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Abstract. Let U 0q.g/ be a quantum affine algebra of arbitrary type and let C 0g be Hernandez-
Leclerc’s category. We can associate the quantum affine Schur–Weyl duality functor FD to a duality
datum D in C 0g . In this paper, we introduce the notion of a strong (complete) duality datum D and
prove that, when D is strong, the induced duality functor FD sends simple modules to simple
modules and preserves the invariants ƒ, zƒ and ƒ1 introduced by the authors. We next define the
reflections Sk and S �1

k
acting on strong duality data D . We prove that if D is a strong (resp.

complete) duality datum, then Sk.D/ and S �1
k
.D/ are also strong (resp. complete) duality data.

This allows us to make new strong (resp. complete) duality data by applying the reflections Sk and
S �1
k

from known strong (resp. complete) duality data. We finally introduce the notion of affine
cuspidal modules in C 0g by using the duality functor FD , and develop the cuspidal module theory
for quantum affine algebras similar to the quiver Hecke algebra case. When D is complete, we show
that all simple modules in C 0g can be constructed as the heads of ordered tensor products of affine
cuspidal modules. We further prove that the ordered tensor products of affine cuspidal modules
have the unitriangularity property. This generalizes the classical simple module construction using
ordered tensor products of fundamental modules.
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1. Introduction

Let q be an indeterminate and let Cg be the category of finite-dimensional integrable
modules over a quantum affine algebra U 0q.g/. The category Cg occupies an important
position in the study of quantum affine algebras because of its rich structure. The simple
modules in Cg are indexed by using n-tuples of polynomials with constant term 1 (called
Drinfeld polynomials) ([5–7] for the untwisted cases and [8] for the twisted cases). The
simple modules can be obtained as the head of ordered tensor product of fundamental
representations [1, 25, 53], and a geometric approach to simple modules was also studied
in [45, 46, 53].

Let g0 be a finite-dimensional simple Lie algebra of ADE type and let U 0q.g/ be a
quantum affine algebra of untwisted affine ADE type. Hernandez and Leclerc [15] intro-
duced the monoidal full subcategory C 0

g of Cg, which consists of objects all of whose
simple subquotients are obtained from the heads of tensor products of certain fundamen-
tal representations. Any simple module in Cg can be obtained as a tensor product of
suitable parameter shifts of simple modules in C 0

g . For each Dynkin quiver Q of g0 with
a height function, Hernandez and Leclerc [16] introduced a monoidal subcategory CQ
of C 0

g . The category CQ is defined by using certain fundamental representations parame-
terized by vertices of the Auslander–Reiten quiver ofQ. It turns out that the complexified
Grothendieck ring C ˝Z K.CQ/ is isomorphic to the coordinate ring CŒN � of the unipo-
tent group N associated with g0 and, under this isomorphism, the set of isomorphism
classes of simple modules in CQ corresponds to the upper global basis (or dual canoni-
cal basis) of CŒN � [16].
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In [23,34,47,51], the notion of the categories C 0
g and CQ is extended to all untwisted

and twisted quantum affine algebras. Suppose that U 0q.g/ is of an arbitrary affine type. We
consider the set �.g/ WD I0 � k�=�, where the equivalence relation is given by (2.7), with
the arrows determined by the pole of R-matrices between tensor products of fundamental
representations V.$i /x (.i; x/ 2 �.g/). Let �0.g/ be a connected component of �.g/.
The category C 0

g is defined to be the full subcategory of Cg determined by �0.g/ (see
Section 2.5). Let gfin be the simple Lie algebra of type Xg defined in (6.1). Note that,
when g is of untwisted affine type ADE, gfin coincides with g0. A Q-datum is a triple
Q WD .4; �; �/ consisting of the Dynkin diagram4 of gfin, an automorphism � on4 and
a height function � (see Section 6.2). When g is of untwisted affine type ADE, � is the
identity and Q is equal to a Dynkin quiver with a height function. For a Q-datum Q, the
monoidal subcategory CQ of C 0

g was introduced in [16] for untwisted affine type ADE,
in [23] for twisted affine types A.2/ and D.2/, in [34, 51] for untwisted affine types B.1/

and C .1/, and in [47] for exceptional affine type. Similarly to the untwisted affine ADE
case, the category CQ categorifies the coordinate ring CŒN � of the maximal unipotent
group N associated with gfin. The simple Lie algebra gfin is more deeply related to the
structure of the category Cg. It is proved in [31] that the simply-laced root system ‡g

of gfin arises from Cg in a natural way and the block decompositions of Cg and C 0
g are

parameterized by the lattice associated with the root system‡g. In the course of the proof,
the new invariants ƒ and ƒ1 for Cg introduced in [27] are used in a crucial way. These
invariants are quantum affine algebra analogues of the invariants (with the same notations)
for the quiver Hecke algebras [21, 24].

Let RC be a quiver Hecke algebra (or Khovanov–Lauda–Rouquier algebras) corre-
sponding to a generalized Cartan matrix C and denote by RC-gmod its finite-dimensional
graded module category. The algebraRC categorifies the half of the quantum group Uq.g/
associated with C [38, 39, 49]. The simple RC-modules were studied and classified by
using the structure of U�q .g/ via categorification [2, 17, 37, 41–43, 52]. When RC is sym-
metric and the base field is of characteristic 0, the set of isomorphism classes of simple
RC-modules corresponds to the upper global basis of U�q .g/ [48, 54]. Suppose that C is
of finite type. One of the most successful constructions for simpleRC-modules is the con-
struction using cuspidal modules via the (dual) PBW theory for U�q .g/. For a reduced
expression w0 of the longest element w0 of the Weyl group WC, one can define the asso-
ciated cuspidal modules ¹Vkº`kD1, which correspond to the dual PBW vectors, and all
simple RC-modules are obtained as the simple heads of ordered tensor products of cuspi-
dal modules. The construction using Lyndon words was introduced in [41] (see also [17])
and the construction in a general setting with a convex order was studied in [37, 43]. It
was also studied in [40, 44] for an affine case, and in [52] for a symmetrizable case from
the viewpoint of MV polytopes.

The quantum affine Schur–Weyl duality [21] gives a connection between quiver Hecke
algebras and quantum affine algebras. The quantum affine Schur–Weyl duality says that,
for each duality datum D D¹Liºi2J �Cg associated with a generalized symmetric Cartan
matrix C, there exists a monoidal functor FD , called briefly a duality functor, from the
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category RC-gmod to the category Cg. The duality functor is very interesting and useful,
but it is difficult to handle it because the functor does not enjoy good properties in general.
When D arises from a Q-datum, the duality functor FD enjoys good properties. It was
shown in [11,20,23,34,47] that, for each choice of Q-data Q, the quantum affine Schur–
Weyl duality functor

FQWR
gfin -gmod! CQ � C 0

g

is exact and sends simple modules to simple modules, thus it induces an isomorphism at
the Grothendieck ring level. Here Rgfin is the symmetric quiver Hecke algebra associated
with gfin. In this viewpoint, it is natural and important to ask which conditions for D pro-
vide the duality functor FD with such good properties, and what properties are preserved
from RC-gmod to Cg under the duality functor FD .

This paper is a complete version of the announcement [29]. The main results of this
paper can be summarized as follows:

(i) Let U 0q.g/ be a quantum affine algebra of arbitrary type. We find a sufficient condi-
tion for a duality datum D D ¹Liºi2J to provide the functor FD with good proper-
ties. We introduce the notion of strong duality datum by investigating root modules.
We prove that the associated duality functor FD sends simple modules to simple
modules and preserves the invariants ƒ, zƒ and ƒ1. We also introduce the notion of
complete duality datum, which can be understood as a generalization of the duality
datum arising from a Q-datum. It turns out that the Cartan matrix C associated with
a compete duality datum D is equal to the one of gfin.

(ii) We introduce the reflections Si and S �1i .i 2 J / acting on strong duality data D .
We prove that if D is a strong (resp. complete) duality datum, then Si .D/ and
S �1i .D/ are also strong (resp. complete) duality data. This allows us to create new
strong (resp. complete) duality data from known strong (resp. complete) duality data
by applying a finite sequence of the reflections Si and S �1i . Indeed, the family
¹Siºi2J satisfies the braid relations, etc. [28]. It will be discussed in a forthcoming
paper.

(iii) We introduce the notion of affine cuspidal modules for the category C 0
g . Let D be

a complete duality datum associated with a Cartan matrix C. For a reduced expres-
sion w0 of the longest element of the Weyl group WC, we define the affine cuspidal
modules ¹Skºk2Z for C 0

g by using the duality functor FD , the right and left duals
D , D�1, and the cuspidal modules ¹Vkº`kD1 of the quiver Hecke algebra RC associ-
ated with w0. If D arises from a Q-datum, then the affine cuspidal modules ¹Skºk2Z

consist of fundamental modules. But, in general, affine cuspidal modules are not fun-
damental. We prove that all simple modules in C 0

g can be obtained uniquely as the
simple heads of the ordered tensor products PD;w0.a/, called standard modules, of
cuspidal modules. We then show that the standard module PD;w0.a/ has the unitrian-
gularity property. This generalizes the classical simple module construction taking
the head of ordered tensor products of fundamental representations [1,25,45,46,53].

The unitriangularity property allows us to define a monoidal subcategory C
Œa;b�;D;w0
g
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of C 0
g for an interval Œa; b�, which is a generalization of the subcategory Cl (l 2Z>0)

introduced in [15]. This approach can be understood as a counterpart of the PBW the-
ory for quiver Hecke algebras via the duality functor FD . Hence we establish a base
to answer the monoidal categorification conjecture for various monoidal subcate-
gories of C 0

g in the same spirit of [24, 27]. The monoidal categorification conjecture
will be discussed in a forthcoming paper [32, 33].

We remark that whenU 0q.g/ is of untwisted affine ADE type, it has been established by
Hernandez–Leclerc that the complexified Grothendieck ring C˝Z K.C 0

g / can be written
as a product of copies of C ˝Z K.CQ/ ' CŒN �, where N is the unipotent group associ-
ated with g0 (see the proof of [16, Theorem 7.3]). When the orientation of the quiver Q
varies, one gets various copies of CŒN � in C ˝Z K.C 0

g / and the basis of standard mod-
ules correspond to various PBW basis. The PBW theory developed in this paper explains
this story transparently at the level of the module category.

Let us explain our results more precisely. Let U 0q.g/ be a quantum affine algebra of
an arbitrary type. We first investigate several properties of root modules about the new
invariants ƒ, d, etc in Section 3. A root module is a real simple module L such that

d.L;Dk.L// D ı.k D ˙1/ for any k 2 Z.

Note that the name “root module” comes from Lemma 4.15. We prove several lemmas and
propositions on root modules, which are used crucially in the proofs of the main results.

We next deal with the quantum affine Schur–Weyl duality. Let D be a duality datum
associated with a generalized Cartan matrix C D .ci;j /i;j2J of symmetric type. We study
the affinizations of modules appearing in both the categories RC-gmod and Cg as pro-
objects and slightly modify the definition of quantum affine Schur–Weyl duality in order
that the duality functor FD preserves the affinizations (Theorem 4.2). This allows us
to compare the invariants ƒ, d, etc. between quiver Hecke algebras and quantum affine
algebras via the duality functor FD . When D D ¹Liºi2J is a strong duality datum of a
Cartan matrix C D .ci;j /i;j2J of simply-laced finite type (Definition 4.7), we prove that
FD sends simple modules to simple modules (Theorem 4.10), i.e., FD is faithful (Corol-
lary 4.11), and FD preserves the invariants: for any simple modules M , N in RC-gmod,

(i) ƒ.M;N/ D ƒ.FD.M/;FD.N //,

(ii) d.M;N / D d.FD.M/;FD.N //,

(iii) .wtM;wtN/ D �ƒ1.FD.M/;FD.N //,

(iv) d.DkFD.M/;FD.N // D 0 for any k 6D 0;˙1,

(v) zƒ.M;N/ D d.DFD.M/;FD.N // D d.FD.M/;D�1FD.N //

(see Theorem 4.12). The key part of the proof is to show that the invariants for deter-
minantial modules D.wƒ;ƒ/ (see Section 2.2) are preserved under FD (Theorem 4.9).
Corollary 4.14 says that the duality functor FD induces an injective ring homomorphism

KqD1.RC-gmod/� K.Cg/;
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where KqD1.RC-gmod/ is the specialization of K.RC-gmod/ at q D 1. Interestingly, the
"i and "�i in the crystal theory for RC-gmod can be interpreted in terms of the invariants d
for Cg (Corollary 4.13).

Let D D ¹Liºi2J be a strong duality datum associated with a Cartan matrix C D
.ci;j /i;j2J of simply-laced finite type, and define CD to be the smallest full subcategory
of C 0

g that

(a) contains FD.L/ for any simple RC-module L,

(b) is stable by taking subquotients, extensions, and tensor products.

The induced map ŒFD � gives an isomorphism between K.CD/ and KqD1.RC-gmod/ as
a ring. We introduce the notion of unmixed pairs of modules in Cg (Definition 5.1) and
investigate several properties. Lemma 5.5 says that if .M;N / is an unmixed pair of simple
modules inRC-gmod, then .FD.M/;FD.N // is strongly unmixed. Let w0 be the longest
element of the Weyl group WC of gC, and ` the length of w0. We define the affine cuspidal
modules ¹Skºk2Z � C 0

g to be the simple U 0q.g/-modules given by

(a) Sk D FD.Vk/ for any k D 1; : : : ; `,

(b) SkC` D D.Sk/ for any k 2 Z,

where ¹Vkº`kD1 � RC-gmod are the cuspidal modules associated with w0. Note that the
cuspidal module Vk corresponds to the dual PBW vectors associated with w0 under the
categorification using quiver Hecke algebras. We then prove that Sa is a root module
for any a 2 Z, and .Sa; Sb/ is strongly unmixed for any a > b, which tells us that the
ordered tensor product S˝a1

k1
˝ � � � ˝ S˝at

kt
has a simple head for any decreasing integers

k1 > � � � > kt and a1; : : : ; at 2 Z�0 (Proposition 5.7). We next define the reflections Sk

and S �1
k

on duality data (see (5.3)) and prove that the reflections preserve strong duality
data with the same Cartan matrix (Proposition 5.9). Furthermore, we characterize simple
modules in the intersections CSi .D/ \ CD and CS�1

i
.D/ \ CD by using the cuspidal

modules ¹Vkº`kD1 (Proposition 5.11).
We finally introduce the notion of a complete duality datum (Definition 6.1). We prove

that if D D ¹Liºi2J is a complete duality datum, then the associated Cartan matrix C has
the same type as that of gfin. Note that the root system ‡g of gfin provides the block
decomposition of Cg [31]. The reflections Sk and S �1

k
preserve complete duality data

with the same Cartan matrix (Theorem 6.3), and the duality datum DQ arising from a
Q-datum Q D .4; �; �/ is complete (Proposition 6.5). By the definition, CDQ

is equal
to CQ. Since a new complete duality datum can be constructed by applying the reflec-
tions to DQ, when D is complete, the category CD can be viewed as a generalization
of CQ. We now assume that D is complete. Let ¹Skºk2Z be the affine cuspidal modules
corresponding to D and a reduced expression w0, and set Z WDZ˚Z

�0 . We denote by � the
bi-lexicographic order on Z. For any aD .ak/k2Z 2 Z, we define the standard module by

PQ;w0.a/ WD � � � ˝ S˝a11 ˝ S˝a00 ˝ S˝a�1�1 ˝ � � � ;

and set VQ;w0.a/ WD hd.PQ;w0.a//. We prove that VQ;w0.a/ is simple for any a 2 Z and
the set ¹VQ;w0.a/ j a 2 Zº is a complete and irredundant set of simple modules of C 0

g up
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to isomorphism (Theorem 6.10). Furthermore, Theorem 6.12 says that if V is a simple
subquotient of PQ;w0.a/ which is not isomorphic to VQ;w0.a/, then

aQ;w0.V / � a;

which means that the module PQ;w0.a/ has the unitriangularity property with respect

to �. For an interval Œa; b�, we define C
Œa;b�;D;w0
g to be the full subcategory of Cg whose

objects have all their composition factors V satisfying

b � l.aD;w0.V // and r.aD;w0.V // � a;

where l and r are defined in (6.8). By unitriangularity, the category C
Œa;b�;D;w0
g is stable

by taking tensor products, and it also enjoys the same properties (Theorem 6.16).
This paper is organized as follows. In Section 2, we give the necessary background on

quiver Hecke algebras, quantum affine algebras, and the invariants related to R-matrices.
In Section 3, we introduce the notion of root modules and investigate several properties.
In Section 4, we study affinizations and the duality functor FD , and prove that when D is
strong, FD sends simple modules to simple modules and preserves the new invariants. In
Section 5, we introduce the notions of affine cuspidal modules and reflections, and prove
that the reflections preserve the strong duality data. In Section 6, we study the PBW-
theoretic approach to C 0

g using a complete duality datum and affine cuspidal modules.

2. Preliminaries

Convention. (i) For a statement P , ı.P / is 1 or 0 according as P is true or not.

(ii) For a field k, a 2 k and f .z/ 2 k.z/, we denote by zerozDa f .z/ the order of the
zero of f .z/ at z D a.

(iii) For a ring A, A� is the set of invertible elements of A.

2.1. Quantum groups

Let I be an index set. A quintuple .A; P; …; P_; …_/ called a (symmetrizable) Cartan
datum consists of

(a) a generalized Cartan matrix A D .aij /i;j2I ,

(b) a free abelian group P, called the weight lattice,

(c) … D ¹˛i j i 2 I º � P, called the set of simple roots,

(d) P_ D HomZ.P;Z/, called the coweight lattice,

(e) …_ D ¹hi 2 P_ j i 2 I º, called the set of simple coroots

satisfying the following:

(i) hhi ; j̨ i D aij for i; j 2 I ,

(ii) … is linearly independent over Q,
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(iii) for each i 2 I , there existsƒi 2 P, called the fundamental weight, such that hhj ;ƒi i
D ıj;i for all j 2 I .

(iv) there is a symmetric bilinear form .� ; �/ on P satisfying

.˛i ; ˛i / 2 2Z>0 and hhi ; �i D
2.˛i ; �/

.˛i ; ˛i /
:

We set Q WD
L
i2I Z˛i and QC WD

P
i2I Z�0˛i and define ht.ˇ/ D

P
i2I ki for

ˇ D
P
i2I ki˛i 2 QC. We define PC WD ¹ƒ 2 P j hhi ; ƒi 2 Z�0 for any i 2 I º.

We write ˆC for the set of positive roots associated with A and set ˆ� WD �ˆC.
Denote by W the Weyl group, which is the subgroup of Aut.P/ generated by si .�/ WD ��
hhi ; �i˛i for i 2 I .

We denote by Uq.g/ the quantum group associated with .A;P;P_;…;…_/, which is a
Q.q/-algebra generated by fi , ei .i 2 I / and qh .h 2 P_/ with certain defining relations
(see [18, Chapter 3] for details). We denote by UCq .g/ (resp. U�q .g/) the subalgebra of
Uq.g/ generated by ei ’s (resp. fi ’s). Set A WDZŒq; q�1� and write U˙A .g/ for the A-lattice
ofU˙q .g/, which is the A-subalgebra generated by e.n/i (resp. f .n/i ) for i 2 I and n2Z�0.
We define the unipotent quantum coordinate ring

Aq.n/ WD
M
ˇ2Q�

Aq.n/ˇ where Aq.n/ˇ WD HomQ.q/.U
C
q .g/�ˇ ;Q.q//,

and denote by Aq.n/A the A-lattice of Aq.n/. Note that Aq.n/ is isomorphic to U�q .g/ as
a Q.q/-algebra [24, Lemma 8.2.2].

