not give an expression
for the leading constant in Theorem 1.1, it suffices to study U.s; x/ up to� equivalence.

Recall the change of variables c $ S given by (3.33), (3.34), and let

U0.s; x/ D
Y
p 62B

X
S�M

…D.S; x/

N.p/sjS j
:

Lemma 5.8. U.s; x/ � U0.s; x/ in Re.s/ > A � .2m/�1.

Proof. It suffices to show that the productY
p 62B

P
c2NM …D.c; x/N.p/

�sjcjP
c2¹0;1ºM …D.c; x/N.p/�sjcj

(5.10)

converges absolutely and uniformly on compacta in Re.s/ > A � 1
2m

.
Consider p 62 B with N.p/ sufficiently large. The factor of the product (5.10) at p is

1C
X
c2NM

max c�>2

…D.c; x/

N.p/sjcj
�

� X
c2NM

max c�>2

…D.c; x/

N.p/sjcj

�� X
c2¹0;1ºM

c¤0

…D.c; x/

N.p/sjcj

�
C � � � : (5.11)

We may assume that any c 2 NM appearing in one of the sums in (5.11) is DP-fixed,
since otherwise …D.c; x/ D 0 by Lemma 3.22. We have the trivial bounds j…D.c; x/j 6
…D.c; 1/ 6 …6.c; 1/ and by Proposition 3.21 and Lemma 3.24 the bound

…6.c; 1/�T;r

1Y
kD0

N.p/dimDk.c/:

Note that

jcj D

1X
kD0

j¹� 2M W c� > kºj;

so
…D.c; x/

N.p/sjcj
�

1Y
kD0

N.p/dimDk.c/�sj¹�W c�>kºj:
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Therefore, e.g. for the first sum in (5.11) we haveX
c2NM

max c�>2

…D.c; x/

N.p/sjcj
�

X
cWmax c�>2
…D.c;x/¤0

1Y
kD0

N.p/dimDk.c/�sj¹�W c�>kºj:

By Lemma 3.23 the product here has at least two non-one factors for each c in the outer
sum. Now we take the product of (5.11) over p 62 B , and find that (5.10) converges abso-
lutely and uniformly on compacta in the region

Re.s/ > sup
i>2

max
16j6i
Sj�M

²
dimD.S1/C � � � C dimD.Si /C 1

jS1j C � � � C jSi j
W D.Sj / ¤ ¹1º

³
: (5.12)

Lemma 5.9. Let i > 2. For any real numbers a1; : : : ; ai , and any 1 6 c1; : : : ; ci 6 m,

a1 C � � � C ai C 1

c1 C � � � C ci
6 max
jD1;:::;i

ai C 1

ci
� .2m/�1:

Proof. It suffices to handle the case i D 2. Suppose without loss of generality that a1C1
c1
>

a2C1
c2

, i.e. c2a1 � c1a2 C c2 > c1. Then

a1 C 1

c1
�
a1 C a2 C 1

c1 C c2
D
c2 C a1c2 � c1a2

c1.c1 C c2/
>

c1

c1.c1 C c2/
>

1

2m
:

By Lemma 5.9, we conclude that (5.10) converges absolutely and uniformly in the
region Re.s/ > A � .2m/�1.

We arrange the product U0.s; x/ over (finitely many) conjugacy classes C � �:

U0.s; x/ D
Y
C��

Y
p 62B

FrP02C

X
S�M

…D.S; x/N.p/
�sjS j: (5.13)

Lemma 5.10. Let

†P
D

²
S �M W S ¤ ¿; FrP S D S;

dimD.S/C 1

jS j
> A

³
: (5.14)

Then
U0.s; x/ �

Y
C��

Y
p62B

FrP02C

�
1C

X
S2†P

…D.S; x/N.p/
�sjS j

�

in Re.s/ > A �min.2�1; m�2/.

Proof. By Lemma 3.22, if FrP S ¤ S then…D.S; x/D 0. Consider the sets¿¤ S �M
which satisfy FrP S D S , and take

.2M X ¹¿º/DP D †P
t†Pc :
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Let

F1.s/ D
Y
C��

Y
p 62B

FrP02C

�
1C

X
S2†P

…D.S; x/N.p/
�sjS j

�
;

F2.s/ D
Y
C��

Y
p 62B

FrP02C

�
1C

X
S2†Pc

…D.S; x/N.p/
�sjS j

�
:

By Lemma 5.9, Y
C��

Y
p62B

FrP02C

X
S�M

…D.S; x/N.p/
�sjS j

� F1.s/F2.s/

in Re.s/ > A � .2m/�1. Note that for any S 2 †Pc we have

A �
dimD.S/C 1

jS j
> m�2; (5.15)

sinceA and dimD.S/C1
jS j

are two elements of the Farey sequence of orderm. By the estimate
j…D.S;x/j6…6.S; 1/, Lemma 3.24, and (5.15) we find that F2.s/ converges absolutely
and uniformly in the region Re.s/ > A � min.2�1; m�2/. Thus, U0.s; x/ � F1.s/ in
Re.s/ > A �min.2�1; m�2/.

