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Abstract. A random walk with counterbalanced steps is a process of partial sums LS.n/ D LX1 C
� � � C LXn whose steps LXn are given recursively as follows. For each n � 2, with a fixed prob-
ability p, LXn is a new independent sample from some fixed law �, and with complementary
probability 1 � p, LXn D � LXv.n/ counterbalances a previous step, with v.n/ a uniform random
pick from ¹1; : : : ; n � 1º. We determine the asymptotic behavior of LS.n/ in terms of p and the
first two moments of �. Our approach relies on a coupling with a reinforcement algorithm due to
H. A. Simon, and on properties of random recursive trees and Eulerian numbers, which may be
of independent interest. The method can be adapted to the situation where the step distribution �
belongs to the domain of attraction of a stable law.

Keywords. Reinforcement, random walk, random recursive tree, Eulerian numbers, Yule–Simon
model

1. Introduction

In short, the purpose of the present work is to investigate long time effects of an algorithm
for counterbalancing steps in a random walk. As we shall first explain, our motivation
stems from a nearest neighbor process on the integer lattice, known as the elephant ran-
dom walk.

The elephant random walk is a stochastic process with memory on Z, which records
the trajectory of an elephant that makes steps with unit length left or right at each positive
integer time. It has been introduced by Schütz and Trimper [31] and triggered a growing
interest in the recent years; see, for instance, [4,5,15,16,22,23], and also [2,6,7,14,20,26]
for related models. The dynamics depend on a parameter q 2 Œ0; 1� and can be described
as follows. Let us assume that the first step of the elephant is a Rademacher variable, that
is, equals C1 or �1 with probability 1=2. For each time n � 2, the elephant remembers
a step picked uniformly at random among those it made previously, and decides either to
repeat it with probability q, or to make the opposite step with complementary probability
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1 � q. Obviously, each step of the elephant then has the Rademacher law, although the
sequence of steps is clearly not stationary.

Roughly speaking, it seems natural to generalize these dynamics and allow steps to
have an arbitrary distribution on R, say �. In this direction, Kürsten [23] pointed to an
equivalent way of describing the dynamics of the elephant random walk which makes such
generalization non-trivial.1 Let p 2 Œ0; 1�, and imagine a walker who makes at each time
a step which is either, with probability p, a new independent random variable with law
�, or, with probability 1 � p, a repetition of one of his preceding steps picked uniformly
at random. It is immediately checked that when � is the Rademacher distribution, then
the walker follows the same dynamics as the elephant random walk with parameter q D
1 � p=2. When � is an isotropic stable law, this is the model referred to as the shark
random swim by Businger [14], and more generally, when � is arbitrary, this is the step
reinforced random walk that has been studied lately in e.g. [8–11].

The model of Kürsten yields an elephant random walk only with parameter q 2
Œ1=2; 1�; nonetheless the remaining range can be obtained by a simple modification.
Indeed, let again p 2 Œ0; 1� and imagine now a repentant walker who makes at each time
a step which is either, with probability p, a new independent random variable with law
�, or, with probability 1 � p, the opposite of one of his previous steps picked uniformly
at random. When � is the Rademacher distribution, we simply get the dynamics of the
elephant random walk with parameter q D p=2 2 Œ0; 1=2�.

More formally, we consider a sequence .Xn/ of i.i.d. real random variables with some
given law � and a sequence ."n/n�2 of i.i.d. Bernoulli variables with parameter p 2 Œ0; 1�,
which we assume furthermore to be independent of .Xn/. We construct a counterbal-
anced sequence . LXn/ by interpreting each ¹"n D 0º as a counterbalancing event and each
¹"n D 1º as an innovation event. Specifically, we agree that "1 D 1 for definiteness and
denote the number of innovations after n steps by

i.n/ WD
nX

jD1

"j for n � 1:

We introduce a sequence .v.n//n�2 of independent variables, where each v.n/ has the
uniform distribution on ¹1; : : : ; n � 1º, and which is also independent of .Xn/ and ."n/.
We then define recursively

LXn WD

´
� LXv.n/ if "n D 0;

Xi.n/ if "n D 1:
(1)

Note that the same step can be counterbalanced several times, and also that certain steps
counterbalance previous steps which in turn already counterbalanced earlier ones. The

1Note that merely replacing the Rademacher distribution for the first step of the elephant by
� would not be interesting, as one would then just get the evolution of the elephant random walk
multiplied by some random factor with law �.
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process
LS.n/ WD LX1 C � � � C LXn; n � 0;

which records the positions of the repentant walker as a function of time, is called here a
random walk with counterbalanced steps. Note that for p D 1, i.e. when no counterbal-
ancing events occur, LS is just a usual random walk with i.i.d. steps.

In short, we are interested in understanding how counterbalancing steps affect the
asymptotic behavior of random walks. We first introduce some notation. Recall that �
denotes the distribution of the first step X1 D LX1 and write

mk WD E.Xk1 / D

Z
R
xk �.dx/

for the moment of order k � 1 of X1 whenever X1 2 Lk.P /. To start with, we point out
that if the first moment is finite, then the algorithm (1) yields the recursive equation

E. LS.nC 1// D pm1 C .1 � .1 � p/=n/E. LS.n//; n � 1;

with the initial condition E. LS.1// D m1. It follows easily that

E. LS.n// �
p

2 � p
m1n as n!1I

see e.g. [18, Lemma 4.1.2]. Our first result about the ballistic behavior should therefore
not come as a surprise.

Proposition 1.1. Let p 2 Œ0; 1�. If X1 2 L1.P /, then

lim
n!1

LS.n/

n
D

p

2 � p
m1 in probability:

We see in particular that counterbalancing steps reduces the asymptotic velocity of a
random walk by a factor p=.2� p/ < 1. The velocity is smaller when the innovation rate
p is smaller (i.e. when counterbalancing events have a higher frequency), and vanishes as
p approaches 0C.

The main purpose of this work is to establish the asymptotic normality when � has a
finite second moment.

Theorem 1.2. Let p 2 .0; 1�. If X1 2 L2.P /, then

lim
n!1

LS.n/ � p
2�p

m1n
p
n

D N

�
0;
m2 �

�
p
2�p

m1
�2

3 � 2p

�
in distribution;

where the right-hand side denotes a centered Gaussian variable parametrized by mean
and variance.