2.2. Quiver Hecke algebras

Let k be a field and let .A;P;…;P_;…_/ be a Cartan datum. Choose polynomials

Qi;j .u; v/ D ı.i 6D j /
X

.p;q/2Z2
�0

.˛i ;˛i /pC. j̨ ; j̨ /qD�2.˛i ; j̨ /

ti;j Ip;qu
pvq 2 kŒu; v�

with ti;j Ip;q 2 k, ti;j Ip;q D tj;i Iq;p and ti;j I�aij ;0 2 k�. Note that Qi;j .u; v/ DQj;i .v; u/
for i; j 2 I . Let Sn D hs1; : : : ; sn�1i be the symmetric group on n letters with the action
of Sn on I n by place permutation. For ˇ 2 QC with ht.ˇ/ D n, we set

I ˇ WD ¹� D .�1; : : : ; �n/ 2 I
n
j ˛�1 C � � � C ˛�n D ˇº:

Definition 2.1. Let ˇ 2 QC with ht.ˇ/ D n. The quiver Hecke algebra R.ˇ/ associ-
ated with the parameters ¹Qi;j ºi;j2I is the k-algebra generated by ¹e.�/º�2Iˇ , ¹xkºnkD1,
¹�mº

n�1
mD1 satisfying the following defining relations:

e.�/e.�0/ D ı�;�0e.�/;
X
�2Iˇ

e.�/ D 1;

xkxm D xmxk ; xke.�/ D e.�/xk ;
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�me.�/ D e.sm.�//�m; �k�m D �m�k if jk �mj > 1;

�2ke.�/ D Q�k ;�kC1.xk ; xkC1/e.�/;

.�kxm � xsk.m/�k/e.�/ D

8̂̂<̂
:̂
�e.�/ if m D k, �k D �kC1,

e.�/ if m D k C 1, �k D �kC1,

0 otherwise,

.�kC1�k�kC1 � �k�kC1�k/e.�/

D

8<:
Q�k ;�kC1.xk ; xkC1/ �Q�k ;�kC1.xkC2; xkC1/

xk � xkC2
e.�/ if �k D �kC2;

0 otherwise:

The algebra R.ˇ/ has the Z-grading defined by

deg e.�/ D 0; deg xke.�/ D .˛�k ; ˛�k /; deg �le.�/ D �.˛�l ; ˛�lC1/:

For a Z-graded k-algebraA, we denote byA-gMod the category of graded leftA-modules,
and write A-gproj (resp. A-gmod) for the full subcategory of A-gMod consisting of
finitely generated projective (resp. finite-dimensional) graded A-modules. We setR-gproj
WD
L
ˇ2QC R.ˇ/-gproj and R-gmod WD

L
ˇ2QC R.ˇ/-gmod.

For M 2 R.ˇ/-gMod and N 2 R./-gMod, we define their convolution product by

M ıN WDR.ˇ C /e.ˇ; /˝R.ˇ/˝R./ .M ˝N/;

where e.ˇ;/D
P
�12Iˇ ; �22I

e.�1 � �2/. Here �1 � �2 is the concatenation of �1 and �2.
We denote byM r N the head ofM ıN and byM �N the socle ofM ıN . We say that
simple R-modules M and N strongly commute if M ıN is simple. A simple R-module
L is real if L ı L is simple. For i 2 I and an R.ˇ/-module M , we define

Ei .M/ WD e.˛i ; ˇ � ˛i /M; Fi .M/ WDR.˛i / ıM;

and

wt.M/ WD �ˇ;

"i .M/ WDmax ¹k � 0 j Eki .M/ ¤ 0º;

'i .M/ WD "i .M/C hhi ;wt.M/i:

For i 2 I , we denote by L.i/ the self-dual 1-dimensional simple R.˛i /-module. For a
simple module M , Qfi .M/ (resp. Qei .M/) is the self-dual simple R-module isomorphic
to L.i/ r M (resp. soc.EiM/). One also defines E�i , F �i , "�i , etc. in the same manner,
replacing e.˛i ; ˇ � ˛i / and R.˛i / ı � by e.ˇ � ˛i ; ˛i / and � ıR.˛i /.

Theorem 2.2 ([38, 39, 49]). There exist A-bialgebra isomorphisms

U�A .g/
�
�! K.R-gproj/ and Aq.n/A

�
�! K.R-gmod/;

whereK.R-gproj/ andK.R-gmod/ are the Grothendieck groups ofR-gproj andR-gmod.



M. Kashiwara, M. Kim, S.-j. Oh, E. Park 2688

Definition 2.3. The quiver Hecke algebra R.ˇ/ is said to be symmetric if Qi;j .u; v/ is a
polynomial in u � v for any i; j 2 I .

When R is symmetric, the Cartan matrix A is of symmetric type. In this case we
assume that .˛i ; ˛i / D 2 for all i 2 I .

In what follows, we assume that R is symmetric.
Let z be an indeterminate with homogeneous degree 2. For an R.ˇ/-module M ,

we denote by M aff the affinization of M [21, 35]. If R.ˇ/ is symmetric, then M aff D

kŒz�˝k M and the R.ˇ/-module structure of M aff is defined by

e.�/.f ˝m/ D f ˝ e.�/m;

xj .f ˝m/ D .zf /˝mC f ˝ xjm;

�k.f ˝m/ D f ˝ .�km/

for f 2 kŒz�, m 2 M , � 2 I ˇ and admissible j; k. We sometimes write Mz instead of
M aff to emphasize z.

Let ˇ 2 QC and m D ht.ˇ/. For k D 1; : : : ; m � 1 and � 2 I ˇ , the intertwiner
'k 2 R.ˇ/ is defined by

'ke.�/ WD

´
.�kxk � xk�k/e.�/ if �k D �kC1;

�ke.�/ otherwise.

Note that ¹'kºm�1kD1
satisfies the braid relation. Hence, we can define 'w for any w 2 Sm.

LetM be an R.ˇ/-module with ht.ˇ/D m and N an R.ˇ0/-module with ht.ˇ0/D n. Let
wŒn;m� be the element of SmCn which sends k 7! k Cm for 1 � k � n and k 7! k � n

if n < k � mC n. Then the R.ˇ/˝ R.ˇ0/-linear map M ˝ N ! N ıM defined by
u˝ v 7! 'wŒn;m�.v ˝ u/ can be extended to the R.ˇ C ˇ0/-module homomorphism (up
to a grading shift)

RM;N WM ıN ! N ıM:

For non-zero R-modules M and N , we set

Rren
Mz ;Nz0

WD .z0 � z/�sRMz ;Nz0 WMz ıNz0 ! Nz0 ıMz ;

where s is the largest integer such that RMz ;Nz0 .Mz ıNz0/ � .z
0 � z/sNz0 ıMz . We call

it the renormalized R-matrix. Then, we define

r
M;N
WM ıN ! N ıM

as the specialization of Rren
Mz ;Nz0

at z D z0 D 0 (up to a constant multiple), which never
vanishes by the definition (see [21, Section 1] and [35, Section 2] for details).

Definition 2.4. Let M and N be simple R-modules. We set

ƒ.M;N/ WD deg.r
M;N

/;

zƒ.M;N/ WD 1
2

�
ƒ.M;N/C .wt.M/;wt.N //

�
;

d.M;N / WD 1
2

�
ƒ.M;N/Cƒ.N;M/

�
:
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Many properties of ƒ, zƒ, and d were obtained in [24, 26, 30].
We now define the monoidal subcategories Cw , C�;v and Cw;v of R-gmod for

w; v 2 W. For M 2 R.ˇ/-gMod, we define

W.M/ WD ¹ 2 QC \ .ˇ � QC/ j e.; ˇ � /M ¤ 0º;

W�.M/ WD ¹ 2 QC \ .ˇ � QC/ j e.ˇ � ; /M ¤ 0º:

For w 2 W, we denote by Cw the full subcategory of R-gmod whose objects M satisfy

W.M/ � spanR�0.ˆ
C
\ wˆ�/:

Similarly, for v 2 W, we define C�;v to be the full subcategory of R-gmod whose
objects N satisfy

W�.N / � spanR�0.ˆ
C
\ vˆC/:

Finally, we define Cw;v WD Cw \ C�;v .
When g is of finite type, we have Cw0 D R-gmod and

M 2 Csiw0 if and only if "i .M/ D 0,

M 2 C�;si if and only if "�i .M/ D 0,

for any R-module M in R-gmod and i 2 I . Here w0 denotes the longest element of W
(see [26] for details).

Let w WD si1 � � � sil be a reduced expression of w 2 W and define

ˇk WD si1 � � � sik�1.˛ik / for k D 1; : : : ; l . (2.1)

Then we equip ˆC \ wˆ� D ¹ˇ1; : : : ; ˇlº with the convex order � on ˆC \ wˆ�, i.e.,
ˇa � ˇb for any a < b. For ˇ 2 ˆC \wˆ�, a pair .˛; / is called a minimal pair of ˇ if
ˇ D ˛ C  , ˛ �  and there exists no pair .˛0;  0/ such that ˇ D ˛0 C  0 and ˛ � ˛0 �
 0 �  . The convex order provides the PBW vectors ¹E.ˇk/ºlkD1 in U�A .g/ and the dual
PBW vectors ¹E�.ˇk/ºlkD1 in Aq.n/A. We set Aq.n.w// to be the subalgebra of Aq.n/
generated byE�.ˇk/ for kD 1; : : : ; l . The category Cw categorifies the algebraAq.n.w//
[24, 26].

For k D 1; : : : ; l , let Vk be the cuspidal module corresponding to ˇk with respect to
w (see [26, Section 2] for a precise definition). Under the categorification, the cuspidal
module Vk corresponds to the dual PBW vector E�.ˇk/. It is known that the set

¹hd.Vıal
l
ı � � � ı Vıa11 / j .a1; : : : ; al / 2 Zl�0º

gives a complete set of pairwise non-isomorphic simple graded modules in Cw , up to a
grading shift [3, 37, 43, 52]. Note that, for a minimal pair .ˇa; ˇb/ of ˇk , there exists an
isomorphism

Va r Vb ' Vk (2.2)

(see [43, Lemma 4.2] and [3, Section 4.3]).
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For ƒ 2 PC and w; v 2 W with w � v, we denote by D.wƒ; vƒ/ the determinan-
tial module in R-gmod corresponding to the pair .wƒ; vƒ/ (see [24, Section 10.2] and
[26, Section 4] for precise definitions). Under the categorification, the determinantial
module D.wƒ; vƒ/ corresponds to the unipotent quantum minor D.wƒ; vƒ/ in Aq.n/
[26, Proposition 4.1].

From now on, we assume that k is a field of characteristic 0 and thatR is a symmetric
quiver Hecke algebra of finite ADE type.

Note that, under the categorification by R-gmod, the upper global basis (or dual
canonical basis) of Aq.n/ corresponds to the set of isomorphism classes of simple R-
modules [48, 54]. Then the reflection functor Ti constructed in [37] gives an equivalence
of categories

Ti WCsiw0
�
�! C�;si :

Note that Ti is denoted by T �i in [26]. Since, at the crystal level, this functor corresponds
to the Saito crystal reflection [50], we have

Ti .M/ ' Qf
'�
i
.M/

i Qe
�"�
i
.M/

i .M/ (2.3)

for a simple module M with "i .M/ D 0. For a reduced expression w WD si1 � � � sil , the
cuspidal module Vk can be computed as follows (see [26, Section 5]):

Vk ' Ti1 � � � Tik�1.L.ik// for k D 1; : : : ; l . (2.4)

2.3. Quantum affine algebras

We assume that A D .ai;j /i;j2I is an affine Cartan matrix. Note that the rank of P is
jI j C 1. We denote by ı 2 Q the imaginary root and by c the central element in P_. Note
that the positive imaginary root �im

C is equal to Z>0ı and the center of g is generated
by c. We write Pcl WD P=.P \ Qı/, called the classical weight lattice, and take � 2 P
(resp. �_ 2 P_) such that hhi ; �i D 1 (resp. h�_; ˛i i D 1) for any i 2 I . We choose a
Q-valued non-degenerate symmetric bilinear form . ; / on P satisfying

hhi ; �i D
2.˛i ; �/

.˛i ; ˛i /
and hc; �i D .ı; �/

for any i 2 I and � 2 P. We define g to be the affine Kac–Moody algebra associated
with A. We shall use the standard convention in [19] to choose 0 2 I except for A.2/2n type,
in which we take the longest simple root as ˛0, and B.1/2 and A.2/3 types, in which we take
the following Dynkin diagrams:

A
.2/
2n W ı

ks
n

ı
n�1

ı
n�2

� � � ı
1

ı
0

ks B
.1/
2 W ı0

+3ı+3
2

ı
1

ks A
.2/
3 W ı

ks
0

ı
2

ks ı+3
1

Note that B.1/2 and A.2/3 in the above diagram are denoted by C .1/2 and D.2/
3 respectively

in [19].
Set I0 WD I n ¹0º.
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Let q be an indeterminate and k the algebraic closure of the subfield C.q/ in the
algebraically closed fieldbk WDSm>0 C..q1=m//. For m; n 2 Z�0 and i 2 I , we define
qi D q

.˛i ;˛i /=2 and

Œn�i D
qni � q

�n
i

qi � q
�1
i

; Œn�i Š D

nY
kD1

Œk�i ;

�
m

n

�
i

D
Œm�i Š

Œm � n�i ŠŒn�i Š
:

Let d be the smallest positive integer such that d.˛i ; ˛i /=2 2 Z for all i 2 I .

Definition 2.5. The quantum affine algebraUq.g/ associated with an affine Cartan datum
.A;P;…;P_;…_/ is the associative algebra over k with 1 generated by ei ; fi .i 2 I / and
qh .h 2 d�1P_/ satisfying the following relations:

(i) q0 D 1; qhqh
0

D qhCh
0

for h; h0 2 d�1P_;

(ii) qheiq�h D qhh;˛i iei , qhfiq
�h D q�hh;˛i ifi for h 2 d�1P_; i 2 I ,

(iii) eifj � fj ei D ıij
Ki �K

�1
i

qi � q
�1
i

; where Ki D q
hi
i ;

(iv)
1�aijX
kD0

.�1/ke
.1�aij�k/

i ej e
.k/
i D

1�aijX
kD0

.�1/kf
.1�aij�k/

i fjf
.k/
i D 0 for i ¤ j;

where e.k/i D e
k
i =Œk�i Š and f .k/i D f ki =Œk�i Š.

Let us denote by U 0q.g/ the k-subalgebra of Uq.g/ generated by ei ; fi ; K˙1i .i 2 I /.
Let Cg be the category of finite-dimensional integrable U 0q.g/-modules, i.e., finite-dimen-
sional modules M with a weight decomposition

M D
M
�2Pcl

M� where M� D ¹u 2M j Kiu D q
hhi ;�i
i uº:

Note that the trivial module 1 is contained in Cg and the tensor product˝ gives a monoidal
category structure on Cg. The monoidal category Cg is rigid. For M 2 Cg, we denote by
DM and D�1M the right dual and the left dual of M , respectively. Hence we have the
evaluation morphisms

M ˝DM ! 1 and D�1M ˝M ! 1:

We extend this to Dk for k 2 Z. We set M˝k WDM ˝ � � � ˝M (k factors) for k 2 Z�0.
For M;N 2 Cg, we denote by M r N the head of M ˝ N and by M � N the socle
of M ˝ N . We say that M and N strongly commute if M ˝ N is simple. A simple
U 0q.g/-module L is real if L˝ L is simple.

A simple moduleL in Cg contains a non-zero vector u 2L of weight � 2 Pcl such that
(i) hhi ;�i � 0 for all i 2 I0, (ii) all the weights ofL are contained in ��

P
i2I0

Z�0 cl.˛i /,
where clWP! Pcl is the canonical projection. Such a � is unique and u is unique up to a
constant multiple. We call � the dominant extremal weight ofL and u a dominant extremal
weight vector of L. For each i 2 I0, we set

$i WD gcd.c0; ci /�1 cl.c0ƒi � ciƒ0/;
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where the central element c is equal to
P
i2I cihi . For any i 2 I0, we denote by V.$i /

the i -th fundamental representation. Note that the dominant extremal weight of V.$i /

is $i .

2.4. R-matrices

In this subsection we review the notion of R-matrices on U 0q.g/-modules and their coeffi-
cients (see [9], [1, Appendices A and B] and [25, Section 8] for details).

For a module M 2 Cg, we denote by M aff the affinization of M and by zM WM aff !

M aff the U 0q.g/-module automorphism of weight ı. Note that M aff ' kŒz˙1�˝k M with
the action

ei .a˝ v/ D z
ıi;0a˝ eiv for a 2 kŒz˙1� and v 2M .

We sometimes write Mz instead of M aff to emphasize the endomorphism z. For x 2 k�,
we define

Mx WDM
aff=.zM � x/M

aff:

We call x a spectral parameter (see [25, Section 4.2] for details).
Take a basis ¹P�º� of UCq .g/ and a basis ¹Q�º� of U�q .g/ dual to each other with

respect to a suitable coupling between UCq .g/ and U�q .g/. For U 0q.g/-modulesM andN ,
we define

Runiv
M;N .u˝ v/ WD q

.wt.u/;wt.v//
X
�

P�v ˝Q�u for u 2M and v 2 N ,

so that Runiv
M;N gives a U 0q.g/-linear homomorphism M ˝ N ! N ˝M , called the uni-

versal R-matrix, provided that the infinite sum has a meaning. As Runiv
M;Nz

converges in the
z-adic topology for M;N 2 Cg, we have a morphism of k..z//˝ U 0q.g/-modules

Runiv
M;Nz
Wk..z// ˝

kŒz˙1�
.M ˝Nz/! k..z// ˝

kŒz˙1�
.Nz ˝M/:

Note that Runiv
M;Nz

is an isomorphism. For non-zero M;N 2 Cg, we say that the universal
R-matrix Runiv

M;Nz
is rationally renormalizable if there exists f .z/ 2 k..z//� such that

f .z/Runiv
M;Nz

.M ˝Nz/ � Nz ˝M:

In this case, we can choose cM;N .z/2 k..z//� such that, for any x 2 k�, the specialization
of Rren

M;Nz
WD cM;N .z/R

univ
M;Nz
WM ˝Nz ! Nz ˝M at z D x,

Rren
M;Nz
jzDx WM ˝Nx ! Nx ˝M;

does not vanish. Note that Rren
M;Nz

and cM;N .z/ are unique up to a multiple of kŒz˙1�� DF
n2Z k�zn. We call Rren

M;Nz
the renormalized R-matrix and cM;N .z/ the renormalizing

coefficient. We denote by r
M;N

the specialization at z D 1,

r
M;N
WDRren

M;Nz
jzD1WM ˝N ! N ˝M; (2.5)
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and call it the R-matrix. The R-matrix r
M;N

is well-defined up to a constant multiple
whenever Runiv

M;Nz
is rationally renormalizable. By the definition, r

M;N
never vanishes.

Let M and N be simple modules in Cg and let u and v be dominant extremal weight
vectors of M and N , respectively. Then there exists aM;N .z/ 2 kŒŒz��� such that

Runiv
M;Nz

.u˝ vz/ D aM;N .z/.vz ˝ u/:

Thus we have a unique k.z/˝ U 0q.g/-module isomorphism

Rnorm
M;Nz

WD aM;N .z/
�1Runiv

M;Nz

ˇ̌
k.z/˝

kŒz˙1�
.M˝Nz/

from k.z/˝kŒz˙1� .M ˝Nz/ to k.z/˝kŒz˙1� .Nz ˝M/ which satisfies

Rnorm
M;Nz

.u˝ vz/ D vz ˝ u:

We call aM;N .z/ the universal coefficient of M and N , and Rnorm
M;Nz

the normalized
R-matrix.