Recall the quantity a.S; x/ from (3.36). Similarly, let

aC .S; x/ D #¹y 2 p.˛�1.x// W FrP0 y D yº; (5.16)

which only depends on the conjugacy class C � � of FrP0 . Likewise, recall a.S/ from
(3.38) and let

aC .S/ D #¹y 2 �0.D.S// W FrP y
N.p/
D yº; (5.17)

which also only depends on the conjugacy class C � � of .FrP; N.p// via (5.9). By
Lemmas 5.8, 5.10 and 3.26 we have

U.s; x/ �
Y
C��

Y
p62B

FrP02C

�
1C

X
S2†P

N.p/dimD.S/�sjS j

´
aC .S; x/ if dimD.S/ > 1
aC .S; x/�1 if dimD.S/ D 0

�
(5.18)

in Re.s/ > A �min.2�1; m�2/, where we may replace aC .S; 1/ by aC .S/ when x D 1.
Note that if dimD.S/C1

jS j
> A thenD.S/D ¹1º by the definition of A, and so aC .S; x/D 1

and the term corresponding to S above vanishes.
We split up the sum in (5.18) over the possible values of .dimD.S/; jS j/. The param-

eter space is

P D

²
.a; b/ W 0 6 a 6 n; 1 6 b 6 m;

aC 1

b
D A

³
:
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Since the case a D 0 is different in (5.18), we also introduce

P0 WD

²
.a; b/ W 1 6 a 6 n; 1 6 b 6 m;

aC 1

b
D A

³
:

If A D 1, then P D P0 [ ¹.0; 1/º, and otherwise P D P0. Let also

†a;b D ¹S 2 † W dimD.S/ D a; jS j D bº; (5.19)

so that
† D

G
.a;b/2P

†a;b :

Note that †0;1=A is non-empty only if A D 1. With this notation, we have

U.s; x/

�

Y
C��

Y
p 62B

FrP02C

X
S2†0;1

FrP SDS

.1CN.p/�s/aC .S;x/�1
Y

.a;b/2P0

X
S2†a;b

FrP SDS

.1CN.p/a�bs/aC .S;x/

(5.20)

in Re.s/ > A�min.2�1;m�2/, with optionally aC .S/ in place of aC .S; 1/ if x D 1. Let

z†a;b D

´
¹.S; y/ W S 2 †a;b; y 2 p.˛

�1.x//º if .a; b/ ¤ .0; 1/;

¹.S; y/ W S 2 †0;1; y 2 p.˛
�1.x//; y ¤ 1º if .a; b/ D .0; 1/:

(5.21)

The group � acts on each z†a;b through G on S and through its Galois action on
p.˛�1.x//. If x D 1, the action factors through the action of .xg; / 2 G � .Z=�Z/� on
elements .S; y/ with y 2 �0.D.S// and is given by .xg; /:y D xgy :

Let us further decompose the action of � on z†a;b into orbits, z†a;b D
F

O: Let VO

be the permutation representation of � acting (transitively) on O. Let  O be its character
and C a conjugacy class of � . Then  O.C / is the number of FrP0 -fixed points on O. In
these terms, we have

U.s; x/ �
Y
C��

Y
p 62B

FrP02C

Y
.a;b/2P

Y
O�z†a;b

.1CN.p/a�bs/ O.C/:

Now we decompose VO into irreducible representations Vi of � so that

VO D

M
i

V
˚mO;i

i and  O D

X
i

mO;i i (5.22)

for some mO;i 2 N, where  i is the character of Vi . Then

U.s; x/ �
Y
C��

Y
p 62B

FrP02C

Y
.a;b/2P

Y
O�z†a;b

Y
i

�
1C  i .C /N.p/

a�bs
�mO;i

in Re.s/ > A �min.2�1; m�2/.
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Moving the products over C and p to the inside, we have

U.s; x/ �
Y

.a;b/2P

Y
O�z†a;b

Y
i

L.B/.bs � a; Vi /
mO;i (5.23)

in Re.s/ > A � min.2�1; m�2/, where L.B/.bs � a; Vi / denotes the Artin L-function
attached to Vi with archimedean primes and primes in B omitted.

