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Abstract. The embedding of a torus into an inner form of PGL2 defines an adelic toric period.
A general version of Duke’s theorem states that this period equidistributes as the discriminant of
the splitting field tends to infinity. In this paper we consider a torus embedded diagonally into two
distinct inner forms of PGL2. Assuming the Generalized Riemann Hypothesis (and some additional
technical assumptions), we show simultaneous equidistribution as the discriminant tends to infinity,
with an effective logarithmic rate. Our proof is based on a probabilistic approach to estimating
fractional moments of L-functions twisted by extended class group characters.
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1. Introduction

A well-known theorem of Legendre (proved by Gauß) states that a positive integer d is
a sum of three integer squares precisely when d is not of the form d D 4a.8b C 7/ for
a; b 2 N [ ¹0º. Let Z3prim denote the subset of Z3 whose coordinates are relatively prime.
Then the Legendre–Gauß theorem can be reformulated to state that the set

Rd D ¹x 2 Z3prim j x
2
1 C x

2
2 C x

2
3 D dº (1.1)

is non-empty precisely when d lies in DD¹d 2N j d 6� 0;4;7 .mod 8/º, the set of locally
admissible values. Gauß proved in fact much more; quite remarkably, he established an
exact formula for the cardinality jRd j in terms of class numbers of quadratic orders in the
number field E D Q.

p
�d/ [21, Section 291]. For example, if Dfund D D \ F , where F

denotes the set of squarefree integers, then for d > 3 in Dfund he showed that

jRd j D

´
24jClE j; d � 3 .mod 8/;

12jClE j; d � 1; 2 .mod 4/;
(1.2)
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where ClE is the class group of the ring of integers of E. In particular, it follows from the
work of Dirichlet and Siegel that jRd j D d

1=2Co.1/ for d 2 Dfund (in fact for all d 2 D).
With the issues of cardinality settled, one can then investigate the distribution of the

points in Rd . Using his ergodic method, Linnik [33] in the late 1950s proved that the pro-
jection d�1=2Rd equidistributes on S2 – the Euclidean sphere in R3 – with respect to the
rotationally invariant Lebesgue probability measure mS2 , for d !1 along a sequence
in D such that

�d is a non-zero square modulo p; (1.3)

where p is a fixed odd prime. This Linnik condition, as it is called, is equivalent to the
splitting at p of a stabilizer subgroup of an acting orthogonal group, which in turn allows
for the use of measure classification results arising from homogeneous dynamics. The rate
of convergence in Linnik’s proof can be made sufficiently uniform in p so as to allow for
the following reformulation: the set d�1=2Rd equidistributes on S2 provided that d !1
along a sequence in D for which there exists a prime p which splits inE DQ.

p
�d/ such

that logp � log d=log log d . The existence of such small split primes is in fact known
to hold under the Generalized Riemann Hypothesis (GRH) for L-functions of quadratic
Dirichlet characters.

Gauß’ formula (1.2) hints at an interesting structural relation between Rd and the
class group ClE . In fact, it was Venkov [43] who first explicated Gauß’ formula in terms
of quaternion algebras, and we shall adopt this perspective. Let B D B.2;1/ denote the
rational quaternion algebra ramified at 2 and1. A solution x D .x1; x2; x3/ 2 Rd can
then be identified with a trace-zero integral quaternion x1i C x2j C x3k of reduced
norm d . When d 2Dfund, the choice of a base point x0 2Rd yields an optimal embedding
� WE!B.Q/, aC b

p
�d 7! aC bx0, relative to the maximal order O of Hurwitz quater-

nions. Since O is principal, if a is a fractional ideal in E then the Z-module �.a/O is a
principal ideal .q/ in O . Letting � denote the order 12 group of projective units O�=¹˙1º,
which acts on the coordinate lines in R3 via even permutations, we may define an action
of ClE on the quotient R�

d
D �nRd by Œa� � x D q�1xq. This action is free and has one

or two orbits, according to the two types of congruence classes in (1.2).
The problem of equidistribution of integer points on the sphere admits many variants,

such as the distribution of Heegner points on the modular curve [32], packets of closed
geodesics [39] on the modular curve, as well as the supersingular reduction of CM elliptic
curves [34]. We will review these examples later in Section 3. In each case, the underlying
set (or “packet”) of arithmetic objects admits an action by the class group of a quadratic
order. From a modern perspective, what they have in common is the equidistribution of
the adelic quotient ŒT� D T.Q/nT.A/ of an algebraic torus T of large discriminant inside
the automorphic space ŒG� D G.Q/nG.A/ of an inner form G of PGL2.

Several decades after Linnik’s fundamental contributions, Iwaniec [27] developed an
innovative technique to bound the Fourier coefficients of half-integral weight modular
forms which paved the way for removing Linnik’s condition (1.3), without recourse
to GRH. By extending Iwaniec’s methods, Duke, in his famous paper [10] (and
also Fomenko–Golubeva [22]), proved the equidistribution of d�1=2Rd on S2 for all
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d 2 Dfund, with a power savings rate of convergence. This result, and the others he treated
in [10], now go collectively under the name of Duke’s Theorems and cover in particular
the case of Heegner points, closed geodesics and integer points on general ellipsoids [12].
The method is very different from Linnik’s ergodic approach and based on harmonic
analysis and automorphic forms. The most uniform treatment uses Waldspurger’s theo-
rem on toric periods [45] and subconvex bounds on quadratic character twists of degree
two L-functions, due to Duke, Friedlander, and Iwaniec [11] when the base field is Q,
and to Michel–Venkatesh [36] in general. This family of results belongs to the landmark
achievements in analytic number theory in the past 30 years.

1.1. Simultaneous equidistribution

A natural generalization of the above setting, first put forward by Michel and Venkatesh
in their 2006 ICM proceedings article [35], is to consider the diagonal embedding of a
quadratic number field E into two distinct quaternion algebras B1 and B2. A dynamical
analogue of Goursat’s lemma1 [23] would suggest that, since the projective unit groups
G1 D PB�1 and G2 D PB�2 are non-isomorphic, and the adelic quotient ŒT� of the pro-
jective torus T defined by E equidistributes on each ŒGi � by Duke’s theorem, then the
diagonal embedding of ŒT� should equidistribute on the product ŒG1� � ŒG2� as the dis-
criminant of E gets large.

This problem was approached through ergodic theory by Einsiedler and Lindenstrauss
[13], by bootstrapping Duke’s theorem in each Gi by means of their joinings theorem.
However, their method, like that of Linnik, requires an auxiliary congruence condition
on the allowed set of discriminants, similar to (1.3) but with two auxiliary primes. This
double Linnik condition guarantees the existence of an action by a higher rank torus,
which can be shown to enjoy decisive measure rigidity properties. Arithmetic applications
of the joinings theorem have been explicated in [1–3, 28], with many still to come.

There is an important quantitative distinction between Linnik’s result and that of Ein-
siedler and Lindenstrauss. While Linnik’s condition (1.3) can be removed under GRH,
the joint equidistribution statements of Einsiedler and Lindenstrauss are ineffective (with-
out a rate of convergence), and it is presently unknown whether their methods can be
strengthened to allow for a replacement of the double Linnik condition by the assumption
of GRH.

The main result of this paper is a proof of this conjecture conditionally on the Gen-
eralized Riemann Hypothesis (and some minor simplifying assumptions). Like Duke, we
approach the problem through automorphic forms and L-functions, using Waldspurger’s
formula as a crucial input. Unlike his setting, subconvexity is not enough, and one must
estimate fractional moments of a certain family of Rankin–Selberg L-functions. The
assumption of GRH allows us to use methods in probabilistic number theory pioneered by

1Recall that this classical-group theoretic result states, as a special case, that if two groups G1
and G2 have no non-trivial isomorphic factors, then any subgroup of their product which projects
surjectively onto both factors is necessarily equal to G1 �G2.
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Soundararajan [40]. The analytic heart of the paper is Theorem 3 in Section 4. A special
case of this result can be rephrased as a non-trivial bound for Bessel periods of Yoshida
lifts on GSp.4/ (cf. Corollary 4).

We delay the full statement of our main theorems until Section 1.3, since they require
substantial notational preliminaries. Instead, we provide an illustrative special case, build-
ing upon Linnik’s sphere problem. More examples will be given in Section 3.

Example. We let B be one of the five quaternion algebras over Q having class number 1
(cf. [44, Theorem 25.4.1]), with discriminants 2, 3, 5, 7, or 13. Let Q D NmjB0 be the
reduced norm form Nm restricted to the trace-zero elements B0 of B. Choose a maximal
order O in B.Q/ and write O0 D O \ B0.Q/. If O0

prim denotes the subset of primitive
elements we put, for any d 2 N,

Rd .Q/ D ¹x 2 O0
prim j Q.x/ D dº:

Let D.Q/D¹d 2N jRd .Q/¤;º and Dfund.Q/DD.Q/\F . Shemanske [38] extended
the method of Venkov to show that for d 2 Dfund.Q/, with d > 3, the class group ClE of
E D Q.

p
�d/ acts freely with one, two, four, or eight orbits on R�

d
.Q/ D �nRd .Q/,

where � is the group of projective units O�=¹˙1º.
Define the ellipse VQ D ¹x 2 B0.R/ jQ.x/D 1º, endowed with the probability mea-

surem induced by assigning to any� � VQ the Lebesgue volume of
S
x2�Œ0; 1�x. Duke

and Schulze-Pillot [12] proved that R�
d
.Q/ equidistributes on �nVQ relative to the mea-

sure m as d !1 in Dfund.Q/.
Now take two distinct quaternion algebras B1 and B2 over Q of class number 1. Fixing

base points xi 2 R�
d
.Qi / we can consider the joint orbit

�R�d .Q1;Q2/ D ¹.tx1; tx2/ j t 2 ClE º � R�d .Q1/ �R�d .Q2/: (1.4)

A special case of Theorem 1 below is the following result. Assume the Generalized Rie-
mann Hypothesis. Then d�1=2�R�

d
.Q1; Q2/ equidistributes in �1nVQ1 � �2nVQ2 with

respect to the product measure m1 �m2 as d !1 in Dfund.Q1/ \Dfund.Q2/.

1.2. The conjecture of Michel–Venkatesh

We now pass to the adelic language. To set up the stage, we wish to review the most
general form of Duke’s theorems, as they have been refined and generalized in recent
years, most notably by Einsiedler, Lindenstrauss, Michel, and Venkatesh.

Let B be a quaternion algebra defined over a number field F and write PB� for its
group of projective units. A homogeneous toral subset inside the automorphic quotient
space ŒPB�� D PB�.F /nPB�.AF / is a set of the form

ŒT�:g� D T�.F /nT�.AF /:g;

where T� � PB� is the image under a rational embedding � W T ,! PB� of an anisotropic
algebraic torus over F and g 2 PB�.AF /. One can associate with ŒT�:g� two important
objects:
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(1) a positive numberD called the discriminant, defined in [15, §4.2], which encodes the
arithmetic complexity of ŒT�:g�;

(2) a g�1T�.AF /g-invariant probability measure � on ŒT�:g�, given by the pushforward
under t 7! �.t/g of the normalized Haar measure on T�.F /nT�.AF /.
Now let ŒT�n :gn� be a sequence of homogeneous toral subsets, with associated prob-

ability measures �n, such that Dn ! 1. The following theorem, which was stated in
[15, Theorem 4.6], gives a minimal set of conditions under which ŒT�n :gn� equidistributes
with respect to a convex combination of homogeneous probability measures on ŒPB��.

Theorem. Any weak-* limit of �n is a homogeneous probability measure on ŒPB��
invariant under PB�.AF /C. Here, PB�.AF /C is the image of B.1/.AF /! PB�.AF /,
where B.1/ is the simply connected cover of PB�. Moreover, the rate of convergence can
be quantified, with an error term of the form O.D�ın / for some ı > 0.

In their 2006 ICM address, Michel and Venkatesh [35, §2.3, §6.4.1] considered the
following simultaneous equidistribution problem. Let B1 and B2 be two non-isomorphic
quaternion algebras over F . For j D 1; 2 let Gj D PB�j , and let G D G1 � G2. Let T
be an anisotropic algebraic torus over F equipped with rational embeddings �j W T ,! Gj
for j D 1; 2. We may define a diagonal homogeneous toral subset to be the subset of the
product space ŒG� D ŒG1� � ŒG2� given by

Œ�T�:g� D �T�.F /n�T�.AF /:g;

where �T� � G is the image under the diagonal embedding � D .�1; �2/ W T ,! G and
g2G.AF /. As before, one may associate with Œ�T�:g� its discriminantDDmin.D1;D2/
and a natural probability measure �� on ŒG�. Let G.AF /C D G1.AF /C �G2.AF /C.

Conjecture (Michel–Venkatesh). Let Œ�T�n :gn� be a sequence of diagonal homogeneous
toral subsets satisfyingDn!1. Then any weak-* limit of��n is a homogeneous prob-
ability measure on ŒG� invariant under G.A/C.

By choosing a finite level structure Kf � G.Af / and a compact subgroup K1 �
G.R/, we can reinterpret the above conjecture more classically in the double quotient
space

ŒG�K D G.F /nG.AF /=K .K D KfK1/

by considering the distribution of the images

Œ�T�:g�K D G.F /�T�.AF /gK

of Œ�T�:g� under the natural projection ŒG�! ŒG�K . We shall call these projections diag-
onal packets, extending the terminology [15] to this setting.

1.3. Main results

We are now ready to state our principal result. In it, we establish the conjecture of Michel–
Venkatesh for diagonal packets, under the assumption (most notably) of the Generalized
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Riemann Hypothesis. To simplify the presentation, we have made further restrictions,
including maximal level structure, optimal embeddings, and the number field Q. More-
over, we test convergence only against functions in the discrete spectrum, an assump-
tion only relevant if one of Bj is the matrix algebra (for more on this assumption, see
Remark 4). More precisely, we give ourselves the following data.

Let B1;B2 be non-isomorphic quaternion algebras over Q and write Gj D PB�j for
j D 1; 2. Let Oj be a maximal order in Bj .Q/. For a prime p let Gj .Zp/ denote the pro-
jective unit group of the local maximal order Oj;p DOj ˝Zp . Let Gj .yZ/D

Q
p Gj .Zp/.

Let Gj .AQ/ denote the adelic points relative to the subgroups Gj .Zp/. Let K1;j �
Gj .R/ be either

� Gj .R/ itself if Bj ˝Q R is non-split, or

� a maximal compact torus if Bj ˝Q R is split or non-split.

When Bj is split at infinity, we fix an isomorphism of Bj .R/ with M2.R/ which induces
an isomorphism of G�j .R/ with PGL2.R/ sending K1;j to PSO.2/.

Let E be a quadratic field extension of Q with ring of integers OE . Let �j W E ,! Bj
be an optimal embedding of OE into some maximal order Oj of Bj .Q/, depending on �j .
This induces optimal local embeddings at each prime p, in the following sense. Let v be
a finite place of E lying over p. Let Ev be the v-adic completion of E (a quadratic étale
algebra) and write OE;v for its maximal order. Let Oj;p D Oj ˝ Zp . Then �j .OEv / D
�j .Ev/\Oj;p . Since Oj is everywhere locally isomorphic to Oj , there are gj;p 2Gj .Qp/

such that Oj;p D gj;pOj;pg�1j;p . In this way we obtain

�j .OEv / D �j .Ev/ \ g�1j;pOj;pgj;p: (1.5)

Let gj;f D .gj;p/p 2Gj .Af /. Let TD .ResE=Q Gm/=Gm. Then �j induces an embedding
�j W T ,! Gj which, in view of (1.5), satisfies

�j .T.yZ// D �j .T.Af // \ g�1j;f Gj .yZ/gj;f : (1.6)

We write T�j D �j .T/ � Gj . Assume furthermore that gj;1 2 Gj .R/ is such that8̂̂<̂
:̂

gj;1T�j .R/g
�1
j;1 � K1;j when T.R/ is anisotropicI

gj;1T�j .R/g
�1
j;1 is, under the fixed identification of Gj .R/ with PGL2.R/ above,

the group of projective diagonal matrices when T.R/ is isotropic:
(1.7)

Put gj D .gj;f ; gj;1/ 2 Gj .AQ/.
Put G D G1 � G2 and let dg be the right G.AQ/-invariant probability measure.

