
© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 26, 2533–2563 (2024) DOI 10.4171/JEMS/1285

Jérôme Bolte · Edouard Pauwels · Rodolfo Ríos-Zertuche

Long term dynamics of the subgradient method for
Lipschitz path differentiable functions

Received July 14, 2020

Abstract. We consider the long-term dynamics of the vanishing stepsize subgradient method in
the case when the objective function is neither smooth nor convex. We assume that this function
is locally Lipschitz and path differentiable, i.e., admits a chain rule. Our study departs from other
works in the sense that we focus on the behavior of the oscillations, and to do this we use closed
measures, a concept that complements the technique of asymptotic pseudotrajectories developed
in this setting by Benaïm–Hofbauer–Sorin. We recover known convergence results, establish new
ones, and show a local principle of oscillation compensation for the velocities. Roughly speaking,
the time average of gradients around one limit point vanishes. Various cases are discussed, providing
new insight into the oscillation and the stabilization phenomena.
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1. Introduction

The predominance of huge scale complex nonsmooth nonconvex problems in the develop-
ment of certain artificial intelligence methods, has brought back rudimentary, numerically
cheap, robust methods, such as subgradient algorithms, to the forefront of contempo-
rary numerics: see, e.g., [6, 13, 27, 36, 37]. We investigate here some of the properties of
the archetypical algorithm within this class, namely, the vanishing stepsize subgradient
method of Shor. Given f W Rn ! R locally Lipschitz, it reads

xiC1 2 xi � "i@
cf .xi /; x0 2 Rn;

where @cf is the Clarke subgradient, "i ! 0, and
P1
iD0 "i D 1. This dynamics, illus-

trated in Figure 1, has its roots in Cauchy’s gradient method and seems to originate in

Jérôme Bolte: Toulouse School of Economics, Université Toulouse 1 Capitole,
31080 Toulouse Cedex 6, France; jerome.bolte@tse-fr.eu

Edouard Pauwels: Institut de Recherche en Informatique de Toulouse, Université Toulouse III –
Paul Sabatier, 31062 Toulouse Cedex 9, France; CNRS; and Institut Universitaire de France;
edouard.pauwels@irit.fr

Rodolfo Ríos-Zertuche: Laboratoire d’analyse et d’architecture des systèmes – CNRS,
31031 Toulouse Cedex 4, France; rodolforiosz@gmail.com

Mathematics Subject Classification (2020): Primary 65K10; Secondary 37A50, 37B35, 62M45

https://creativecommons.org/licenses/by/4.0/
mailto:jerome.bolte@tse-fr.eu
mailto:edouard.pauwels@irit.fr
mailto:rodolforiosz@gmail.com


J. Bolte, E. Pauwels, R. Ríos-Zertuche 2534

Shor’s thesis [52]. The idea is natural at first sight: one accumulates small subgradient
steps to make good progress on average while hoping that oscillations will be tempered
by the vanishing steps. For the convex case, the theory was developed by Ermol’ev [29],
Polyak [47] and Ermol’ev–Shor [30]. It is a quite mature theory (see e.g. [43,44]), which
still has a considerable success through the famous mirror descent of Nemirovskiı̆–Yudin
[8,43] and its numerous variants. In the nonconvex case, more sophisticated methods were
developed (see e.g. [35, 38, 45]), yet little was known for the raw method until recently.

The work of Davis et al. [25] (see also [12]), revolving around the fundamental paper
of Benaïm–Hofbauer–Sorin [9], brought the first breakthroughs. It relies on a classical
idea of Euler: small-step discrete dynamics resemble their continuous counterparts. As
established by Ljung [40], this observation can be made rigorous for large times in the
presence of good Lyapunov functions. Benaïm–Hofbauer–Sorin [9] showed further that
the transfer of asymptotic properties from continuous differential inclusions to small-step
discrete methods is valid under rather weak compactness and dissipativity assumptions.
This general result, combined with features specific to the subgradient case, led to several
optimization results such as convergence to the set of critical points, convergence in value,
and convergence in the long run in the presence of noise [13, 16, 25, 51].

Usual properties expected from an algorithm are diverse: convergence of iterates, con-
vergence in values, rates, quality of optimality, complexity, or prevalence of minimizers.
Although in our setting some aspects seem hopeless without strong assumptions, most
of them remain largely unexplored. Numerical successes suggest however that the appar-
ently erratic process of subgradient dynamics has appealing stability properties beyond
the already delicate subsequential convergence to critical points.

In order to address some of these issues, this paper avoids the use of the theory of [9]
and focuses on the delicate question of oscillations,1 which is illustrated in Figures 1
and 2.

In general, as long as the sequence ¹xiºi remains bounded and satisfies xiC1 � xi
D "ivi for some vectors vi and positive scalars "i satisfying

P1
iD0 "i D C1, we always

have PN
iD0 "iviPN
iD0 "i

D
xN � x0PN
iD0 "i

! 0 as i !C1: (1.1)

This fact, which could be called “global oscillation compensation,” does not prevent the
trajectory from oscillating fast around a limit cycle, as illustrated in [24], and is therefore
unsatisfying from the stabilization perspective of minimization. The phenomenon (1.1)
remains true even when ¹xiºi is not a gradient sequence, as in the case of discrete game-
theoretical dynamical systems [9].

1In Figure 1, we see the sequence descending along a ridge. The jumps xiC1 � xi can be decom-
posed into two components, one that is parallel to the “ridge” and another one that is perpendicular
to it; we will informally refer to these components, respectively, as the drift and the bouncing, with-
out attempting to define these concepts formally (see however the discussion before Lemma 8).
Similarly we shall often use the term oscillations to evoke notable and persistent variations of the
directional term xiC1 � xi=kxiC1 � xik over time.
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Fig. 1. Contour plot of a Lipschitz function with a subgradient sequence. The color reflects the
iteration count. The sequence converges to the unique global minimum, but is constantly oscillating.
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Fig. 2. Left: the contour plot of a convex polyhedral function with three strata, where the gradient is
constant. A subgradient sequence starts at .0:3;�0:7/ and converges to the origin with an apparent
erratic behavior. Right: we discover that the behavior is not completely erratic. The oscillation
compensation phenomenon contributes some structure: the proportions �i of time spent in each
region where the function has constant gradient gi , i D 1; 2; 3, converge so that we have precisely
�1g1 C �2g2 C �3g3 D 0.

In this work, we adapt the theory of closed measures, which was originally developed
in the calculus of variations (see for example [5, 10]), to the study of discrete dynamics.
Using it, we establish several local oscillation compensation results for path differentiable
functions. Morally, our results in this direction say that for limit points x we have

“ lim
ı&0

N!C1

P
0�i�N; kx�xik�ı

"iviP
0�i�N; kx�xik�ı

"i
D 0 ” (1.2)

See Theorems 4 and 5 for precise statements, and a discussion in Section 3.3.
While this does not imply the convergence of ¹xiºi , it does mean that the drift ema-

nating from the average velocity of the sequence vanishes as time elapses. This is made
more explicit in the parts of those theorems that show that, given two distinct limit points
x and y of the sequence ¹xiºi , the time it takes for the sequence to flow from a small ball
around x to a small ball around y must eventually grow infinitely long, so that the over-
all average speed of the sequence as it traverses the accumulation set becomes extremely
slow.

With these types of results, we evidence new phenomena:
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— while the sequence may not converge, it will spend most of the time oscillating near
the critical set of the objective function, and it appears that there are persistent accu-
mulation points whose importance is predominant;

— under weak Sard assumptions, we recover the convergence results of [25] and improve
them by oscillation compensation results;

— oscillation structures itself orthogonally to the limit set, so that the incremental drift
along this set is negligible with respect to the time increment "i .

These results are made possible by the use of closed measures. These measures cap-
ture the accumulation behavior of the sequence ¹xiºi along with the “velocities” ¹viºi .
The simple idea of not throwing away the information of the vectors vi allows one to
recover a lot of structure in the limit, which can be interpreted as a portrait of the long-
term behavior of the sequence. The theory that we develop in Section 4.1 should apply
to the analysis of the more general case of small-step algorithms. Along the way, for
example, we are able to establish a new connection between the discrete and continuous
gradient flows (Proposition 18) that complements the point of view of [9].

