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Abstract. Let U(}(g) be a quantum affine algebra of arbitrary type and let ng be Hernandez-
Leclerc’s category. We can associate the quantum affine Schur—Weyl duality functor ¥ g to a duality
datum P in %g. In this paper, we introduce the notion of a strong (complete) duality datum D and
prove that, when D is strong, the induced duality functor ¥ sends simple modules to simple
modules and preserves the invariants A, A and A® introduced by the authors. We next define the
reflections .} and %~ 1 acting on strong duality data . We prove that if D is a strong (resp.
complete) duality datum, then .3 (D) and .77~ 1(D) are also strong (resp. complete) duality data.
This allows us to make new strong (resp. complete) duality data by applying the reflections .7, and
S ! from known strong (resp. complete) duality data. We finally introduce the notion of affine
cuspidal modules in ‘Kg by using the duality functor ¢, and develop the cuspidal module theory
for quantum affine algebras similar to the quiver Hecke algebra case. When D is complete, we show
that all simple modules in %&) can be constructed as the heads of ordered tensor products of affine
cuspidal modules. We further prove that the ordered tensor products of affine cuspidal modules
have the unitriangularity property. This generalizes the classical simple module construction using
ordered tensor products of fundamental modules.
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1. Introduction

Let ¢ be an indeterminate and let € be the category of finite-dimensional integrable
modules over a quantum affine algebra Ué (). The category 6 occupies an important
position in the study of quantum affine algebras because of its rich structure. The simple
modules in 6y are indexed by using n-tuples of polynomials with constant term 1 (called
Drinfeld polynomials) ([5—7] for the untwisted cases and [8] for the twisted cases). The
simple modules can be obtained as the head of ordered tensor product of fundamental
representations [1,25,53], and a geometric approach to simple modules was also studied
in [45,46,53].

Let go be a finite-dimensional simple Lie algebra of ADE type and let Ué (g) be a
quantum affine algebra of untwisted affine A DE type. Hernandez and Leclerc [15] intro-
duced the monoidal full subcategory ‘fé’ of €, which consists of objects all of whose
simple subquotients are obtained from the heads of tensor products of certain fundamen-
tal representations. Any simple module in € can be obtained as a tensor product of
suitable parameter shifts of simple modules in ‘Ké’. For each Dynkin quiver Q of g¢ with
a height function, Hernandez and Leclerc [16] introduced a monoidal subcategory %o
of ‘Kg? . The category %y is defined by using certain fundamental representations parame-
terized by vertices of the Auslander—Reiten quiver of Q. It turns out that the complexified
Grothendieck ring C ®z K (%) is isomorphic to the coordinate ring C[N] of the unipo-
tent group N associated with go and, under this isomorphism, the set of isomorphism
classes of simple modules in ¢ corresponds to the upper global basis (or dual canoni-
cal basis) of C[N] [16].
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In [23,34,47,51], the notion of the categories ‘Kg and € is extended to all untwisted
and twisted quantum affine algebras. Suppose that U é (g) is of an arbitrary affine type. We
consider the set o (g) := Iy x kK*/~, where the equivalence relation is given by (2.7), with
the arrows determined by the pole of R-matrices between tensor products of fundamental
representations V(w;)x ((i, x) € o(g)). Let oo(g) be a connected component of o(g).
The category %g? is defined to be the full subcategory of %y determined by op(g) (see
Section 2.5). Let gg, be the simple Lie algebra of type X defined in (6.1). Note that,
when ¢ is of untwisted affine type ADE, gg, coincides with go. A Q-datum is a triple
2 := (A, 0,£) consisting of the Dynkin diagram A of gg,, an automorphism ¢ on A and
a height function ¢ (see Section 6.2). When g is of untwisted affine type ADE, o is the
identity and 2 is equal to a Dynkin quiver with a height function. For a Q-datum 2, the
monoidal subcategory o of (fg was introduced in [16] for untwisted affine type ADE,
in [23] for twisted affine types A® and D® | in [34,51] for untwisted affine types B
and C(V, and in [47] for exceptional affine type. Similarly to the untwisted affine ADE
case, the category %o categorifies the coordinate ring C[N] of the maximal unipotent
group N associated with gg,. The simple Lie algebra gy, is more deeply related to the
structure of the category %5. It is proved in [31] that the simply-laced root system Yq
of gy arises from % in a natural way and the block decompositions of 3 and CKE? are
parameterized by the lattice associated with the root system Y. In the course of the proof,
the new invariants A and A for € introduced in [27] are used in a crucial way. These
invariants are quantum affine algebra analogues of the invariants (with the same notations)
for the quiver Hecke algebras [21,24].

Let Rc be a quiver Hecke algebra (or Khovanov-Lauda—Rouquier algebras) corre-
sponding to a generalized Cartan matrix C and denote by Rc-gmod its finite-dimensional
graded module category. The algebra R¢ categorifies the half of the quantum group U, (g)
associated with C [38, 39,49]. The simple Rs-modules were studied and classified by
using the structure of Uq_ (g) via categorification [2,17,37,41-43,52]. When Rg is sym-
metric and the base field is of characteristic 0, the set of isomorphism classes of simple
Rc-modules corresponds to the upper global basis of U, (g) [48,54]. Suppose that C is
of finite type. One of the most successful constructions for simple Rg-modules is the con-
struction using cuspidal modules via the (dual) PBW theory for U, (g). For a reduced
expression wy of the longest element wg of the Weyl group W, one can define the asso-
ciated cuspidal modules {V }£=1’ which correspond to the dual PBW vectors, and all
simple Rc-modules are obtained as the simple heads of ordered tensor products of cuspi-
dal modules. The construction using Lyndon words was introduced in [41] (see also [17])
and the construction in a general setting with a convex order was studied in [37,43]. It
was also studied in [40,44] for an affine case, and in [52] for a symmetrizable case from
the viewpoint of MV polytopes.

The quantum affine Schur—Weyl duality [21] gives a connection between quiver Hecke
algebras and quantum affine algebras. The quantum affine Schur—Weyl duality says that,
for each duality datum D = {L; };ej C €4 associated with a generalized symmetric Cartan
matrix C, there exists a monoidal functor g, called briefly a duality functor, from the
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category Rc-gmod to the category €. The duality functor is very interesting and useful,
but it is difficult to handle it because the functor does not enjoy good properties in general.
When D arises from a Q-datum, the duality functor o enjoys good properties. It was
shown in [11,20,23,34,47] that, for each choice of Q-data 2, the quantum affine Schur—
Weyl duality functor

Fo: R8%"-gmod — €9 C ‘fg

is exact and sends simple modules to simple modules, thus it induces an isomorphism at
the Grothendieck ring level. Here R%fn is the symmetric quiver Hecke algebra associated
with ggy,. In this viewpoint, it is natural and important to ask which conditions for O pro-
vide the duality functor ¢ with such good properties, and what properties are preserved
from R¢-gmod to 6 under the duality functor .

This paper is a complete version of the announcement [29]. The main results of this
paper can be summarized as follows:

(i) LetU, é (g) be a quantum affine algebra of arbitrary type. We find a sufficient condi-
tion for a duality datum O = {L;};cs to provide the functor ¥ with good proper-
ties. We introduce the notion of strong duality datum by investigating root modules.
We prove that the associated duality functor ¢ sends simple modules to simple
modules and preserves the invariants A, A and A®. We also introduce the notion of
complete duality datum, which can be understood as a generalization of the duality
datum arising from a Q-datum. It turns out that the Cartan matrix C associated with
a compete duality datum D is equal to the one of ggy-

(i) We introduce the reflections .; and %‘1 (i € J) acting on strong duality data D.
We prove that if O is a strong (resp. complete) duality datum, then .#; (D) and
5”;1 (D) are also strong (resp. complete) duality data. This allows us to create new
strong (resp. complete) duality data from known strong (resp. complete) duality data
by applying a finite sequence of the reflections .%; and 5”1._1. Indeed, the family
{7 }ies satisfies the braid relations, etc. [28]. It will be discussed in a forthcoming
paper.

(iii) We introduce the notion of affine cuspidal modules for the category ‘Ké’. Let D be
a complete duality datum associated with a Cartan matrix C. For a reduced expres-
sion wg of the longest element of the Weyl group W, we define the affine cuspidal
modules {Sg }xecz for %é’ by using the duality functor ¥, the right and left duals
9, 971, and the cuspidal modules {V }ﬁzl of the quiver Hecke algebra R¢ associ-
ated with wo. If O arises from a Q-datum, then the affine cuspidal modules { Sy }xez
consist of fundamental modules. But, in general, affine cuspidal modules are not fun-
damental. We prove that all simple modules in %g? can be obtained uniquely as the
simple heads of the ordered tensor products Pg ., (a), called standard modules, of
cuspidal modules. We then show that the standard module P D,wo (@) has the unitrian-
gularity property. This generalizes the classical simple module construction taking
the head of ordered tensor products of fundamental representations [1,25,45,46,53].

01,2,
The unitriangularity property allows us to define a monoidal subcategory %éa 1o
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of ‘Kg for an interval [a, b], which is a generalization of the subcategory 4; (I € Z~¢)
introduced in [15]. This approach can be understood as a counterpart of the PBW the-
ory for quiver Hecke algebras via the duality functor . Hence we establish a base
to answer the monoidal categorification conjecture for various monoidal subcate-
gories of ‘ﬁg in the same spirit of [24,27]. The monoidal categorification conjecture
will be discussed in a forthcoming paper [32,33].

We remark that when U, é (g) is of untwisted affine ADE type, it has been established by
Hernandez—Leclerc that the complexified Grothendieck ring C ®z K (%; ) can be written
as a product of copies of C ®z K(%p) ~ C[N], where N is the unipotent group associ-
ated with gg (see the proof of [16, Theorem 7.3]). When the orientation of the quiver Q
varies, one gets various copies of C[N]in C ®z K (%g) and the basis of standard mod-
ules correspond to various PBW basis. The PBW theory developed in this paper explains
this story transparently at the level of the module category.

Let us explain our results more precisely. Let U‘; (g) be a quantum affine algebra of
an arbitrary type. We first investigate several properties of root modules about the new
invariants A, b, etc in Section 3. A root module is a real simple module L such that

o(L, Z¥(L)) = §(k = +1) foranyk € Z.

Note that the name “root module” comes from Lemma 4.15. We prove several lemmas and
propositions on root modules, which are used crucially in the proofs of the main results.
We next deal with the quantum affine Schur—Weyl duality. Let D be a duality datum
associated with a generalized Cartan matrix C = (c;,j);,jes of symmetric type. We study
the affinizations of modules appearing in both the categories Rc-gmod and 6y as pro-
objects and slightly modify the definition of quantum affine Schur—Weyl duality in order
that the duality functor g preserves the affinizations (Theorem 4.2). This allows us
to compare the invariants A, b, etc. between quiver Hecke algebras and quantum affine
algebras via the duality functor F. When D = {L;};es is a strong duality datum of a
Cartan matrix C = (c¢;,;)i,jes of simply-laced finite type (Definition 4.7), we prove that
F o sends simple modules to simple modules (Theorem 4.10), i.e., Fgp is faithful (Corol-
lary 4.11), and ¥ preserves the invariants: for any simple modules M, N in Rg-gmod,

) AM,N) = ANFo(M), Fp(N)),
(i) 2(M,N) =2(Fp(M), Fp(N)),
(iil) (Wt M, wtN) = —A®(Fp(M), Fp(N)),
(iv) 2(Z2*Fo (M), Fp(N)) = 0 forany k # 0, £1,
V) A(M,N) =2(2Fp(M). Fp(N)) =2(Fp(M), 77 Fp(N))

(see Theorem 4.12). The key part of the proof is to show that the invariants for deter-
minantial modules D(wA, A) (see Section 2.2) are preserved under ¥ (Theorem 4.9).
Corollary 4.14 says that the duality functor ¥ induces an injective ring homomorphism

qul(RC-gmod) > K(%g),
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where K;—1(Rc-gmod) is the specialization of K(Rg-gmod) at ¢ = 1. Interestingly, the
&; and &} in the crystal theory for Rc-gmod can be interpreted in terms of the invariants
for €5 (Corollary 4.13).

Let & = {L;}ics be a strong duality datum associated with a Cartan matrix C =
(¢i,j)i,jes of simply-laced finite type, and define €’p to be the smallest full subcategory
of %”g that

(a) contains Fg (L) for any simple Rg-module L,
(b) is stable by taking subquotients, extensions, and tensor products.

The induced map [Fp] gives an isomorphism between K(%p) and K,;—1(Rc-gmod) as
a ring. We introduce the notion of unmixed pairs of modules in 6, (Definition 5.1) and
investigate several properties. Lemma 5.5 says that if (M, N) is an unmixed pair of simple
modules in R¢-gmod, then (Fp (M), Fp(N)) is strongly unmixed. Let wq be the longest
element of the Weyl group W of g¢, and £ the length of wy. We define the affine cuspidal
modules {Sg }xez C (fg to be the simple Ué (g)-modules given by

(@) S = Fop(Vg)foranyk =1,...,4,
(b) Ski¢ = Z(Si) forany k € Z,

where {Vy }£=1 C Rc-gmod are the cuspidal modules associated with wg. Note that the
cuspidal module Vi corresponds to the dual PBW vectors associated with wg under the
categorification using quiver Hecke algebras. We then prove that S, is a root module
for any a € Z, and (S,, Sp) is strongly unmixed for any a > b, which tells us that the
ordered tensor product Sf’lal X ® Sfr‘” has a simple head for any decreasing integers
ki >--->ksanday,...,a; € Zso (Proposition 5.7). We next define the reflections .%%
and Vk_l on duality data (see (5.3)) and prove that the reflections preserve strong duality
data with the same Cartan matrix (Proposition 5.9). Furthermore, we characterize simple
modules in the intersections €, (py N €p and ngl__l (p) N €o by using the cuspidal

modules {V }£=1 (Proposition 5.11).

We finally introduce the notion of a complete duality datum (Definition 6.1). We prove
that if & = {L;};es is a complete duality datum, then the associated Cartan matrix C has
the same type as that of gg,. Note that the root system Yq of g, provides the block
decomposition of 65 [31]. The reflections %% and Yk_l preserve complete duality data
with the same Cartan matrix (Theorem 6.3), and the duality datum Do arising from a
Q-datum 2 = (A, 0, §) is complete (Proposition 6.5). By the definition, €p,, is equal
to ¥o. Since a new complete duality datum can be constructed by applying the reflec-
tions to Do, when D is complete, the category €p can be viewed as a generalization
of ¥ 9. We now assume that O is complete. Let {Sg }rez be the affine cuspidal modules
corresponding to D and a reduced expression wy, and set Z := Zej%. We denote by < the
bi-lexicographic order on Z. For any a = (ag)xez, € Z, we define the standard module by

Powy(@) = ® ST ® S ® S¥/ 1 @,

and set Vg, (a) := hd(Pg,u,(a)). We prove that Vo u, (@) is simple for any a € Z and
the set {Vo,u,(a) | a € Z} is a complete and irredundant set of simple modules of %g? up
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to isomorphism (Theorem 6.10). Furthermore, Theorem 6.12 says that if V' is a simple
subquotient of P ), (a) which is not isomorphic to Vg , (a), then

ag.uw, (V) <a,

which means that the module Pg v, (a) has the unitriangularity property with respect

,b],D,
to <. For an interval [a, b], we define %éa e to be the full subcategory of ¢ whose

objects have all their composition factors V' satisfying
b=lapw(V)) and r(apw (V) =a,

where [ and r are defined in (6.8). By unitriangularity, the category ‘Kg[a’b]’i)’@ is stable
by taking tensor products, and it also enjoys the same properties (Theorem 6.16).

This paper is organized as follows. In Section 2, we give the necessary background on
quiver Hecke algebras, quantum affine algebras, and the invariants related to R-matrices.
In Section 3, we introduce the notion of root modules and investigate several properties.
In Section 4, we study affinizations and the duality functor ¥ ¢, and prove that when D is
strong, ¥ ¢ sends simple modules to simple modules and preserves the new invariants. In
Section 5, we introduce the notions of affine cuspidal modules and reflections, and prove
that the reflections preserve the strong duality data. In Section 6, we study the PBW-
theoretic approach to ‘Kg using a complete duality datum and affine cuspidal modules.

2. Preliminaries

Convention. (i) For a statement P, §(P) is 1 or 0 according as P is true or not.

(ii) For a field k, @ € k and f(z) € k(z), we denote by zero,—, f(z) the order of the
zero of f(z)atz = a.

(iii) For aring A, A is the set of invertible elements of A.