It is interesting to observe that the variance of the Gaussian limit depends linearly on
the square m21 of the first moment and the second moment m2 of � only, although not
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just on the variancem2 �m21 (except, of course, for p D 1). Furthermore, it is not always
a monotone function2 of the innovation rate p, and does not vanish when p tends to 0
either.

Actually, our proofs of Proposition 1.1 and Theorem 1.2 provide a much finer analysis
than what is encapsulated by those general statements. Indeed, we shall identify the main
actors for the evolution of LS and their respective contributions to its asymptotic behav-
ior. In short, we shall see that the ballistic behavior stems from those of the variables Xj
that have been used just once by the algorithm (1) (in particular, they have not yet been
counterbalanced), whereas the impact of variables that occurred twice or more, regard-
less of their signs ˙, is asymptotically negligible as far as only velocity is concerned.
Asymptotic normality is more delicate to analyze. We shall show that, roughly speaking,
it results from the combination of, on the one hand, the central limit theorem for certain
centered random walks, and on the other hand, Gaussian fluctuations for the asymptotic
frequencies of some pattern induced by (1).

Our analysis relies on a natural coupling of the counterbalancing algorithm (1)
with a basic linear reinforcement algorithm which was introduced a long time ago by
H. A. Simon [32] to explain the occurrence of certain heavy tailed distributions in a vari-
ety of empirical data. Specifically, Simon defined recursively a sequence denoted here
by . OXn/ (beware of the difference of notation between OX and LX ) via

OXn WD

´
OXv.n/ if "n D 0;

Xi.n/ if "n D 1:
(2)

We stress that the same Bernoulli variables "n and the same uniform variables v.n/
are used to run both Simon’s algorithm (2) and (1); in particular either LXn D OXn or
LXn D � OXn. It might then seem natural to refer to (1) and (2) respectively as negative

and positive reinforcement algorithms. However, in the literature, negative reinforcement
usually refers to a somehow different notion (see e.g. [29]), and we shall avoid using this
terminology.

A key observation is that (1) can be recovered from (2) as follows. Simon’s algorithm
naturally encodes a genealogical forest with set of vertices N D ¹1; 2; : : :º and edges
.v.j /; j / for all j � 2 with "j D 0; see Figure 1 in Section 3. Then LXn D OXn if the vertex
n belongs to an even generation of its tree component, and LXn D � OXn if n belongs to
an odd generation. On the other hand, the statistics of Simon’s genealogical forest can
be described in terms of independent random recursive trees (see e.g. [17, Chapter 6]
for background) conditionally on their sizes. This leads us to investigate the difference
�.Tk/ between the number of vertices at even generations and the number of vertices
at odd generations in a random recursive tree Tk of size k � 1. The law of �.Tk/ can

2For instance, in the simplest case when � is a Dirac point mass, i.e. m2 D m21, the variance is

given by 4.1�p/m2

.3�2p/.2�p/2
and reaches its maximum for pD .9�

p
17/=8� 0:6. At the other extreme,

when � is centered, i.e.m1 D 0, the variance is given bym2=.3� 2p/ and hence increases with p.
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be expressed in terms of Eulerian numbers, and properties of the latter enable us either
to compute explicitly or estimate certain quantities which are crucial for the proofs of
Proposition 1.1 and Theorem 1.2.

It is interesting to compare asymptotic behaviors for counterbalanced steps with those
for reinforced steps. If we write OS.n/ D OX1 C � � � C OXn for the random walk with rein-
forced steps, then it is known that the law of large numbers holds for OS , namely OS.n/=n!
m1 in L1 when

R
R jxj�.dx/ <1, independently of the innovation parameter p. Further,

regarding fluctuations when
R

R jxj
2 �.dx/ <1, a phase transition occurs for the criti-

cal parameter pc D 1=2, in the sense that OS is diffusive for p > 1=2 and superdiffusive
for p < 1=2; see [10, 11]. In spite of the natural coupling between (1) and (2), there are
thus major differences3 between the asymptotic behaviors of LS and of OS : Proposition 1.1
shows that the asymptotic speed of LS depends on p, and Theorem 1.2 that there is no such
phase transition for counterbalanced steps and LS is always diffusive.

The phase transition for step reinforcement when � has a finite second moment can
be explained informally as follows; for the sake of simplicity, suppose also that � is
centered, i.e. m1 D 0. There are i.n/ � pn trees in Simon’s genealogical forest, which
are overwhelmingly microscopic (i.e. of size O.1/), whereas only a few trees reach the
size O.n1�p/. Because � is centered, the contribution of microscopic trees to OS.n/ is of
order

p
n, and that of the few largest trees of order n1�p . This is the reason why OS.n/

grows like
p
n � n1�p when p > 1=2, and rather like n1�p �

p
n when p < 1=2.

For counterbalanced steps, we will see that, due to the counterbalancing mechanism, the
contribution of a large tree of size `� 1 is now only of order

p
`. As a consequence,

the contribution to LS.n/ of the largest trees of Simon’s genealogical forest is only of
order O.n.1�p/=2/. This is always much smaller than the contribution of microscopic
trees which remain of order

p
n. We further stress that, even though only the sizes of the

trees in Simon’s genealogical forest are relevant for the analysis of the random walk OS
with reinforced steps, the study of the random walk LS with counterbalanced steps is more
complex and requires information on the fine structure of those trees, not merely their
sizes.

The rest of this text is organized as follows. Section 2 focusses on the purely counter-
balanced case p D 0. In this situation, for each fixed n � 1, the distribution of LS.n/ can
be expressed explicitly in terms of Eulerian numbers. Section 3 is devoted to the coupling
between the counterbalancing algorithm (1) and H. A. Simon’s algorithm (2), and to the
interpretation of the former in terms of a forest of random recursive trees induced by
the latter. Proposition 1.1 and Theorem 1.2 are proved in Section 4, where we analyze
more finely the respective contributions of some natural subfamilies. Last, in Section 5,
we present a stable version of Theorem 1.2 when � belongs to the domain of attraction
(without centering) of an ˛-stable distribution for some ˛ 2 .0; 2/.