By Lemma 2.6, the group � is finite and does not depend on x 2 UN .T /. Therefore
there are only finitely many irreducible representations Vi of � , and so the product over i
in (5.23) has finitely many factors, bounded uniformly in terms of x. By the first part
of Lemma 2.6, the dimension of VO is uniformly bounded in terms of x. Therefore, the
multiplicities mO;i as well as the degree and conductor of the (partial) Artin L-functions
on the right hand side of (5.23) remain uniformly bounded as x varies over UN .T / (but
depend on r and T , of course).

By the Brauer induction theorem and class field theory, for each Vi there exist finitely
many intermediate fields k � Kj � K 0, Hecke characters �j of Kj and multiplicities
mj 2 Z, j D 1; 2; : : : ; such that

L.s; Vi / D
Y
j

L.s; �j /
mj : (5.24)

Part (1) of Theorem 5.3 now follows from the analytic continuation of Hecke L-functions
and the uniformity statements of the preceding paragraph.

Although it is expected that the critical zeros of any L.s; �j / appearing in (5.24)
with mj < 0 cancel with the critical zeros of some L.s; �j 0/ in (5.24) with mj 0 > 0 (the
Artin conjecture), at present we cannot exclude the possibility that those j with mj < 0
contribute infinitely many poles to L.s; Vi / inside the critical strip. The hypothesis in
Theorem 5.4 asserts that precisely such a possibility does not occur, in which case asser-
tion (1) of Theorem 5.4 is immediate.

Applying (5.24) to (5.23), assertion (2) of Theorem 5.3 follows from the zero-free
region for Hecke L-functions in Lemma 2.12 upon taking

c D min
²

min
.a;b/2P

1

b.log b C 1/
min
O;i

min
j Wmj<0

c.�j /; 2
�1; m�2

³
; (5.25)

which is in particular independent of x. Moreover, applying the lower bounds of
Lemma 2.13 to any L.s; �j /mj with mj < 0 and the upper bounds of [16, Theorem 1]
to any L.s; �j /mj with mj > 0 in (5.24), we obtain assertion (3) of Theorem 5.3 with c0

constructed from c0.�j / as in (5.25).
Since L.1;�/¤ 0 for any Hecke characters � (see Lemma 2.12), the number of poles

at s D A appearing in (5.23) is equal to the number of trivial representations appearing
among the representations Vi , counted with multiplicity. By e.g. Serre [37, Section 2.3,
exercise 2.6], the number of trivial characters is equal to the number of orbitsX

a;b2P

j�nz†a;bj:
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If xD 1 then this matches j zGnz†0j as defined in the introduction. Thus we have established
part (4) of Theorem 5.3.

For s with Re.s/ > A we have jU.s; x/j 6 U.Re.s/; 1/. ThereforeX
a;b2P

j�nz†a;bj 6 j zGnz†0j

for any x 2 UN .T /, and the Laurent series expansion of U.s; x/ around s D A is bounded
in absolute value by that of U.s; 1/. By e.g. (5.20), the leading constant in the Laurent
expansion is positive real. This establishes part (5) of Theorem 5.3.

Lastly, if the Artin conjecture holds, the Phragmén–Lindelöf convexity principle
applied to the strip �1 6 Re.s/ 6 2, say, asserts that the L-functions L.s; Vi / have at
most polynomial growth in their critical strips. Therefore, there exists K D K.r; T / > 0
independent of x such that when s has Re.s/ > A �min.2�1; m�2/ and s avoids a small
neighborhood N around s D A, we have

U.s; x/�T;r;N;Re.s/ .1C jIm.s/j/K ; (5.26)

establishing assertion (2) of Theorem 5.4.

5.5. Ramified places

Lemma 5.11. Suppose that r j yT is faithful. The functionR.s;x/ converges absolutely and
uniformly on compacta in the region Re.s/ > A � m�2. It takes a positive value at the
point s D A.

Proof. Recall that

R.s; x/ D
X

�2ClN .T /^

Y
v2B

�
ı. v/dxv=dx

0
v

�sm
Nkv .s; x/: (5.27)

We saw in Section 3.3 for each v 2 B that .ı. v/dxv=dx0v/
smNkv .s; x/ converges abso-

lutely and uniformly on compacta in

Re.s/ > max
²

dimD.S/

jS j
W D.S/ ¤ ¹1º

³
> A �m�2;

a region which includes the point s D A. Since the sum over class group characters in
(5.27) is finite and B consists of finitely many places, the function R.s; x/ converges
absolutely absolutely and uniformly on compacta in the region Re.s/ > A � m�2. The
first statement of (5.11) holds.