2.1. Quantum groups
Let I be an index set. A quintuple (A, P, IT, PY, ITY) called a (symmetrizable) Cartan
datum consists of
(a) a generalized Cartan matrix A = (a;; )i, jeI»
(b) a free abelian group P, called the weight lattice,
(¢) I ={w; | i € I} C P, called the set of simple roots,
(d) PY = Homg/(P, Z), called the coweight lattice,
(e) TIY = {h; € PV | i € I}, called the set of simple coroots
satisfying the following:
() (hi,aj) =ay; fori,jel,

(i) IT is linearly independent over Q,



M. Kashiwara, M. Kim, S.-j. Oh, E. Park 2686

(iii) foreachi € I, there exists A; € P, called the fundamental weight, such that (h;, A;)
= 4§, forall j € 1.
(iv) there is a symmetric bilinear form (-, -) on P satisfying

2
(al7al) S ZZ>0 and (hl’A) — (al ).
(i, i)

We set Q := @,¢; Za; and Q1 := )", ; Z>ow; and define ht(B) = Y, k; for
B =Y c kiei € Q. Wedefine Pt :={A € P | (h;, A) € Zso foranyi € I}.

We write ®T for the set of positive roots associated with A and set ®~ := —®™T.
Denote by W the Weyl group, which is the subgroup of Aut(P) generated by s;(1) := A —
(hi, Ma; fori € 1.

We denote by U, (g) the quantum group associated with (A, P, PY, II, ITV), whichis a
Q(q)-algebra generated by f;, e; (i € I) and ¢" (h € PV) with certain defining relations
(see [18, Chapter 3] for details). We denote by UqJr (g) (resp. U, (g)) the subalgebra of
U, (g) generated by e;’s (resp. fi’s). Set A := Z[q,q '] and write Uf (g) for the A-lattice
of U (g), which is the A-subalgebra generated by ei(") (resp. fi(")) fori € I andn € Zy.
We define the unipotent quantum coordinate ring

Ag(m):= @D Ay4(m)p where Ay (n)p :=Homg(g) (U, (8)-p.Q(q)).
Beq—

and denote by A4(n)a the A-lattice of 44 (). Note that A4 () is isomorphic to U, (g) as
a Q(g)-algebra [24, Lemma 8.2.2].

2.2. Quiver Hecke algebras

Let Kk be a field and let (A, P, IT, P, ITY) be a Cartan datum. Choose polynomials

Qi,j(u,v) =80 # j) Z ti,j:p.qufv? € K[u, v]
(p.@)eZ%,
(e ,a;)p+(aj,e;)g=—2(a;,0;)
with tijipg € k, ti,jipg = Lig,p and ti,j;fai_,- 0 € k*. Note that Q,"j (u, U) = Q_i,i(v, u)
fori,j e I.Let&, = (s1,...,8,—1) be the symmetric group on n letters with the action
of &, on I" by place permutation. For 8 € Q" with ht(8) = n, we set

Iﬁ I:{\):(Ul,...,\}n)eln |av1 —|—...+avn :ﬂ}

Definition 2.1. Let 8 € Q" with ht(8) = n. The quiver Hecke algebra R(B) associ-
ated with the parameters {Q; ; }i,jer is the k-algebra generated by {e(v)},e78, {Xk}7—;>
{tm )"}, satisfying the following defining relations:

ee(v) =y e). Y e(v) =1,

velB

XiXm = XmXk, Xke(v) = e(v)xg,
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tme(v) = e(sm (V) T, TkTm = tTmtk if |k —m| > 1,
2

‘Cke(v) = ka,vk_H (Xk, .Xk+1)e(\)),
—e(v) ifm=k,vg = vi41,

(TkeXm — XsemyT)e(v) = g e(v)  ifm=k+ 1, v = veyq,
0 otherwise,

(Th 41Tk Th+1 — Tk Tk+1Tk)e(V)

ka,vk+1 (xkv xk+1) - ka,vk+1 (-xk-‘rZ» -xk+1)

= Xk — Xk+2
0 otherwise.

e(v) ifvg =vgyo,

The algebra R(f) has the Z-grading defined by
dege(v) =0, deg xge(v) = (o, ), deg re(v) = —(ay,, o0y, ,)-

For a Z-graded k-algebra A, we denote by A-gMod the category of graded left A-modules,
and write A-gproj (resp. A-gmod) for the full subcategory of A-gMod consisting of
finitely generated projective (resp. finite-dimensional) graded A-modules. We set R-gproj

= Dgeq+ R(B)-gproj and R-gmod := Pgeq+ R(B)-gmod.
For M € R(B)-gMod and N € R(y)-gMod, we define their convolution product by

Mo N :=R(B+ye(B.y) ®r@)or() (M ® N),

where e(f,y) = ZVIEI/;, vel” e(v1 * vy). Here vy * v, is the concatenation of vy and v,.
We denote by M V N the head of M © N and by M A N the socle of M o0 N. We say that
simple R-modules M and N strongly commute if M © N is simple. A simple R-module
L is real if L o L is simple. Fori € I and an R(f)-module M, we define

Ei(M) :=e(a;,p—ai)M, Fi(M):=R(ei)oM,
and
wi(M) :=—p,
ei(M) :=max {k > 0 | Ef(M) # 0},
@i(M) = &;(M) + (hi, wt(M)).

For i € I, we denote by L(i) the self-dual 1-dimensional simple R(«;)-module. For a
simple module M, fi(M ) (resp. €;(M)) is the self-dual simple R-module isomorphic
to L(i) V.M (resp. soc(£;M)). One also defines E, F;*, ], etc. in the same manner,
replacing e(¢;, f — ;) and R(e;) © — by e(f — «;, ;) and — © R(;).

Theorem 2.2 ([38,39,49]). There exist A-bialgebra isomorphisms
Uy (g) = K(R-gproj) and Agz(m)a = K(R-gmod),

where K (R-gproj) and K(R-gmod) are the Grothendieck groups of R-gproj and R-gmod.
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Definition 2.3. The quiver Hecke algebra R(f) is said to be symmetric if Q; j(u,v) is a
polynomial inu — v forany i, j € I.

When R is symmetric, the Cartan matrix A is of symmetric type. In this case we
assume that («;, ;) = 2 foralli € I.

In what follows, we assume that R is symmetric.

Let z be an indeterminate with homogeneous degree 2. For an R(f)-module M,
we denote by M the affinization of M [21,35]. If R(B) is symmetric, then M*T =
K[z] ®k M and the R(B)-module structure of M is defined by

eW)(f ®@m) = f ®e(v)m,
xj(f@m)=(zf)®@m+ f®x;m
w(f ®m) = f & (tm)
for f € k[z], m € M, v € I? and admissible j, k. We sometimes write M, instead of
M to emphasize z.

Let € Q" and m =ht(B). For k =1,...,m — 1 and v € 158, the intertwiner
©x € R(P) is defined by

(texk — xktr)e(v) if v = vy,
e(v) otherwise.

pre(v) == {

Note that {¢ }Z’;ll satisfies the braid relation. Hence, we can define ¢, for any w € &,,.
Let M be an R(B)-module with ht(8) = m and N an R(B’)-module with ht(8’) = n. Let
w[n, m] be the element of &,, 4, whichsends k >k + mforl <k <nandk+—k —n
if n <k <m+ n. Then the R(B) ® R(B’)-linear map M ® N — N o M defined by
U® V> Qyln,m (v ® u) can be extended to the R(B + B)-module homomorphism (up
to a grading shift)

Ruyn:MoN — NoM.

For non-zero R-modules M and N, we set
. ’ - .
R;f}‘z’Nz/ ="—2)" " Rm. N, Mz 0 Nyy — Ny o M,

where s is the largest integer such that Rys. v_, (M; © N;/) C (z' —2)* Ny 0 M. We call
it the renormalized R-matrix. Then, we define

fyyMON—>NoM

as the specialization of Rren N, Atz = z’ = 0 (up to a constant multiple), which never
vanishes by the definition (see [21 Section 1] and [35, Section 2] for details).

Definition 2.4. Let M and N be simple R-modules. We set
A(M,N) = deg(ry, ).

A(M, N):= L(A(M, N) + (wt(M), wi(N))),
2(M,N) := L(A(M,N) + A(N, M)).
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Many properties of A, A, and ? were obtained in [24,26,30].
We now define the monoidal subcategories €y, €x, and €, of R-gmod for
w,v € W. For M € R(f)-gMod, we define

WM):={yeQtn(B-Q")|e(y.p—y)M # 0},
W M):={yeQtnB—-a") |e(B—y.y)M #0}.

For w € W, we denote by €,, the full subcategory of R-gmod whose objects M satisfy
W(M) C span]R>0(CI>Jr Nwd™).

Similarly, for v € W, we define €4, to be the full subcategory of R-gmod whose
objects N satisfy

W*(N) C spang_ (@ Nnvd™).

Finally, we define €, 5, := €, N Cy .
When g is of finite type, we have €,,, = R-gmod and

M € €,,y, ifandonlyif e (M)=0,
M €€, ifandonlyif & (M)=0,

for any R-module M in R-gmod and i € I. Here wgo denotes the longest element of W
(see [26] for details).
Let w :=s;, ---5;, be areduced expression of w € W and define

Bi =iy -+ 8ip_ (o) fork=1,...,1. 2.1

Then we equip @ N w®™ = {B4,..., B;} with the convex order < on @+ Nwd~, i.e.,
Ba < By forany a < b.For B € ®* N wd™, a pair («, y) is called a minimal pair of B if
B =a+ y,a < y and there exists no pair (&, y’) suchthat § = o’ + y’ and @ < o’ <
y’ < y. The convex order provides the PBW vectors {E(,Bk)}i:1 in U, (g) and the dual
PBW vectors {E*(/gk)}i:1 in Ag(n)a. We set A, (n(w)) to be the subalgebra of A, (1n)
generated by E*(By) fork = 1,...,l. The category €,, categorifies the algebra A, (n(w))
[24,26].

Fork =1,...,1, let Vg be the cuspidal module corresponding to B with respect to
w (see [26, Section 2] for a precise definition). Under the categorification, the cuspidal
module Vi corresponds to the dual PBW vector E*(8%). It is known that the set

{hd(V;* o---oVi*) | (a1,....a;) € ZL,}

gives a complete set of pairwise non-isomorphic simple graded modules in €y, up to a
grading shift [3,37,43,52]. Note that, for a minimal pair (84, B5) of By, there exists an
isomorphism

Vo VVp 2 Vg 2.2)

(see [43, Lemma 4.2] and [3, Section 4.3]).



M. Kashiwara, M. Kim, S.-j. Oh, E. Park 2690

For A € PT and w,v € W with w > v, we denote by D(wA, vA) the determinan-
tial module in R-gmod corresponding to the pair (wA, vA) (see [24, Section 10.2] and
[26, Section 4] for precise definitions). Under the categorification, the determinantial
module D(wA, vA) corresponds to the unipotent quantum minor D(wA, vA) in A, (1)
[26, Proposition 4.1].

From now on, we assume that K is a field of characteristic 0 and that R is a symmetric
quiver Hecke algebra of finite ADE type.

Note that, under the categorification by R-gmod, the upper global basis (or dual
canonical basis) of Agz(n) corresponds to the set of isomorphism classes of simple R-
modules [48, 54]. Then the reflection functor 7; constructed in [37] gives an equivalence
of categories

T . ~
Ji-zfsiwo — 8*,s,—~

Note that J; is denoted by 7;* in [26]. Since, at the crystal level, this functor corresponds
to the Saito crystal reflection [50], we have

P ;o7 (M) xef (M)

T(M) ~ £70e T () (2.3)
for a simple module M with &; (M) = 0. For a reduced expression w := s;, ---s;,, the
cuspidal module V. can be computed as follows (see [26, Section 5]):

Vi > Ti, oo T, (L(ix)) fork =1,....1. (2.4)

2.3. Quantum affine algebras

We assume that A = (a;,;);,jer is an affine Cartan matrix. Note that the rank of P is
|I] + 1. We denote by § € Q the imaginary root and by ¢ the central element in PV. Note
that the positive imaginary root Aif is equal to Z~ 6 and the center of g is generated
by c¢. We write P, := P/(P N Q§), called the classical weight lattice, and take p € P
(resp. p¥ € PY) such that (h;, p) = 1 (resp. (p¥,a;) = 1) for any i € I. We choose a
Q-valued non-degenerate symmetric bilinear form (, ) on P satisfying

_ 2 )

G

(hi, A) and {c,A) = (8, 1)

for any i € I and A € P. We define g to be the affine Kac—-Moody algebra associated
with A. We shall use the standard convention in [19] to choose 0 € I except for Agzn) type,
in which we take the longest simple root as &, and Bél) and Agz) types, in which we take

the following Dynkin diagrams:

2. ° ° . @ .
A= T B gy AT e
(1) 2 ; : 1) ) .
Note that B, and A3” in the above diagram are denoted by C,"” and D3~ respectively
in [19].
Set o := 1 \ {0}.
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Let g be an indeterminate and k the algebraic closure of the subfield C(q) in the
algebraically closed field k :=  J,,-.o C((g"™)). Form,n e Zso and i € I, we define
gi = q(af,ai)/Z and

_a T = T[] =
i =g it = [k M‘m

! i k=1
Let d be the smallest positive integer such that d («;,;)/2 € Z foralli € 1.

Definition 2.5. The quantum affine algebra U, (g) associated with an affine Cartan datum
(A,P,I1,PY, ITV) is the associative algebra over k with 1 generated by ¢;, f; (i € I) and
g" (h € d~'PV) satisfying the following relations:

(i) ¢° =1, q"q¢" =q¢"t" forh. i € d PV,

(i) qteig™" = q"ide;, " fig7h = g~ f; forhed 'PY,i e,

Ki - Kl_l h;
(>111) e,‘fj — fje,- = Siij—l’ where K; = q;

! i

1—a;; 1—a;;
@) 3 D ee® = 3 (F TS0 =0 fori #
k=0 k=0

where e = ek [kt and £ = fF /(K]0

Let us denote by U, (g) the k-subalgebra of U, (g) generated by e;, fi, Kl.il @iel).
Let 64 be the category of finite-dimensional integrable U, (g)-modules, i.e., finite-dimen-
sional modules M with a weight decomposition

M:@M,x WhereM)Lz{ueM|Ku—ql(h A) uj.

A€EP

Note that the trivial module 1 is contained in €5 and the tensor product ® gives a monoidal
category structure on 4. The monoidal category %y is rigid. For M € %, we denote by
9PM and 2~' M the right dual and the left dual of M, respectively. Hence we have the
evaluation morphisms

M®9IM —>1 and 27'M @M — 1.

We extend this to 2F fork € Z. We set M®* := M ® --- ® M (k factors) for k € Z>o.
For M, N € %6, we denote by M V N the head of M ® N and by M A N the socle
of M ® N. We say that M and N strongly commute if M ® N is simple. A simple
U, (g)-module L is real if L ® L is simple.

A simple module L in %5 contains a non-zero vector u € L of weight A € P; such that
() (h;,A) >0foralli € Iy, (ii) all the weights of L are contained in A — Zie]o Z>ocl(e),
where cl: P — P is the canonical projection. Such a A is unique and u is unique up to a
constant multiple. We call A the dominant extremal weight of L and u a dominant extremal
weight vector of L. For eachi € Iy, we set

wi = gcd(co,c,-)_l cl(coA; —ciAy),
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where the central element ¢ is equal to D, ; c;h;. For any i € Iy, we denote by V(w;)
the i-th fundamental representation. Note that the dominant extremal weight of V(w;)
s ;.

2.4. R-matrices

In this subsection we review the notion of R-matrices on U, é (g)-modules and their coeffi-
cients (see [9], [1, Appendices A and B] and [25, Section 8] for details).

For a module M € %,, we denote by M the affinization of M and by zpr: M —
M*" the U/ (g)-module automorphism of weight 8. Note that M*T ~ k[z*!] @ M with
the action

ei(a®v) = %04 @ eju fora e k[z¥!']andv € M.

We sometimes write M instead of M3 to emphasize the endomorphism z. For x € k*,
we define
My = M"/(zpg — )M,

We call x a spectral parameter (see [25, Section 4.2] for details).

Take a basis {P,}, of UqJr (g) and a basis {Qy}, of U, (g) dual to each other with
respect to a suitable coupling between Uq+ (g) and U, (g). For Ué (g)-modules M and N,
we define

Ry (@ v) := g™ MNPy @ Qyu foru e M andv € N,
v

so that R}'l,?ljv gives a Ué (g)-linear homomorphism M ® N — N ® M, called the uni-

versal R-matrix, provided that the infinite sum has a meaning. As Rj"y, converges in the
z-adic topology for M, N € %5, we have a morphism of k((z)) ® Ué (g)-modules

REM k() ® (M®N:)—k((z) ® (N:®M).
k[zil] k[zil]

Note that RR}“}VZ is an isomorphism. For non-zero M, N € %3, we say that the universal
R-matrix R}",‘,‘ijv is rationally renormalizable if there exists f(z) € k((z))> such that
) z

SR Y. (M & N;) C N, ® M.

