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Abstract. Suppose thatM is a closed isotropic Riemannian manifold and thatR1; : : : ;Rm generate
the isometry group ofM . Let f1; : : : ; fm be smooth perturbations of these isometries. We show that
the fi are simultaneously conjugate to isometries if and only if their associated uniform Bernoulli
random walk has all Lyapunov exponents zero. This extends a linearization result of Dolgopyat
and Krikorian [Duke Math. J. 136, 475–505 (2007)] from Sn to real, complex, and quaternionic
projective spaces. In addition, we identify and remedy an oversight in that earlier work.
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1. Introduction

A basic problem in dynamics is determining whether two dynamical systems are equiva-
lent. A standard notion of equivalence is conjugacy: if f and g are two diffeomorphisms
of a manifold M , then f and g are conjugate if there exists a homeomorphism h of M
such that hf h�1 D g. Some classes of dynamical systems are distinguished up to conju-
gacy by a small amount of dynamical information. One of the most basic examples of this
is Denjoy’s theorem: a C 2 orientation preserving circle diffeomorphism with irrational
rotation number is conjugate to a rotation [17, §12.1]. In the case of Denjoy’s theorem,
the rotation number is all the information needed to determine the topological equivalence
class of the diffeomorphism under conjugacy.

Rigidity theory focuses on identifying dynamics that are distinguished up to conju-
gacy by particular kinds of dynamical information such as the rotation number. There are
finer dynamical invariants than rotation number which require a finer notion of equiva-
lence to study. For instance, one obtains a finer notion of equivalence if one insists that
the conjugacy be a C 1 or even C1 diffeomorphism. A smoother conjugacy allows one to
consider invariants such as Lyapunov exponents, which may not be preserved under con-
jugacy by homeomorphisms. For a single volume preserving Anosov diffeomorphism, the
Lyapunov exponents with respect to volume are invariant under conjugation by C 1 vol-
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ume preserving maps. Consequently, one is naturally led to ask, “If two volume preserving
Anosov diffeomorphisms have the same Lyapunov exponents, are the two C 1 conjugate?”
In some circumstances the answer is “yes”. Such situations where knowledge about Lya-
punov exponents implies systems are conjugate by a C 1 diffeomorphism are instances of
a phenomenon called “Lyapunov spectrum rigidity”. See [13] for examples and discussion
of this type of rigidity. For recent examples, see [4, 8, 14, 15, 27].

In rigidity problems related to isometries, it is often natural to consider a family of
isometries. A collection of isometries may have strong rigidity properties even if the indi-
vidual elements of the collection do not. For example, Fayad and Khanin [11] proved that
a collection of commuting diffeomorphisms of the circle whose rotation numbers satisfy a
simultaneous Diophantine condition are smoothly simultaneously conjugate to rotations.
Their result is a strengthening of an earlier result of Moser [25]. A single diffeomorphism
in such a collection might not satisfy the Diophantine condition on its own.

Although the two types of rigidity described above occur in the dissimilar hyperbolic
and elliptic settings, a result of Dolgopyat and Krikorian combines the two. They intro-
duce a notion of a Diophantine set of rotations of a sphere and use this notion to prove
that certain random dynamical systems with all Lyapunov exponents zero are conjugate
to isometric systems [10]. Our result is a generalization of this result to the setting of
isotropic manifolds. We now develop the language to state both precisely.

Let .f1; : : : ; fm/ be a tuple of diffeomorphisms of a manifold M . Let .!i /i2N be
a sequence of independent and identically distributed random variables with uniform
distribution on ¹1; : : : ; mº. Given an initial point x0 2 M , define xn D f!nxn�1. This
defines a Markov process on M . We refer to this process as the random dynamical sys-
tem associated to the tuple .f1; : : : ; fm/. Let f n! be defined to equal f!n ı � � � ı f!1 .
We say that a probability measure � on M is a stationary measure for this process if
m�1

Pm
iD1.fi /�� D �. A stationary measure is ergodic if it is not a non-trivial convex

combination of two distinct stationary measures. Fix an ergodic stationary measure �. For
�-almost every x, almost surely for any v 2 TxM n ¹0º, the limit

lim
n!1

1

n
ln kDxf n! vk (1)

exists and takes its value in a fixed finite list of numbers depending only on �:

�1.�/ � � � � � �dimM .�/: (2)

These are the Lyapunov exponents with respect to �. In fact, for almost every ! and
�-a.e. x there exists a flag V1 � � � � � Vj inside TxM such that if v 2 Vi n Vi�1 then the
limit in (2) is equal to �dimM�dimVi . The number of times a particular exponent appears
in (2) is given by dimVi � dimVi�1; this number is referred to as the multiplicity of the
exponent. For more information, see [20].

Our result holds for isotropic manifolds. By definition, an isotropic manifold is a
Riemannian manifold whose isometry group acts transitively on its unit tangent bundle.
The closed isotropic manifolds are Sn, RPn, C Pn, H Pn, and the Cayley projective plane.
In the following we write Gı for the identity component of a Lie group G.
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Theorem 1. Let M d be a closed isotropic Riemannian manifold other than S1. There
exists k0 such that if .R1; : : : ; Rm/ is a tuple of isometries of M such that the subgroup
of Isom.M/ generated by this tuple contains Isom.M/ı, then there exists �k0 > 0 such
that the following holds. Let .f1; : : : ; fm/ be a tuple of C1 diffeomorphisms satisfy-
ing maxi dCk0 .fi ; Ri / < �k0 . Suppose that there exists a sequence of ergodic stationary
measures �n for the random dynamical system generated by .f1; : : : ; fm/ such that
j�d .�n/j ! 0. Then there exists  2 Diff1.M/ such that for each i the map  fi �1 is
an isometry of M and lies in the subgroup of Isom.M/ generated by .R1; : : : ; Rm/.

Dolgopyat and Krikorian proved Theorem 1 in the case of Sn [10, Thm. 1].
Dolgopyat and Krikorian also obtained a Taylor expansion of the Lyapunov exponents

of the stationary measure of the perturbed system [10, Thm. 2]. Fix .R1; : : : ; Rm/ gen-
erating Isom.Sn/ı. Let .f1; : : : ; fm/ be a C k0 small perturbation of .R1; : : : ; Rm/ and
� be any ergodic stationary measure for .f1; : : : ; fm/. Let ƒr D �1 C � � � C �r denote
the sum of the top r Lyapunov exponents. In [10, Thm. 2], it is shown that the Lyapunov
exponents of � satisfy

�r .�/ D
ƒd

d
C
d � 2r C 1

d � 1

�
�1 �

ƒd

d

�
C o.1/j�d .�/j; (3)

where o.1/ goes to zero as maxi dCk0 .fi ; Ri /! 0. Using this formula Dolgopyat and
Krikorian obtain an even stronger dichotomy for systems on even-dimensional spheres:
either .f1; : : : ; fm/ is simultaneously conjugate to isometries or the Lyapunov exponents
of every ergodic stationary measure of the perturbation are uniformly bounded away
from zero. By using this result they show if .R1; : : : ; Rm/ generates Isom.S2n/ı and
.f1; : : : ; fm/ is a C k0 small perturbation such that each fi preserves volume, then vol-
ume is an ergodic stationary measure for .f1; : : : ; fm/ [10, Cor. 2].

It is natural to ask if a similar Taylor expansion can be obtained in the setting of
isotropic manifolds. Proposition 26 shows thatƒr may be Taylor expanded assuming that
.R1; : : : ; Rm/ generates Isom.M/ı and the induced action of Isom.M/ı on Grr .M/, the
Grassmannian bundle of r-planes in TM , is transitive.

In Theorem 40, we give a Taylor expansion relating �1 and �d which holds for
isotropic manifolds. However, we cannot Taylor expand every Lyapunov exponent as
in equation (3) because if a manifold does not have constant curvature then its isome-
try group cannot act transitively on the 2-planes in its tangent spaces. The argument of
Dolgopyat and Krikorian requires that the isometry group act transitively on the space of
k-planes in TM for 0 � k � d .

It is natural to ask why the proof of Theorem 1 does not work in the case of S1

even though S1 is isotropic. As Proposition 13 shows, for a tuple .R1; : : : ; Rm/ as in the
theorem, uniformly small perturbations of .R1; : : : ; Rm/ are uniformly Diophantine in
a sense explained below. This uniformity is used crucially in the proof when we change
the tuple of isometries that we are working with. The same uniformity of Diophantineness
does not hold for tuples of isometries of S1: a small perturbation may lose all Diophantine
properties. The reason that the proof of Proposition 13 does not work for S1 is that the
isometry group of S1 is not semisimple.
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There are not many other results like Theorem 1. In addition to the aforementioned
result of Dolgopyat and Krikorian, there are some results of Malicet. In [24], a similar lin-
earization result is obtained that applies to a particular type of map of T2 that fibers over
a rotation on S1. In a recent work, Malicet obtained a Taylor expansion of the Lyapunov
exponent for a perturbation of a Diophantine random dynamical system on the circle [23].

1.1. Outline

The proof of Theorem 1 follows the general argument of [10]. For readability, the argu-
ment in this paper is self-contained. While a number of the results below appear in [10],
we have substantially reformulated many of them and in many places offer a different
proof. Doing so is not merely a courtesy to the reader: the results in [10] are stated in too
narrow a setting for us to use. Simply stating more general reformulations would unduly
burden the reader’s trust. In addition, as will be discussed below, there are some over-
sights in [10] which we explain in Section 1.2 and that we have remedied in Section 5.
We have also stated intermediate results and lemmas in more generality than is needed for
the proof of Theorem 1 so that they may be used by others. Below we sketch the general
argument of the paper and emphasize some differences with the approach in [10].

The proof of Theorem 1 is by an iterative KAM convergence scheme. Fix a closed
isotropic manifold M . We start with a tuple .f1; : : : ; fm/ of diffeomorphisms close to
a tuple .R1; : : : ; Rm/ of isometries. We must find some smooth diffeomorphism  such
that zfi WD  fi �1 2 Isom.M/. To do this we produce a conjugacy  that brings each
fi closer to being an isometry. To judge the distance from being an isometry, we define a
strain tensor that vanishes precisely when a diffeomorphism is an isometry. By solving a
particular coboundary equation and using the fact that the Lyapunov exponents are zero,
we can construct  so that zfi has small strain tensor. In our setting, a diffeomorphism
with small strain is near to an isometry, so . zf1; : : : ; zfm/ is near to a tuple .R01; : : : ;R

0
m/ of

isometries. We then repeat the procedure using these new tuples as our starting point. The
results of performing a single step of this procedure comprise Lemma 39. Once Lemma 39
is proved, the rest of the proof of Theorem 1 is bookkeeping that checks that the procedure
converges. Most of the paper is in service of the proof Lemma 39, which gives the result
of a single step in the convergence scheme.

Proofs of technical and basic facts are relegated to a significant number of appendices.
This has been done to focus the main exposition on the important ideas in the proof of
Theorem 1 and not on the technical details. The appendices that might be most beneficial
to look at before they are referenced in the text are Appendices A and B, concerning C k

calculus and interpolation inequalities. Both contain estimates that are common in KAM
arguments. The organization of the main body of the paper reflects the order of the steps
in the proof of Lemma 39. There are several important results in the proof of Lemma 39,
which we now describe.

The first part of the proof of Lemma 39 requires that a particular coboundary equa-
tion can be tamely solved. The solution to this equation is one of the main subjects of
Section 2. The equation is solved in Proposition 16. This proposition is essential in the
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work of Dolgopyat and Krikorian [10] and its proof follows from the appendix to [9]; it
relies on a Diophantine property of the tuple .R1; : : : ; Rm/ of isometries. This property
is formulated in Section 2.2. The stability of this property under perturbations is crucial
in the proof and an essential feature of our setting. In addition, the argument in Sec-
tion 2 is different from Dolgopyat’s earlier argument because we use the Solovay–Kitaev
algorithm (Theorem 2), which is more efficient than the procedure used in the appendix
to [9].

Section 3 considers stationary measures for perturbations of .R1; : : : ; Rm/. Suppose
M is a quotient of its isometry group, its isometry group is semisimple, and ¹R1; : : : ;Rmº
is a Diophantine subset of Isom.M/. Suppose .f1; : : : ; fm/ is a small smooth perturba-
tion of .R1; : : : ;Rm/. There is a relation between a stationary measure � for the perturbed
system and the Haar measure. Proposition 23 relates integration against � to integration
against the Haar measure. Lyapunov exponents are calculated by integrating the ln Jaco-
bian against a stationary measure of an extended dynamical system on a Grassmannian
bundle over M . Consequently, this proposition relates stationary measures and their Lya-
punov exponents to the volume on a Grassmannian bundle.

The relationship between Lyapunov exponents and stationary measures is explained
in Section 4. Proposition 26 provides a Taylor expansion of the sum of the top r Lyapunov
exponents of a stationary measure�. Three terms appear in the Taylor expansion. The first
two have a direct geometric meaning, which we interpret in terms of strain tensors intro-
duced in Section 4.2. The final term in the Taylor expansion depends on a quantity U. /.
This quantity does not have a direct geometric interpretation. However, in the proof of
Lemma 39, we show that by solving the coboundary equation from Proposition 16 the
quantity U. / can be made to vanish. Once U. / vanishes, we have an equation directly
relating Lyapunov exponents to the strain. This equation then allows us to conclude that a
diffeomorphism with small Lyapunov exponents also has small strain. We reformulate in
a Riemannian geometric setting some arguments of [10] by using the strain tensor. This
gives coordinate-free expressions that are easier to interpret.

Section 5 contains the most important connection between the strain tensor and isome-
tries: diffeomorphisms of small strain on isotropic manifolds are near to isometries. The
basic geometric fact proved in Section 5 is Theorem 27, which is true on any manifold.
Theorem 27 is then used to prove Proposition 28, which is a more technical result adapted
for use in the KAM scheme. Proposition 28 then allows us to prove that our conjugate
tuple is near to a new tuple of isometries, which allows us to repeat the process.

All of the previous sections combine in Section 6 to prove Lemma 39. We then obtain
the main theorem, Theorem 1, and prove an additional theorem that relates the top and
bottom Lyapunov exponents of a perturbation, Theorem 40.

1.2. An oversight and its remedy

Section 5 is entirely new and different from anything appearing in [10]. Consequently,
the reader may wonder why it is needed. Section 5 provides a method of finding a tuple
.R01; : : : ; R

0
m/ of isometries near to the tuple . zf1; : : : ; zfm/ of diffeomorphisms. In [10],
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the new diffeomorphismsRm are found in the following manner. As in (10), one may find
vector fields Yi such that

expRi .x/ Yi .x/ D fi .x/:

If Z is a vector field on M , we define  Z , as in (11) in Section 3.1, to be the map
x 7! expx Z.x/. There is a certain operator, the Casimir Laplacian, which acts on vector
fields. This operator is defined and discussed in more detail in Section 2.2. Dolgopyat and
Krikorian then project the vector fields Yi onto the kernel of the Casimir Laplacian, to
obtain a vector field Y 0i . They then define R0i to equal  Y 0

i
ı Ri . This happens in the line

immediately below (19) in [10].
One difficulty is establishing that the maps .R01; : : : ;R

0
m/ are close to the . zfi ; : : : ; zfm/.