We now show the second assertion of Lemma 5.11. The product over v 2 B is a finite
product. Let us enumerate the places appearing as v1; : : : ; vs . Let us denote by

c j jBj1

the set of all positive integers c of the form q
n1
kv1
� � �q

ns
kvs

for n1; : : : ; ns 2N. In this section,
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we write �.d/ for the Möbius function defined with respect to numbers d j jBj1, that is,
where qkvi plays the role of the primes. For c j jBj1 we let

H�c D
°
.�; �v1 ; : : : ; �vs / 2 ClN .T /^ �

Y
v2B

NT.Ow/
^
W

sY
iD1

q
cr .�vi �vi /

kvi
D c

±
;

where cr is the Artin conductor associated to �vi �vi via r . We also define

Hc D
°
.�; �v1 ; : : : ; �vs / 2 ClN .T /^ �

Y
v2B

NT.Ow/
^
W

sY
iD1

q
cr .�vi �vi /

kvi
j c
±
:

The set Hc is a group. We have the relations

Hc D
[
d jc

H�d and H�c D
[
d jc

�.d/Hc=d ;

where the unions are over integers d j jBj1 which also divide c, and �.d/ is defined as
before.

In terms of these definitions, we have

R.s; x/ D
X
cjjBj1

1

cs

X
.�;�v1 ;:::;�vs /2H

�
c

�v1.x/ � � ��vs .x/

D

X
cjjBj1

1

cs

X
d jc

�.d/
X

.�;�v1 ;:::;�vs /2Hc=d

�v1.x/ � � ��vs .x/

D

� X
cjjBj1

1

cs

��1 X
cjjBj1

1

cs

X
.�;�v1 ;:::;�vs /2Hc

�v1.x/ � � ��vs .x/:

The first factor is evidently positive real for all s > 0, since it is a product over finitely
many “primes”. By orthogonality of characters, the second is a Dirichlet series with non-
negative integer coefficients, hence it takes a positive real value wherever it converges
absolutely.

5.6. Global convergence

In this section, we prove Theorem 5.2. First we show that the sum in (5.7) converges
absolutely and uniformly on compacta in Re.s/ > A �min.2�1; m�2/.

For each v 2 S1, let

�v W T .k/ ,! T D

´
.R�/n1 � .S1/n2 � .C�/n3 if v is real;

.C�/n if v is complex;

be the corresponding embedding. Let S1;1 and S2;1 be the sets of real and of complex
archimedean places, respectively. By formula (5.7), Theorems 4.4, 5.3, and Lemma 5.11,
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for any s not coinciding with any pole of anyU.s;x/ and with Re.s/>A�min.2�1;m�2/
we have

Y.s/�r;T;�

X
x2UN .T /

jU.s; x/j jR.s; x/j�

Y
v2S1;1

n1Y
jD1

1

1C
ˇ̌
log j.�vx/j j

ˇ̌ n1Cn2Cn3Y
jDn1Cn2C1

1

1C2
ˇ̌
log j.�vx/j j

ˇ̌ Y
v2S2;1

nY
jD1

1

1C2
ˇ̌
log j.�vx/j j

ˇ̌ :
(5.28)

Let J denote the set of pairs .v; j / appearing on the right hand side of (5.28), i.e.

J D
[

v2S1;1

¹.v; j / W j D 1; : : : ; n1; n1 C n2 C 1; : : : ; n1 C n2 C n3º

[

[
v2S2;1

¹.v; j / W j D 1; : : : ; nº:

For any .v; j / 2 J , we set

�vj D prj ı �v W T .k/!

8̂̂<̂
:̂

R� if v 2 S1;1 and j D 1; : : : ; n1;

C� if v 2 S1;1 and j D n1 C n2 C 1; : : : ; n1 C n2 C n3;

C� if v 2 S2;1 and j D 1; : : : ; n;

to be the composition of �v with the projection to the j th entry of T.
SinceR.s;x/ is a finite sum, we have the bound jR.s;x/j6R.�;1/, where sD � C i t .

By positivity, we extend the sum over UN .T / in (5.28) to U.T /. Since roots of unity have
absolute value 1, the summand only depends on U.T /=U.T /tors, so we reduce to this at
the cost of a factor depending only on T . Thus for s with Re.s/ > A �min.2�1; m�2/,

Y.s/�r;T;� Umax.s/R.�; 1/
X

x2U.T /=U.T /tors

Y
.v;j /2J

1

1C
ˇ̌
log j�vj .x/jv

ˇ̌ : (5.29)

The set ¹�vj W .v; j / 2 J º forms a basis for
Q
v2S1

X�.T /Gkv . Following standard
notation, we write r1 D jJ j for the rank of this finite-rank free abelian group, i.e.