3This should not come as a surprise. In the simplest case when�D ı1 is the Dirac mass at 1, one
has OS.n/ � n, whereas LS is a truly stochastic process, even for p D 0 when there is no innovation.
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2. Warm-up: the purely counterbalanced case

This section is devoted to the simpler situation4 when p D 0. So "n � 0 for all n � 2,
meaning that every step, except of course the first one, counterbalances some preceding
step. The law � then only plays a superficial role as it is merely relevant for the first step.
For the sake of simplicity, we further focus on the case when � D ı1 is the Dirac mass
at 1.

The dynamics are entirely encoded by the sequence .v.n//n�2 of independent uniform
variables on ¹1; : : : ; n � 1º; more precisely the purely counterbalanced sequence of bits
is given by

LX1 D 1 and LXn D � LXv.n/ for all n � 2: (3)

The random algorithm (3) points to a convenient representation in terms of random recur-
sive trees. Specifically, the sequence .v.n//n�2 encodes a random tree T1 with set of ver-
tices N and set of edges ¹.v.n/; n/ W n � 2º. Roughly speaking, T1 is constructed recur-
sively by incorporating vertices one after the other and creating an edge between each
new vertex n and its parent v.n/ which is picked uniformly at random in ¹1; : : : ; n � 1º
and independently of the other vertices. If we view 1 as the root of T1 and call a vertex j
odd (respectively, even) when its generation (i.e. its distance to the root in T1) is an odd
(respectively, even) number, then

LXn D

´
1 if n is an even vertex in T1,

�1 if n is an odd vertex in T1.

Let us now introduce some relevant notation. For every n � 1, we write Tn for the
restriction of T1 to the set of vertices ¹1; : : : ; nº and refer to Tn as a random recursive
tree of size n. We also write Odd.Tn/ (respectively, Even.Tn/) for the number of odd
(respectively, even) vertices in Tn and set

�.Tn/ WD Even.Tn/ � Odd.Tn/ D n � 2Odd.Tn/:

Of course, we can also express

�.Tn/ D LX1 C � � � C LXn;

which is the trajectory of an elephant full of regrets (i.e. for q D 0).
The main observation of this section is that the law of the number of odd vertices

is readily expressed in terms of Eulerian numbers. Recall that hn
k
i denotes the number

of permutations & of ¹1; : : : ; nº with k descents, i.e. such that #¹1 � j < n W &.j / >

&.j C 1/º D k. Obviously hn
k
i � 1 if and only if 0 � k < n, and one has

n�1X
kD0

�
n

k

�
D nŠ:

4Observe that this case without innovation has been excluded in Theorem 1.2.
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The linear recurrence equation�
n

k

�
D .n � k/

�
n � 1

k � 1

�
C .k C 1/

�
n � 1

k

�
(4)

is easily derived from a recursive construction of permutations (see [30, Theorem 1.3]);
we also mention the explicit formula (see [30, Corollary 1.3])�

n

k

�
D

kX
jD0

.�1/j
�
nC 1

j

�
.k C 1 � j /n:

Lemma 2.1. For every n � 1, we have

P .Odd.Tn/ D `/ D
1

.n � 1/Š

�
n � 1

` � 1

�
;

with the convention5 that h 0�1i D 1 on the right-hand side for n D 1 and ` D 0.

Proof. Fix n � 1 and note that the very construction of random recursive trees gives the
identity

P .Odd.TnC1/ D `/ D
`

n
P .Odd.Tn/ D `/C

nC 1 � `

n
P .Odd.Tn/ D ` � 1/:

Indeed, the first term of the sum on the right-hand side accounts for the event that the
parent v.nC 1/ of the new vertex nC 1 is an odd vertex (then nC 1 is an even vertex),
and the second term for the event that v.nC 1/ is an even vertex (then nC 1 is an odd
vertex).

In terms of A.n; k/ WD nŠP .Odd.TnC1/ D k C 1/, this yields

A.n; k/ D .k C 1/A.n � 1; k/C .n � k/A.n � 1; k � 1/;

which is the linear recurrence equation (4) satisfied by the Eulerian numbers. Since plainly
A.1; 0/ D P .Odd.2/ D 1/ D 1 D h10i, we conclude by iteration that A.n; k/ D hn

k
i for

all n � 1 and 0 � k < n. Last, the formula in the statement also holds for n D 1 since
Odd.1/ D 0.

Remark 2.2. Lemma 2.1 is implicit in Mahmoud [24].6 Indeed Odd.Tn/ can be viewed
as the number of blue balls in an analytic Friedman’s urn model started with one white
ball and replacement scheme .0 11 0/; see [24, Section 7.2.2]. In this setting, Lemma 2.1 is
equivalent to the formula for the number of white balls [24, bottom of p. 127]. Mahmoud
relied on the analysis of the differential system associated to the replacement scheme via a
Riccati differential equation and inversion of generating functions. The present approach

5Note that this convention is in agreement with the linear recurrence equation (4).
6Beware however that the definition of Eulerian numbers in [24] slightly differs from ours,

namely hn
k
i there corresponds to h n

k�1 i here.
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based on the linear recurrence equation (4) is more direct. Lemma 2.1 is also a closed rel-
ative to a result due to Najock and Heyde [27] (see also Mahmoud [24, Theorem 8.6] and
Drmota [17, Section 6.2.4]) which states that the number of leaves in a random recursive
tree of size n has the same distribution as that appearing in Lemma 2.1.

We next point to a useful identity related to Lemma 2.1 which goes back to Laplace
(see Stanley [33, Chapter I, Exercise 51]) and is often attributed to Tanny [34]. For every
n � 0, we have the identity in distribution

Odd.TnC1/
.d/
D dU1 C � � � C Une; (5)

where on the right-hand side, U1; U2; : : : is a sequence of i.i.d. uniform variables on
Œ0; 1� and d�e denotes the ceiling function. We now record for future use the following
consequences.

Corollary 2.3. (i) For every n � 2, the random variable �.Tn/ is symmetric, that is,

�.Tn/
.d/
D ��.Tn/, and in particular E.�.Tn// D 0.