The argument for their nearness hinges on part (d) of Proposition 3 in [10], which essen-
tially says that, up to a third order error, the magnitude of the smallest Lyapunov exponent
is a bound on the distance. As written, the argument in [10] suggests that part (d) is an
easy consequence of part (c) of [10, Prop. 3]. However, part (d) does not follow. Here is
a simplification of the problem. Suppose that f WRn ! Rn is a diffeomorphism. Pick a
point x 2 Rn and write Dxf D AC B C C , where A is a multiple of the identity, B is
symmetric with trace zero, and C is skew-symmetric. The results in part (c) imply that
A and B are small, but they offer no information about C .1 Concluding that the norm
of Df is small requires that C be small as well. As C is skew-symmetric it is natural
to think of it as the germ of an isometry. Our modification to the argument is designed
to accommodate the term C by recognizing it as the “isometric” part of the differential.
Pursuing this perspective leads to the strain tensor and our Proposition 28. Conversation
with Dmitry Dolgopyat confirmed that there is a problem in the paper on this point and
that part (d) of Proposition 3 does not follow from part (c).

2. A Diophantine property and spectral gap

Fix a compact connected semisimple Lie groupG and let g denote its Lie algebra. Endow
G with the bi-invariant metric arising from the negative of the Killing form on g. We
denote this metric on G by d . We endow a subgroup H of G with the pullback of the
Riemannian metric from G and denote the distance on H with respect to the pullback
metric by dH . We use the manifold topology on G unless explicitly stated otherwise.
Consequently, whenever we say that a subset of G is dense, we mean this with respect
to the manifold topology on G. We say that a subset S of G generates G if the smallest
closed subgroup of G containing S is G. In other words, if hSi denotes the smallest
subgroup of G containing S , then S generates if hSi D G.

Suppose that S � G generates G. We begin this section by discussing how long a
word in the elements of S is needed to approximate an element of G. Then using this

1For those comparing with the original paper, A and B correspond to the terms q1 and q2,
respectively, which appear in part (c) of [10, Prop. 3].
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approximation we obtain quantitative estimates for the spectral gap of certain operators
associated to S . Finally, those spectral gap estimates allow us to obtain a “tameness”
estimate for a particular operator that arises from S . This final estimate, Proposition 16,
will be crucial in the KAM scheme that we use to prove Theorem 1.

The content of this section is broadly analogous to Appendix A in [9]. However,
our development follows a different approach and in some places we are able to obtain
stronger estimates.

2.1. The Solovay–Kitaev algorithm

Suppose that S is a subset of G. We say that S is symmetric if s 2 S implies s�1 2 S .
For a natural number n, let Sn denote the n-fold product of S with itself. Let S�1 be
¹s�1 W s 2 Sº. For n < 0, define Sn to equal .S�1/�n. The following theorem says that any
sufficiently dense symmetric subset S of a compact semisimple Lie group is a generating
set. More importantly, it also gives an estimate on how long a word in the generating set
S is needed to approximate an element of G to within error �. If w D s1 � � � sn is a word
in the elements of the set S , then we say that w is balanced if for each s 2 S , s appears
the same number of times in w as s�1 does.

Theorem 2 (Solovay–Kitaev algorithm [7, Thm. 1]). Suppose that G is a compact semi-
simple Lie group. There exist �0.G/ > 0, ˛ > 0 and C > 0 such that if S is any symmetric
�0-dense subset of G then the following holds. For any g 2 G and any � > 0, there exists
a natural number l� such that d.g; S l� / < �. Moreover, l� � C ln˛.1=�/. Further, there is
a balanced word of length l� within distance � of g.

Later, we use a version of this result that does not require that the set S be sym-
metric. Using a non-symmetric generating set significantly increases the word length
obtained in the conclusion of the theorem. It is unknown if there exists a version of the
Solovay–Kitaev algorithm that does not require a symmetric generating set and keeps the
O.ln˛.1=�// word length. See [3] for a partial result in this direction.

Proposition 3. Suppose that G is a compact semisimple Lie group endowed with a bi-
invariant metric. There exist �0.G/ > 0, ˛ > 0, and C � 0 such that if S is any �0-dense
subset of G then the following holds. For any g 2 G and any � > 0, there exists a natural
number l� such that d.g; S l� / < �. Moreover, l� � C��˛ .

Our weakened version of the Solovay–Kitaev algorithm relies on the following
lemma, which allows us to approximate the inverse of an element h by some positive
power of h.

Lemma 4. Suppose that G is a compact d -dimensional Lie group with a fixed bi-invari-
ant metric. Then there exists a constant C such that for all � > 0 and any h 2 G there
exists a natural number n < C=�d such that d.h�1; hn/ < �.

Proof. This follows from a straightforward pigeonhole argument. We coverG with sets of
diameter �. There exists a constant C such that we can coverG with at most C vol.G/=�d
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such sets, where d is the dimension of G. Consider now the first dC vol.G/=�d e iterates
of h2. By the pigeonhole principle, two of these must fall into the same set in the covering,
and so there exist natural numbers ni and nj such that 0 < ni < nj < dC vol.G/=.�d /e
and h2ni and h2nj lie in the same set in the covering. Thus d.h2ni ; h2nj / < �. As h is an
isometry it follows that d.e; h2nj�2ni / < � and hence d.h�1; h2nj�2ni�1/ < � as well.
This finishes the proof.

We now prove the proposition.

Proof of Proposition 3. Let OS D S [ S�1. As OS is a symmetric generating set of G, by
Theorem 2 for any � > 0 there exists a number l�=2DO.ln˛.1=�// such that for any g 2G
there exists an element h in OS l�=2 such that d.h; g/ < �=2. Further, by the statement of
Theorem 2, we know that h is represented by a balanced word w in OS l�=2 .

To finish the proof, we replace each element of w that is in S�1 by a word in Sj

for some uniform j > 0. To do this we show that there exists a fixed j such that the
elements of Sj approximate well the inverses of the elements of S . Write S D¹s1; : : : ; smº
and consider the element .s1; : : : ; sm/ in the group G � � � � � G (m terms). By applying
Lemma 4 to the groupG � � � � �G and the element .s1; : : : ; sm/, we find that there exists a
uniform constantC 0 and j <C 02dmldm

�=2
=�dm such that any s 2S�1 may be approximated

to distance �=.2l�=2/ by an element in Sj .
We now replace each element of S�1 appearing in w with a word in Sj that is at

distance �=.2l�=2/ from it. Call this new word w0. Because w is balanced, we replace
exactly half of the terms in w. Thus w0 is a word of length jl�=2=2C l�=2=2 as we have
replaced half the entries of w, which has length l�=2, with words of length j . Let h0 be the
element of G obtained by multiplying together the terms in w0.

Note that multiplication of any number of elements of G is 1-Lipschitz in each argu-
ment. Hence as we have modified the expression for h in exactly l�=2=2 terms and each
modification is of size �=.2l�=2/, h0 is at most �=2 away from h and hence at most � away
from g. Thus Sjl�=2=2Cl�=2=2 is �-dense in G and

jl�=2=2C l�=2=2 < C
00ldmC1
�=2

=�dm D O.ln.dmC1/˛.1=�/��dm/;

which establishes the proposition as m depends only on jS j.

We record one final result that asserts that if S � G generates, then the powers of S
individually become dense in G.

Proposition 5. Suppose that G is a compact connected Lie group. Suppose that S � G
generates G. Then for all � > 0 there exists a natural number n� such that Sn� is �-dense
in G.

Proof. Let ¹g1; : : : ; gmº be an �=2-dense subset of G. Because S generates, for each gi
there exist ni and wi 2 Sni such that d.gi ; wi / < �=2. By a pigeonhole argument similar
to the proof of Lemma 4, for all � > 0 there exists a natural number N such that for all
n � N , d.Sn; e/ < �. Thus there exists N such that for all n � N , Sn contains elements
within distance �=2 of the identity. Thus SNCmaxi ni is �-dense in G.
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2.2. Diophantine sets

We will now introduce a notion of a Diophantine subset of a compact connected semi-
simple Lie group G. Write g for the Lie algebra of G. We recall the definition of the
standard quadratic Casimir element in U.g/, the universal enveloping algebra of g. Write
B for the Killing form on g and let Xi be an orthonormal basis for g with respect to B .
We will also denote the inner product arising from the Killing form by h�; �i. Then the
Casimir element � is the element of U.g/ defined by

� D
X
i

X2i :

The element � is well-defined and central in U.g/. Elements of U.g/ act on the smooth
vectors of representations of G. Consequently, as � is central and every vector in an
irreducible representation .�;V / is smooth, �.�/ acts by a multiple of the identity. Given
an irreducible unitary representation .�; V /, define c.�/ by

c.�/ Id D ��.�/: (4)

The quantity c.�/ is positive in non-trivial representations. Further, as � ranges over all
non-trivial representations, c.�/ is uniformly bounded away from 0. For further informa-
tion see [29, §5.6].

Definition 6. LetG be a compact, connected, semisimple Lie group. We say that a subset
S �G is .C;˛/-Diophantine if the following holds for each non-trivial, irreducible, finite
dimensional unitary representation .�;V / ofG. For all non-zero v 2 V there exists g 2 S
such that

kv � �.g/vk � Cc.�/�˛kvk;

where c.�/ is defined in (4). We say that S is Diophantine if S is .C; ˛/-Diophantine for
some C; ˛ > 0. If .g1; : : : ; gm/ is a tuple of elements of G, then we say that this tuple is
.C; ˛/-Diophantine if the underlying set is .C; ˛/-Diophantine.

Our definition of Diophantine is slightly different from the definition in [9] as we refer
directly to irreducible representations. We choose this definition because it allows for a
unified analysis of the action of � in diverse representations of G.

It is useful to compare Definition 6 with the simultaneous Diophantine condition used
when studying translations on tori, as considered in [6] or [26]. The condition for tori
is a generalization of the simultaneous Diophantine condition considered by Moser [25]
for circle diffeomorphisms. Denote by h�; �i the standard inner product in Rd . A tuple
.�1; : : : ; �m/ of vectors in Rd defines a tuple of translations of Td . We say that this tuple
is .C; ˛/-Diophantine if for every non-zero k 2 Zd ,

max
1�i�m

min
l2Z
jh�i ; ki � l j �

C

kkk˛
: (5)

One can see the relationship between this definition and the one for compact semisimple
groups when we think of Zd as indexing the unitary representations of Td . Although
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these definitions apply to different types of groups, one can check that the estimates at
their core are equivalent: for a given unitary representation defined by k 2 Zd , use the �i
that achieves the maximum in (5) to act on the representation defined by k.

We now give a useful characterization of Diophantine subsets of compact semisimple
groups.

Proposition 7 ([9, Thm. A.3]). Suppose that S is a finite subset of a compact connected
semisimple Lie group G. Then S is Diophantine if and only if hSi D G. Moreover, there
exists �0.G/ such that any �0-dense subset of G is Diophantine.

Before proceeding to the proof we will show two preliminary results.

Lemma 8. Suppose that G is a compact connected semisimple Lie group. Suppose that
.�; V / is an irreducible unitary representation of G. Then for any v 2 V of unit length,
any X 2 g of unit length, and t � 0,

k�.exp.tX//v � vk � t
p
c.�/:

Proof. A similar argument to the following appears in [29, §5.7.13]. There exists an
orthonormal basis ¹X1; : : : ; Xnº of g such that X1 D X . Observe that

�.exp.tX//v � v D td�.X/v CO.t2/:

The transformation d�.X/ is skew-symmetric with respect to the inner product. Thus
d�.X/2 is positive semidefinite. Consequently,

hd�.X/v; d�.X/vi D �hd�.X/2v; vi � �h�.�/v; vi D c.�/kvk2:

Hence
k�.exp.tX/v/ � vk � t

p
c.�/CO.t2/:

For 0 � i � n, let ti D i
n
t . Then

k�.exp.tX//v � vk �
nX
iD1

k�.exp.tiX//v � �.exp.ti�1X//vk

�

nX
iD1

k�.exp.tX=n//v � vk � n
�
t

n

p
c.�/CO..t=n/2/

�
:

Taking the liminf of the right hand side as n!1 gives the result.

The following lemma will be of use in the proof of Proposition 10.

Lemma 9. Suppose that .�; V / is a non-trivial, irreducible, finite-dimensional, unitary
representation of a compact connected semisimple group G. Then for any v 2 V , there
exists g such that h�.g/v; vi D 0.

Proof. If such a g does not exist, then for all g 2G, �.g/v lies in the same half-space as v.
But then

R
G
�.g/v dg¤ 0 and is aG-invariant vector, which contradicts the irreducibility

of � .
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Proposition 10. Suppose that G is a compact connected semisimple Lie group. Then
there exist �0; C; ˛ > 0 such that any �0-dense subset of G is .C; ˛/-Diophantine. If S is
a subset of G such that Sn0 is �0-dense in G, then S is .C=n0; ˛/-Diophantine.

Proof. Let �0 equal the �0.G/ in Theorem 2, the Solovay–Kitaev algorithm. If S is
already �0-dense, let n0 D 1. By Theorem 2, there exist C and ˛ such that for each �
there exists l� � C ln˛.��1/ such that Sn0l� is �-dense in G. Suppose that .�; V / is a
non-trivial irreducible unitary representation ofG and suppose that v 2 V is a unit vector.
By Lemma 9 there exists g 2 G such that h�.g/v; vi D 0. Now fix � D 1=.100

p
c.�//.

Then there exists an element w 2 Sn0l� such that d.g;w/ < �. Thus by Lemma 8,

k�.g/v � �.w/vk � �
p
c.�/ <

1

100
:

By the triangle inequality, this implies that

k�.w/v � vk � 1:

Write w D g�11 � � � g
�n0l�
n0l�

where each �i 2 ¹˙1º and each gi 2 S . Let wi D g
�1
1 � � � g

�i
i .

Let w0 D e. By applying the triangle inequality n0l� times, we see that

n0l��1X
iD0

k�.wi /v � �.wiC1/vk � kv � �.w/vk � 1:

Thus there exists some i such that

k�.wi /v � �.wiC1/vk �
1

n0l�
:

Applying �.w�1i / and noting by our choice of � that l� � C ln˛.c.�//, we obtain

kv � �.g
�i
i /vk �

1

n0C 0 ln˛.c.�//
: (6)

Thus we are done as we have obtained an estimate that is stronger than the required lower
bound of C=c.�/˛ .

We now prove the equivalence of the Diophantine property appearing in Proposi-
tion 10 with that in Definition 6.

Proof of Proposition 7. To begin, suppose that S is Diophantine. For the sake of con-
tradiction, suppose that H WD hSi ¤ G. Consider the action of G on L2.G=H/ by left
translation. Note that H acts trivially. However, L2.G=H/ contains non-trivial represen-
tations of G. Thus S � H cannot be Diophantine, which is a contradiction.