r1 D rank
� Y
v2S1

X�.T /Gkv
�
D

X
v2S1

rank.X�.T /Gkv / D jS1;1j.n1 C n2/C jS2;1jn:

Similarly, let rk D rankX�.T /Gk . By Dirichlet’s units theorem for tori [40], we have
rankU.T /D r1 � rk . Accordingly, let ¹�1; : : : ; �r1�rk º be a Z-basis for U.T /=U.T /tors.
The r1 � .r1 � rk/ matrix

ˆ D .log j�vj .�i /jv/.v;j /2J; iD1;:::;r1�rk

is called the regulator matrix of T .
It is a key fact in what follows that any choice of r1 � rk rows among the r1 rows of

the regulator matrix ˆ yields a non-singular square matrix. As observed by M. H. Tran in
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his thesis [45, Definition 7.2.2], this fact follows from the proof of Dirichlet’s units theo-
rem for tori [40], and goes back to [28, Section 3.8] in the case k DQ. The absolute value
of the determinant of any such square submatrix of ˆ is by definition the regulator RT
of T as appears in the class number formula for T [46, Theorem 1.3].

Writing ˆvj for the .v; j /th row of the regulator matrix ˆ, the bound (5.29) becomes

Y.s/�r;T;� Umax.s/R.�; 1/
X

n2Zr1�rk

Y
.v;j /2J

1

1C jhˆvj ; nij
(5.30)

with h�; �i the standard inner product on Rr1�rk .
If T is anisotropic, then U.T / is finite so the sum/product in (5.30) is trivial, and the

first assertion of Theorem 5.2 follows immediately.
Suppose then that T is isotropic. For x 2 R one has .1C jxj/�1 6 .1C x2/�1=2 and

the latter is smooth. Since the summandY
.v;j /2J

1q
1C hˆvj ; ni

2

has well-controlled partial derivatives, we may bound the sum in (5.30) by an integral to
obtain

Y.s/�r;T;� Umax.s/R.�; 1/

Z
x2Rr1�rk

Y
.v;j /2J

1q
1C hˆvj ; xi

2
: (5.31)

Now, we are in a position to apply the Brascamp–Lieb inequality to (5.31). We apply
Theorem 2.10 with m D r1, n D r1 � rk , the matrix M D ˆ the regulator matrix with
rows avj D ˆ

v
j , and f vj .x/ D .1C x

2/�1=2 for all .v; j / 2 J . Recall the definition of the
polytope Hˆ from (2.13) and (2.14). Since ˆ is full-rank, Hˆ is compact. Then, there
exists a point in Hˆ, say .d vj /.v;j /2J 2 Hˆ, for which the infimum

B1.ˆ/ D inf ¹kxk1 W x 2 Hˆº

is attained (recall (4.27)). Applying Theorem 2.10 with xp D .d vj /.v;j /2J and the other
parameters chosen as above, we obtainZ

x2Rr1�rk

Y
.v;j /2J

1q
1C hˆvj ; xi

2
�T;r

Y
.v;j /2J

�Z
R

1

.1C x2/
1=.2dv

j
/

�dv
j

: (5.32)

Now, to show that the sum over UN .T / in (5.7) converges absolutely it suffices now
to show that min ¹1=d vj W .v; j / 2 J º > 1. Since min ¹1=d vj W .v; j / 2 J º D B1.ˆ/

�1 by
definition of .d vj /.v;j /2J , it suffices to show that B1.ˆ/ < 1. We have (recall Proposition
4.8 and Definition 4.6)

B1.ˆ/ D max ¹ˇ=˛ W ˆ is .˛Iˇ/-biasedº:

Suppose that ˛, ˇ are such that ˆ is .˛Iˇ/-biased, i.e. there is a distinguished set, say A,
of rows of ˆ with jAj D ˛ such that any basis of Rr1�rk contains at least ˇ of the ˛
distinguished rows. We aim to show that ˇ < ˛ for any such configuration.
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If ˛ > r1 � rk , then we would have ˛ > r1 � rk > ˇ. Suppose ˛ 6 r1 � rk . We shall
construct a basis of Rr1�rk from the rows of ˆ that uses at most max.0; ˛ � rk/ rows
inA. Thus, we will have ˇ6max.0;˛� rk/; and since T is isotropic we get ˇ <˛. Recall
the key fact that any r1 � rk rows of the regulator matrixˆ form a basis for Rr1�rk . So,
to construct the promised basis, choose the min.r1 � rk ; r1 � ˛/ rows of ˆ that are not
in A along with any r1 � rk � min.r1 � rk ; r1 � ˛/ D max.0; ˛ � rk/ rows from A.
This proves the first assertion of Theorem 5.2 in the isotropic case.