Notations and organization of the paper. Let n be a positive integer, and Rn denote
n-dimensional Euclidean space. The space Rn � Rn of couples .x; v/ is seen as the
phase space consisting of positions x 2 Rn and velocities v 2 Rn. For two vectors u D
.u1; : : : ; un/ and v D .v1; : : : ; vn/, we let u � v D

Pn
iD1 uivi . The norm kvk D

p
v � v

induces the distance dist.x;y/Dkx � yk, and similarly on Rn �Rn. An open ball of cen-
ter x and radius r is denoted B.x; r/. The Euclidean gradient of f is denoted by rf .x/.
The set N comprises all the nonnegative integers.

In Section 2 we give the definitions necessary to state our results, which we do in
Section 3. The proofs of our results will be given in Section 5. Before we broach those
arguments, we need to develop some preliminaries regarding our main tool, the so-called
closed measures; we do this in Section 4.

2. Algorithm and framework

2.1. The vanishing step subgradient method

For a locally Lipschitz function f WRn!R, denote by Regf the set of its differentiabil-
ity points, which is dense by Rademacher’s theorem (see for example [31, Theorem 3.2]).
The Clarke subdifferential of f is defined by

@cf .x/ D conv ¹v 2 Rn W there is a sequence ¹ykºk � Regf with

yk ! x and rf .yk/! vº;

where conv S denotes the closed convex envelope of a set S � Rn; see [22]. A point x
such that 0 2 @cf .x/ is called critical. The critical set is

critf D ¹x 2 Rn W 0 2 @cf .x/º:
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It contains local minima and maxima. The algorithm of interest in this work is:

Definition 1 (Small step subgradient method). Let f WRn ! R be locally Lipschitz and
¹"iºi2N be a sequence of positive step sizes such that

1X
iD0

"i D C1 and "i & 0: (2.1)

Given x0 2 Rn, consider the recursion, for i � 0,

xiC1 D xi � "ivi ; vi 2 @
cf .xi /:

Here, vi is chosen freely among @cf .xi /. The sequence ¹xiºi2N is called a subgradient
sequence.

In what follows the sequence "i is interpreted as a sequence of time increments, and
it naturally defines a time counter through the formula

ti D

iX
jD0

"j

so that ti !1 as i !1. Given a sequence ¹xiºi and a subset U � Rn, we set

ti .U / D
X

xj2U; j�i

"j ;

which corresponds to the time spent by the sequence in U between times 0 and ti .

When f has a locally Lipschitz continuous gradient, bounded sequences are eventu-
ally descent sequences, i.e. f .xi / is nonincreasing, and they approach the critical set; see,
e.g., [1] and references therein. When f is nonsmooth, the descent property does not hold
anymore and oscillations appear both in values f .xi / and in space xi . The objective of
this article is precisely to study these oscillations.

Recall that the accumulation set acc ¹xiºi of the sequence ¹xiºi is the set of points
x 2 Rn such that, for every neighborhood U of x, the intersection U \ ¹xiºi is an infinite
set. Its elements are known as limit points.

If the sequence ¹xiºi is bounded and comes from the subgradient method as in Def-
inition 1, then kxi � xiC1k ! 0 because "i ! 0 and @cf is locally bounded by local
Lipschitz continuity of f , so acc ¹xiºi is compact and connected; see, e.g., [17].

Accumulation points are the manifestation of recurrent behavior of the sequence but
the frequency of the recurrence is ignored. In the presence of a time counter, here ¹tiºi , this
persistence phenomenon may be measured through presence duration in the neighborhood
of a recurrent point. This idea is formalized in the following definition:

Definition 2 (Essential accumulation set). Given a step size sequence ¹"iºi � R�0 and
a subgradient sequence ¹xiºi � Rn as in Definition 1, the essential accumulation set
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ess acc ¹xiºi is the set of points x 2 Rn such that, for every neighborhood U � Rn of x,

lim sup
N!C1

P
1�i�N;xi2U

"iP
1�i�N "i

> 0; that is; lim sup
N!C1

tN .U /

tN
> 0:

Analogously, considering the increments ¹viºi �Rn, we say that the point .x;w/ is in
the essential accumulation set ess acc ¹.xi ; vi /ºi if for every neighborhood U � Rn �Rn

of .x; w/,

lim sup
N!C1

P
1�i�N; .xi ;vi /2U

"iP
1�i�N "i

> 0:

As explained previously, the set ess acc ¹xiºi encodes significantly recurrent behav-
ior; it ignores sporadic escapades of the sequence ¹xiºi . Essential accumulation points
are accumulation points, but the converse is not true. If the sequence ¹xiºi is bounded,
ess acc ¹xiºi is nonempty and compact, but not necessarily connected.

2.2. Regularity assumptions on the objective function

Lipschitz continuity and pathologies. Recall that, given a function f WRn ! R that is
locally Lipschitz, a subgradient curve is an absolutely continuous curve satisfying

 0.t/ 2 �@cf ..t// a.e. on .0;C1/ and .0/ D x0:

By general results these curves exist; see, e.g., [9] and references therein. In our context
they embody the ideal behavior we could hope from subgradient sequences.

First let us recall that pathological Lipschitz functions are generic in the Baire sense,
as established in [19, 56]. In particular, generic 1-Lipschitz functions f W R ! R sat-
isfy @cf � Œ�1; 1� everywhere on R. This means that any absolutely continuous curve
 W R! R with k 0k � 1 is a subgradient curve of these functions, regardless of their
specifics. Note that this implies that a curve may constantly remain away from the critical
set.

The examples by Daniilidis–Drusvyatskiy [24] make this erratic behavior even more
concrete. For instance, they provide a Lipschitz function f WR2 ! R and a bounded sub-
gradient curve  having the “absurd” roller coaster property

.f ı /.t/ D sin t; t 2 R:

Although not directly matching our framework, these examples show that we cannot hope
for satisfying convergence results under the spineless general assumption of Lipschitz
continuity.

Path differentiability. We are thus led to consider functions avoiding pathologies. We
choose to pertain to the fonctions saines2 of Valadier [55] (1989), rediscovered in several

2Literally from the French, “healthy functions”, as opposed to pathological.
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works, see e.g. [16,18,25]. We use the terminology of [16]; note, however, that the equiv-
alent definition proposed in [16, Corollary 2] is not limited to chain rules involving the
Clarke subgradient.

Definition 3 (Path differentiable functions). A locally Lipschitz function f WRn ! R is
path differentiable if, for each Lipschitz curve  WR! Rn, for almost every t 2 R, the
composition f ı  is differentiable at t and the derivative is given by

.f ı /0.t/ D v �  0.t/ for all v 2 @cf ..t//.

In other words, all vectors in @cf ..t// share the same projection onto the subspace
generated by  0.t/.

Note that the definition of path differentiable functions proposed in [16] is slightly
different but turns out to be equivalent. There, the condition in the definition is required to
be satisfied by all absolutely continuous curves  ; here, instead, we restrict to Lipschitz
curves  . The equivalence follows from the fact that absolutely continuous curves can be
parameterized by arc-length—hence becoming Lipschitz curves—without affecting their
role in the definition.

The class of path differentiable functions is very large and includes many cases of
interest, like functions that are semialgebraic or tame (definable in an o-minimal struc-
ture); see [25] and references therein. Tame functions encompass most models and loss
functions used in machine learning, such as, for example, those occurring in neural net-
work training with all the activation functions that have been considered in the literature;
see, e.g., [21, 25]. Note that convex, concave, or semiconvex functions (such as lower
or upper C k functions) are path differentiable: adapt the proof of [20, Lemme 3.3] or
see [25].

3. Main results: accumulation, convergence, oscillation compensation

We present our main results; first we only assume path differentiability (Section 3.1), then
this assumption is reinforced by a Sard-like property (Section 3.2). Our results comple-
ment those of [9, 25].

The significance of the results is discussed in Section 3.3. The proofs are presented in
Section 5.

3.1. The vanishing subgradient method for path differentiable functions

Theorem 4 (Large-time regime for path differentiable functions). Assume that the func-
tion f WRn ! R is locally Lipschitz path differentiable, and that ¹xiºi is a bounded
subgradient sequence.

(i) (Slow evolution regime) Let x and y be two distinct points in acc ¹xiºi such that
f .x/ � f .y/. Let ¹xik ºk be a subsequence such that xik ! x as k!C1, and for
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each k choose i 0
k
> ik such that xi 0

k
! y. Then

NTk D

i 0
kX

pDik

"p !C1:

(ii) (Oscillation compensation) Let  WRn ! Œ0; 1� be a continuous function. Then, for
every integer sequence Nj !C1,

lim inf
j!C1

PNj
iD0 "i .xi /PNj

iD0 "i
> 0 H) lim

j!C1

PNj
iD0 "ivi .xi /PNj
iD0 "i .xi /

D 0:

(iii) (Criticality) Each essential accumulation point is critical: ess acc ¹xiºi2N � critf .