In this case, we can choose ¢,y (z) € k((z))* such that, for any x € k*, the specialization
of Rif y. := cM,N(z)R}“;i";VZ: M®N, >N, M atz = x,

Ry |z=x: M ® Nx — Ny ® M,

does not vanish. Note that Ry7'y, and ¢, (2) are unique up to a multiple of k[zE1]* =
Ll,ez K*2". We call RRT}: . the renormalized R-matrix and cp, N (z) the renormalizing
coefficient. We denote by TyN the specialization at z = 1,

YN = Ryn.lz=1:M ®N - N ® M, (2.5)
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and call it the R-matrix. The R-matrix TN is well-defined up to a constant multiple

whenever R}‘l,‘,“jv is rationally renormalizable. By the definition, r,, v Dever vanishes.
Let M and N be simple modules in € and let u and v be dominant extremal weight
vectors of M and N, respectively. Then there exists apr,n (z) € K[[z]]* such that
Ry (4 ® vz) = ap,n (2)(vz ® u).
Thus we have a unique k(z) ® Ué (g)-module isomorphism

norm . —1 puniv
Ryn. ==am,N(2) RM,Nz|k(z)®k[Zil](M®N_—)

from k(z) Qo1 (M ® N;) tok(z) Oz £1] (N; ® M) which satisfies
Ry'n. (u®v;z) =v; Qu.

We call ap,n(z) the universal coefficient of M and N, and RR;T“JQ,Z the normalized
R-matrix.

Let dayr,n(z) € k[z] be a monic polynomial of the smallest degree such that the
image of dyy, N(Z)R“"rm (M ® N,) is contained in N, ® M ; the polynomial is called
the denominator of RR;"}Q, . Then we have

Ry'n. =dun(@)Ry N M ® N; - N, ® M up to a multiple of k[z ),
Thus

du,n(2)

Ryf'n. = amn(2)” Ydum, 1\/(Z)R‘“"V and cyn(z) =
’ am,n(z)

up to a multiple of k[z¥']*. In particular, RR}“}VZ is rationally renormalizable whenever
M and N are simple.
The following proposition was one of the main results of [22].

Proposition 2.6 ([22, Theorem 3.12]). Let M and N be simple modules, and assume that
one of them is real. Then Im(r N) is a simple module and it coincides with the head of
M ® N and with the socle of N @ M.

Let M and N be simple modules in 4. Suppose that one of them is real. Thanks to
Proposition 2.6, the diagram

"™,N

M®N—»MVN—NAM —NQM (2.6)

commutes. Here — denotes the natural projection and > denotes the embedding.

Lemma 2.7 ([22, Corollary 3.13]). Let L be a real simple module. Then for any simple
module X, we have
(LVX)VIL~X, 27'LV(XVL)~X
LV(XV9L)y~X, (27'LVX)VL~X.
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Lemma 2.8 ([22, Corollary 3.14]). Let X, Y and L be simple modules in 4. Suppose
that L is real.

i) X~LVY ifandonlyif XVIL ~Y,
(i) X ~Y V Lifandonlyif (2 'L)VX ~ Y.
In the following theorem, we refer to [25] for the notion of good modules. We only
note that the fundamental module V(w;) is a good module.
Theorem 2.9 ([1,4,22,25]).

(i) For good modules M and N, the zeroes of dy n(z) belong to C[[q"/™]]q"/™ for
somem € L.

(i1) For simple modules M and N such that one of them is real, My and Ny strongly
commute if and only if dyr,n (2)dn,m(1/2) does not vanish at z = y /x.

(iii) Let My be a good module with a dominant extremal vector uy of weight Ay, and
ar € k™ for k = 1,...,t. Assume that aj/a; is not a zero of dy; m; (z) for any
1 <i < j <t. Then the following statements hold:

@ M1)a, ® -+ ® (M;)g, is generated by u; @ -+ @ u;.

(b) The head of (M1)a, ® -+ ® (M})g, is simple.

(c) Any non-zero submodule of (M;)q, ® -+ ® (M1)a, contains the vector u; @
cee ® uj.

(d) The socle of (M;)a, ® -+ @ (M1)q, is simple.

(e) Letr: (Ml)al R ® (Mt)az - (Ml‘)at - (Ml)al be r(Ml)al
[Ti<j<k< r(Mj)aj (Mi)ay” Then the image of r is simple and it coincides with
the head of (M1)g, ® -+ Q@ (M;)q, and with the socle of (M) g, @ -+ & (M1)4,.

(iv) For any simple module M € Gy, there exists a finite sequence { (i, ax)},_, in o(g)
(see (2.7) below) such that M has ZZ: | Wi, as a dominant extremal weight and it
is isomorphic to a simple subquotient of V(wi,)a, ® --- ® V(w,)a,. Moreover, the
sequence {(ix. ax)},_, is unique up to a permutation.

We call Y % _ (ix, ax) € P := Z®7® the affine highest weight of M.

2.5. Hernandez—Leclerc categories
Fori € Iy, let m; be a positive integer such that
Wr; N (; + Z6) = ny + Zm; 4,

where 7; is an element of P such that cl(7r;) = @;. Note that m; = (o, «;)/2 when g is
the dual of an untwisted affine algebra, and m; = 1 otherwise. Then V(w;)x >~ V(w;),
if and only if x™i = y™i for x, y € k™ [I, Section 1.3]. We define

o(g) := Io x K /~, 2.7)
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where the equivalence relation ~ is given by
(i.x)~(J,y) = V(wi)x =~ V(wj)y < i = jand x™ = y"™.

We denote by [(i, a)] the equivalence class of (i, a) in o(g). When no confusion
can arise, we simply write (i, a) for the equivalence class [(i, a)]. For (i, x), (j,y) €
o(g), we draw d arrows from (i, x) to (J, y), where d is the order of the zero of
Av(w;) . vw;)(Zv(w;)/ 2v(w;) & Zv(w;) [ Zv(w;) = ¥/ x. Thus, 0 (g) has a quiver structure.

We choose a connected component o¢(g) of o(g). Since a connected component of
o(g) is unique up to a spectral parameter shift, og(g) is uniquely determined up to a
quiver isomorphism. We define %é) to be the smallest full subcategory of @ that

(a) contains V(w;), for all (i, x) € gp(g),
(b) is stable by taking subquotients, extensions and tensor products.

For symmetric affine types, this category was introduced in [15]. Note that every simple
module in € is isomorphic to a tensor product of certain spectral parameter shifts of
some simple modules in %é) [15, Section 3.7].

2.6. Invariants related to R-matrices
Let us recall the new invariants introduced in [27]. We set
_ ( 1)" ~n(n—1)/2
9(2) —1‘[(1— s )—Z " e K[[2]].
¢ [Ti=1 (1= 5%)

where p* 1= (—1){P"8)gle-P) and § = (p*)? = ¢}, We consider the subgroup & of
k((z))* given by

cek*, meZ
G :=1cz™ Na ’ ’ .
{CZ lE_kIX vlaz) Na € Z vanishes for all but finitely many a’s }
a
For a subset S of Z, let p$ :={p* | k € §}. We define the group homomorphisms

Deg:§ —7Z and Deg™: ¢ — Z

by
Deg(fz)= Y fla— Y. Na and Deg®(f() = Y  7a
aeﬁZSO acpZ>0 aepZ
for f(z) = ez [[exx p(az)@ € §.
Note that
Deg(f(z)) = 2zero,—1 f(z) for f(z) ek(z)* C g (2.8)

(see [27, Lemma 3.4]).
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Definition 2.10. For non-zero Ué (g)-modules M and N such that R}‘Vrl‘igvz is rationally
renormalizable, we define

A(M,N) :=Deg(cm,n(2)),
AP (M, N) :=Deg™(cp.n(2)),
2(M,N) = 3(A(M, N) + A(N, M)).
Note that A(M, N) = A°°(M, N) mod 2.
Proposition 2.11 ([27, Lemma 3.7, 3.8 and Corollary 3.23]). Let M, N be simple mod-
ules in €.
(i) A®°(M,N) = —Deg™(am,n(2)).
(i) A®(M,N) = A>®(N,M).
(iii) A®(M,N) = —-A®(DM,N) = —-A®°(M,ZN).
(iv) In particular, A°(M,N) = A (M, DN).
Proposition 2.12 ([27, Lemma 3.7 and Proposition 3.18]). Let M, N be simple modules
in 6g.
(i) AM,N)=A(N,9M) = A(Z7'N, M).

(i) In particular,
AM,N) = A(ZM,2N) =AN2 M, Z27'N).

Proposition 2.13 ([27, Proposition 3.11]). Let M, N and L be non-zero modules in 6y,
and let S be a non-zero subquotient of M @ N.

: univ univ . . univ = o
(i) Assume that R M.L. and R NI, are rationally renormalizable. Then R S\, is ratio

nally renormalizable and
AS, L) < AM,L)+ A(N,L) and A®(S,L)=A®(M,L)+ A°°(N,L).

(i) Assume that R}Jni}l’lz and Rzmj‘(,z are rationally renormalizable. Then Rzmgz is ratio-
nally renormalizable and

A(L,S) < A(L,M)+ A(L,N) and A®(L,S)=A®(L,M)+ A®(L,N).

Proposition 2.14 ([27, Proposition 3.16]). Let M and N be simple modules in €.

(i) 2(M, N) = zero,=1(dm,n (2)dn,m (z71)),

(i) 9(M,N) =d(N, M).

In particular, Y(M, N) € Zs>o.

Corollary 2.15 ([27, Corollaries 3.17 and 3.20]). Let M and N be simple modules in €.

(i) Suppose that M or N is real. Then M and N strongly commute if and only if
o(M,N) =0.
(ii) In particular, if M is real, then A(M, M) = 0.
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Proposition 2.16 (i, ii) below was proved in [27, Proposition 3.22], and Proposition
2.16 (ii1) is new. We give the whole proof of Proposition 2.16 for the reader’s convenience.

Proposition 2.16. For simple modules M and N in €, we have the following:

(i) AMM,N) =Y g (—DFHE<O (A PhNY = 3, L, (~1)kHE=0 59k M, N),
(i) AR(M,N) =Y ycz(—=D)F (M, Z¥N),
(ili) zero—1 cm N (2) = Y50 o(=D* 0 (M, Z*N).

Proof. We write cp,n (2) = [[,ex ¢(az)™ mod k[z*1]X. Then

eMN(2) = T[]0 —azm,

CMN(pZ) aek>
which yields
N5—k = Z€r0,_ 5k cuN () = zero,— M
? =P\ emn(P2) 2=l e (PFHIZ)

( CM.N 5 (2) ) ( AM.N 1 (Z)dNﬁk,M(Z_l) )
= zerog—q | —2—— Ze10;—1

CM.N i (P2) d@—‘M,NEk (Z)dNﬁk,@—‘M(Z_l)

- D(M, Nzi) —2(27"M,Nyi) = (M, P NY —v(M, 22X+ N),

where () follows from [27, Lemma 3.15] and () from Proposition 2.14. Therefore,

AM N) = (=150 =3 (=D ED50

keZ keZ

= Z(—l)g(kd))(b(M, @2kN) —o(M, @Zk_HN))
keZ

— Z(_l)k+5(k<0) b(M, @kN),
keZ

which implies the first assertion (i). Similarly, we obtain (ii):

A®(M,N) = Z Nk = Z(D(M, _@_2kN) — (M, .@_2k+1N))

keZ keZ
=Y (=Dko (M. ZFN).
keZ
Finally,
oo 0o
zero;— cpy,N (2) = Z = Z(b(M QZkN) — (M, @2k+1N))

Z (=D* (M, ZFN),

which gives (iii). [
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Proposition 2.17 ([27, Corollary 4.12]). Let L be a real simple module, and M a simple
module. Assume that (L, M) > 0. Then

o(L,S) <d(L,M)
for any simple subquotient S of L @ M and also for any simple subquotient S of M ® L.

The assumption in the following definition is slightly weaker than the one in [27,
Definition 4.14]. Under this weak assumption, the statements as in [27, Lemma 4.15—
4.18] can be proved in the same manner.

Definition 2.18. Let L4, ..., L, be simple modules that are all real except possibly
one. The sequence (L1,..., L,) is called a normal sequence if the composition of the
R-matrices
L I P l_[ TpiL

1<i<j<r

=, ooy, omery, g )olry, pooor, )

Li®L,® QL > L, ®---®Ly,® L,
does not vanish.

Lemma 2.19 ([27, Lemma 4.15]). Let (L1, ..., L;) be a normal sequence of simple
modules that are all real except possibly one. Then Im(r, I ) is simple and it coincides
with the head of L1 ® -+- ® L, and with the socle of L, ® --- ® Lj.

Lemma 2.20 ([27, Lemma 4.16]). Let Ly, ..., L, be simple modules that are all real
except possibly one.
1) If (Ly,...,Ly) is normal, then
(@ (La,...,Ly)and (Ly,...,Ly—1) are normal,
(b) A(L1,hd(Ly ® - ® Ly)) = Y7, A(L1, Lj),
AMd(L1 ® - ® Ly—1), Ly) = Y524 AL Ly).
(i) If Ly isreal, (La,..., L) is normal and

A(L1hd(Ly ® -+ ® Lp)) = Y A(L1. L)),

j=2
then (Ly, ..., L) is normal.
(iii) If Ly isreal, (Ly,...,Ly—1) is normal and
r—1
Ad(Ly ® -+ ® Ly—1), Ly) = ) A(L;, Ly),
j=1

then (Lq,..., L) is normal.
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Lemma 2.21 ([27, Lemmas 4.3 and 4.17]). Let L, M, N be simple modules that are all
real except possibly one. If one of the following conditions holds:

(@ (L,M) =0and L is real,
(b) (M, N) =0and N is real,
() »(L,27'N) =9%(2L,N)=0and L or N is real,
then (L, M, N) is a normal sequence, i.e.,
AL, MVN)=AL,M)+A(L,N), A(LVM,N)=A(L,N)+ A(M,N).
Lemma 2.22 ([27, Corollary 4.18]). Let L, M, N be simple modules. Assume that L is

real and one of M and N is real. Then (L, M, N) is a normal sequence if and only if
(M, N, 2L) is a normal sequence.

In [27, Corollary 4.18], a stronger condition is assumed, but the same proof still works
without change.

Lemma 2.23. Let Ly, ..., L, be simple modules that are all real except possibly one.
Suppose that the sequence (L1, ..., L) is normal. For any m € Z, we have

2"hd(L1 ® -+ ® L)) ~hd(9"L, ® ---Q 2" L,).

Proof. It suffices to handle the cases m = 1. We assume that m = 1. Since the sequence
(9L4,...,2L,) is normal, by Lemma 2.19 we have

ZMhd(L1 ®---® L)) ~soc(ZL, ®--- Q@ YL1) ~hd(YPL1 ®--- Q@ ZL,).
The case m = —1 can be proved in the same manner. ]

Lemma 2.24. Let L, M, N be simple modules. Assume that L is real and one of M
and N is real. Then (L, M V N) =L, M) +d(L, N) if and only if (L, M, N) and
(M, N, L) are normal sequences.

Proof. By the assumption, we have
2(b(L,M) +o(L,N)—o(L, MV N)) = ((A(L,M) + AL, N)—A(L, MV N))
+ (A(M, L)+ A(N,L)— A(M V N, L)).

Since A(L,M) + A(L,N) — A(L,M V N)yand A(M,L) + A(N,L) —A(M VN, L)
are non-negative by Proposition 2.13, we have

AL, MV N)=A(L,M)+A(L,N) and AMVN,L)=AM,L)+ AN, L)

if and only if (L, M V N) = (L, M) + d(L, N). Then the assertion follows from
Lemma 2.20. u

Corollary 2.25. Let L and M be real simple modules and X a simple module.
() Ifo (L. M) =2(27'L,M) =0, thend>(L,M V X) = (L, X).
(i) If (L, M) =>(ZYL, M) =0, thend(L,X VM) =>2L,X).
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Proof. (i) The triples (L, M, X) and (M, X, L) are normal by Lemma 2.21, and hence
o(L, MV X)=>2L,M)+oL,X)=>0(L, X) by the preceding lemma.
(ii) can be proved similarly. |

The following lemma can be proved similarly to [24, Proposition 3.2.17], and we do
not repeat the proof here.

Lemma 2.26. Let M and N be simple modules, and assume that one of them is real. If
d(M,N) =1, then M ® N has length 2 and we have an exact sequence

O>NVM ->MN-—>MVN —O0.

The following lemma gives a criterion for a simple module to be real.

Lemma 2.27. Let X be a simple module such that (X, X) = 0and X ® X has a simple
head. Then X is real.

Proof. Sinced(X, X) =0, we have Ry"y o Ry" y = f(z)id forsome f(z) € k(z) which
is invertible at z = 1. Thus r;Z(,X € k* id. By normalizing, we may assume that r?(,x =id.
Then

XX = Ker(rX,X —id) Ker(rX,X + id).

Since X ® X has a simple head, we conclude that Ty should be =+ id, which implies the
assertion by [22, Corollary 3.3 and Theorem 3.12]. ]

Lemma 2.28. Let M, N be real simple modules such thatd(M,N) = 1. Then M V N is
real.