(ii) For all n � 3, one has E.�.Tn/2/ D n=3.

(iii) For all n � 1, one has E.j�.Tn/j4/ � 6n2.

Proof. (i) Equivalently, the assertion states that in a random recursive tree of size at
least 2, the number of odd vertices and the number of even vertices have the same distri-
bution. This is immediate from (5) and can also be checked directly from the construction.

(ii) This has already been observed by Schütz and Trimper [31] in the setting of the
elephant random walk; for the sake of completeness we present a short argument. The
vertex nC 1 is odd (respectively, even) in TnC1 if and only if its parent is an even (respec-
tively, odd) vertex in Tn. Hence one has

E.�.TnC1/ ��.Tn/ j Tn/ D �
1

n
�.Tn/;

and since �.TnC1/ ��.Tn/ D ˙1, this yields the recursive equation

E.�.TnC1/
2/ D .1 � 2=n/E.�.Tn/

2/C 1:

By iteration, we conclude that E.�.Tn/2/ D n=3 for all n � 3.
(iii) Recall that the process of the fractional parts ¹U1 C � � � C Unº is a Markov chain

on Œ0; 1/ whose distribution at any fixed time n � 1 is uniform on Œ0; 1/. Writing

Vn D 1 � 2Un and Wn D 2¹U1 C � � � C Unº � 1;

we see that V1; V2; : : : is a sequence of i.i.d. uniform variables on Œ�1; 1� and that Wn has
the uniform distribution on Œ�1; 1� too.

The characteristic function of the uniform variable Vj is

E.exp.i�Vj // D ��1 sin.�/ D 1 �
�2

6
C

�4

120
CO.�6/ as � ! 0;



Counterbalancing steps at random in a random walk 2663

and therefore for every n � 1,

E.exp.i�.V1 C � � � C Vn/// D
�
1 �

�2

6
C

�4

120
CO.�6/

�n
D 1 �

n

6
�2 C

�
n

120
C
n.n � 1/

72

�
�4 CO.�6/:

It follows that

E..V1 C � � � C Vn/
4/ D 24

�
n

120
C
n.n � 1/

72

�
� n2=3:

We can rephrase (5) as the identity in distribution

�.TnC1/
.d/
D V1 C � � � C Vn CWn:

Since E.W 4
n / D 1=3, the proof is completed with the elementary bound .a C b/4 �

16.a4 C b4/.

We now conclude this section with an application of (5) to the asymptotic normality
of �.Tn/. Since E.U / D 1=2 and Var.U / D 1=12, the classical central limit theorem
immediately yields the following.

Corollary 2.4. Assume p D 0 and � D ı1. One has

lim
n!1

�.Tn/
p
n
D N .0; 1=3/ in distribution.

Corollary 2.4 goes back to [27] in the setting of the number of leaves in random
recursive trees; see also [4,5,15,16] for alternative proofs in the framework of the elephant
random walk.

3. Genealogical trees in Simon’s algorithm

From now on, � is an arbitrary probability law on R and we also suppose that the innova-
tion rate is strictly positive, p 2 .0; 1/. Recall the construction of the sequence . OXn/ from
Simon’s reinforcement algorithm (2). Simon was interested in the asymptotic frequencies
of variables having a given number of occurrences. Specifically, for every n; j 2 N, we
write

Nj .n/ WD #¹` � n W OX` D Xj º;

for the number of occurrences of the variable Xj until the n-th step of the algorithm (2),
and

�k.n/ WD #¹1 � j � i.n/ W Nj .n/ D kº; k 2 N; (6)

for the number of such variables that have occurred exactly k times. Observe also that the
number of innovations satisfies the law of large numbers i.n/ � pn a.s.



J. Bertoin 2664

Lemma 3.1. For every k � 1, we have

lim
n!1

�k.n/

pn
D

1

1 � p
B.k; 1C 1=.1 � p// in probability,

where B denotes the beta function.

Lemma 3.1 is essentially due to H. A. Simon [32], who actually only established the
convergence of the mean value. The strengthening to convergence in probability can be
obtained as in [13] from a concentration argument based on Azuma–Hoeffding’s inequal-
ity; see [28, Section 3.1]. The right-hand side in the formula is a probability mass on N
known as the Yule–Simon distribution with parameter 1=.1 � p/. We record for future
use a couple of identities which are easily checked from the integral definition of the beta
function:

1

1 � p

1X
kD1

B.k; 1C 1=.1 � p// D 1 (7)

and
1

1 � p

1X
kD1

kB.k; 1C 1=.1 � p// D
1

p
: (8)

For k D 1, Lemma 3.1 reads

lim
n!1

n�1�1.n/ D
p

2 � p
in probability. (9)

We shall also need to estimate the fluctuations, which can be derived by specializing a
Gaussian limit theorem for extended Pólya urns due to Bai et al. [1].

Lemma 3.2. We have

lim
n!1

�1.n/ � np=.2 � p/
p
n

D N

�
0;
2p3 � 8p2 C 6p

.3 � 2p/.2 � p/2

�
in distribution:

Proof. The proof relies on the observation that Simon’s algorithm can be coupled with a
two-color urn governed by the same sequences ."n/ of random bits and .v.n// of uniform
variables as follows. Imagine that we observe the outcome of Simon’s algorithm at the
n-th step and that for each 1 � j � n, we associate a white ball if the variable OXj appears
exactly once, and a red ball otherwise. At the initial time n D 1, the urn contains just
one white ball and no red balls. At each step n � 2, a ball picked uniformly at random
in the urn (in terms of Simon’s algorithm, this is given by the uniform variable v.n/). If
"n D 1, then the ball picked is returned to the urn and one adds a white ball (in terms
of Simon’s algorithm, this corresponds to an innovation and �1.n/ D �1.n � 1/C 1). If
"n D 0, then the ball picked is removed from the urn and one adds two red balls (in terms
of Simon’s algorithm, this corresponds to a repetition and either �1.n/D �1.n� 1/� 1 if
the ball picked is white, or �1.n/ D �1.n � 1/ if the ball picked is red). By construction,
the numberWn of white balls in the urn coincides with the number �1.n/ of variables that
have appeared exactly once in Simon’s algorithm (2).
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We shall now check our claim in the setting of [1] by specifying the quantities which
appear there. The evolution of the number of white balls in the urn is governed by equa-
tion (2.1) in [1], viz.