3.2. The vanishing subgradient method for path differentiable functions with a weak
Sard property

We now assume in addition that f is constant on each connected component of its critical
set. A Sard-type property which is automatically valid for some important cases, as for
instance, semialgebraic or tame functions [15] or lower or upper-C k functions [7] (for k
sufficiently large).

Theorem 5 (Large-time regime for path differentiable functions: weak Sard case). In the
setting of Theorem 4, suppose additionally f is constant on each connected component
of its critical set.

(i) (Slow evolution regime 2) Let x and y be distinct points in acc ¹xiºi , and take ı > 0
small enough that the balls Bı.x/ and Bı.y/ are at a positive distance from each
other, that is, kx � yk > 2ı. Consider the successive time duration the sequence
needs to go from Bı.x/ to Bı.y/, namely,

Tj D inf
°X̀
pDi

"p W j � i < `; xi 2 Bı.x/; x` 2 Bı.y/
±
:

Then Tj !C1 as j !C1.

(ii) (Long intervals) Let U; V be open neighborhoods of some accumulation point of
¹xiºi such that U � V . Consider the sequences ¹ikºk �N and ¹jkºk �N [ ¹C1º
such that .refer to Figure 3/

� ik < jk < ikC1,

� xi 2 V for i 2 Ik WD Œik ; jk � \N,

� xik�1 and xjkC1 are not in V , and

� there is some j 2 Ik such that xj 2 U .

Then either there is some k for which jk D C1, i.e., Ik is unbounded, or

lim
k!C1

jIkj D lim
k!C1

X
i2Ik

"i D C1:
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Fig. 3. The intervals Ik in the statement of item (ii) correspond to fragments of the sequence con-
tained in V and meeting U , displayed here in blue.

(iii) (Oscillation compensation version 2) Let U � V be open sets as in item (ii), and
A D

S
i Ii be the corresponding union of maximal intervals. Then

lim
N!C1

P
0�i�N; i2A "iviP
0�i�N; i2A "i

D 0:

(iv) (Criticality) Each accumulation point is critical: acc ¹xiºi � critf .

(v) (Convergence of the values) The values sequence f .xi / converge to a Clarke criti-
cal value as i !C1.

Remark 6. Items (iv) and (v) of Theorem 5 can also be deduced from [9, Proposition
3.27] using a different approach. The Sard-like assumption on f in [9] is that f .crit f /
has empty interior, which is equivalent, once f is locally Lipschitz, to f being constant
on each connected component of critf ; see the proof of Lemma 23.

To the best of our knowledge, items (i)–(iii) of Theorem 5 as well as Theorem 4 do
not have counterparts in the optimization literature.

Remark 7 (Oscillations and V-shaped valleys). Consider a path differentiable function
f WRn ! R that is C1 both when restricted to a smooth submanifold S � Rn with
dimS < n and when restricted to its complement Rn n S , and assume the gradient of f
is bounded away from zero on Rn n S .

Thus, near S , f forms a V-shaped valley. In this case, we can provide more insight
into the oscillation compensation phenomenon: roughly speaking, the “bouncing” (jumps
between two strata adjacent to S ) of ¹xiºi gets more and more orthogonal to S around x,
suggesting that the drift of the whole sequence should be parallel to S .

Lemma 8 (Normal bouncing in a V-shaped valley). Consider a function f WRn ! R as
in the previous paragraph, and a bounded subgradient sequence ¹xiºi . Assume that there
is a subsequence xij ! x with

lim sup
j!C1

kvij k > 0 .actual bouncing/.
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Then x is a critical point contained in the submanifold S with

acc ¹vij ºj � NS .x/ .normal bouncing/

where NS .x/ D T ?S .x/ is the normal set to S .

Proof. Let K be a compact set that contains ¹xiºi in its interior. By the Morse–Sard the-
orem applied independently on the submanifold S , f .critf / is a compact set of measure
zero. Thus, it must be a totally-separated subset of R. It follows that f is constant on
each connected component of crit f . In other words, we are in the setting of Theorem 5.
From item (iv) of Theorem 5 we know that x 2 acc ¹xiºi � crit f , and the additional
condition we have on x tells us that @cf .x/ ¤ ¹0º, so x cannot be a smooth point of f ,
whence x 2 S . Let .x; v/D limj!C1.xij ; vij / be an accumulation point of the sequence
.xi ; vi /, and let ˛WR! Rn be a smooth curve with ˛.0/ D x, ˛.t/ 2 S for all t , and
˛0.0/D w. The path differentiability of f means that the choice of element of @cf .˛.0//
is immaterial when we compute .f ı ˛/0.0/. So we have

lim
j!C1

w � vij D v � w D v � ˛
0.0/ D .f ı ˛/0.0/ D 0:

This geometrical setting is reminiscent of the partial smoothness assumptions of Le-
wis [39] (a smooth manifold lies in between the slopes of a sharp valley). While proximal-
like methods end up in a finite time on the smooth locus [34, Theorem 4.1], our result
suggests that the explicit subgradient method keeps on bouncing, approaching the smooth
part without actually attaining it. This confirms the intuition that finite identification does
not occur, although oscillations eventually provide some information on active sets by
delineating progressively their normal sets. The observation above can be extended to the
semialgebraic or definable setting using Whitney stratifications.

3.3. Further discussion

Theorems 4 and 5 describe the long-term dynamics of the algorithm. While Theorem 4
only describes what happens close to ess acc ¹xiºi focusing on persistent behavior, Theo-
rem 5 covers all of acc ¹xiºi , that is, all recurrent behaviors.

The paper [50] explores the ways in which the results presented above are sharp in
the context of the class of locally Lipschitz, path differentiable objective functions f .
The paper gives examples of functions f with corresponding nonconverging subgradient
sequences ¹xiºi , also with nonconvergent ¹f .xi /ºi , with lack of oscillation compensation
outside of ess acc ¹xiºi , and other interesting properties.

Oscillation compensation. While the high-frequency oscillations will, in many cases, be
considerable, they almost cancel out. This is what we refer to as oscillation compensation.
The intuitive picture the reader should have in mind is a statement that the oscillations can-
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cel out locally, as in (1.2). Yet, because of small technical minutia, we do not have exactly
(1.2) and obtain instead very good approximations. Let us provide some explanations.

Letting, in item (ii) of Theorem 4,  D  ı;�WR
n ! Œ0; 1� be a continuous cutoff

function equal to 1 on a ball B�.x/ of radius � > 0 around a point x 2 ess acc ¹xiºi and
vanishing outside the ball Bı.x/ for ı > �, then we get, for appropriate subsequences
¹Nj ºj � N,

lim
ı&0

lim
�%ı

lim
j!C1

PNj
iD0 "ivi ı;�.xi /PNj
iD0 "i ı;�.xi /

D 0;

which is indeed a very good approximation of (1.2).
Similarly, setting, in item (iii) of Theorem 5, U D B�.x/ and V D Bı.x/ the balls

centered at x with radius 0 < � < ı, we obtain this local version of the oscillation cancel-
lation phenomenon: in the setting of Theorem 5 if x 2 acc ¹xiºi and if A�;ı � N is the
union of maximal intervals I � N such that ¹xiºi2I 2 Bı.x/ and ¹xiºi2I \ B�.x/ ¤ ;,
then

lim
ı&0

lim
�%ı

lim
N!C1

P
0�i�N; i2A�;ı

"iviP
0�i�N; i2A�;ı

"i
D 0:

Note that as we take the limit �% ı, we cover almost all xi in the ball Bı.x/, so we again
get a statement very close to (1.2).

Convergence. While Theorem 5 tells us that f .xi / converges, we conjecture3 that this is
no longer true in the context of Theorem 4, which is a matter for future research. Similarly,
in the setting of path differentiable functions, the question of determining whether all limit
points of bounded sequences are critical remains open.

In all cases, including the smooth case, the sequence ¹xiºi may not converge. A well-
known example of such a situation was provided for the case of smooth f by Palis–
de Melo [46].

However, our results show that the drift that causes the divergence of ¹xiºi is very slow
in comparison with the local oscillations. This slowness can be immediately appreciated
in the statement of item (i) of Theorem 4 and items (i) and (ii) of Theorem 5. In substance,
these results express that even if the sequence diverges, it takes longer and longer to
connect disjoint neighborhoods of different limit points.