Let G.yZ/ D G1.yZ/ � G2.yZ/ and K1 D K1;1 � K1;2. Put K D G.yZ/K1. Let g D
.g1; g2/ 2 G.AQ/. Let Œ�T�:g� be a diagonal homogeneous toral subset in ŒG�, where
�D .�1; �2/ W T ,!G. Then Œ�T�:g� is endowed with its invariant probability measure��,
which we shall write simply as dt . Denote byD the discriminant of the packet Œ�T�:g�K .
Conditions (1.5) and (1.7), together with suitable choices of archimedean metric normal-
izations, imply that D is the absolute value of the discriminant of E; see Section 2.2 for
details.
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Let C1c .ŒG�K/ denote the space of right K-invariant compactly supported functions
f W ŒG�! C such that g 7! f .xg/ is in C1c .G.R// for every x 2 ŒG�. Let

C1c;disc.ŒG�K/ D C
1
c .ŒG�K/ \ L

2
disc.ŒG�K/:

We have C1c;disc.ŒG�K/ D C
1
c .ŒG�K/ unless one of Gj is PGL2. For f 2 C1c .ŒG�K/ let

�1;d .f /D
P

ord.D/�d kDf kL1.ŒG�K /, where D runs over monomials of degree at most
d in a fixed basis of Lie.G.R//.

Theorem 1. Let the notations be as above. Then, under the Generalized Rie-
mann Hypothesis, the diagonal packets Œ�T�:g�K equidistribute on ŒG�K relative to
C1c;disc.ŒG�K/, with an effective rate of convergence of the form O"..logD/�1=4C"/ as
D!1. More precisely, there is d 2 N such that for every f 2 C1c;disc.ŒG�K/, and every
" > 0, we haveZ

Œ�T��
f .tg/ dt D

Z
ŒG�
f .g/ dg CO"

�
�1;d .f /.logD/�1=4C"

�
:

A variety of situations in which our theorem applies will be given in Section 3. Our
effective error term also allows applications to equidistribution on (very slowly) shrinking
subsets of ŒG�K .

We may also prove an equidistribution statement in the case B1 D B2 (or otherwise)
if we twist the diagonal embedding by allowing each component embedding to travel
through T with different speeds:

�˛;ˇ W T! PB�1 � PB�2 ; t 7! .�1.t/
˛; �2.t/

ˇ /;

where ˛; ˇ 2 N are distinct integers. Let �˛;ˇT� denote the image of T under �˛;ˇ and
write Œ�˛;ˇT�:g�K for the image of �˛;ˇT�.Q/n�˛;ˇT�.AQ/:g in ŒG�K .

Theorem 2. Let B1 and B2 be quaternion algebras over Q .not necessarily distinct/, and
otherwise keep the assumptions and notations of Theorem 1. Let ˛; ˇ 2 N be two distinct
integers. Suppose that the class group ClE of the field E associated with the torus T has
no p-torsion, for all p j 2˛ˇ. Then, under the Generalized Riemann Hypothesis, there is
d 2 N such that for every f 2 C1c;disc.ŒG�/, and every " > 0, we haveZ

Œ�˛;ˇT��
f .tg/ dt D

Z
ŒG�
f .g/ dg CO";˛;ˇ

�
�1;d .f /.logD/�1=4C"

�
:

Several assumptions in Theorems 1 and 2 can be relaxed, using the same methods,
but at the cost of a greater technical effort. For instance, instead of maximal orders one
can take Eichler orders (and even more general orders, such as in [3, Example 10.5]), the
difficulty being in treating oldforms. The assumption in Theorem 2 on the 2ˇ torsion can
also be relaxed, for instance it would suffice for its cardinality to be bounded indepen-
dently of D; cf. Section 4.2 and Remark 6. Note that if E is real, a conjecture of Gauß
(quantified by Hooley [26]) says that for “many” discriminants the group ClE is trivial, in
particular torsion-free.
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1.4. Beyond sparse equidistribution

As discussed in the opening paragraphs, the modern approach to proving Duke’s theorem
passes through Waldspurger’s formula, which relates the square of the toric period of an
automorphic form to an associated L-function. A separate problem is then to prove sub-
convex bounds on theseL-functions, a time-honored subject in analytic number theory. In
fact, one can consider a natural refinement of Duke’s theorem, where one seeks to prove
the equidistribution of the orbit of a subgroup of the class group ClE of large enough
index. This type of problem has been referred to in the literature as sparse equidistribu-
tion [42], and it is solved by again appealing to Waldspurger’s formula and subconvex
bounds, this time on L-functions twisted by class group characters [34].

A fundamental property underlying the proof of Waldspurger’s formula is that the sub-
group pair .T;PB�/ is a strong Gelfand pair. This is not the case with .�T;PB�1 � PB�2 /,
as the diagonal torus �T is too small relative to the product group PB�1 � PB�2 , and one
no longer expects the corresponding diagonal period to be directly related to a single
L-function. Following Bernstein and Reznikov (see [37] for an overview) one can never-
theless form the following Gelfand formation:

PB�1 � PB�2

T � T

�T

in which the intermediate subgroup pairs .�T;T�T/ and .T�T;PB�1 �PB�2 / are strong
Gelfand pairs. In such a situation the diagonal period should be related to a family of
twisted L-functions. We establish this link more precisely in Section 4.

The equidistribution problems of Theorems 1 and 2 therefore go beyond even the
sparse equidistribution refinements of Duke’s theorem. From this perspective it is perhaps
less surprising that one should need the deeper statistical information provided by GRH,
which we take as a working assumption. The analytic tools we develop for families of L-
functions, as expressed in our main analytic-number-theoretic result, Theorem 3, should
(we believe) provide a new paradigm for treating equidistribution problems in the absence
of direct period formulae.

1.5. The plan of the paper

In Section 2 we take some time to translate the content of Sections 1.2 and 1.3 into classi-
cal language and in particular discuss general versions of Duke’s theorem. This prepares
the ground to give classical applications of Theorems 1 and 2 in Section 3:

� on simultaneous equidistribution on pairs of quadrics,

� on simultaneous equidistribution by genus classes,

� on simultaneous supersingular reduction of CM elliptic curves.
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Section 4 uses Waldspurger’s theorem and Parseval to reduce the proof of Theorems 1
and 2 to the proof of Theorem 3, a mean value estimate for fractional moments of twisted
L-functions. It offers an independent consequence, stated as Corollary 4, on Bessel peri-
ods of Yoshida lifts. Before we start with the proof of Theorem 3, we give a heuristic
argument in Section 5. Section 6 compiles general results on L-functions. The combina-
torial input of the proof of Theorem 3 is provided in Section 7, while the analytic input is
the content of Sections 8 and 9.

2. Converting from adelic to classical language

We begin by converting from the adelic language in which we have expressed Theorems 1
and 2 to more classical language. Throughout this section we shall give ourselves only one
quaternion algebra; concrete examples of Theorems 1 and 2 with two (distinct) quaternion
algebras will be given in Section 3.

The following notation will be in place: let B be a quaternion algebra over Q. Let
PB� be its group of projective units. Let O � B.Q/ be a maximal order and write
PB�.Z/, resp. PB�.yZ/ for the projective unit group of O , resp. yO D O ˝ yZ. Write
K D PB�.yZ/K1, where K1 is a maximal compact torus of PB�.R/. (The case of B
definite and K1 D PB�.R/, which is allowed in the setting of the main theorem in Sec-
tion 1.3, will be excluded in this expository section. We will, however, discuss important
examples in Section 3, where this case admits a lovely arithmetic interpretation.)

2.1. Viewing ŒT�K classically

LetE be quadratic field extension of Q, with ring of integers OE , which is not split wher-
ever B is ramified. This condition assures that E embeds into B.Q/ [44, Prop. 14.6.7].
Let TD .ResE=Q Gm/=Gm and let � W T ,! PB� be an optimal embedding of OE into O�.
Denote by KT�;1 the maximal compact subgroup of T�.R/.

The map
T�.AQ/! ŒT�:g�K ; t 7! PB�.Q/tgK;

induces a bijection T�.Q/nT�.AQ/=.T�.AQ/ \ gKg�1/
�
�! ŒT�:g�K . By (1.6) and the

hypothesis (which can be deduced from (1.7)) that T�.R/ \ g�11 K1g1 D KT�;1, the
preceding adelic double quotient may be rewritten as T�.Q/nT�.AQ/=�.T.yZ//KT�;1.

We now observe that the latter group can naturally be identified with the Arakelov
class group eClE , in the sense of [18], of the ring of integers OE of E. Indeed, we put
zT D ResE=Q Gm and letKzT;1 denote the maximal compact subgroup of zT.R/ and recall
that eClE D E�nA�E= yO

�
EKzT;1

is the usual class group ClE ofE ifE is imaginary, and the extension of ClE by the circle
R�nE�1=O

�
E if E is real. We see thateClE D zT.Q/nzT.AQ/=zT.yZ/KzT;1

�
�!T�.Q/nT�.AQ/=�.T.yZ//KT�;1Š ŒT�:g�K ; (2.1)
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the middle arrow being an isomorphism, since the kernel is Q�nA�
f
=yZ� and Q has class

number 1.
We now put a finite measure on eClE whose volume behaves regularly in the discrimi-

nant of E. If E is real, we have

1! �2 ! T.R/ D R�nE�1
log jx1=x2j
�������! R! 1

and O�E ' �2 � hlog �i, where � > 1 is a totally positive fundamental unit. We deduce an
isomorphism between T.R/=O�E and R=hlog �i, with which we transport the Lebesgue
measure on the circle of arclength log � to T.R/=O�E . Using the counting measure on ClE
we obtain a measure on eClE with total volume

vol.eClE / D

´
jClE j; E imaginary quadratic;

jClE j log �; E real quadratic:

Let �E be the quadratic character of conductorD associated toE=Q by class field theory.
By the Dirichlet class number formula we have

vol.eClE / D cL.1; �E /D1=2; (2.2)

where c > 0 is an absolutely bounded constant depending only on the signature of E at
infinity and the number of roots of unity of OE .

Since eClE is compact, its dual eCl_E is discrete: finite and equal to Cl_E if E is imagi-
nary, and infinite and isomorphic to Cl_E � Z if E is real.

2.2. Viewing the discriminant D classically

Next we show that the discriminant D of the homogeneous torus subset ŒT�:g� is the
absolute value of the discriminant of E. We shall use an equivalent description of D DQ
vDv from [15, §4.2] as described in [28, §2.4.4].

The discriminant at finite places. In this case Dv is the discriminant of the maximal
quadratic order �.OE;v/ D �.Ev/ \ g�1v Ovgv inside �.Ev/, where we have used the opti-
mality assumption (1.5). The latter discriminant is equal to the discriminant of OE;v
inside Ev .

The discriminant at the archimedean place.

When B.R/ is indefinite. When B.R/ is indefinite, we follow [15, §6.1], which explicates
the case of PGLn.R/. We use the fixed isomorphism of PB�.R/ with PGL2.R/ from
Section 1.3 to identify the Lie algebra of PB�.R/ with the quotient g D M2.R/=R. Let
k � k21 denote the norm on g which descends from the norm tr.X2/=2 on M2.R/.

For any quadratic étale subalgebra Qh of M2.R/ let ¹1; Qf º be an R-basis for Qh which
is orthonormal with respect to k � k1. Let h be the image of Qh in g and f the image of Qf
in g. Then we put D1.h/ D kf k�21 . Note that when h D a is the diagonal subalgebra of
g or when h D k is the Lie algebra of PSO.2/, then D1.h/ D 1.
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Following [15, p. 841] we put D1 D D1.g1�.E1/g�11 /. From (1.7), and the above
remark, we see that D1 D 1.

When B.R/ is definite. When B.R/ is definite we follow the discussion in [28, p. 166].
We let k � k21 be the reduced norm Nm on B.R/ and write

O1 D ¹g 2 B.R/ j kgk1 � 1º:

We fix the volume form vol1 on g1�.E1/g�11 induced by the metric j � j1 for which
g1T.R/g�11 acts by isometries, and normalized so that the unit disc is of volume 1. Let

ƒ1 D g1�.E1/g�11 \ O1:

Then we set D1 D vol1.ƒ1/2.
We now calculate D1, given the above choice of data. The essential point is that K1

preserves k � k1, since it sits inside the projective image in PB�.R/ of O�1D¹g 2B�.R/ j
kgk1D 1º, which acts by conjugation on B.R/ as the full group of orientation preserving
isometries. From this it follows, using (1.7), that g1T.R/g�11 preserves k � k1, so that the
restriction of k � k1 to g1�.E1/g�11 is j � j1. Thus ƒ1 is the unit disc for j � j1, proving
D1 D 1.

2.3. Viewing Duke’s theorems classically

We now explicate Duke’s theorems, converting from the adelic language of Section 1.2
to the classical arithmetic setting of integral points on (unions of) quadrics, as in the
papers of Linnik [32] and Skubenko [39]. This will be helpful for generating examples of
Theorems 1 and 2 in the next section.

Let Q D NmjB0 be the restriction of the reduced norm Nm to the trace zero quater-
nions B0. For a non-zero integer d let XQ;d denote the level set ¹x 2 B0 W Q.x/ D dº.
This is an affine PB�-variety, under the action of conjugation.

Let D.Q/ denote the set of non-zero integers which are everywhere locally integrally
represented byQ, and let Dfund.Q/DD.Q/\ F . For d 2Dfund.Q/we letE DQ.

p
�d/

and choose an optimal embedding � of OE into a maximal order O of B, as in Section 1.3.
Since � preserves the trace and the norm, the point

x0 D �.
p
�d/

lies in XQ;d .Q/. Note that the stabilizer of x0 in PB� consists of (projective) invertible
elements of the form a C bx0; this stabilizer is then seen to be T� D �.T/, where T D
.ResE=Q Gm/=Gm. By Witt’s theorem we have XQ;d .Q/D PB�.Q/:x0, so that XQ;d .Q/
is identified with the quotient PB�.Q/=T�.Q/ through the orbit map on x0.

We shall be interested in the distribution of the integral points of XQ;d . To this end,
let PB�.Q/nPB�.Af /=PB�.yZ/ be the class set of PB�, for which we fix representatives
¹b1 D Œe�; : : : ; bhº. Then ¹Oi D biOb�1i \B.Q/º forms a complete set of representatives
for the PB�.Q/-conjugacy classes of maximal orders of B.Q/.
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Define the lattice ƒi D Oi \ B0.Q/ and let di D disc.ƒi / be its discriminant. The
restriction of di :Q to ƒi yields integral ternary quadratic forms qi , forming a full PB�-
genus class [44, Ch. 22], which we denote by Gen.Q/. Let Rd .qi / D PB�.Q/:x0 \ƒi
be the ƒi -integral points of XQ;d , the set of all ƒi -integral representations of d by qi .
Considering them all together yields

Rd .genQ/ D
a

qi2Gen.Q/

Rd .qi /:

The equidistribution problems of Linnik’s type are the study of the distribution of the
projection jd j�1=2Rd .genQ/ on the union of quadricsa

qi2Gen.Q/

Xqi ;sgn.d/.R/ (2.3)

as d !˙1 in Dfund.Q/, where sgn.d/ isC1 or�1 according to the sign of d . To formu-
late this precisely one must prescribe the relevant measures. The quadric XQ;sgn.d/.R/ has
a unique (up to non-zero scaling) PB�.R/-invariant measure coming from its structure as
a homogeneous space for PB�.R/. When Q is indefinite, XQ;sgn.d/.R/ is non-compact
and the measure will then be infinite. In this case, we let �Q;sgn.d/ be any such choice,
and equidistribution relative to this measure is taken in the sense of [35, (1.1)]. In the
definite case we let �Q;sgn.d/ be the probability measure which assigns to the i th copy of
XQ;sgn.d/.R/ the PB�.R/-invariant measure with volume jAut.qi /j�1.