By Theorem 4.4 (3), Theorem 5.3 (4, 5), and Lemma 5.11, the leading coefficient
in the Laurent series expansion of U.s; x/R.s; x/A.s; x/ at s D A is positive for each
x 2 UN .T /. Therefore, there can be no cancellation in the leading order Laurent coeffi-
cients in the sum over UN .T / in formula (5.7). The assertion in the first bullet point of
Theorem 5.2 follows from this along with Theorems 5.3 (2) and 5.4 (1).

The second and third bullet points of Theorem 5.2 follow from Theorems 5.3 (3) and
5.4 (2), and the previously established absolute convergence of the integral in (5.32).

6. Final counting

6.1. Local-to-global and proof of Theorem 1.10

Proposition 6.1. Suppose that r j yT is faithful. There exists c 2 R>0 depending only on
choices of Haar measures such that

Z.s/ WD

Z
A.T /

1

c.�; r/s
d�.�/

D
c

Vol.UN .T /^/

X
�2ClN .T /^

X
x2UN .T /

Y
v2S1

Akv .s; x/
Y
v 62S1

Nkv .s; x/

for all s with Re.s/ sufficiently large, where Akv .s; x/ and Nkv .s; x/ are local archimed-
ean and non-archimedean generating series defined in (4.21) and (3.21), respectively.

Proof. Recall (see Section 5.2) the short exact sequence of locally compact Hausdorff
topological abelian groups

1! UN .T /nTN;A ! T .k/nT .A/! ClN .T /! 1: (6.1)

Let
V ^ D ¹� 2 T ^N;A W �.x/ D 1 for all x 2 UN .T /º: (6.2)

By Pontryagin duality, we have the dual short exact sequence

1! ClN .T /^ ! A.T /! V ^ ! 1: (6.3)

Recall that we have chosen a Haar measure � on A.T /. The finite group ClN .T /^ nat-
urally takes the counting measure, so these determine a quotient Haar measure x� on V ^.
Let us write T1 D T .k1/ D

Q
v2S1

T .kv/ and T ^1 D T .k1/
^ D

Q
v2S1

T .kv/
^.
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We work a bit more generally than necessary for the time being. Let c be an inte-
grable function on A.T / that satisfies the following factorization property: there exist
functions c1 on T ^1 and cf on T .Afin/

^ such that if � D �1 ˝ �f with �1 2 T .F1/^

and �f 2 T .Afin/
^, then

c.�/ D cf .�f /c1.�1/:

For such a function c we decompose its integral over A.T / using the quotient measure,
i.e. we apply e.g. [8, Chapter VII, Section 2, 7. Proposition 10] with G D A.T /, G0 D
ClN .T /^, G00 D V ^, � the restriction map � W A.T / ! V ^, ˛ D �, ˛0 equal to the
counting measure, and ˛00 D x� to obtainZ

A.T /

c.�/ d�.�/ D

Z
V^

X
�2ClN .T /^

c.��/ dx�.�/: (6.4)

Let
xc.�/ D

X
�2ClN .T /^

c.��/;

which only depends on �.�/ 2 V ^. Since � is trivial on T ^1 (see (5.5)), for �D �1˝ �f
by the factorization property of c we have

xc.�/ D c1.�1/
X

�2ClN .T /^

cf .��f / DW c1.�1/xcf .�f /: (6.5)

Now let NT ^
f
D
Q
v−1 NT.Ow/

^. It is a discrete group, so we give it the counting
measure. We decompose the integral of xc over V ^ as an iterated integralZ

A.T /

c.�/ d�.�/ D

Z
V^
xc.�/ dx�.�/

D

X
�f 2NT

^
f

xcf .�f /

Z
�12T

^
1

�f �1.x/D18x2UN .T /

c1.�1/ d Q�.�1/: (6.6)

where Q� is the quotient Haar measure of x� by the counting measure on NT ^
f

. Let

V ^1 D ¹�1 2 T
^
1 W �1.x/ D 1 for all x 2 UN .T /º (6.7)

so that
��1f V ^1 D ¹�1 2 T

^
1 W �f �1.x/ D 1 for all x 2 UN .T /º; (6.8)

where on the left hand side of (6.8), ��1
f

means any element of T ^1 that takes the same
values as ��1

f
on all x 2 UN .T /. Then, by a change of variables (using the invariance of

the Haar measure) we haveZ
A.T /

c.�/ d�.�/ D
X

�f 2NT
^
f

xcf .�f /

Z
V^1

c1.�
�1
f �1/ d Q�.�1/: (6.9)

We want to apply Poisson summation (Lemma 2.14) to the inner integral on the right hand
side of (6.9). We have the following two dual short exact sequences of locally compact
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Hausdorff topological abelian groups:

1! UN .T /! T1 ! V ^^1 ! 1

and by Pontryagin duality

1! V ^1 ! T ^1 ! UN .T /
^
! 1:

Recall (Section 5.2) that UN .T / is discrete so that UN .T /^ is compact. It is also conve-
nient to note that the integral on the right hand side of (6.9) only depends on the image of
��1
f
2 T ^1 in UN .T /^.