Let dM;N .z/ 2 kŒz� be a monic polynomial of the smallest degree such that the
image of dM;N .z/Rnorm

M;Nz
.M ˝ Nz/ is contained in Nz ˝M ; the polynomial is called

the denominator of Rnorm
M;Nz

. Then we have

Rren
M;Nz

D dM;N .z/R
norm
M;Nz
WM ˝Nz ! Nz ˝M up to a multiple of kŒz˙1��.

Thus

Rren
M;Nz

D aM;N .z/
�1dM;N .z/R

univ
M;Nz

and cM;N .z/ D
dM;N .z/

aM;N .z/

up to a multiple of kŒz˙1��. In particular, Runiv
M;Nz

is rationally renormalizable whenever
M and N are simple.

The following proposition was one of the main results of [22].

Proposition 2.6 ([22, Theorem 3.12]). LetM andN be simple modules, and assume that
one of them is real. Then Im.r

M;N
/ is a simple module and it coincides with the head of

M ˝N and with the socle of N ˝M .

Let M and N be simple modules in Cg. Suppose that one of them is real. Thanks to
Proposition 2.6, the diagram

M ˝N // //

r
M;N

**

M r N
�

N �M // // N ˝M (2.6)

commutes. Here� denotes the natural projection and� denotes the embedding.

Lemma 2.7 ([22, Corollary 3.13]). Let L be a real simple module. Then for any simple
module X , we have

.L r X/ r DL ' X; D�1L r .X r L/ ' X;

L r .X r DL/ ' X; .D�1L r X/ r L ' X:
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Lemma 2.8 ([22, Corollary 3.14]). Let X , Y and L be simple modules in Cg. Suppose
that L is real.

(i) X ' L r Y if and only if X r DL ' Y ,

(ii) X ' Y r L if and only if .D�1L/ r X ' Y .

In the following theorem, we refer to [25] for the notion of good modules. We only
note that the fundamental module V.$i / is a good module.

Theorem 2.9 ([1, 4, 22, 25]).

(i) For good modules M and N , the zeroes of dM;N .z/ belong to CŒŒq1=m��q1=m for
some m 2 Z>0.

(ii) For simple modules M and N such that one of them is real, Mx and Ny strongly
commute if and only if dM;N .z/dN;M .1=z/ does not vanish at z D y=x.

(iii) Let Mk be a good module with a dominant extremal vector uk of weight �k , and
ak 2 k� for k D 1; : : : ; t . Assume that aj =ai is not a zero of dMi ;Mj .z/ for any
1 � i < j � t . Then the following statements hold:

(a) .M1/a1 ˝ � � � ˝ .Mt /at is generated by u1 ˝ � � � ˝ ut .

(b) The head of .M1/a1 ˝ � � � ˝ .Mt /at is simple.

(c) Any non-zero submodule of .Mt /at ˝ � � � ˝ .M1/a1 contains the vector ut ˝
� � � ˝ u1.

(d) The socle of .Mt /at ˝ � � � ˝ .M1/a1 is simple.

(e) Let rW .M1/a1 ˝ � � � ˝ .Mt /at ! .Mt /at ˝ � � � ˝ .M1/a1 be r
.M1/a1 ;:::;.Mt /at

WDQ
1�j<k�t r

.Mj /aj ; .Mk/ak
. Then the image of r is simple and it coincides with

the head of .M1/a1 ˝ � � �˝ .Mt /at and with the socle of .Mt /at ˝ � � �˝ .M1/a1 .

(iv) For any simple module M 2 Cg, there exists a finite sequence ¹.ik ; ak/ºtkD1 in �.g/
(see (2.7) below) such that M has

Pt
kD1$ik as a dominant extremal weight and it

is isomorphic to a simple subquotient of V.$i1/a1 ˝ � � � ˝ V.$it /at . Moreover, the
sequence ¹.ik ; ak/ºtkD1 is unique up to a permutation.

We call
Pt
kD1.ik ; ak/ 2 yP WD Z˚�.g/ the affine highest weight of M .

2.5. Hernandez–Leclerc categories

For i 2 I0, let mi be a positive integer such that

W�i \ .�i C Zı/ D �i C Zmiı;

where �i is an element of P such that cl.�i / D $i . Note that mi D .˛i ; ˛i /=2 when g is
the dual of an untwisted affine algebra, and mi D 1 otherwise. Then V.$i /x ' V.$i /y
if and only if xmi D ymi for x; y 2 k� [1, Section 1.3]. We define

�.g/ WD I0 � k�=�; (2.7)
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where the equivalence relation � is given by

.i; x/ � .j; y/” V.$i /x ' V.$j /y” i D j and xmi D ymj .

We denote by Œ.i; a/� the equivalence class of .i; a/ in �.g/. When no confusion
can arise, we simply write .i; a/ for the equivalence class Œ.i; a/�. For .i; x/; .j; y/ 2
�.g/, we draw d arrows from .i; x/ to .j; y/, where d is the order of the zero of
dV.$i /;V.$j /.zV.$j /=zV.$i // at zV.$j /=zV.$i /D y=x. Thus, �.g/ has a quiver structure.

We choose a connected component �0.g/ of �.g/. Since a connected component of
�.g/ is unique up to a spectral parameter shift, �0.g/ is uniquely determined up to a
quiver isomorphism. We define C 0

g to be the smallest full subcategory of Cg that

(a) contains V.$i /x for all .i; x/ 2 �0.g/,

(b) is stable by taking subquotients, extensions and tensor products.

For symmetric affine types, this category was introduced in [15]. Note that every simple
module in Cg is isomorphic to a tensor product of certain spectral parameter shifts of
some simple modules in C 0

g [15, Section 3.7].

2.6. Invariants related to R-matrices

Let us recall the new invariants introduced in [27]. We set

'.z/ WD

1Y
sD0

.1 � zp sz/ D

1X
nD0

.�1/n zp n.n�1/=2Qn
kD1.1 � zp

k/
zn 2 kŒŒz��;

where p� WD .�1/h�
_;ıiqhc;�i and zp WD .p�/2 D q2hc;�i. We consider the subgroup G of

k..z//� given by

G WD

²
czm

Y
a2k�

'.az/�a
ˇ̌̌̌

c 2 k�; m 2 Z;
�a 2 Z vanishes for all but finitely many a’s

³
:

For a subset S of Z, let zp S WD ¹ zp k j k 2 Sº. We define the group homomorphisms

DegWG ! Z and Deg1WG ! Z

by
Deg.f .z// D

X
a2 zp

Z�0

�a �
X

a2 zpZ>0

�a and Deg1.f .z// D
X
a2 zpZ

�a

for f .z/ D czm
Q
a2k� '.az/

�a 2 G .
Note that

Deg.f .z// D 2 zerozD1 f .z/ for f .z/ 2 k.z/� � G (2.8)

(see [27, Lemma 3.4]).
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Definition 2.10. For non-zero U 0q.g/-modules M and N such that Runiv
M;Nz

is rationally
renormalizable, we define

ƒ.M;N/ WD Deg.cM;N .z//;

ƒ1.M;N / WD Deg1.cM;N .z//;

d.M;N / WD 1
2
.ƒ.M;N/Cƒ.N;M//:

Note that ƒ.M;N/ � ƒ1.M;N / mod 2.

Proposition 2.11 ([27, Lemma 3.7, 3.8 and Corollary 3.23]). Let M;N be simple mod-
ules in Cg.

(i) ƒ1.M;N / D �Deg1.aM;N .z//.

(ii) ƒ1.M;N / D ƒ1.N;M/.

(iii) ƒ1.M;N / D �ƒ1.DM;N/ D �ƒ1.M;DN/.

(iv) In particular, ƒ1.M;N / D ƒ1.DM;DN/.

Proposition 2.12 ([27, Lemma 3.7 and Proposition 3.18]). Let M;N be simple modules
in Cg.

(i) ƒ.M;N/ D ƒ.N;DM/ D ƒ.D�1N;M/.

(ii) In particular,

ƒ.M;N/ D ƒ.DM;DN/ D ƒ.D�1M;D�1N/:

Proposition 2.13 ([27, Proposition 3.11]). Let M , N and L be non-zero modules in Cg,
and let S be a non-zero subquotient of M ˝N .

(i) Assume that Runiv
M;Lz

and Runiv
N;Lz

are rationally renormalizable. Then Runiv
S;Lz

is ratio-
nally renormalizable and

ƒ.S;L/ � ƒ.M;L/Cƒ.N;L/ and ƒ1.S; L/ D ƒ1.M;L/Cƒ1.N;L/:

(ii) Assume that Runiv
L;Mz

and Runiv
L;Nz

are rationally renormalizable. Then Runiv
L;Sz

is ratio-
nally renormalizable and

ƒ.L; S/ � ƒ.L;M/Cƒ.L;N / and ƒ1.L; S/ D ƒ1.L;M/Cƒ1.L;N /:

Proposition 2.14 ([27, Proposition 3.16]). Let M and N be simple modules in Cg.

(i) d.M;N / D zerozD1.dM;N .z/dN;M .z�1//,

(ii) d.M;N / D d.N;M/.

In particular, d.M;N / 2 Z�0.

Corollary 2.15 ([27, Corollaries 3.17 and 3.20]). LetM andN be simple modules in Cg.

(i) Suppose that M or N is real. Then M and N strongly commute if and only if
d.M;N / D 0.

(ii) In particular, if M is real, then ƒ.M;M/ D 0:
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Proposition 2.16 (i, ii) below was proved in [27, Proposition 3.22], and Proposition
2.16 (iii) is new. We give the whole proof of Proposition 2.16 for the reader’s convenience.

Proposition 2.16. For simple modules M and N in Cg, we have the following:

(i) ƒ.M;N/ D
P
k2Z.�1/

kCı.k<0/ d.M;DkN/ D
P
k2Z.�1/

kCı.k>0/ d.DkM;N/,

(ii) ƒ1.M;N / D
P
k2Z.�1/

k d.M;DkN/,

(iii) zerozD1 cM;N .z/ D
P1
kD0.�1/

k d.M;DkN/.

Proof. We write cM;N .z/ �
Q
a2k� '.az/

�a mod kŒz˙1��. Then

cM;N .z/

cM;N . zpz/
�

Y
a2k�

.1 � az/�a ;

which yields

� zp�k D zerozD zpk
�
cM;N .z/

cM;N . zpz/

�
D zerozD1

�
cM;N . zp

kz/

cM;N . zp kC1z/

�
D zerozD1

� cM;N
zpk
.z/

cM;N
zpk
. zpz/

�
D
.�/

zerozD1

� dM;N
zpk
.z/dN

zpk
;M .z

�1/

dD�1M;N
zpk
.z/dN

zpk
;D�1M .z

�1/

�
D
.��/
d.M;N zpk / � d.D

�1M;N zpk / D d.M;D
2kN/ � d.M;D2kC1N/;

where .�/ follows from [27, Lemma 3.15] and .��/ from Proposition 2.14. Therefore,

ƒ.M;N/ D
X
k2Z

.�1/ı.k>0/� zpk D
X
k2Z

.�1/ı.k<0/� zp�k

D

X
k2Z

.�1/ı.k<0/.d.M;D2kN/ � d.M;D2kC1N//

D

X
k2Z

.�1/kCı.k<0/ d.M;DkN/;

which implies the first assertion (i). Similarly, we obtain (ii):

ƒ1.M;N / D
X
k2Z

� zpk D
X
k2Z

�
d.M;D�2kN/ � d.M;D�2kC1N/

�
D

X
k2Z

.�1/k d.M;DkN/:

Finally,

zerozD1 cM;N .z/ D
1X
kD0

� zp�k D

1X
kD0

�
d.M;D2kN/ � d.M;D2kC1N/

�
D

1X
kD0

.�1/k d.M;DkN/;

which gives (iii).
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Proposition 2.17 ([27, Corollary 4.12]). Let L be a real simple module, and M a simple
module. Assume that d.L;M/ > 0. Then

d.L; S/ < d.L;M/

for any simple subquotient S of L˝M and also for any simple subquotient S ofM ˝L.

The assumption in the following definition is slightly weaker than the one in [27,
Definition 4.14]. Under this weak assumption, the statements as in [27, Lemma 4.15–
4.18] can be proved in the same manner.

Definition 2.18. Let L1; : : : ; Lr be simple modules that are all real except possibly
one. The sequence .L1; : : : ; Lr / is called a normal sequence if the composition of the
R-matrices

r
L1;:::;Lr

WD

Y
1�i<j�r

r
Li ;Lj

D .r
Lr�1;Lr

/ ı � � � ı .r
L2;Lr

ı � � � ı r
L2;L3

/ ı .r
L1;Lr

ı � � � ı r
L1;L2

/W

L1 ˝ L2 ˝ � � � ˝ Lr ! Lr ˝ � � � ˝ L2 ˝ L1

does not vanish.

Lemma 2.19 ([27, Lemma 4.15]). Let .L1; : : : ; Lr / be a normal sequence of simple
modules that are all real except possibly one. Then Im.r

L1;:::;Lr
/ is simple and it coincides

with the head of L1 ˝ � � � ˝ Lr and with the socle of Lr ˝ � � � ˝ L1.

Lemma 2.20 ([27, Lemma 4.16]). Let L1; : : : ; Lr be simple modules that are all real
except possibly one.

(i) If .L1; : : : ; Lr / is normal, then

(a) .L2; : : : ; Lr / and .L1; : : : ; Lr�1/ are normal,

(b) ƒ.L1; hd.L2 ˝ � � � ˝ Lr // D
Pr
jD2ƒ.L1; Lj /;

ƒ.hd.L1 ˝ � � � ˝ Lr�1/; Lr / D
Pr�1
jD1ƒ.Lj ; Lr /:

(ii) If L1 is real, .L2; : : : ; Lr / is normal and

ƒ.L1; hd.L2 ˝ � � � ˝ Lr // D
rX

jD2

ƒ.L1; Lj /;

then .L1; : : : ; Lr / is normal.

(iii) If Lr is real, .L1; : : : ; Lr�1/ is normal and

ƒ.hd.L1 ˝ � � � ˝ Lr�1/; Lr / D
r�1X
jD1

ƒ.Lj ; Lr /;

then .L1; : : : ; Lr / is normal.
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Lemma 2.21 ([27, Lemmas 4.3 and 4.17]). Let L;M;N be simple modules that are all
real except possibly one. If one of the following conditions holds:

(a) d.L;M/ D 0 and L is real,

(b) d.M;N / D 0 and N is real,

(c) d.L;D�1N/ D d.DL;N/ D 0 and L or N is real,

then .L;M;N / is a normal sequence, i.e.,

ƒ.L;M r N/ D ƒ.L;M/Cƒ.L;N /; ƒ.L r M;N/ D ƒ.L;N /Cƒ.M;N/:

Lemma 2.22 ([27, Corollary 4.18]). Let L;M;N be simple modules. Assume that L is
real and one of M and N is real. Then .L;M; N / is a normal sequence if and only if
.M;N;DL/ is a normal sequence.

In [27, Corollary 4.18], a stronger condition is assumed, but the same proof still works
without change.

Lemma 2.23. Let L1; : : : ; Lr be simple modules that are all real except possibly one.
Suppose that the sequence .L1; : : : ; Lr / is normal. For any m 2 Z, we have

Dm.hd.L1 ˝ � � � ˝ Lr // ' hd.DmL1 ˝ � � � ˝DmLr /:

Proof. It suffices to handle the casesmD˙1. We assume thatmD 1. Since the sequence
.DL1; : : : ;DLr / is normal, by Lemma 2.19 we have

D.hd.L1 ˝ � � � ˝ Lr // ' soc.DLr ˝ � � � ˝DL1/ ' hd.DL1 ˝ � � � ˝DLr /:

The case m D �1 can be proved in the same manner.

Lemma 2.24. Let L;M; N be simple modules. Assume that L is real and one of M
and N is real. Then d.L;M r N/ D d.L;M/C d.L; N / if and only if .L;M; N / and
.M;N;L/ are normal sequences.

Proof. By the assumption, we have

2
�
d.L;M/C d.L;N / � d.L;M r N/

�
D
�
.ƒ.L;M/Cƒ.L;N / �ƒ.L;M r N/

�
C
�
ƒ.M;L/Cƒ.N;L/ �ƒ.M r N;L/

�
:

Since ƒ.L;M/Cƒ.L;N / �ƒ.L;M r N/ and ƒ.M;L/Cƒ.N;L/ �ƒ.M r N;L/
are non-negative by Proposition 2.13, we have

ƒ.L;M r N/ D ƒ.L;M/Cƒ.L;N / and ƒ.M r N;L/ D ƒ.M;L/Cƒ.N;L/

if and only if d.L; M r N/ D d.L; M/ C d.L; N /. Then the assertion follows from
Lemma 2.20.

Corollary 2.25. Let L and M be real simple modules and X a simple module.

(i) If d.L;M/ D d.D�1L;M/ D 0, then d.L;M r X/ D d.L;X/.

(ii) If d.L;M/ D d.DL;M/ D 0, then d.L;X r M/ D d.L;X/.
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Proof. (i) The triples .L;M; X/ and .M; X; L/ are normal by Lemma 2.21, and hence
d.L;M r X/ D d.L;M/C d.L;X/ D d.L;X/ by the preceding lemma.

(ii) can be proved similarly.

The following lemma can be proved similarly to [24, Proposition 3.2.17], and we do
not repeat the proof here.

Lemma 2.26. Let M and N be simple modules, and assume that one of them is real. If
d.M;N / D 1, then M ˝N has length 2 and we have an exact sequence

0! N r M !M ˝N !M r N ! 0:

The following lemma gives a criterion for a simple module to be real.

Lemma 2.27. Let X be a simple module such that d.X;X/D 0 and X ˝X has a simple
head. Then X is real.

Proof. Since d.X;X/D 0, we haveRren
X;Xz
ıRren

Xz ;X
D f .z/ id for some f .z/2 k.z/which

is invertible at z D 1. Thus r2
X;X
2 k� id. By normalizing, we may assume that r2

X;X
D id.

Then
X ˝X D Ker.r

X;X
� id/˚ Ker.r

X;X
C id/:

Since X ˝X has a simple head, we conclude that r
X;X

should be˙ id, which implies the
assertion by [22, Corollary 3.3 and Theorem 3.12].

Lemma 2.28. Let M;N be real simple modules such that d.M;N / D 1. Then M r N is
real.

Proof. It follows from Proposition 2.17 that

d.M;M r N/ < d.M;N / D 1; d.N;M r N/ < d.M;N / D 1;

which implies that d.M; M r N/ D d.N; M r N/ D 0. We set X WDM r N . Since
d.M;X/ D d.N;X/ D 0, we have 0 � d.X;X/ � d.M;X/C d.N;X/ D 0, i.e.,

d.X;X/ D 0:

Since N is real and X ˝M is simple, .X ˝M/˝ N has a simple head. Thus the sur-
jection

.X ˝M/˝N � X ˝X

tells us that X ˝X has a simple head. Then the assertion follows from Lemma 2.27.