Proof. 1t follows from Proposition 2.17 that
dM,MVN)<d>M,N)=1, (NNMVN)<dM,N)=1,

which implies that d(M, M V N) =»N,M VN) =0. We set X := M V N. Since
(M, X) =0(N,X) =0, wehave 0 <d(X, X) <d(M,X)+ 2N, X)=0,1ie,

(X, X) =0.
Since N is real and X ® M is simple, (X ® M) ® N has a simple head. Thus the sur-

jection
XOM)®RN > X®X

tells us that X ® X has a simple head. Then the assertion follows from Lemma 2.27. =
Lemma 2.29. Let M and N be real simple modules such that (M, N) = 1. Then
(i) M V N commutes with M and N,

(i1) for any m,n € Zxo, we have

MV N)®m ® N ®n—m) ifm<n,

ME" YV N®" ~
(M V N)®" @ M®m=) if m > p.
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Proof. (i) follows from d(M, M V N) <do(M,N)—1 =0 and (N, M V N) <
d(N,M)—1=0.

(i) We shall prove only the first isomorphism. We argue by induction on m < n. If
m = 0 the assertion is obvious. Assume that 2 > 0. Then

M®" @ N®" — M®mD @ (M V N)@ N®D
~(MVN)® MEm=1) o n®(n—1)
— (M V N)® (M V N)®m=D g yOn-m)
~ (M V N)®™ g N®O—m),

Now the assertion follows from the fact that (M V N)®" @ N®"~—) is a simple quotient
of M®™ @ N®" which has a simple head. n

Lemma 2.30. Let M and N be real simple modules such that ®(M, N) = 1. Then for any
simple module X,

(i) the simple module M V (N V X) is isomorphic to either (M V N)V X or
(NVM)V X,

(ii) the simple module (X V M)V N is isomorphic to either X V (M V N) or
XV (NVM).

Proof. Since the proof is similar, we prove only (i). Let us consider a commutative dia-
gram with an exact row:

0—NVM)@X ——MIN®X ——(MVN)® X ——0
\ l
MV (NVX)

The exactness follows from Lemma 2.26. By Lemma 2.28, M V N and N V M are real

simple modules. If f does not vanish, then we have (N VM)V X ~ M V(N V X).
If f vanishes then there exists an epimorphism (M VN)® X —» M V (N V X) and

hence M VN)VX ~M V (N V X). |

3. Root modules

In this section, we investigate properties of root modules.

Definition 3.1. A module L € % is called a root module if L is a real simple module
such that

2L, 2*L) = 8(k = +1) foranyk € Z. (3.1)
Note that for a root module L, we have
A®(L,L) = -2

by Proposition 2.16.
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The name “root module” comes from Lemma 4.15 below.

Example 3.2. Using the denominators for fundamental modules (see [31, Appendix A]
for example), one can easily prove that any fundamental module V(w;), (i € Iy, a € KX)
is a root module.

3.1. Properties of root modules
Lemma 3.3. Let L be a root module and let X be a simple module.

(i) Fork € Z, we have
W(ZFL, X) =8k =0,2) <2(Z¥L,LV X) <2(Z*L, X) + 8(k = £1).
In particular, (KL, LV X) =2(2FL, X) fork # —1,0,1,2, and

{0,1}  fork = %1,

WZ¥L, LV X)—02(Z*L,X) €
{0,—-1} fork =0,2.

Moreover,
(0@ 'L, LVX)—2(2'L, X)) + (0(L.X) —>(L,LV X))
+ (0(ZL,LV X)—2(2L,X)) + ((Z°L.X) —2(Z°L.LV X)) = 2.
(i) Fork € Z, we have
WZFL,X)—8(k =—=2,0) <2(ZFL,X VL) <2(Z*L,X) + 8k = +1).
In particular, (2¥ L, X V L) = o(2*L, X) for k # —2,—1,0, 1, and

{0,1}  fork = %1,

WZ¥L, X VL)—2(Z*L,X) e
{0,—1} fork =0,-2.

Moreover,
(0(Z272L,X) -2 *L. XV L)+ (2 'L.XVL)-2(Z 'L, X))
+ (0(L,X)—2(L,X VL)) + ((ZL,X VL) —>ZL,X)) =2.
Proof. (1) By [27, Proposition 4.2], we have
W(Z*L, LV X) <2(Z2*L.X)+2(2*L, L) =2(2*L, X) + §(k = £1).
For the same reason, it follows from X ~ (L V X) V ZL (see Lemma 2.7) that

W2*L,X)=02(2*L,(LV X)V ZL)
<o(Z2*L,LV X)+2(2*L,2L)
=2(2*L,LV X)+ 8k =0,2).
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Hence we obtain the first assertion. Since
AL, LV X)=A®(L,L)+ A®(L,X) = -2+ A®(L,X), (3.2)
it follows from (3.2) and Proposition 2.16 that
2=A®L,X)—A®(L,LVX)
=Y (=DFOZ*L.X) =2(ZFL. LV X))
keZ
=2 'L.LVX)-22 'L, X))+ (2(L.X) —>(L,L V X))
+ ((ZL,LV X)—2(2L,X)) + ((Z°L.X) —2(Z*L, LV X)),
which yields the last assertion.
(i) can be proved in the same manner using the fact that X ~ (2"'L) V(X VL). m

Lemma 3.4. Let L be a root module and let X be a simple module. Suppose that
(L, X) > 0.

Then

() o(L,LVX)=2L,X)—1and (27'L,LV X) =227 'L, X),

(i) (L, X VL)=oL,X)—1and »(ZL, X VL) =22L, X).

Proof. We shall prove only (i) since the proof of (ii) is similar.
Since d(L, X)) > 0, L does not commute with X. By Proposition 2.17, we have

o(L,LVX)<dL,X).
On the other hand, Lemma 3.3 implies d(L, X) <d(L, L V X) + 1, which implies the

first assertion.

Let us show the second equation in (i). By Lemma 3.3, we have 22 'L, LVX)=
227 'L, X)ord(27 'L, X) + 1. If

227 'L,LVX)=22 'L, X)+1,
then Lemma 2.24 says that (27'L, L, X) is a normal sequence, and hence (L, X, L) is
also a normal sequence by Lemma 2.22, which implies that
LVX~XVL.

But this contradicts (L, X) > 0, and therefore 9(2 'L, L V X) =2(27 'L, X). |

Lemma 3.5. Let L be a root module and X a simple module.
(i) Assume one of the following conditions:

(@ (9L,LV X) >0,

(b) (ZL,X) >0,

(c) 2(2*L,X) = 0.

Then®(2L,LV X) =2(2L,X) + 1.
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(ii) Assume one of the following conditions:

(@ (2 'L,XVL)>0,

(®) 2(271L, X) >0,

() ¥(272L,X) =0.

Then®(2 'L, XV L) =22 'L, X)+ 1.
Proof. We shall only prove (i) since the proof of (ii) is similar.

(a) Assume that (2L, LV X) > 0. Setting Y = LV X, wehave X ~Y V ZL.
Hence Lemma 3.4 (ii) implies 2(ZL,Y V 2L) =2(ZL,Y) — 1.

(b)) If2(ZL,X) > 0,thend(ZL, LV X) >2(ZL, X) > 0by Lemma 3.3.

(c) Finally, assume that 2(22L,X) =0.Ifo(L, X) = 0, then

W(ZL,LV X)=%ZL,L) +2(Z2L,X) =2(2L,X) + 1.
Suppose that (L, X) > 0. Since 8(2?L, X) = 0 and 2(2%L, L) = 0, we have
2(2*L,LV X) =0. (3.3)

Moreover, Lemma 3.4 tells us that

D(L,LVX)=2L,X)—1 and (2 'L, LVX)=02 'L,X). (3.4)
By Lemma 3.3, (3.3) and (3.4), we have

2=02Z 'L,LVX)-2(2 'L, X))+ (®(L,X)—2(L,LV X))
+ ((ZL.LV X) —d(ZL, X)) + (0(Z*L,X) —2(Z*L,L V X))
=14 ((ZL,LV X)—2ZL, X)),

which yields the desired result. ]

Lemma 3.6. Let L be a root module, X a simple module, and k € Zxy.
(1) Suppose that one of the following conditions is true:
(a) (2L, L® V X) >k,
(b) 2(Z?L.X) = 0.
Thenv(2L, L® V X) =2(2L,X) + k.
(ii) Suppose that one of the following is true:
(a) 2(27'L, X V L®) > [,
(b) 2(Z72L.X)=0.
Then® (27 'L, X V L®*) =2(27'L, X) + k.

Proof. This follows from the preceding lemma by induction on k. Note that we have
2(2%L, L% V X) = 0as long as d(22L, X) = 0. "
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Proposition 3.7. Let L be a root module and X a simple module. If (L, X) # 1, then
(L'V X)V L is isomorphicto LV (X V L).

Proof. Ifd(L, X) = 0, then this is obvious. Hence we may assume that d(L, X) > 2.
SetY := (L V X)V L. Then

LVX~>~2'LVY and X ~(27'LVY)V L.

Lemma 3.4 says thatd(L, L V X) =d(L,X)—1>0andd(L,Y)=0dL,LV X)—1.
Hence
DL, Z7'LVY)=0(L,Y)+1=0(L,2'L) +o(L,Y).

Then Lemma 2.24 implies that (L, 27'L,Y) is a normal sequence, and (27'L,Y,2L)
is also a normal sequence by Lemma 2.22. Hence

(27'LVY)VPL~2 'LV (Y VZL).

Since X ~ 27'L V(Y VZL),weobtainY ~ LV (X VL). ]

3.2. Properties of pairs of root modules
Let L and L’ be root modules. Throughout this subsection, we assume that
2(2*L, L") =8k =0) fork € Z. (3.5)
Note that, by Proposition 2.16,
AL, L)y=A®L,L)=1.
Lemma 3.8. The simple module L V L' is a root module.

Proof. Set L” := L V L’. By Lemma 2.28, L"” is real.

It is obvious that 0(ZX L, L") = 2(Z¥ L', L") = 0 for k # 0, £1. On the other hand,
Lemma 3.4 implies that o(L, L") = d(L’, L") = 0. Hence 5(2¥ L", L") = 0 for k # +1.
Now, we have

A®L", L")y = A®(L,L) + 2A®(L, L") + A®(L', L") = (=2) + 2 + (-2) = -2.
Then Proposition 2.16 implies that

I, Z(_l)k b(@kL”, L//) — —b(@L//, L//) —b(@_lL//, LN).
keZ

Since d(ZL", L") =2(2~'L", L"), we obtain 0(Z*T'L", L") = 1. n
Lemma 3.9. We have

WZKL.LVL)=68(k=1) and ™(Z*L.L'VL)=68k=—1).
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Proof. Since(ZKL, LV L) <v(Z¥L,L) +v(2*L,L"), wehave d(ZXL,LV L) =0
for k # —1,0, 1. It follows from Lemma 3.4 that
(L, LVL)=2L,L')y—1=0,
W2 'L,LVL)y=v2 'L,L')y=0.

On the other hand, since
2(Z2L,LVL)<vZL,L)+%2L,L") =1,

we have d(ZL,L V L) € {0, 1}.
I£5(2L, LV L") = 0, then

L' ~(LVL)YV9L~(LVL)® 2L,
which implies that
0=0(2’L,L') =2(2°L,(LVL)® ZL) =5(2°L,LV L") +2(2*L,2L) > 1.

This is a contradiction, so (2L, L V L) = 1. Thus we obtained the first equality.
The second equality can be proved similarly. ]
Lemma 3.10. Let X be a simple module.
(1) If kK # 0,1, then
WZFL, L'V X) =02(ZFL, X).
As for k = 0 and 1, one and only one of the following two statements is true:
(@ (L, L'VX)=dL,X)and > (2L,L'V X) =d2(2L,X) -1,
(b) d(L,L'VX)=2L,X)+ land (2L, L'V X)=22L, X).
(i) Ifk # —1,0, then
(2L, X VL) =2%FL, X).
As for k = —1 and 0, one and only one of the following two statements is true:
@ (L, XVL)=dL,X)and (2 'L, XVL)=22 'L, X) -1,
) 2(L,XVL)y=oL,X)+1and>(2 'L, XV L) =2 'L, X).

Proof. (i) By [27, Proposition 4.2], we have
W(ZFL, L'V X) <o(ZFL, X) + 8k = 0),
W(Z*L,X) <o (2L, L'V X) + 8k = 1),

where the second inequality follows from X ~ (L’ V X) V ZL’. The above inequalities
give the first assertion and

o(L,L'VX)=0o(L,X)ord(L,X)+1,

3.6
2ZL,L'VX)=0(ZL,X)ord(ZL,X) — 1. -0
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By the assumption (3.5), we have A®°(L, L") = 1, which implies

1=A®(L,L'VX)=A®(L.X) =Y (-D*((Z*L. L'V X) —2(Z*L. X))
keZ
= ((L.L'VX)—=2(L,X))+ ((ZL.X)—2(2L,L'V X)).

Then (3.6) implies the second assertion.
(i) can be proved similarly by using X ~ 271L'V (X V L). [

Proposition 3.11. Let X be a simple module.
@) If (2L, X) =0, then

(L,L'VX)=02L,X)+1, (2L, L'VX)=0.
(i) If (27 'L, X) = 0, then
DL, XVL)y=o(L,X)+1, 22 'L, XVL)=0.

Proof. (i) Since d(2L,L'V X) <d(ZL,L") +2(ZL,X) =0, Lemma 3.10 tells us that
(L, L'VX)=2L,X)+ 1.

(i1) can be proved in the same manner as above. ]

Corollary 3.12. Let n € Z>q and let X be a simple module.
@) If (ZL,X) =0, then

oL, L'®"VX)=0(L,X)+n and ®2L,L'®*"VX)=0.

(i) Ifo(271L, X) = 0, then

D(L,XVL®)y=0L,X)+n and (27 'L,XVL®)=0.
Proof. These follow easily from Proposition 3.11 by induction on n. ]
Proposition 3.13. Let m € Z>q and let Y be a simple module. Set

X:=L1L%"VY.

Suppose that

°(L,X)=0, »(ZL.Y)=0, »(2'L,Y)=0 fort=12.

Then
(i) »(9L,X) =m,

(ii) for any integer k such that 0 < k < m, we have

(L, L'®*VX)=0, 2(ZL,L'®VX)=m—k,
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(iii) for any integer k > m, we have
(L, L'V X)=k —m, (2L, L'®VX)=o0.
Proof. (i) As?(2'L,Y) = 0fort = 1,2, we have
2(ZL,X)=2(2L,L®"VY)=22L,Y)+m=m
by Lemma 3.6 (i).
(i) We see that
e L'V L commutes with L, L’ and 2L by Lemma 3.9,
(2L, X) = 0because D(ZL',Y) =0and 2(ZL',L) = 0,
the triple (L'®%, A, X) is normal because d(ZL’, X) = 0,

the triple (L'®%, B, L) is normal because (ZL’, L) = 0,

the triples (L'®%, A,Y), (L®, A,Y) and ((L' V L)®%, A, Y) are normal because
2(Z2L',Y)=0andd?(Z2L,Y) =0,

Here A is a real simple module, B is a simple module, and a is an arbitrary non-negative

integer. We will use these facts freely in the subsequent arguments.
For any k such that 0 < k < m, we have

L®* VX ~L®vV (" VY)~ (L'®*VL®" VY
~((L'VLP*@L®Mm Ry vy ~ (LR g L'V L)) VY
~ L8R v (L' VL)®* VYY),

where the third isomorphism follows from Lemma 2.29. Thus, for 1 < k < m,
LVL®*VX)~LV(LE™P gL VL)®H)VY)
~ (LB D @ (L'V L)®*) VY
~ (L'VL)V (LB kD) & (' v [)®*-D) v y)
~(L'VL)VL®* Vv X)),
and
(L®*VX)VL~L® V(X®L)~L® V(L®X)
~(LP*VL) VX ~((L'VL)®L®*D)vx
~(L'VL)yV@L®kVVx)
This tells us that
LV L% VX))~ (L®*VX)VL,
which implies that o(L, L'®f V X) = 0.
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On the other hand, since 2(Z?L,Y) = 0 and d(Z2?L, L' V L) = 0, we have
2(22L,(L'VL)®* VY)=0.
Then, Lemma 3.6 implies that
2L, L'®* V X) =o(2L, LB PV (L'V L)®* VY))
=0(2L,(L'VL®VY)+m—k =m—k,

where the last equality follows from 2(ZL, L'V L) = 0andd>(2L,Y) = 0.

(iii) By (ii), we have

(L, L'®"V X)=0, o(2L,L'®"V X)=0.
Since
L'® v x ~ ®k—m g (/&M y x),

we have the assertion by Corollary 3.12 (i). [ ]

4. Quantum affine Schur—Weyl duality

Let O := {L;}ies C % be a family of simple modules of ;. The family D is called a
duality datum associated with a generalized Cartan matrix C = (¢;,;);,jes of symmetric
type if it satisfies the following:

(a) foreachi € J, L; is a real simple module,
(b) foranyi, j € J suchthati # j,o(L;, Lj) = —¢; ;.

Then one can construct a monoidal functor
Fo: Rc-gmod — €4

using the duality datum D [21,35].