For the other direction, suppose that hSi D G. Then by Proposition 5 there exists n
such that Sn is �0.G/-dense, and hence S is Diophantine by Proposition 10.

The stronger bound in (6) gives an equivalent characterization of Diophantineness.
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Corollary 11. Let G be a compact connected semisimple Lie group. A subset S of G is
Diophantine if and only if there exist C;˛ > 0 such that the following holds for each non-
trivial, irreducible, finite-dimensional, unitary representation .�; V / of G. For all v 2 V
there exists g 2 S such that

kv � �.g/vk �
kvk

C ln˛.c.�//
:

Diophantine subsets of a group are typical in the following sense.

Proposition 12. Suppose that G is a compact connected semisimple Lie group. Let U �
G �G be the set of ordered pairs .u1;u2/ such that ¹u1;u2º is a Diophantine subset ofG.
Then U is Zariski open and hence open and dense in the manifold topology on G �G.

Proof. Let U � G �G be the set of points .u1; u2/ such that ¹u1; u2º generates a dense
subset of G. Theorem 1.1 in [12] shows that U is Zariski open and non-empty. By Propo-
sition 7, this implies that ¹u1; u2º is Diophantine. As U is non-empty, the final claim
follows.

2.3. Polylogarithmic spectral gap

In this subsection, we study spectral properties of an averaging operator associated to a
tuple of elements of G. Consider a tuple .g1; : : : ; gm/ of elements of G. Let RŒG� denote
the group ring of G over R. From this tuple we form L WD .g1 C � � � C gm/=m 2 RŒG�.
The element L acts in representations ofG in the natural way. If .�;V / is a representation
of G, then we write L� for the action of L on V . The main result of this subsection is the
following proposition, which gives some spectral properties of L� under the assumption
that ¹g1; : : : ; gmº is Diophantine.

Proposition 13. Let G be a compact connected semisimple Lie group, .g1; : : : ; gm/ a
tuple of elements of G, and suppose that ¹g1; : : : ; gmº generates G. Then there exists
a neighborhood N of .g1; : : : ; gm/ in G � � � � � G and constants D1; D2; ˛ > 0 such
that if .g01; : : : :; g

0
m/ 2 N , then ¹g01; : : : ; g

0
mº is Diophantine and its associated averaging

operator L satisfies

kLn
�k � D1

�
1 �

1

D2 ln˛.c.�//

�n
for each non-trivial irreducible unitary representation .�; V /.

The proof of Proposition 13 uses the following lemma, which is a sharpening the
triangle inequality for vectors that are not colinear.

Lemma 14. Suppose that v; w are two vectors in an inner product space. Suppose that
kvk � kwk and let Ov D v=kvk and Ow D w=kwk. If

k Ov � Owk � �;

then
kv C wk � .1 � �2=10/kvk C kwk:
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Proof. We begin by considering the following estimate for unit vectors.

Claim 1. Suppose that the angle between two unit vectors Ov and Ow is � 2 Œ0; ��. Then

k Ov C wk � k Ovk C .1 � �2=10/k Owk:

Proof. It suffices to consider the two vectors Ov D .1; 0/ and Ow D .cos �; sin �/ in R2. We
have to show

k Ov C Owk2 �

�
k Ovk C

�
1 �

�2

10

�
k Owk

�2
:

From the definitions,
k Ov C Owk2 D 2C 2 cos �

and �
k Ovk C

�
1 �

�2

10

�
k Owk

�2
D 4 � 4

�2

10
C

�4

100
� 4 � 4

�2

10
:

Thus it suffices to show for � 2 Œ0; �� that

2C 2 cos � � 4 � 4
�2

10
;

which follows because for � 2 Œ0; �� we have the estimate cos � � 1 � �2=5.

We may prove the lemma once we have one more observation. Note that if Ov and Ow
are two unit vectors, then k Ov � Owk D � is less than the angle � between Ov and Ow because
the distance between Ov and Ow along a unit circle they lie on is precisely � . Thus we see
that � � � for 0 � � � � .

We now compute. Note that without loss of generality we may assume that kwk D 1,
which we do in the following. By the triangle inequality,

kv C wk � kvk k Ov C Owk C .1 � kvk/k Owk:

By the claim it then follows that

kv C wk � kvk..1 � �2/k Ovk C k Owk/C .1 � kvk/k Owk:

Noting that 0 � � � � for � 2 Œ0; ��, we then conclude:

kv C wk � kvk..1 � �2=10/k Ovk C k Owk/C .1 � kvk/k Owk

D .1 � �2=10/kvk C kwk:

Proof of Proposition 13. For convenience, letW D.g1; : : : ;gm/ and let SD¹g1; : : : ;gmº.
Let �0.G/ be as in Proposition 10. By Proposition 5, because hSi D G there exists some
n0 such that Sn0 is �0=2-dense in G. Then let N be the neighborhood of .g1; : : : ; gm/ in
G � � � � �G such that if p D .g01; : : : ; g

0
m/ 2 N then ¹g01; : : : ; g

0
mº
n0 is at least �0-dense

in G. It now suffices to obtain the given estimate for the set W D .g1; : : : ; gm/ using
only the assumption that Sn0 is �0-dense. Below, W n0 is the tuple of the mn0 words of
length n0 with entries in W .
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By Proposition 10, there exist .C;˛/ such that any �0-dense set is .C;˛/-Diophantine.
As Sn0 is �0-dense, so is Sn0S�n0 , and hence Sn0S�n0 is .C; ˛/-Diophantine.

Consider now a non-trivial irreducible finite-dimensional unitary representation
.�; V / of G. Since Sn0S�n0 is .C; ˛/-Diophantine, Corollary 11 implies that for any
unit length v 2 V there exist w1; w2 2 Sn0 such that

kv � �.w�11 w2/vk �
1

C ln˛.c.�//
;

and so
k�.w1/v � �.w2/vk �

1

C ln˛.c.�//
:

Hence by Lemma 14, since � is unitary

k�.w1/v C �.w2/vk �

�
1 �

1

10C 2 ln2˛.c.�//

�
k�.w1/vk C k�.w2/vk

�

�
2 �

1

10C 2 ln2˛.c.�//

�
kvk:

Then by the triangle inequality,

kLn0
� vk D

 1

jW jn0

X
w2W n0

�.w/v


�

1

jW jn0

�
k�.w1/v C �.w2/vk C

X
w2W n0n¹w1;w2º

k�.w/vk
�

�
1

jW jn0

�
2 �

1

10C 2 ln2˛.c.�//

�
kvk C

jW jn0 � 2

jW jn0
kvk

�

�
1 �

1

10C 2jW n0 j ln2˛.c.�//

�
kvk:

Interpolating shows that for all n � 0,

kLn
�k �

�
1 �

1

10C 2jW n0 j ln2˛.c.�//

��1�
1 �

1

10C 2jW n0 j ln2˛.c.�//

�n=n0
:

As .�; V / ranges over all non-trivial representations, c.�/ is uniformly bounded away
from 0; see [29, 5.6.7]. This implies that the first term above is uniformly bounded by
some D > 0 independent of � . Applying the estimate .1C x/� � 1C �x to the second
term then gives the proposition.

Notice that in Proposition 13 we obtain an entire neighborhood of our initial set S on
which we have the same estimates for L� . Consequently, because these estimates remain
true under small perturbations, we think of them as being stable. We will use the term
“stable” in the following precise sense.
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Definition 15. Suppose that T is some property of a tuple W D .g1; : : : ; gm/ with ele-
ments in a Lie group G. We say that T is stable at W D .g1; : : : ; gm/ if there exists a
neighborhood N of .g1; : : : ; gm/ in G � � � � � G such that if .g01; : : : ; g

0
m/ 2 N then T

holds for .g01; : : : ; g
0
m/. We will also say that T is stable without reference to a subset

when the relevant tuples that T is stable on are evident.

A crucial aspect of the Diophantine property in compact semisimple Lie groups is that
by Proposition 10 there is a stable lower bound on .C; ˛/. This stability will be essential
during the KAM scheme.

2.4. Diophantine sets and tameness

Consider a smooth vector bundleE over a closed manifoldM . We may consider the space
C1.M;E/ of smooth sections ofE. Consider a linear mapLWC1.M;E/!C1.M;E/.
We say that L is tame if there exists ˛ such that for all k there exists Ck such that for all
s 2 C1.M;E/,

kLskCk � CkkskCkC˛ :

See [16, §II.2.1] for more about tameness. The main result of this section is to show such
estimates for certain operators related to L.

Though L acts in any representation of G, we are most interested in the action of G
on the sections of certain vector bundles, which we now describe. Suppose that K is
a closed subgroup of G and that E is a smooth vector bundle over G=K. We say that
E is a homogeneous vector bundle over G=K if G acts on E by bundle maps and this
action projects to the action of G on G=K by left translation. We now give an explicit
description of all homogeneous vector bundles over G=K via the Borel construction. See
[29, Ch. 5] for more details about this topic and what follows. Suppose that .�; E0/ is
a finite-dimensional unitary representation of K. Form the trivial bundle G � E0. Then
K acts on this bundle by .g; v/ 7! .gk; �.k/�1v/. Then .G � E0/=K is a vector bundle
over G=K that we denote by G �� E0. Note, for instance, that C1.G;R/ is the space
of sections of the homogeneous vector bundle obtained from the trivial representation
of ¹eº < G. The left action of G on G � E0 descends to G �� E0, and hence this is a
homogeneous vector bundle.

In order to do analysis in a homogeneous vector bundle, we must introduce some
additional structures. Suppose that E D G �� E0 is a homogeneous vector bundle. The
base G=K comes equipped with the projection of the Haar measure on G. As the action
ofK onG �E0 is isometric on fibers, the fibers ofE are naturally endowed with an inner
product. We may then consider the space L2.E/ of all L2 sections of E. In addition, we
will write C1.E/ for the space of all smooth sections of E. The action of G on E
preserves L2.E/ and C1.E/.

We recall briefly how one may do harmonic analysis on sections of such bundles.
As before, let � be the Casimir operator, which is an element of U.g/. Then � acts on
the C1 vectors of any representation ofG. Denote by� the differential operator obtained
by the action of �� on C1.E/. Then � is a hypoelliptic differential operator on E. We
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then use the spectrum of � to define for any s � 0 the Sobolev norm H s in the following
manner. L2.E/may be decomposed as the Hilbert space direct sum of finite-dimensional
irreducible unitary representations V� . Write � D

P
� �� for the decomposition of an

element � 2 L2.E/. Then the s-Sobolev norm is defined by

k�k2H s D
X
�

.1C c.�//sk��k
2
L2
:

We write kf kC s for the usual C s norm of a function or section of a vector bundle. It is not
always necessary to work with the decomposition of L2.E/ into irreducible subspaces;
instead one can use a coarser decomposition as follows. We let H� denote the subspace
of L2.E/ on which � acts by multiplication by � > 0. There are countably many such
subspaces H� and each is finite-dimensional. In what follows, those functions that are
orthogonal to the trivial representations in L2.E/ will be of particular importance. We
denote by L20.E/ the orthogonal complement of the trivial representations in L2.E/, and
C10 .E/ the subspace L20.E/ \ C

1.E/.
We now consider the action of L on the sections of a homogeneous vector bundle.

Proposition 16 (Tameness [10, Prop. 1]). Suppose that .g1; : : : ; gm/ is a Diophantine
tuple with elements in a compact connected semisimple Lie group G. Suppose that E is
a homogeneous vector bundle that G acts on. Then there exist constants C1; ˛1; ˛2 > 0
such that for any s � 0 there exists Cs such that for any non-zero � 2 C10 .G=K;E/,

k.Id �L/�1�kH s � C1k�kH sC˛1 ; k.Id �L/�1�kC s � Csk�kC sC˛2 :

Moreover, these estimates are stable.

Proof. As before, letH� be the �-eigenspace of� acting on sections ofE. Let L� denote
the action of L on H�. From Proposition 13, we see that there exist D1; D2 and ˛3 such
that for all � > 0, kLn

�
kH0 � D1.1 � 1=.D2 ln˛3.��///n. Thus there exists C3 such that

k.Id � L�/
�1kH0 � C3 ln˛3.�/. Now observe that in the following sum � ¤ 0 by our

assumption that � is orthogonal to the trivial representations contained in L2.E/:

k.Id �L/�1�k2H s D
X
�>0

.1C �/sk.Id �L�/
�1��k

2
L2

�

X
�>0

.1C �/sk.Id �L�/
�1
k
2
k��k

2
L2

�

X
�>0

C 23 ln2˛3.�/.1C �/sk��k2L2

�

X
�>0

C 24 .1C �/
sC˛1k��k

2
L2

� C 24 k�k
2

H sC˛1
;

for any ˛1 > 0 and sufficiently large C4. The second estimate in the proposition then
follows from the first by applying the Sobolev embedding theorem.
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2.5. Application to isotropic manifolds

We now introduce the class of isotropic manifolds, which are the subject of this paper and
whose isometry groups may be studied along the above lines. We say that M is isotropic
if Isom.M/ acts transitively on the unit tangent bundle of M , T 1M . This is equivalent
to Isom.M/ı acting transitively on T 1M . There are not many isotropic manifolds. In
fact, all are globally symmetric spaces. The following is the complete list of all compact
isotropic manifolds:

(1) Sn D SO.nC 1/=SO.n/, sphere,

(2) R Pn D SO.nC 1/=O.n/, real projective space,

(3) C Pn D SU.nC 1/=U.n/, complex projective space,

(4) H Pn D Sp.nC 1/=.Sp.n/ � Sp.1//, quaternionic projective space,

(5) F4=Spin.9/, Cayley projective plane.

A proof of this classification may be found in [30, Thm. 8.12.2].
Though S1 is an isotropic manifold, we will exclude it in all future statements because

its isometry group is not semisimple. The reason that we study isotropic manifolds is that
if M is an isotropic manifold other than S1, then Isom.M/ is semisimple.

Lemma 17. Suppose that M is a compact connected isotropic manifold other than S1.
Then Isom.M/ is semisimple. The same is true for Isom0.M/, the connected component
of the identity.

For a proof of this lemma, see [28], which computes the isometry groups for each of
these spaces explicitly. In fact, these isometry groups all have simple Lie algebras.

One minor issue with applying what we have developed so far to isotropic manifolds is
that Isom.M/ need not be connected. Even in the case of S2, Isom.M/ is disconnected.
In fact, Dolgopyat and Krikorian assume that the isometries in their theorem all lie in
the identity component of Isom.M/ and hence are rotations. Here, we consider the full
isometry group. Hence Theorem 1 is a generalization even in the case of Sn. That said,
the generalization is minor: the identity component is index 2 in the full isometry group.

Although connectedness of Isom.M/ has not been the crux of previous arguments, if
Isom.M/ ¤ Isom.M/ı, then there are “extra” representations of Isom.M/ that appear in
the definition of Diophantineness that would need to be dealt with slightly differently. For
this reason we give the following definition, which is adapted to the case where Isom.M/

is not connected.