Lemma 2.29. Let M and N be real simple modules such that d.M;N / D 1. Then

(i) M r N commutes with M and N ,

(ii) for any m; n 2 Z�0, we have

M˝m r N˝n '

´
.M r N/˝m ˝N˝.n�m/ if m � n,

.M r N/˝n ˝M˝.m�n/ if m � n.
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Proof. (i) follows from d.M; M r N/ � d.M; N / � 1 D 0 and d.N; M r N/ �
d.N;M/ � 1 D 0.

(ii) We shall prove only the first isomorphism. We argue by induction on m � n. If
m D 0 the assertion is obvious. Assume that m > 0. Then

M˝m ˝N˝n�M˝.m�1/ ˝ .M r N/˝N˝.n�1/

' .M r N/˝M˝.m�1/ ˝N˝.n�1/

� .M r N/˝ ..M r N/˝.m�1/ ˝N˝.n�m//

' .M r N/˝m ˝N˝.n�m/:

Now the assertion follows from the fact that .M r N/˝m˝N˝.n�m/ is a simple quotient
of M˝m ˝N˝n which has a simple head.

Lemma 2.30. LetM andN be real simple modules such that d.M;N /D 1. Then for any
simple module X ,

(i) the simple module M r .N r X/ is isomorphic to either .M r N/ r X or
.N r M/ r X ,

(ii) the simple module .X r M/ r N is isomorphic to either X r .M r N/ or
X r .N r M/.

Proof. Since the proof is similar, we prove only (i). Let us consider a commutative dia-
gram with an exact row:

0 // .N r M/˝X //

f
((

M ˝N ˝X //

����

.M r N/˝X // 0

M r .N r X/

The exactness follows from Lemma 2.26. By Lemma 2.28, M r N and N r M are real
simple modules. If f does not vanish, then we have .N r M/ r X 'M r .N r X/.

If f vanishes then there exists an epimorphism .M r N/˝X�M r .N r X/ and
hence .M r N/ r X 'M r .N r X/.

3. Root modules

In this section, we investigate properties of root modules.

Definition 3.1. A module L 2 Cg is called a root module if L is a real simple module
such that

d.L;DkL/ D ı.k D ˙1/ for any k 2 Z. (3.1)

Note that for a root module L, we have

ƒ1.L;L/ D �2

by Proposition 2.16.



M. Kashiwara, M. Kim, S.-j. Oh, E. Park 2702

The name “root module” comes from Lemma 4.15 below.

Example 3.2. Using the denominators for fundamental modules (see [31, Appendix A]
for example), one can easily prove that any fundamental module V.$i /a (i 2 I0, a 2 k�)
is a root module.

3.1. Properties of root modules

Lemma 3.3. Let L be a root module and let X be a simple module.

(i) For k 2 Z, we have

d.DkL;X/ � ı.k D 0; 2/ � d.DkL;L r X/ � d.DkL;X/C ı.k D ˙1/:

In particular, d.DkL;L r X/ D d.DkL;X/ for k ¤ �1; 0; 1; 2, and

d.DkL;L r X/ � d.DkL;X/ 2

´
¹0; 1º for k D ˙1,

¹0;�1º for k D 0; 2.

Moreover,�
d.D�1L;L r X/ � d.D�1L;X/

�
C
�
d.L;X/ � d.L;L r X/

�
C
�
d.DL;L r X/ � d.DL;X/

�
C
�
d.D2L;X/ � d.D2L;L r X/

�
D 2:

(ii) For k 2 Z, we have

d.DkL;X/ � ı.k D �2; 0/ � d.DkL;X r L/ � d.DkL;X/C ı.k D ˙1/:

In particular, d.DkL;X r L/ D d.DkL;X/ for k ¤ �2;�1; 0; 1, and

d.DkL;X r L/ � d.DkL;X/ 2

´
¹0; 1º for k D ˙1,

¹0;�1º for k D 0;�2.

Moreover,�
d.D�2L;X/ � d.D�2L;X r L/

�
C
�
d.D�1L;X r L/ � d.D�1L;X/

�
C
�
d.L;X/ � d.L;X r L/

�
C
�
d.DL;X r L/ � d.DL;X/

�
D 2:

Proof. (i) By [27, Proposition 4.2], we have

d.DkL;L r X/ � d.DkL;X/C d.DkL;L/ D d.DkL;X/C ı.k D ˙1/:

For the same reason, it follows from X ' .L r X/ r DL (see Lemma 2.7) that

d.DkL;X/ D d.DkL; .L r X/ r DL/

� d.DkL;L r X/C d.DkL;DL/

D d.DkL;L r X/C ı.k D 0; 2/:
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Hence we obtain the first assertion. Since

ƒ1.L;L r X/ D ƒ1.L;L/Cƒ1.L;X/ D �2Cƒ1.L;X/; (3.2)

it follows from (3.2) and Proposition 2.16 that

2 D ƒ1.L;X/ �ƒ1.L;L r X/

D

X
k2Z

.�1/k.d.DkL;X/ � d.DkL;L r X//

D
�
d.D�1L;L r X/ � d.D�1L;X/

�
C
�
d.L;X/ � d.L;L r X/

�
C
�
d.DL;L r X/ � d.DL;X/

�
C
�
d.D2L;X/ � d.D2L;L r X/

�
;

which yields the last assertion.
(ii) can be proved in the same manner using the fact thatX ' .D�1L/r .X r L/.

Lemma 3.4. Let L be a root module and let X be a simple module. Suppose that

d.L;X/ > 0:

Then

(i) d.L;L r X/ D d.L;X/ � 1 and d.D�1L;L r X/ D d.D�1L;X/,

(ii) d.L;X r L/ D d.L;X/ � 1 and d.DL;X r L/ D d.DL;X/.

Proof. We shall prove only (i) since the proof of (ii) is similar.
Since d.L;X/ > 0, L does not commute with X . By Proposition 2.17, we have

d.L;L r X/ < d.L;X/:

On the other hand, Lemma 3.3 implies d.L; X/ � d.L; L r X/C 1, which implies the
first assertion.

Let us show the second equation in (i). By Lemma 3.3, we have d.D�1L;L r X/ D
d.D�1L;X/ or d.D�1L;X/C 1. If

d.D�1L;L r X/ D d.D�1L;X/C 1;

then Lemma 2.24 says that .D�1L;L;X/ is a normal sequence, and hence .L; X; L/ is
also a normal sequence by Lemma 2.22, which implies that

L r X ' X r L:

But this contradicts d.L;X/ > 0, and therefore d.D�1L;L r X/ D d.D�1L;X/.

Lemma 3.5. Let L be a root module and X a simple module.

(i) Assume one of the following conditions:

(a) d.DL;L r X/ > 0,

(b) d.DL;X/ > 0,

(c) d.D2L;X/ D 0.

Then d.DL;L r X/ D d.DL;X/C 1.
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(ii) Assume one of the following conditions:

(a) d.D�1L;X r L/ > 0,

(b) d.D�1L;X/ > 0,

(c) d.D�2L;X/ D 0.

Then d.D�1L;X r L/ D d.D�1L;X/C 1.

Proof. We shall only prove (i) since the proof of (ii) is similar.
(a) Assume that d.DL; L r X/ > 0. Setting Y D L r X , we have X ' Y r DL.

Hence Lemma 3.4 (ii) implies d.DL; Y r DL/ D d.DL; Y / � 1.
(b) If d.DL;X/ > 0, then d.DL;L r X/ � d.DL;X/ > 0 by Lemma 3.3.
(c) Finally, assume that d.D2L;X/ D 0. If d.L;X/ D 0, then

d.DL;L r X/ D d.DL;L/C d.DL;X/ D d.DL;X/C 1:

Suppose that d.L;X/ > 0. Since d.D2L;X/ D 0 and d.D2L;L/ D 0, we have

d.D2L;L r X/ D 0: (3.3)

Moreover, Lemma 3.4 tells us that

d.L;L r X/ D d.L;X/ � 1 and d.D�1L;L r X/ D d.D�1L;X/: (3.4)

By Lemma 3.3, (3.3) and (3.4), we have

2 D
�
d.D�1L;L r X/ � d.D�1L;X/

�
C
�
d.L;X/ � d.L;L r X/

�
C
�
d.DL;L r X/ � d.DL;X/

�
C
�
d.D2L;X/ � d.D2L;L r X/

�
D 1C

�
d.DL;L r X/ � d.DL;X/

�
;

which yields the desired result.

Lemma 3.6. Let L be a root module, X a simple module, and k 2 Z�0.

(i) Suppose that one of the following conditions is true:

(a) d.DL; L˝k r X/ � k,

(b) d.D2L;X/ D 0.

Then d.DL; L˝k r X/ D d.DL;X/C k.

(ii) Suppose that one of the following is true:

(a) d.D�1L;X r L˝k/ � k,

(b) d.D�2L;X/ D 0 .

Then d.D�1L; X r L˝k/ D d.D�1L;X/C k.

Proof. This follows from the preceding lemma by induction on k. Note that we have
d.D2L;L˝k r X/ D 0 as long as d.D2L;X/ D 0.



PBW theory for quantum affine algebras 2705

Proposition 3.7. Let L be a root module and X a simple module. If d.L; X/ 6D 1, then
.L r X/ r L is isomorphic to L r .X r L/.

Proof. If d.L;X/ D 0, then this is obvious. Hence we may assume that d.L;X/ � 2.
Set Y WD .L r X/ r L. Then

L r X ' D�1L r Y and X ' .D�1L r Y / r DL:

Lemma 3.4 says that d.L; L r X/ D d.L; X/ � 1 > 0 and d.L; Y / D d.L; L r X/ � 1.
Hence

d.L;D�1L r Y / D d.L; Y /C 1 D d.L;D�1L/C d.L; Y /:

Then Lemma 2.24 implies that .L;D�1L; Y / is a normal sequence, and .D�1L; Y;DL/
is also a normal sequence by Lemma 2.22. Hence

.D�1L r Y / r DL ' D�1L r .Y r DL/:

Since X ' D�1L r .Y r DL/, we obtain Y ' L r .X r L/.

3.2. Properties of pairs of root modules

Let L and L0 be root modules. Throughout this subsection, we assume that

d.DkL;L0/ D ı.k D 0/ for k 2 Z: (3.5)

Note that, by Proposition 2.16,

ƒ.L;L0/ D ƒ1.L;L0/ D 1:

Lemma 3.8. The simple module L r L0 is a root module.

Proof. Set L00 WD L r L0. By Lemma 2.28, L00 is real.
It is obvious that d.DkL;L00/ D d.DkL0; L00/ D 0 for k 6D 0;˙1. On the other hand,

Lemma 3.4 implies that d.L;L00/D d.L0;L00/D 0. Hence d.DkL00;L00/D 0 for k 6D ˙1.
Now, we have

ƒ1.L00; L00/ D ƒ1.L;L/C 2ƒ1.L;L0/Cƒ1.L0; L0/ D .�2/C 2C .�2/ D �2:

Then Proposition 2.16 implies that

�2 D
X
k2Z

.�1/k d.DkL00; L00/ D � d.DL00; L00/ � d.D�1L00; L00/:

Since d.DL00; L00/ D d.D�1L00; L00/, we obtain d.D˙1L00; L00/ D 1.

Lemma 3.9. We have

d.DkL;L r L0/ D ı.k D 1/ and d.DkL;L0 r L/ D ı.k D �1/:
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Proof. Since d.DkL;Lr L0/� d.DkL;L/C d.DkL;L0/, we have d.DkL;Lr L0/D 0

for k 6D �1; 0; 1. It follows from Lemma 3.4 that

d.L;L r L0/ D d.L;L0/ � 1 D 0;

d.D�1L;L r L0/ D d.D�1L;L0/ D 0:

On the other hand, since

d.DL;L r L0/ � d.DL;L/C d.DL;L0/ D 1;

we have d.DL;L r L0/ 2 ¹0; 1º.
If d.DL;L r L0/ D 0, then

L0 ' .L r L0/ r DL ' .L r L0/˝DL;

which implies that

0 D d.D2L;L0/ D d.D2L; .L r L0/˝DL/ D d.D2L;L r L0/C d.D2L;DL/ � 1:

This is a contradiction, so d.DL;L r L0/ D 1. Thus we obtained the first equality.
The second equality can be proved similarly.

Lemma 3.10. Let X be a simple module.

(i) If k ¤ 0; 1, then
d.DkL;L0 r X/ D d.DkL;X/:

As for k D 0 and 1, one and only one of the following two statements is true:

(a) d.L;L0 r X/ D d.L;X/ and d.DL;L0 r X/ D d.DL;X/ � 1,

(b) d.L;L0 r X/ D d.L;X/C 1 and d.DL;L0 r X/ D d.DL;X/.

(ii) If k ¤ �1; 0, then
d.DkL;X r L0/ D d.DkL;X/:

As for k D �1 and 0, one and only one of the following two statements is true:

(a) d.L;X r L0/ D d.L;X/ and d.D�1L;X r L0/ D d.D�1L;X/ � 1,

(b) d.L;X r L0/ D d.L;X/C 1 and d.D�1L;X r L0/ D d.D�1L;X/.

Proof. (i) By [27, Proposition 4.2], we have

d.DkL;L0 r X/ � d.DkL;X/C ı.k D 0/;

d.DkL;X/ � d.DkL;L0 r X/C ı.k D 1/;

where the second inequality follows from X ' .L0 r X/ r DL0. The above inequalities
give the first assertion and

d.L;L0 r X/ D d.L;X/ or d.L;X/C 1,

d.DL;L0 r X/ D d.DL;X/ or d.DL;X/ � 1.
(3.6)
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By the assumption (3.5), we have ƒ1.L;L0/ D 1, which implies

1 D ƒ1.L;L0 r X/ �ƒ1.L;X/ D
X
k2Z

.�1/k
�
d.DkL;L0 r X/ � d.DkL;X/

�
D
�
d.L;L0 r X/ � d.L;X/

�
C
�
d.DL;X/ � d.DL;L0 r X/

�
:

Then (3.6) implies the second assertion.
(ii) can be proved similarly by using X ' D�1L0 r .X r L0/.

Proposition 3.11. Let X be a simple module.

(i) If d.DL;X/ D 0, then

d.L;L0 r X/ D d.L;X/C 1; d.DL;L0 r X/ D 0:

(ii) If d.D�1L;X/ D 0, then

d.L;X r L0/ D d.L;X/C 1; d.D�1L;X r L0/ D 0:

Proof. (i) Since d.DL;L0 r X/ � d.DL;L0/C d.DL;X/D 0, Lemma 3.10 tells us that
d.L;L0 r X/ D d.L;X/C 1.

(ii) can be proved in the same manner as above.

Corollary 3.12. Let n 2 Z�0 and let X be a simple module.

(i) If d.DL;X/ D 0, then

d.L;L0˝n r X/ D d.L;X/C n and d.DL;L0˝n r X/ D 0:

(ii) If d.D�1L;X/ D 0, then

d.L;X r L0˝n/ D d.L;X/C n and d.D�1L;X r L0˝n/ D 0:

Proof. These follow easily from Proposition 3.11 by induction on n.

Proposition 3.13. Let m 2 Z�0 and let Y be a simple module. Set

X WD L˝m r Y:

Suppose that

d.L;X/ D 0; d.DL0; Y / D 0; d.D tL; Y / D 0 for t D 1; 2:

Then

(i) d.DL;X/ D m,

(ii) for any integer k such that 0 � k � m, we have

d.L;L0˝k r X/ D 0; d.DL;L0˝k r X/ D m � k;
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(iii) for any integer k � m, we have

d.L;L0˝k r X/ D k �m; d.DL;L0˝k r X/ D 0:

Proof. (i) As d.D tL; Y / D 0 for t D 1; 2, we have

d.DL;X/ D d.DL;L˝m r Y / D d.DL; Y /Cm D m

by Lemma 3.6 (i).
(ii) We see that

� L0 r L commutes with L, L0 and DL by Lemma 3.9,

� d.DL0; X/ D 0 because d.DL0; Y / D 0 and d.DL0; L/ D 0,

� the triple .L0˝a; A;X/ is normal because d.DL0; X/ D 0,

� the triple .L0˝a; B;L/ is normal because d.DL0; L/ D 0,

� the triples .L0˝a; A; Y /, .L˝a; A; Y / and ..L0 r L/˝a; A; Y / are normal because
d.DL0; Y / D 0 and d.DL; Y / D 0,

Here A is a real simple module, B is a simple module, and a is an arbitrary non-negative
integer. We will use these facts freely in the subsequent arguments.

For any k such that 0 � k � m, we have

L0˝k r X ' L0˝k r .L˝m r Y / ' .L0˝k r L˝m/ r Y

' ..L0 r L/˝k ˝ L˝.m�k// r Y ' .L˝.m�k/ ˝ .L0 r L/˝k/ r Y

' L˝.m�k/ r ..L0 r L/˝k r Y /;

where the third isomorphism follows from Lemma 2.29. Thus, for 1 � k � m,

L r .L0˝k r X/ ' L r
�
.L˝.m�k/ ˝ .L0 r L/˝k/ r Y

�
'
�
L˝.m�kC1/ ˝ .L0 r L/˝k

�
r Y

'
�
.L0 r L/˝ L˝.m�kC1/ ˝ .L0 r L/˝.k�1/

�
r Y

' .L0 r L/ r ..L˝.m�.k�1// ˝ .L0 r L/˝.k�1// r Y /

' .L0 r L/ r .L0˝.k�1/ r X/;

and

.L0˝k r X/ r L ' L0˝k r .X ˝ L/ ' L0˝k r .L˝X/

' .L0˝k r L/ r X '
�
.L0 r L/˝ L0˝.k�1/

�
r X

' .L0 r L/ r .L0˝.k�1/ r X/:

This tells us that
L r .L0˝k r X/ ' .L0˝k r X/ r L;

which implies that d.L;L0˝k r X/ D 0.
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On the other hand, since d.D2L; Y / D 0 and d.D2L;L0 r L/ D 0, we have

d
�
D2L; .L0 r L/˝k r Y

�
D 0:

Then, Lemma 3.6 implies that

d.DL;L0˝k r X/ D d
�
DL; L˝.m�k/ r ..L0 r L/˝k r Y /

�
D d.DL; .L0 r L/˝k r Y /Cm � k D m � k;

where the last equality follows from d.DL;L0 r L/ D 0 and d.DL; Y / D 0.
(iii) By (ii), we have

d.L;L0˝m r X/ D 0; d.DL;L0˝m r X/ D 0:

Since
L0˝k r X ' L0˝.k�m/ r .L0˝m r X/;

we have the assertion by Corollary 3.12 (i).

4. Quantum affine Schur–Weyl duality

Let D WD ¹Liºi2J � Cg be a family of simple modules of Cg. The family D is called a
duality datum associated with a generalized Cartan matrix C D .ci;j /i;j2J of symmetric
type if it satisfies the following:

(a) for each i 2 J , Li is a real simple module,

(b) for any i; j 2 J such that i ¤ j , d.Li ; Lj / D �ci;j .

Then one can construct a monoidal functor

FD WRC-gmod! Cg

using the duality datum D [21, 35].
The functor FD is called a quantum affine Schur–Weyl duality functor or briefly a

duality functor.
In Section 4.2 below, we slightly modify the definition of quantum affine Schur–Weyl

duality functor in order that it commutes with affinization.