The functor Fg is called a quantum affine Schur-Weyl duality functor or briefly a
duality functor.

In Section 4.2 below, we slightly modify the definition of quantum affine Schur—Weyl
duality functor in order that it commutes with affinization.

4.1. Affinizations

4.1.1. Pro-objects. Let k be a base field and let € be an essentially small k-abelian cate-
gory. Let Pro(€) be the category of pro-objects of € (see [36] for details). One can show
that

Pro(€) ~ {left exact k-linear functors from € to k-Mod}Op P

by means of the functor

lg_n M; >(€>5X — llr_r)lHomg(M,-,X)).

4
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Here, k-Mod is the category of vector spaces over k, and “l(iLn” denotes the pro-lim (see
[36, Section 2.6 and Proposition 6.1.7] for notations and details). Then, Pro(€) is a k-
abelian category which admits small projective limits. If no confusion can arise, we regard
€ as a full subcategory of Pro(€), which is stable by extensions and subquotients. Any
functor F:€ — €’ extends to PF: Pro(€) — Pro(€’) which commutes with small filtrant
projective limits:
PF (“lim” M,~> ~ “lim” F(M;).
< 5

4.1.2. Affinization in quiver Hecke algebra case. Let R be a symmetric quiver Hecke
algebra. Note that
R(B)-gMod — Pro(R(B)-gmod).

Recall that R()-gMod is the category of graded R(f)-modules. Let
Pro(R) := @ Pro(R(B)-gmod).
BeqT

which is a monoidal category. Let z be an indeterminate of homogeneous degree 2, and
we set

R(B)™ :=K[z] ® 1:R(P).

which has the graded R(f)-bimodule structure. Here 1, R(f) is a free right R(f)-module
of rank 1 and the left module structure is given by

e(W)1; =1,e(v), xpl,=1;x3+2z1,, wl, =1;1%.
Hence we have
1xr = (xp — 2)1;. 4.1

For X € R(f)-gmod, the affinization X of X is isomorphic to R(8)*T ® gy X. Since
X is not in R(B)-gmod, we set

XAff = “1}_111” Xaff/ZmXaff c PrO(R(,B)-ngd)
m
Note that
XA~ K[[Z]] ® X
k

as an object of Pro(k-mod) forgetting the action of R(f). Here we regard K[[z]] as the
object of Pro(k-mod):
73 PR L) m
1(1;;11 K[z] / k[z]z"™.

Similarly we set

R(BM = “lim” R(B)™/R(B)™ (2. x1.... . xmep))™
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which is an object of Pro(R(8)-gmod) with a right R(f)-action. Here, (z, X1, ..., Xp) is
the ideal of k[z, x1, ..., X, ] generated by z, x1, ..., X». Then

MAT ~ R(B) @ppy M forany M € R(B)-gmod.
For M, N € R-gmod, we have
MAff O NAff (M o N)Aff

where
ZM—ZIN
—_

MAffO NAff = Coker(MAff o NAff MAff o NAff).
z

We remark that, in this paper, we use the language of pro-objects instead of the com-

pletion in [21, Section 3.1] and [12].

4.1.3. Affinization in quantum affine algebra case. Let U, é (g) be a quantum affine algebra
and let €5 be the category of finite-dimensional integrable U, é (g)-modules. We embed %
into Pro(%y). Note that Pro(%) is a k-abelian monoidal category. For M € %, let M
be the affinization of M. Recall that

MY ~ K[z ® M
with the action
ei(a ®@v) —ZM a ®ejv fora ek[z Yandv e M.
Here we use z to distinguish from z in the quiver Hecke algebra setting. We set

MAff = “lirll” Maff/(zM _ l)mMaff e PI'O(%Q).
m

Note that there is a canonical algebra homomorphism
k[[zp — 1]] — EndPro(%”g)(MAff)'
For M, N € 64, we have
MAff ® NAff ~ (M ® N)Aff
where
MAT @ NAFF . — Coker(MAff @ NAI ZMTEN  prAff o NAff)
z
For simple modules M, N in €, we can define the renormalized R-matrix

R}"SJH’N(ZN/ZM): MAff ® NAff N NAff ® MAff.

4.2. Quantum affine Schur—Weyl duality functor

We now consider a duality datum D = {L; };cs associated with a symmetric generalized
Cartan matrix C = (¢; j)i,jes. Fori, j € J, we choose ¢; ; (x) € k[[x]] such that

¢ j(x)cji(=x)=1 and ¢;;(0)=1.
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We set
Pij(u, ) := i (u — ) - (u — v)%-7,
where d;,j 1= zero;=1d ;1 (2).
Let Q7 be the positive root lattice associated with C. For 8 € Qf with ¢ = ht(8) and
v=(vy,...,vp) € JB we set

L= Mg g AT T(8) = @) T € Pro(%y).
veJB
The algebra R(f) acts L(B) from the right as follows:

(a) e(v) is the projection to L,
(b) xx € R(B) acts by logzy,, ,wherelogzy, € k[[Zka —1]] € End(L,),
(¢) e(v)tr (1 <k <) actson L, by

III(.),rkn:L,)},C_~_l © Pop v (XK, Xk+1) if v # vit1,
(xx — Xk+1)_1(RIﬁi;“fLVk+l 0 Py v (X, Xgy1) —idg))  if vg = veys.

Note that we used z — 1 instead of logz in [21]. We have also relaxed the condition
on ¢; ; (u). We have changed the definition so as to have Theorem 4.2 below.
Then L(B) gives the monoidal functor

5%1): R-gmod — Pro(%y)

defined by

FoM)=T1(8) ® M for M € R(B)-gmod.
R(B)
It extends to

Fo: Pro(R) — Pro(63)
such that 32}0 commutes with filtrant projective limits.
The following proposition can be proved in a similar manner to [21].

Proposition 4.1. \??1) is a monoidal functor and it induces a monoidal functor Fo:
R-gmod — %j.

Then the following theorem tells us that the functor F  preserves affinizations.
Theorem 4.2. Functorially in M € R-gmod, we have an isomorphism
Fp(MAT) = (Fo (M),
Moreover,

(i) the action of zpr on the left term coincides with 10g Zg, (ar) on the right term,

(ii) for M, N € R-gmod, the following diagram commutes:

Fo(MATo NATY = T (MAT) @ Fp (NAT) 55 (Fp (M)A ® (Fp(N))AT

| |

F((M o N)My —= (Fp(M o N)M —"— (Fp(M) ® Fp(N))A"
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Proof. Letus show (i). Since 1 (R(8)A™) @ r(gy M ~ Fo(MA™) for any M € R-gmod,
it is enough to show that

Fo(R(B)MT) =~ (Fo (R(B))AT

compatible with the right actions of R(f).
Set £ := ht(p) and x :=log zL,, € End(L(B)) fork = 1,...,£. Then we have L, =
K[[x1,...,x¢]] ® L,. Here we set

Lv:Lv1®"‘®Lve, L(,B): @ Ly.
veJh

Then e; acts on tv by

¢
Z b1.0%k (). 4.2)
k=1

Here e” is the exponential function and (e; ); denotes the action on L, given by

id®---Ridoe @K '® - ® K.
~—_—————— —_—
k — 1 times £ — k times

Then we have:

() Fo(R(B)AT) ~K[[z, x1, ..., x¢]] ® L(B). Here e; acts by (4.2). The right action of
Xr € R(B) is given by x; — z by (4.1).

(ii) (3%@(R(,3)))Aff ~ K[[z, x1,...,x¢]] ® L(B). Here ¢; acts by

4 4
edi07 Y b0k (g), = 3 b0t (g, (4.3)
k=1 k=1

The right action of x; € R(f) is given by xy.

Hence, the morphism R R )
f:Fp RPN - (Fp(R(B))M

givenbya(z,x) @ vi>a(z,x1 + z,...,x¢ + z) @ v (witha(z,x) €K[[z, x1,...,x¢]] and
v € L(B)) gives an isomorphism in Pro(%y) and the right action of x; € R(f8) commutes
with it. The compatibility of the right action of t; € R(f) easily follows from the fact
that P; j(u, v) is a function of u — v.

The second assertion (ii) is immediate. [

4.3. Quantum affine Schur—Weyl duality with simply-laced Cartan matrix

Hereafter, we assume that C = (c;,j)i,jes is a simply-laced Cartan matrix of finite type.
Let R¢ be the symmetric quiver Hecke algebra associated with C. If no confusion can
arise, we simply write R for Rc.
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Let O = {L;};es be a duality datum associated with the Cartan matrix C.
Proposition 4.3 ([21]). (1) 3?@ is an exact functor and it commutes with projective
limits.
(i) Fop sends a simple module to a simple module or zero.

Lemma 4.4. Let M € R-gmod be a real simple module, and assume that ¥ (M) is
simple. Then ¥ (M) is also a real simple module.

Proof. Since Fo(M)RF (M) ~Fp(MoM)and M oM issimple, Fop(M)RFp(M)
is simple, i.e., Fgo (M) is real. |

Lemma 4.5. Let M, N € R-gmod be simple modules such that ¥ (M) and ¥ (N) are
simple modules. Assume that M or N is real.
@ 2(Fo(M), Fp(N)) <d(M,N).
(i1) The following conditions are equivalent:
(@) 2(Fo (M), Fp(N)) =d(M,N).
b) Fo(M V N) and Fo(N V M) are simple.
If these conditions hold, then
(1) Fo(ry ) # 0and Fp(ry ) #0,
2) FoM)VFp(N)~Fo(MV N)and Fo(N)V Fo(M) ~ Fo(NV M).

Proof. Set z =logz and d :=d(M, N). By the definition of (M, N), we have the fol-
lowing commutative diagram (up to a constant multiple):

z4id
Mz N N.Mz
M,oN z NoM, M, o N.

A~

Applying ¥ to the above diagram, by Proposition 4.1 and Theorem 4.2 we obtain
z4id

ren = ren
(Ryr. n)

( N M—)
FoM),® Fp(N) ——— Fp(N) ® Fp(M), ————— Fp(M), ® Fp(N).
4.4)

Since z id is non-zero, F(Ryy. ) and ¥ (RY", ) are non-zero. Note that

Homy 116, gy (U ® Vi Vo ® U) = K[z*'|REY, .
Homy, 1160 () (Uz ® V.V ® Uy) = K[z Ry,
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for any simple modules U, V' € % by [25, Proposition 9.5]. Hence

Fo(Rif. w) = 2 FORE v Fo(RYw) = 28R 5 ),
for some a,b > 0 and f(z), g(z) € K[[z]]*. Hence it follows from (4.4) that
d=a+b+2(Fo(M),Fp(N)).
Thus 2(Fp (M), Fp(N)) <d.

Moreover, d = d(Fop(M), Fp(N)) if and only if a = b = 0. Sincea = b =0 is

equivalent to Fp (r,, ) = Fo(Rjy y)|z=0 #0and Fop(r, , )= }:@(erf,?Mz)lzzo #0.
The last two conditions conditions are equivalent to Im(Fp(r,, ) ~ Fo(M V N) 20
andIm(?@(rNM))23{@(NVM)¢O. |

Lemma 4.6. Let D = {L;}ics be a duality datum associated with a simply-laced finite
Cartan matrix C. Let L, M, N be simple Rc-modules and S a simple subquotient of
M o N. Assume that (M), Fo(N) and Fo(S) are simple.

(i) Assume that Fg (rM, L) and Fgo (rN’ L) are non-zero. Then

A(Fo (M), Fo (L)) + A(Fp(N). Fo(L)) — A(Fo(S), Fo(L))
> AM, L)+ A(N, L) = A(S, L).
Equality holds if and only if ¥ (xg , ) does not vanish.

(ii) Assume that g (rL’M) and ¥ o (rL,N) are non-zero. Then
A(Fo(L). Fp(M)) + A(Fp(L). Fo(N)) — A(Fp(L), Fo(S))
> AL, M)+ A(L,N)—A(L,S).
Equality holds if and only if ¥ (rL,S) does not vanish.
Proof. Since the proof of (ii) is similar, we shall prove only (i).

As S is a simple subquotient of M o N, there exists a submodule K of M o N such
that S is a quotient of K. We consider the following commutative diagram in R-gmod:

ren
Rifon.12

(MoN)oL, ——————L,o(MoN)

I I

KolL, L,oK
l ZC R l
SolL, 5Lz L,08

for some ¢ € Z . Comparing the homogeneous degrees of morphisms in the above dia-
gram, we have

2¢ = A(M,L) + A(N,L) — A(S. L). (4.5)
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We set z = log z. Applying the duality functor 7. » to the above diagram, we obtain

Fo (RN 1)

Mo N)®L,

L,®(MQ®N)

I

l

R — =

K®L, L, K
~ _ ZC:? (Rl'el'l ) - l -
Sel, DS L I,®8

where X denotes Fop (X) for a simple Rg-module X. There exist a € Zs¢ and
f(2) € K[[z]]* such that
Fo (YY) =2 fQRTY.
Since o (rM,L) and Fp (rN,L) do not vanish, we have

Fo(Rypp.) = Eizz’ Fo(Ry'L.) = R;\SIIZZZ’

up to a multiple of k[[z]]*. The above diagram tells us that
CJV[,Z(Z)C]V,Z(Z)
(z— 1)t cz 7(2)
is a rational function in z which is regular and invertible at z = 1. Hence, by [27, Lemma
3.4], we have

(CM’Z(Z)CX,,Z(Z)) (CM,Z(Z)CIV,Z(Z)
Deg| —————— | =2-zero,— | ————
c3.z(2) c3.7(2)

Therefore, by (4.5), we conclude that

) =2(c + a).

AM, L)+ A(N, L) — A(S, L) = 2¢ = Deg(m) iy

C§,Z(Z)
=AM,L)+AN,L)—A(S,L) - 2a.
Hence
AM,L)+ A(N,L)— A(S,L) < A(M,L)+ A(N,L)— A(S, L).
Equality holds if and only if @ = 0, which is equivalent to ¥ (rS, ) # 0. |

4.4. Strong duality datum

Definition 4.7. A strong duality datum D = {L, };e is a duality datum associated with a
simply-laced finite Cartan matrix C = (c;,;)i,jes such that all L;’s are root modules and

(L, 78 (L)) = =8(k = O)ci
forany k € Z and i, j € J suchthati # j.
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In particular, we have

A(Li,Lj)Z—Cl"j for i ;éj,
A®(Li, L) = —¢;,;j foralli,j e J.
Let O = {L;}ies be a strong duality datum associated with a Cartan matrix C =

(¢i,j)i,jes of finite ADE type. Let R be the symmetric quiver Hecke algebra associated
with C. If no confusion can arise, we simply write R for Rc. We denote by

Fo: Rc-gmod — €4

the duality functor arising from . Recall that g sends simples to simples or zero.
However, if D is strong, we can say more as we see below.
Throughout this subsection, we assume that D is a strong duality datum.

Lemma 4.8. Forw € W, A e Pt andi € J, we have

—(aj, wA) if siw < w,

0 if siw > w,

&i(D(wA, A)) = {

£F(D(wA. A)) = {(()ai”\) if w > s,

otherwise,
0 if siw < w,
o(L(@),D(wA, A)) = 1 (a;, wA) if siw > wandw > s;,

(aj, wA — A) otherwise,
where D(WA, A) is the determinantial module appearing in Section 2.2.

Proof. The equality for ¢; is proved in [24, Proposition 10.2.4]. Let us show the equality
for e} If w > s;, then wA < 5; A. Hence &} (D(wA, s; A)) = 0 by the same proposition.
Since

D(wA, A) ~ D(wA, s;A) VD(s; A, A) ~ D(wA,s; A) V L(i)°@D

by [24, Theorem 10.3.1], we have &} (D(wA, A)) = (i, A).

Assume that w # s;. Then A — wA does not contain ¢;, and hence & (D(wA, A))
=0.

The equality for d follows immediately from

O(L(i), M) = &(M) + & (M) + (o;, wt(M)) (4.6)
(see [26, Corollary 3.8]). [
Theorem 4.9. Letw € W, A € P, and set

Vi (A) := Fo (D(wA, A)).
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Then Vy, (A) is simple and

b(Li, Vi (A)) =d(L (i), D(wA, A)),
(L, Vi(A)) = & (D(wA, A)),
2(22L;, Vy(A)) = 0.

Proof. First note that once we prove that V,,(A) is a simple module, we know that
2(22L;, V(A)) = 0, since 22L; commutes with all L;’s.

Since D(wA, A) o D(wA’, A’) ~ D(w(A + A’), A + A’) up to a grading shift for
any A, A € PT and w € W [26, Proposition 4.2], we may assume that A = A, for some
t € J. We may assume further that A is w-regular, that is, £(w) < £(w’) for any w’ € W
such that w’A = wA. Then, by the preceding lemma,

b(L(i). D(wA, A)) = {0 if siw < w,

(oj, wA) ifs;w > w,

—(a;, wA if s .
& (D(wA. A)) = (otj, wA) 1 Siw < w
0 if s;w > w,
if wA # A.
We shall argue by induction on £(w). If £(w) = 0, then there is nothing to prove. If
£(w) = 1, then Vi, (A) = Ly, and it is straightforward that the assertion is true.