Definition 18. We say that a tuple .g1; : : : ; gm/ with each gi 2 Isom.M/ is Diophantine
if there exists n such that if S D ¹g1; : : : ; gmº then Sn \ Isom.M/ı is .C;˛/-Diophantine
for some C; ˛ > 0. We say that such a tuple is .C; ˛; n/-Diophantine.

It follows from Proposition 7 that if a tuple is Diophantine, then there exists a neigh-
borhood of that tuple such that the constants C; ˛; n may be taken to be uniform over that
neighborhood. Thus Diophantineness in this more general sense is a stable property. The
following analogue of Proposition 19 is then immediate.
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Proposition 19. Let M be a closed isotropic manifold of dimension at least 2 and S
be a finite subset of Isom.M/. The set S is Diophantine if and only if Isom.M/ı � hSi.
Moreover, there exist �0.M/;C;˛;n > 0 such that any subset of Isom.M/ that is �0-dense
in Isom.M/ı is stably .C; ˛; n/-Diophantine.

We will show a tameness result in this setting. The important point is that Isom.M/ı

is a semisimple connected Lie group and TM is a homogeneous vector bundle that
Isom.M/ı acts on. Further, due to M being isotropic, L2.M; TM/ contains no triv-
ial representations of Isom.M/ı. Thus we are almost in a position where we can apply
Proposition 16. There is one small issue: there may be representations of Isom.M/ that
are trivial on Isom.M/ı and hence the previous arguments do not apply directly to these
representations. However, for the purpose of studying sections of TM , studying repre-
sentations of Isom.M/ı suffices. The following proposition explains how one may get
around this issue to recover the appropriate analog of Proposition 13. It is important to
note that there are many choices of a “Laplacian” acting on vector fields over a manifold,
and they may not all be the same. In our case, we are choosing to work with the Casimir
Laplacian, which arises from viewing TM as a homogeneous vector bundle. Given a tuple
.g1; : : : ; gm/ of isometries of M , the associated operator L that acts on L2.M; TM/ is
defined for a vector field V by V 7! m�1

Pm
iD1.Dgi /�V .

Proposition 20. Suppose thatM is a closed isotropic manifold with dimM � 2. Suppose
that .g1; : : : ; gm/ is a Diophantine tuple with elements in Isom.M/. There exists a neigh-
borhood N of .g1; : : : ; gm/ in Isom.M/ � � � � � Isom.M/ and constants D1; D2; ˛ > 0
such that if .g01; : : : ; g

0
m/ 2 N , then ¹g01; : : : ; g

0
mº is Diophantine. Let H� denote the

�-eigenspace of � acting on sections of TM . For any tuple in this neighborhood, the
associated operator L acts on L2.M; TM/ and preserves the H�-eigenspaces. In fact,
writing L� for this induced action we have

kLn
�k � D1

�
1 �

1

D2 ln˛.�/

�n
:

The same holds for the eigenspaces H� of � acting on other bundles over M assuming
that Isom.M/ acts isometrically on the space of sections of those bundles. In cases where
there is a trivial representation, we must also assume � > 0. Examples of such bundles are
L2.M;R/ as well as L2.Grr .M/;R/ when Isom.M/ı acts transitively on the r-planes
in TM .

Proof. The key steps in the proof are substantially similar to those in Proposition 13, once
we show that the elements of Isom.M/ all preserve the spaces H�. Let � be a bundle as
in the statement of the proposition that Isom.M/ acts on isometrically.

Claim 2. Suppose that V � � is an irreducible representation of Isom.M/ı isomorphic
to .�; W /. Then for any k 2 Isom.M/ı, kV is an irreducible representation of V iso-
morphic to .� ı ˛; W / for some automorphism ˛ of Isom.M/ı. In particular, c.� ı ˛/
D c.�/.
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Proof. Let gk D k�1gk as usual. We claim that for any k 2 Isom.M/, kV is a rep-
resentation of Isom.M/ı. To see this, note that for v 2 V , we have gkv D kgkv, but
gk 2 Isom.M/ı, so kgkv 2 kV . Moreover, it is straightforward to see that the represen-
tation of Isom.M/ı on kV is isomorphic to the representation .� ı ˛;W / where ˛ is the
automorphism g 7! gk .

We now claim that c.� ı ˛/ D c.�/. Because ˛ is an automorphism, it preserves the
Killing form, and hence we can write the Casimir element as

P
i .d˛

�1.Xi //
2. Now note

that if one traces through the computation of the value c.� ı ˛/ for the representation
� ı ˛, then the ˛�1 we have introduced cancels with the ˛. Thus the computation reduces
to the computation of c.�/ with the original expression

P
i X

2
i . Hence c.� ı ˛/ D c.�/.

To conclude from this point, one uses the same argument as in Proposition 13, except
we start with the set Sn0 and only make use of the elements in Sn0 \ Isom.M/ı. No
issues arise because any terms that do not lie in Isom.M/ı are isometries of H� as we
have now shown.

Having established the previous proposition the following is immediate and may be
shown by repeating the argument of Proposition 16.

Proposition 21. Suppose thatM is a closed isotropic manifold with dimM � 2. Suppose
that .g1; : : : ; gm/ is a Diophantine tuple with elements in Isom.M/. There exist constants
C1; ˛1; ˛2 > 0 such that for any s � 0 there exists Cs such that for any � 2 C1.M;TM/,

k.Id �L/�1�kH s � C1k�kH sC˛1 ; k.Id �L/�1�kC s � Csk�kC sC˛2 :

Moreover, these estimates are stable. The same holds for the action of L on any of the
sections of any of the bundles that Proposition 20 applies to.

3. Approximation of stationary measures

In this section, we introduce the notion of a stationary measure associated to a random
dynamical system. We consider stationary measures of certain random dynamical systems
associated to a Diophantine subset of a compact semisimple Lie group as well as pertur-
bations of these systems. We begin by introducing these systems and some associated
transfer operators. In Proposition 23, we give an asymptotic expansion of the stationary
measures of a perturbation.

3.1. Random dynamical systems and their transfer operators

We now give some basic definitions concerning random dynamical systems. For general
treatments of random dynamical systems and their basic properties, see [20] or [1]. If
.f1; : : : ; fm/ is a tuple of maps of a standard Borel space M , then these maps generate
a uniform Bernoulli random dynamical system on M . This dynamical system is given by
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choosing an index 1� i �m uniformly at random and then applying the function fi toM .
To iterate the system further, one chooses additional independent uniformly distributed
indices and repeats. We always use the words random dynamical system to mean uniform
Bernoulli random dynamical system in the sense just described.

Associated to this random dynamical system are two operators. The first operator is
called the averaged Koopman operator. It acts on functions and is defined by

M� WD
1

m

mX
iD1

� ı fi : (7)

The second operator is called the averaged transfer operator. It acts on measures and is
defined by

M�� WD
1

m

mX
iD1

.fi /��: (8)

Depending on the space M , we may restrict the domains of these operators to a suitable
subset of the spaces of functions and measures onM . We say that a measure is stationary
if M�� D �. We assume that stationary measures have unit mass.

In this paper, we take M to be a compact homogeneous space G=K. If g 2 G,
then left translation by g gives an isometry of G=K that we also call g. As before,
a tuple .g1; : : : ; gm/ with each gi in G generates a random dynamical system on G=K.
We will also consider perturbations of this random dynamical system. Consider a tuple
.f1; : : : ; fm/ where each fi is in Diff1.G=K/. This collection also generates a random
dynamical system on G=K. The indices 1; : : : ; m give a natural way to compare the two
systems. We refer to the initial system as homogeneous or linear and to the latter system
as non-homogeneous or non-linear.

We will simultaneously work with a homogeneous and non-homogeneous systems, so
we now introduce notation to distinguish the transfer operators of each. We write M for
the averaged Koopman operator associated to the system generated by .g1; : : : ; gm/, and
we write M� for the averaged Koopman operator associated to .f1; : : : ; fm/. Analogously
we use the notation M� and M�� .

Later we will compare the homogeneous system given by a tuple .g1; : : : ; gm/ and a
non-homogeneous perturbation .f1; : : : ; fm/. We thus introduce the notation

"k WD max
i
dCk .fi ; gi /; (9)

to describe how large a perturbation is. In addition, it will be useful to have a linearization
of the difference between fi and gi . The standard way to do this is via a chart on the
Fréchet manifold Diff1.G=K/. If dC0.fi ; gi / < inj.G=K/, then we associate with fi
the vector field Yi defined at gi .x/ 2 G=K by

Yi .gi .x// WD exp�1gi .x/ fi .x/; (10)

where we choose the minimum length preimage of fi .x/ in Tgi .x/.G=K/ under the map
exp�1

gi .x/
. In addition, if Y is a vector field on M , then we define  Y WM ! M to be the
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map
 Y W x 7! expx.Y.x//: (11)

The following theorem asserts the existence of Lyapunov exponents for random
dynamical systems.

Theorem 22 ([20, Ch. 3, Thm. 1.1]). Suppose that E is a measurable vector bundle over
a Borel space M . Suppose that F1; F2; : : : is a sequence of independent and identically
distributed bundle maps of E with common distribution � and suppose that � has finite
support. Suppose that � is an ergodic �-stationary measure onM for the random dynam-
ics on M induced by those on E.

Then there exists a list of numbers, the Lyapunov exponents,

�1 < �s < �s�1 < � � � < �1 <1;

such that for �-a.e. x 2 M and almost every realization of the sequence, there exists a
filtration of linear subspaces

0 � V s � � � � � V 1 � Ex

such that, for that particular realization of the sequence, if � 2V iC1 nV i , where V i �¹0º
for i > s, then

lim
n!1

1

n
ln kF n ı � � � ı F 1�k D �i :

3.2. Approximation of stationary measures

Let dm denote the pushforward of Haar measure to G=K. Note that Haar measure is
stationary for the homogeneous random dynamical system given by .g1; : : : ; gm/. The
following proposition compares the integral against a stationary measure � for a per-
turbation .f1; : : : ; fm/ and the Haar measure. Up to higher order terms, the difference
between integrating against Haar and against � is given by the integral of a particular
function U.�/. We obtain an explicit expression for U.�/, which is useful because we
can tell when U.�/ vanishes and thus when � is near to Haar. Compare the following
with [10, Prop. 2].

Proposition 23. Suppose that S D .g1; : : : ; gm/ is a Diophantine tuple with elements
in a compact connected semisimple group G or elements in Isom.M/ for an isotropic
manifold M with dimM � 2. Let G=K be a quotient of G in the former case or a space
Isom.M/ı acts transitively on in the latter. There exist constants k and C such that if
.f1; : : : ; fm/ is a tuple with elements in Diff1.G=K/ with "0 D maxi dC0.fi ; gi / <
inj.G=K/, then the following holds for each stationary measure � for the uniform
Bernoulli random dynamical system generated by the fi . Let Yi D exp�1

gi .x/
fi .x/. Then

for any � 2 C1.G=K/, we haveZ
G=K

� d� D

Z
G=K

� dmC

Z
G=K

U.�/ dmCO."2kk�kCk /; (12)
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where dm denotes the normalized pushforward of Haar measure to G=K and

U.�/ WD
1

m

mX
iD1

rYi .Id �M/�1
�
� �

Z
� dm

�
: (13)

Moreover, ˇ̌̌̌Z
U.�/ dm

ˇ̌̌̌
� Ck�kCk

 mX
iD1

Yi


Ck
; (14)

and the constants, including the constant in the big-O in (12), are stable in S .

Proof. The proof is similar to the proof of [24, Prop. 4]. We write the proof for the con-
nected groupG; the proof for Isom.M/ is identical with the use of Proposition 21 instead
of Proposition 16.

Note that a smooth real-valued function defined on G=K is naturally viewed as a
section of the trivial bundle over G=K. If we view the averaged Koopman operator M

associated to .g1; : : : ; gm/ as acting on the sections of the trivial bundle G=K � R, then
M satisfies the hypotheses of Proposition 16. Thus there exists ˛ and constants Cs such
that for any � 2 C10 .G=K/, the space of integral 0 smooth functions on G=K,

k.Id �M/�1�kC s � Csk�kC sC˛ : (15)

Observe that for any i ,

j� ı fi .x/ � � ı gi .x/j � "0k�kC1 :

Since � is M�� -invariant, this implies thatˇ̌̌̌Z
.� �M�/ d�

ˇ̌̌̌
D

ˇ̌̌̌Z
.M"� �M�/ d�

ˇ̌̌̌
� "0k�kC1 :

Substituting .Id �M/�1.� �
R
� dm/ for the function � in the previous line and using

(15) yields a first order approximation:ˇ̌̌̌Z
� d� �

Z
� dm

ˇ̌̌̌
� "0C1k�kC1C˛ : (16)

We now use this first order approximation to obtain a better estimate. Note the Taylor
expansion

� ı fi .x/ � � ı gi .x/ D .rYi�/.gi .x//CO."
2
0k�kC2/:

Integrating against � yieldsZ
.� �M�/ d� D

Z
.M"� �M�/ d�

D

Z
1

m

mX
iD1

rYi�.gi .x// d�CO."
2
0k�kC2/:
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We now plug in .Id�M/�1.� � s � dm/ for � in the previous line and use (15) to obtainZ
� d� �

Z
� dm D

Z
1

m

mX
iD1

�
rYi .Id �M/�1

�
� �

Z
� dm

��
.gi .x// d�

CO."20k�kC2C˛ /:

Using (16) on the first term on the right hand side above yieldsZ
� d� �

Z
� dm D

Z
1

m

mX
iD1

�
rYi .Id �M/�1

�
� �

Z
� dm

��
.gi .x// dm

CO
�
"0

 mX
iD1

rYi .Id �M/�1�

C1C˛

�
CO."20k�kC2C˛ /: (17)

Note that  mX
iD1

rYi .Id �M/�1�

C1C˛

D O."2C˛k.Id �M/�1�kC2C˛ /:

The application of (15) to k.Id �M/�1�kC2C˛ then shows that the first big-O term
in (17) is O."0"2C˛k�kC2C2˛ /. Thus,Z

� d� �

Z
� dm D

Z
1

m

mX
iD1

�
rYi .Id �M/�1

�
� �

Z
� dm

��
.gi .x// dm

CO."22C˛k�kC2C2˛ /:

Now, by translation invariance of the Haar measure we may remove the gi ’s:Z
� d��

Z
� dmD

Z
1

m

mX
iD1

rYi .Id�M/�1
�
��

Z
� dm

�
dmCO."22C˛k�kC2C2˛ /:

This proves everything except (14).
We now estimate the integral of

U.�/ D
1

m

mX
iD1

rYi .Id �M/�1
�
� �

Z
� dm

�
D r 1

m

Pm
iD1 Yi

.Id �M/�1
�
� �

Z
� dm

�
;

against Haar. By (15) there exists C1 such that.Id �M/�1
�
� �

Z
� dm

�
C1
� C1k�kC1C˛ ;

which establishes equation (14) by a similar argument to the estimate of the big-O term
occurring in the previous part of this proof.