Then Duke’s theorem [10, 12] states that jd j�1=2Rd .genQ/ equidistributes on (2.3)
relative to �Q;sgn.d/ as d ! ˙1 in Dfund.Q/. In particular, every large enough
d 2 Dfund.Q/ is integrally represented by every genus member, solving (up to issues
of effectivity) the last remaining case of Hilbert’s 11th problem over Q (see [5] for the
number field case).

2.4. Finiteness of equivalence classes

In this subsection we explicate the action of the class group of T� on certain equivalence
classes of integral representations Rd .genQ/.

We write � D PB�.Z/. Then Gen.�/ D ¹�1 D �; : : : ; �hº, where �i denotes the
projective units of the maximal order Oi , is the genus class of � . Sinceƒi is stable under
the action of �i by conjugation, we may form the quotient R�

d
.qi / D �inRd .qi / and put

R�d .genQ/ D
a

qi2Gen.Q/

R�d .qi /:

We now give an adelic parametrization of R�
d
.genQ/ for d 2Dfund.Q/. This will show, in

particular, that R�
d
.genQ/ is finite, a fact which is not a priori evident when B is indefinite.

To this end, we introduce purely local analogues of the global problem of parametriz-
ingƒ-integral points on Xd , whereƒDƒ1. Namely, with q D q1 and yƒDƒ˝Z yZ, we
put

PB�.Af /int
D ¹g 2 PB�.Af / j g:x0 2 yƒº:
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In this way, the local analogues PB�.Af /:x0 \ yƒ and PB�.yZ/n.PB�.Af /:x0 \ yƒ/ are
identified, under the orbit map through x0, with the group quotients

PB�.Af /int=T�.Q/ and PB�.yZ/nPB�.Af /int=T�.Q/;

respectively. To compute the latter, one must determine the orbit structure of PB�.Zp/ D
O�p =¹˙1º acting by conjugation on the Zp-solutions Xd .Zp/ D ¹xp 2 B0.Zp/ j
Nm.xp/D dº for every p. This has been done in [17, Prop. 10.1]. In particular, for almost
all p the action is transitive.

With this notation in place, it follows from [19, §3.2.2] that R�
d
.genQ/ is naturally

identified with [
Œhf �2PB�.yZ/nPB�.Af /int=T�.Q/

T�.Q/nT�.Af /=
�
T�.Af / \ h�1f PB�.yZ/hf

�
:

Each of the above quotients is a finite group, being the class group of a quadratic order
in E.

Remark 1. The lack of non-transitivity (for certain congruence classes mod d ) of the
class group action, as described in the introduction in the context of Linnik’s sphere prob-
lem, is “explained” by the local parametrizing set R�

d
.x2 C y2 C z2/loc. In many other

sources, such as [17], the integral structure for PB� is induced by the orthogonal group
for the maximal order, rather than its projective units, via the Q-isomorphism of PB�

with SOQ. The resulting quotient then receives a transitive action of ClE for all congru-
ence classes, but possibly with non-trivial stabilizers of finite order.

Note that (1.5) implies x0 2XQ;d .Q/\ g�1
f
yƒgf . Thus gf :x0 2 gf XQ;d .Q/g�1f \ yƒ,

so gf 2 PB�.Af /int. Similarly to (2.1), we may identity ClE with T�.Q/nT�.Af /=T�.yZ/,
where T�.yZ/ satisfies (1.6). Taking Œhf � D Œgf �, we get an embedding

ClE ! R�d .genQ/; (2.4)

given by the orbit map through x0.

2.5. The dual picture and the modular formulation of Duke’s theorem

When B is indefinite, it is more convenient to formulate (and prove!) Duke’s theorem
using a dual formulation [35] involving packets of Heegner points or closed geodesics on
a Shimura or modular curve.

In this section we shall take B indefinite; for simplicity, we shall furthermore assume
that the genus class ofQ is a singleton. In particular, one can assume that O D O and the
element gf from Section 1.3 can be taken to be the identity. According to whether d is
positive or negative, we let H < PB�.R/ be either K1 or the pullback of the projective
diagonal matrices via the fixed isomorphism of B.R/ with M2.R/ from Section 1.3. We
fix x1 2 XQ;sgn.d/.R/ such that H D StabPB�.R/.x1/. We then identify XQ;sgn.d/.R/
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with PB�.R/=H via the orbit map through x1. The image of (2.4) is given by a finite
union of PB�.Z/-orbits a

�2ClE

PB�.Z/x� :

We project these onto the quadric XQ;sgn.d/.R/ by rescaling by jd j�1=2. In this way we
produce elements g� 2 PB�.R/ satisfying g� :x1 D jd j�1=2x� .

The following equidistribution statements are equivalent [14, Prop. 2.1]:

(1) .arithmetic equidistribution statement/ the finite union of left PB�.Z/-orbitsa
�2ClE

PB�.Z/g�H=H

equidistribute on the quadric XQ;sgn.d/.R/;

(2) .modular equidistribution statement) the finite set of right H -orbits

¹y�H W � 2 ClE º ; where y� D PB�.Z/nPB�.Z/g� ;

equidistribute on PB�.Z/nPB�.R/.
We remark that by [16, §2.4.1] the right H -orbits in (2) are periodic.
Let us now examine the modular equidistribution statement (2). Let H˙ D H [ �H

be the union of the upper and lower half-planes. We identify PB�.R/ with PGL2.R/ as
in Section 2.2 so that

PB�.R/=K1 ' PGL2.R/=PSO.2/ ' H˙:

Then, with K D PB�.yZ/K1, we have

ŒPB��K D PB�.Q/nPB�.AQ/=K D PB�.Z/nPB�.R/=K1 ' X� ;

where X� D PB�.Z/nH˙ is a Shimura curve when B is a division algebra and the
modular curve PGL2.Z/nH˙ D PSL2.Z/nH when B is the matrix algebra. In the mod-
ular statement, we may identify the quotient PB�.Z/nPB�.R/ with the unit tangent
bundle T 1.X�/ of X� , equipped with the Liouville measure. However, in view of the
archimedean restrictions in Theorems 1 and 2 we wish rather to examine (2) onX� itself.2

In this case, X� is equipped with the Poincaré measure, normalized to have volume 1.
Now when H D K1 is compact (so that E D Q.

p
�d/, with d > 0, is imaginary

quadratic), (2) is equivalent to the equidistribution of the Heegner points

Hd .X�/ D ¹z� D y�K1=K1 j � 2 ClE º

on X� . For example, when B D M2 is the matrix algebra so that Q.a; b; c/ D b2 � 4ac
is the discriminant form, we obtain the Heegner points

Hd .PSL2.Z/nH/ D PSL2.Z/n
²
�b C

p
�d

2a

ˇ̌̌̌
b2 � �d .mod 4a/

³
2The stronger version of Duke’s original theorem, which upgrades X� to T 1.X� /, was proved

by Chelluri [7].
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on the modular surface PSL2.Z/nH. When H is non-compact (so that E D Q.
p
�d/,

with d < 0, is real quadratic), (2) states that the packet of closed geodesics

Gd .X�/ D ¹� D y�H=K1 j � 2 ClE º

equidistributes on X� . Taking the modular surface again as our example, each � is the
projection to PSL2.Z/nH of the unique geodesic in H with endpoints �bC

p
�d

2a
, where

b2 � �d .mod 4a/ (cf. [16, §2.3]).

3. Instances of Theorems 1 and 2

We now give explicit examples of pairings which fit into the simultaneous equidistribution
statement of our Theorems 1 and 2.

Example 1 (Simultaneous equidistribution on pairs of quadrics). We begin by giving an
example with class number 1 algebras; we shall emphasize equidistribution across genus
classes shortly.

Let B1 be the split algebra M2 and B2 D B.2;1/. Any imaginary quadratic exten-
sion E of Q of discriminant �D with D 6� 7 (mod 8) embeds diagonally into B1 � B2.
Theorem 1 states that, under GRH, the corresponding packets of pairings, as in (1.4),
between Heegner points HD on the modular curve and the integral points D�1=2RD on
the sphere (cf. (1.1)) equidistribute, relative to the discrete spectrum, to the product of the
uniform probability measures on SOC3 .Z/nS

2 � PSL2.Z/nH as D !1.
If we replace B1 DM2 with an indefinite division algebra, we obtain the same result

with Heegner points on a Shimura curve. Since the automorphic spectrum of the latter
is discrete, the restriction to test functions in the discrete spectrum in Theorem 1 holds
automatically in this case.

Example 2 (A variation). The previous example has an interesting geometric variation,
treated in [1]. To each point in x 2 RD we can associate the rank 2 lattice x? \ Z3;
after rotating to a fixed reference plane and rescaling by the volume, it can be viewed as
a Heegner point of discriminant D via the isomorphism of PSL2.Z/nH with isometry
classes of unimodular lattices in R2. As explained in [17, §5.2], this corresponds to the
twisted diagonal embedding �˛;ˇ with ˛ D 1, ˇ D 2; indeed, the projection of the image
onto the second factor meets only one coset of squares in the class group (cf. [17, foot-
note 11 on p. 151]). We may deduce from Theorem 2 that, under GRH, the set of pairs

.x=kxk; x? \ Z3/

equidistributes (relative to the discrete spectrum) to the product of the uniform measures
on SOC3 .Z/nS

2 � PSL2.Z/nH asD!1 through prime discriminants (so that by Gauß’
genus theory the 2-torsion is trivial).

Remark 2. This orthogonal complement construction works in greater generality. For
instance, as explained in Section 2.5, if B D M2, a (necessarily primitive) integral
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element x on the discriminant variety XQ;d , associated with the determinant form
Q.a;b; c/D b2 � 4ac, corresponds to a Heegner point or a closed geodesic on the modu-
lar curve, according to whether d < 0 or d > 0, respectively. The restriction ofQ to hxi?

then has signature .2; 0/ if d < 0 and signature .1; 1/ if d > 0, yielding a positive, respec-
tively indefinite, binary lattice of discriminant d .

Example 3 (Simultaneous representation by genus classes). Next we assume B is definite
and let K1 D PB�.R/. In this case the adelic double quotient ŒPB��K is simply a finite
union of singletons, indexed by the class set of PB�. We give two very concrete examples
of Theorem 1 in this setting in this and the following subsection.

Let B1 D B.11;1/ and B2 D B.19;1/, both genus 2 definite quaternion algebras. For
i D 1;2, letQi DNmjB0

i
be the trace zero norm form and choose two non-conjugate max-

imal orders O.1/
i ;O.2/

i in Bi .Q/. Restricting Qi to the trace zero dual lattices ƒ.1/i ; ƒ
.2/
i

yields, as in Section 2.3, a pair of genus equivalent, integral, positive definite ternary
quadratic forms Q.1/

i ;Q
.2/
i . Explicitly, we have

genQ1 D ¹Q
.1/
1 ;Q

.2/
1 º;´

Q
.1/
1 D 3x

2 C 11y2 C xz C z2; jAut.Q.1/
1 /j D 4;

Q
.2/
1 D 3x

2 C 4y2 C 4z2 C 2xy C 2xz � 3yz; jAut.Q.2/
1 /j D 6;

and

genQ2 D ¹Q
.1/
2 ;Q

.2/
2 º;´

Q
.1/
2 D x

2 C 5y2 C 19z2 C xy; jAut.Q.1/
2 /j D 8;

Q
.2/
2 D 4x

2 C 5y2 C 6z2 C 5yz C xz C 2xy; jAut.Q.2/
2 /j D 4:

We define probability measuresmi on genQi by weighting each form by the reciprocal of
the order of its automorphism group. Thus

m1 D
3
5
ı
Q
.1/
1

C
2
5
ı
Q
.2/
1

and m2 D
1
3
ı
Q
.1/
2

C
2
3
ı
Q
.2/
2

:

It follows from the theorem of Duke and Schulze-Pillot [12] that any large enough
d 2 Dfund.Qi / is integrally represented both byQ.1/

i andQ.2/
i , and that the relative share

of such representations as d !1 is governed bymi . Theorem 1 states that, under GRH,
any large enough d 2Dfund.Q1/\Dfund.Q2/ is represented simultaneously by every pair
.Q

.i/
1 ;Q

.j /
2 /, and that the relative share of such representations as d !1 is governed by

the product measure m1 �m2.

Example 4 (Simultaneous supersingular reduction of CM elliptic curves). While the
above example featured two explicit definite quaternion algebras ramified at a single
prime, this was only for computational simplicity. By contrast, the next example exploits
the special arithmetic significance of the quaternion algebra B.p;1/.

In this case, the class set of B.p;1/ can be identified with the set E ss
p of isomorphism

classes of supersingular elliptic curves defined over Fp . Under this identification, E ss
p is
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endowed with a natural probability measuremp which, as in the previous example assigns
to each e 2 E ss

p a weight proportional to jEnd.e/�j�1.
Let E be an imaginary quadratic number field with ring of integers OE such that p

is inert in E; then E embeds into B.p;1/. Let EllCM
OE

be the set of elliptic curves defined
over C with complex multiplication by OE . Any e 2 EllCM

OE
is defined over the Hilbert

class field HE . Fix a prime p jp of HE . Then the reduction of e 2 EllCM
OE

modulo p is a
supersingular elliptic curve defined over Fp [8, p. 41]. In this way we obtain a reduction
map

redp W EllCM
OE
! E ss

p ; e 7! e mod p:

It was observed by Michel [34] that this example fits into the paradigm of Duke’s
theorems of the previous examples. (We refer to the recent preprint [3] for a detailed
description of the relation with toric packets.) Namely, for fixed p, the map redp is sur-
jective if the discriminant of E is large enough, and in fact one has the equidistribution
statement

j¹e 2 EllCM
OE
W redp.e/ D e0ºj

jEllCM
OE
j

! mp.e0/ .e0 2 E ss
p /;

as E varies along the imaginary quadratic fields for which p is inert.
Having reprised Duke’s theorem in this setting, we now take an imaginary quadratic

extension E of Q, in which two distinct odd primes p; q are inert. Then E embeds
diagonally into the product B.p;1/ � B.q;1/. We may then consider the simultaneous
supersingular reduction map

redp;q W EllCM
OE
! E ss

p � E ss
q ; e 7! .e mod p; e mod q/:

Our main result, Theorem 1, shows that, under GRH, redp;q is surjective for E of large
enough discriminantD, and that the pushforward of the counting measure on EllCM

OK
tends

to the product measure mp � mq on E ss
p � E ss

q as D !1. Note that, in contrast to the
spectral approach we have adopted, dynamical methods can handle n � 2 distinct copies
of Bi .