We now assume that £(w) > 2.

Case 1: Assume that s;w < w. We set

w =siw, n:= (o, wA) € Zso.

Then A is w’-regular and w'A # A. Hence, by the induction hypothesis,
2L, Vi (M) =0, d(L;, Vi (A)) =2(L(i),D(W' A, A)) = n.
Since D(wA, A) >~ L(i)°" VD(w’A, A), we have
Vi (A) = L2 V Vyy (A) 4.7)

by Lemma 4.5. In particular, Vy, (A) is simple.
It follows from Lemma 3.4 that b(L;, V3 (A)) = 0. Moreover, 2(22L;, Vi (A)) = 0.
Applying Lemma 3.6 (i) to L = L; and X = Vv (A), we obtain

(2L, Vuw(A)) =2(ZLi, Vi (N) +n = n,
which gives the assertion.

Case 2: Assume that s;w > w. Since £(w) > 2, there exists j € J such that s;w < w.
We set

wi=sjw, n:=(aj,wA) € ZLso.
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Note that A is w’-regular and w'A # A. By (4.7), we have
Vi (A) = LE" V Vi (A).
We set Z := Vy,(A) and Z’ := V,,/(A). Hence
Z~12"VZ. (4.8)

(1) Suppose that ¢; ; = 0. Then s;w’ > w’ since s;5; = s;5;. By the induction hypoth-
esis, we have

o(Li, Vi (A)) = (i, w'A) = (sj (i), wA) = (i, wA), (DL, Vi (A)) = 0.
Since b(@k Li,L;) = Oforany k € Z, it follows from (4.8) and Corollary 2.25 that
2(2%L, Z) =0(2FL;, Z) forany k € Z.
In particular,
2Ly, Z2) =o(L, Z') = (o, wA), d(9L,Z2) =2(2L;,Z") =0.

(2) We now assume that ¢; ; = —1. Then we have two cases: s;w’ > w’ or s;w’ < w'.
Assume that s;w’ > w’. Then 9(ZL;, Z’) = 0 by the induction hypothesis. Hence, by
(4.8) and Corollary 3.12 (i), we have d(ZL;, Z) = 0 and

o(Li, Z) =2(Li, Z') +n = (i, wA) +n = (a;, w'A —nej) = (a;, wA),

where the second identity follows from the induction hypothesis.
Assume now s; w’ <w’. Letting w”:=s; w’, we have w =s;5;w” and £(w) =2+£(w").
If sjw” < w”, then £(w) = 3 + £(sjw”) and w = s;s;5;(s;w”) = s;8;5i (s;w”). This
implies that s;w < w, which contradicts the assumption of Case 2. Hence s;w” > w”,
which tells us that
(aj,siu/A) = (Olj, w”A) > 0.

Set m := (o, s;w’A) € Zs>o. Then
(aj, siw'A) = (aj, w'A +ma;) =n—m,

which says thatn —m > 0.
Set Z" := Vi~ (A). By the induction hypothesis,

oL, Z) =0, ®»(2L;,Z")=0, »(2*°L;,Z")=0.

Applying Proposition 3.13 (iii)to L :=L;, L’ :=Lj and X := Z', Y := Z" and k :=n,
we have
2(Li, Z2) =0(Li, L'V Z') =n —m,
29L,Z)=0.
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Since (a;, wA) = (o, W' A —na;) = —(a;, s;w’A) + n = n —m, we conclude that
b(Li, Z) =n—m = (i, wA),
which completes the proof. ]

Theorem 4.10. Let D = {L;}ies be a strong duality datum associated with a simply-
laced finite Cartan matrix C. Then the duality functor Fg sends simple modules to simple
modules.

Proof. Since the duality functor ¢ sends a simple module to a simple module or zero,
it suffices to show that ¥ (X) is non-zero for any simple module X € R-gmod.

Let wq be the longest element of the Weyl group W of C. Note that the category €y,
is equal to R-gmod. For i € J, we set C; := D(woA;, A;) and denote by (C;, Rc;) the
non-degenerate braider induced from R-matrices [30, Proposition 4.1]. It is proved in
[30, Section 5] that there is a localization R := R—gmod[Cl.O ~1|i € J] of R-gmod by the
braiders C;. Moreover, R is left rigid [30, Corollary 5.11]. Thus, for any simple module
X € R-gmod, there exists a module ¥ € R-gmod and A € PT such that there exists a
surjective homomorphism

Y o X — D(woA, A).

Applying the duality functor Fg to the above surjection, we have
Fo(Y) ® Fo(X) - Fp(D(woA, A)).
Since Fo (D(woA, A)) is simple by Theorem 4.9, (X ) does not vanish. |

Corollary 4.11. Let D be a strong duality datum associated with a simply-laced finite
Cartan matrix C. Then Fgo is faithful, i.e., for any non-zero morphism f in R-gmod,
Fo(f) is non-zero.

Theorem 4.12. Let D = {L;}ics be a strong duality datum associated with a simply-
laced finite Cartan matrix C = (c¢; j)i,jes. Then, for any simple modules M, N in
Rc-gmod,
(i) AMM.N) =A(Fo(M), Fp(N)),
(i) 2(M. N) =v(Fo(M). Fp(N)),
(iii)) (WtM,wtN) = —-A®(Fo(M),Fop(N)),
(iv) 2(Z*Fp(M), Fp(N)) = 0 forany k # 0, £1,
V) A(M,N) =2(2Fp(M), Fp(N)) = 2(Fp(M), 7' Fp(N)).

Proof. Set B:=—wt(M) and y := — wt(N) and write m := ht(8) and n := ht(y).

(i) We shall use induction on m + n. If m = 0 or n = 0, then the assertion is obvious.
Hence we assume that m, n > 1.

Ifm+n=2then M = L(i)and N = L(j) for some i, j € J. Since the assertion
is obvious for i = j, we assume thati # j. Since Fp(M) ~ L; and Fp(N) ~ L;, we
have

A(Li, L) =o(Li, Lj) = —ci,j = A(L@), L())).
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Suppose that m + n > 3. If m > 2, then there exist simple modules M; and M, such
that

(a) wt(My) # 0 and wt(M>) # 0,

(b) My or M, is real,

(c) M ~ MV M.

Hence, by Lemma 4.6 together with Corollary 4.11, we obtain

A(My,N) + A(M2, N) — A(M, N)
= A(Fop (M), Fo(N)) + A(Fo (M), Fp(N)) — A(Fo (M), Fo(N)).
Since A(My, N) = A(Fo(My), Fo(N)) for k = 1,2 by the induction hypothesis, we

have
AM,N) = ANFop(M), Fp(N)).

The case where n > 2 can be handled similarly.

(ii) follows immediately from (i).

(iii) There exist sequences (i1, ..., i) and (ji,..., jn) in J such that M and N
appear as quotients of L(i1) ©---0 L(iy,) and L(j1) ©--- 0 L(j,), respectively. Note that
B=—-> - ai,andy ==Y 7"_, a,. Since Fp is exact and Fp(M) and Fp(N) are
simple, ¥ (M) and Fp(N) appear as quotientsin L;; ® ---® L;,, and Lj, ® --- ® L;,,
respectively. Therefore, by [27, Proposition 3.11], we have

—A®(Fp(M), Fp(N)) == > A®(Li,. L)) = cipjy = (B.Y).

D.q p.q

(iv) follows from 2(2*(L;), L;) = 0 for any i, j and |k| > 2.

(v) By (i), (iii) and (iv), we have
AM,N) =b(Fp(M), Fp(N)) —2(Fp(M), 2Fp(N)) +2(Fp(M), 2 Fp(N)),

(B.y) =—2(Fp(M), Fp(N)) +2(Fp(M), Z7Fp(N)) +2(Fp(M), 7" Fp(N)).
Thus
AM.N) = L(AM.N) + (B.7))
=2(Fp(M), 7' Fp(N)) =2(2Fp(M), Fp(N)). "

Corollary 4.13. Let D = {L;}ies be a strong duality datum. For any i € J and any
simple module M € Rc-gmod, we have

(@) &i(M) =22 Li, Fp(M)),
(i) & (M) =227 'Li, Fp(M)).

Proof. This follows from [26, Corollary 3.8] and Theorem 4.12 (v). [
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Corollary 4.14. Let D = {L;};ics be a strong duality datum associated with a simply-
laced finite Cartan matrix C. Then the duality functor Fg induces an injective ring
homomorphism

Kg=1(Rc-gmod) — K(%g),
where K,—1(Rc-gmod) is the specialization of K(Rg-gmod) at g = 1.

Proof. Thanks to Theorem 4.10, it is enough to show that ¥ (M) 2 Fo(N) for any
non-isomorphic simple R-modules M and N. Let M and N be simple R-modules such

that
Fo(M) = Fp(N).

We set 8 := —wt(M) and y := — wt(N). We shall show M ~ N.

We first assume that F (M) = Fp(N) = 1. Then (8, ) = —A*° (M, M) = 0, which
implies 8 = 0. Hence M ~ 1. Similarly, N ~ 1.

We now assume that £ (M) ~ Fop(N) # 1. Since M £ 1, there exists i € J such
that &; (M) > 0. By Corollary 4.13,

&i(M) = AL, Fp(M)) = AL, Fp(N)) = i(N),

which tells us that &; (M) # 0 and é&;(N) # 0. Setting M’ := ¢&;(M) and N’ := &;(N),
we have
LV Fp(M') = Fp(M) =~ Fp(N) = L; VFp(N),

which implies that 5 (M’) >~ Fo(N’) by Lemma 2.8. Thus, by the standard induction
argument, we conclude that

(M) =M~ N'"=¢(N),
which yields M >~ N. u

Lemma 4.15. Let M be a real simple module in R-gmod. Then ¥ ¢ (M) is a root module
if and only if wt(M) is a root of gfin.

Proof. SetV = Fg(M). Then2(Z2¥V, V) = 0 for k # +1. Hence
(Wt(M), wt(M)) = —A®(V, V) =20(2V, V).
Therefore

V isaroot module < 2(2V,V) =1 (wt(M),wt(M)) =2 < wt(M) isaroot. m

5. Strong duality datum and affine cuspidal modules

5.1. Unmixed pairs

The notion of an unmixed pair of modules over quiver Hecke algebras has an analogue
for modules over quantum affine algebras.
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Definition 5.1. Let (M, N) be an ordered pair of simple modules in €;. We call it
unmixed if

2(PM,N) =0,
and strongly unmixed if
b(@kM,N) =0 foranyk € Z>;.
Lemma 5.2. Let M and N be simple modules in 6. If (M, N) is strongly unmixed, then
A®(M,N) = A(M,N).
Proof. It follows from Definition 5.1 and Proposition 2.16 that
AM.N) =D (=DFHE0y G M N) = Y (=D 2 (Z*M.N) = A°(M.N). =
keZ keZ

Lemma 5.3. Let Ly, ..., L, be real simple modules in ¢4 for r € Z~1. If (Lq, Lp) is
unmixed for any a < b, then (L1, ..., L,) is normal.

Proof. We argue by induction on r. Since the assertion is obvious when r = 2, we
assume that r > 2. By the induction hypothesis, (L1, ..., L,—1) is normal. Set X =
hd(L, ® -+ ® Ly—1). Then Lemma 2.20 implies that

r—1

ALy, X) =) A(L1, Ly).
k=2

Since (L1, L;) is unmixed, Lemma 2.21 implies that (L, X, L,) is normal. Hence
AL, hd(L, ® - -® L)) =A(L1,XVL,)=A(L1,X)+ A(Ly, L,),

which implies that

A(L1.hd(Ly ® - ® Lp)) = Y A(Ly, Lg).
k=2

Since (L», ..., L;) is normal, Lemma 2.20 implies that (Lq, ..., L,) is normal. [

5.2. Affine cuspidal modules

Let D = {L;}ics be a strong duality datum in ‘fg associated with a simply-laced finite
Cartan matrix C = (c; ;)i,jes. Let Rc be the symmetric quiver Hecke algebra associated
with C.

We define €p to be the smallest full subcategory of %”é) which
(a) contains Fg (L) for any simple Rg-module L,

(b) is stable by taking subquotients, extensions, and tensor products.
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Since d(2* L;, L;) =0foranyi, j € J and k > 2, it follows from Theorem 4.12 that
b(@kM, N) =0 for any simple modules M, N € €p and k > 2. 5.1)

For k € Z, let 2% (€p) be the full subcategory of ‘Ké’ whose objects are 2% M for all
M e 651).

Proposition 5.4. Let k € Z with k # 0. If a simple module M is in €p N Z*(€p), then
M ~1.

Proof. We may assume k > 0 without loss of generality. Let M be a simple module in
Cp N P%(€p). By Theorem 4.10, there exists a simple module V € Rg-gmod such that
Fo (V) ~ M. By Corollary 4.13 and Theorem 4.12 (iv), for any i € J we have

(V) =227 'L, M) =2(L;, M) = 0.
Thus V' should be in Rc(0)-gmod, which says that V' ~ 1. |

Lemma 5.5. Let M, N be simple modules in Rg-gmod. If (M, N) is unmixed, then
(Fo(M), Fp(N)) is strongly unmixed.

Proof. By (5.1), we know that 2(Z2X Fo (M), Fp(N)) = 0 for k > 2. It follows from
[26, Proposition 2.12] that A(M, N) = —(wt(M), wt(N)), i.e., A(M, N) = 0. Thus, by
Theorem 4.12 (v), we obtain

2(2Fp (M), Fp(N)) = A(M.N) =0,
which completes the proof. ]

Let g¢ be the simple Lie algebra associated with C. Let CI% be the set of positive roots
of g¢ and let W be the Weyl group associated with gc. Let wq be the longest element of
We, and let £ denote its length. We choose an arbitrary reduced expression wo = s;, -+ 5;,
of wy. We extend {ik}£=1 to {ix }xez by

ixr¢ = (ix)* foranyk € Z. (5.2)

(Recall that, for i € J, i* is a unique element of J such that o;;* = —wopa;.)
We can easily see that s;,, ,, -~ si,, is also a reduced expression of wy for any a € Z.
Let
{Vk}iz1 C Rg-gmod

be the cuspidal modules associated with the reduced expression wg. Under the categorifi-
cation, the cuspidal module Vj corresponds to the dual PBW vector E*(8;) correspond-
ing to B 1=, -+ Sip_, (o) € CIDE';r fork =1,..., ¢ (see Section 2.2).

We now introduce the notion of affine cuspidal modules for quantum affine algebras.

Definition 5.6. We define a sequence {Sg}xez of simple Ué (g)-modules in %y as fol-
lows:
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(@) S = Fop (Vi) forany k = 1,...,¢, and we extend the definition to all k € Z by
(b) Sky¢ = P(Sg) forany k € Z.
The modules S (k € Z) are called the affine cuspidal modules corresponding to D
and wy.
Proposition 5.7. The affine cuspidal modules satisfy the following properties:
(1) Sg is a root module for any a € 7.
(ii) For any a,b € Z with a > b, the pair (S,, Sp) is strongly unmixed.
(iii) Letky > --- > k; be integers and (a1, ...,a;) € Z’zo. Then
(a) the sequence (S,‘i‘ll e S,?[a’ ) is normal,
(b) the head of the tensor product S,?lal Q- ® Sfta‘ is simple.
Proof. (i) follows immediately from Lemma 4.15.

(i) Without loss of generality, we may assume that 1 <b < {. Wewritea ={ -t +r
for some ¢ € Z>p and 1 < r < {. By the definition, we have S, = 2'S,.If t > 1, then

2(2%S4, Sp) =0(2%1'S,,S,) =0 forany k > 1,

by (5.1).

Suppose thatt = 0. As £ > a > b > 1, the pair (V,4, V) is unmixed. Thus Lemma 5.5
says that (S,, Sp) is strongly unmixed.

(iii) follows from Lemmas 5.3 and 2.19. ]

Example 5.8. Let U, (g) be the quantum affine algebra of affine type Agl), and let ‘Ké’ be
the Hernandez—Leclerc category corresponding to

o0(g) = {(1. (=9)*). 2, (=9)* ™) | k € Z}.
Fori € Iy and m € Z~, we denote the Kirillov—Reshetikhin module by
V(i™) :=hd(V(w@i) _gym-1 @ V(@) _yym—3 ® =+ @ V(@) (_yy-m+1)-

We simply write V(i) instead of V(i !), which is the i-th fundamental module V (w;).

Let Ly := V(1) and Ly := V(1)(_g)2, and define D := {L;, Lo} C CKE?. Then D is a
strong duality datum (see [21, Section 4.1]). Let C be the Cartan matrix of finite type A,.
Then we have the duality functor Fp: Rc-gmod — %,

(i) We choose a reduced expression wo = s15251. Then
Bri=a1, Bri=si1(az2) = o +az, Pz =s1s(a1) = az,
and the affine cuspidal modules corresponding to & and wq are

S1 = Fo(L(1)) =L =V(),
S2= Fo(L()VLQR) =Ly V Ly = V() V V(D) g2 = V().
S3 = Fp(L(2) = Ly = V(1) (g2,
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and Sg13 = Z(Sy) for k € Z. Here L(i) is the self-dual 1-dimensional simple R(c;)-
module. It is easy to see that the set {Si | kK € Z} of all affine cuspidal modules is equal
to the set of all fundamental modules in ‘Kg .