Wn D Wn�1 C InAn C .1 � In/Cn;

where In D 1 if a white ball is picked and In D 0 otherwise. In our framework, we further
have An D 2"n � 1 and Cn D "n. If we write Fn for the natural filtration generated by the
variables .Ak ; Ck ; Ik/k�n, then An and Cn are independent of Fn�1 with

E.An/ D 2p � 1; E.Cn/ D p; Var.An/ D 4.p � p2/; Var.Cn/ D p � p2:

This gives, in the notation of [1, (2.2)],

�2M D
p

2 � p
4.p � p2/C

�
1 �

p

2 � p

�
.p � p2/C .p � 1/2

p

2 � p

�
1 �

p

2 � p

�
D
2p3 � 8p2 C 6p

.2 � p/2
;

and finally

�2 D
2p3 � 8p2 C 6p

.3 � 2p/.2 � p/2
:

Our claim can now be seen as a special case of [1, Corollary 2.1].

We shall also need a refinement of Lemma 3.1 in which one records not only the
number of occurrences of the variable Xj , but more generally the genealogical structure
of these occurrences. We need to introduce some notation first.

Fix n � 1 and 1 � j � i.n/ (i.e. the variable Xj has already appeared at the n-th step
of the algorithm). Write `1 < � � � < `k � n for the increasing sequence of steps of the
algorithm at which Xj appears, where k D Nj .n/ � 1. The genealogy of occurrences of
the variable Xj until the n-th step is recorded as a tree Tj .n/ on ¹1; : : : ; kº such that for
every 1 � a < b � k, .a; b/ is an edge of Tj .n/ if and only if v.`b/ D `a, that is, if and
only if the identity OX`b

D Xj actually results from the fact that the algorithm repeats the
variable OX`a

at its `b-th step. Plainly, Tj .n/ is an increasing tree of size k, meaning a tree
on ¹1; : : : ; kº such that the sequence of vertices along any branch from the root 1 to a leaf
is increasing. In this direction, we recall that there are .k � 1/Š increasing trees of size k
and that the uniform distribution of the set of increasing trees of size k coincides with the
law of Tk the random recursive tree of size k. See for instance Drmota [17, Section 1.3.1].

More generally, the distribution of the entire genealogical forest given the sizes of the
genealogical trees can be described as follows.

Lemma 3.3. Fix n � 1, 1 � k � n, and let n1; : : : ; nk � 1 with n1 C � � � C nk D n.
Then conditionally on Nj .n/ D nj for every j D 1; : : : ; k, the genealogical trees
T1.n/; : : : ; Tk.n/ are independent random recursive trees of respective sizes n1; : : : ; nk .

Proof. Recall that ¹.v.j /; j /: 1 � j � nº is the set of edges of Tn, the random recur-
sive tree of size n. The well-known splitting property states that removing a given edge
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Fig. 1. Example of a genealogical forest representation of Simon’s algorithm (2) after 18 steps. The
dotted edges account for innovation events, i.e. "j D 1, and the four genealogical trees are rooted
at 1; 5; 7; 14. In each subtree, vertices at even generations are colored green and vertices at odd
generations are white. For instance the genealogical tree T2.18/ is rooted at 5, it has three even
vertices and two odd vertices.

from Tn, say .v.j /; j / for some fixed j , produces two subtrees, which in turn, condition-
ally on their sizes, are two independent random recursive trees. This has been observed
first by Meir and Moon [25]; see also [3] and references therein for more about this
property.

The genealogical trees T1.n/; : : : ; Tk.n/ result by removing from Tn the edges
.v.j /; j / for which "j D 1 and enumerating in each subtree component their vertices
in increasing order. Our statement is now easily seen by applying this splitting property
iteratively.

For the proofs of Proposition 1.1 and Theorem 1.2 we shall also need an argument of
uniform integrability, which relies in turn on the following lemma. Recall that if T is a
rooted tree, �.T / denotes the difference between the number of vertices at even distance
from the root and that at odd distance.

Lemma 3.4. For every 1 < ˇ < 2 ^ 1
1�p

, one has

sup
n�1

1

n

nX
jD1

E.Nj .n/
ˇ / <1

and

sup
n�1

1

n
E
� i.n/X
jD1

j�.Tj .n//j
2ˇ
�
<1:
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Proof. The first claim is a consequence of [9, Lemma 3.6] which states that for ˇ in
.1; 1=.1 � p// [beware that the parameter denoted by p in [9] is actually 1 � p here],
there exist numerical constants c > 0 and � 2 .0; 1/ such that E.Nj .n/ˇ / � c.n=j /� for
all 1 � j � n.

Next, combining Jensen’s inequality with Corollary 2.3 (iii), we find that for k � 2,

E.j�.Tk/j
2ˇ / � E.j�.Tk/j

4/ˇ=2 � 6kˇ :

Then recall that conditionally on Nj .n/ D k � 1, Tj .n/ has the law of Tk , the random
recursive tree of size k, and hence

E
� i.n/X
jD1

j�.Tj .n//j
2ˇ
�
D

nX
jD1

� nX
kD1

E.j�.Tk/j
2ˇ /P .Nj .n/ D k/

�
� 6

nX
jD1

� nX
kD1

kˇP .Nj .n/ D k/
�
:

We know from the first part that this last quantity is finite, and the proof is complete.

4. Proofs of the main results

As its title indicates, the purpose of this section is to establish Proposition 1.1 and Theo-
rem 1.2. The observation that for every n � 1 and 1 � j � i.n/, the variable Xj appears
exactly Even.Tj .n// times and its opposite �Xj exactly Odd.Tj .n// times until the n-th
step of the algorithm (1), yields the identity

LS.n/ WD

nX
iD1

LXi D

i.n/X
jD1

�.Tj .n//Xj ; (10)

which lies at the heart of our approach. We stress that in (10) as well as in related
expressions that we shall use below, the sequence .Xn/ of i.i.d. variables and the fam-
ily .Tj .n// of genealogical trees are independent, because the latter are constructed from
the sequences ."n/ and .v.n// only.