4. Reduction to half-integral mixed moment

In this subsection we reduce the proofs of Theorem 1 and 2 to statements about a half-
integral mixed moment ofL-functions. Throughout, we retain the notation and hypotheses
of Theorems 1 and 2. For f 2 L2.ŒG�K/ let

P�T.f / D

Z
Œ�T��

f .t/ dt and P�˛;ˇT.f / D

Z
Œ�˛;ˇT��

f .t/ dt (4.1)

be the global toric period integral relative to the subgroups �T� � G and �˛;ˇT� � G.
When ˛D ˇD 1 these two subgroups and their corresponding periods coincide. We recall
that the measures on Œ�T�� and Œ�˛;ˇT�� are normalized to have volume 1.
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Let L20.ŒG�K/ denote the orthocomplement of the character spectrum in L2disc.ŒG�K/.
Since Kj is the projective unit group of the maximal order Oj , the character spectrum
ofKj , and thus ofK D K1 �K2, is trivial (see [3, §9.2–9.3], where this is shown to hold
for Eichler orders).

4.1. Setting up Weyl’s criterion

It suffices, for proving Theorems 1 and 2, to study the periods (4.1) when f is an ele-
ment of a given orthonormal basis of L20.ŒG�K/. We now describe a particularly nice such
orthonormal basis, coming from the theory of new vectors for inner forms of GL2.

We begin with the group Gj for j D 1; 2. Let L20.ŒGj �Kj / denote the orthocomple-
ment of the trivial character 1Gj in L2disc.ŒGj �Kj /. We have the Hilbert space direct sum
decomposition

L20.ŒGj �Kj / D
M

�j�L
2
0
.ŒGj �/

�
Kj
j (4.2)

into irreducible discrete automorphic subrepresentations having non-trivial invariants
under Kj D Gj .yZ/K1;j , where we have used the Multiplicity One Theorem. Since Kj
is a maximal compact subgroup at each finite place, and either a maximal compact or
maximal compact proper subgroup (if B is definite) at infinity, we have dim�Kjj � 1. For
each �j appearing in the decomposition (4.2), there is therefore a unique up to unitary
scaling choice of an L2-normalized vector ��j in the line of Kj -invariants, and we let
B0;j D ¹��j º be the resulting orthonormal basis of L20.ŒGj �Kj /.

Note that, in the case of Bj definite and K1;j a maximal compact torus, each ��j
is an eigenfunction for the sphere Laplacian with an eigenvalue of the form k.k C 1/.
When Bj is indefinite, each ��j is an eigenfunction for the hyperbolic Laplacian of the
form 1=4C t2. In either case, we denote the Laplacian eigenvalue by �2�j and call ��j the
spectral parameter. Note that ��j > 1=3 is bounded away from 0 by [29] and comparable
in size to the archimedean conductor of �j . In the remaining case where Bj is definite and
K1;j D Gj .R/, we simply put ��j D 1.

We now return to the product group G D G1 �G2. Let L200.ŒG�K/ D L
2
0.ŒG1�K1/˝

L20.ŒG2�K2/. Then

L20.ŒG�K/ D .C1G1 ˝ L
2
0.ŒG2�K2//˚ .L

2
0.ŒG1�K1 ˝C1G2/˚ L

2
00.ŒG�K/:

We deduce thatL20.ŒG�K/ admits an orthonormal basis of the form B0DB01[B02[B00,
where

B01 D B0;1 ˝ 1G2 ; B02 D 1G1 ˝B0;2; B00 D B0;1 ˝B0;2:

For each � 2 B0 we let �� denote ��j or ��1��2 according to whether � 2 B0j or
� 2 B00.

Now let f 2 C1c .ŒG�K/ \ L20.ŒG�K/ with L2-spectral expansion

f D
X
�2B0

hf; �i�:
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This expansion is finite whenever both Bj are definite andK1;j D Gj .R/. Otherwise the
expansion is absolutely convergent, and by self-adjointness of the Laplace operator, the
L2-inner products satisfy hf;�i �d �1;2d .f /�

�d
� for all d 2N. In all cases, we deduce

that Theorems 1 and 2 follow from

P�˛;ˇT.g:�/� .logD/�1=4C" (4.3)

for all � 2B0, where the implied constant may depend on ˛;ˇ; " and polynomially on �� .
Note that

P�˛;ˇT.g:.��1 ˝ 1G2// D

Z
ŒT�
��1.t

˛g1/ dt;

P�˛;ˇT.g:.1G2 ˝ ��2// D

Z
ŒT�
��2.t

ˇg1/ dt:

Thus the bound (4.3) for test functions in B0j is covered by Duke’s theorem as stated in
Section 1.2 (note that multiplication by ˛ or ˇ in the class group is an isomorphism), even
with a power saving rate, so that it suffices to prove (4.3) on the basis elements in B00.

4.2. Parseval and absolute values

For �j 2 L2.ŒGj �Kj / and � 2 eCl_E we define

P
�
T .�j / D

Z
ŒT�j �

�j .t/�.t/ dt (4.4)

to be the global .T�j ; �/-period integral. We now convert the problem of estimating the
diagonal period P�˛;ˇT to one of bounding an average of these twisted periods.

In the context of Theorem 1 this is a straightforward task. We recall from Section 2.1
that ŒT�j �Kj for j D 1; 2 can naturally be identified with the Arakelov class group eClE .
Using the identification (2.1), we may view the integral over Œ�T��K in (4.1) as an inner
product over the Arakelov class group eClE . Plancherel’s identity then gives

P�T.�
ı
� / D

Z
ŒT�
�ı�1.�1.t//�

ı
�2
.�2.t// dt D

X
�2eCl_

E

P
�
T .�

ı
�1
/P

�
T .�

ı
�2
/; (4.5)

where �ı�j D gj :��j . More generally, working in the context of Theorem 2, we apply
Fourier inversion to obtain

P�˛;ˇT.�
ı
� / D

Z
ŒT�

� X
�2eCl_

E

P
�
T .�

ı
�1
/�˛.t/

�
�ı�2.�2.t/

ˇ / dt

D

X
�2eCl_

E

P
�
T .�

ı
�1
/

Z
ŒT�
�ı�2.�2.t/

ˇ /�˛.t/ dt:

Since by assumption ClE has no ˇ-torsion, the integral vanishes unless �˛ D  ˇ for
some  2 eCl_E (which is unique). Writing ˛ D ˛0ı, ˇ D ˇ0ı with .˛0; ˇ0/ D 1, we see



V. Blomer, F. Brumley 2764

that � D  ˇ
0

for some  2 eCl_E , so �˛.t/ D  ˛
0

.tˇ /. Changing variables t  tˇ in the
t -integral, we obtain

P�˛;ˇT.�
ı
� / D

X
�2eCl_

E

P
�ˇ
0

T .�ı�1/P
�˛
0

T .�ı�2/;

which specializes to (4.5) when ˛ D ˇ D 1.
Having no way of accessing the sign of the periods P

�
T .�

ı
� / as � varies, we now apply

the triangle inequality to the �-sum, to get

jP�˛;ˇT.�
ı
� /j �

X
�2eCl_

E

jP
�ˇ
0

T .�ı�1/P
�˛
0

T .�ı�2/j: (4.6)

Remark 3. The bound (4.6) sacrifices all cancellation in the �-sum. Something similar
was done in the pioneering work of Holowinsky [25], and later Lester and Radziwiłł [30],
with respect to unipotent periods, in which T is replaced by the unipotent subgroup N of
upper triangular matrices in PGL2. At first sight this looks like a hopeless gambit, in view
of the loss of information incurred, but these breakthrough papers demonstrated that it is
reasonable nonetheless to hope for some small savings.

4.3. Fractional moments of L-functions

We now convert the right-hand side of (4.6) to a fractional moment of L-functions using
an explicit form of Waldspurger’s theorem [45], which relates the twisted period (4.4) to
the central Rankin–Selberg L-value L.1=2; �j � �/, where �j on PGL2.A/ is associated
with �j by the Jacquet–Langlands correspondence and � is viewed as the automorphic
induction to GL2 over Q. This will lead us to the statement of our main analytic result,
Theorem 3, which will be seen to imply both Theorems 1 and 2.

The dual group eCl_E consists of everywhere unramified Hecke characters, trivial at
infinity ifE is imaginary and totally even at infinity ifE is real. Let 2 eCl_E denote either
of the characters �˛

0

or �ˇ
0

appearing in (4.6). We may assume that HomT�j .AQ/.�j ;  /

¤ 0 since otherwise the twisted period P
 
T .�

ı
�j
/ in (4.6) vanishes. Moreover, since  is

unramified, and �ı�j is invariant under g�1
j;f

Gj .yZ/gj;f in which T is optimally embedded,
the vector �ı�j is the global Gross–Prasad [24] vector. This observation allows us to use
the explicit Waldspurger formula from [20, Theorem 1.1], which states that

jP
 
T .�

ı
�j
/j2 D CGjCRam.�j ;  /

1
p
D

1

L.1; �E /2
L.1=2; �j �  /

L.1;Ad �j /
F.�j;1;  1/ (4.7)

for a constant CGj > 0 depending only on Gj , a constant CRam.�j ; / > 0 depending only
on  and on the local ramified local components of �j , and a function F of the spectral
parameters of �j;1 and  1.

In Appendix A we prove bounds on CRam.�j ;  / and F.�j;1;  1/. To state them
here, letN�j denote the (arithmetic) conductor of �j and write ��j for the spectral param-
eter ��j from Section 4.1. If  1 is the archimedean component of  , we let � 2 R be
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its frequency as a character on T.R/=KT;1. In particular, whenE is imaginary quadratic,
we have  1 D 1 and thus � D 0. If E is real, then  1.x1; x2/D jx1ji� jx2j�i� with
� 2

�
log �Z. We show in Appendix A that

CRam.�j ;  /�" N
"
�j

and F.�j;1;  1/� exp.�c0j� j=��j / (4.8)

for some absolute constant c0 > 0.
We now take positive square-roots in (4.7) and insert this into the right-hand side of

(4.6), which we are to bound. Using (2.2), as well as the bound 1=L.1; �E /� log logD,
which is known to hold under GRH (see (6.9) below), we obtain

P�T˛;ˇ .�
ı
� /�"

N "
� log logD
vol.eClE /

X
�2eCl_

E

exp
�
�
c0j��j

��

��
L.1=2; �1 � �

ˇ 0/L.1=2; �2 � �
˛0/

L.1;Ad �1/L.1;Ad �2/

�1=2
for some c0 > 0 (which may depend on ˛; ˇ), where we have put N� D N�1N�2 , and
�� D ��1��2 . For notational simplicity we drop the prime in the above estimate and
relabel ˛0 ! ˛, ˇ0 ! ˇ.

Now that we have converted the original problem to one onL-functions, the key obser-
vation is that on average over �, the central values L.1=2;�1 � �˛/ and L.1=2;�2 � �ˇ /
are a little less than 1, and that these small values occur independently of each other. This
will just suffice to obtain the equidistribution results in Theorems 1 and 2. The following
result makes this precise.

Theorem 3. Let E be a quadratic field extension of Q, of discriminant D. Let �1; �2 be
irreducible cuspidal automorphic representations on PGL2.AQ/, of squarefree levelN�j .
Let ��j be the spectral parameter of �j and put �� D ��1��2 ,N� DN�1N�2 . Let c0 >0.
Assume the Generalized Riemann Hypothesis.

(a) If �1 ¤ �2 then

1

vol.eClE /

X
�2eCl_

E

exp
�
�
c0j��j

��

��
L.1=2; �1 � �/L.1=2; �2 � �/

L.1;Ad �1/L.1;Ad �2/

�1=2
�";c0 .logD/�1=4C"

for any " > 0.

(b) Let ˛; ˇ 2 N be distinct positive integers. Assume that eClE has no 2ˇ torsion. Then

1

vol.eClE /

X
�2eCl_

E

exp
�
�
c0j��j

��

��
L.1=2; �1 � �

˛/L.1=2; �2 � �
ˇ /

L.1;Ad �1/L.1;Ad �2/

�1=2
�˛;ˇ;";c0 .logD/�1=4C"

for any " > 0.

All implied constants depend polynomially on ��N� .
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This theorem is the technical heart of the paper. The bound is best possible, up to the
power of ", and in the following section we explain the probabilistic model behind it.

As promised in the introduction, we give an immediate application to Fourier coeffi-
cients and Bessel periods of Yoshida lifts. Let f; g be distinct holomorphic cusp forms of
weight 2 and 2k � 2, respectively, and levelN whereN is squarefree and has an odd num-
ber of prime factors. To f and g one can associate a non-zero holomorphic Siegel cusp
form F such that L.s; F / D L.s; f /L.s; g/ and for all p jN the local representation �p
associated with F is of type VIb (cf. [9]). For a fundamental discriminant D < 0 such
that all p jN remain inert in Q.

p
D/, let Sym2

D.Z/ be the set of positive definite sym-
metric semi-integral matrices with integral diagonal in M2 of determinant D=4. We may
identify the set of SL2.Z/-equivalence classes of elements in Sym2

D.Z/ with the class
group ClE of E DQ.

p
D/. Let a.F;S/ denote the Fourier coefficient of F at the matrix

S 2 Sym2
D.Z/; as it depends only on the SL2.Z/-equivalence class of S , we may write

a.F; St / for t 2 ClE . For a fundamental discriminant D < 0 and a class group character
� 2 Cl_E we define the Bessel period

R.F;D; �/ D
X
t2ClE

a.F; St / N�.t/:

From [9, Prop. 3.14], and Fourier inversion over ClE , we obtain the following corollary
of Theorem 3.

Corollary 4. Assume GRH. LetF be a Yoshida lift andD<0 a fundamental discriminant
satisfying the above assumptions. Then

max
t2ClE

ja.F; St /j �
1

jClE j

X
�2Cl_

E

jR.F;D; �/j �";F

jDj.k�1/=2

.log jDj/1=4�"

for any " > 0.

On GRH, the trivial bound on the left-hand side and the sum in the middle is
jDj.k�1/=2C". The bound on the right-hand side is sharp, up to the value of ", since the
same is true of Theorem 3. One expects a bound of size a.F;St /�" jDj

k=2�3=4C", based
on both GRH and square-root cancellation in the �-sum in (4.5).

5. Heuristics

In this section we give a heuristic argument for Theorem 3 (a). For simplicity we assume
that E is imaginary quadratic (so that eClE is just the ideal class group ClE ), and we also
drop the adjoint L-values. We aim to explain what one should expect for the average

1

jClE j

X
�2Cl_

E

�
L.1=2; �1 � �/L.1=2; �2 � �/

�1=2
:
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For a function f W Cl_E ! C let

E.f / D
1

jClE j

X
�2Cl_

E

f .�/:

The basic idea is that on GRH we can express logL.1=2; �j � �/ by a short sum over
primes, namely

logL.1=2; �j � �/ � Ssp.�j ; �/C Sin.�j ; �/CO.1/; (5.1)

where

Ssp.�j ; �/ D
X

.p/Dp Np
p�x

.�.p/C N�.p//�j .p/

p1=2
C
1

2

X
.p/Dp Np

p2�x

.�.p/2 C N�.p/2/.�j .p
2/ � 1/

p
;

Sin.�j ; �/ D
1

2

X
�E .p/D�1

p2�x

2.�j .p
2/ � 1/

p
;

�j .n/ denotes the Hecke eigenvalues of �j , and we think of x � exp.logD=log logD/.
For the sake of exposition we ignore ramified primes.