(ii) We choose another reduced expression ﬂ’ = §55152. Then
Bli=oaa, Bhi=sa(1) =01 + a2, Py =s251(02) =0,
and the affine cuspidal modules corresponding to & and wy" are
S} = Fp(LQ) = L = V().
S, =Fp(LQR)VL() =L VL =V({1), VV() = V(1) 4,
Sy = Fp(L(1)) = L1 = V(1),

and S ; = 9(S)) for k € Z. Note that the affine cuspidal modules S, , 5, (t € Z) are

not fundamental modules.

5.3. Reflections

For any k € J, we set

T(D) = {F(L)}ties and Z7 (D) :={F " (Li)}ies, (5.3)
where
DL ifi =k, 927, ifi =k,
Fe(L) =3 L VL ifer=-1,  H(L)={LVL ifcg=-—1,
Li ifc;x =0, Li if ¢; p = 0.

It is easy to see that .#% o Yk_l(JD) = P and ,Vk_l 0 (D) =D forany k € J.

Proposition 5.9. Letk € J.
(i) Foranyi € J, % (L;) and Yk_l (L) are root modules.
(i) % (D) and ,S”k_l (D) are strong duality data associated with the Cartan matrix C.

Proof. We focus on the case of .#% since the case of Yk_l can be proved in a similar
manner.

Set L} := %% (L;) fori € J.Fori,j e J,wewritei ~ jifc;; =—landi ~ j if
¢i,j = 0. Note that, for real simple modules L, M and N, Lemma 2.21 says that if one of
the following conditions holds:

e 0(L,M)=0,

e d(M,N) =0,

e (L, 27'N)=2(2L,N) =0,
then

A(L,MV N)=A(L, M)+ A(L,N), ALYVMN)=A(L,N)+AM,N),

which will be used several times in the proof.
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(i) follows from Lemma 3.8.
(i1) Thanks to (i), it suffices to prove that

(2L, L) =—8(t =0)c;; fort€Zandi # j.
Leti, j € J withi # j. We shall prove it case by case.
Case 1: Ifi ~ k and j ~ k, then

2(2'L, L)) =2(2'Li, L) = =8(t = 0)c;,; fort € Z.

Case2: Ifi ~ kand j =k, thenc; ; = 0and

W2'LL, L) =02, PL) =02 L, L) = 0 = —8(t = 0)¢; ;.

1

Case 3: Suppose thati ~ k and j ~ k. Then

2L L) =2 L, Lk V Ly).

1

We have

AMZ'Li, i VL) = AMP'Li, L) + A(Z'Li, L),

ALk VL, 2'L) = ALk, ') + A(L, 2" L),
where the first equality follows from d(2’L;, L) = 0 and the second from d(Z Ly, 2'L;)
= 0. Hence we obtain

D2'L. L) =2(2' L, L) +0(2'Li L) = (2" Li. L)
= =6 = O)C,"j.

Case 4: Suppose thati ~ k and j ~ k. Then, by Lemma 2.23,

2L L) =22 (L VL), Lk VL) =2(Z2'L VZ2'Li, Lk V Ly).

Since C is of finite type, we have ¢; j = 0, i.e., 2(Z'L;, L;) = 0 forany ¢ € Z.
Ift # 0, %1, then

V2L, L) =P VP'Li, Lk VL) =0

R
since 9(2"(Ly), Lp) = O fora,b =i, j, k by Theorem 4.12 (iv).
Suppose that t = 0. Then
ALy VL, Ly V Lj) =A(Lg VL, L)+ A(Lg V L, L)
= —A(Lg, Ly VL) + A(Lg V L, L)
= —A(Lg, L) + ALk, Lj) + AL, Lj).

Here the first and second identities follow from d(Lg, Ly V L;) = 0 by Lemma 3.9, and
the third follows from o(L;, L;j) = 0. Exchanging i and j, we have

A(Lg VL, L V L) = —A(Lg. L) + ALk, L) + A(L;, Li),
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which tells us that

o(L;, L)) =0(Le VL, Le VL) =0(Ly, L) = —¢i ).

Suppose that t = 1. We have
AL, L) = A®(L V Li, L V L)
— A% (L, L) + A% (Le, L) + A®(Li, L) + A% (L, L) = (<2) + 1+ 140 =0.
Hence
0= (=D)'2(Z'L. L)) = —o(ZL. L)) —o(27" L. L)).
teZ
Therefore d(ZL;, L) = (27 'L, L) = 0.
Case 5: Suppose thati ~ k and j = k. Then

W' L) =22 L. L V L) fort € Z,

which is equal to §(t = 0) by Lemma 3.9. |

Proposition 5.10. Let {Si}rez be the sequence of the affine cuspidal modules corre-
sponding to D and a reduced expression wo = s;, -+ S;, of wo. Set S} = Sy fork € Z.
Then {S}_}kez is the sequence of the affine cuspidal modules corresponding to ./} D and
the reduced expression w’ = Sip =" Sipy, (see (5.2)).

Proof. Seti = i;. We denote by <, {Bx }£=1 and {V }£=1 the convex order, the ordered
set of positive roots and the cuspidal modules in Rc-gmod corresponding to wg as in
Section 2.2. Similarly, we write </, {ﬂ,’{}i=1 and {V} }ﬁzl for the ones corresponding
to wy'. It is enough to show that

.?’iyi(‘@)(vz) ~ Sgyq forl <k </

It is easy to see that

oﬂk+1=s,-,8,/€fork=1,...,€—1, (5.4)
o Vip1 > Ti(Vy)fork =1,....0—1, (5.5)
e «; is smallest (resp. largest) with respect to < (resp. <). (5.6)

It follows from (5.6) that V; ~ L(i) ~ V}. Thus
Foroy\Vy) ~ DL ~ 2(Fp(V1)) = Seq1- (5.7
It remains to prove that
Foo(Vy) ~ Fo(Veyr) fork=1,....0—1. (5.8)

We shall use induction on ht(f; ).
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If ht(B;) = 1, then B; = a; for some j € J. Note that j # i because k < {. Thus,
Bi+1 = si(B}) = si(e;) and

L(i)VL(j) ifc,-,j = —1,
Vit1 = ) .
L(j) otherwise.

By the definition of .}, we have
Fr@yVi) = Fo0)(L())) = Fi(Lj) =~ Fo(Vig1).

Suppose that ht(8; ) > 1. We take a minimal pair (8;, B;) of B, with respect to <. It
follows from (2.2) that
VAAAVARSAVA (5.9)

Case 1: Suppose that b # £. Applying 7; to (5.9), it follows from (5.5) that
Va1 VVpig = Vg, (5.10)
Applying Fgp to (5.10) and using the induction hypothesis, we have

FoVit1) =~ Fo(Vatr1) V FoVpi1) = Fo @) (Vo) V For 0y (V)
=~ Fo0)(Vip)-

Case 2: Suppose that b = {. Since V}, = L(i), by applying ¥, p) to (5.9) we have
f%(@)(V;)V@Li :J(:i;ﬂl.(@)(v;c). (5.11)
On the other hand, it follows from f:* (Vy) =V, V L(i) >~ V, that
V) + 1= ef (V). ¢F(V)) = ¢f (Vi) + 1.
Thus, by (2.3) and (5.5), we have
Vai1 = (V) ~ f:_‘/’fk(v;cHl g;kaf(VZHlf;*V;
~ L)V (f7 Y &3 VOV ~ L) V T (V)) = L) V Visr,
which implies that
FoWNVa+1) = Li VFp(Vit1). (5.12)
Then

FoVigs+1) =~ FoNVa+1) VIL; by (5.12) and Lemma 2.7
~ Fo.0)(V,) V ZL; by the induction hypothesis
~ }‘%(@)(V;c) by (5.11),

which completes the proof of (5.8). ]
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Proposition 5.11. Leti € J, and let S be a simple module in €.
(i) The following conditions are equivalent:

(@) S e ‘(j::o(.e*,s[)’

(b) S e€bpandd®(27'L;,S) =0,

(c) S e ngi(@) N %Eop.
(i1) The following conditions are equivalent:

@ S € Fo(Cs;w)

(b) S € Cp andd(2L;,S) =0,

Here, Cy 5; and Cy,y,, are the subcategories of Rc-gmod that appeared in Section 2.2.
Proof. We focus on proving (i) since (ii) can be proved in a similar manner.

Let us take a reduced expression wo = s;, - -+ ;, of wo such thati; =i. Let {Vi }£=1
be the cuspidal modules in Rc-gmod corresponding to wo. Let {Sk}xez be the affine
cuspidal modules corresponding to O and wy. Set S} = S or k € Z. Then {S} }ez
are the cuspidal modules corresponding to .7, D and wo’ = si, - -+ 5, +1 by Proposition

5.10.
Now we prove (i). It is known that

(1) any simple module in €y, is isomorphic to the head of a convolution product of
copies of Va, ..., Vy,

(2) for any simple module M € Rc-gmod, M € €y, if and only if ¢7 (M) = 0

(see [26, Proposition 2.18 and Theorem 2.20]). Hence (a)<>(b) follows from (2) and
Corollary 4.13.
Note that
Fo(Vg) = S, = S;c—l €Cypy for2<k= L.

Hence, by (1), we have
Fp(Cuy) CCy ) NCo.

that is, (a)=>(c).
Let S be a simple module in €, (9) N €p. Since 27, € 9‘2%% (D)» We have

227, S) =0.
Thus we obtain (¢c)=(b). [ ]

Example 5.12. We use the same notations as in Example 5.8.

(i) We shall apply .7 to the duality datum O = {L, Lo}. Let

L= A(L) = 2L = V() g3,
tz = y](Lz) = L1 \Y Lz = V(2)_q.
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Then . (D) = {L;, L»}. The affine cuspidal modules Sy corresponding to . (D) and
the reduced expression s,515, are

S1 = Frnol@) =1 =V,
S =Fpo(L@Q VL) =L VL =VQ2) - VVQ) gy = V() g2
83 = Fuo(L() =T = V(g2
and §k+3 = @(§k) for k € Z. Note that S = Sk+1 for any k € Z (see Proposition 5.10).
(ii) We shall apply %5 to the duality datum £ = {L;, L,}. Let
Li=2(L) =L VL = V() VYD) = V1%,
Ly := S(La) = DL = V(2)(_ps-
Then .%5 (D) = {L;. L,}. As can be seen, the duality datum %5 (D) has a root module
which is not fundamental.

The affine cuspidal modules Sk corresponding to .5 (D) and the reduced expression
§185281 are

Si = Fro(L() =T = V(1)

S =Fro(L()VLER) =11V =V(1%_4 VVQ)yps
=(V()(g2 VV) VV@2)—ypys =V(1)  byLemma?2.7,

S3 = Forp(L(2) = L = V(2) (g5,

and §k+3 = @(@k) for k € Z. Note that §k = S;<+1 for any k € Z (see Proposition 5.10).

6. PBW-theoretic approach

6.1. Complete duality datum

Definition 6.1. A duality datum D is called complete if it is strong and, for any simple
module M € Cﬁg , there exist simple modules M € €p (k € Z) such that

(a) My ~ 1 for all but finitely many k,
) M >~hd(-+- @ P’Mr, @ IM, @ Moy 27 'M_1 ®---).

In [31], we associate to the category ‘5; a simply-laced finite type root system in a
canonical way. For a simple module M € %, define E(M) € Hom(o (g), Z) by

E(M)(@i,a) := A®(M,V(wi),) for(i,a) € o(g).
Let

Wo :={E(M) | M is simple in ‘Kg} and Ag:={s;q | (i,a) € oo(g)} C Wy,
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where we set s; , := E(V(w@;),). Then Yq := (Wp, Ap) forms a root system, and the type
of Yy is as follows (see [31, Theorem 4.6]):

1 1 1 2 2
Typeofg || 4% | BY | o | b | 4@ | 4P | D?,
m=)|(m=22) | n=23) | (=24 | (n=1) | (n=>2) | (n=>3)
Type of Tq An Azn—1 | Dn+1 Dy Azn | A2n—1 | Dn+1 (6.1)

Typeofg || E& | EW | EPN | FY | 6P | EQ | DY

Type of Tg Ee¢ E; Eg E¢ Dy Ee¢ Dy

We denote by X, the type of Y.

We define a symmetric bilinear form (-,-) on Wy by (E(M),E(N)) =—A*(M, N) for
simple modules M and N. Then (-, -) is a Weyl group invariant positive definite bilinear
form and Ag = {a € Wy | (o, ) = 2}.

Proposition 6.2. Let D :={L;}jes C %g? be a complete duality datum associated with a
simply-laced finite Cartan matrix C. Then C is of type X;.

Proof. We denote by Q¢ and ®¢ the root lattice and the set of roots associated with C.

It follows from Proposition 2.11, Proposition 2.13, Theorem 4.10 and Definition 6.1
that the abelian group W, is generated by E(M) for M € €p. Moreover, E(Fp(M))
depends only on wt(M) by Theorem 4.12 (iii). Hence the functor ¥ induces the surjec-
tive additive map

[Fo]:Qc — Wo

given by [Fpl(a;) = E(L;) for i € J. Moreover, [Fp] preserves the positive definite
pairing (-, -). Hence [Fp] is bijective. Since both ®¢ and A are characterized by the
condition (X, X) = 2 ([31, Corollary 4.8] and [19, Proposition 5.10]), the set {E(L;)};ecs
becomes a basis of the root system Yg. Since ¢;,; = (o, ;) = (E(L;), E(L;)) for any
i, j € J by Theorem 4.12 (iii), we conclude that the Cartan matrix C = (c;,j);,jes is of
type Xg. ]

Theorem 6.3. Let D :={L;}ies be a complete duality datum. For anyi € J, /(D) and
5’1-_1 (D) are complete.

Proof. We focus on the case of .; since the other case is similar. Since .7; (D) is strong
by Proposition 5.9, it suffices to show that .%; (D) satisfies the conditions of Defini-
tion 6.1.

Let i € J and choose a reduced expression wg = s;, ---s;, of the longest element
wg of W¢ with iy = i. Define {ix }xcz and the cuspidal modules {Sg }xcz corresponding
to D and wy as in Section 5.2. Let M be a simple module in ‘5&’. As D is complete, there
exist simple modules My € €p (k € Z) such that My >~ 1 for all but finitely many k and

M>~hd(--- @ P’M, @ IM, @ My @ 7 'M_; ®---). (6.2)
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For each k € Z, there exist ag 1, ..., ax ¢ € Zxo such that
Mp =~ hd(S; @ --- ® STk,
Set csyx¢ = ax s for 1 <s < {and k € Z. Then, by Lemma 2.23, we have

® ®
DKMy, ~ hd(SkecJ’;‘f‘Z Q- ® sk;ﬁ“).

Hence we have
M ~hd(---® S¥' @ S0 ® s¥ ' ®--1).

Set
Ni = hd(S{ ! @ ... @ 85 F0F2),

Then Ny € €.» o by Proposition 5.10, and we have

k ~ ®Cke+e+1 ®cCko+2
P" N = hd(Spy " ® @S, 15).

Hence we obtain

M ~hd(---® 2'N, @ 2°No® 27'N_; @ ---). -

6.2. Duality datum arising from Q-datum

The subcategory € of ‘Kg? was introduced in [16] for simply-laced affine type ADE,
in [23] for twisted affine types A® and D@ in [34,51] for untwisted affine types B
and C™V, and in [47] for exceptional affine type. Let gg, be the simple Lie algebra of type
Xq defined in (6.1) and /g, the index set of ggn. The category € categorifies the coor-
dinate ring C[N] of the maximal unipotent group N associated with gs,. This category
is defined by a Q-datum. A Q-datum is a triple 2 := (A, 0, £) consisting of the Dynkin
diagram A of gg,, an automorphism ¢ on A and a height function &, which satisfy certain
conditions (see [13] for details, and also [33, Section 6]). When g is of untwisted affine
type ADE, o is the identity and 2 is equal to a Dynkin quiver with a height function.
To a Q-datum 2, we can associate a subset 09(g) of og(g). This set 09(g) is in 1-1
correspondence with the set @ﬁ: of positive roots of gg,, which is denoted by

bo: Of, =>00(g). (6.3)
Set
Do = {Li}icl,,

where L; is the fundamental module corresponding to ¢ o (w;) for i € Ig,. Then Dy
becomes a strong duality datum [11, 13,20, 23,33, 34,47], which gives the duality func-
tor ¥ ,,. By the definition, we have €9 = Gp,,. We simply write ¥ for Fp,,:

Fo: R%"-gmod — €.
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We refer the reader to [13, 33, 51] for the notion of (twisted) 2-adapted reduced
expressions of the longest element wq of the Weyl group of gsy.