J. DeWitt 2920

4. Strain and Lyapunov exponents

In this section we study the Lyapunov exponents of perturbations of isometric systems.
The main result is Proposition 26, which gives a Taylor expansion of the Lyapunov expo-
nents of a perturbation. The terms appearing in the Taylor expansion have a particular
geometric meaning. We explain this meaning in terms of two “strain” tensors associated
to a diffeomorphism. These tensors measure how far a diffeomorphism is from being an
isometry. After introducing these tensors, we prove Proposition 26. The Lyapunov expo-
nents of a random dynamical system may be calculated by integrating against a stationary
measure of a certain extension of the original system. By using Proposition 23, we are
able to approximate such stationary measures by the Haar measure and thereby obtain a
Taylor expansion.

4.1. Norms on tensors

Throughout this paper we use the pointwise L2 norm on tensors, which we now describe.
For a more detailed treatment, see the discussion surrounding [22, Prop. 2.40]. If V is an
inner product space with orthonormal basis Œe1; : : : ; en�, then V ˝k has a basis of tensors
of the form

ei1 ˝ � � � ˝ eik

where 1� ij � n for each 1� j � k. We declare the vectors of this basis to be orthonormal
for the inner product on V ˝k . This norm is independent of the choice of orthonormal
basis. For a continuous tensor field T on a closed Riemannian manifoldM , we write kT k
for maxx2M kT .x/k. If T is a tensor on a Riemannian manifoldM , we define itsL2 norm
in the expected way by integrating the norm of T .x/ as a tensor on TxM over all points
x 2M , i.e.

kT kL2 D

�Z
M

kT .x/k2 dvol.x/
�1=2

:

4.2. Strain

If a diffeomorphism of a Riemannian manifold is an isometry, then it pulls back the metric
tensor to itself. Consequently, if we are interested in how near a diffeomorphism is to
being an isometry, it is natural to consider the difference between the metric tensor and
its pullback. This leads us to the following definition.

Definition 24. Suppose that f is a diffeomorphism of a Riemannian manifold .M; g/.
We define the Lagrangian strain tensor associated to f to be

Ef WD 1
2
.f �g � g/:

This definition is consonant with the definition of the Lagrangian strain tensor that
appears in continuum mechanics (cf. [21]).
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The strain tensor will be useful for two reasons. First, it naturally appears in the Taylor
expansion in Proposition 26, which will allow us to conclude that a random dynamical
system with small Lyapunov exponents has small strain. Secondly, we prove in The-
orem 27 that for certain manifolds, a diffeomorphism with small strain is near to an
isometry. The combination of these two things will be essential in the proof of our main
linearization result, Theorem 1, which shows that perturbations with all Lyapunov expo-
nents zero are conjugate to isometric systems.

We now introduce two refinements of the strain tensor that will appear in the Taylor
expansion in Proposition 26. Note that Ef is a .0; 2/-tensor. Consequently, we may take
its trace with respect to the ambient metric g.

Definition 25. Suppose that f is a diffeomorphism of a Riemannian manifold .M; g/.
We define the conformal strain tensor by

E
f
C
WD

Tr.f �g � g/
2d

g:

We define the non-conformal strain tensor by

E
f
NC
WD Ef �E

f
C D

1

2

�
f �g � g �

Tr.f �g � g/
d

g

�
:

4.3. Taylor expansion of Lyapunov exponents

Suppose that M is a manifold and that f is a diffeomorphism of M . Let Grr .M/

denote the Grassmannian bundle of r-planes in TM . When working with Grr .M/ we
write a subspace of TxM as Ex to emphasize the basepoint. Then f naturally induces
a map F W Grr .M/ ! Grr .M/ by sending a subspace Ex 2 Grr .TxM/ to DxfEx 2
Grr .Tf .x/M/. If we have a random dynamical system on M , then by this construction
we naturally obtain a random dynamical system on Grr .M/. The following proposition
should be compared with [10, Prop. 3].

Proposition 26. Suppose thatM is a compact connected Riemannian manifold such that
Isom.M/ is semisimple and that Isom.M/ı acts transitively on Grr .M/. Suppose that
S D .g1; : : : ; gm/ is a Diophantine tuple of elements of Isom.M/. Then there exist � > 0
and k > 0 such that if .f1; : : : ; fm/ is a tuple with elements in Diff1.M/ such that
dCk .fi ; gi / < �, then the following holds. Suppose that � is an ergodic stationary mea-
sure for the random dynamical system obtained from .f1; : : : ; fm/. Let ƒr be the sum of
the top r Lyapunov exponents of �. Then

ƒr .�/ D �
r

2dm

mX
iD1

Z
M

kE
fi
C k

2 dvolC
r.d � r/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
fi
NC k

2 dvol

C

Z
Grr .M/

U. / dvolCO."3k/: (18)

where  D 1
m

Pm
iD1 ln det.Dfi j Ex/, "k D maxi dCk .fi ; gi /, U is defined as in Propo-

sition 23, and det is defined in Appendix D.
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Proof. Given the random dynamical system on M generated by the tuple .f1; : : : ; fm/,
there is the induced random dynamical system on Grr .M/ generated by .F1; : : : ; Fm/ as
described before the statement of the proposition. The Lyapunov exponents of the system
onM may be obtained from the system on Grr .M/ in the following way. By [20, Ch. III,
Thm. 1.2], given an ergodic stationary measure � onM , there exists a stationary measure
� on Grr .M/ such that

ƒr .�/ D
1

m

mX
iD1

Z
Grr .M/

ln det.Dfi j Ex/ d�.Ex/:

Reversing the order of summation, this is equal toZ
Grr .M/

1

m

mX
iD1

ln det.Dfi j Ex/ d�.Ex/: (19)

As Isom.M/ acts transitively on Grr .M/, Grr .M/ is a homogeneous space of Isom.M/.
Thus as .g1; : : : ; gm/ is Diophantine, we may apply Proposition 23 to approximate the
integral in (19). Letting U be as in that proposition, there exists k such that

ƒr .�/ D

Z
Grr .M/

1

m

mX
iD1

ln det.Dfi j Ex/ dvol.Ex/

C

Z
Grr .M/

U

�
1

m

mX
iD1

ln det.Dfi j Ex/
�
dvol.Ex/

CO

��
max
i
dCk .Fi ; Gi /

�2 mX
iD1

ln det.Dfi j Ex/

Ck

�
: (20)

We now estimate the error term. The following two estimates follow by working in a chart
on Grr .M/. If f; g are two maps of M and F;G are the induced maps on Grr .M/, then
dCk .F;G/ D O.dCkC1.f; g//. In addition, by Lemma 58 in Appendix D we have mX

iD1

ln det.Dfi j Ex/

Ck
D O."kC1/: (21)

Thus the error term in (20) is small enough to conclude (18).
To finish, we apply the Taylor expansion in Proposition 59 of Appendix E toZ

Grr .M/

ln det.Dfi j Ex/ dvol.Ex/;

which gives precisely the first two terms on the right hand side of (18) and an error that
is O."31/.

5. Diffeomorphisms of small strain: extracting an isometry in the KAM scheme

In this section we prove Proposition 28, which shows that a diffeomorphism of small
strain on an isotropic manifold is near to an isometry. In the KAM scheme, we will see that
diffeomorphisms with small Lyapunov exponents are low strain and hence conclude by
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Proposition 28 that they are near to isometries. Proposition 28 follows from Theorem 27,
which shows that certain diffeomorphisms with small strain of a closed Riemannian man-
ifold are C 0 close to the identity.

Theorem 27. Suppose that .M; g/ is a closed Riemannian manifold. Then there exist
1 > r > 0 and C > 0 such that if f 2 Diff2.M/ and

(1) there exists x 2M such that f .x/ D x and kDxf � Id k D � < r;

(2) kf �g � gk D � < r ,

(3) dC2.f; Id/ D � < r ,

then for all  2 .0; r/,

dC0.f; Id/ � C.� C � C �
�1/:

Theorem 27 is the main ingredient in the proof of our central technical result.

Proposition 28. Suppose that .M; g/ is a closed isotropic Riemannian manifold. Then
for all � > 0 and all integers ` > 0, there exist k and C; r > 0 such that for every f 2
Diffk.M/, if there exists an isometry I 2 Isom.M/ such that

(1) dCk .I; f / < r ,

(2) kf �g � gkH0 < r ,

then there exists an isometry R 2 Isom.M/ such that

dC0.R; I / < C.dC2.f; I /C kf
�g � gk1��

H0
/; (22)

dC`.f;R/ < C
�
kf �g � gk

1=2��

H0
dC2.f; I /

1=2��
�
: (23)

Though the statement of Proposition 28 is technical, its use in the proof of Theorem 1
is fairly transparent: the proposition produces an isometry near to a diffeomorphism with
small strain, which is the essence of the iterative step in the KAM scheme. This remedies
the gap in [10].

5.1. Low strain diffeomorphisms on a general manifold: proof of Theorem 27

The main geometric idea in the proof of Theorem 27 is to study distances by intersecting
spheres. In order to show that a diffeomorphism f is close to the identity, we must show
that it does not move points far. As we shall show, a diffeomorphism of small strain
distorts distances very little. Consequently, a diffeomorphism of small strain nearly carries
spheres to spheres. If we have two points x and y that are fixed by f , then the unit spheres
centered at x and y are carried near to themselves by f . Consequently, the intersection of
those spheres will be nearly fixed by f . By considering the intersection of spheres in this
way, we may take a small set on which f nearly fixes points and enlarge that set until it
fills the whole manifold.

Before the proof of the theorem we prove several lemmas.
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Lemma 29. Let M be a closed Riemannian manifold. There exists C > 0 such that if
f 2 Diff1.M/ and kf �g � gk � � then for all x; y 2M ,

.1 � C�/d.x; y/ � d.f .x/; f .y// � .1C C�/d.x; y/:

Proof. If  is a path between x and y parametrized by arc length, then f ı  is a path
between f .x/ and f .y/. The length of f ı  is equal to

len.f ı / D
Z len./

0

p
g.Df P;Df P/ dt D

Z len./

0

p
f �g. P; P/ dt

D

Z len./

0

p
g. P; P/C Œf �g � g�. P; P/ dt

D

Z len./

0

p
1C Œf �g � g�. P; P/ dt:

By our assumption on the norm of f �g � g, there exists C such that jŒf �g � g�. P; P/j
� C�. Then using

p
1C x � 1C x for x � 0, we see that

len.f ı / �
Z len./

0

1C jŒf �g � g�. P; P/j dt � len./C C� len./:

The lower bound follows similarly by using 1C x �
p
1C x for �1 � x � 0.

Lemma 30. LetM be a closed Riemannian manifold. Then there exist r;C > 0 such that
for all f 2 Diff2.M/, if

(1) there exists x 2M such that f .x/ D x and kDxf � Id k D � < r ,

(2) dC2.f; Id/ D � < r ,

then for all 0 <  < r and y such that d.x; y/ <  ,

d.y; f .y// � C.� C 2�/:

Proof. Let r D inj.M/=2. We work in a fixed exponential chart centered at x, so that x
is represented by 0 in the chart. Write

f .y/ D 0CD0fy CR.y/ D y C .D0f � Id/y CR.y/:

As the C 2 distance between f and the identity is at most �, by Taylor’s theorem R.y/ is
bounded in size by C�jyj2 for a uniform constant C . Thus

jf .y/ � yj � � jyj C C�jyj2:

In particular, for all y such that jyj �  < r ,

jf .y/ � yj � C 0.� C 2�/:

But the distance in such a chart is uniformly bi-Lipschitz with respect to the metric onM ,
so the lemma follows.
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y

x

p

q

Sd.x;y/.x/

Sd.x;y/.y/

Fig. 1. The four points x; y; p; q appearing in Lemma 31. Given x; y; p, the lemma produces the
point q and gives an estimate on the length of the dotted line, which is longer than d.x; y/.

The following geometric lemma produces points on two spheres in a Riemannian
manifold that are further apart than the centers of the spheres.

Lemma 31. Let M be a closed Riemannian manifold. There exist C; r > 0 such that for
all ˇ 2 .0; r/, if x; y 2 M satisfy inj.M/=3 < d.x; y/ < inj.M/=2, and there is a fixed
p 2M such that d.x; p/ D d.y; x/ and d.p; y/ < r , then there exists q 2M depending
on p such that

(1) d.q; y/ D d.y; x/,

(2) d.q; x/ < ˇ,

(3) d.q; p/ � d.x; y/C Cd.y; p/ˇ.

In order to prove Lemma 31, we recall the following form of the second variation of
length formula. For a proof of this and related discussion, see [5, Ch. 1, §6].

Lemma 32. Let M be a Riemannian manifold and  be a unit speed geodesic. Let
v;w be a two-parameter family of constant speed geodesics parametrized by v;w W
Œa; b� � .��; �/ � .��; �/ ! M such that 0;0 D  . Suppose that @v;w

@v
D V and

@v;w
@w
D W are both normal to P0;0, which we denote by T . Then

@2 len.v;w/
@v@w

D hrW V; T ij
b
a C hV;rTW ij

b
a:

Proof of Lemma 31. We will give a geometric construction using the points x and y and
then explain how this construction may be applied to the particular point p to produce a
point q.

Let Q be a unit tangent vector based at y that is tangent to Sd.x;y/.x/, the sphere of
radius d.x; y/ centered at x. Let t W Œa; b�!M be a one-parameter family of geodesics
parametrized by arc length so that 0 is the unit speed geodesic from x to y, @tt .b/jtD0
D Q, t .b/ is a path in Sd.x;y/.x/, and t .a/ D x for all t . The variation t gives rise to
a Jacobi field Y . Note that Y.a/ D 0, Y.b/ D Q, and Y is a normal Jacobi field.
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Next, let X be the Jacobi field along 0 defined by X.b/ D 0 and rTX jb D Y.b/,
where T denotes P0, i.e. the tangent to the curve 0. Such a field exists and has uniformly
bounded norms because 0 is shorter than the injectivity radius. Let �t W Œa; b�! M be
a one-parameter family of geodesics tangent to the field X such that �t .b/ D y, �t is
arc length parametrized, and �0 D 0. Note that each �t has length d.x; y/. Let T now
denote Ps;t , which gives the tangent direction to each curve s;t in the variation.

Define s;t W Œa; b� ! M to be the arc length parametrized geodesic between �s.a/
and t .b/. The variation s;t is a two-parameter variation satisfying the hypotheses of
Lemma 32. Consequently, we see that

d2 len.s;t /
dsdt

D hrXY; T ij
b
a C hY;rTXij

b
a: (24)

The first term may be rewritten as

hrXY; T ij
b
a D rX hY; T ij

b
a � hY;rXT ij

b
a: (25)

As Y.a/ D 0 and X.b/ D 0, the second term in (25) is zero. Similarly rX hY; T ijb D 0.
We claim that rX hY; T ija D 0 as well. To see this we claim that Y D @ts;t ja D 0

for all s. This is because s;t .a/ is constant in t as s;t .a/ depends only on s. Thus
hY; T ija D 0. When we differentiate by X , we are differentiating along the path s;0.a/.
Thus rX hY; T ija D 0 as hY; T i is 0 along this path. Thus hrXY; T ijba D 0. Noting in
addition that Y.a/ D 0, equation (24) simplifies to

d2 len.s;t /
dsdt

D hY;rTXijb :

Hence as we defined X so that rTX jb D Y.b/,

d2 len.s;t /
dsdt

D hY.b/; Y.b/i D kQk D 1:

Note next that d2

ds2
len.s;t / D 0 because the geodesics s;0 all have the same length.