Asymptotically we have E.Ssp.�j ; �// � 0 by orthogonality of characters, and the
variance of Ssp.�j ; �/ equals

E
X

.p/Dp Np
p�x

.�.p/C N�.p//2�j .p/
2

p
CO.1/

D E
X

.p/Dp Np
p�x

.�.p/2 C N�.p/2 C 2/.�j .p
2/C 1/

p
CO.1/

D

X
p�x

.�j .p
2/C 1/.1C �E .p//

p
CO.1/: (5.2)

Recall that �E is the quadratic character associated to the extension E=Q by class field
theory, and put �E D 1 � �E . Then (5.2) is varj;D.x/CO.1/, where

varj;D.x/ D log log x C logL.1; �E /C log.1;Ad�j � �E /:

The inert sum Sin.�j ; �/ is independent of � and can be written as

Sin.�j ; �/ D
X
p2�x

.�j .p
2/ � 1/1

2
.1 � �E .p//

p
D �j;D.x/CO.1/;

where

�j;D.x/ D
1
2

logL.1; �E /C 1
2

logL.1;Ad�j / � 1
2

logL.1;Ad�j � �E / � 1
2

log log x:
(5.3)
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Assuming that the sums over p behave like independent Gaußian random variables, we
conclude

E.L.1=2; �j � �// � E
�
exp.Ssp.�j ; �//

�
E
�
exp.Sin.�j ; �//

�
� exp

�
1
2

varj;D.x/
�

exp.�j;D.x// D L.1; �E /L.1;Ad�j /:

Assuming now that the random variables logL.1=2; �1 � �/ and logL.1=2; �2 � �/ are
independent, we obtain by the same argument

E
�
.L.1=2; �1 � �/L.1=2; �2 � �//

1=2
�

� E
�
exp

�
1
2
Ssp.�1; �/

��
E
�
exp

�
1
2
Ssp.�2; �/

��
E
�
exp

�
1
2
Sin.�1; �/

��
E
�
exp

�
1
2
Sin.�2; �/

��
� exp

�
var1;D.x/C var2;D.x/

8

�
exp

�
�1;D.x/C �2;D.x/

2

�
�
.L1L2/

1=8

.log x/1=4
; (5.4)

where

Lj D
L.1; �E /

3L.1;Ad�j /3

L.1;Ad�j � �E /
:

This probabilistic model suggests a final saving of .log x/�1=4 D .logD/1=4Co.1/, in
agreement with Theorem 3 (a).

Remark 4. The above computations are sensitive to �j being cuspidal. In particular, the
important term�1

2
log logx in (5.3) is a reflection of the fact that �j .p2/ oscillates unlike,

for instance, �.p2/.

The probabilistic model just described shows what one can reasonably expect, and as
such it is a useful tool in stress-testing a proof strategy. But of course these heuristics are
far from a proof. In an important paper on moments of the Riemann zeta function [40],
Soundararajan made the key observation that (5.1) can in fact be made precise as an upper
bound for relatively small x. Then one proceeds by computing very high moments

1

jClE j

X
�2Cl_

E

�
logL.1=2; �1 � �/C logL.1=2; �2 � �/

�k
;

for k as large as about log logD. From the moments we get sufficient information on
the distribution function of logL.1=2;�1 � �/C logL.1=2;�2 � �/ (which supports the
Gaußian heuristics), and hence also the desired k D 1=2-moment. We will formalize this
argument in Section 9.

Remark 5. We will see later that the probabilistic model of this section is not entirely
correct: the random variables logL.1=2; �1 � �/ and logL.1=2; �2 � �/ are not inde-
pendent, and their correlation is measured by theL-valueL.1;�1 ��2 � �E / of degree 8.
That this value is well-defined is a consequence of our assumption in Theorem 1 that �1
and �2 are distinct (and at least one is cuspidal). The presence of this correlation L-value
has no influence on the power of logx. We see, however, that it is important to analyze the
L-values at 1 very carefully, which is even on GRH a subtle matter. We refer the reader
to the discussion in Sections 6.2 and 9.7.
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6. L-functions

In this section, we summarize (and in some cases prove) the various analytic properties of
L-functions which will be necessary in the proof of Theorem 3. Throughout, we consider
two cuspidal automorphic representations �1; �2 for PGL2 of squarefree levels N1; N2
and analytic conductorsQ�1 �N1�

2
�2

,Q�2 �N2�
2
�1

, where the spectral parameters ��i
are defined in §4.1.

6.1. Generalities

We denote by �j .n/, j D 1; 2, the Hecke eigenvalues of �j and record the Hecke relation

�j .p
2/ D �j .p/

2
�  j .p/ (6.1)

for a prime p where  j is the trivial character modulo Nj . This relation will be used
repeatedly throughout our argument.

Recall the Arakelov class group eClE discussed in Section 2.1. Let � 2 eCl_E be an
everywhere unramified idele class character. By automorphic induction, we may view �,
when convenient, as a theta series of weight 1 if E is imaginary and of weight 0 if E is
real. We denote its Dirichlet coefficients by a�.n/. Note that � is in particular trivial on
ideals .n/ � OE with n 2N, i.e. ideals induced from Q. SinceN1;N2 are squarefree, the
Dirichlet series expansions are given by

L.s; �j � �/ D L.2s; �E /
X
n

�j .n/a�.n/

ns
;

L.s;Ad�j / D �.Nj /.2s/
X
n

�j .n
2/

ns
;

L.s;Ad�j � �E / D �.DNj /.2s/
X
n

�j .n
2/�E .n/

ns

(6.2)

(see [31, §2] and [4, §2.3.3]). We have the Euler product

L.s; �j � �/ D
Y
p

Y
i;kD1;2

�
1 �

j̨ .p; i/��.p; k/

ps

��1
(6.3)

where

¹��.p; 1/; ��.p; 2/º D

8̂̂<̂
:̂
¹�.p/; N�.p/º; .p/ D p Np;p 6D Np;

¹�.p/; 0º; .p/ D p2;

¹�1; 1º; �E .p/ D �1;

(6.4)

are the Satake parameters of � and j̨ .p; i/ are the Satake parameters of �j . If .p/ D p2,
then �.p/2 D 1, and we conclude

��.p; 1/
2
C ��.p; 2/

2
D

8̂̂<̂
:̂
��2.p; 1/C ��2.p; 2/; p split;

1; p ramified;

2; p inert:

(6.5)
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Let �E D 1 � �E . We use the explicit computations in [31] again to conclude

L.s; �1 � �2 � �E /

D L.s; �1 � �2/L.s; �1 � �2 � �E /

D �.N1N2/.2s/�.N1N2D/.2s/
X
n

�1.n/�2.n/

ns

X
n

�1.n/�2.n/�E .n/

ns

�

Y
pj.N1;N2/
p−D

�
1 �

�1.p/�2.p/

ps�1

��
1 �

�1.p/�2.p/�E .p/

ps�1

�
:

Note that �p WD �1.p/�2.p/p 2 ¹˙1º for p j .N1; N2/, so that

L.s; �1 � �2 � �E / D
X
n

�1.n/�2.n/

ns

X
n

�1.n/�2.n/�E .n/

ns

� �.N1N2/.2s/�.N1N2D/.2s/
Y

pj.N1;N2/
p−D

�
1 �

�p.1C �E .p//

ps
C
�E .p/

p2s

�
: (6.6)

6.2. L-functions at s D 1 on GRH

We must be very careful with bounds for L-functions on the 1-line. On GRH and the
Ramanujan conjecture all of them are .log logD/O.1/ from above and below. Without the
Ramanujan conjecture, existing bounds are exponential in logD, which is problematic.
Luckily, we do have good bounds in some situations and this suffices for our application.
The following lemma is well-known (see e.g. [30, Lemma 5.3] for a special case) and
goes essentially back to Littlewood. For convenience we provide a complete proof.

Lemma 5. Let L.s; �/ be a holomorphic L-function of fixed degree d and analytic
conductor Q� in the extended3 Selberg class, not necessarily primitive, with Dirichlet
coefficients ��.n/. Assume GRH for L.s; �/ and assume that the Satake parameters
˛�.p; j /, 1 � j � d , satisfy j˛�.p; j /j � p1=2�� for some � > 0. ThenX

p�x

��.p/

p
D logL.1; �/CO".1/; x � .logQ�/2C": (6.7)

Moreover, for ˛ > 0 we have

L.1; �/�˛ .log logQ�/�˛ if ��.p/ � �˛ for all p;

L.1; �/�˛ .log logQ�/˛ if ��.p/ � ˛ for all p:
(6.8)

Proof. Let T > 2 and s D � C i t . We start with Perron’s formula

1

2�i

Z 1CiT

1�iT

logL.s C 1; �/
xs

s
ds D

X
p�x

��.p/

p
CO

�
1C

x log x
T

�
:

3That is, without assuming the Ramanujan bounds.
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By the Borel-Carathéodory inequality and the convexity bound we have

logL.s C 1; �/� .� C 1=2/�1 log.Q�.1C jt j//

for � > �1=2. We shift the contour to Re s D �1=2C ı for some small ı > 0. At s D 0
we collect a simple pole with residue logL.1; �/. The horizontal contours contribute

�

Z 1

�1=2Cı

jlogL.� C 1C iT; �/j
x�

T
d� �

x log.Q�T /
ıT

:

The vertical contour contributes

�

Z T

�T

jlogL.1=2C ı C i t; �/j
x�1=2Cı

1C jt j
dt �

log.Q�T / logT
ıx1=2�ı

:

With T D x2 logQ� and ı D 1=log x we conclude

logL.1; �/ D
X
p�x

��.p/

p
CO

�
1C

x log x
T

C
x log.Q�T /

ıT
C

log.Q�T / logT
ıx1=2�ı

�
D

X
p�x

��.p/

p
CO

�
1C

log x .logQ� C log x/.log x C log logQ�/
x1=2

�
:

The error term is O".1/ if x � .logQ�/2C". If ��.p/ � �˛ we choose x D .logQ�/3,
getting

L.1; �/�˛ exp.�˛ log log x/�˛ .log logQ�/�˛:

An analogous argument works for ��.p/ � ˛.

In particular, we have

1

log logD
� L.1; �E /� log logD (6.9)

(which was proved by Littlewood). Moreover, for �j as at the beginning of this section,
a key observation is that the Hecke relations (6.1) imply that �j .p2/ � �1, and then
obviously also �j .p2/.1C �E .p// � �2. Thus

1

log logQ�j
� L.1;Ad�j /;

1

.log logQ�jD/2
� L.1;Ad�j � �E /: (6.10)

We complement this with the additional bounds (cf. [30, Lemma 5.5])X
p�x

�j .p/
2

p
;

X
p�x

�j .p
2/

p
� log log x C .logQ�j /

1=3: (6.11)

6.3. L-functions at s D 1=2 on GRH

We now prove a precise version (on GRH) of the heuristic formula (5.1). A crucial ingre-
dient will be the following special case of [6, Theorem 2.1].
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Lemma 6. Assume GRH for L.1=2; �j � �/. Then for any x > 1 we have

logL.1=2; �j � �/ �
X
pn�x

4X
iD1

˛�j��.p; i/
n

npn.1=2C1=logx/

log.x=pn/
log x

C 10
logQ�j��

log x
;

where ¹˛�j��.p; i/º are the four Satake parameters of �j � � which can be read off from
(6.3)–(6.4).

Upon choosing x D logQ�j�� and using the prime number theorem, we conclude

logL.1=2; �j � �/�
logQ�j��

log logQ�j��
: (6.12)

Corollary 7. Assume GRH for L.1=2; �j � �/. Let " > 0 and suppose that

.logQ�j��/
4C"
� x:

Then

logL.1=2; �j � �/ �
X
p�x

a�.p/�j .p/

p1=2C1=logx

log.x=p/
log x

C
1

2

X
�E .p/D1

p2�x

a�2.p/.�j .p
2/ �  j .p//

p1C2=logx

log.x=p2/
log x

C �j;D.x/C 10
logQ�j��

log x
CO".log log logQ�j /; (6.13)

where
�j;D.x/ D

1
2

logL.1; �E /C 1
2

logL.1;Ad�j /

�
1
2

logL.1;Ad�j � �E / � 1
2

log log x (6.14)

satisfies
�j;D.x/�" log log x C .logQ�j /

1=3: (6.15)

We also haveX
�E .p/D1

p2�x

a�2.p/.�j .p
2/ �  j .p//

p1C2=logx

log.x=p2/
log x

�" log log x C .logQ�j /
1=3: (6.16)

Proof. We can spell out the main term in Lemma 6 explicitly. Indeed, the contribution
from n D 1 is the first term on the right-hand side of (6.13). The terms corresponding to
n � 3 contributeO.1/ in view of the bound j̨ .p; i/� pı with ı < 1=6 [29]. We use the
Hecke relations (6.1) for the terms corresponding to n D 2. Using (6.5), the split primes
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contribute the second term on the right-hand side of (6.13), while the ramified and inert
primes contribute

1

2

X
pjD

p2�x

.�j .p
2/ �  j .p//

p1C2=logx

log.x=p2/
log x

C
1

2

X
�E .p/D�1

p2�x

2.�j .p
2/ �  j .p//

p1C2=logx

log.x=p2/
log x

D

X
p2�x

.�j .p
2/ �  j .p//

1
2
.1 � �E .p//C 2 � 2

p1C2=logx

log.x=p2/
log x

:

Since .�j .p2/ �  j .p//12 .1 � �E .p//C 2 � 0, the previous display is at mostX
p�
p
x

.�j .p
2/ �  j .p//

1
2
.1 � �E .p//

p
C

X
p�
p
x

2

p
�

X
p�
p
x

2 log.x=p2/
p1C2=logx log x

: (6.17)

From (6.7) and log log
p
x D log log x CO.1/, the first term in (6.17) is

1

2
log

L.1; �E /L.1;Ad�j /
L.1;Ad�j � �E / log x

CO"

�
1C

X
pjNj

1

p

�
provided that x � .logQ�j��/

4C", while the second and third terms in (6.17) are

2 log log
p
x � 2

X
p�
p
x

1

p

�
1 �O

�
logp
log x

��
CO.1/ D O.1/:

This establishes (6.13), observing that
P
pjNj

1=p � log log logNj � log log logQ�j .
Reversing the analysis, we deduce from (6.7) and (6.11) that

j�j;D.x/j D

ˇ̌̌̌ X
p�
p
x

.�j .p
2/ �  j .p//

1
2
.1 � �E .p//

p
CO.1/

ˇ̌̌̌
�

X
p�
p
x

�j .p/
2 C 2

p
CO".1/� log log x C .logQ�j /

1=3

which establishes (6.15), and by the same argument we conclude (6.16).

7. Orthogonality

As outlined in Section 5, our methods are ultimately based on computing high moments of
logL.1=2;�1��/L.1=2;�2��/, or more generally logL.1=2;�1��˛/L.1=2;�2��ˇ /,
and by the results of the previous section these values can be upper bounded by short
sums over primes. Starting from basic orthogonality relations, the lemmas in this section
estimate averages of increasing complexity over the Arakelov class group eCl_E of these
short sums over primes. The principal results here are Lemmas 10 and 12, which serve
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for Theorems 1 and 2, respectively. We emphasize that this section does not invoke GRH,
nor in fact do the cusp forms �j play any role.

For the rest of this paper we fix an even, non-negative Schwartz class function F
on R whose Fourier transform has support in Œ� 1

2�
; 1
2�
�. This will be of use in smoothly

truncating the non-compact part of eCl_E for real quadratic fields E. We recall the nota-
tion �� as defined in Section 4.3, which in the case of real quadratic fields satisfies
�1.x1; x2/ D jx1j

i�� jx2j
�i�� :

Lemma 8. There exists a constant c > 1 with the following property. If ¹0º 6D a � OE is
an ideal with Na < D=4 and D > c, thenX

�2eCl_
E

F.��/�.a/ D 0

unless a D .a/, with a 2 N, is an ideal induced from Q.