4.1. Affinizations

4.1.1. Pro-objects. Let k be a base field and let C be an essentially small k-abelian cate-
gory. Let Pro.C/ be the category of pro-objects of C (see [36] for details). One can show
that

Pro.C/ '
®
left exact k-linear functors from C to k-Mod

¯opp

by means of the functor

“lim
 �

”
i

Mi !
�
C 3 X 7! lim

�!
HomC .Mi ; X/

�
:
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Here, k-Mod is the category of vector spaces over k, and “lim
 �

” denotes the pro-lim (see
[36, Section 2.6 and Proposition 6.1.7] for notations and details). Then, Pro.C/ is a k-
abelian category which admits small projective limits. If no confusion can arise, we regard
C as a full subcategory of Pro.C/, which is stable by extensions and subquotients. Any
functor F WC! C 0 extends to PF WPro.C/! Pro.C 0/which commutes with small filtrant
projective limits:

PF
�

“lim
 �

”
i

Mi

�
' “lim
 �

”
i

F.Mi /:

4.1.2. Affinization in quiver Hecke algebra case. Let R be a symmetric quiver Hecke
algebra. Note that

R.ˇ/-gMod! Pro.R.ˇ/-gmod/:

Recall that R.ˇ/-gMod is the category of graded R.ˇ/-modules. Let

Pro.R/ WD
M
ˇ2QC

Pro.R.ˇ/-gmod/;

which is a monoidal category. Let z be an indeterminate of homogeneous degree 2, and
we set

R.ˇ/aff
WD kŒz�˝

k
1zR.ˇ/;

which has the graded R.ˇ/-bimodule structure. Here 1zR.ˇ/ is a free right R.ˇ/-module
of rank 1 and the left module structure is given by

e.�/1z D 1ze.�/; xk1z D 1zxk C z1z ; �k1z D 1z�k :

Hence we have

1zxk D .xk � z/1z : (4.1)

For X 2 R.ˇ/-gmod, the affinization X aff of X is isomorphic to R.ˇ/aff ˝R.ˇ/ X: Since
X aff is not in R.ˇ/-gmod, we set

XAff
WD “lim
 �

”
m

X aff=zmX aff
2 Pro.R.ˇ/-gmod/:

Note that
XAff

' kŒŒz��˝
k
X

as an object of Pro.k-mod/ forgetting the action of R.ˇ/. Here we regard kŒŒz�� as the
object of Pro.k-mod/:

“lim
 �

”
m

kŒz� = kŒz�zm:

Similarly we set

R.ˇ/Aff
WD “lim
 �

”
m

R.ˇ/aff=R.ˇ/aff.z; x1; : : : ; xht.ˇ//
m;
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which is an object of Pro.R.ˇ/-gmod/ with a right R.ˇ/-action. Here, .z; x1; : : : ; xm/ is
the ideal of kŒz; x1; : : : ; xm� generated by z; x1; : : : ; xm. Then

MAff
' R.ˇ/Aff

˝R.ˇ/M for any M 2 R.ˇ/-gmod.

For M;N 2 R-gmod, we have

MAff ı
z
NAff

' .M ıN/Aff;

where
MAff ı

z
NAff

WD Coker
�
MAff ıNAff zM�zN

�����!MAff ıNAff�:
We remark that, in this paper, we use the language of pro-objects instead of the com-

pletion in [21, Section 3.1] and [12].

4.1.3. Affinization in quantum affine algebra case. LetU 0q.g/ be a quantum affine algebra
and let Cg be the category of finite-dimensional integrable U 0q.g/-modules. We embed Cg

into Pro.Cg/. Note that Pro.Cg/ is a k-abelian monoidal category. For M 2 Cg, let M aff

be the affinization of M . Recall that

M aff
' kŒz˙1M �˝

k
M

with the action

ei .a˝ v/ D zıi;0M a˝ eiv for a 2 kŒz˙1M � and v 2M .

Here we use z to distinguish from z in the quiver Hecke algebra setting. We set

MAff
WD “lim
 �

”
m

M aff=.zM � 1/mM aff
2 Pro.Cg/:

Note that there is a canonical algebra homomorphism

kŒŒzM � 1�� �! EndPro.Cg/.M
Aff/:

For M;N 2 Cg, we have

MAff
˝
z
NAff

' .M ˝N/Aff;

where
MAff

˝
z
NAff

WD Coker
�
MAff

˝NAff zM�zN
�����!MAff

˝NAff�:
For simple modules M;N in Cg, we can define the renormalized R-matrix

Rren
M;N .zN =zM /WMAff

˝NAff
! NAff

˝MAff:

4.2. Quantum affine Schur–Weyl duality functor

We now consider a duality datum D D ¹Liºi2J associated with a symmetric generalized
Cartan matrix C D .ci;j /i;j2J . For i; j 2 J , we choose ci;j .x/ 2 kŒŒx�� such that

ci;j .x/cj;i .�x/ D 1 and ci;i .0/ D 1:
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We set
Pij .u; v/ WD cij .u � v/ � .u � v/

di;j ;

where di;j WD zerozD1 d Li ;Lj .z/.
Let QCC be the positive root lattice associated with C. For ˇ 2 QCC with ` D ht.ˇ/ and

� D .�1; : : : ; �`/ 2 J
ˇ , we set

yL� WD LAff
�1
˝ � � � ˝ LAff

�`
; yL.ˇ/ WD

M
�2Jˇ

yL� 2 Pro.Cg/:

The algebra R.ˇ/ acts yL.ˇ/ from the right as follows:

(a) e.�/ is the projection to yL� ,

(b) xk 2 R.ˇ/ acts by log zL�k , where log zL�k 2 kŒŒzL�k � 1�� � End.yL�/,

(c) e.�/�k (1 � k < `) acts on yL� by8<:R
norm
L�k ;L�kC1

ı P�k ;�kC1.xk ; xkC1/ if �k 6D �kC1,

.xk � xkC1/
�1
�
Rnorm

L�k ;L�kC1
ı P�k ;�k .xk ; xkC1/ � idyL�

�
if �k D �kC1.

Note that we used z � 1 instead of log z in [21]. We have also relaxed the condition
on ci;i .u/. We have changed the definition so as to have Theorem 4.2 below.

Then yL.ˇ/ gives the monoidal functor

yFD WR-gmod! Pro.Cg/

defined by
yFD.M/ D yL.ˇ/ ˝

R.ˇ/
M for M 2 R.ˇ/-gmod.

It extends to
yFD WPro.R/! Pro.Cg/

such that yFD commutes with filtrant projective limits.
The following proposition can be proved in a similar manner to [21].

Proposition 4.1. yFD is a monoidal functor and it induces a monoidal functor FD W

R-gmod! Cg.

Then the following theorem tells us that the functor yFD preserves affinizations.

Theorem 4.2. Functorially in M 2 R-gmod, we have an isomorphism

yFD.M
Aff/ ' .FD.M//Aff:

Moreover,

(i) the action of zM on the left term coincides with log zFD .M/ on the right term,

(ii) for M;N 2 R-gmod, the following diagram commutes:

yFD.M
Aff ıNAff/

� //

��

yFD.M
Aff/˝ yFD.N

Aff/
� // .FD.M//Aff ˝ .FD.N //

Aff

��

yF ..M ıN/Aff/
� // .FD.M ıN//

Aff � // .FD.M/˝ FD.N //
Aff
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Proof. Let us show (i). Since yFD.R.ˇ/
Aff/˝R.ˇ/M ' yFD.M

Aff/ for anyM 2R-gmod,
it is enough to show that

yFD.R.ˇ/
Aff/ ' . yFD.R.ˇ///

Aff

compatible with the right actions of R.ˇ/.
Set ` WD ht.ˇ/ and xk WD log zL�k 2 End.yL.ˇ// for k D 1; : : : ; `. Then we have yL� D

kŒŒx1; : : : ; x`��˝ L� . Here we set

L� D L�1 ˝ � � � ˝ L�` ; L.ˇ/ D
M
�2Jˇ

L� :

Then ei acts on yL� by

X̀
kD1

eıi;0xk .ei /k : (4.2)

Here ex is the exponential function and .ei /k denotes the action on L� given by

id˝ � � � ˝ id„ ƒ‚ …
k � 1 times

˝ ei ˝K
�1
i ˝ � � � ˝K

�1
i„ ƒ‚ …

`� k times

:

Then we have:

(i) yFD.R.ˇ/
Aff/ ' kŒŒz; x1; : : : ; x`��˝ L.ˇ/. Here ei acts by (4.2). The right action of

xk 2 R.ˇ/ is given by xk � z by (4.1).

(ii) . yFD.R.ˇ///
Aff ' kŒŒz; x1; : : : ; x`��˝ L.ˇ/. Here ei acts by

eıi;0z
X̀
kD1

eıi;0xk .ei /k D
X̀
kD1

eıi;0.xkCz/.ei /k : (4.3)

The right action of xk 2 R.ˇ/ is given by xk .

Hence, the morphism
f W yFD.R.ˇ/

Aff/! . yFD.R.ˇ///
Aff

given by a.z;x/˝ v 7! a.z;x1C z; : : : ;x`C z/˝ v (with a.z;x/2 kŒŒz;x1; : : : ;x`�� and
v 2 L.ˇ/) gives an isomorphism in Pro.Cg/ and the right action of xk 2 R.ˇ/ commutes
with it. The compatibility of the right action of �k 2 R.ˇ/ easily follows from the fact
that Pi;j .u; v/ is a function of u � v.

The second assertion (ii) is immediate.

4.3. Quantum affine Schur–Weyl duality with simply-laced Cartan matrix

Hereafter, we assume that C D .ci;j /i;j2J is a simply-laced Cartan matrix of finite type.
Let RC be the symmetric quiver Hecke algebra associated with C. If no confusion can

arise, we simply write R for RC.
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Let D D ¹Liºi2J be a duality datum associated with the Cartan matrix C.

Proposition 4.3 ([21]). (i) yFD is an exact functor and it commutes with projective
limits.

(ii) FD sends a simple module to a simple module or zero.

Lemma 4.4. Let M 2 R-gmod be a real simple module, and assume that FD.M/ is
simple. Then FD.M/ is also a real simple module.

Proof. Since FD.M/˝FD.M/'FD.MıM/ andMıM is simple, FD.M/˝FD.M/

is simple, i.e., FD.M/ is real.

Lemma 4.5. Let M;N 2 R-gmod be simple modules such that FD.M/ and FD.N / are
simple modules. Assume that M or N is real.

(i) d.FD.M/;FD.N // � d.M;N /.

(ii) The following conditions are equivalent:

(a) d.FD.M/;FD.N // D d.M;N /.

(b) FD.M r N/ and FD.N r M/ are simple.

If these conditions hold, then

(1) FD.rM;N / 6D 0 and FD.rN;M / 6D 0,

(2) FD.M/ r FD.N / ' FD.M r N/ and FD.N / r FD.M/ ' FD.N r M/.

Proof. Set z D log z and d WD d.M;N /. By the definition of d.M;N /, we have the fol-
lowing commutative diagram (up to a constant multiple):

Mz ıN
Rren
Mz;N //

zd id

((

N ıMz

Rren
N;Mz // Mz ıN:

Applying yF to the above diagram, by Proposition 4.1 and Theorem 4.2 we obtain

FD.M/z ˝ FD.N /
yF .Rren

Mz;N
/
//

zd id

))

FD.N /˝ FD.M/z

yF .Rren
N;Mz

/
// FD.M/z ˝ FD.N /:

(4.4)

Since zd id is non-zero, yF .Rren
Mz ;N

/ and yF .Rren
N;Mz

/ are non-zero. Note that

HomkŒz˙1�˝U 0q.g/
.U ˝ Vz; Vz ˝ U/ D kŒz˙1�Rren

U;Vz
;

HomkŒz˙1�˝U 0q.g/
.Uz ˝ V; V ˝ Uz/ D kŒz˙1�Rren

Uz;V
;
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for any simple modules U; V 2 Cg by [25, Proposition 9.5]. Hence

yFD.R
ren
Mz ;N

/ D zaf .z/Rren
FD .M/z;N

; yFD.R
ren
N;Mz

/ D zbg.z/Rren
N;FD .M/z

for some a; b � 0 and f .z/; g.z/ 2 kŒŒz���. Hence it follows from (4.4) that

d D aC b C d.FD.M/;FD.N //:

Thus d.FD.M/;FD.N // � d .
Moreover, d D d.FD.M/;FD.N // if and only if a D b D 0. Since a D b D 0 is

equivalent to FD.rM;N /D
yFD.R

ren
Mz ;N

/jzD0 6D 0 and FD.rN;M /D
yFD.R

ren
N;Mz

/jzD0 6D 0.
The last two conditions conditions are equivalent to Im.FD.rM;N //' FD.M r N/§ 0

and Im.FD.rN;M // ' FD.N r M/ § 0.

Lemma 4.6. Let D D ¹Liºi2J be a duality datum associated with a simply-laced finite
Cartan matrix C. Let L; M; N be simple RC-modules and S a simple subquotient of
M ıN . Assume that FD.M/, FD.N / and FD.S/ are simple.

(i) Assume that FD.rM;L/ and FD.rN;L/ are non-zero. Then

ƒ.FD.M/;FD.L//Cƒ.FD.N /;FD.L// �ƒ.FD.S/;FD.L//

� ƒ.M;L/Cƒ.N;L/ �ƒ.S;L/:

Equality holds if and only if FD.rS;L/ does not vanish.

(ii) Assume that FD.rL;M / and FD.rL;N / are non-zero. Then

ƒ.FD.L/;FD.M//Cƒ.FD.L/;FD.N // �ƒ.FD.L/;FD.S//

� ƒ.L;M/Cƒ.L;N / �ƒ.L; S/:

Equality holds if and only if FD.rL;S / does not vanish.

Proof. Since the proof of (ii) is similar, we shall prove only (i).
As S is a simple subquotient of M ıN , there exists a submodule K of M ıN such

that S is a quotient of K. We consider the following commutative diagram in R-gmod:

.M ıN/ ı Lz
Rren
MıN;Lz // Lz ı .M ıN/

K ı Lz //

OO

OO

����

Lz ıK

OO

OO

����

S ı Lz
zcRren

S;Lz // Lz ı S

for some c 2 Z�0. Comparing the homogeneous degrees of morphisms in the above dia-
gram, we have

2c D ƒ.M;L/Cƒ.N;L/ �ƒ.S;L/: (4.5)
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We set z D log z. Applying the duality functor yFD to the above diagram, we obtain

. zM ˝ zN/˝ zLz

yFD .R
ren
MıN;Lz

/
// zLz ˝ . zM ˝ zN/

zK ˝ zLz //

OO

OO

����

zLz ˝ zK

OO

OO

����

zS ˝ zLz
zc yFD .R

ren
S;Lz

/
// zLz ˝ zS

where zX denotes FD.X/ for a simple RC-module X . There exist a 2 Z�0 and
f .z/ 2 kŒŒz��� such that

yFD.R
ren
S;Lz

/ D zaf .z/Rren
zS;zL
:

Since FD.rM;L/ and FD.rN;L/ do not vanish, we have

yFD.R
ren
M;Lz

/ � Rren
zM;zLz

; yFD.R
ren
N;Lz

/ � Rren
zN;zLz

;

up to a multiple of kŒŒz���. The above diagram tells us that

c zM;zL.z/c zN;zL.z/
.z � 1/cCa c zS;zL.z/

is a rational function in z which is regular and invertible at z D 1. Hence, by [27, Lemma
3.4], we have

Deg
�
c zM;zL.z/c zN;zL.z/

c zS;zL.z/

�
D 2 � zerozD1

�
c zM;zL.z/c zN;zL.z/

c zS;zL.z/

�
D 2.c C a/:

Therefore, by (4.5), we conclude that

ƒ.M;L/Cƒ.N;L/ �ƒ.S;L/ D 2c D Deg
�
c zM;zL.z/c zN;zL.z/

c zS;zL.z/

�
� 2a

D ƒ. zM; zL/Cƒ. zN; zL/ �ƒ. zS; zL/ � 2a:

Hence

ƒ.M;L/Cƒ.N;L/ �ƒ.S;L/ � ƒ. zM; zL/Cƒ. zN; zL/ �ƒ. zS; zL/:

Equality holds if and only if a D 0, which is equivalent to FD.rS;L/ 6D 0.

4.4. Strong duality datum

Definition 4.7. A strong duality datum D D ¹Liºi2J is a duality datum associated with a
simply-laced finite Cartan matrix C D .ci;j /i;j2J such that all Li ’s are root modules and

d.Li ;D
k.Lj // D �ı.k D 0/ci;j

for any k 2 Z and i; j 2 J such that i 6D j .
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In particular, we have

ƒ.Li ; Lj / D �ci;j for i 6D j ,

ƒ1.Li ; Lj / D �ci;j for all i; j 2 J .

Let D D ¹Liºi2J be a strong duality datum associated with a Cartan matrix C D
.ci;j /i;j2J of finite ADE type. Let RC be the symmetric quiver Hecke algebra associated
with C. If no confusion can arise, we simply write R for RC. We denote by

FD WRC-gmod! Cg

the duality functor arising from D . Recall that FD sends simples to simples or zero.
However, if D is strong, we can say more as we see below.

Throughout this subsection, we assume that D is a strong duality datum.

Lemma 4.8. For w 2 W, ƒ 2 PC and i 2 J , we have

"i .D.wƒ;ƒ// D

´
�.˛i ; wƒ/ if siw < w,

0 if siw > w,

"�i .D.wƒ;ƒ// D

´
.˛i ; ƒ/ if w � si ,

0 otherwise,

d.L.i/;D.wƒ;ƒ// D

8̂̂<̂
:̂
0 if siw < w,

.˛i ; wƒ/ if siw > w and w � si ,

.˛i ; wƒ �ƒ/ otherwise,

where D.wƒ;ƒ/ is the determinantial module appearing in Section 2.2.

Proof. The equality for "i is proved in [24, Proposition 10.2.4]. Let us show the equality
for "�i . If w � si , then wƒ � siƒ. Hence "�i .D.wƒ; siƒ// D 0 by the same proposition.

Since

D.wƒ;ƒ/ ' D.wƒ; siƒ/ r D.siƒ;ƒ/ ' D.wƒ; siƒ/ r L.i/
ı.˛i ;ƒ/

by [24, Theorem 10.3.1], we have "�i .D.wƒ;ƒ// D .˛i ; ƒ/.
Assume that w 6� si . Then ƒ � wƒ does not contain ˛i , and hence "�i .D.wƒ; ƒ//

D 0.
The equality for d follows immediately from

d.L.i/;M/ D "i .M/C "�i .M/C .˛i ;wt.M// (4.6)

(see [26, Corollary 3.8]).

Theorem 4.9. Let w 2 W, ƒ 2 PC, and set

Vw.ƒ/ WD FD.D.wƒ;ƒ//:
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Then Vw.ƒ/ is simple and

d.Li ; Vw.ƒ// D d.L.i/;D.wƒ;ƒ//;

d.D Li ; Vw.ƒ// D "i .D.wƒ;ƒ//;

d.D2Li ; Vw.ƒ// D 0:

Proof. First note that once we prove that Vw.ƒ/ is a simple module, we know that
d.D2Li ; Vw.ƒ// D 0, since D2Li commutes with all Lj ’s.

Since D.wƒ; ƒ/ ı D.wƒ0; ƒ0/ ' D.w.ƒ C ƒ0/; ƒ C ƒ0/ up to a grading shift for
any ƒ;ƒ 2 PC and w 2 W [26, Proposition 4.2], we may assume that ƒ D ƒt for some
t 2 J . We may assume further that ƒ is w-regular, that is, `.w/ � `.w0/ for any w0 2 W
such that w0ƒ D wƒ. Then, by the preceding lemma,

d.L.i/;D.wƒ;ƒ// D

´
0 if siw < w;

.˛i ; wƒ/ if siw > w;

"i .D.wƒ;ƒ// D

´
�.˛i ; wƒ/ if siw < w;

0 if siw > w;

if wƒ 6D ƒ.
We shall argue by induction on `.w/. If `.w/ D 0, then there is nothing to prove. If

`.w/ D 1, then Vw.ƒ/ D Lt , and it is straightforward that the assertion is true.
We now assume that `.w/ � 2.