Now we invoke Lemma 2.14 with G D T ^1, H D V ^1, f D c1, where

c1.�1/ WD
Y
v2S1

1

cv.�v; r jLTv /
s

for �1 D
O
v2S1

�v;

and x D ��1
f
2 UN .T /

^. Note that c1 2 L
1.T ^1/ by Theorem 4.4 (1).

We check hypotheses (1)–(3) of Lemma 2.14. In Section 5.6 we only used the trivial
bounds U.s; x/� .log.jt j C 3//J and jR.s; x/j 6 R.�; 1/, so that the proof there in fact
shows that X

x2UN .T /

ˇ̌̌̌Z
T^1

c1.�1/�1.x/ d�1

ˇ̌̌̌
<1

for all s 2 C with Re.s/ sufficiently large and any choice of Haar measure, so that hypoth-
esis (1) of Lemma 2.14 is satisfied. Next, recall that T .kv/^ ' T^ where T^ is given
explicitly in (4.3). Then, indexing several copies of T^ by v 2 S1, T ^1 is isomorphic toQ
vj1 T^v and V ^1 is a subgroup of this with compact quotient. For �0 2 T ^1,Z

V^1

jc1.�1�
0/j d Q�.�1/ (6.10)

is an integral of the form
Q
v2S1

Akv .�; 1/ with � 2 R>0 sufficiently large and Akv .�; 1/
given as in (4.25), but with the integration restricted to the aforementioned compact quo-
tient coset isomorphic to �0V ^1. Applying the inequality .1C jxj/�1 6 .1C x2/�1=2 if
necessary, one sees that the integrand has well-controlled derivatives, and thus (6.10) con-
verges for any �0 2 T ^1 by comparison with the integral over T ^1 and Theorem 4.4 (1), so
hypothesis (2) of Lemma 2.14 is satisfied. Lastly, hypothesis (3) of Lemma 2.14 follows
directly from hypothesis (2) by the dominated convergence theorem since c1 is itself a
continuous function on T ^1.

The result of Lemma 2.14 is thatZ
V^1

c1.�
�1
f �1/ d Q�.�1/ D

c

Vol.UN .T /^/

X
x2UN .T /

Y
v2S1

Akv .s; x/�f .x/ (6.11)

for some constant c depending only on the choices of the Haar measures involved. Finally,
the function c.�; r/�s on A.T / given in Definition 5.1 clearly satisfies the factorization
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property and is integrable for Re.s/ sufficiently large by the convergence of (6.11), The-
orem 5.3 (1), Lemma 5.11, and (6.9). Combining (6.11) and formula (6.9), rearranging
and pulling the finite sum over ClN .T / to the outside, we obtain the formula in Proposi-
tion 6.1.

Finally, Proposition 6.1 and Theorem 5.2 together imply Theorem 1.10, which in turn
implies the first assertion of Theorem 1.1 following [21, Chapter III, Section 11] with
instances of � �

0

�
.s/ replaced by Z.s/ and [21, Theorem 20] replaced by the second bullet

point of Theorem 1.10. The second assertion of Theorem 1.1 on the power-saving error
term follows from Theorem 1.10 by [15, Theorem A.1].

6.2. Proof of the last assertion of Theorem 1.1

Theorem 6.2. If r j yT is not faithful, then �.¹� 2 A.T / W c.�; r/ 6 Xº/ D 1 for some
finite X .

Proof. We use the notation introduced in the course of the proof of Proposition 6.1. Recall
the exact sequence (6.3), and in particular the cokernel

V ^ D ¹.�1; �f / W �1.x/�f .x/ D 1 for all x 2 UN .T /º;

where �1 2 T ^1 and �f 2 NT ^f . To prove Theorem 6.2 it suffices to construct a subset
of V ^ of infinite Haar measure on which the analytic conductor remains bounded.