Let Wi, be the Weyl group of gg,. For a 2-adapted reduced expression wo = s, - - -,
of the longest element wg of Wg,, we define B € CDQ; (1 <k <) by (2.1). Then there
exist a sequence {(ik. ak)}kez C Iin X k* and 7: Iy — Io such that ((ix). ax) =
bo2(Br) €eoa(g)fork =1,...,£ and

(T(same)s Asame) = 8" (w(is),as)) forl <s <Landm € Z.

Here we set
(i, (p*)™a)  if miseven,

8 (G,a)) = { (i*, (p*)ma) if m is odd.

(See [33, Section 6].)

We define the affine cuspidal modules {Sy }x<z as in Definition 5.6.

Collecting results in [13,16,20,23,34,47,51], we obtain Proposition 6.4 below. In the
proposition, the symmetric cases follow from [16, 20], the untwisted B M and €D cases
follow from [34,51], the twisted A®@ and D@ cases follow from [23], and the exceptional
cases follow from [47]. The uniform approach is given in [13]. See also [33, Section 6].

Proposition 6.4 ([13,16,20,23,34,47,51]). Let 2 be a Q-datum.
@) 00(g) = ez 8" 02(g) (see e.g. [13, Proposition 4.21]).

(ii) There exists a 2-adapted reduced expression of wy (see e.g. [51, Section 3]).

(iii) For a 2-adapted reduced expression wo = s, -+ i, of wo, let {(ix,ax)}rez be the
sequence as above, and let {Sy }rcyz be the affine cuspidal modules corresponding
to Do and wy. Then
(a) S ~ V(w:rt(ik))ak,

(b) dV(wﬂ(is)),V(w”(m)(a,/as) #0fort,s € Z suchthat s > t. Here, d is the denom-
inator of the R-matrix.

(See [20, Theorem 4.3.4], [23, Theorem 5.1 and Lemma 5.2] , [34, Theorems 6.3,
6.4] and [47, Section 6]).

Proposition 6.5. The duality datum D o is a complete duality datum.

Proof. Recall that og(g) = {(7(ix),ax) | k € Z}. For a simple module M in ‘5&’, let
A=Y _ (w(ir,), ax,) be the affine highest weight of M (see Theorem 2.9 (iv)). We may
assume that {k}7_, is a decreasing sequence. Then, by Proposition 6.4 and Theorem 2.9,
we have M >~ hd(Sg, ® --- ® Sg,). |

Thanks to Theorem 6.3, we have the following.

Corollary 6.6. The duality datum obtained from D o by applying a finite sequence of .%;
and 5”1-_1 (i € Igy) is a complete duality datum.
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Example 6.7. We use the same notations as in Examples 5.8 and 5.12. Let A be the
Dynkin diagram of finite type A5.

(i) Let & be the height function on A defined by £(1) = O and £(2) = 1, and let 2 be
the Q-datum consisting of A and £. Then D is equal to the duality datum arising from the
Q-datum 2, which says that D is complete. The reduced expression s15251 is 2-adapted,
but 5557152 is not.

(ii) By Corollary 6.6, .71 (D) and .#3(D) are complete duality data. The duality
datum .7 (D) arises from the Q-datum consisting of A and the height function & defined
by &’(1) = 2 and £'(2) = 1, but . (D) does not come from any Q-datum.

6.3. PBW for quantum affine algebras

In this subsection, we develop the PBW theory for %g using a complete duality datum.
This generalizes the ordinary standard modules and related results [14,25,45,46,53]. Note
that the ordinary standard modules are cyclic tensor products of fundamental modules.

Let C = (c;,;)i.jes be asimply-laced finite Cartan matrix. Throughout this subsection,
we assume that

D = {Li}ies is a complete duality datum associated with C.

Proposition 6.2 says that C is of type X and J = I,. Let W¢ be the Weyl group associ-
ated with C. We fix a reduced expression wg = s;, - - -, of the longest element wq of W,
and let Sg (k € Z) be the affine cuspidal modules corresponding to & and wg. We define

2:=17%7 = {(ak)kez € 7%, | ar = 0 for all but finitely many k’s}. (6.4)

We denote by < the bi-lexicographic order on Z, i.e., for any a = (ag)xez and a’ =
(a})kez inZ, a < a’ if and only if the following conditions hold:

(6.5)

(a) there exists r € Z such that a; = a; forany k < r and a, < a,,
b) there exists s € Z such that ay = a/, forany k > s and ay < d’..
k y s

Similarly, we let <, (resp. <;) be the right (resp. left) lexicographic order on Z, i.e., for
any a,a’ € Z,a <, a’ (resp. a <; a') if and only if condition (a) (resp. (b)) in (6.5) holds.
Hence

a<a < a<;a and a<, a’. (6.6)

For a = (ay)rez € Z, we define

—00
Pow@ = Q) Sg% = ®572@s)" @@ ' ®s% 2 .
k=400

Here P w, (0) should be understood as the trivial module 1. We call the modules
PD,wo (a) standard modules with respect to the cuspidal modules {Sg }rcz.
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Lemma 6.8. Letk € Z and a € Z~, and let M be a simple module in CK;.
() If 2(2'Sk, M) =0 fort = 1,2, thena = 2(Z Sk, SP* V M).
(i) If 0(2'Sk. M) = 0 fort = —1,-2, thena = (2" S, M V S2°).

Proof. (i) Note that S is a root module by Proposition 5.7. Applying Lemma 3.6 (i) to
the setting L := Sy and X := M, we have

2(2Sk, SP*V M) =a+2(PSk, M) =a.
(ii) can be proved in the same manner. ]
Lemma 6.9. Letm,l € Z withm >l and amm,am—1, ...,a; € Z>y. Set
M :=hd(SZ" ® SE1 ® ... @ SPU).

(1) 2(ZSk, M) = 0 forany k > m.
(ii) Set M, := M and define inductively

dy :=2(ZSk, M) and My, := My V 9(SP%)
fork =m,...,l. Then
dp = ap and My ~hd(SP™ ® S ®@---® S7U) fork =m,...,L.
(iii) 8(271Sk, M) =0 forany k < 1.
@iv) Set N; := M and define inductively
ek =027 Sk, Nk) and  Niyi:= 27 (SP) V Ni
fork =1,...,m. Then

ex =ar and Ni :hd(Sg“’”@---@SfﬁH®S,§ak) fork =m,... I

Proof. (i) By Proposition 5.7 (ii), (Sg, S;) is strongly unmixed for any & > m and t =
m,..., 1. Thusd(2S, S;) = 0fort = m,...,I, which implies that (2 Sy, M) = 0.

(ii) By induction on k, we may assume that k =m. Set N ::hd(Sg‘i’f‘l R--Q S?‘”).
By (i), we have 2(2'S,,, N) = 0 for t = 1, 2. Proposition 5.7 (iii) tells us that M ~
s;%“m V N. Thus, by Lemmas 2.7 and 6.8, we have

dm = 9(PSm, M) =2(ZSp, S2 V N) = an,
MV Z(SP) ~ (8% V N)V 2(SP") ~ N.

Assertions (iii) and (iv) can be proved in the same manner. [

Theorem 6.10. (i) For any a € Z, the head of Pg,w,(a) is simple; denote it by

VD,@(a) = hd(PQ,@(a))-
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(ii) For any simple module M € €7, there exists a unique a € Z such that
M >~ Vg u,(a).

Therefore, the set {V.pw,(a) | a € Z} is a complete and irredundant set of simple
modules of ‘53 up to isomorphism.

Proof. (i) follows from Proposition 5.7.
(ii) Let M be a simple module in ‘gg . Since O is complete, there exist simple modules
M € €p (k € Z) such that My ~ 1 for all but finitely many k and

M~hd(---® P’M>, @ IM; @ Mo @ " 'M_1 ®---).

k k
Since M), € %o, there exist b’l‘, e, béf € Zso such that My ~ hd(SZZ Q- ® S}i' ),
which yields
knp o bg by
P Mg =hd(Sy @~ ® Sy, )

by Lemma 2.23. For t € Z, we define a; := bf, where t = k{ 4+ r for some k € Z and

r=1,...,¢, and set a:= (a;)sez. By Proposition 5.7, we have
M >~V gp y,(a).
The uniqueness for a follows from Lemma 6.9. This completes the proof. ]

The element a € Z associated with a simple module M in Theorem 6.10 (ii) is called
the cuspidal decomposition of M with respect to the cuspidal modules {Sy }xez, and it is
denoted by

a@,M(M) = a. (6.7)

Lemma 6.11. Let L, M, N be simple modules in 65 and assume that L is real.

@) If (L, M) and (L, N) are strongly unmixed and L VN N appears in L ® M as a
subquotient, then M >~ N.

(i) If (M, L) and (N, L) are strongly unmixed and N V L appears in M ® L as a
subquotient, then M >~ N.

Proof. (i) Since (L, M) and (L, N) are strongly unmixed,
AL,M)=A®(L,M) and A(L,N)=A®(L,N)
by Lemma 5.2. Since L V N appears in L ® M, Proposition 2.13 tells us that
AL, M)=A®(L,M)=A®L,N)y=A(L,N)=A(L,LVN).

Thus it follows from [27, Theorem 4.11] that L V M ~ L V N, which implies that
M ~ N by Lemma 2.7.
(ii) can be proved in the same manner. ]
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For ¢ = (¢k)rez € Z, we set [(c) (resp. r(c)) to be the integer ¢ such that
¢; #0, c¢x =0 foranyk >t (resp. k <1). (6.8)

Theorem 6.12. Let a be an element of ’Z.
(i) The simple module V p , (a) appears only once in Pgp , (a).
(i) If V is a simple subquotient of P w, (a) which is not isomorphic to V@,%(a), then
apw, (V) <a
(iii) In the Grothendieck ring, we have
[Po.wo @] = Vo.uw@] + Y _ c@)Vow,(@)] for some c(a’) € Zso.
a’<a
Proof. We focus on proving (ii) because (i) and (iii) follow from (ii).
Let a = (ag)rez and set
[:=1(a) and r:=r(a).
Let V be a simple subquotient of P g, (a) which is not isomorphic to Vg, (a). We set

b = (bi)kez = ap,wo (V).

Fork > [ and r > ¢, since (S, S;) and (S;, S;) are strongly unmixed by Proposition 5.7,
we have
2(ZSk.Ppw,(@) =0, 2(Z7'S;.Po u,(a)) =0.

which implies that 5(Z Sg, V) = 0 and 2(271s,,V)=0 by [27, Proposition 4.2]. Thus,
Lemma 6.9 tells us that
[>1I() and r(b)>r.

We shall now prove b <; a, where <; is the left lexicographical order on Z. Note that,
by Lemma 6.9, Proposition 5.7 and [27, Proposition 4.2], we have

by =2(25,.V) <2781, Ppu,(a) =2(2S,.S7Y) = ay.

When either / > [(b) or [/ = [(b) and b; < ay, it is obvious that b <; a by the definition.
We assume that / = I(b) and b; = q;. Set

0 ifk=1,

c:=by=a;, a =(ay)kez, where aj = ]
ap otherwise,

and

PTi=8P 7 @@ SO, VT i=hd(SP T @@ ST
Note that

PT =Ppuw,@). Pouw,@=8F®P ", Vx(SFF)VV, (6.9)
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where the third relation follows from Proposition 5.7 (iii). As V' appears in S?c ® P~ as
a simple subquotient, there exists a simple subquotient L of P~ such that

V appears in Sl®c ® L as a simple subquotient.

By Proposition 5.7 (ii), we know that (S;, V™) and (S;, L) are strongly unmixed. Hence,
by Lemma 6.11, we conclude that
V- ~ L.

If V™ is isomorphic to hd(P ™), then V' = hd(Pp w,(a)) by (6.9), which contradicts the
assumption. Hence V'~ is not isomorphic to hd(P ™). Applying the standard induction
argument to the setting V'~ and P, we obtain

ai),@(v_) <ja,

which implies that b <; a.
In the same manner, one can prove that b <, a. Therefore it follows from (6.6) that
b < a. ]

Remark 6.13. Let V be a simple subquotient of Pgp y,(a). Theorem 6.12 says that
ap,w, (V) < a. There is another condition which V' should satisfy. By Proposition 2.13,

E(V) =E(Vo,u(a)). (6.10)
where E is given in Section 6.1. Thus they are in the same block of €.

Remark 6.14. There is a well-known partial ordering, called the Nakajima partial order-
ing, in the g-character theory. For simplicity, we assume that U é (g) is of untwisted affine
ADE type. Let Y; , be an indeterminate fori € /o and a € k*. Fori € Iy and a € k*, set
Aia =Y 00-1Yiaq [l a)=—1 Y;al Then one can define a partial ordering < on the set
of monomials in Z[Yii | i € Iy, a € kX] as follows: for monomials m and m’, m < m’ if
and only if m~1m’ is a product of elements of {A; 4 | i € Iy, a € k*} [10,46]. The simple
modules and ordinary standard modules in % are parameterized by dominant monomi-
als, which are denoted by L(m) and M (m) respectively for a dominant monomial m.
Note that the fundamental module V(w;), corresponds to Y; ,. From the viewpoint of
(g, t)-characters, it was shown in [45,46] that

[M(m)] = [L(m)] + Y Pmwl[L(m)] (6.11)

m/<m

in the Grothendieck ring K(%g) and the multiplicity Py, can be understood as the
specialization at ¢ = 1 of an analogue Py, ,(¢) of the Kazhdan—Lusztig polynomial.

Let 2 be a Q-datum and let wo be a 2-adapted reduced expression. In this case,
the affine cuspidal modules Sy are all fundamental modules in % and P 2.wo (@) are
ordinary standard modules (see Example 5.8 (i) for instance). Let m and m’ be domi-
nant monomials and set a := agp,, w,(L(m)) and a’ := ag,, 1, (L(m")). Considering the
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definition of A;, and [33, Proposition 6.11], one can show that if m < m’ in the par-
tial ordering, then a < a’ in the ordering (6.5). From this observation about two orders
< and =, Theorem 6.12 is compatible with (6.11). Since affine cuspidal modules need
not be fundamental in general (see Example 5.8 (ii) for instance), Theorem 6.12 can be
viewed as a generalization of (6.11).

Remark 6.13 says that condition (6.10) holds when V' is a simple subquotient of
P9,w,(a). Thus it is interesting to ask under what conditions the ordering (6.5) is equal
to tlgordering <.

Fora,b € Z U {£o0}, an interval [a, b] is the set of integers between a and b:
la,bl:={s€Z]|a <s <b}.

If a > b, we understand [a, b] = 0.
,b1.D,
For an interval [a, b], we define %g[a 1920 to be the full subcategory of €5 whose

objects have all their composition factors V' satisfying the following condition:

b>l(apw,(V)) and r(apw,(V)) > a. (6.12)
Thanks to Theorem 6.12, we have the following proposition.
,b],Dwo . . . .
Proposition 6.15. The category %éa 1D.2o is stable by taking subquotients, extensions,

and tensor products.
It is easy to show that the category ‘Kéa’b]’ﬂ’m is equal to the smallest full subcategory
of %y satisfying the following conditions:
(1) it is stable under taking subquotients, extensions, tensor products,
(ii) it contains S; for all @ < s < b and the trivial module 1.

. . . . . a,b],D,w
If no confusion can arise, we simply write ‘fg[a’b] instead of CKQE ] =,

For an interval [a, b], we set
Z21%% = {a = (ap)kez € Z | ar = Oifeitherk > b ora > k}.
The theorem below follows directly from Lemma 6.9 and Theorems 6.10 and 6.12.

Theorem 6.16. Let [a, b] be an interval.
(i) The set {Npw,(a) |ac 21451y is g complete and irredundant set of simple modules
of (fg[a’b] upgisomorphism.
(ii) Let M be a simple module in Cfé). Then M belongs to ‘fg[a’b] if and only if

2(2Sk, M) =0fork >b and (27 'Sg, M) =0fork < a.

(iii) For a € 7190 the standard module P@’M (a) is contained in (féa’b] and, in the
Grothendieck ring, we have

[Pp.wo@)] = [Vow @] + Y c@)[Vpuy(@)] forsome c(@') € Zo.

a’<a
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Example 6.17. We use the same notations as in Example 5.8.

(i) We consider the affine cuspidal modules Sy given in Example 5.8 (i). Let | € Zxy.
The category %&1’2(“_1)] is determined by Si for k € [1,2(/ + 1)]. It follows from

{Sk [k e[1,2( + D]} = V(D) (gy2r, V(2)—gqyzet1 | £ €[0,1]}
that the category cgg[l,2(1+1)]

[15, Section 3.8].

is equal to the Hernandez-Leclerc category %; defined in

(ii) Let us take the affine cuspidal modules Sj given in Example 5.8 (ii). In this

case, the category ‘Kg[a’b] is not equal to %7 in general. From this viewpoint, the category
,b,D,wo . .

‘Kga 1.0 s a generalization of the category %;.
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