4. A closed-measure-theoretical approach

Given a nonempty open subset of U of Rn, denote by C 0.U / the set of continuous
real-valued functions on U while Cp.U / is the set of p 2 Œ1;1� continuously differ-
entiable real-valued functions on U . The set LipCurv.U / denotes the space of Lipschitz
curves  WR! U . When U is bounded, LipCurv.U / is endowed with the supremum norm
kk1 D supt2R k.t/k.

3By the time of publication of this manuscript, these questions have been answered [50].
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4.1. A compendium on closed measures

Elementary facts and density. Given a measure � on some set X ¤ ; and a measurable
map gWX ! Y , where Y ¤ ; is another set, the pushforward g�� is defined to be the
measure on Y such that, for A � Y measurable, g��.A/ D �.g�1.A//.

Recall that the support supp� of a positive Radon measure � on Rm, m � 0, is the
set of points x 2 Rm such that �.U / > 0 for every neighborhood U of x. It is a closed
set.

The origin of the concept of closed measures, sometimes also called holonomic mea-
sures or Young measures, can be traced back to the work of L. C. Young [57, 58] in the
context of the calculus of variations. It has developed in parallel to the closely related
normal currents [32, 33] and varifolds [2, 3], and has found applications in several areas
of mathematics, especially Lagrangian and Hamiltonian dynamics [23, 41, 42, 54], the
calculus of variations [4, Section 4.3] and also optimal transport [10, 11].

The definition of closed measures is inspired from the following observations. Given
a Lipschitz curve  W Œa; b�! Rn, its position-velocity information can be encoded by a
measure � on Rn �Rn that is the pushforward of the Lebesgue measure on the interval
Œa; b� into Rn �Rn through the mapping t 7! ..t/;  0.t//, that is,

� D
1

b � a
.;  0/�LebŒa;b�:

This notation extends readily to the case of curves defined on an arbitrary measurable
set J in the domain of  :

� jJ D
1

jJ j
.;  0/�LebJ :

If �WRn �Rn! R is a measurable function, then the integral with respect to � is given
by Z

Rn�Rn
�.x; v/ d� .x; v/ D

1

b � a

Z b

a

�..t/;  0.t// dt:

With this definition of � , it follows that  is a closed loop, that is, .a/ D .b/ if, and
only if, for all smooth gWRn ! R, we haveZ

Rn�Rn
rg.x/ � v d� .x; v/ D

1

b � a

Z b

a

rg..t// �  0.t/ dt

D
1

b � a

Z b

a

.g ı /0.t/ dt D
g ı .b/ � g ı .a/

b � a
D 0:

In other words, the integral of rg.x/ � v with respect to � is the circulation of the gra-
dient vector field rf along the curve  , and so it vanishes when  is a closed loop. This
generalizes to

Definition 9 (Closed measure). A compactly-supported, positive, Radon measure � on
Rn �Rn is closed if, for all functions g 2 C1.Rn/,Z

Rn�Rn
rg.x/ � v d�.x; v/ D 0:
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Let � WRn � Rn ! Rn be the projection �.x; v/ D x. To a measure � on Rn � Rn

we can associate its projected measure ���. As an immediate consequence we see that
supp��� D �.supp�/ � Rn.

The disintegration theorem [26] implies that there are probability measures �x ,
x 2 Rn, on Rn such that, if �WRn �Rn ! R is measurable, we haveZ

Rn�Rn
� d� D

Z
Rn

�Z
Rn
�.x; v/ d�x.v/

�
d.���/.x/: (4.1)

We shall refer to the couple .���; �x/ as the disintegration of �. Thus

� D

Z
Rn
�x d.���/.x/:

Definition 10 (Centroid field). Let � be a positive, compactly-supported, Radon measure
on Rn �Rn disintegrated according to (4.1). The centroid field Nvx of � is

Nvx D

Z
Rn
v d�x.v/; x 2 Rn:

The centroid field gives an average velocity at each point; it plays a significant role in
our work. As a consequence of the disintegration theorem [26], x 7! Nvx is measurable,
and for every measurable �WRn �Rn ! R linear in the second variable, we haveZ

Rn�Rn
�.x; v/ d�.x; v/ D

Z
Rn
�.x; Nvx/ d.���/.x/: (4.2)

Given the measure � with centroid field Nvx , we may define its centroidal measure O� on
R �R given by Z

R�R
� d O� D

Z
R
�.x; Nvx/ d���.x/

for measurable functions �WRn � Rn ! R. With this definition, � is closed if and only
if O� is closed. Thus the closedness property only depends on the centroid field rather than
on the whole constellation of velocities in the support of �. Observe that, if a positive
Radon measure � has a centroid field Nvx that vanishes ���-almost everywhere, then � is
closed because O� is obviously closed.

Young superposition principle. The following result is known as the Young superposi-
tion principle [10, 58] or as the Smirnov solenoidal representation [5, 53]; see also [49,
Example 6]. What this result tells us is basically that not only can closed measures be
approximated by measures induced by curves, but actually the centroidal measure O� can
be decomposed into a combination of measures induced by Lipschitz curves. This decom-
position is very useful theoretically, as there are no limits involved.

Let U be a nonempty bounded open subset of Rn and set LipCurv.U / D LipCurv. For
t 2 R, let �t W LipCurv! LipCurv be the time-translation

�t ./.s/ D .s C t /:
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Theorem 11 (Young superposition principle or Smirnov solenoidal representation). For
every closed probability measure � supported in U �Rn with centroid field Nvx , there is a
Borel probability measure � on the space LipCurv that is invariant under �t for all t 2 R
and such that Z

Rn
�.x; Nvx/ d.���/.x/ D

Z
LipCurv

�..0/;  0.0// d�./ (4.3)

for any measurable �WRn �Rn ! R.

For details on how to obtain Theorem 11 from [10], see [14].
Curves lying in supp � have an appealing property:

Corollary 12 (Centroidal representation of supp �). With the notation of the previous
theorem, for �-almost all  in LipCurv we have

 0.t/ D Nv.t/ for almost all t 2 R.

Proof. Take indeed � � 0 vanishing only on the measurable set consisting of points of
the form .x; Nvx/, x 2 Rn. Then both sides of (4.3) must vanish, which means that for �-
almost all  , the point ..0/;  0.0// must be of the form .x; Nvx/. The conclusion follows
from the �t -invariance of the measure �.

As an example, take the closed measure

� D
1

2�
.ˇ; ˇ0/�LebŒ0;2�/

on R2 �R2 for
ˇ.t/ D .cos t; sin t /:

In this simple example, the centroid coincides with the derivative,

Nvˇ.t/ D ˇ
0.t/:

Each time-translate �t .ˇ/ is still a parameterization of the circle, and the probability mea-
sure � we obtain in Theorem 11 is

� D
1

2�

Z 2�

0

ı�t .ˇ/ dt;

where ı is the Dirac delta function whose mass is concentrated at the curve  in the
space LipCurv.

As a general fact, the measure � in Theorem 11 can be understood as a decomposition
of the closed measure � into a convex superposition of measures induced by Lipschitz
curves. Although at first sight each  on the right-hand side of (4.3) only participates at
t D 0, the �t -invariance of � means that in fact the entire curve  is involved in the integral
through its time-translates �t . Observe that another consequence of the �t -invariance is
that the integral on the right-hand side of (4.3) actually reads, for all t 2 R,
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LipCurv

�..0/;  0.0// d�./ D

Z
LipCurv

�..t/;  0.t// d�./

D
1

jI j

Z
I

Z
LipCurv

�..t/;  0.t// d�./ dt

D
1

jI j

Z
LipCurv

Z
I

�..t/;  0.t// dt d�./; (4.4)

where I is any nontrivial, bounded interval. Thus (4.3) has the more explicit lamination
or superposition form:Z

Rn
�.x; Nvx/ d.���/.x/ D

1

jI j

Z
LipCurv

Z
I

�..t/;  0.t// dt d�./

D

Z
LipCurv

Z
Rn�Rn

�.x; v/ d� jI .x; v/ d�./ (4.5)

for any bounded interval I with nonempty interior.

Although the left-hand side of (4.3) does not involve the full measure�, it will turn out
to be similar enough: if the integrand �WRn �Rn ! R is linear in the second variable v,
we still have (4.2) and this will be enough for the applications we have in mind.

We remark that the measure � in Theorem 11 is not unique in general. For example,
if  is a closed curve intersecting itself once so as to form figure 8, then, just as figure 8
can be drawn in several ways—on a single stroke without lifting the pencil from the
paper, or by drawing two circles separately—also the possibilities of different measures �
decomposing � D � reflect this diversity; � can be taken to be supported on all the �t -
translates of  itself, or it could be taken to be supported on the curves traversing each of
the loops of the 8.