Actually, our proof analyzes more precisely the effects of the counterbalancing algo-
rithm (1) by estimating specifically the contributions of certain subfamilies to the asymp-
totic behavior of LS . Specifically, we set, for every k � 1,

LSk.n/ WD

i.n/X
jD1

�.Tj .n//Xj1Nj .n/Dk ; (11)

so that

LS.n/ D

nX
kD1

LSk.n/:
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4.1. Proof of Proposition 1.1

The case p D 1 (no counterbalancing events) of Proposition 1.1 is just the weak law of
large numbers, and the case p D 0 (no innovations) is a consequence of Corollary 2.4.
The case p 2 .0; 1/ derives from the next lemma which shows more precisely that the
variables Xj that have appeared in the algorithm (1) but have not yet counterbalanced
determine the ballistic behavior of LS , whereas those that have appeared twice or more
(i.e. such that Nj .n/ � 2) have a negligible impact.

Lemma 4.1. Assume that X1 2 L1.P / and recall that m1 D E.X1/. Then the following
limits hold in probability:

(i) limn!1 n
�1 LS1.n/ D m1p=.2 � p/,

(ii) limn!1 n
�1
Pn
kD2 j

LSk.n/j D 0.

Proof. (i) Recall the notation (6) and that the sequence .Xj / of i.i.d. variables is indepen-
dent of the events ¹Nj .n/ D 1º. We have the identity in distribution

LS1.n/
.d/
D S1.�1.n//;

where S1.n/ D X1 C � � � C Xn is the usual random walk. Claim (i) follows readily from
the law of large numbers and (9).

(ii) We first argue that for each fixed k � 2,

lim
n!1

n�1 LSk.n/ D 0 almost surely. (12)

Indeed, recall that �k.n/ denotes the number of genealogical trees Tj .n/ of size k. It
follows from Lemma 3.3 that conditionally on �k.n/ D `, the subfamily of such Tj .n/,
enumerated in the increasing order of the index j , is given by ` i.i.d. copies of the random
recursive tree Tk . Hence, still conditionally on �k.n/ D `, enumerating the elements of
the subfamily ¹Xj�.Tj .n// W Nj .n/ D kº in the increasing order of j yields ` indepen-
dent variables, each being distributed as X1�.Tk/ with X1 and �.Tk/ independent. We
deduce from Corollary 2.3 (i) that the variable X1�.Tk/ is symmetric, and since it is also
integrable, it is centered. Since �k.n/ � n, this readily entails (12) by an application of
the law of large numbers.

The proof can be completed by an argument of uniform integrability. In this direction,
fix an arbitrarily large integer ` and write, by the triangular inequality,

1

n
E
� nX
kD`

j LSk.n/j
�
�
1

n
E
� i.n/X
jD1

jXj jNj .n/1Nj .n/�`

�
D

E.jX1j/

n

nX
jD1

E.Nj .n/1Nj .n/�`/

� `1�ˇ
E.jX1j/

n

nX
jD1

E.Nj .n/
ˇ /;
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where the last inequality holds for any ˇ > 1. We see from Lemma 3.4 that the right-
hand side converges to 0 as ` ! 1 uniformly in n � 1, and the rest of the proof is
straightforward.

4.2. Proof of Theorem 1.2

For p D 1 (no counterbalancing events), Theorem 1.2 just reduces to the classical central
limit theorem, so we assume p 2 .0; 1/. The first step of the proof consists in determining
jointly the fluctuations of the components LSk defined in (11).

Lemma 4.2. Assume thatm2 D E.X21 / <1. Then as n!1, the sequences of random
variables

LS1.n/ � pm1=.2 � p/
p
n

. for k D 1/

and
LSk.n/
p
n

. for k � 2/

converge jointly in distribution towards a sequence

.Nk.0; �
2
k //k�1

of independent centered Gaussian variables, where

�21 WD
pm2

2 � p
�

p2m21
.3 � 2p/.2 � p/2

;

�22 WD 0, and

�2k WD
kpm2

3.1 � p/
B.k; 1C 1=.1 � p// for k � 3:

Proof. For each k � 1, let .Yk.n//n�1 be a sequence of i.i.d. copies of �.Tk/X , where
X has the law � and is independent of the random recursive tree Tk . We further assume
that these sequences are independent. Taking partial sums yields a sequence indexed by k
of independent random walks

Sk.n/ D Yk.1/C � � � C Yk.n/; n � 0:

For each n � 1, the family of blocks

Bk.n/ WD ¹j � i.n/ W Nj .n/ D kº for 1 � k � i.n/

forms a random partition of ¹1; : : : ; i.n/º which is independent of theXj ’s. Recall that we
are using the notation �k.n/ D #Bk.n/, and also from Lemma 3.3, that conditionally on
theNj .n/’s, the genealogical trees Tj .n/ are independent random recursive trees. We now
deduce from the very definition (11), for every fixed n � 1, the identity in distribution

. LSk.n//k�1
.d/
D .Sk.�k.n///k�1;

where on the right-hand side, the random walks .Sk/k�1 are independent of the sequence
.�k.n//k�1 of block sizes.
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Next we write, first for k D 1,

S1.�1.n// �
pn

2 � p
m1 D S1

��
pn

2 � p

��
�

pn

2 � p
m1 C

�1.n/X
jDdpn=.2�p/e

Y1.j /;

second S2 � 0 (since �.T2/ � 0) for k D 2, and third, for k � 3,

Sk.�k.n// D Sk

��
pn

1 � p
B.k; 1C 1=.1 � p//

��
C

�k.n/X
jDd pn

1�p B.k;1C1=.1�p//e

Yk.j /;

with the usual convention that
Pb
jDa D �

Pa
jDb when b < a.