Case 1: Assume that siw < w. We set

w0 D siw; n WD .˛i ; w
0ƒ/ 2 Z�0:

Then ƒ is w0-regular and w0ƒ 6D ƒ. Hence, by the induction hypothesis,

d.D Li ; Vw0.ƒ// D 0; d.Li ; Vw0.ƒ// D d.L.i/;D.w
0ƒ;ƒ// D n:

Since D.wƒ;ƒ/ ' L.i/ın r D.w0ƒ;ƒ/, we have

Vw.ƒ/ ' L˝ni r Vw0.ƒ/ (4.7)

by Lemma 4.5. In particular, Vw.ƒ/ is simple.
It follows from Lemma 3.4 that d.Li ; Vw.ƒ// D 0. Moreover, d.D2Li ; Vw0.ƒ// D 0.

Applying Lemma 3.6 (i) to L D Li and X D Vw0.ƒ/, we obtain

d.D Li ; Vw.ƒ// D d.D Li ; Vw0.ƒ//C n D n;

which gives the assertion.

Case 2: Assume that siw > w. Since `.w/ � 2, there exists j 2 J such that sjw < w.
We set

w0 WD sjw; n WD . j̨ ; w
0ƒ/ 2 Z�0:
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Note that ƒ is w0-regular and w0ƒ 6D ƒ. By (4.7), we have

Vw.ƒ/ ' L˝nj r Vw0.ƒ/:

We set Z WD Vw.ƒ/ and Z0 WD Vw0.ƒ/. Hence

Z ' L˝nj r Z
0: (4.8)

(1) Suppose that ci;j D 0. Then siw0 >w0 since sisj D sj si . By the induction hypoth-
esis, we have

d.Li ; Vw0.ƒ// D .˛i ; w
0ƒ/ D .sj .˛i /; wƒ/ D .˛i ; wƒ/; d.D Li ; Vw0.ƒ// D 0:

Since d.Dk Li ; Lj / D 0 for any k 2 Z, it follows from (4.8) and Corollary 2.25 that

d.Dk Li ; Z/ D d.D
k Li ; Z

0/ for any k 2 Z:

In particular,

d.Li ; Z/ D d.Li ; Z
0/ D .˛i ; wƒ/; d.D Li ; Z/ D d.D Li ; Z

0/ D 0:

(2) We now assume that ci;j D �1. Then we have two cases: siw0 > w0 or siw0 < w0.
Assume that siw0 > w0. Then d.D Li ;Z0/D 0 by the induction hypothesis. Hence, by

(4.8) and Corollary 3.12 (i), we have d.D Li ; Z/ D 0 and

d.Li ; Z/ D d.Li ; Z
0/C n D .˛i ; w

0ƒ/C n D .˛i ; w
0ƒ � n j̨ / D .˛i ; wƒ/;

where the second identity follows from the induction hypothesis.
Assume now siw0<w0. Lettingw00WDsiw0, we havewDsj siw00 and `.w/D2C`.w00/.

If sjw00 < w00, then `.w/ D 3 C `.sjw
00/ and w D sj sisj .sjw

00/ D sisj si .sjw
00/. This

implies that siw < w, which contradicts the assumption of Case 2. Hence sjw00 > w00,
which tells us that

. j̨ ; siw
0ƒ/ D . j̨ ; w

00ƒ/ � 0:

Set m WD .˛i ; siw0ƒ/ 2 Z�0. Then

. j̨ ; siw
0ƒ/ D . j̨ ; w

0ƒCm˛i / D n �m;

which says that n �m � 0.
Set Z00 WD Vw00.ƒ/. By the induction hypothesis,

d.Li ; Z
0/ D 0; d.D Lj ; Z

00/ D 0; d.D2Lj ; Z
00/ D 0:

Applying Proposition 3.13 (iii) to L WD Li , L0 WD Lj and X WD Z0, Y WD Z00 and k WD n,
we have

d.Li ; Z/ D d.Li ; L˝nj r Z
0/ D n �m;

d.D Li ; Z/ D 0:
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Since .˛i ; wƒ/ D .˛i ; w0ƒ � n j̨ / D �.˛i ; siw
0ƒ/C n D n �m, we conclude that

d.Li ; Z/ D n �m D .˛i ; wƒ/;

which completes the proof.

Theorem 4.10. Let D D ¹Liºi2J be a strong duality datum associated with a simply-
laced finite Cartan matrix C. Then the duality functor FD sends simple modules to simple
modules.

Proof. Since the duality functor FD sends a simple module to a simple module or zero,
it suffices to show that FD.X/ is non-zero for any simple module X 2 R-gmod.

Let w0 be the longest element of the Weyl group W of C. Note that the category Cw0
is equal to R-gmod. For i 2 J , we set Ci WD D.w0ƒi ; ƒi / and denote by .Ci ; RCi / the
non-degenerate braider induced from R-matrices [30, Proposition 4.1]. It is proved in
[30, Section 5] that there is a localization zR WDR-gmodŒCı�1i j i 2 J � of R-gmod by the
braiders Ci . Moreover, zR is left rigid [30, Corollary 5.11]. Thus, for any simple module
X 2 R-gmod, there exists a module Y 2 R-gmod and ƒ 2 PC such that there exists a
surjective homomorphism

Y ıX � D.w0ƒ;ƒ/:

Applying the duality functor FD to the above surjection, we have

FD.Y /˝ FD.X/� FD.D.w0ƒ;ƒ//:

Since FD.D.w0ƒ;ƒ// is simple by Theorem 4.9, FD.X/ does not vanish.

Corollary 4.11. Let D be a strong duality datum associated with a simply-laced finite
Cartan matrix C. Then FD is faithful, i.e., for any non-zero morphism f in R-gmod,
FD.f / is non-zero.

Theorem 4.12. Let D D ¹Liºi2J be a strong duality datum associated with a simply-
laced finite Cartan matrix C D .ci;j /i;j2J . Then, for any simple modules M , N in
RC-gmod,

(i) ƒ.M;N/ D ƒ.FD.M/;FD.N //,

(ii) d.M;N / D d.FD.M/;FD.N //,

(iii) .wtM;wtN/ D �ƒ1.FD.M/;FD.N //,

(iv) d.DkFD.M/;FD.N // D 0 for any k 6D 0;˙1,

(v) zƒ.M;N/ D d.DFD.M/;FD.N // D d.FD.M/;D�1FD.N //:

Proof. Set ˇ WD �wt.M/ and  WD �wt.N / and write m WD ht.ˇ/ and n WD ht./.
(i) We shall use induction onmC n. Ifm D 0 or n D 0, then the assertion is obvious.

Hence we assume that m, n � 1.
If mC n D 2, then M D L.i/ and N D L.j / for some i; j 2 J . Since the assertion

is obvious for i D j , we assume that i 6D j . Since FD.M/ ' Li and FD.N / ' Lj , we
have

ƒ.Li ; Lj / D d.Li ; Lj / D �ci;j D ƒ.L.i/; L.j //:
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Suppose that mC n � 3. If m � 2, then there exist simple modules M1 and M2 such
that

(a) wt.M1/ ¤ 0 and wt.M2/ ¤ 0,

(b) M1 or M2 is real,

(c) M 'M1 r M2.

Hence, by Lemma 4.6 together with Corollary 4.11, we obtain

ƒ.M1; N /Cƒ.M2; N / �ƒ.M;N/

D ƒ.FD.M1/;FD.N //Cƒ.FD.M2/;FD.N // �ƒ.FD.M/;FD.N //:

Since ƒ.Mk ; N / D ƒ.FD.Mk/;FD.N // for k D 1; 2 by the induction hypothesis, we
have

ƒ.M;N/ D ƒ.FD.M/;FD.N //:

The case where n � 2 can be handled similarly.
(ii) follows immediately from (i).
(iii) There exist sequences .i1; : : : ; im/ and .j1; : : : ; jn/ in J such that M and N

appear as quotients ofL.i1/ ı � � � ıL.im/ andL.j1/ ı � � � ıL.jn/, respectively. Note that
ˇ D �

Pm
pD1 ˛ip and  D �

Pn
qD1 j̨q . Since FD is exact and FD.M/ and FD.N / are

simple, FD.M/ and FD.N / appear as quotients in Li1 ˝ � � � ˝ Lim and Lj1 ˝ � � � ˝ Ljn ,
respectively. Therefore, by [27, Proposition 3.11], we have

�ƒ1.FD.M/;FD.N // D �
X
p;q

ƒ1.Lip ; Ljq / D
X
p;q

cip ;jq D .ˇ; /:

(iv) follows from d.Dk.Li /; Lj / D 0 for any i; j and jkj � 2.
(v) By (i), (iii) and (iv), we have

ƒ.M;N/ D d.FD.M/;FD.N // � d.FD.M/;DFD.N //C d.FD.M/;D�1FD.N //;

.ˇ; / D � d.FD.M/;FD.N //C d.FD.M/;DFD.N //C d.FD.M/;D�1FD.N //:

Thus

zƒ.M;N/ D 1
2
.ƒ.M;N/C .ˇ; //

D d.FD.M/;D�1FD.N // D d.DFD.M/;FD.N //:

Corollary 4.13. Let D D ¹Liºi2J be a strong duality datum. For any i 2 J and any
simple module M 2 RC-gmod, we have

(i) "i .M/ D d.D Li ;FD.M//,

(ii) "�i .M/ D d.D�1Li ;FD.M//.

Proof. This follows from [26, Corollary 3.8] and Theorem 4.12 (v).
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Corollary 4.14. Let D D ¹Liºi2J be a strong duality datum associated with a simply-
laced finite Cartan matrix C. Then the duality functor FD induces an injective ring
homomorphism

KqD1.RC-gmod/� K.Cg/;

where KqD1.RC-gmod/ is the specialization of K.RC-gmod/ at q D 1.

Proof. Thanks to Theorem 4.10, it is enough to show that FD.M/ § FD.N / for any
non-isomorphic simple R-modules M and N . Let M and N be simple R-modules such
that

FD.M/ ' FD.N /:

We set ˇ WD �wt.M/ and  WD �wt.N /. We shall show M ' N .
We first assume that FD.M/DFD.N /D 1. Then .ˇ;ˇ/D�ƒ1.M;M/D 0, which

implies ˇ D 0. Hence M ' 1. Similarly, N ' 1.
We now assume that FD.M/ ' FD.N / § 1. Since M § 1, there exists i 2 J such

that "i .M/ > 0. By Corollary 4.13,

"i .M/ D ƒ.D Li ;FD.M// D ƒ.D Li ;FD.N // D "i .N /;

which tells us that Qei .M/ ¤ 0 and Qei .N / ¤ 0. Setting M 0 WD Qei .M/ and N 0 WD Qei .N /,
we have

Li r FD.M
0/ ' FD.M/ ' FD.N / ' Li r FD.N

0/;

which implies that FD.M
0/ ' FD.N

0/ by Lemma 2.8. Thus, by the standard induction
argument, we conclude that

Qei .M/ DM 0 ' N 0 D Qei .N /;

which yields M ' N .

Lemma 4.15. LetM be a real simple module in R-gmod. Then FD.M/ is a root module
if and only if wt.M/ is a root of gfin.

Proof. Set V D FD.M/. Then d.DkV; V / D 0 for k 6D ˙1. Hence

.wt.M/;wt.M// D �ƒ1.V; V / D 2 d.DV; V /:

Therefore

V is a root module, d.DV; V / D 1, .wt.M/;wt.M// D 2, wt.M/ is a root:

5. Strong duality datum and affine cuspidal modules

5.1. Unmixed pairs

The notion of an unmixed pair of modules over quiver Hecke algebras has an analogue
for modules over quantum affine algebras.
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Definition 5.1. Let .M; N / be an ordered pair of simple modules in Cg. We call it
unmixed if

d.DM;N/ D 0;

and strongly unmixed if

d.DkM;N/ D 0 for any k 2 Z�1:

Lemma 5.2. LetM andN be simple modules in Cg. If .M;N / is strongly unmixed, then

ƒ1.M;N / D ƒ.M;N/:

Proof. It follows from Definition 5.1 and Proposition 2.16 that

ƒ.M;N/ D
X
k2Z

.�1/kCı.k>0/ d.DkM;N/ D
X
k2Z

.�1/k d.DkM;N/ D ƒ1.M;N /:

Lemma 5.3. Let L1; : : : ; Lr be real simple modules in Cg for r 2 Z>1. If .La; Lb/ is
unmixed for any a < b, then .L1; : : : ; Lr / is normal.

Proof. We argue by induction on r . Since the assertion is obvious when r D 2, we
assume that r > 2. By the induction hypothesis, .L1; : : : ; Lr�1/ is normal. Set X D
hd.L2 ˝ � � � ˝ Lr�1/. Then Lemma 2.20 implies that

ƒ.L1; X/ D

r�1X
kD2

ƒ.L1; Lk/:

Since .L1; Lr / is unmixed, Lemma 2.21 implies that .L1; X;Lr / is normal. Hence

ƒ.L1; hd.L2 ˝ � � � ˝ Lr // D ƒ.L1; X r Lr / D ƒ.L1; X/Cƒ.L1; Lr /;

which implies that

ƒ.L1; hd.L2 ˝ � � � ˝ Lr // D
rX
kD2

ƒ.L1; Lk/:

Since .L2; : : : ; Lr / is normal, Lemma 2.20 implies that .L1; : : : ; Lr / is normal.

5.2. Affine cuspidal modules

Let D D ¹Liºi2J be a strong duality datum in C 0
g associated with a simply-laced finite

Cartan matrix C D .ci;j /i;j2J . Let RC be the symmetric quiver Hecke algebra associated
with C.

We define CD to be the smallest full subcategory of C 0
g which

(a) contains FD.L/ for any simple RC-module L,

(b) is stable by taking subquotients, extensions, and tensor products.
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Since d.Dk Li ; Lj / D 0 for any i; j 2 J and k � 2, it follows from Theorem 4.12 that

d.DkM;N/ D 0 for any simple modules M;N 2 CD and k � 2: (5.1)

For k 2 Z, let Dk.CD/ be the full subcategory of C 0
g whose objects are DkM for all

M 2 CD .

Proposition 5.4. Let k 2 Z with k ¤ 0. If a simple module M is in CD \Dk.CD/, then
M ' 1.

Proof. We may assume k > 0 without loss of generality. Let M be a simple module in
CD \Dk.CD/. By Theorem 4.10, there exists a simple module V 2 RC-gmod such that
FD.V / 'M . By Corollary 4.13 and Theorem 4.12 (iv), for any i 2 J we have

"�i .V / D d.D
�1Li ;M/ D d.Li ;DM/ D 0:

Thus V should be in RC.0/-gmod, which says that V ' 1.

Lemma 5.5. Let M; N be simple modules in RC-gmod. If .M; N / is unmixed, then
.FD.M/;FD.N // is strongly unmixed.

Proof. By (5.1), we know that d.DkFD.M/;FD.N // D 0 for k � 2. It follows from
[26, Proposition 2.12] that ƒ.M;N/ D �.wt.M/;wt.N //, i.e., zƒ.M;N/ D 0. Thus, by
Theorem 4.12 (v), we obtain

d.DFD.M/;FD.N // D zƒ.M;N/ D 0;

which completes the proof.

Let gC be the simple Lie algebra associated with C. LetˆCC be the set of positive roots
of gC and let WC be the Weyl group associated with gC. Let w0 be the longest element of
WC, and let ` denote its length. We choose an arbitrary reduced expressionw0 D si1 � � � si`
of w0. We extend ¹ikº`kD1 to ¹ikºk2Z by

ikC` D .ik/
� for any k 2 Z. (5.2)

(Recall that, for i 2 J , i� is a unique element of J such that ˛i� D �w0˛i .)
We can easily see that siaC1 � � � siaC` is also a reduced expression of w0 for any a 2 Z.

Let
¹Vkº

`
kD1 � RC-gmod

be the cuspidal modules associated with the reduced expression w0. Under the categorifi-
cation, the cuspidal module Vk corresponds to the dual PBW vector E�.ˇk/ correspond-
ing to ˇk WD si1 � � � sik�1.˛ik / 2 ˆ

C
C for k D 1; : : : ; ` (see Section 2.2).

We now introduce the notion of affine cuspidal modules for quantum affine algebras.

Definition 5.6. We define a sequence ¹Skºk2Z of simple U 0q.g/-modules in Cg as fol-
lows:
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(a) Sk D FD.Vk/ for any k D 1; : : : ; `, and we extend the definition to all k 2 Z by

(b) SkC` D D.Sk/ for any k 2 Z.

The modules Sk .k 2 Z/ are called the affine cuspidal modules corresponding to D

and w0.

Proposition 5.7. The affine cuspidal modules satisfy the following properties:

(i) Sa is a root module for any a 2 Z.

(ii) For any a; b 2 Z with a > b, the pair .Sa; Sb/ is strongly unmixed.

(iii) Let k1 > � � � > kt be integers and .a1; : : : ; at / 2 Zt�0. Then

(a) the sequence .S˝a1
k1

; : : : ; S˝at
kt

/ is normal,

(b) the head of the tensor product S˝a1
k1
˝ � � � ˝ S˝at

kt
is simple.

Proof. (i) follows immediately from Lemma 4.15.
(ii) Without loss of generality, we may assume that 1 � b � `. We write a D ` � t C r

for some t 2 Z�0 and 1 � r � `. By the definition, we have Sa D D t Sr . If t � 1, then

d.DkSa; Sb/ D d.D
kCt Sr ; Sb/ D 0 for any k � 1,

by (5.1).
Suppose that t D 0. As ` � a > b � 1, the pair .Va;Vb/ is unmixed. Thus Lemma 5.5

says that .Sa; Sb/ is strongly unmixed.
(iii) follows from Lemmas 5.3 and 2.19.

Example 5.8. Let U 0q.g/ be the quantum affine algebra of affine type A.1/2 , and let C 0
g be

the Hernandez–Leclerc category corresponding to

�0.g/ D ¹.1; .�q/
2k/; .2; .�q/2kC1/ j k 2 Zº:

For i 2 I0 and m 2 Z>0, we denote the Kirillov–Reshetikhin module by

V.im/ WD hd
�
V.$i /.�q/m�1 ˝ V.$i /.�q/m�3 ˝ � � � ˝ V.$i /.�q/�mC1

�
:

We simply write V.i/ instead of V.i1/, which is the i -th fundamental module V.$i /.
Let L1 WD V.1/ and L2 WD V.1/.�q/2 , and define D WD ¹L1; L2º � C 0

g . Then D is a
strong duality datum (see [21, Section 4.1]). Let C be the Cartan matrix of finite type A2.
Then we have the duality functor FD WRC-gmod! C 0

g .

(i) We choose a reduced expression w0 D s1s2s1. Then

ˇ1 WD ˛1; ˇ2 WD s1.˛2/ D ˛1 C ˛2; ˇ3 D s1s2.˛1/ D ˛2;

and the affine cuspidal modules corresponding to D and w0 are

S1 D FD.L.1// D L1 D V.1/;

S2 D FD.L.1/ r L.2// D L1 r L2 D V.1/ r V.1/.�q/2 D V.2/�q;

S3 D FD.L.2// D L2 D V.1/.�q/2 ;
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and SkC3 D D.Sk/ for k 2 Z. Here L.i/ is the self-dual 1-dimensional simple R.˛i /-
module. It is easy to see that the set ¹Sk j k 2 Zº of all affine cuspidal modules is equal
to the set of all fundamental modules in C 0

g .