4.2. Preliminaries on set-valued vector fields and circulation for a subdifferential field

In the following, we consider set-valued maps ZWRn � Rn with the following standing
assumption:

Assumption 13. For every x 2 Rn, the set Z.x/ � Rn is nonempty, convex and locally
bounded (meaning that for every compact subset K � Rn there is a constant N > 0 such
that kyk � N for all y 2 Z.x/ and all x 2 K), and such that the graph of Z, defined by

graphZ D ¹.x; p/ 2 Rn �Rn W p 2 Z.x/º;

is a closed subset of Rn �Rn.

Note that if � is a closed measure with disintegration .���;�x/ and centroid field Nvx ,
we obviously have

a 2 R; x 2 Rn and a supp�x � Z.x/ H) a Nvx 2 Z.x/: (4.6)
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A major example of a set-valued mapping satisfying the above assumption is the
Clarke subgradient @cf of a locally Lipschitz continuous mapping as defined in Sec-
tion 2.1. Path differentiability of a function ensures that the circulation of its subdifferen-
tial along any loop vanishes. This generalizes to

Proposition 14 (Circulation of subdifferential for path differentiable functions). If the
function gWRn! R is path differentiable and � is a closed probability measure, then for
each open set U � Rn and each measurable function � WU ! Rn with �.x/ 2 @cg.x/ for
x 2 U , the integral Z

U�Rn
�.x/ � v d�.x; v/

is well defined, and its value is independent of the choice of � . Let the symbolZ
U�Rn

@cg.x/ � v d�.x; v/

denote this value. If �.supp�/ � U , thenZ
U�Rn

@cg.x/ � v d�.x; v/ D 0:

Proof. Denote by �U WRn ! ¹0; 1º the indicator function of the open set U � Rn that is
equal to �U .x/D 1 for x 2U and vanishes elsewhere. Let �1;�2WRn!Rn be measurable
functions such that �i .x/ 2 @cg.x/ for each x 2 U , i D 1; 2. From Theorem 11 we get a
�t -invariant, Borel probability measure � on the space LipCurv of Lipschitz curves. Then,
using (4.5) for any interval I � R, we obtainZ

U�Rn
�1.x/ � v d�.x; v/ �

Z
U�Rn

�2.x/ � v d�.x; v/

D

Z
Rn�Rn

�U .x/.�1.x/ � �2.x// � v d�.x; v/

D

Z
LipCurv

1

jI j

Z
I

�U ..t//.�1..t// � �2..t/// � 
0.t/ dt d�./:

Since g is path differentiable, for each  2 LipCurv and for almost all t 2R with .t/ 2U ,

�1..t// � 
0.t/ D �2..t// � 

0.t/:

From the �t -invariance of � it then follows that the integrand above vanishes �-almost
everywhere.

Let us now analyze the case when �.supp�/ � U . Let  WRn ! R be a mollifier,
that is, a compactly-supported, nonnegative, rotationally-invariant, C1 function such thatR

Rn  D 1, and let  r .x/D r�n .x=r/ for r > 0, so that  r tends to the Dirac delta at 0
as r ! 0. Denote by  r � g the convolution of  r and g. Observe that if ˇ 2 LipCurv and
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a < b, thenZ b

a

.g ı ˇ/0.t/ dt D g ı ˇ.b/ � g ı ˇ.a/

D lim
r&0

Œ. r � g/ ı ˇ.b/ � . r � g/ ı ˇ.a/� D lim
r&0

Z b

a

.. r � g/ ı ˇ/
0.t/ dt:

This observation, together with (4.5), justifies the following calculation: for any bounded
interval I � R,Z

Rn�Rn
@cg.x/ � v d�.x; v/ D

Z
LipCurv

1

jI j

Z
I

.g ı ˇ/0.t/ dt d�.ˇ/

D lim
r&0

Z
LipCurv

1

jI j

Z
I

.. r � g/ ı ˇ/
0.t/ dt d�.ˇ/

D lim
r&0

Z
LipCurv

1

jI j

Z
I

r. r � g/.ˇ.t// � ˇ
0.t/ dt d�.ˇ/

D lim
r&0

Z
Rn�Rn

r. r � g/.x/ � v d�.x; v/;

which vanishes because � is closed and  r � g is C1.

4.3. Interpolant curves and their limit measures

Given a set-valued map Z satisfying Assumption 13, we shall consider sequences ¹xiºi
satisfying

xiC1 � xi 2 "iZ.xi /: (4.7)

For example, if Z D @cf , the sequence ¹xiºi is a subgradient sequence (Definition 1).

In order to analyze the asymptotics of sequences generated by dynamical systems of
the form (4.7), we shall use the following definition.

Definition 15 (Interpolant curves). Given a sequence ¹xiºi2N � Rn satisfying xiC1 D
xi � "ivi for some uniformly bounded vectors vi 2Rn and some scalars "i >0 that satisfyP
i "i DC1, its interpolant curve is the continuous piecewise affine curve  WR�0!Rn

with .ti / D xi for ti D
Pi
jD0 "i and  0.t/ D vi for ti < t < tiC1.

Interpolant curves correspond to continuous-time piecewise-affine interpolation of
sequences ¹xiºi , as the ones produced by the dynamical system (4.7). They are extremely
useful to study the asymptotic behavior of these sequences.

For a bounded measurable set B � R�0, we define a measure on Rn �Rn by

� jB D
1

jBj
.;  0/�LebB ;
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where jBj D
R
B
1 dt is the length of B , and LebB is the Lebesgue measure on B . If

�WRn �Rn ! R is measurable, thenZ
Rn�Rn

� d� jB D
1

jBj

Z
B

�..t/;  0.t// dt:

Lemma 16 (Limiting closed measures associated to bounded sequences). Let  be the
interpolating curve of a bounded sequence ¹xiºi as in Definition 15. Let A D ¹Iiºi2N be
a collection of intervals Ii �R, with disjoint interiors, such that jIi j !C1 as i!C1.
Set BN D

SN
iD0 Ii . Then the set of weak* limit points of the sequence ¹� jBN ºN is

nonempty, and its elements are closed probability measures.

Proof. Let � 2 C 0.Rn � Rn/. For i 2 N, write Ii D Œt i1; t
i
2� and di D k.t i1/ � .t

i
2/k,

and let ˛i W Œ0; di �! Rn be the segment joining .t i2/ to .t i1/ with unit speed. Also, let

�i D .˛i ; ˛
0
i /�LebŒ0;di �

be the measure on Rn �Rn encoding ˛i . LetK �Rn �Rn be a convex, compact set that
contains the image of .;  0/ and .˛i ; ˛0i / for all i , so that di � diamK. Thenˇ̌̌̌PN

iD0

R
Rn�Rn � d�i

jBN j

ˇ̌̌̌
D

ˇ̌̌̌PN
iD0

R di
0
�.˛i .t/; ˛

0
i .t// dtPN

iD0 jIi j

ˇ̌̌̌
�
N.diamK/ sup.x;v/2K j�.x; v/jPN

iD0 jIi j
! 0

since jIi j!C1. Thus the measures in the accumulation sets of the sequences ¹� jBN ºN
and ²

� jBN
C

PN
iD0 �i

jBN j

³
N

(4.8)

coincide. The measures in the latter sequence are all closed since, for all ' 2 C1.Rn/,
we have, by the fundamental theorem of calculus,Z t i

2

t i
1

r'..t// �  0.t/ dt C

Z di

0

r'.˛.t// � ˛0.t/ dt

D

Z t i
2

t i
1

.' ı /0.t/ dt C

Z di

0

.' ı ˛/0.t/ dt

D Œ'..t i2// � '..t
i
1//�C Œ'.˛.di // � '.˛i .0//�

D Œ'..t i2// � '..t
i
1//�C Œ'..t

i
1// � '..t

i
2//� D 0;

and the measures in the sequence (4.8) are sums of multiples of these.
By Prokhorov’s theorem [48], the set of probability measures onK is compact, so the

set of limit points is nonempty. The set of closed measures is itself closed, as it is defined
by a weak* closed condition.

Thus the limit points must also be closed measures.
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Note that two bounded sequences ¹xiºi and ¹yiºi having similar asymptotic behavior
may give rise to the same set of limiting closed measures through their interpolant curves;
this is the case for example when we start the subgradient method (Definition 1) for the
function f .x/ D jxj, x 2 R, at two different initial positions x0 ¤ y0, as in this case
the only possible limiting measures are ı.0;0/ and 1

2
ı.0;�1/ C

1
2
ı.0;1/. The coincidence

of limiting measures is a manifestation of the concentration phenomenon discussed in
[4, Section 4.3].