Proof. We put � D �E .�1/, so that the discriminant of E is �D. Recall that OK D

ZC 1
2
.
p
�D C �/Z where � D 0 if D � 0 (mod 4) and � D 1 if �D � 1 (mod 4). The

lemma is easy to see if E is imaginary. The sum can only be non-zero if a D .˛/ is a
principal ideal. Now

D

4
> N˛ D N

�
aC b

p
�D C �

2

�
D a2 C �ab C b2

D C �

4
� b2

D

4

implies b D 0.
Let us now assume that E is real. Again the sum can only be non-zero if a D .˛/ is

principal. Thus our sum becomesX
n2Z

F

�
�n

log �

�ˇ̌̌̌
˛

˛0

ˇ̌̌̌in�=log �

: (7.1)

Changing ˛ D aC b.
p
DC �/=2 by a sign and replacing ˛ with ˛0 if necessary (without

loss of generality since F is even), we may assume that b � 0 and a C �b=2 � 0. Now
changing ˛ by a power of �, we can also assume ��1 � j˛=˛0j< �. By Poisson summation
the previous display equals

log �
�

X
m2Z

yF

�
m

�
log � �

1

2�
log

ˇ̌̌̌
˛

˛0

ˇ̌̌̌�
:

Since log � � logD C O.1/ and D > c, the support of yF implies that the sum consists
only of one term and ��1 � j˛=˛0j < � implies that this term corresponds to m D 0. We
have

˛

˛0
D
aC b.

p
D C �/=2

a � b.
p
D � �/=2

D 1C
b
p
D .aC b.

p
D C �/=2/

N˛
� 1C

b2D

N˛
� 1C 4b2;

so the term m D 0 is outside the support of yF for b 6D 0 (since log 5 > 1). Hence (7.1)
vanishes unless b D 0, in which case a D .˛/ is induced from Q.
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7.1. High moments of short Dirichlet polynomials

Let Qa� be the completely multiplicative function with Qa�.p/ D a�.p/ where as in the
beginning of Section 6.1 we write a�.n/ for the Dirichlet coefficients of the theta function
induced by �. Let R be the multiplicative function with

R.p˛/ D

8̂̂<̂
:̂
�
˛
˛=2

�
; ˛ even; p split;

1; ˛ even; p ramified;

0; otherwise.

In the following we assume that D is sufficiently large in order to apply the previous
lemma.

Lemma 9. Let � 2 N. Assume that n < .D=4/1=� and if � is even suppose that n is only
composed of split primes. ThenX

�2eCl_
E

F.��/ Qa�� .n/ D R.n/
X
�2eCl_

E

F.��/:

Proof. If n is divisible by an inert prime, then Qa�.n/ D 0 for any � 2 eCl_E , so both sides
vanish. We may therefore assume that n is supported on non-inert primes and write n DQ
p j̨

j

Q
q
ˇk
k

with pairwise distinct split primes pj D pj Npj and pairwise distinct ramified
primes qk D q2

k
. We obtainX

�2eCl_
E

F.��/ Qa�� .n/ D
X
�2eCl_

E

F.��/
Y
.��.pj /C N�

�.pj // j̨
Y

��.qk/
ˇk

D

X
1�˛1; 2�˛2;:::

�
˛1

1

��
˛2

2

�
� � �

X
�2eCl_

E

F.��/�
�.p

1
1 Np

˛1�1
1 � � �q

ˇ1
1 � � � /:

By Lemma 8, the inner sum vanishes unless .p11 Np
˛1�1
1 � � �q

ˇ1
1 � � � /

� is a rational integer.
This is the case precisely when 2j D j̨ for all j , and the ˇk are even for all k (here
we use the assumption ˇk D 0 if � is even). These conditions give exactly the definition
of R.n/.

The following is inspired by [30, Lemma 4.3]. It is a central ingredient in the proof of
Theorem 1.

Lemma 10. Let � 2 N. Let x � 2, k 2 N with x2k < .D=4/1=� . For any sequence of
complex numbers b.p/ indexed by primes .split primes if � is even/ we have

X
�2eCl_

E

F.��/

�X
p�x

a�� .p/b.p/
p
p

�2k
�
.2k/Š

kŠ

�
1

2

X
p�x

.1C �E .p//b.p/
2

p

�k X
�2eCl_

E

F.��/:
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Proof. We extend b.p/ to all integers as a completely multiplicative function. Let pj .n/
be the characteristic function on numbers with j prime factors (counted with multiplicity)
and � the multiplicative function with �.p˛/ D ˛Š. With these notational conventions we
haveX
�2eCl_

E

F.��/

�X
p�x

a�� .p/b.p/
p
p

�2k
D

X
n�1

pjn)p�x

.2k/Š

�.n/

b.n/p2k.n/
p
n

X
�2eCl_

E

F.��/ Qa�� .n/:

We conclude from Lemma 9 that the inner sum vanishes unless n is a square, so that the
previous display equals

.2k/Š
X
n�1

pjn)p�x

b.n/2pk.n/

n

R.n2/

�.n2/

X
�2eCl_

E

F.��/:

It follows from the definitions that

R.p2˛/

�.p2˛/
D

²
.˛Š/�2 � .˛Š/�1 D �.p˛/�1; p split
.2˛/Š�1 � .2˛˛Š/�1 D .2˛�.p˛//�1; p ramified

³
�
1C �E .p/

2�.p˛/
:

Denoting by r.n/ the completely multiplicative function extending r.p/ D 1C �E .p/,
we obtainX

�2eCl_
E

F.��/

�X
p�x

a�� .p/b.p/
p
p

�2k
�
.2k/Š

kŠ

�
1

2k

X
n�1

pjn)p�x

kŠ

�.n/

r.n/b.n/2pk.n/

n

� X
�2eCl_

E

F.��/:

The claim follows.

7.2. High moments of short mixed Dirichlet polynomials

For the proof of Theorem 2 we need slightly more advanced combinatorics. We fix two
distinct positive integers ˛; ˇ 2 N. For n 2 N, 0 � m � n we define

B˛;ˇ .n;m/ D

mX
rD0

n�mX
sD0

2˛rC.ˇ�˛/m�ˇnC2ˇsD0

�
n

m

��
m

r

��
n �m

s

�
:

One checks directly that

B˛;ˇ .n; 0/ D ı2jn

�
n

n=2

�
; B˛;ˇ .n;m/ D Bˇ;˛.n; n �m/: (7.2)

We need to compute a few more values by hand: for distinct positive integers ˛; ˇ we
have

B˛;ˇ .4; 2/ D 6

2X
rD0

2X
sD0

˛rCˇsD˛Cˇ

�
2

r

��
2

s

�
D 6

�
2

1

��
2

1

�
D 24 (7.3)
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and

B˛;ˇ .6; 2/ D 15

2X
rD0

4X
sD0

˛rCˇsD˛C3ˇ

�
2

r

��
4

s

�

� 15

��
2

0

��
4

3

�
C

�
2

1

��
4

3

�
C

�
2

2

��
4

2

��
� 270: (7.4)

Estimating even more coarsely (the middle binomial coefficient is the largest), we have

B˛;ˇ .8; 2/ �

�
8

2

�
22
�
6

3

�
D 2240; B˛;ˇ .8; 4/ �

�
8

4

�
24
�
4

2

�
D 6720: (7.5)

Finally, we record the trivial bound

B˛;ˇ .n;m/ �

�
n

m

�
2n: (7.6)

From (7.2)–(7.5) for r � 4 and (7.6) for r > 4 we conclude

rŠ

.2r/Š
B˛;ˇ .2r; 2m/ �

�
r

m

�
: (7.7)

Let v2 the denote the usual 2-adic valuation. Then

B˛;ˇ .n;m/ D 0 unless

8̂̂<̂
:̂
2 jn; v2.˛/ D v2.ˇ/;

2 jm; v2.˛/ < v2.ˇ/;

2 jn �m; v2.˛/ > v2.ˇ/:

(7.8)

The following lemma should be compared with Lemma 9.

Lemma 11. Let b.p/, c.p/ be any sequences indexed by split primes. Let f� be the com-
pletely multiplicative function whose values at primes are given by f�.p/ D a�˛ .p/b.p/
C a�ˇ .p/c.p/. For n < .D=4/1=max.˛;ˇ/ we haveX

�2eCl_
E

F.��/f�.n/ D H˛;ˇ .n/
X
�2eCl_

E

F.��/ (7.9)

where H˛;ˇ is multiplicative and given by

H˛;ˇ .p
�/ D

�X
mD0

B˛;ˇ .�;m/b.p/
mc.p/��m:

Remark 6. For n consisting only of split primes, (7.2) ensures that (7.9) is supported
only on squarefull n, but this property fails if n has ramified prime factors. This would
make later estimates in Section 9.8 more cumbersome. For simplicity we exclude ramified
primes factors which is reflected in the assumption on trivial 2-torsion in Theorem 2.
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Proof of Lemma 11. For a split prime p D p Np and � 2 N we have

f�.p
�/ D

�X
mD0

�
�

m

��
a�˛ .p/b.p/

�m�
a�ˇ .p/c.p/

���m
D

�X
mD0

�
�

m

�
b.p/mc.p/��m

mX
rD0

�
m

r

� ��mX
sD0

�
� �m

s

�
�.p˛rCˇsp

˛.m�r/Cˇ.��m�s/
j /:

We write nD
Q
j p

�j
j with pairwise distinct split primes pj D pj Npj , so that f�.n/ equals

Y
j

�jX
mjD0

mjX
rjD0

�j�mjX
sjD0

�
�j

mj

��
mj

rj

��
�j �mj

sj

�
b.pj /

mj c.pj /
�j�mj

� �.p
˛rjCˇsj
j p

˛.mj�rj /Cˇ.�j�mj�sj /

j /:

Summing F.��/f�.n/ over �, we see by Lemma 8 that only those terms with

2˛rj C .ˇ � ˛/mj � ˇ�j C 2ˇsj D 0

survive, so that the left-hand side of (7.9) equals

Y
j

�jX
mjD0

B˛;ˇ .�j ; mj /b.pj /
mj c.pj /

�j�mj
X
�2eCl_

E

F.��/:

This features precisely the function H˛;ˇ specified in the lemma.

The following result should of course be compared to Lemma 10.

Lemma 12. Let ˛; ˇ 2 N be distinct positive integers. Let b.p/, c.p/ be any sequences
of real numbers indexed by split primes. Let x � 2, k 2 N with x2k < .D=4/1=max.˛;ˇ/.
Then X

�2eCl_
E

F.��/

�X
p�x

a�˛ .p/b.p/C a�ˇ .p/c.p/
p
p

�2k
is bounded by

X
�2eCl_

E

F.��/

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

X
2`1C3`2D2k

.2k/Š

.`1/Š.`2/Š

�X
p�x

b.p/2Cc.p/2

p

�`1�
c0
X
p�x

b.p/2jc.p/j

p3=2

�`2
;

v2.˛/ 6D v2.ˇ/;X
2`1C4`2D2k

.2k/Š

.`1/Š.`2/Š

�X
p�x

b.p/2Cc.p/2

p

�`1�X
p�x

.jb.p/jCjc.p/j/4

p2

�`2
;

v2.˛/ D v2.ˇ/:

for some absolute constant c0 .one can take c0 D 4/.
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Proof. We use the notation from Lemmas 10–11 and their proofs. We have

X
�2eCl_

E

F.��/

�X
p�x

a�˛ .p/b.p/C a�ˇ .p/c.p/
p
p

�2k
D .2k/Š

X
pjn)p�x

p2k.n/

�.n/
p
n
H˛;ˇ .n/

X
�2eCl_

E

F.��/:

Let us now consider the right-hand side of the claimed inequality according to the two
different cases.

Case 1. Suppose that v2.˛/ 6D v2.ˇ/, without loss of generality v2.˛/ < v2.ˇ/. Letˆ;‰
be the completely multiplicative function extending ˆ.p/D b.p/2 C c.p/2 and ‰.p/D
b.p/2jc.p/j. Note that ˆ;‰ are non-negative. Now the right-hand side of the bound in
Lemma 12 equals

.2k/Š
X

2`1C3`2D2k

X
pjn1)p�x

p`1.n1/ˆ.n1/

�.n1/n1

X
pjn2)p�x

p`2.n2/‰.n2/

�.n2/n
3=2
2

:

Note that H˛;ˇ is supported only on squarefull numbers (cf. (7.2)). Decompose uniquely
n D n21n

3
2 with �.n2/2 D 1. It then suffices to show

H˛;ˇ .n/

�.n/
�
ˆ.n1/‰.n2/

�.n1/�.n2/

and again by multiplicativity

H˛;ˇ .p
2r /

.2r/Š
�
.b.p/2 C c.p/2/r

rŠ
;

H˛;ˇ .p
2rC3/

.2r C 3/Š
�
.b.p/2 C c.p/2/r � b2.p/jc.p/j

rŠ
:

Both inequalities of the last display follow from (7.8) and (7.7):

rŠ

.2r/Š
H˛;ˇ .p

2r / �

rX
mD0

�
r

m

�
b.p/2mc.p/2r�2m D .b.p/2 C c.p/2/r

and

rŠ

.2r C 3/Š
H˛;ˇ .p

2rC3/ �
rŠ

.2r C 3/Š

rX
mD0

�
2r C 3

2mC 2

�
22rC3b.p/2mC2c.p/2rC1�2m

� c0

rX
mD0

�
r

m

�
b.p/2mc.p/2r�2mb2.p/jc.p/j

D c0.b.p/
2
C c.p/2/rb2.p/jc.p/j;

for an absolute constant c0 > 0.

Case 2. Next suppose that v2.˛/ D v2.ˇ/. We argue similarly. Let Q‰ be the completely
multiplicative function extending Q‰.p/ D .jb.p/j C jc.p/j/4. The right-hand side of the
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bound in Lemma 12 equals

.2k/Š
X

2`1C4`2D2k

X
pjn1)p�x

p`1.n1/ˆ.n1/

�.n1/n1

X
pjn2)p�x

p`2.n2/
Q‰.n2/

�.n2/n
2
2

:

Note that H˛;ˇ is supported only on squares (cf. (7.8)). It then suffices to show

H˛;ˇ .p
2/

2Š
� b.p/2 C c.p/2;

H˛;ˇ .p
2r /

.2r/Š
�
.b.p/2 C c.p/2/r�2 � .jb.p/j C jc.p/j/4

.r � 2/Š

for r � 2. We have H˛;ˇ .p2/ D 2.b.p/2 C c.p/2/ [this uses ˛ 6D ˇ and is actually the
only point where this assumption is used] and

H˛;ˇ .p
2r / �

2rX
mD0

�
2r

m

�
22r jb.p/jmjc.p/j2r�m D 22r .jb.p/j C jc.p/j/2r :

As b.p/2 C c.p/2 � 1
2
.jb.p/j C jc.p/j/2, the last inequality follows from

22r

.2r/Š
�

1

2r�2.r � 2/Š

for r � 2. This completes the proof.

8. A bound on the second moment

In preparation for the proof of Theorem 3, we start with a bound for the second moment of
L.1=2; �j � �/. This will only serve a technical purpose to exclude very large values of
L-functions. We continue to denote by F an even non-negative Schwartz-class function
whose Fourier transform has support in Œ� 1

2�
; 1
2�
�. Note that forQ > 1 the function x 7!