Since the i.i.d. variables Y1.�/ have mean m1 and variance m2 �m21, the central limit
theorem ensures the convergence in distribution

lim
n!1

n�1=2
�
S1

��
pn

2 � p

��
�

pn

2 � p
m1

�
D N1

�
0;
p.m2 �m

2
1/

2 � p

�
: (13)

Similarly, for k � 3, each Yk.n/ is centered with variance km2=3 (by Corollary 2.3 (i, ii))
and hence, using the notation in the statement, we get the convergence in distribution

lim
n!1

n�1=2Sk

��
pn

1 � p
B.k; 1C 1=.1 � p//

��
D Nk.0; �

2
k /: (14)

Plainly, the weak convergences (13) and (14) hold jointly when we agree that the limits
are independent Gaussian variables.

Next, from Lemma 3.1 and the fact that for k � 3, the i.i.d. variables Yk.j / are cen-
tered with finite variance, we easily get

lim
n!1

n�1=2
ˇ̌̌ �k.n/X
jDd pn

1�p B.k;1C1=.1�p//e

Yk.j /
ˇ̌̌
D 0 in L2.P /:

Finally, for k D 1, we write

�1.n/X
jDdpn=.2�p/e

Y1.j / D m1.�1.n/ � bpn=.2 � p/c/C

�1.n/X
jDdpn=.2�p/e

.Y1.j / �m1/:

On the one hand, from the same argument as above we have

lim
n!1

n�1=2
ˇ̌̌ �1.n/X
jDdpn=.2�p/e

.Y1.j / �m1/
ˇ̌̌
D 0 in L2.P /:

On the other hand, Lemma 3.2 already implies the convergence in distribution

lim
n!1

m1
�1.n/ � bpn=.2 � p/c

p
n

D N

�
0;
2p3 � 8p2 C 6p

.3 � 2p/.2 � p/2
m21

�
:

Obviously, this convergence in law holds jointly with (13) and (14), where the limiting
Gaussian variables are independent. Putting the pieces together completes the proof.
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The final step for the proof of Theorem 1.2 is the following lemma.

Lemma 4.3. We have

lim
K!1

sup
n�1

n�1E
�ˇ̌̌X
k�K

LSk.n/
ˇ̌̌2�
D 0:

Proof. We write X
k�K

LSk.n/ D

nX
jD1

Xj�.Tj .n//1Nj .n/�K :

Since the Xj are independent of the Tj .n/, we get

E
�ˇ̌̌X
k�K

LSk.n/
ˇ̌̌2�
D E

� nX
j;j 0D1

XjXj 0�.Tj .n//1Nj .n/�K�.Tj 0.n//1Nj 0 .n/�K

�
� m2

nX
j;j 0D1

E
�
�.Tj .n//1Nj .n/�K�.Tj 0.n//1Nj 0 .n/�K

�
:

We evaluate the expectation on the right-hand side by conditioning first on Nj .n/ D k

and Nj 0.n/D k0 with k; k0 � 3. Recall from Lemma 3.3 that the genealogical trees Tj .n/
and Tj 0.n/ are then two random recursive trees with respective sizes k and k0, which are
further independent when j ¤ j 0. Thanks to Corollary 2.3 (i, ii) we get

E
�
�.Tj .n//1Nj 0 .n/�K

�.Tj 0.n//1Nj 0 .n/�K

�
D

´
1
3
E.Nj .n/1Nj .n/�K/ if j D j 0;

0 if j ¤ j 0:

We have thus shown that

E
�ˇ̌̌X
k�K

LSk.n/
ˇ̌̌2�
�
m2

3

nX
jD1

E.Nj .n/1Nj .n/�K/;

which yields our claim just as in the proof of Lemma 4.1 (ii).

The proof of Theorem 1.2 is now easily completed by combining Lemmas 4.2 and 4.3.
Indeed, the identity

pm2

2 � p
C

1X
kD2

�2k D
m2

3 � 2p

is easily checked from (8).

5. A stable central limit theorem

The arguments for the proof of Theorem 1.2 when the step distribution � has a finite
second moment can be adapted to the case when � belongs to some stable domain of
attraction; for the sake of simplicity we focus on the situation without centering. Specif-
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ically, let .an/ be a sequence of positive real numbers that is regularly varying with
exponent 1=˛ for some ˛ 2 .0; 2/, in the sense that limn!1 abrnc=an D r

1=˛ for every
r > 0, and suppose that

lim
n!1

X1 C � � � CXn

an
D Z in distribution; (15)

where Z is some ˛-stable random variable. We refer to [19, Theorems 4 and 5, pp. 181–
182] and of [21, Chapter 2, Section 6] for necessary and sufficient conditions for (15) in
terms of � only. We write '˛ for the characteristic exponent of Z, viz.

E.exp.i�Z// D exp.�'˛.�// for all � 2 RI

recall that '˛ is homogeneous with exponent ˛, i.e.

'˛.�/ D j� j
˛'˛.sgn.�// for all � ¤ 0:

Recall the definition and properties of the Eulerian numbers hn
k
i from Section 2, and

also the Pochhammer notation

.x/.k/ WD
�.x C k/

�.x/
D

k�1Y
jD0

.x C j /; x > 0; k 2 N;

for the rising factorial, where � stands for the gamma function. We can now claim:

Theorem 5.1. Assume (15). For each p 2 .0; 1/, we have

lim
n!1

LS.n/

an
D LZ in distribution;

where LZ is an ˛-stable random variable with characteristic exponent L'˛ given by

L'˛.�/ D
p

1 � p

1X
kD1

k�1X
`D0

'˛..k � 2`/�/

.1C 1=.1 � p//.k/

�
k � 1

` � 1

�
; � 2 R:

The proof of Theorem 5.1 relies on a refinement of Simon’s result (Lemma 3.1) to the
asymptotic frequencies of genealogical trees induced by the reinforcement algorithm (2).
We denote by T " the set of increasing trees (of arbitrary finite size), and for any � 2 T ",
we write j� j for its size (the number of vertices) and �.�/ for the difference between its
numbers of even vertices and of odd vertices. Refining (6), we also define

�� .n/ WD

i.n/X
jD1

1Tj .n/D� ; � 2 T ":

Lemma 5.2. We have the identityX
�2T "

j� j C j�.�/j2

.1C 1=.1 � p//.j� j/
D

4p

3.1 � p/
;
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and the convergence in probability

lim
n!1

X
�2T "