Lemma 17 (Limit points and limiting measure supports). Let  be an interpolant curve
as in Definition 15. Consider the set acc ¹� jŒ0;N�ºN of limit points of the sequence
¹� jŒ0;N�ºN in the weak* topology. We have[®

�.supp�/ W � 2 acc ¹� jŒ0;N�ºN
¯
D ess acc ¹xiºi :

Proof. Assume x 2 ess acc ¹xiºi and let B � Rn be a closed ball whose interior con-
tains x. LetC > 0 be a uniform bound of kvikD kxiC1 � xik="i �C , i 2N, which exists
by Definition 15. Let  WRn ! R�0 be a continuous function with supp � B . Since  
is uniformly continuous on B , given " > 0, there is n0 > 0 such that i > n0, x; y 2 B ,
and kx � yk � "iC imply j .x/� .y/j � ". We hence have j .xi /� ..t//j � " for
ti � t � tiC1 and i > n0. Thus, for S > n0,ˇ̌̌̌ SX

iDn0

"i .xi / �

Z tS

tn0

 ..t// dt

ˇ̌̌̌
� ".tS � tn0/:

Since x 2 ess acc ¹xiºi � B , there is ı > 0 such that for all n1 > n0 there is S > n1 withP
1�i�S "i .xi /PS

iD0 "i
> ı:

Then, taking " D ı=2,Z
Rn�Rn

 .x/ d� jŒ0;tS �
.x; v/ �

1

tS

Z tS

tn0

 ..t// dt �

PS
iDn0

"i .xi /PS
iD0 "i

� "
tS � tn0
tS

> ı � " D ı=2 > 0:

It follows that there are infinitely many integers S satisfying the previous inequality so
that there is some � 2 acc ¹� jŒ0;N�ºN with �.supp�/ \ supp ¤ ;.

Observe that we can take the support of  to be contained in any neighborhood of x,
so the argument above proves that there are measures in acc ¹� jŒ0;N�ºN whose supports
are arbitrarily close to x. This proves the first inclusion.

Conversely, assume that x 2
S
�2acc ¹�jŒ0;N�

ºN
�.supp�/. For a nonnegative continu-

ous function  with x 2 supp , there is � 2 acc ¹� jŒ0;N�ºN with
R
 d� > 0. There is a

subsequence of ¹� jŒ0;N�ºN converging to �, hence such that
P
1�i�S "i .xi /=

PS
iD0 "i

converges to a positive quantity, so that x 2 ess acc ¹xiºi , and we obtain the opposite
inclusion.



J. Bolte, E. Pauwels, R. Ríos-Zertuche 2552

The following proposition gives some connection between the discrete and the con-
tinuous dynamics of the differential inclusion associated to the map �Z.

Proposition 18 (Limiting dynamics). Let Z be a field satisfying Assumption 13 together
with a sequence ¹xiºi as in (4.7). Let ¹Iiºi be a sequence of disjoint, bounded intervals
in R with limi!C1 jIi j D C1 and write Gk D I1 [ � � � [ Ik . Suppose that for some
sequence ¹kiºi � N, the limit

lim
i!C1

� jGki

exists, so that, by Lemma 16, it is a closed probability measure �. Let � be a Borel
probability measure on the space LipCurv of Lipschitz curves that is invariant under the
time-translation �t and satisfies (4.3). Then �-almost every curve ˇ satisfies

�ˇ0.t/ 2 Z.ˇ.t//

for almost every t 2 R. Moreover, �.graphŒ�Z�/ D 1 and the centroid field Nvx satisfies
�Nvx 2 Z.x/ for ���-almost every x 2 Rn, that is, O�.graphŒ�Z�/ D 1.

Proof. The existence of � follows from Theorem 11. By Corollary 12, we know that
�-almost every curve ˇ 2 LipCurv satisfies ˇ0.t/ D Nvˇ.t/ for almost every t . So we just
need to prove that �Nvx 2 Z.x/ for ���-almost every x 2 Rn.

Recall that graphŒ�Z� D ¹.x; v/ 2 Rn �Rn W �v 2 Z.x/º. Let K � Rn be a closed
ball that contains the sequence ¹xiºi as well as �.supp�/, and let N > 0 be such that, for
all x 2 K and v 2 Z.x/, kvk � N . Let ti � t < tiC1; using the triangle inequality, the
fact that � 0.t/ is constantly vi t 2 Œti ; tiC1� and belongs to Z..ti //, we have

dist...t/;  0.t//; graphŒ�Z�/

� k..t/;  0.t// � ..ti /;�vi /k C dist...ti /;�vi /; graphŒ�Z�/

D k..t/;�vi / � ..ti /;�vi /k C 0 D k.t/ � .ti /k � Lip./"i � N"i :

NowZ
Rn�Rn

dist..x; v/; graphŒ�Z�/ d� jGki
.x; v/

D
1Pki

jD1 jIj j

kiX
jD1

Z
Ij

dist...t/;  0.t//; graphŒ�Z�/ dt �
N
Pki
jD1 jIj jmaxt`2Ij "`Pki

jD1 jIj j
:

This implies that

lim
i!C1

Z
Rn�Rn

dist..x; v/; graphŒ�Z�/ d� jGki
.x; v/ D 0

by the Stolz–Cesàro theorem using the fact that, for k large enough,
Pk
jD1 jIj j � ck for a

positive constant c, and the fact that "i converges to 0 as i !C1. This, in turn, implies
that Z

Rn�Rn
dist..x; v/; graphŒ�Z�/ d�.x; v/ D 0
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because the convergence of measures occurs in the weak* topology and the integrand is
continuous. Since graphŒ�Z� is a closed set, the support of � must be contained in it.
From (4.6) with a D �1, we know that �Nvx 2 Z.x/, which we wanted to prove.

Theorem 19 (Subgradient-like closed measures are trivial). Assume that gWRn! R is a
path differentiable function. Let � be a closed probability measure on Rn �Rn such that
�.graphŒ�@cg�/ D 1. Then the centroid field Nvx of � vanishes for ���-almost every x.

Proof. The condition on � implies, by Remark 4.6 with a D �1, that �Nvx 2 @cg.x/ for
���-almost every x. By Proposition 14 we may choose �.x/ D �Nvx to computeZ

Rn�Rn
@cg.x/ � v d�.x; v/ D

Z
Rn�Rn

�.x/ � v d�.x; v/

D

Z
Rn
�.x/ �

�Z
Rn
v d�x

�
d.���/.x/

D

Z
Rn
�.x/ � Nvx d.���/.x/ D �

Z
Rn
Nvx � Nvx d.���/.x/:

Proposition 14 also implies that the left-hand side vanishes because � is closed.

In our proofs below, Theorem 19 will be applied in conjunction with Proposition 18
with Z D @cf . Observe that Theorem 19 could as well have been presented just after
Proposition 14, as not much more is needed for its proof.

5. Proofs of main results

Our proofs use two basic techniques: sometimes we use Theorem 19 to deal with long
subsequences of ¹xiºi , and sometimes we use shorter subsequences and instead use Lem-
mas 21 and 22, which exploit the Arzelà–Ascoli theorem to obtain curves that describe
the asymptotic flow.

The structure of the proofs is described in Figure 4. In contrast, in the paper [9], item
(v) of Theorem 5 is proven first, and item (iv) is deduced from it.

Lemma 21 Lemma 22

Theorem 19

Theorem 4

(i)
(ii)
(iii)

(iv)

Proposition 18

Theorem 5

(i)
(ii)
(iii)

(v)

Lemma 16

Lemma 23

Lemma 17

Proposition 14Theorem 11

Fig. 4. Arrows indicate results that are used in the proofs of the statements they point to.
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Remark 20. An alternative route to the proof of items (iv) and (v) of Theorem 5, closer
to the one already given in [9], is to use Lemma 23 to prove (v) and deduce (iv). Item (v)
also follows from [9, Proposition 3.27].

5.1. Lemmas on the convergence of curve segments for general multivalued dynamics

In this section, we consider a set-valued mapZ WRn � Rn satisfying Assumption 13 and
xi a corresponding sequence as in (4.7).