(ii) We choose another reduced expression w00 D s2s1s2. Then

ˇ01 WD ˛2; ˇ02 WD s2.˛1/ D ˛1 C ˛2; ˇ03 D s2s1.˛2/ D ˛1;

and the affine cuspidal modules corresponding to D and w00 are

S01 D FD.L.2// D L2 D V.1/.�q/2 ;

S02 D FD.L.2/ r L.1// D L2 r L1 D V.1/.�q/2 r V.1/ D V.1
2/�q;

S03 D FD.L.1// D L1 D V.1/;

and S0
kC3
D D.S0

k
/ for k 2 Z. Note that the affine cuspidal modules S02C3t (t 2 Z) are

not fundamental modules.

5.3. Reflections

For any k 2 J , we set

Sk.D/ WD ¹Sk.Li /ºi2J and S �1k .D/ WD ¹S �1k .Li /ºi2J ; (5.3)

where

Sk.Li / WD

8̂̂<̂
:̂

D Li if i D k;

Lk r Li if ci;k D �1;

Li if ci;k D 0;

S �1k .Li / WD

8̂̂<̂
:̂

D�1Li if i D k;

Li r Lk if ci;k D �1;

Li if ci;k D 0:

It is easy to see that Sk ıS �1
k
.D/ D D and S �1

k
ıSk.D/ D D for any k 2 J .

Proposition 5.9. Let k 2 J .

(i) For any i 2 J , Sk.Li / and S �1
k
.Li / are root modules.

(ii) Sk.D/ and S �1
k
.D/ are strong duality data associated with the Cartan matrix C.

Proof. We focus on the case of Sk since the case of S �1
k

can be proved in a similar
manner.

Set L0i WDSk.Li / for i 2 J . For i; j 2 J , we write i � j if ci;j D �1 and i œ j if
ci;j D 0. Note that, for real simple modules L,M and N , Lemma 2.21 says that if one of
the following conditions holds:

� d.L;M/ D 0,

� d.M;N / D 0,

� d.L;D�1N/ D d.DL;N/ D 0,

then

ƒ.L;M r N/ D ƒ.L;M/Cƒ.L;N /; ƒ.L r M;N/ D ƒ.L;N /Cƒ.M;N/;

which will be used several times in the proof.
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(i) follows from Lemma 3.8.
(ii) Thanks to (i), it suffices to prove that

d.D t L0i ; L0j / D �ı.t D 0/ci;j for t 2 Z and i ¤ j .

Let i; j 2 J with i ¤ j . We shall prove it case by case.

Case 1: If i œ k and j œ k, then

d.D t L0i ; L0j / D d.D
t Li ; Lj / D �ı.t D 0/ci;j for t 2 Z:

Case 2: If i œ k and j D k, then ci;j D 0 and

d.D t L0i ; L0j / D d.D
t Li ;D Lj / D d.D

t�1Li ; Lj / D 0 D �ı.t D 0/ci;j :

Case 3: Suppose that i œ k and j � k. Then

d.D t L0i ; L0j / D d.D
t Li ; Lk r Lj /:

We have

ƒ.D t Li ; Lk r Lj / D ƒ.D
t Li ; Lk/Cƒ.D

t Li ; Lj /;

ƒ.Lk r Lj ;D
t Li / D ƒ.Lk ;D

t Li /Cƒ.Lj ;D
t Li /;

where the first equality follows from d.D t Li ; Lk/D 0 and the second from d.D Lk ;D t Li /
D 0. Hence we obtain

d.D t L0i ; L0j / D d.D
t Li ; Lk/C d.D

t Li ; Lj / D d.D
t Li ; Lj /

D �ı.t D 0/ci;j :

Case 4: Suppose that i � k and j � k. Then, by Lemma 2.23,

d.D t L0i ; L0j / D d.D
t .Lk r Li /; Lk r Lj / D d.D

t Lk r D t Li ; Lk r Lj /:

Since C is of finite type, we have ci;j D 0, i.e., d.D t Li ; Lj / D 0 for any t 2 Z.
If t ¤ 0;˙1, then

d.D t L0i ; L0j / D d.D
t Lk r D t Li ; Lk r Lj / D 0

since d.D t .La/; Lb/ D 0 for a; b D i; j; k by Theorem 4.12 (iv).
Suppose that t D 0. Then

ƒ.Lk r Li ; Lk r Lj / D ƒ.Lk r Li ; Lk/Cƒ.Lk r Li ; Lj /

D �ƒ.Lk ; Lk r Li /Cƒ.Lk r Li ; Lj /

D �ƒ.Lk ; Li /Cƒ.Lk ; Lj /Cƒ.Li ; Lj /:

Here the first and second identities follow from d.Lk ; Lk r Li / D 0 by Lemma 3.9, and
the third follows from d.Li ; Lj / D 0. Exchanging i and j , we have

ƒ.Lk r Lj ; Lk r Li / D �ƒ.Lk ; Lj /Cƒ.Lk ; Li /Cƒ.Lj ; Li /;
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which tells us that

d.L0i ; L0j / D d.Lk r Lj ; Lk r Li / D d.Li ; Lj / D �ci;j :

Suppose that t D ˙1. We have

ƒ1.L0i ; L0j / D ƒ
1.Lk r Li ; Lk r Lj /

D ƒ1.Lk ; Lk/Cƒ
1.Lk ; Lj /Cƒ

1.Li ; Lk/Cƒ
1.Li ; Lj / D .�2/C 1C 1C 0 D 0:

Hence
0 D

X
t2Z

.�1/t d.D t L0i ; L0j / D � d.D L0i ; L0j / � d.D
�1L0i ; L0j /:

Therefore d.D L0i ; L0j / D d.D
�1L0i ; L0j / D 0.

Case 5: Suppose that i � k and j D k. Then

d.D t L0j ; L0i / D d.D
tC1Lk ; Lk r Li / for t 2 Z;

which is equal to ı.t D 0/ by Lemma 3.9.

Proposition 5.10. Let ¹Skºk2Z be the sequence of the affine cuspidal modules corre-
sponding to D and a reduced expressionw0 D si1 � � � si` ofw0. Set S0

k
D SkC1 for k 2 Z.

Then ¹S0
k
ºk2Z is the sequence of the affine cuspidal modules corresponding to Si1D and

the reduced expression w00 D si2 � � � si`C1 (see (5.2)).

Proof. Set i D i1. We denote by �, ¹ˇkº`kD1 and ¹Vkº`kD1 the convex order, the ordered
set of positive roots and the cuspidal modules in RC-gmod corresponding to w0 as in
Section 2.2. Similarly, we write �0, ¹ˇ0

k
º`
kD1

and ¹V0
k
º`
kD1

for the ones corresponding
to w00. It is enough to show that

FSi .D/.V
0
k/ ' SkC1 for 1 � k � `.

It is easy to see that

� ˇkC1 D siˇ
0
k for k D 1; : : : ; ` � 1, (5.4)

� VkC1 ' Ti .V
0
k/ for k D 1; : : : ; ` � 1, (5.5)

� ˛i is smallest (resp. largest) with respect to � (resp. �0). (5.6)

It follows from (5.6) that V1 ' L.i/ ' V0
`
. Thus

FSi .D/.V
0
`/ ' D Li ' D.FD.V1// D S`C1: (5.7)

It remains to prove that

FSi .D/.V
0
k/ ' FD.VkC1/ for k D 1; : : : ; ` � 1. (5.8)

We shall use induction on ht.ˇ0
k
/.
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If ht.ˇ0
k
/ D 1, then ˇ0

k
D j̨ for some j 2 J . Note that j ¤ i because k < `. Thus,

ˇkC1 D si .ˇ
0
k
/ D si . j̨ / and

VkC1 D

´
L.i/ r L.j / if ci;j D �1,

L.j / otherwise.

By the definition of Si , we have

FSi .D/.V
0
k/ ' FSi .D/.L.j // ' Si .Lj / ' FD.VkC1/:

Suppose that ht.ˇ0
k
/ > 1. We take a minimal pair .ˇ0a; ˇ

0
b
/ of ˇ0

k
with respect to �0. It

follows from (2.2) that
V0a r V0b ' V0k : (5.9)

Case 1: Suppose that b ¤ `. Applying Ti to (5.9), it follows from (5.5) that

VaC1 r VbC1 ' VkC1: (5.10)

Applying FD to (5.10) and using the induction hypothesis, we have

FD.VkC1/ ' FD.VaC1/ r FD.VbC1/ ' FSi .D/.V
0
a/ r FSi .D/.V

0
b/

' FSi .D/.V
0
k/:

Case 2: Suppose that b D `. Since V0
b
D L.i/, by applying FSi .D/ to (5.9) we have

FSi .D/.V
0
a/ r D Li ' FSi .D/.V

0
k/: (5.11)

On the other hand, it follows from Qf �i .V
0
a/ D V0a r L.i/ ' V0

k
that

"�i .V
0
a/C 1 D "

�
i .V
0
k/; '�i .V

0
a/ D '

�
i .V
0
k/C 1:

Thus, by (2.3) and (5.5), we have

VaC1 D Ti .V
0
a/ '

Qf
'�
i
.V0
k
/C1

i Qe�i
"�
i
.V0a/C1 Qf �i V0a

' L.i/ r . Qf
'�
i
.V0
k
/

i Qe�i
"�
i
.V0
k
/V0k/ ' L.i/ r Ti .V

0
k/ D L.i/ r VkC1;

which implies that

FD.VaC1/ ' Li r FD.VkC1/: (5.12)

Then

FD.VkC1/ ' FD.VaC1/ r D Li by (5.12) and Lemma 2.7

' FSi .D/.V
0
a/ r D Li by the induction hypothesis

' FSi .D/.V
0
k/ by (5.11),

which completes the proof of (5.8).
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Proposition 5.11. Let i 2 J , and let S be a simple module in Cg.

(i) The following conditions are equivalent:

(a) S 2 FD.C�;si /,

(b) S 2 CD and d.D�1Li ; S/ D 0,

(c) S 2 CSi .D/ \ CD .

(ii) The following conditions are equivalent:

(a) S 2 FD.Csiw0/,

(b) S 2 CD and d.D Li ; S/ D 0,

(c) S 2 CS�1
i
.D/ \ CD .

Here, C�;si and Csiw0 are the subcategories of RC-gmod that appeared in Section 2.2.

Proof. We focus on proving (i) since (ii) can be proved in a similar manner.
Let us take a reduced expression w0 D si1 � � � si` of w0 such that i1 D i . Let ¹Vkº`kD1

be the cuspidal modules in RC-gmod corresponding to w0. Let ¹Skºk2Z be the affine
cuspidal modules corresponding to D and w0. Set S0

k
D SkC1 or k 2 Z. Then ¹S0

k
ºk2Z

are the cuspidal modules corresponding to Si1D and w00 D si2 � � � si`C1 by Proposition
5.10.

Now we prove (i). It is known that

(1) any simple module in C�;si is isomorphic to the head of a convolution product of
copies of V2; : : : ;V`,

(2) for any simple module M 2 RC-gmod, M 2 C�;si if and only if "�i .M/ D 0

(see [26, Proposition 2.18 and Theorem 2.20]). Hence (a),(b) follows from (2) and
Corollary 4.13.

Note that
FD.Vk/ D Sk D S0k�1 2 CSi .D/ for 2 � k � `.

Hence, by (1), we have
FD.C�;si / � CSi .D/ \ CD ;

that is, (a))(c).
Let S be a simple module in CSi .D/ \ CD . Since D�1Li 2 D�2CSi .D/, we have

d.D�1Li ; S/ D 0:

Thus we obtain (c))(b).

Example 5.12. We use the same notations as in Example 5.8.

(i) We shall apply S1 to the duality datum D D ¹L1; L2º. Let

zL1 WD S1.L1/ D D L1 D V.2/.�q/3 ;

zL2 WD S1.L2/ D L1 r L2 D V.2/�q :
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Then S1.D/ D ¹zL1; zL2º. The affine cuspidal modules zSk corresponding to S1.D/ and
the reduced expression s2s1s2 are

zS1 D FS1D.L.2// D zL2 D V.2/�q;

zS2 D FS1D.L.2/ r L.1// D zL2 r zL1 D V.2/�q r V.2/.�q/3 D V.1/.�q/2 ;

zS3 D FS1D.L.1// D zL1 D V.2/.�q/3 ;

and zSkC3 DD.zSk/ for k 2Z. Note that zSk D SkC1 for any k 2Z (see Proposition 5.10).

(ii) We shall apply S2 to the duality datum D D ¹L1; L2º. Let

bL1 WD S2.L1/ D L2 r L1 D V.1/.�q/2 r V.1/ D V.1
2/�q;bL2 WD S2.L2/ D D L2 D V.2/.�q/5 :

Then S2.D/ D ¹bL1;bL2º. As can be seen, the duality datum S2.D/ has a root module
which is not fundamental.

The affine cuspidal modulesbSk corresponding to S2.D/ and the reduced expression
s1s2s1 arebS1 D FS2D.L.1// DbL1 D V.12/�q;bS2 D FS2D.L.1/ r L.2// DbL1 rbL2 D V.12/�q r V.2/.�q/5

D .V .1/.�q/2 r V.1// r V.2/.�q/5 D V.1/ by Lemma 2.7,bS3 D FS2D.L.2// DbL2 D V.2/.�q/5 ;
andbSkC3 DD.bSk/ for k 2Z. Note thatbSk D S0

kC1
for any k 2Z (see Proposition 5.10).

6. PBW-theoretic approach

6.1. Complete duality datum

Definition 6.1. A duality datum D is called complete if it is strong and, for any simple
module M 2 C 0

g , there exist simple modules Mk 2 CD .k 2 Z/ such that

(a) Mk ' 1 for all but finitely many k,

(b) M ' hd.� � � ˝D2M2 ˝DM1 ˝ M0 ˝D�1M�1 ˝ � � � /:

In [31], we associate to the category C 0
g a simply-laced finite type root system in a

canonical way. For a simple module M 2 Cg, define E.M/ 2 Hom.�.g/;Z/ by

E.M/.i; a/ WDƒ1.M; V.$i /a/ for .i; a/ 2 �.g/:

Let

W0 WD ¹E.M/ jM is simple in C 0
g º and �0 WD ¹si;a j .i; a/ 2 �0.g/º � W0;
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where we set si;a WD E.V .$i /a/. Then ‡g WD .W0;�0/ forms a root system, and the type
of ‡g is as follows (see [31, Theorem 4.6]):

Type of g A
.1/
n B

.1/
n C

.1/
n D

.1/
n A

.2/
2n A

.2/
2n�1 D

.2/
nC1

.n � 1/ .n � 2/ .n � 3/ .n � 4/ .n � 1/ .n � 2/ .n � 3/

Type of ‡g An A2n�1 DnC1 Dn A2n A2n�1 DnC1

Type of g E
.1/
6 E

.1/
7 E

.1/
8 F

.1/
4 G

.1/
2 E

.2/
6 D

.3/
4

Type of ‡g E6 E7 E8 E6 D4 E6 D4

(6.1)

We denote by Xg the type of ‡g.
We define a symmetric bilinear form .�; �/ on W0 by .E.M/;E.N //D�ƒ1.M;N / for

simple modules M and N . Then .�; �/ is a Weyl group invariant positive definite bilinear
form and �0 D ¹˛ 2 W0 j .˛; ˛/ D 2º.

Proposition 6.2. Let D WD ¹Liºi2J � C 0
g be a complete duality datum associated with a

simply-laced finite Cartan matrix C. Then C is of type Xg.

Proof. We denote by QC and ˆC the root lattice and the set of roots associated with C.
It follows from Proposition 2.11, Proposition 2.13, Theorem 4.10 and Definition 6.1

that the abelian group W0 is generated by E.M/ for M 2 CD . Moreover, E.FD.M//

depends only on wt.M/ by Theorem 4.12 (iii). Hence the functor FD induces the surjec-
tive additive map

ŒFD �WQC � W0

given by ŒFD �.˛i / D E.Li / for i 2 J . Moreover, ŒFD � preserves the positive definite
pairing .�; �/. Hence ŒFD � is bijective. Since both ˆC and �0 are characterized by the
condition .X;X/ D 2 ([31, Corollary 4.8] and [19, Proposition 5.10]), the set ¹E.Li /ºi2J
becomes a basis of the root system ‡g. Since ci;j D .˛i ; j̨ / D .E.Li /; E.Lj // for any
i; j 2 J by Theorem 4.12 (iii), we conclude that the Cartan matrix C D .ci;j /i;j2J is of
type Xg.

Theorem 6.3. Let D WD ¹Liºi2J be a complete duality datum. For any i 2 J , Si .D/ and
S �1i .D/ are complete.

Proof. We focus on the case of Si since the other case is similar. Since Si .D/ is strong
by Proposition 5.9, it suffices to show that Si .D/ satisfies the conditions of Defini-
tion 6.1.

Let i 2 J and choose a reduced expression w0 D si1 � � � si` of the longest element
w0 of WC with i1 D i . Define ¹ikºk2Z and the cuspidal modules ¹Skºk2Z corresponding
to D and w0 as in Section 5.2. LetM be a simple module in C 0

g . As D is complete, there
exist simple modulesMk 2 CD (k 2 Z) such thatMk ' 1 for all but finitely many k and

M ' hd.� � � ˝D2M2 ˝DM1 ˝ M0 ˝D�1M�1 ˝ � � � /: (6.2)
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For each k 2 Z, there exist ak;1; : : : ; ak;` 2 Z�0 such that

Mk ' hd.S˝ak;`
`

˝ � � � ˝ S
˝ak;1
1 /:

Set csCk` D ak;s for 1 � s � ` and k 2 Z. Then, by Lemma 2.23, we have

DkMk ' hd.S˝ck`C`
k`C`

˝ � � � ˝ S
˝ck`C1
k`C1

/:

Hence we have
M ' hd.� � � ˝ S˝c11 ˝ S˝c00 ˝ S˝c�1�1 ˝ � � �/:

Set
Nk D hd.S˝ck`C`C1

`C1
˝ � � � ˝ S

˝ck`C2
2 /:

Then Nk 2 CSiD by Proposition 5.10, and we have

DkNk ' hd.S˝ck`C`C1
k`C`C1

˝ � � � ˝ S
˝ck`C2
k`C2

/:

Hence we obtain

M ' hd.� � � ˝D1N1 ˝D0N0 ˝D�1N�1 ˝ � � �/:

6.2. Duality datum arising from Q-datum

The subcategory CQ of C 0
g was introduced in [16] for simply-laced affine type ADE,

in [23] for twisted affine types A.2/ and D.2/, in [34, 51] for untwisted affine types B.1/

and C .1/, and in [47] for exceptional affine type. Let gfin be the simple Lie algebra of type
Xg defined in (6.1) and Ifin the index set of gfin. The category CQ categorifies the coor-
dinate ring CŒN � of the maximal unipotent group N associated with gfin. This category
is defined by a Q-datum. A Q-datum is a triple Q WD .4; �; �/ consisting of the Dynkin
diagram4 of gfin, an automorphism � on4 and a height function �, which satisfy certain
conditions (see [13] for details, and also [33, Section 6]). When g is of untwisted affine
type ADE, � is the identity and Q is equal to a Dynkin quiver with a height function.
To a Q-datum Q, we can associate a subset �Q.g/ of �0.g/. This set �Q.g/ is in 1-1
correspondence with the set ˆCfin of positive roots of gfin, which is denoted by

ϕQWˆ
C
fin
�
��! �Q.g/: (6.3)

Set
DQ WD ¹Liºi2Ifin ;

where Li is the fundamental module corresponding to ϕQ.˛i / for i 2 Ifin. Then DQ

becomes a strong duality datum [11, 13, 20, 23, 33, 34, 47], which gives the duality func-
tor FDQ

. By the definition, we have CQ D CDQ
. We simply write FQ for FDQ

:

FQWR
gfin -gmod! Cg:
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We refer the reader to [13, 33, 51] for the notion of (twisted) Q-adapted reduced
expressions of the longest element w0 of the Weyl group of gfin.