Similarly, d
2

dt2
len.s;t / D 0. Thus we have the Taylor expansion

d2

dsdt
len.s;t / D d.x; y/C st CO.s3; t3/: (26)

There exist r0 > 0 and C > 0 such that for all 0 � s; t < r0,

len.s;t / � d.x; y/C Cst: (27)

Consider now the pairs of points s;0.a/ and 0;t .b/. We claim that if p is of the form
p D 0;t .b/ for some small t then we may take q D s;0.a/, where the choice of s will be
dictated by ˇ.

Note that

d.s;0.a/; x/ D skX.a/k CO.s
2/ and d.0;t .b/; y/ D tkY.b/k CO.t

2/:
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Hence there exists s0 such that for 0 < s; t < s0,

d.s;0.a/; x/ < 2skX.a/k and d.0;t .b/; y/ < 2tkY.b/k: (28)

For any ˇ < min ¹2s0kX.a/k; 2r0kX.a/kº, by (27) taking s D ˇ=.2kX.a/k/ we obtain

d.s;0.a/; 0;t .b// � d.x; y/C tˇC=.2kX.a/k/;

which by (28) implies

d.s;0.a/; 0;t .b// � d.x; y/C
C

4kX.a/k kY.b/k
ˇd.0;t .b/; y/:

By (28) and our choice of s,
d.s;0.a/; x/ < ˇ:

Finally, d.s;0.a/; y/ D d.x; y/ by the construction of the variation. Thus the conclusion
of the lemma holds for the points p D 0;t .b/ and q D s;0.a/.

We claim that this gives the full result. First, note that for all pairs of points x and y
and choices of vectors Q in our construction, the norms kX.a/k and kY.b/k are bounded
above and below. This is because the distance minimizing geodesic from X to Y does
not cross the cut locus. Similarly, the constants C , r0, and s0 may be uniformly bounded
below over all such choices of x and y by compactness. Thus as all these constants are
uniformly bounded independent of x; y and Q, the above argument shows that for any
pair x and y that there is a neighborhood N of y in Sd.x;y/ of uniformly bounded size,
such that for any p 2 N there exists q satisfying the conclusion of the lemma. This gives
the result as any p sufficiently close to y such that d.x; p/ D d.x; y/ lies in such a
neighborhood N .

The following lemma shows that if a diffeomorphism with small strain nearly fixes a
large region, then that diffeomorphism is close to the identity.

Lemma 33. Let .M; g/ be a closed Riemannian manifold. Then there exists r0 2 .0; 1/
such that for any r 0; ˇ 2 .0; r0/ there exists C > 0 such that if f 2 Diff1.M/ and

(1) dC0.f; Id/ � r0,

(2) there exists a point x2M such that all y with d.x;y/<r 0 satisfy d.y;f .y//�ˇ�r0,

(3) kf �g � gk D � � r0,

then
dC0.f; Id/ < C.ˇ C �/: (29)

Proof. Let r1; C1 denote the r and C in Lemma 31. Let C2 be the constant in Lemma 29.
There exists a constant r2 such that for any x;y 2M with inj.M/=3<d.y;x/< inj.M/=2

and any z such that d.y; z/ < r2, we have d.y; Oz/ < r1, where Oz is the radial projection
of z onto Sd.x;y/.x/. Let r0 D min ¹r1; r2; inj.M/=24º.

Suppose that x 2 M has the property that d.x; z/ < r implies d.z; f .z// � ˇ. Sup-
pose that y is a point such that inj.M/=3 < d.y; x/ < inj.M/=2. Let 1f .y/ be the radial
projection of f .y/ onto Sd.x;y/.x/.
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By choice of r0 � r2, d.y; f .y// < r2 and so d.y;1f .y// � r1. Hence we may apply
Lemma 31 with ˇ D r 0, x D x, y D y and p D1f .y/ to conclude that there exists a point
q 2M such that

d.q; y/ D d.x; y/; (30)

d.q; x/ < r 0; (31)

d.q;1f .y// � d.x; y/C C1d.y;1f .y//r 0: (32)

Using the triangle inequality, we bound the left hand side of (32) to find

d.q;f .q//C d.f .q/;f .y//C d.f .y/;1f .y//�d.q;1f .y//�d.x;y/CC1d.y;1f .y//r 0:
(33)

First, as d.q; x/ < r 0 and points within r 0 of x do not move more than ˇ,

d.q; f .q// � ˇ:

Second, by Lemma 29, as the distance between q and y is bounded above by inj.M/=2,
there exists C3 such that

d.f .q/; f .y// � d.q; y/.1C C2�/ D d.x; y/C C3�:

Similarly, as inj.M/=3 < d.x; y/ < inj.M/=2, Lemma 29 implies the bounds

d.x; f .y// � d.x; f .x//C d.f .x/; f .y// � ˇ C d.x; y/C C3� (34)

and similarly
d.x; f .y// � d.x; y/ � ˇ � C3�: (35)

Forw sufficiently close to Sd.x;y/.x/we claim that the radial projection Ow is the point
in Sd.x;y/.x/ that minimizes the distance to w. To see this we use the fact that below the
injectivity radius, geodesics are the unique distance minimizing paths between two points.
There are two cases: if d.x; w/ > d.x; y/ and there is some other point w0 2 Sd.x;y/.x/
with d.w0;w/� d. Ow;w/, then the path from x tow0 tow along geodesics must be strictly
longer than the geodesic path from x directly to Ow. If d.x; w/ < d.x; y/ and Ow ¤ w0 2
Sd.x;y/.x/, then one obtains two distance minimizing paths from x to Sd.x;y/.x/ passing
through w: the first along a single geodesic and the second from x to w and then from
w to w0. By the uniqueness of distance minimizing geodesics, the latter path must have
length greater than d.x; y/ because it is not a geodesic. Thus d.w; w0/ > d.w; Ow/; a
contradiction.

The estimates (34) and (35) imply that jd.f .y/; x/ � d.x; y/j � ˇ C C3�. Thus the
distance from f .y/ to Sd.x;y/.x/ is at most ˇCC3�. By the previous paragraph, 1f .y/ is
the point in Sd.x;y/.x/ that minimizes distance to f .y/. Thus

d.f .y/;1f .y// � ˇ C C3�: (36)

Thus, from (33) we obtain

ˇ C d.x; y/C C3�C ˇ C C3� � d.x; y/C C1d.y;1f .y//r 0:
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Consequently,
2ˇ C 2C3�

C1r 0
� d.y;1f .y//:

Hence

d.y; f .y// � d.f .y/;1f .y//C d.y;1f .y// � 2ˇ C 2C3�

C1r 0
C ˇ C C3�:

Thus by introducing a new constant C4 � 1, we see that for any y satisfying inj.M/=3

< d.y; x/ < inj.M/=2, we have

d.y; f .y// � C4.ˇ C �/:

Note that the constant C4 depends only on r 0 and .M; g/.
Consider a point y where .1=3C 1=24/ inj.M/ < d.x; y/ < .1=2 � 1=24/ inj.M/.

Because r 0 < inj.M/=24 such a point y has a neighborhood of size r 0 on which
points are moved at most distance C4.ˇ C �/ by f . Hence we may repeat the pro-
cedure taking y as the new basepoint. Let x be the given point in the statement of
the lemma. Any point q 2 M may be connected to x via a finite sequence of points
x D x0; : : : ; xn D q such that each consecutive pair of points in the sequence are a dis-
tance between .1=3C 1=24/ inj.M/ and .1=2 � 1=24/ inj.M/ apart. As M is compact
there is a uniform upper bound on the length of the shortest such sequence. If N is such a
bound, the above argument shows that for all q 2M ,

d.q; f .q// � NCN4 .ˇ C �/;

which gives the result.

The proof of Theorem 27 consists of two steps. First a disk of uniform radius is pro-
duced on which f nearly fixes points. Then Lemma 33 is applied to this disk to conclude
that f is near to the identity.

Proof of Theorem 27. Let r1; C1 be the r and C in Lemma 30, and let r2; C2 denote
the r and c in Lemma 31. There will be a constant r3 > 0 introduced later when it is
needed. Let r4 denote the constant r0 appearing in Lemma 33. We let r D min ¹1; r1; r2;
r3; r4; inj.M/=24º. Let C3 be the constant in Lemma 29. Let  2 .0; r/ be given.

By Lemma 30, for all z such that d.x; z/ <  ,

d.z; f .z// � C1.� C 
2�/: (37)

Suppose that y satisfies inj.M/=3 < d.x; y/ < inj.M/=2. Let 1f .y/ be the radial
projection of f .y/ onto the sphere Sd.x;y/.x/.

By Lemma 29,

d.x; y/.1 � C3�/ � d.f .x/; f .y// � d.x; y/.1C C3�/:

As f .x/ D x, this implies

d.x; y/.1 � C3�/ � d.x; f .y// � d.x; y/.1C C3�/:
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Hence as d.x; y/ is uniformly bounded above and below, there exists C4 such that

d.f .y/;1f .y// < C4�: (38)

There exists r3 > 0 such that if � < r3, then C4� < r2. Hence by our choice of r ,
d.y;1f .y// < r2 and we may apply Lemma 31 with ˇ D  , x D x, y D y, p D1f .y/ to
deduce that there exists q such that

d.q; y/ D d.x; y/; (39)

d.q; x/ < ; (40)

d.q;1f .y// � d.x; y/C C2d.y;1f .y//: (41)

By Lemma 29, and using the fact that d.x;y/ is bounded by inj.M/=2, there exists C5
such that

d.f .q/; f .y// � d.q; y/.1C C3�/ � d.x; y/C C5�: (42)

By (37), as d.q; x/ <  ,
d.q; f .q// < C1.� C �

2/: (43)

Using the triangle inequality with (38), (42), (43) to bound the left hand side of (41), we
obtain

C1.� C �
2/C d.x; y/CC5�CC4� � d.q; f .q//C d.f .q/; f .y//C d.f .y/;1f .y//

� d.x; y/CC2d.y;1f .y//:

Moreover, (38) gives the lower bound d.y;1f .y// > d.y; f .y// � C4�. We then obtain

C1.� C �
2/C C5�C C4� � C2d.y; f .y// � C2C4�;

and so
C1.� C �

2/C C5�C C4�C C2C4�

C2
� d.y; f .y//:

The constants C1; : : : ; C5 are uniform over all y satisfying inj.M/=3 < d.x; y/ <

inj.M/=2. Thus there exists C6 > 0 such that for all such y,

C6.�
�1
C � C �/ � d.y; f .y//: (44)

Suppose that y is a point at distance 5
12

inj.M/ from x. The above argument shows that if
z satisfies d.y; z/ < inj.M/=12 then (44) holds with y replaced by z, i.e.

C6.�
�1
C � C �/ � d.z; f .z//:

Define
˛ D C6.�

�1
C � C �/: (45)

Assuming that ˛ < r4, z satisfies hypothesis (2) of Lemma 33 with ˇ D ˛ and any r 0 �
inj.M/=12.
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There are then two cases depending on whether ˛ > r4 or ˛ � r4. If ˛ � r4, we
apply Lemma 33 with x0 D z, r 0 D r=2, and ˇ D ˛. This implies that there exists a C7
depending only on r=2 such that

dC0.f; Id/ � C7.�
�1
C � C �/:

If ˛ > r4, then as � � r4,

dC0.f; Id/ � � � r4 � ˛ D C6.�
�1
C � C �/:

Thus letting C8 D max ¹C6; C7º, we have

dC0.f; Id/ � C8.�
�1
C � C �/;

which gives the result.

5.2. Application to isotropic spaces: proof of Proposition 28

We now prove Proposition 28, which is an application of Theorem 27 to isotropic spaces.
The idea of the proof is geometric. We consider the diffeomorphism I�1f . This diffeo-
morphism is small in C 0 norm, so there is an isometry R1 that is close to the identity
such thatR�11 I�1f has a fixed point x. The differential ofR�11 I�1f at x is very close to
preserving both the metric tensor and the curvature tensor at x. We then use the following
lemma to obtain an isometry R2 that is close to R�11 I�1f .

Lemma 34 ([18, Ch. IV, Ex. A.6]). Let M be a simply connected Riemannian globally
symmetric space or R Pn. If x 2M and LWTxM ! TxM is a linear map preserving both
the metric tensor at x and the curvature tensor at x, then there exists R 2 Isom.M/ such
that R.x/ D x and DxR D L.

We take the diffeomorphism in the conclusion of Proposition 28 to equal IR1R2. We
then apply Theorem 27 to deduce thatR�12 R�11 I�1f is near the identity diffeomorphism.
It follows that IR1R2 is near to f . Before beginning the proof, we state some additional
lemmas.

Lemma 35. Suppose that V1 and V2 are two subspaces of a finite-dimensional inner
product space W . Then there exists C > 0 such that if x 2 W , then

d.x; V1 \ V2/ < C.d.x; V1/C d.x; V2//:

Lemma 36. Suppose that R is a tensor on Rn. Let stab.R/ be the subgroup of GL.Rn/
that stabilizes R under pullback. Then there exist C;D > 0 such that if LWRn ! Rn is
an invertible linear map and kL � Idk < D, then

dGL.Rn/.L; stab.R// � CkL�R �Rk:

Proof. Let s be the Lie algebra of stab.R/. Then consider the map � from gl to the tensor
algebra on Rn given by

w 7! exp.w/�R �R:
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We may write w D vC v?, where v 2 s and v 2 s?. Because � is smooth it has a Taylor
expansion of the form

�.tv C tv?/ D 0C tAv C tBv? CO.t2/: (46)

Note that A is zero because v 2 s. We claim that B is injective. For the sake of con-
tradiction, suppose Bv? D 0 for some v? 2 s?. Then exp.tv?/�R � R D O.t2/. But
then

exp.v?/�R �R D
n�1X
iD0

Œexp..i C 1/v?=n/�R � exp.iv?=n/R�

D

n�1X
iD0

exp.iv?=n/�.exp.v?=n/�R �R/ D O.1=n/:

Hence exp.v?/�R �R D 0, which contradicts v? … s. Thus B is an injection and hence
by Taylor’s theorem for small v? there exists C1 such that

kexp.v?/�R �Rk � C1kv?k: (47)

By using the Taylor expansion (46) and noting that AD 0 there, we deduce from (47) that
there exists C2 > 0 such that

kexp.w/�R �Rk � C2kv?k: (48)

It then follows there exists a neighborhood N of Id 2 GL.Rn/ such that stab.R/ \ N is
the image of a disk D � s under exp. Write gl D s˚ s? as a vector space. Thus as exp
is bi-Lipschitz in a neighborhood of 0 2 gl there exists C3 such that if we write w 2D as
w D v C v?, where v 2 s and v? 2 s?, then

C�13 kv
?
k � dGL.Rn/.exp.w/; exp.D// � C3kv?k: (49)

As stab.R/\N D exp.D/, for all w in a smaller neighborhoodD0 �D the middle term
above is comparable to dGL.Rn/.exp.w/; stab.R//.