Lemma 21 (Approximate solutions of differential inclusions). For each i 2N, let Ti > 0
and assume that Ti ! T for some T > 0. Let, for each i 2 N, i W Œ0; Ti � ! Rn be a
Lipschitz curve. Assume that the sequence ¹iºi converges to some bounded, Lipschitz
curve  W Œ0; T �! R, i !  , in the sense that supt2Œ0;min.Ti ;T /� k.t/ � i .t/k ! 0 and

lim
i!C1

Z Ti

0

dist..i .t/;  0i .t//; graphŒ�Z�/ dt D 0: (5.1)

Then � 0.t/ 2 Z..t// for almost all t 2 Œ0; T �.

Proof. We follow classical arguments; see for example [9, Theorem 4.2]. Let 0 < T 0 < T .
For i large enough, Ti > T 0 because Ti ! T . In particular, we eventually have uniform
convergence of i on Œ0; T 0� to the restriction of  to Œ0; T 0�. For each i , the derivative  0i
is an element of L1 D L1.Œ0; T 0�IRd /, and being uniformly bounded with compact
domain, belongs to L2 D L2.Œ0; T 0�IRd / as well. Recall that, since L2 is reflexive, the
weak and weak* topologies coincide in L2. So by the Banach–Alaoglu compactness the-
orem, by passing to a subsequence we may assume that  0j converges weakly in L2 and
weak* in L1 to some u 2 L2 \ L1.

Since j converges to  uniformly, j !  also in L2. Hence  0j tends to  0 in the
sense of distributions on Œ0;T 0�; indeed, for all C1 functions gW Œ0;T 0�!R with compact
support in .0; T 0/, we haveZ T 0

0

 0j .t/g.t/ dt D �

Z T 0

0

j .t/g
0.t/ dt ! �

Z T 0

0

.t/g0.t/ dt D

Z T 0

0

 0.t/g.t/ dt

since we have convergence in L2. By uniqueness of the limit, u D  0 almost everywhere
on Œ0; T 0�.

It follows from Mazur’s lemma [28, p. 6] that there is a function N WN ! N and, for
each p � k � N.p/, a number a.p; k/ � 0 such that

PN.p/

kDp
a.p; k/ D 1, and

N.p/X
kDp

a.p; k/ 0k !  0 (5.2)

strongly in L2 as p !C1 (and also in the weak* sense in L1).
Since the set Z.x/ is convex at each x, the function

g.x; v/ D dist.�v;Z.x//
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is convex in its second argument for fixed x 2 Rn. Using the fact that the convergence
(5.2) happens pointwise almost everywhere, we have, by continuity of g and by the fact
that a countable union of measure zero sets has zero measure, for almost all t 2 Œ0; T 0�,

g..t/;  0.t// D g
�
.t/; lim

p!C1

N.p/X
kDp

a.p; k/ 0k.t/
�

D lim
p!C1

g
�
.t/;

N.p/X
kDp

a.p; k/ 0k.t/
�

� lim inf
p!C1

N.p/X
kDp

a.p; k/g..t/;  0k.t//;

where the last step follows from Jensen’s inequality and convexity of g in its second
argument. Since g is nonnegative, integrating on Œ0; T 0� and using Fatou’s Lemma we
have

0 �

Z T 0

0

g..t/;  0.t// dt � lim inf
p!C1

Z T 0

0

N.p/X
kDp

a.p; k/g..t/;  0k.t// dt

� lim inf
p!C1

Z T 0

0

N.p/X
kDp

a.p; k/Œdist...t/;  0k.t//; .k.t/; 
0
k.t///C g.k.t/; 

0
k.t//� dt

D lim inf
p!C1

Z T 0

0

N.p/X
kDp

a.p; k/Œdist..t/; k.t//C g.k.t/;  0k.t//� dt

where we have used the triangle inequality. Now, using a uniform bound on the integral,
we have

0 �

Z T 0

0

g..t/;  0.t// dt

� lim inf
p!C1

N.p/X
kDp

a.p; k/

�
T 0 sup

t2Œ0;T 0�

Œdist..t/; k.t//�C
Z T 0

0

g.k.t/; 
0
k.t// dt

�
� lim inf
p!C1

sup
p�k�N.p/

�
T 0 sup

t2Œ0;T 0�

Œdist..t/; k.t//�C
Z T 0

0

g.k.t/; 
0
k.t// dt

�
� lim sup

k!C1

�
T 0 sup

t2Œ0;T 0�

Œdist..t/; k.t//�C
Z T 0

0

g.k.t/; 
0
k.t// dt

�
D 0;

where we have used the fact that
PN.p/

kDp
a.p; k/ D 1 and k !  uniformly, and the

hypothesis in (5.1). Hence � 0.t/ 2 Z..t// for almost all t 2 Œ0; T 0�, and this proves the
lemma since T 0 was taken arbitrary in .0; T /.
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Lemma 22 (Limiting dynamics for discrete sequences). Let  be the interpolant curve of
the bounded sequence ¹xiºi , and ¹Ij ºj a collection of pairwise disjoint intervals of R�0
of length 1=C � jIj j � C for some C > 1. Then there is a subsequence ¹jkºk � N
such that the restrictions  jIjk converge uniformly to a Lipschitz curve N W Œa; b�! R that
satisfies � N 0.t/ 2 Z..t// for almost every t 2 Œa; b�.

If we additionally assume that the sequence ¹xiºi is generated by the subgradient
method, so that �vi 2 @cf .xi / for some locally Lipschitz, path differentiable function f ,
then the curve N satisfies

�

Z b

a

k N 0.t/k2 dt D f ı N.b/ � f ı N.a/:

Proof. By passing to a subsequence, we may assume that the lengths jIj j converge to a
positive number. By the Lipschitz version of the Arzelà–Ascoli theorem, we may pass to
a subsequence such that  j

Ijk

converges uniformly to a curve N on an interval Œa; b� of
length limj!C1 jIj j > 0. Condition (5.1) holds if we let i be the appropriate translate
of  jIi , so by Lemma 21, � N 0.t/ 2 Z..t// for almost every t 2 Œa; b�.

Let us now prove the second statement, so thatZ D @cf . By the path differentiability
of f , we have

�

Z b

a

k N 0.t/k2 dt D

Z b

a

@cf . N.t// � N 0.t/ dt

D

Z b

a

.f ı N/0.t/ dt

D f ı N.b/ � f ı N.a/:

5.2. Proof of Theorem 4

5.2.1. Item (i). Let  be the interpolant curve of the sequence ¹xiºi , and consider the
intervals Ik D Œtik ; ti 0k �, so that the endpoints of the restriction  j

Ik
are precisely .tik /D

xik and .ti 0
k
/D xi 0

k
. Aiming for a contradiction, assume that the numbers NTk D ti 0

k
� tik

remain bounded. Apply Lemma 22 to obtain a curve N W Œa; b� ! Rn joining N.a/ D
limk xik D x and N.b/ D limk xi 0

k
D y. The arc length of N must be positive because

x ¤ y, while N also satisfies, as part of the conclusion of Lemma 22,

0 > �

Z b

a

k N 0.t/k2 dt D f ı N.b/ � f ı N.a/ D f .y/ � f .x/ � 0;

whence we get the contradiction we were aiming at.

5.2.2. Item (ii). LetB �Rn be a closed ball containing the sequence ¹xiºi . By convexity,
B also contains the image of the interpolating curve  .

Fix " > 0. By uniform continuity of  over B , there exists n0 > 0 such that i > n0,
x; y 2 B and jx � yj � "i Lip.f / imply j .x/ �  .y/j � " and "i � 1. We hence have



Long term dynamics of the subgradient method 2557

j .xi / �  ..t//j � " for ti � t � tiC1 and i > n0. Thusˇ̌̌̌ NjX
iDn0

"ivi .xi / �

Z tNj

tn0

 0.t/ ..t// dt

ˇ̌̌̌
� "Lip.f /.tNj � tn0/

and

1PNj
iD0 "i

ˇ̌̌̌ NjX
iD0

"ivi .xi / �

Z tNj

0

 0.t/ ..t// dt

ˇ̌̌̌
�

1PNj
iD0 "i

�ˇ̌̌̌n0�1X
iD0

"ivi .xi / �

Z tn0

0

 0.t/ ..t// dt

ˇ̌̌̌
C "Lip.f /.tNj � tn0/

�
:

Since
P1
iD0 "i DC1 and " > 0was arbitrary, it follows that the latter becomes arbitrarily

small as Nj grows.
Hence the quotient in the limit in the statement of item (ii) is very close, for large j ,

to PNj
iD0 "iPNj

iD0 "i .xi /

Z
Rn�Rn

v .x/ d� jŒ0;tNjC1�
.x; v/:

We now prove that the above quantity converges to 0 as j !C1. Taking a subsequence
so that � jŒ0;tNjC1�

converges to some probability measure �, the quotient on the left
converges to

1
ıZ

 .x/ d���.x/;

and our hypothesis on the subsequence ¹Nj ºj thus guarantees that
R
 .x/ d���.x/ > 0.