Let Wfin be the Weyl group of gfin. For a Q-adapted reduced expressionw0D si1 � � � si`
of the longest element w0 of Wfin, we define ˇk 2 ˆCfin (1 � k � `/ by (2.1). Then there
exist a sequence ¹.ik ; ak/ºk2Z � Ifin � k� and � W Ifin ! I0 such that .�.ik/; ak/ D
ϕQ.ˇk/ 2 �Q.g/ for k D 1; : : : ; ` and

.�.isCm`/; asCm`/ D ı
m..�.is/; as// for 1 � s � ` and m 2 Z.

Here we set

ım..i; a// WD

´
.i; .p�/ma/ if m is even;

.i�; .p�/ma/ if m is odd:

(See [33, Section 6].)
We define the affine cuspidal modules ¹Skºk2Z as in Definition 5.6.
Collecting results in [13,16,20,23,34,47,51], we obtain Proposition 6.4 below. In the

proposition, the symmetric cases follow from [16, 20], the untwisted B.1/ and C .1/ cases
follow from [34,51], the twistedA.2/ andD.2/ cases follow from [23], and the exceptional
cases follow from [47]. The uniform approach is given in [13]. See also [33, Section 6].

Proposition 6.4 ([13, 16, 20, 23, 34, 47, 51]). Let Q be a Q-datum.

(i) �0.g/ D
F
m2Z ım �Q.g/ (see e.g. [13, Proposition 4.21]).

(ii) There exists a Q-adapted reduced expression of w0 (see e.g. [51, Section 3]).

(iii) For a Q-adapted reduced expression w0 D si1 � � � si` of w0, let ¹.ik ; ak/ºk2Z be the
sequence as above, and let ¹Skºk2Z be the affine cuspidal modules corresponding
to DQ and w0. Then

(a) Sk ' V.$�.ik//ak ,

(b) dV.$�.is//;V.$�.it //.at=as/ 6D 0 for t; s 2Z such that s > t . Here, d is the denom-
inator of the R-matrix.

(See [20, Theorem 4.3.4], [23, Theorem 5.1 and Lemma 5.2] , [34, Theorems 6.3,
6.4] and [47, Section 6]).

Proposition 6.5. The duality datum DQ is a complete duality datum.

Proof. Recall that �0.g/ D ¹.�.ik/; ak/ j k 2 Zº. For a simple module M in C 0
g , let

�D
Pr
sD1.�.iks /;aks / be the affine highest weight ofM (see Theorem 2.9 (iv)). We may

assume that ¹ksºrsD1 is a decreasing sequence. Then, by Proposition 6.4 and Theorem 2.9,
we have M ' hd.Sk1 ˝ � � � ˝ Skr /.

Thanks to Theorem 6.3, we have the following.

Corollary 6.6. The duality datum obtained from DQ by applying a finite sequence of Si

and S �1i .i 2 Ifin/ is a complete duality datum.
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Example 6.7. We use the same notations as in Examples 5.8 and 5.12. Let 4 be the
Dynkin diagram of finite type A2.

(i) Let � be the height function on4 defined by �.1/ D 0 and �.2/ D 1, and let Q be
the Q-datum consisting of4 and �. Then D is equal to the duality datum arising from the
Q-datum Q, which says that D is complete. The reduced expression s1s2s1 is Q-adapted,
but s2s1s2 is not.

(ii) By Corollary 6.6, S1.D/ and S2.D/ are complete duality data. The duality
datum S1.D/ arises from the Q-datum consisting of4 and the height function � 0 defined
by � 0.1/ D 2 and � 0.2/ D 1, but S2.D/ does not come from any Q-datum.

6.3. PBW for quantum affine algebras

In this subsection, we develop the PBW theory for C 0
g using a complete duality datum.

This generalizes the ordinary standard modules and related results [14,25,45,46,53]. Note
that the ordinary standard modules are cyclic tensor products of fundamental modules.

Let CD .ci;j /i:j2J be a simply-laced finite Cartan matrix. Throughout this subsection,
we assume that

D D ¹Liºi2J is a complete duality datum associated with C.

Proposition 6.2 says that C is of type Xg and J D Ifin. Let WC be the Weyl group associ-
ated with C. We fix a reduced expression w0 D si1 � � � si` of the longest element w0 of WC,
and let Sk .k 2 Z/ be the affine cuspidal modules corresponding to D and w0. We define

Z WD Z˚Z
�0 D ¹.ak/k2Z 2 ZZ

�0 j ak D 0 for all but finitely many k’sº: (6.4)

We denote by � the bi-lexicographic order on Z, i.e., for any a D .ak/k2Z and a0 D
.a0
k
/k2Z in Z, a � a0 if and only if the following conditions hold:´

(a) there exists r 2 Z such that ak D a0k for any k < r and ar < a0r ,

(b) there exists s 2 Z such that ak D a0k for any k > s and as < a0s .
(6.5)

Similarly, we let �r (resp. �l ) be the right (resp. left) lexicographic order on Z, i.e., for
any a; a0 2 Z, a �r a0 (resp. a �l a0) if and only if condition (a) (resp. (b)) in (6.5) holds.
Hence

a � a0 ” a �l a0 and a �r a0: (6.6)

For a D .ak/k2Z 2 Z, we define

PD;w0.a/ WD
�1O

kDC1

S˝ak
k
D � � � ˝ S˝a22 ˝ S˝a11 ˝ S˝a00 ˝ S˝a�1�1 ˝ S˝a�2�2 ˝ � � � :

Here PD;w0.0/ should be understood as the trivial module 1. We call the modules
PD;w0.a/ standard modules with respect to the cuspidal modules ¹Skºk2Z.



M. Kashiwara, M. Kim, S.-j. Oh, E. Park 2736

Lemma 6.8. Let k 2 Z and a 2 Z>0, and let M be a simple module in C 0
g .

(i) If d.D t Sk ;M/ D 0 for t D 1; 2, then a D d.D Sk ; S˝a
k
r M/.

(ii) If d.D t Sk ;M/ D 0 for t D �1;�2, then a D d.D�1Sk ;M r S˝a
k
/.

Proof. (i) Note that Sk is a root module by Proposition 5.7. Applying Lemma 3.6 (i) to
the setting L WD Sk and X WDM , we have

d.D Sk ; S˝a
k
r M/ D aC d.D Sk ;M/ D a:

(ii) can be proved in the same manner.

Lemma 6.9. Let m; l 2 Z with m � l and am; am�1; : : : ; al 2 Z�0. Set

M WD hd.S˝amm ˝ S˝am�1m�1 ˝ � � � ˝ S˝al
l

/:

(i) d.D Sk ;M/ D 0 for any k > m.

(ii) Set Mm WDM and define inductively

dk WD d.D Sk ;Mk/ and Mk�1 WDMk r D.S˝dk
k

/

for k D m; : : : ; l . Then

dk D ak and Mk ' hd.S˝ak
k
˝ S˝ak�1

k�1
˝ � � � ˝ S˝al

l
/ for k D m; : : : ; l .

(iii) d.D�1Sk ;M/ D 0 for any k < l .

(iv) Set Nl WDM and define inductively

ek WD d.D
�1Sk ; Nk/ and NkC1 WDD�1.S˝ek

k
/ r Nk

for k D l; : : : ; m. Then

ek D ak and Nk ' hd.S˝amm ˝ � � � ˝ S
˝akC1
kC1

˝ S˝ak
k

/ for k D m; : : : ; l .

Proof. (i) By Proposition 5.7 (ii), .Sk ; St / is strongly unmixed for any k > m and t D
m; : : : ; l . Thus d.D Sk ; St / D 0 for t D m; : : : ; l , which implies that d.D Sk ;M/ D 0.

(ii) By induction on k, we may assume that kDm. SetN WDhd.S˝am�1m�1 ˝� � �˝S˝al
l

/.
By (i), we have d.D t Sm; N / D 0 for t D 1; 2. Proposition 5.7 (iii) tells us that M '
S˝amm r N . Thus, by Lemmas 2.7 and 6.8, we have

dm D d.D Sm;M/ D d.D Sm; S˝amm r N/ D am;

M r D.S˝am
k

/ ' .S˝amm r N/ r D.S˝am
k

/ ' N:

Assertions (iii) and (iv) can be proved in the same manner.

Theorem 6.10. (i) For any a 2 Z, the head of PD;w0.a/ is simple; denote it by

VD;w0.a/ WD hd.PD;w0.a//:
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(ii) For any simple module M 2 C 0
g , there exists a unique a 2 Z such that

M ' VD;w0.a/:

Therefore, the set ¹VD;w0.a/ j a 2 Zº is a complete and irredundant set of simple
modules of C 0

g up to isomorphism.

Proof. (i) follows from Proposition 5.7.
(ii) LetM be a simple module in C 0

g . Since D is complete, there exist simple modules
Mk 2 CD (k 2 Z) such that Mk ' 1 for all but finitely many k and

M ' hd.� � � ˝D2M2 ˝DM1 ˝M0 ˝D�1M�1 ˝ � � � /:

Since Mk 2 CD , there exist bk1 ; : : : ; b
k
`
2 Z�0 such that Mk ' hd.S

bk
`

`
˝ � � � ˝ S

bk
1

1 /,
which yields

DkMk ' hd.S
bk
`

k`C`
˝ � � � ˝ S

bk
1

k`C1
/

by Lemma 2.23. For t 2 Z, we define at WD bkr , where t D k`C r for some k 2 Z and
r D 1; : : : ; `, and set a WD .at /t2Z. By Proposition 5.7, we have

M ' VD;w0.a/:

The uniqueness for a follows from Lemma 6.9. This completes the proof.

The element a 2 Z associated with a simple module M in Theorem 6.10 (ii) is called
the cuspidal decomposition of M with respect to the cuspidal modules ¹Skºk2Z, and it is
denoted by

aD;w0.M/ WD a: (6.7)

Lemma 6.11. Let L;M;N be simple modules in Cg and assume that L is real.

(i) If .L; M/ and .L; N / are strongly unmixed and L r N appears in L ˝M as a
subquotient, then M ' N .

(ii) If .M; L/ and .N; L/ are strongly unmixed and N r L appears in M ˝ L as a
subquotient, then M ' N .

Proof. (i) Since .L;M/ and .L;N / are strongly unmixed,

ƒ.L;M/ D ƒ1.L;M/ and ƒ.L;N / D ƒ1.L;N /

by Lemma 5.2. Since L r N appears in L˝M , Proposition 2.13 tells us that

ƒ.L;M/ D ƒ1.L;M/ D ƒ1.L;N / D ƒ.L;N / D ƒ.L;L r N/:

Thus it follows from [27, Theorem 4.11] that L r M ' L r N , which implies that
M ' N by Lemma 2.7.

(ii) can be proved in the same manner.
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For c D .ck/k2Z 2 Z, we set l.c/ (resp. r.c/) to be the integer t such that

ct ¤ 0; ck D 0 for any k > t (resp. k < t). (6.8)

Theorem 6.12. Let a be an element of Z.

(i) The simple module VD;w0.a/ appears only once in PD;w0.a/.
(ii) If V is a simple subquotient of PD;w0.a/ which is not isomorphic to VD;w0.a/, then

aD;w0.V / � a.

(iii) In the Grothendieck ring, we have

ŒPD;w0.a/� D ŒVD;w0.a/�C
X
a0�a

c.a0/ŒVD;w0.a
0/� for some c.a0/ 2 Z�0.

Proof. We focus on proving (ii) because (i) and (iii) follow from (ii).
Let a D .ak/k2Z and set

l WD l.a/ and r WD r.a/:

Let V be a simple subquotient of PD;w0.a/ which is not isomorphic to VD;w0.a/. We set

b D .bk/k2Z WD aD;w0.V /:

For k > l and r > t , since .Sk ; Sl / and .Sr ; St / are strongly unmixed by Proposition 5.7,
we have

d.D Sk ;PD;w0.a// D 0; d.D�1St ;PD;w0.a// D 0;

which implies that d.D Sk ; V / D 0 and d.D�1St ; V / D 0 by [27, Proposition 4.2]. Thus,
Lemma 6.9 tells us that

l � l.b/ and r.b/ � r:

We shall now prove b �l a, where�l is the left lexicographical order on Z. Note that,
by Lemma 6.9, Proposition 5.7 and [27, Proposition 4.2], we have

bl D d.D Sl ; V / � d.D Sl ;PD;w0.a// D d.D Sl ; S˝al
l

/ D al :

When either l > l.b/ or l D l.b/ and bl < al , it is obvious that b �l a by the definition.
We assume that l D l.b/ and bl D al . Set

c WD bl D al ; a� D .a�k /k2Z; where a�k WD

´
0 if k D l;

ak otherwise,

and

P� WD S˝al�1
l�1

˝ � � � ˝ S˝arr ; V � WD hd.S˝bl�1
l�1

˝ � � � ˝ S
˝br.b/
r.b/ /:

Note that

P� D PD;w0.a
�/; PD;w0.a/ D S˝c

l
˝ P�; V ' .S˝c

l
/ r V �; (6.9)
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where the third relation follows from Proposition 5.7 (iii). As V appears in S˝c
l
˝ P� as

a simple subquotient, there exists a simple subquotient L of P� such that

V appears in S˝c
l
˝ L as a simple subquotient.

By Proposition 5.7 (ii), we know that .Sl ; V �/ and .Sl ; L/ are strongly unmixed. Hence,
by Lemma 6.11, we conclude that

V � ' L:

If V � is isomorphic to hd.P�/, then V ' hd.PD;w0.a// by (6.9), which contradicts the
assumption. Hence V � is not isomorphic to hd.P�/. Applying the standard induction
argument to the setting V � and P�, we obtain

aD;w0.V
�/ �l a�;

which implies that b �l a:
In the same manner, one can prove that b �r a. Therefore it follows from (6.6) that

b � a.

Remark 6.13. Let V be a simple subquotient of PD;w0.a/. Theorem 6.12 says that
aD;w0.V / � a: There is another condition which V should satisfy. By Proposition 2.13,

E.V / D E.VD;w0.a//; (6.10)

where E is given in Section 6.1. Thus they are in the same block of Cg.

Remark 6.14. There is a well-known partial ordering, called the Nakajima partial order-
ing, in the q-character theory. For simplicity, we assume that U 0q.g/ is of untwisted affine
ADE type. Let Yi;a be an indeterminate for i 2 I0 and a 2 k�. For i 2 I0 and a 2 k�, set
Ai;a WD Yi;aq�1Yi;aq

Q
.˛i ; j̨ /D�1

Y �1j;a . Then one can define a partial ordering� on the set
of monomials in ZŒY ˙i;a j i 2 I0; a 2 k�� as follows: for monomials m and m0, m � m0 if
and only ifm�1m0 is a product of elements of ¹Ai;a j i 2 I0; a 2 k�º [10,46]. The simple
modules and ordinary standard modules in Cg are parameterized by dominant monomi-
als, which are denoted by L.m/ and M.m/ respectively for a dominant monomial m.
Note that the fundamental module V.$i /a corresponds to Yi;a. From the viewpoint of
.q; t/-characters, it was shown in [45, 46] that

ŒM.m/� D ŒL.m/�C
X
m0<m

Pm;m0 ŒL.m
0/� (6.11)

in the Grothendieck ring K.Cg/ and the multiplicity Pm;m0 can be understood as the
specialization at t D 1 of an analogue Pm;m0.t/ of the Kazhdan–Lusztig polynomial.

Let Q be a Q-datum and let w0 be a Q-adapted reduced expression. In this case,
the affine cuspidal modules Sk are all fundamental modules in C 0

g and PDQ;w0.a/ are
ordinary standard modules (see Example 5.8 (i) for instance). Let m and m0 be domi-
nant monomials and set a WD aDQ;w0.L.m// and a0 WD aDQ;w0.L.m

0//. Considering the
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definition of Ai;a and [33, Proposition 6.11], one can show that if m � m0 in the par-
tial ordering, then a � a0 in the ordering (6.5). From this observation about two orders
� and �, Theorem 6.12 is compatible with (6.11). Since affine cuspidal modules need
not be fundamental in general (see Example 5.8 (ii) for instance), Theorem 6.12 can be
viewed as a generalization of (6.11).

Remark 6.13 says that condition (6.10) holds when V is a simple subquotient of
PD;w0.a/. Thus it is interesting to ask under what conditions the ordering (6.5) is equal
to the ordering �.

For a; b 2 Z t ¹˙1º, an interval Œa; b� is the set of integers between a and b:

Œa; b� WD ¹s 2 Z j a � s � bº:

If a > b, we understand Œa; b� D ;.
For an interval Œa; b�, we define C

Œa;b�;D;w0
g to be the full subcategory of Cg whose

objects have all their composition factors V satisfying the following condition:

b � l.aD;w0.V // and r.aD;w0.V // � a: (6.12)

Thanks to Theorem 6.12, we have the following proposition.

Proposition 6.15. The category C
Œa;b�;D;w0
g is stable by taking subquotients, extensions,

and tensor products.

It is easy to show that the category C
Œa;b�;D;w0
g is equal to the smallest full subcategory

of C0 satisfying the following conditionsW

(i) it is stable under taking subquotients, extensions, tensor products,

(ii) it contains Ss for all a � s � b and the trivial module 1.

If no confusion can arise, we simply write C Œa;b�
g instead of C

Œa;b�;D;w0
g .

For an interval Œa; b�, we set

ZŒa;b� WD ¹a D .ak/k2Z 2 Z j ak D 0 if either k > b or a > kº:

The theorem below follows directly from Lemma 6.9 and Theorems 6.10 and 6.12.

Theorem 6.16. Let Œa; b� be an interval.

(i) The set ¹VD;w0.a/ j a 2 ZŒa;b�º is a complete and irredundant set of simple modules

of C Œa;b�
g up to isomorphism.

(ii) Let M be a simple module in C 0
g . Then M belongs to C Œa;b�

g if and only if

d.D Sk ;M/ D 0 for k > b and d.D�1Sk ;M/ D 0 for k < a.

(iii) For a 2 ZŒa;b�, the standard module PD;w0.a/ is contained in C Œa;b�
g and, in the

Grothendieck ring, we have

ŒPD;w0.a/� D ŒVD;w0.a/�C
X
a0�a

c.a0/ŒVD;w0.a
0/� for some c.a0/ 2 Z�0.
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Example 6.17. We use the same notations as in Example 5.8.

(i) We consider the affine cuspidal modules Sk given in Example 5.8 (i). Let l 2 Z�0.
The category C Œ1;2.lC1/�

g is determined by Sk for k 2 Œ1; 2.l C 1/�. It follows from

¹Sk j k 2 Œ1; 2.l C 1/�º D ¹V.1/.�q/2t ; V .2/.�q/2tC1 j t 2 Œ0; l�º

that the category C Œ1;2.lC1/�
g is equal to the Hernandez–Leclerc category Cl defined in

[15, Section 3.8].

(ii) Let us take the affine cuspidal modules S0
k

given in Example 5.8 (ii). In this
case, the category C Œa;b�

g is not equal to Cl in general. From this viewpoint, the category

C
Œa;b�;D;w0
g is a generalization of the category Cl .
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