.j� j C j�.�/j2/

ˇ̌̌̌
�� .n/

n
�

p

.1 � p/.1C 1=.1 � p//.j� j/

ˇ̌̌̌
D 0:

Proof. We start by showing that for every k � 1, and every tree � 2 T " of size j� j D k,
we have

lim
n!1

�� .n/

n
D

p

.1 � p/.1C 1=.1 � p//.k/
in probability. (16)

Indeed, the distribution of the random recursive tree Tk of size k is the uniform probability
measure on the set of increasing trees of size k, which has .k � 1/Š elements. We deduce
from Lemma 3.3 and the law of large numbers that

�� .n/ � �k.n/=.k � 1/Š:

The claim (16) now follows from Lemma 3.1 and the identity

B.k; 1C 1=.1 � p// D
.k � 1/Š

.1C 1=.1 � p//.k/
:

We now have to prove that (16) holds in L1.j� j C j�.�/j2; T "/. On the one hand, for
every n � 1 one obviously has X

�2T "

j� j�� .n/ D n:

On the other hand, there are .k � 1/Š increasing trees of size k and hence

p

1 � p

X
�2T "

j� j

.1C 1=.1 � p//.j� j/
D

p

1 � p

1X
kD1

kB.k; 1C 1=.1 � p// D 1;

where the second equality is (8). We deduce from Scheffé’s Lemma and (16) the conver-
gence in probability

lim
n!1

X
�2T "

j� j

ˇ̌̌̌
�� .n/

n
�

p

.1 � p/.1C 1=.1 � p//.j� j/

ˇ̌̌̌
D 0:

Similarly, we deduce from Corollary 2.3 (ii) and Lemma 3.3 that, for every n � 0,

E
� X
�2T "

�.�/2�� .n/
�
D E

� i.n/X
jD1

�.Tj .n//
2
�
D
1

3
E
� i.n/X
jD1

jTj .n/j
�
D n=3;

and further, since there are .k � 1/Š increasing trees of size k and Tk has the uniform
distribution on the set of such trees,

p

1 � p

X
�2T "

�.�/2

.1C 1=.1 � p//.j� j/
D

p

1 � p

1X
kD1

E.�.Tk/
2/B.k; 1C 1=.1 � p//

D
p

1 � p

1X
kD1

k

3
B.k; 1C 1=.1 � p// D

1

3
:
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We conclude again from Scheffé’s Lemma that

lim
n!1

X
�2T "

�.�/2
ˇ̌̌̌
�� .n/

pn
�

p

.1 � p/.1C 1=.1 � p//.j� j/

ˇ̌̌̌
D 0;

and the proof is complete.

We now establish Theorem 5.1.

Proof of Theorem 5.1. We denote the characteristic function of � by

ˆ.�/ D

Z
R

ei�x �.dx/ for � 2 R:

Fix r > 0 small enough so that j1 � ˆ.�/j < 1 whenever j� j � r , and then define the
characteristic exponent ' W Œ�r; r�! C as the continuous determination of the logarithm
ofˆ on Œ�r; r�. In words, ' is the unique continuous function on Œ�r; r�with '.0/D 0 and
such thatˆ.�/D exp.�'.�// for all � 2 Œ�r; r�. For definiteness, we further set '.�/D 0
whenever j� j > r .

Next, observe from Markov’s inequality that for any 1 < ˇ < 2 ^ .1 � p/�1 and any
a > 0,

P
�
9j � i.n/ W j�.Tj .n//j � a

p
n
�
� a�2ˇn�ˇE

� i.n/X
jD1

j�.Tj .n//j
2ˇ
�
;

so that, thanks to Lemma 3.4,

lim
n!1

1
p
n

max
1�j�i.n/

j�.Tj .n//j D 0 in probability.

In particular, since the sequence .an/ is regularly varying with exponent 1=˛ > 1=2, for
every � 2 R the events

ƒ.n; �/ WD ¹j��.Tj .n//=anj < r for all j D 1; : : : ; i.n/º; n � 1;

occur with high probability as n!1, in the sense that limn!1 P .ƒ.n; �// D 1.
We then deduce from (10) and the fact that the variables Xj are i.i.d. with law � that

for every � 2 R,

E
�
exp.i� LS.n/=an/1ƒ.n;�/

�
D E

�
exp

�
�
1

n

i.n/X
jD1

n'
�
�a�1n �.Tj .n//

��
1ƒ.n;�/

�
:

We then write, in the notation of Lemma 5.2,

1

n

i.n/X
jD1

n'
�
�a�1n �.Tj .n//

�
D

X
�2T "

n'
�
�a�1n �.�/

��� .n/
n

:



Counterbalancing steps at random in a random walk 2675

Recall that we are assuming (15). According to Theorem 2.6.5 of Ibragimov and Lin-
nik [21], ' is regularly varying at 0 with exponent ˛, and since ˛ < 2, the Potter bounds
(see [12, Theorem 1.5.6]) show that for some constant C ,

nj'.�a�1n �.�//j � C j��.�/j2: (17)

We deduce from Lemma 5.2, for every fixed � 2 R, the convergence in probability

lim
n!1

X
�2T "

nj'.�a�1n �.�//j

ˇ̌̌̌
�� .n/

n
�

p

.1 � p/.1C 1=.1 � p//.j� j/

ˇ̌̌̌
D 0:

Furthermore, still from [21, Theorem 2.6.5], we have

lim
n!1

n'.�=an/ D '˛.�/ for every � 2 R;

and we deduce by dominated convergence, using Lemma 5.2 and (17), that

lim
n!1

X
�2T "

jn'.�a�1n �.�// � '˛.��.�//j
p

.1 � p/.1C 1=.1 � p//.j� j/
D 0:

Putting the pieces together, we have shown that

lim
n!1

E.exp.i� LS.n/=an// D exp
�
�

X
�2T "

'˛.��.�//
p

.1 � p/.1C 1=.1 � p//.j� j/

�
:

It only remains to check that the right-hand side above agrees with the formula of the
statement. This follows from Lemma 2.1 and the fact that for every k � 1, Tk has the
uniform distribution on ¹� 2 T " W j� j D kº.
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