F.x=Q/ is still an even non-negative Schwartz-class function whose Fourier transform
has support in Œ� 1

2�
; 1
2�
�. For later purposes we record for k 2N the elementary estimate

.2k/Š

kŠ
�
p
2

�
4

e
k

�k
: (8.1)

(The constant
p
2 plays no role in the following.) We observe that, when E is imaginary,

the conductor of � � � is constant within the family of � 2 eCl_E and depend only onD. If
E is real, the conductor of � � � does depend on �, via its archimedean component �1.
In either case, it is a consequence of the class number formula, and the fact that �� runs
through a one-dimensional lattice of volume �=log � when E is real, thatX

�2eCl_
E

F.��=Q/� QHE ; HE WD L.1; �E /
p
D (8.2)

for Q � 1. Note that HE � vol.eClE / by (2.2).
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Since we allow polynomial dependence on the representations �1; �2 in the bound of
Theorem 3, we will assume throughout this section that

Q� � D
1=10;

so that
logQ�j�� � logD

provided that �� �D. Moreover, we assume for the rest of the paper thatD is sufficiently
large (in terms of "). We also fix j 2 ¹1;2º and drop it from the notation. With this in mind
we define

C D log logD C .logQ�/1=3: (8.3)

We keep the general assumptions and notations from Section 6.1.

Lemma 13. Assume that Q� � D1=10, and let 1 � Q � D1=5. For " > 0 we haveX
�2eCl_

E

F

�
��

Q

�
L.1=2; � � �/2 � exp.O".C 1C"//QHE :

Proof. For V 2 R we define

�.V/ WD
X

L.1=2;���/>eV

F �
�
��

Q

�
;

where F �.x/ D F.x/ıjxj�D=Q. Using the convexity bound for L.1=2; � � �/ and the
rapid decay of F and then partial summation, we haveX

�2eCl_
E

F.��=Q/L.1=2; � � �/
2
D

X
�2eCl_

E

F �.��=Q/L.1=2; � � �/
2
CO.D�10/

D

Z
R
eV �.V=2/ dV CO.D�10/:

We may truncate the integral at V � logD=log logD, in view of (6.12), since otherwise
�.V=2/ D 0. Moreover, using the trivial bound �.V=2/ �

P
F.��=Q/ and (8.2), we

have Z AC1C"

�1

eV �.V=2/ dV �
X
�2eCl_

E

F

�
��

Q

�Z AC1C"

�1

eV dV � QHEe
AC1C"

for A > 0. Put V D V=2. From the above considerations, we may now assume that V
satisfies

AC 1C"
� V � B

logD
log logD

(8.4)

for some sufficiently large constants A;B . We shall show that

�.V / � exp.�c."/V logV /QHE (8.5)
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for V satisfying (8.4) and some c."/ > 0. In this way,Z 1
2AC1C"

eV �.V=2/ dV �" QHE ;

which suffices for the proof of the lemma.
The rest of the proof is devoted to (8.5). Choose

x D D5B=V
D exp

�
5B

V
logD

�
; (8.6)

which by (8.4) implies x � exp.5 log logD/D .logD/5 � .logQ���/4C� . For � counted
by �.V / we apply Corollary 7, and conclude from (6.13), (6.15) and (6.16) that

V � logL.1=2; � � �/

�

X
p�x

a�.p/��.p/

p1=2C1=logx

log.x=p/
log x

CO

�
log log x C .logQ�/1=3 C

logD
log x

�
(8.7)

Recalling (8.3) and taking B sufficiently large in (8.6) we find

V �
X
p�x

a�.p/��.p/

p1=2C1=logx

log.x=p/
log x

C
1

4
V CO.C /:

Hence if A in (8.4) is sufficiently large, we have

1

2
V <

X
p�x

a�.p/��.p/

p1=2C1=logx

log.x=p/
log x

:

For any k � 0, this implies (by positivity)

�.V / �
X
�2eCl_

E

F

�
��

Q

�
22k

V 2k

�X
p�x

a�.p/��.p/

p1=2C1=logx

log.x=p/
log x

�2k
:

Lemma 10 (with � D 1) then shows that, as long as k satisfies x2k < D=4, we have

�.V / �
X
�2eCl_

E

F

�
��

Q

�
.2k/Š

kŠ

22k

V 2k

�X
p�x

��.p/
2

p

�k
;

where we have used the simple inequality j1C �E .p/j � 2. Now by (6.11) and (8.6) we
have X

p�x

��.p/
2

p
� C :

Recalling (8.1) and (8.2) we deduce

�.V /� QHE
.2k/Š

kŠ

22k

V 2k
.O.C //k � QHE

�
16k

eV 2
O.C /

�k
:
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The condition x2k < D=4 allows us to take

k <
V

11B
� V:

For such k we have kC =V 2 � V �"=.1C"/ by (8.4). Inserting this proves (8.5).

9. Proof of Theorem 3

In this section we finally prove Theorem 3. We first prove part (a), and then in Section 9.8
pass to the proof of part (b). In both cases, the proof scheme is similar to the proof of
Lemma 13, but the estimates are more delicate.

9.1. Setting up the proof of Theorem 3 (a)

For � 2 eCl_E let
L.�/ D L.1=2; �1 � �/L.1=2; �2 � �/: (9.1)

We continue to assume that D is sufficiently large and Q�1 ;Q�2 � D
1=10. For x > 0 we

define

�D.x/ D
1
2

logL.1; �E /C 1
4

logL.1;Ad�1/C 1
4

logL.1;Ad�2/

�
1
4

logL.1;Ad�1 � �E / � 1
4

logL.1;Ad�2 � �E / � 1
2

log log x (9.2)

and note that by (6.14) we have �D.x/ D 1
2
.�1;D.x/C �2;D.x//. We also define

varD.x/ D 1
2

log log x C 1
2

logL.1; �E /C 1
4

logL.1;Ad�1 � �E /

C
1
4

logL.1;Ad�2 � �E /C 1
2

logL.1; �1 � �2 � �E /: (9.3)

We write �D D �D.D/ and varD D varD.D/.
Recalling the notation HE from (8.2), our primary goal is to prove the bound

1

HE

X
�2eCl_

E

F

�
��

Q�1Q�2

�
L.�/1=2 �" exp

�
�D C .1=2C "/ varD

�
C exp

�
�
1
3

p
logD

�
(9.4)

provided that Q�1 ;Q�2 � D
1=10. Here and henceforth all implied constants are allowed

to depend polynomially on Q�1 and Q�2 . The proof of (9.4) extends over the next few
subsections and will be completed in Section 9.6. We then show in Section 9.7 how to
deduce Theorem 3 (a) from (9.4).

9.2. Some useful bounds

We now relate �D and varD to short Dirichlet polynomials. Let

L .s/ WD 1
2

logL.s; �E /C 1
4

logL.s;Ad�1 � �E /C 1
4

logL.s;Ad�2 � �E /

C
1
2

logL.s; �1 � �2 � �E /:
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By (6.2), (6.6) and (6.1) the Dirichlet series coefficients of L .s/ at primes p − N1N2 are

2�E .p/C .1C �E .p//.�1.p
2/C 2�1.p/�2.p/C �2.p

2//

4

D
.1C �E .p//.�1.p/C �2.p//

2 � 2

4
:

Similar formulae hold if p divides exactly one ofN1;N2 and if it divides bothN1 andN2.
We write this collectively as

.1C �E .p//.�1.p/C �2.p//
2 � �1.p/

4
; �1.p/ 2 ¹2; 1 � �E .p/; 4�E � 2º:

We deduce from this that

1
2

log logD CO.log log logD/ � varD � .logD/1=3; (9.5)

where we use (6.8) for the lower bound and (6.7), (6.9) and (6.11) for the upper bound.
Moreover, using (6.7), we deduce thatX
p�x

.1C �E .p//.�1.p/C �2.p//
2

2p
D 2L .1/CO".1/C log log x CO

� X
pjN1N2

1

p

�
D 2varD.x/CO".log log logN1N2/ (9.6)

provided that x � .logQ�1Q�2D/
2C".

By a similar computation, the Dirichlet coefficients of

� logL.s;Ad�1 � �E / � logL.s;Ad�2 � �E /C 2 logL.s; �1 � �2 � �E /

at primes p are

�.1C �E /
�
.�1.p/ � �2.p//

2
� �.p/

�
; �2.p/ 2 ¹2; 1; 0º:

We conclude by (6.8) that

L.1; �1 � �2 � �E /

L.1;Ad�1 � �E /L.1;Ad�2 � �E /
� .log logQ�1Q�2D/

4: (9.7)

Analogously the Dirichlet coefficients of

� logL.s;Ad�1/ � logL.s;Ad�2/C logL.s; �1 � �2 � �E /

at primes p are

�3.p/C .1C �E .p//�1.p/�2.p/ � �1.p/
2
� �2.p/

2

with �3.p/ � 2, so that

L.1; �1 � �2 � �E /

L.1;Ad�1/L.1;Ad�2/
� .log logQ�1Q�2D/

2: (9.8)
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9.3. Preliminary reductions

As in the proof of Lemma 13, we can restrict to characters with j��j � D by the rapid
decay of F . Again we write F �.x/D F.x/ıjxj�D=.Q�1Q�2 /. Recalling the notation (9.1),
we define, similarly to the previous section,

T .V / WD
X

L.�/>eV

F �
�

��

Q�1Q�2

�
:

We first deal with large values of V . For U � 1 we haveX
L.�/�U

F

�
��

Q�1Q�2

�
L.�/1=2 �

1

U 1=2

X
L.�/�U

F

�
��

Q�1Q�2

�
L.�/

�
1

U 1=2

X
�2eCl_

E

F

�
��

Q�1Q�2

��
L.1=2; �1 � �/

2
C L.1=2; �2 � �/

2
�
:

We now invoke Lemma 13, and recall the definition of C from (8.3), to obtainX
L.�/�U

F

�
��

Q�1Q�2

�
L.�/1=2 � U�1=2 exp..logD/2=5/HE :

We may therefore treat all � with L.�/ > exp.
p

logD/ trivially and estimate their con-
tribution by X

L.�/>exp.
p

logD/

F

�
��

Q�1Q�2

�
L.�/1=2 � HE exp

�
�
1
3

p
logD

�
:

This is admissible for (9.4).
By partial summation it now remains to estimateZ .logD/1=2

�1

eV=2T .V / dV D exp.�D/
Z .logD/1=2�2�D

�1

eV=2T .V C 2�D/ dV:

The contribution of V � " log logD can be estimated trivially by

exp.�D/
Z " log logD

�1

eV=2T .V C 2�D/ dV

�

X
�2eCl_

E

F

�
��

Q�1Q�2

�
exp.�D/

Z " log logD

�1

eV=2 dV

� HE exp
�
�D C

"

2
log logD

�
� HE exp.�D CO."/ varD/;

where we have used (9.5) in the last step. This is again admissible for (9.4), perhaps after
redefining ".
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The hardest part is to estimate

exp.�D/
Z .logD/1=2�2�D

" log logD
eV=2T .V C 2�D/ dV: (9.9)

Recalling the definition of �D in §9.1, and applying (6.15), we have

.logD/1=2 � 2�D � .logD/1=2: (9.10)

Henceforth we restrict V to the interval

" log logD � V � .logD/1=2 � 2�D � .logD/1=2: (9.11)

9.4. Application of Corollary 7

For V as in (9.11) we choose

x D DA="V
D exp

�
A

"V
logD

�
(9.12)

for a sufficiently large constant A, so that in particular log x � .logD/1=2 and so x �
.logD/5� .logQ�j��/

4C" for all � in the support of F �.��=.Q�1Q�2//. We may now
apply Corollary 7 for j D 1 and j D 2 in a similar way to (8.7) to conclude that

log L.�/ � 2�D �
X
p�x

a�.p/.�1.p/C �2.p//

p1=2C1=logx

log.x=p/
log x

C
1

2

X
�E .p/D1

p2�x

a�2.p/.�1.p
2/C�2.p

2/� 1.p/� 2.p//

p1C2=logx

log.x=p2/
log x

CO."V /: (9.13)

Here we have used �D.x/��D D�12 .log logxC log logD/D logV CO".1/� 1
10
"V ,

and also (9.11) and (9.12) to bound the remaining terms in Corollary 7 by O."V /. Hence
if � is counted by T .V C 2�D/ we have

.1 � "/V �
X
p�x

a�.p/.�1.p/C �2.p//

p1=2C1=logx

log.x=p/
log x

C
1

2

X
�E .p/D1

p2�x

a�2.p/.�1.p
2/C �2.p

2/ �  1.p/ �  2.p//

p1C2=logx

log.x=p2/
log x

:

We write the right-hand side asX
p�z

C

X
z<p�x

C

X
p2�x

D S1.�/C S2.�/C S3.�/;
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say, for some z � .logD/2C". We choose

� D .log logD/1=3; z D x1=� D exp
�
A

"V

logD
�

�
; (9.14)

which is clearly � .logD/2C" in view of (9.12) and (9.11). We now estimate, using
Lemma 10 as a crucial input, the quantities

M1 D

X
S1.�/�.1�3"/V

F

�
��

Q�1Q�2

�
; M2 D

X
S2.�/�"V

F

�
��

Q�1Q�2

�
;

M3 D

X
S3.�/�"V

F

�
��

Q�1Q�2

�
so that T .V C 2�D/ � M1 CM2 CM3 by (9.13), where we emphasize that each Mj
depends in particular on V .

9.5. Bounding M1;M2;M3

We decompose the interval (9.11) as I1 [ I2, where

I1 D

�
" log logD;

"

A
� � varD

�
; I2 D

�
"

A
� � varD; .logD/1=2 � 2�D

�
; (9.15)

and we recall (9.10) and (8.2).

Lemma 14. We have

M1 �

´
HE exp

�
�
..1�5"/V /2

8 varD

�
; V 2 I1;

HE exp
�
�c."/V log V

varD

�
; V 2 I2:

Proof. By Lemma 10 (with � D 1) we have

M1 �
2kŠ

kŠ

1

..1�4"/V /2k

�
1

2

X
p�z

.�1.p/C�2.p//
2.1C�E .p//

p

�k X
�2eCl_

E

F

�
��

Q�1Q�2

�
;

provided that z2k <D=4. Using (8.1), (9.6) and (9.5) along with the obvious fact varD.z/
� varD , we conclude

M1 � HE

�
8k.varD.z/CO".log log logD//

e..1 � 4"/V /2

�k
� HE

�
8k varD

e..1 � 5"/V /2

�k
: (9.16)

Our choice of z in (9.14) allows us to take

k �
"V�

3A
: (9.17)

We now choose

k D

´ �
..1�5"/V /2

8 varD

�
; V 2 I1;

ŒV �; V 2 I2;
(9.18)

in agreement with (9.17), which completes the proof of the lemma.
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The following bounds are similar, but easier.

Lemma 15. There is c."/ > 0 such that

M2;M3 � HE exp.�c."/V logV / (9.19)

for V 2 I1 [ I2.

Proof. By Lemma 10 (with � D 2 noting that the sum contains only split primes) we
obtain

M3 �
2kŠ

kŠ

1

."V /2k

� X
p�
p
x

.�1.p
2/C�2.p

2/� 1.p/� 2.p//
2

4p2

�k X
�2eCl_

E

F

�
��

Q�1Q�2

�
whenever xk < .D=4/1=2. Thus

M3 � HE

�
ck

."V /2

�k
for some constant c > 0. Our choice (9.12) implies that we can choose k D Œ "

3A
V �, yield-

ing the stated bound for M3 in (9.19).
Next, by Lemma 10 (with � D 1), the Hecke relations (6.1), and (6.7), we have (using

1C �E .p/ � 2 and .r C s/2 � 2.r2 C s2/ for r; s 2 R)

M2 � HE
.2k/Š

kŠ

1

."V /2k

� X
z<p�x

.�1.p/C �2.p//
2

p

�k
� HE

.2k/Š

kŠ."V /2k

� X
z<p�x

2.2C �1.p
2/C �2.p

2//

p

�k
D HE

.2k/Š

kŠ."V /2k

�
4 log

log x
log z

CO".1/

�k
(9.20)

provided that x2k �D=4 and z � .logD/2C". We choose k D Œ "
3A
V � and recall (8.1) and

(9.14), getting

M2 � HE

�
16k

e"2V 2
.log log logD CO".1//

�k
:

By (9.11) this is at most HE exp.�c."/V log V / for some c."/ > 0, again confirming
(9.19).