By hypothesis, ¹1º ¨ ker r j yT . Let S0 denote the set of unramified places of k which
split completely inK=k, and for which qKw � 1 .mod j�0.ker r j yT /j/: By the Chebotarev
density theorem, jS0j D 1. For any v 2 S0, by Lemma 3.13 and Proposition 3.15 we
have

NT.Ow/
^
D T .Ov/

^
' HomG.O

�
w ;
yT /:

Write ` for the residue field of Kw . By construction of S0, jHomG.`
�; ker r j yT /j > 2 for

any v 2 S0, and so jHomG.O
�
w ; ker r j yT /j > 2 as well. All � 2 HomG.O

�
w ; ker r j yT / �

HomG.O
�
w ;
yT / have r ı ' of trivial Artin conductor, where ' 2 ˆ.T / is such that

� D 'jO�w as in (2.10). For any v 2 S0 let T .Ov/^0 be the subset of T .Ov/^ corre-
sponding to HomG.O

�
w ; ker r j yT / under the restricted Langlands perfect pairing (3.9). Let

NT ^
f;0
� NT ^

f
be given by

NT ^f;0 D
Y
v2S0

T .Ov/
^
0 �

Y
v 62S0[S1

¹1º:

Then NT ^
f;0

is an infinite set such that every �f D .�v/v 62S1 2 NT
^
f;0

satisfiesY
v 62S1

cv.�v; r/ D 1:

To construct a subset of V ^ of infinite measure on which c.�; r/ is bounded, it suffices
to extend each �f 2 NT ^f;0 to V.T /. Recall the notation

��1f V ^1 D ¹�1 2 T
^
1 W �1.x/�f .x/ D 1 for all x 2 UN .T /º:
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Lemma 6.3. There exist constants K; " > 0 and a subset X.�f / � ��1f V ^1 for each
�f 2 NT

^
f

such that �.X.�f // > " and

sup
° Y
v2S1

cv.�v; r/ W �1 2 X.�f /
±
6 K for all �f 2 NT ^f .

Proof. We give an explicit description of the sets ��1
f
V ^1 in terms of the corresponding

Langlands parameters under (2.12). Let x1; : : : ; xs be generators for UN .T /. Recall T
from (4.1). For v 2 S1 let �v W UN .T / ,! T .kv/ ' T be the corresponding embedding.
As in Section 4.1, we write

�vxi D .: : : ; xvij ; : : : ; x
0
vij ; : : : ; x

00
vij ; : : :/;

where xvij 2 R�, x0vij 2 S
1, and x00vij 2 C�.

Let us index several copies of T^ (see (4.3)) by v 2 S1, so that T ^1 '
Q
vj1 T^v .

Consider the image of ��1
f
V ^1 under the mapY

v2S1

T .kv/
^
!

Y
v2S1

T^v : (6.12)

We write elements of
Q
vj1 T^v as ..wv; �v/; ˛v; .w0v; ˛

0
v//v2S1 . Then the image of

��1
f
V ^1 under (6.12) is an affine hyperplane in

Q
vj1 T^v cut out by

Y
v2S1

n1Y
jD1

.sgn xvij /�vj jxvij jwvj
n2Y
jD1

x0vij
˛vj

n3Y
jD1

�
jx00vij j

x00vij

�˛0
vj

jx00vij j
w0
vj
�˛0
vj D �f .xi /

�1

(6.13)

for all generators xi , i D 1; : : : ; s, of UN .T /. Since �f .xi / 2 S1 for all �f and xi ,
the affine hyperplane in

Q
vj1 T^v described by (6.13) intersects a fixed (independent

of �f ) compact set around the origin, say U0, in a set of positive measure bounded below
independently of �f .

For each v 2 S1, the set ¹� 2 T .kv/^ W cv.�; r/ 6 Xº is in bijection under the local
Langlands correspondence with

Hv D
°
' W

m1Cm2Y
iD1

.j.M'/i j C 1/

m1Cm2Cm3Y
iDm1Cm2C1

.j.M'/i j C 1/
2 6 X

±
(6.14)

by the results of Section 4.1. Let

Lv.X/ D°
' W

m1Cm2X
iD1

.j.M'/i jC1/

m1Cm2Cm3X
iDm1Cm2C1

.j.M'/i jC1/
2 6 .m1Cm2Cm3/X1=.m1Cm2Cm3/

±
:

By the am-gm inequality, we haveLv.X/�Hv.X/. IfX is sufficiently large, thenLv.X/
contains any fixed compact set in T^, and in particular U0 �

Q
v2S1

Lv.X/: Taking
K D X jS1j, the lemma is proved.
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The fibered set NT ^
f;0
� X.�f / � V

^ is our candidate for a set of infinite measure
and bounded analytic conductor. By Lemma 6.3 and additivity of measure we have

�.NT ^f;0 �X.�f // D �
�[
�f

¹.�1; �f / W �1 2 X.�f /º
�

D

X
�f

�.¹.�1; �f / W �1 2 X.�f /º/ >1;

yet c.�; r/ is uniformly bounded for any � D .�1; �f / 2 NT ^f;0 �X.�f /.
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