Thus combining (49) with (48), we obtain

dGL.Rn/.exp.w/; stab.R// � C�12 C3kexp.w/�R �Rk:

This gives the result as exp is a surjection onto a neighborhood of Id 2 GL.Rn/.

The following lemma is immediate from [18, Thm. IV.3.3], which explicitly describes
the isometries of globally symmetric spaces.

Lemma 37. Suppose that M is a closed globally symmetric space. There exists C > 0

such that if x; y 2 M , then there exists an isometry I 2 Isom.M/ı such that I.x/ D y
and dC0.I; Id/ � Cd.x; y/. As Isom.M/ı is compact, it follows that for each k there
exists a constant Ck such that one can choose I with dCk .I; Id/ � Ckd.x; y/.
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We also use the following lemma, which is the specialization of Lemma 36 to the
metric tensor.

Lemma 38. Suppose that V is a finite-dimensional inner product space with metric g.
There exists a neighborhood U of Id 2 GL.V / and a constant C such that if L 2 U then

dGL.V /.L;SO.V // � CkL�g � gk;

where GL.V / is endowed with the right-invariant Riemannian metric it inherits from the
inner product space V .

We now prove the proposition.

Proof of Proposition 28. Pick 0 < � < 1 and a small � such that

�=2 � �� > 1=2 � � and � > � > 0: (50)

We also assume without loss of generality that ` � 3. By Lemma 55 there exist k0 and
�0 > 0 such that if s is a smooth section of the bundle of symmetric 2-tensors over M
with kskCk0 � 4 and kskH0 � �0, then kskC` � ksk

1��
H0

. Choose k such that

k > max
²
k0;

`

1 � �

³
: (51)

In addition, there are positive numbers �1; : : : ; �7 that will be introduced when needed in
the proof below. We define

r D min ¹�0; �
1=.1��/
1 ; �2; : : : ; �7; 1º:

Let �1 > 0 be small enough that for any x 2M , if LWTxM ! TxM is invertible and
kL�g � gk � �1, then the conclusion of Lemma 38 holds for L.

Let � D kf �g � gkH0 and "2 D dC2.f; I /. Consider the norm kf �g � gkCk0 . As
dCk .I; f / is uniformly bounded, we see that kf �g � gkCk�1 is uniformly bounded. In
fact, there exists �2 > 0 such that if dCk .I;f / < �2, then kf �g � gkCk�1 � 4. As r < �0,
the discussion in the first paragraph of the proof implies that

kf �g � gkC3 � �
1�� : (52)

Note that this is less than �1 by the choice of r .
For x 2 M , we may consider the Lie group GL.TxM/ as well as its Lie algebra gl.

There exists �3 > 0 such that restricted to the ball of radius �3 about 0 2 gl, the Lie
exponential, which we denote by exp, is bi-Lipschitz with constant 2.

Let x 2M be a point that is moved the maximum distance by I�1f . By Lemma 37,
there exists a constant Dk > 0 independent of x and an isometry R1 such that R1.x/ D
I�1f .x/ and dCk .R1; Id/ < Dkd.x; I

�1f .x//. Let h D R�11 I�1f and note that h
fixes x. Note that there exists �4 > 0 such that if dCk .f; I / < �4, then by the previous
sentence R1 can be chosen so that dCk .R1; Id/ is small enough that

kDxh � Id k � C0"2: (53)
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We claim that Dxh is near a linear map of TxM that preserves both the metric tensor
and the curvature tensor. Let SO.TxM/ be the group of linear maps preserving the metric
tensor on TxM and let G be the group of linear maps preserving the curvature tensor
on TxM . Both of these are subgroups of GL.TxM/. By the sentence after (52), Dxh
pulls back the metric on TxM to be within �1 of itself. Thus by Lemma 37, there exists
a uniform constant C1 such that Dxh is within distance C1�1�� of SO.TxM/. Again
by (52), we have kh�g � gkC3 � �1�� . In particular, as the curvature tensor is defined
by the second derivatives of the metric, this implies by Lemma 36 that there exists a
constant C2 such that Dxh is within distance C2�1�� of G.

The previous paragraph shows that there exists C3 such that Dxh is within distance
C3�

1�� of both SO.TxM/ and G. Consider now the exponential map of GL.TxM/. As
before, let gl denote the Lie algebra of GL.TxM/. Let H D exp�1.Dxh/ 2 GL.TxM/.
Note that this preimage is defined asDxh is near to the identity. Let so be the Lie algebra
of SO.TxM/ and let g be the Lie algebra of G. As both SO.TxM/ and G are closed
subgroups and exp is bi-Lipschitz, we conclude that the distance between H and each of
so and g is bounded above by 2C3�1�� . Thus by Lemma 35, there exists C4 such that
H is at a distance at most C4�1�� from g \ so. Let X 2 GL.TxM/ be an element of
g\ so minimizing the distance fromH to g\ so. There exists �5 > 0 such that if � � �5
then C4�1�� < �3. Hence as r < �5, the same bi-Lipschitz estimate on the Lie exponential
gives

d.exp.X/;Dxh/ � 2C4�1�� : (54)

Note that exp.X/ 2 SO.TxM/ \ G. By Lemma 34, there exists an isometry R2 of M
such that R2 fixes x and DxR2 D exp.X/. In fact, because of (53) and because X is
within distance C4�1�� of H , we may bound the norm of X and hence deduce that there
exists C5 such that

dCk .R2; Id/ � C5."2 C �
1�� /: (55)

The map R in the conclusion of the proposition will be IR1R2. We must now check
thatRD IR1R2 satisfies estimates (22) and (23). The former is straightforward from (55)
combined with knowing that R1 was constructed so that d.R1; Id/ � D0"2 for some uni-
form D0 > 0.

Let h2 D R�12 h. The map h2 has x as a fixed point. There exists C6 > 0 such that

kDxh2 � Id k � C6�1�� ; (56)

kh�2g � gkC3 � �
1�� ; (57)

dC2.h2; Id/ � C6."2 C �
1�� /; (58)

dCk .h2; Id/ � C6.�
1��
C dCk .I; f //: (59)

The first two estimates above are immediate from (54) and (52), respectively. The third
and fourth follow from an estimate on C k compositions, Lemma 50, and (55).

Let r0 be the cutoff r appearing in Theorem 27. Note that there exists �6 > 0 such
that if dCk .f; I / < �6 and � < �6, then the right hand side of each of inequalities (56)
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through (59) is bounded above by r0. Hence as r < �6 we apply Theorem 27 to h2 to
conclude that there exists C7 such that for all 0 <  < r0,

dC0.Id; h2/ < C7
�
�1�� C C6."2 C �

1�� / C �1���1
�
:

But h2 D R�12 R�11 I�1f , so

dC0.R; f / < C8
�
�1�� C C6."2 C �

1�� / C �1���1
�
: (60)

We now obtain the high regularity estimate (23), via interpolation. By similarly mov-
ing the isometries from one slot to the other, (59) gives

dCk .R; f / < C9.�
1��
C dCk .I; f //: (61)

There exists �7 > 0 such that if dCk .I;f / < �7 and � < �7, then the right hand side of (61)
is at most 1.

We now apply the interpolation inequality in Lemma 52 and interpolate between
the C 0 and C k distance to estimate dC`.R; f /. Write ` D .1 � �0/k for some �0 and
note that 1 > �0 > � by (51). We use the estimate (60) to estimate the C 0 norm and use 1
to estimate the C k norm, which we may do because r < �7. Thus there exists C10 such
that for 0 <  < r0,

dC`.R; f / < C10.�
1���1 C "2/

�0 : (62)

Note that there exists C11 > 0 such that kf �g � gkH0 � C11"2. Consequently, there
exists a constant C13 such that C12

p
�="2 is less than the cutoff r0. We take  to equal

C12
p
�="2 in (62), which gives

dC`.R; f / < C13.�
1=2��"

1=2
2 C �1=2"

1=2
2 /�

0

< C14.�
�=2���"

�=2
2 C ��=2"

�=2
2 /: (63)

Hence by our choice of � and � in (50) and because � < r < 1,

dC`.R; f / < C15�
1=2��"

1=2��
2 ; (64)

which establishes (23) and finishes the proof.

6. KAM scheme

In this section we develop the KAM scheme and prove that it converges. A KAM scheme
is an iterative approach to constructing a conjugacy between two systems in the C1

setting. We begin by discussing the smoothing operators that will be used in the scheme.
Then we state a lemma, Lemma 39, that summarizes the results of performing a step in
the scheme. We then prove in Theorem 1 that by iterating the single KAM step we obtain
the convergence needed for this theorem. We conclude the section with a final corollary
of the KAM scheme which gives an asymptotic relationship between the top exponent,
the bottom exponent, and the sum of all the exponents.



J. DeWitt 2936

6.1. One step in the KAM scheme

In the KAM scheme, we begin with a tuple .R1; : : : ;Rm/ of isometries and a nearby tuple
.f1; : : : ; fm/ of diffeomorphisms. We want to find a diffeomorphism � such that for all i ,
��1fi� D Ri . However, such a � may not exist.

We will then attempt to construct a conjugacy � that has the following property. Let zfi
equal ��1fi�. If we consider the tuple . zf1; : : : ; zfm/ and .R1; : : : :; Rm/, we can arrange
that the error term, U, in Proposition 26, is small. Once we know that the error term
is small, the estimate in Proposition 26 shows that small Lyapunov exponents imply
that each zfi has small strain. Then by Proposition 28, small strain implies that there
exist R0i such that each zfi is near to that R0i . We then apply the same process to the tuples
. zf1; : : : ; zfm/ and .R01; : : : ; R

0
m/.

The previous paragraph contains the core idea of the KAM scheme. Following this
scheme, one encounters a common technical difficulty inherent in KAM arguments: regu-
larity. In our case, this problem is most crucial when we construct the conjugacy �. There
is not a single choice of �, but rather a family depending on a parameter �. The param-
eter � controls how smooth � is. Larger values of � give less regular conjugacies. We
refer to this as a conjugation of cutoff �; the formal construction appears in the proof
in Lemma 39, which also gives estimates following from this construction. The nth time
we iterate this procedure we will use a particular value �n as our cutoff. The proof of
Theorem 1 shows how to pick the sequence �n so that the procedure converges.

We now introduce the smoothing operators. Suppose that M is a closed Riemannian
manifold. As before, let � denote the Casimir Laplacian on M as in Section 2.4. As �
is self-adjoint, it decomposes the space of L2 vector fields into subspaces depending on
the particular eigenvalue associated to that subspace. We call these subspaces H�. For
a vector field X , we may write X D

P
� X�, where X� 2 H� is the projection of X

onto the �-eigenspace of �. All of the eigenvalues of � are positive. By removing the
components of X that lie in high eigenvalue subspaces, we are able to smooth X . Let
T�X D

P
�0<�X�0 equal the projection onto the modes strictly less than � in magnitude.

Let R�X D
P
�0�� X�0 be the projection onto the modes of magnitude greater than or

equal to �. Then X D T�X CR�X .
We record two standard estimates which may be obtained by application of the

Sobolev embedding theorem. For s � 0, there exists a constant Cs > 0 such that for any
s � s and any C1 vector field X on M ,

kT�XkC s � Cs�
k3C.s�s/=2kXkC s ; (65)

kR�XkC s � Cs�
k3�.s�s/=2kXkC s : (66)

The smoothing operators and the above estimates on them are useful because with-
out smoothing, certain estimates appearing in the KAM scheme become unusable. One
may see this by considering what happens in the proof of Lemma 39 if one removes the
smoothing operator T� from (73).

The proof of the following lemma should be compared with [10, Sec. 3.4]
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Lemma 39. Suppose that .M d ; g/ is a closed isotropic Riemannian manifold other
than S1. There exists a natural number l0 such that for any ` > l0, any .C; ˛; n0/ and
any sufficiently small � > 0, there exist a constant r` > 0 and numbers k0; k1; k2 such
that for any s > ` and any m there exist constants Cs;`; rs;` > 0 such that the follow-
ing holds. Suppose that .R1; : : : ; Rm/ is a .C; ˛; n0/-Diophantine tuple with entries in
Isom.M/ and .f1; : : : ; fm/ is a collection of C1 diffeomorphisms ofM . Suppose that the
random dynamical system generated by .f1; : : : ; fm/ has stationary measures with arbi-
trarily small .in magnitude/ bottom exponent. Write "k for maxi dCk .fi ; Ri /. If � � 1 is
a number such that

�k0"l0 � r`; (67)

�k1�s=4"s C "
3=2

l0
< rs;`; (68)

then there exists a smooth diffeomorphism � and a new tuple .R01; : : : ; R
0
m/ of isometries

of M such that for all i , setting zfi D �fi��1 we have

dC`.
zfi ; R

0
i / � Cs;`.�

k1�s=10"1��s C "
9=8

l0
/; (69)

dC0.Ri ; R
0
i / � Cs;`."l0 C .�

k1�s=4"s C "
3=2

l0
/1�� /; (70)

dC s . zfi ; R
0
i / � Cs;`�

k2"s; (71)

dC s .�; Id/ � Cs;`�k2"s : (72)

The diffeomorphism � is called a conjugation of cutoff �.

Proof. As in (10) in Section 3.1, let Yi be the smallest vector field on Yi satisfying
expR.x/ Yi .x/ D fi .x/. Let L be the operator on vector fields defined by L.Z/ D

m�1
Pm
iD1.Ri /�Z as in Proposition 21. Let

V WD �.Id �L/�1
�
1

m

X
i

T�Yi

�
(73)

and let zfi D  V fi �1V . Let z"k D maxi dCk . zfi ; Ri / and let zYi be the pointwise smallest
vector field such that expR.x/ zYi .x/ D zfi .x/. By Proposition 43, for a C 1 small vector
field V ,

zYi D Yi C V �RiV CQ.Yi ; V /; (74)

where Q is quadratic in the sense of Definition 42. By Proposition 16, we see that
kV kCk�Ck"kC˛ for some fixed ˛. There exist ˇ;D1 such that kQ.Yi ;V /kCk�Dk"

2
kCˇ

.
By estimating the terms in (74), it follows that for each k > 0, if "kC˛Cˇ < 1 then there
exists a constant D2;k such that

dCk .
zfi ; Ri / < D2;k"kC˛Cˇ : (75)

Let � be an ergodic stationary measure on M for the tuple . zf1; : : : ; zfm/ as in the
statement of the lemma. We now apply Proposition 26 with r D d � 1; d and recall
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why the hypotheses of that proposition are satisfied. First, by our assumption that M
is isotropic, Isom.M/ı acts transitively on M and Gr1.M/. We have also assumed the
tuple .R1; : : : ; Rm/ is Diophantine. The nearness of . zf1; : : : ; zfm/ to .R1; : : : ; Rm/ is
guaranteed by (75), a sufficiently small choice of r`, and sufficiently large choice of l0 by
(67) as � � 1. Thus by applying Proposition 26 to the conjugate system, there exists k1
such that, in the language of that proposition,

ƒr .�/ D
�r

2dm

mX
iD1

Z
M

kE
zfi
C k

2
C

r.d � r/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol

C

Z
Gr .M/

U. r / dvolCO.k zY k3
Ck1

/;

where  r .x/ D 1
m

Pm
iD1 ln det.Dx zfi j Ex/ and U is defined in Proposition 23.