9.6. Completion of the proof of (9.4)

We substitute the bounds of the previous two lemmas back into (9.9). We start with the
contribution of M1. The interval I2 contributes

HE exp.�D/
Z
I2

exp
�
1

2
V � c."/V log

V

varD

�
dV

� HE exp.�D/
Z
I2

exp
�
�
1

4
c."/V log log logD

�
dV � HE exp.�D/; (9.21)
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which is admissible for (9.4). The contribution of I1 is

HE exp.�D/
Z
I1

exp
�
1

2
V �

..1 � 5"/V /2

8 varD

�
dV:

We extend the range of integration to all of R and use the formulaZ
R
e�˛x

2Cˇx dx D

r
�

˛
exp

�
ˇ2

4˛

�
; ˛; ˇ > 0;

getting the upper bound

HE exp.�D/
.8� varD/1=2

1 � 5"
exp

�
varD

2.1 � 5"/2

�
� HE exp

�
�D C .1=2CO."// varD

�
in agreement with (9.4), potentially after redefining ".

For M2;M3 we obtain the same contribution as in (9.21), which completes the proof
of (9.4).

9.7. The endgame

We have now prepared the scene to complete the proof of Theorem 3 (a). Recall that we
need to establish the bound

1

HE

X
�2eCl_

E

exp
�
�
c0j��j

Q�1Q�2

��
L.1=2; �1 � �/L.1=2; �2 � �/

L.1;Ad �1/L.1;Ad �2/

�1=2
�";c0 .logD/�1=4C";

with polynomial dependence on Q�1 ;Q�2 .
By (6.10), (8.2) and the convexity bound, the left-hand side is trivially (and crudely)

bounded by .DQ�1Q�2/
10� .Q�1Q�2/

103.logD/�1=4 if max.Q�1 ;Q�2/�D
1=10. So

from now on we can assume
Q�1 ;Q�2 � D

1=10: (9.22)

Next we majorize x 7! exp.�c0jxj/ by a non-negative, even Schwartz-class function
F whose Fourier transform has support in Œ� 1

2�
; 1
2�
� (see [41] for an explicit construction

of such a function). Recalling (9.2) and (9.3) and using (6.10) for the error term, the bound
(9.4) yields

1

HE

X
�2eCl_

E

F

�
��

Q�1Q�2

��
L.1=2; �1 � �/L.1=2; �2 � �/

L.1;Ad�1/L.1;Ad�1/

�1=2
�"

L.1; �E /
3=4C"=2L.1; �1��2��E /

1=4C"=2

L.1;Ad�1��E /1=8�"=4L.1;Ad�1��E /1=8�"=4.logD/1=4�"=2
Cexp

�
�
1
4

p
logD

�
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whenever Q�1 ;Q�2 � D
1=10. By (9.7) and (6.9), the right-hand side is

�"

L.1; �1 � �2 � �E /
"

.logD/1=4�"
C exp

�
�
1
4

p
logD

�
: (9.23)

Let us temporarily make the additional assumption

Q�1 ;Q�2 � .logD/10: (9.24)

In this case, (6.7) and (6.11) with x D .log logD/3, say, imply the existence of a con-
stant C such that

L.1;Ad �j /� exp.C.log logD/1=3/� .logD/":

Together with (9.8) we obtain

L.1; �1 � �2 � �E / D L.1;Ad �1/L.1;Ad �2/
L.1; �1 � �2 � �E /

L.1;Ad �1/L.1;Ad �2/
� .logD/";

which when inserted in (9.23) is admissible for Theorem 3 (a).
Let us now assume that (9.24) fails, but (9.22) holds, so that

.logD/10 < max.Q�1 ;Q�2/ � D
1=10:

Then we use the Cauchy–Schwarz inequality and Lemma 13 together with (8.2), (8.3)
and (6.10) to obtain

1

HE

X
�2eCl_

E

F

�
��

Q�1Q�2

��
L.1=2; �1 � �/L.1=2; �2 � �/

L.1;Ad�1/L.1;Ad�1/

�1=2
� Q�1Q�2.log logD/ exp

�
max
j
.logQ�j /

2=5
�
� .Q�1Q�2/

2.logD/�1=4

as desired. This completes the proof of Theorem 3 (a) in all cases.

9.8. Proof of Theorem 3 (b)

This is similar and we highlight only the relevant changes. We keep the definition (9.2) of
�D.x/, but we redefine (9.3) as follows:

var�D.x/ D
1
2

log log x C 1
2

logL.1; �E /

C
1
4

logL.1;Ad�1 � �E /C 1
4

logL.1;Ad�2 � �E /:

Remark 7. This differs from varD.x/ by the term 1
2

logL.1; �1 � �2 � �E /. The reason
for this can be traced back to a comparison of Lemma 10 and Lemma 12. For ˛ 6D ˇ we
have .B˛;ˇ .2; 0/; B˛;ˇ .2; 1/; B˛;ˇ .2; 2// D .2; 0; 2/ whereas for ˛ D ˇ this is .2; 4; 2/.
Consequently, Lemma 12 features a “main term” b.p/2 C c.p/2, whereas the analogous
situation in Lemma 10 gives .b.p/ C c.p//2 D b.p/2 C 2b.p/c.p/ C c.p/2. It is the
extra mixed term 2b.p/c.p/ that is responsible for the term 1

2
logL.1; �1 � �2 � �E /,

which of course only makes sense in the situation �1 6D �2 of Theorem 1, but not in the
potentially allowed situation �1 D �2 of Theorem 2.
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We write �D D �D.D/ and var�D D var�D.D/. The analogues of (9.5) and (9.6) are

1
2

log logD CO.log log logD/ � var�D � .logD/1=3

and X
p�x

.1C �E .p//.�1.p/
2 C �2.p/

2/

2p
D 2var�D.x/CO".log log logN1N2/

provided that x � .logQ�1Q�2D/
2C". We generalize (9.1) to

L�.�/ D L.1=2; �1 � �
˛/L.1=2; �2 � �

ˇ /:

We follow the argument up to (9.13), which now reads

log L�.�/ � 2�D � S
�
1 .�/C S

�
2 .�/C S

�
3 .�/CO."V /;

where

S�1 .�/ D
X
p�z

a�˛ .p/�1.p/Ca�ˇ .p/�2.p/

p1=2C1=logx

log.x=p/
log x

;

S�2 .�/ D
X

z<p�x

a�˛ .p/�1.p/Ca�ˇ .p/�2.p/

p1=2C1=logx

log.x=p/
log x

;

S�3 .�/ D
1

2

X
�E .p/D1

p2�x

a�2˛ .p/.�1.p
2/� 1.p//Ca�2ˇ .p/.�2.p

2/� 2.p//

p1C2=logx

log.x=p2/
log x

:

Correspondingly we defineM �j for j D 1; 2; 3 (which as before depend on V ). In order to
bound M �j we apply Lemma 12 instead of Lemma 10. For notational simplicity we study
the case v2.˛/ D v2.ˇ/, the other case being almost identical. In the following let c > 0
denote a sufficiently large constant, not necessarily the same at every occurrence.

We have

M �3 � HE
X

2`1C4`2D2k

.2k/Š

.`1/Š.`2/Š

1

."V /2k
ck

if xk < .D=4/1=max.2˛;2ˇ/. Since .`1/Š.`2/Š � Œk=3�Š; by Stirling’s formula we obtain

M �3 � HE

�
ck5=3

."V /2

�k
:

Choosing k � V , we obtain the analogue of (9.19) for M �3 . In the same way, we obtain

M �2 � HE
X

2`1C4`2D2k

.2k/Š

.`1/Š.`2/Š

1

."V /2k

�
4 log

log x
log z

CO".1/

�`1
c`2

as an analogue of (9.20), and it is easy to confirm (9.19) also for M �2 .



V. Blomer, F. Brumley 2792

The estimation of M �1 is only slightly more difficult. As in (9.16) we obtain

M �1 � HE
X

2`1C4`2D2k

.2k/Š

.`1/Š.`2/Š

.2var�D/
`1c`2

..1 � 5"/V /2k
:

We write `1 D ak, `2 D bk with aC 2b D 1, so that by Stirling’s formula we have (with
the convention 00 D 1)

.2k/Š

.`1/Š.`2/Š
�

�
4k2�a�b

e2�a�baabb

�k
;

uniformly in a; b (one can take 2 as an implied constant). We conclude

M �1 � HE
X

2`1C4`2D2k

c`2
�

4k2�a�b.2var�D/
a

e2�a�baabb..1 � 5"/V /2

�k
:

Note that 1=2 � �� � 1 for 0 � � � 1. We make the same choice for k as in (9.18) and we
make the same choices of I1; I2 as in (9.15) but in all cases with var�D in place of varD .

If V 2 I2, then with k D ŒV � we obtain

M �1 � HE
X

2`1C4`2D2k

.var�D/
`1

V `1C`2
ck � HE

X
2`1C4`2D2k

.var�D/
`1C`2

V `1C`2
ck

� HE exp
�
�c."/V log

V

var�D

�
since k=2 � `1 C `2 � k.

If V 2 I1 then with k D Œ..1 � 4"/V /2=.8var�D/� and b D .1 � a/=2 we obtain

M �1 � HE
X

2`1C4`2D2k

�
1

eaabb

�
cV

.var�D/
3=2

�1�a�k
� HE

X
2`1C4`2D2k

.eaabb/�k.log logD/�
1
7 �2`2

as cV .var�D/
�3=2 � �.var�D/

�1=2 � .log logD/�1=6 for V 2 I1. Since all of the terms
in the previous display are less than .e � "/�k for D sufficiently large (in terms of "), we
conclude altogether

M �1 � HE exp
�
�
..1 � 5"/V /2

8var�D

�
for V 2 I1. Having recovered the bounds from Lemmas 14 and 15, the analogue of the
basic bound (9.4) is nowX
�2eCl_

E

F

�
��

Q�1Q�2

�
L�.�/1=2�HE

�
exp

�
�D C .1=2C "/var�D

�
C exp

�
�
1
3

p
logD

��
;

so that Theorem 3 (b) now follows by adopting the argument in Section 9.7.
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Appendix A. Some explicit computations related to Waldspurger’s formula

Our aim in this appendix is to justify the bound (4.8). We begin by explicating the shape
of Waldspurger’s formula, in the explicit form given by [20], which leads to the expres-
sion (4.7).

Let B, O and K be as in Section 2. Let N denote the discriminant of O; then N is
squarefree. Fix an optimal embedding � of the quadratic fieldE into B.Q/ satisfying (1.5)
and (1.7). As usual we write T� for the associated torus in PB�.

Let � � L2disc.ŒPB��/ be irreducible and have non-zero invariants by K. Let �� be a
non-zero vector in the line �K , normalized to have L2-norm 1. Fix � 2 eCl_E and assume
that HomT�.�; �/ ¤ 0. Recall from the discussion in Section 4.3 that �ı� D g:�� is the
global Gross–Prasad vector, with respect to the pair .T�; �/.

We recall the twisted adelic torus period P
�
T .�

ı
� / from (4.4), where the measure is

normalized to have volume 1. Note that the toric period in [20] is taken with respect to
the Tamagawa measure �T

Tam on ŒT�. Moreover, the L2-normalization of the test vectors
in [20] is itself taken with respect to the Tamagawa measure �G

Tam on ŒG�.
Let � be the irreducible cuspidal automorphic representation of PGL2.AQ/ of levelN

corresponding to � via the Jacquet–Langlands correspondence. We apply [20, Theorem
1.1] with

S.�/ D S2.�/ D ;; S.�/ D S1.�/ D ¹p jN º; S0.�/ D ¹p j .D;N /º:

From [20, Theorem 1.1] we obtain

jP
�
T .�

ı
� /j

2
D
�G

Tam.ŒG�/2

�T
Tam.ŒT�/2

1

2

1
p
D
LS.�/.1; �E /�

S.�/.2/

�

Y
pjN

e.Ep=Qp/C1.E; �; �/
LS0.�/.1=2; � � �/

LS0.�/.1;Ad�/
;

where C1.E; �; �/ is defined in [20, §7B] and recalled below. Note that if S is a finite
(possibly empty) set of primes, the superscript notation LS includes the local factor at
infinity. Using �T

Tam.ŒT�/ D RessD1 �E .s/ D L.1; �E / and reorganizing we obtain

jP
�
T .�

ı
� /j

2
D CGCRam.�; �/

1

L.1; �E /2
1
p
D

L.1=2; � � �/

L.1;Ad�/
F.�1; �1/;

where CG D �
G
Tam.ŒG�/2

1
2
�.2/,

CRam.�; �/ D
LS0.�/.1;Ad�/

LS0.�/.1=2; � � �/

Y
pjN

e.Ep=Qp/
1 � p�2

1 � �E .p/p�1
;

and

F.�1; �1/ D C1.E; �; �/
L1.1=2; � � �/

L1.1;Ad�/
:

Recall the notation �� for the spectral parameter of � in Section 4.1 and �� 2 R for
the frequency of � from Section 4.3.
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Lemma 16. We have

CRam.�; �/�" N
" and F.�1; �1/� exp.�c0j��j=��/:

Proof. At the finite places the local factors are given by (6.2)–(6.3). Since j˛.p; i/j �
p�1=2 for p jN we obtain jLp.1=2; � � �/j�1 � .1 � p�1/�4 and jLp.1;Ad �/j � 1,
and so jCRam.�; �/j �

Q
pjN 2.1 � 1=p/

�5 � N ".
For the second estimate, recall that �1 can be either discrete series of weight k or

principal series with spectral parameter t . In the latter case, it suffices to assume that
t 2 R, so that �1 is tempered. In this notation, the archimedean L-factors take the form

L1.s; � � �/

D

8̂̂<̂
:̂
4.2�/�2s

Q
˙ �.s ˙ i t/; �1 principal series, E imaginary,

��2s
Q
˙;˙ �

�
1
2
.s ˙ i t ˙ i��/

�
; �1 principal series, E real,

4.2�/�2s�.k�1/
Q
˙ �

�
s C 1

2
.k � 1/˙ i��

�
; �1 discrete series,

and

L1.s;Ad �/ D

´
��3s=2�.s=2/

Q
˙ �.s=2˙ i t/; �1 principal series,

22�k�s�.1�2k�3s/=2�.sCk�1/�..sC1/=2/; �1 discrete series.

Moreover, by definition, we have

C1.E; �; �/ D

8̂̂<̂
:̂
1; �1 principal series;
�.k/

��.k=2/2
; �1 discrete series, E imaginary;

2k ; �1 discrete series, E real:

By Stirling’s formula we have

C1.E; �; �/
L1.1=2; � � �/

L1.1;Ad �/
�

8̂̂<̂
:̂
1; E imaginaryI

e�� max.0;j��j�jt j/; �1 principal series, E real;

e�cmin.j��j;j��j2=k/; �1 discrete series, E real;

for some absolute constant c > 0. Using �2� D k.k C 1/ or �2� D 1=4 C t2 accord-
ing to whether �1 is discrete or principal series, we estimate this very crudely by
exp.�c0j��j=��/.
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