Thus, it suffices to show that, for every limit point � of the sequence ¹� jŒ0;tNC1�
ºN

satisfying Z
 .x/ d���.x/ > 0;

we have Z
Rn�Rn

v  .x/ d�.x; v/ D

Z
Rn
Nvx .x/ d.���/.x/ D 0; (5.3)

where Nvx is the centroid field of �. By Lemma 16 we know that � is closed so that
Proposition 18 and Theorem 19 apply and give Nvx D 0 for ���-almost every x. This
immediately implies (5.3).

5.2.3. Item (iii). To prove item (iii), consider the interpolation curve constructed in Sec-
tion 4.3. Consider a limit point � of the sequence ¹� jŒ0;N�ºN . By Lemma 16, � is closed.
By Proposition 18 and Theorem 19, the centroid field Nvx of � vanishes for ���-almost
every x, so from (4.6) we know that 0D �Nvx 2 @cf .x/, and hence x 2 critf for a dense
subset of �.supp�/. Since this is true for all limit points �, by Lemma 17 we know that
it is true throughout ess acc ¹xiºi .
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5.3. Proof of Theorem 5

5.3.1. The function is constant on the accumulation set.

Lemma 23 (f is constant on its limit set). Assume that the path differentiable function
f WRn ! R is constant on each connected component of its critical set, and let ¹xiºi be
a bounded sequence produced by the subgradient method. Then f is constant on the set
acc ¹xiºi of limit points of ¹xiºi .

Proof. Assume instead that f takes two values J1 < J2 within acc ¹xiºi .
Let K be a compact set that contains the closure ¹xiºi in its interior. Since f is con-

stant on each connected component of crit f and since f is Lipschitz, it follows that the
set f .K \ critf / has measure zero because, given " > 0, the connected components Ci of
K \ crit f of positive measure jCi j > 0—of which there are only countably many—can
be covered with open sets

f �1..f .Ci / � "=2
iC1; f .Ci /C "=2

iC1//

with image under f of length "=2i ; the rest ofK \ critJ has measure zero, so it is mapped
to another set of measure zero. The set f .K \ crit f / is also compact, so we conclude
that it is not dense on any open interval of R.

We may thus assume, without loss of generality, that the values J1 and J2 are such
that there are no critical values of f jK between them.

Pick c1; c2 2 R such that
J1 < c1 < c2 < J2:

Let W1 D f �1.�1; c1/ and W2 D f �1.c2;C1/: Clearly Wj \ acc ¹xiºi ¤ ; because
the value Jj is attained in acc ¹xiºi , j D 1; 2.

Consider the curve  WR�0! K � Rn interpolating the sequence ¹xiºi . Let A be the
set of intervals

A D ¹Œt1; t2� � R W t1 < t2; .t1/ 2 @W1; .t2/ 2 @W2; .t/ … W1 [W2 for t 2 .t1; t2/º

Write A D ¹Ij ºj2N for maximal, disjoint intervals Ij . Observe that if Ij D Œt
j
1 ; t

j
2 �, then,

by the path differentiability of f ,Z t
j
2

t
j
1

@cf ..t//� 0.t/ dt D

Z t
j
2

t
j
1

.f ı/0.t/ dt D f ı.t
j
2 /�f ı.t

j
1 / D c2�c1: (5.4)

Let � be a probability measure that is a limit point of the sequence ¹� jSN
iD0

Ii

ºN .

Now, since f is Lipschitz and xW1 and xW2 are compact, jIi j is bounded from below,
let us say

jIi j > ˛:

It is also bounded from above, because if not then there is a subset ¹Iij ºj of A consisting
of intervals with length jIij j ! C1, and we can apply Lemma 16, Proposition 18, and
Theorem 19 to get closed measures Q� with supp�� Q� � crit f . Since the support of each



Long term dynamics of the subgradient method 2559

such �� Q� is contained inK n .W1 [W2/, this would mean the existence of a critical value
between c1 and c2, which contradicts our choice of J1 and J2. We conclude that the size
of the intervals in A is also bounded from above, say,

jIi j < ˇ:

Apply the first part of Lemma 22 to obtain a subsequence ¹jkºk such that ¹ jIjk ºk con-
verges uniformly to a Lipschitz curve N W Œa; b�! Rn joining N.a/ 2 xW1 with N.b/ 2 xW2.
By (5.4), we haveZ b

a

@cf . N.t// � N 0.t/ dt D lim
k!C1

Z t
jk
2

t
jk
1

@cf ..t// �  0.t/ dt � c2 � c1 > 0:

We also know that  interpolates a gradient sequence,so we may use the path differentia-
bility of f and the second part of Lemma 22 to see that this integral must be nonpositive,
a contradiction that proves the statement of the lemma.

5.3.2. Proof of item (i). For j 2 N, let Ij D Œtij ; tijC1
� � R be the interval closest to 0

with tj � tij < tijC1
, .tij / 2 Bı.x/, and .tijC1

/ 2 Bı.y/, so that Tj D tijC1
� tij . Let

 jIj be the restriction of the interpolant curve  . Since the two balls Bı.x/ and Bı.y/
are at positive distance from each other, and since the velocity is bounded uniformly:
k 0k � Lip.f /, we know that the numbers Tj D jIj j are uniformly bounded from below
by a positive number.

Assume, looking for a contradiction, that there is a subsequence of ¹Tj ºj that remains
bounded from above. Apply Lemma 22 to obtain a curve N W Œa; b�! R such that N.a/ 2
Bı.x/ \ acc ¹xiºi and N.b/ 2 Bı.y/ \ acc ¹xiºi , while also satisfying

�

Z b

a

k N 0.t/k2 dt D f ı N.b/ � f ı N.a/ D 0 (5.5)

by Lemma 23. This contradicts the fact that the distance between the balls Bı.x/ and
Bı.y/—and hence also the arc length of N—is positive.

5.3.3. Proof of item (ii). Aiming at a contradiction, we assume instead that there is some
x 2 xU \ acc ¹xiºi and some subsequence ¹ij ºj such that dist.x;.Iij //! 0 and jIij j �C
for some C > 0 and all j 2 N.

We may thus apply Lemma 22 to get a curve N W Œa; b�! Rn whose endpoints N.a/
and N.b/ are contained in acc ¹xiºi n V , and N passes through x 2 xU , so it has positive
arc length. However, it is also a conclusion of Lemma 22, together with Lemma 23, that
N satisfies (5.5), which makes it impossible for its arc length to be positive, so we have
arrived at the contradiction we were looking for.

5.3.4. Proof of item (iii). Let U , V , and A be as in the statement of item (iii). Let B DS
i2AŒti ; tiC1/. The statement of item (iii) is equivalent to

lim
N!C1

Z
v d� jB\Œ0;N�

D 0: (5.6)
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It follows from item (ii) that the maximal intervals Ii � N comprising A D
S
i Ii satisfy

jIi j ! C1 as do the lengths
P
j2Ii

"j of the intervals
S
j2Ii

Œtj ; tjC1/ � B . Hence, from
Lemma 16 we know that any limit point � of the sequence ¹� jB\Œ0;N�

ºN is closed. This
implies (5.6) because each coordinate vk of the integrand v D .v1; : : : ; vn/ is a gradient:
vk D rpk � v for pk.x/ D xk , so each entry of the integral (5.6) vanishes.

5.3.5. Proof of item (iv). Let x 2 acc ¹xiºi . For any neighborhood U of x, we can take
a slightly larger neighborhood V and repeat the construction described in the proof of
item (iii) (Section 5.3.4) of a closed measure � whose support intersects U , and whose
centroid field vanishes ���-almost everywhere. By Remark 4.6 we know that the centroid
field satisfies �Nvx 2 @cf .x/. In sum, we conclude that in every neighborhood U of x,
there is a point y 2 U with 0 2 @cf .y/, which implies that 0 2 @cf .x/ because the graph
of @cf is closed in Rn �Rn.

5.3.6. Proof of item (v). Recall that acc ¹xiºi is connected. We know from item (iv) that
acc ¹xiºi � critf . So it is contained in a single connected component of critf . Hence f
must be constant on acc ¹xiºi , and ¹f .xi /ºi converges.
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