Pick a sequence of ergodic stationary measures �n so that j�d .�n/j ! 0. Subtracting
the expression for ƒd�1.�n/ from the expression for ƒd .�n/, we obtain

�d .�n/ D ƒd .�n/ �ƒd�1.�n/

D
�1

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
�.d � 1/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol

�

Z
Grd�1.M/

U. d�1/ dvolC
Z

Grd .M/

U. d / dvolCO.k zY k3
Ck1

/: (76)

Write Grr .R/ for the map on Grr .M/ induced by R. Write Yi for the shortest vector
field on Grr .M/ such that expGrr .Ri /.x/Yi D Grr . zfi /.x/. By Lemma 56, for each k there
exists C1;k such that  mX

iD1

Yi

Ck
� C1;k

� mX
iD1

zYi


CkC1

C z"2kC1

�
:

Hence by the above line and the final estimate in Proposition 23 there exists k2 such thatˇ̌̌̌Z
Grr .M/

U. r / dvol
ˇ̌̌̌
� C2k rkCk2

� 1m mX
iD1

zYi


Ck2

C kzYik
2

Ck2

�
: (77)

The term k rkCk2 is bounded by a constant times z"k2 . By using (74) we may rewrite the
second term appearing in the product in (77):

1

m

mX
iD1

zYi D
1

m

X
i

Yi � .Id�L/�1
�
1

m

X
i

T�Yi

�
�
1

m

X
i

.Ri /�.�.Id�L/�1/.T�Yi /

C
1

m

X
i

Q.Yi ; V /

D
1

m

X
i

R�Yi C
1

m

X
i

T�Yi � .Id �L/.Id �L/�1
�
1

m

X
i

T�Yi

�
C
1

m

X
i

Q.Yi ; V /
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D
1

m

X
i

R�Yi C
1

m

X
i

T�Yi �
1

m

X
i

T�Yi C
1

m

X
i

Q.Yi ; V /

D
1

m

X
i

R�Yi C
1

m

X
i

Q.Yi ; V /:

By (66), there exists k3 such that for all s � 0,

kR�YikC1 � C3;s�
k3�s=2kYikC s :

As the Q term is quadratic, there exist `2, C4 such that

kQ.Yi ; V /kCk2 � C4kYikC`2 kV kC`2 D C4kYikC`2 k.Id �L/�1.T�Yi /kC`2 � C5"
2
`3

for some `3 by Proposition 21. Thus 1mX
i

zYi


Ck2

� C6;s.�
k3�s=2"s C "

2
`3
/:

Finally, by (75) we have k zYikCk2 � C7"`3 as before. Let `4 D max ¹`3; k2 C ˛ C ˇº.
Applying all of these estimates to (77) givesˇ̌̌̌Z

Grr .M/

U. r / dvol
ˇ̌̌̌
� C8;s"k2.�

k3�s=2"s C "
2
`4
/: (78)

By taking `5 > max ¹k1 C ˛ C ˇ; k2; `4º, using �d .�n/ ! 0,2 and combining (78)
and (76) we find for s � 0 that there exists C9;s such that

C9;s.�
k3�s=2"s"`5 C "

3
`5
/

�
1

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
.d � 1/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol: (79)

Note that the coefficients of each of the strain terms are positive. If s > `5, then by taking
square roots, we see that there exist constants C10;s such that for each i ,

C10;s.�
k3=2�s=4"s C "

3=2

`5
/ � k zf �i g � gkH0 : (80)

We now give a naive estimate on the higher C s norms under the assumption that "1
is bounded by a constant �1 > 0. To begin, by combining (65) and Proposition 16 we see
that there exists ˛ > 0 such that for each s there existsD3;s such that kV kC s �D3;s�˛"s .
Hence by Lemma 48, both dC s . V ; Id/ and dC s . �1V ; Id/ are bounded byD4;s�˛"s . This
establishes (72).

2Note that we do not need �.�n/! 0 in order to deduce (79). It suffices to know that there is
� such that �d .�/ is comparable to the right hand side of (78). This observation is the essence of
the proof of Theorem 40.
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Now applying the composition estimate from Lemma 50, we find that assuming �� 1,

dC s .f ı  
�1
V ; R/ � C11;s

�
dC s .f;R/C dC s . 

�1
V ; Id/

�
� C12;s."s C �

˛"s/ � C13;s.�
˛"s/:

We then apply the other estimate in Lemma 50 to find that

dC s . V ı f ı  
�1
V ; R/ � C11;s

�
dC s . V ; Id/C dC s .f ı  �1V ; R/

�
� C14;s.�

˛"s C �
˛"s/ � C15;s�

˛"s :

Hence under an assumption of the type (67), namely "1 < �1, we may conclude

dC s . zfi ; R/ � C15;s�
˛"s; (81)

which establishes (71).
We now apply Proposition 28 to this system. Let k� and r� be the k and r in Propo-

sition 28 for a given choice of � and our fixed `. In preparation for the application of the
lemma, we record some basic estimates:

(1) By combining (65) and Proposition 21 as before, we see that there exists `6 such that

dC2.
zfi ; Ri / � "`6 : (82)

(2) From the previous discussion we also have

k zf �i g � gkH0 � C10;s.�
k3=2�s=4"s C "

3=2

`5
/:

(3) We also need the C k� estimate

dCk� .
zfi ; R/ � C15;k��

˛"k� :

Hence if

C15;k��
˛"k� < r� ; (83)

C10;s.�
k3=2�s=4"s C "

3=2

`5
/ � r� ; (84)

then by Proposition 28 and the previous estimates there exist C6 and isometries R0i such
that

dC`.
zfi ; R

0
i / � C16;s.�

k3=2�s=4"s C "
3=2

`5
/1=2��"

1=2��

`6
; (85)

dC0.R
0
i ; Ri / < C17;s."`6 C .�

k3=2�s=4"s C "
3=2

`5
/1�� /: (86)

Let `7 D max ¹`5; `6º. If s > `7, then (85) implies

dC`.
zfi ; R

0
i / � C16;s.�

k4�s=9"1�2�s C "
5=4�.5=2/�

`7
/;

which yields (69) under the assumption that � > 0 is sufficiently small. Note that (86)
establishes (70). Thus we are done as we have established these estimates assuming only
bounds of the type appearing in (67) and (68).
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Remark 1. In the above lemma, we could have assumed instead that there exist stationary
measures for which both the top exponent and the sum of all exponents were arbitrarily
small and concluded the same result. The reason is that if we had considered ƒ1 � ƒd
in (76), the coefficients of the strain terms would still have the same sign and so we
could conclude the same result. By related modifications, one can produce many other
formulations of the main result in [10] that require other hypotheses on the Lyapunov
exponents.

6.2. Convergence of the KAM scheme

In this section we prove the main linearization theorem. It is helpful to note that the
approach to this theorem is somewhat different from the classical approach to KAM type
results. In a classical argument, one might typically linearize the problem at a target iso-
metric system and then find a solution to the linearized problem. In our case, while we are
able to linearize the problem, the resulting linearized problem does not obviously have
any solution. Consequently, we must give dynamical and geometric arguments that show
that a related type of averaged linearized problem can be solved and that solving this
averaged problem is indeed helpful. This then allows us to make progress in the KAM
scheme by conjugating the system closer to an isometric one. In particular, note that in
our case we do not know from the outset which isometric system our random system will
ultimately be conjugate to.

Theorem 1. Let M d be a closed isotropic Riemannian manifold other than S1. There
exists k0 such that if .R1; : : : ; Rm/ is a tuple of isometries of M such that the subgroup
of Isom.M/ generated by this tuple contains Isom.M/ı, then there exists �k0 > 0 such
that the following holds. Let .f1; : : : ; fm/ be a tuple of C1 diffeomorphisms satisfy-
ing maxi dCk0 .fi ; Ri / < �k0 . Suppose that there exists a sequence of ergodic stationary
measures �n for the random dynamical system generated by .f1; : : : ; fm/ such that
j�d .�n/j ! 0. Then there exists  2 Diff1.M/ such that for each i the map  fi �1 is
an isometry of M and lies in the subgroup of Isom.M/ generated by .R1; : : : ; Rm/.

Before giving the proof, we sketch briefly the argument, which is typical of arguments
establishing the convergence of a KAM scheme. In a KAM scheme where one wishes to
show that some sequence of objects hn converges, there are often two parts. The first part
of the proof is an inductive argument obtaining a sequence of estimates by the repeated
application of the KAM step, which in our case is Lemma 39. The second half of the proof
checks that the repeated application of the KAM step is valid by showing that we never
leave the neighborhood of its validity and then checks that the procedure is converging
in C1.

In the first part, one inductively produces a sequence of estimates by iterating a KAM
step. The estimates produced usually come in two forms: a single good estimate in a low
norm and bad estimates in high norms. The low regularity estimate probably looks like
khnkC0 � N

�.1C�/n where � > 0, while for every s one has a high regularity estimate
like khnkC s � N .1C�/n . A priori, the hn become superexponentially C 0 small, yet might
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be diverging in higher C s norms. To remedy this situation one then interpolates between
the low and high norms by using an equality derived from Lemma 52. In this case such
an inequality for the objects hn might assert something like

khnkC��0C.1��/s � Cskf k
�
C0
kf k1��C s :

If � is sufficiently close to 1 and s is sufficiently large, a brief calculation then implies that
the C .1��/s norm is also superexponentially small. By changing s and � one then obtains
convergence in C1.

Proof of Theorem 1. The proof is by a KAM convergence scheme. To begin we introduce
the Diophantine condition we will use. By Proposition 19, .R1; : : : ; Rm/ is .C 0; ˛0; n0/-
Diophantine for some C 0; ˛0 > 0 and is stably so. By stability, there exist .C; ˛; n/ and
a C 0 neighborhood U of .R1; : : : ; Rm/ such that any tuple in U is also .C; ˛; n/-
Diophantine. Hence if .R01; : : : ; R

0
m/ 2 U, then the coefficients Ci;s appearing in Lem-

ma 39 are uniform over all of these tuples. Assuming we do not leave the set U, the
constants appearing in Lemma 39 will be uniform. We check this at the end of the proof
in the discussion surrounding (91).

We now show that there exists a sequence of cutoffs �n such that if we repeatedly
apply Lemma 39 with the cutoff �n on the nth time we apply the lemma, then the result-
ing sequence of conjugates converges and the hypotheses of Lemma 39 remain satisfied.
Given such a sequence �n the convergence scheme is run as follows. Let .f1;1; : : : ; fm;1/
D .f1; : : : ; fm/ and let .R1;1; : : : ; Rm;1/ D .R1; : : : ; Rm/. Given .f1;n�1; : : : ; fm;n�1/
and .R1;n�1; : : : ; Rm;n�1/ we apply Lemma 39 with cutoff � D �n to produce a dif-
feomorphism �n and a tuple of isometries that we denote by .R1;n; : : : ; Rm;n/. We set
fi;n D �nfi;n�1�

�1
n to obtain a new tuple .f1;n; : : : ; fm;n/ of diffeomorphisms. We write

 n for �n ı �n�1 ı � � � ı �1, so that fi;nD n ı fi ı �1n . Let "k;nDmaxi dCk .fi;n;Ri;n/.
We now show that such a sequence of cutoffs �n exists. Let � be a small positive num-

ber and let l0 and �l0 be as in Lemma 39. Let k0; k1; k2; r`; Cs;`; rs;` be as in Lemma 39
as well. To show that such a sequence of cutoffs �n exists we must also provide a fixed
choice of s; ` for the application of Lemma 39. We will first show that the scheme con-
verges in the C l0 norm and then bootstrap to get C1 convergence. Fix some arbitrary
` > l0. The choice of ` does not matter in what follows because we will only consider
estimates on the l0 norm. We will choose s such that

s > `: (87)

Further, if s is sufficiently large and � is sufficiently small, then we can pick ˛ such that

2C �

s=4 � k1
< ˛ < min ¹1=k0; �=k2º: (88)

So, we increase s if needed and choose such a � satisfying

1=8 > � > 0: (89)

Pick s; ˛; � so that (87)–(89) are all satisfied.
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Let �n D N ˛.1C�/n for some N we choose later. We will show that with this choice
of cutoff at the nth step, the KAM scheme converges. In order to show this, we show that
the following two estimates hold inductively given a choice of sufficiently large N :

"l0;n � N
�.1C�/n ; (H1)

"s;n � N
.1C�/n ; (H2)

max
i
dC0.Ri;n; Ri;1/ �

nX
iD1

N�
1
2 .1C�/

i

: (H3)

This involves two arguments. The first argument shows that there is a sufficiently large N
such that if we have these estimates for n, then the hypotheses of Lemma 39 are satisfied.
The second argument is the actual induction, which checks that if (H1) and (H2) hold for n
then they also hold for nC 1, i.e. we apply Lemma 39 and then deduce (H1) and (H2) for
nC 1 from this.

We begin by checking that for all sufficiently large N > 0 and any n 2 N, if (H1)–
(H3) are satisfied, then the hypotheses of Lemma 39 are satisfied as well. To begin, as the
summation in (H3) converges superexponentially as n!1, for all sufficiently large N ,
the tuple .R1;n; : : : ;Rm;n/ lies in U. The first numbered hypothesis of Lemma 39 is (67):

�k0n "l0;n � r`:

Given the choice of �n, if (H1) and (H2) hold it suffices to have

N ˛k0.1C�/
n

N�.1C�/
n

< r`;

which holds for N sufficiently large and all n by our choice of ˛. The other hypothesis of
Lemma 39, (68), requires that

�k1�s=4n "s;n C "
3=2

l0;n
< rs;`:

Given (H1) and (H2) and our choice of �n it suffices to have

N ˛.k1�s=4/.1C�/
n

N .1C�/n
CN�

3
2 .1C�/

n

< rs;`:

Our choice of s and ˛ implies that ˛.k1 � s=4/ <�1, hence the above inequality holds for
sufficiently large N . Thus the two hypotheses of Lemma 39 follow from (H1) and (H2).
Thus we may apply Lemma 39 given (H1)–(H3) and our choice of N .

We now proceed to the inductive argument. We will show that for all N sufficiently
large, if we now require that our perturbation is small enough that (H1) and (H2) hold for
n D 1 and our choice of N , we may continue applying Lemma 39, and these estimates as
well as (H3) continue to hold. Note that (H3) is trivial when n D 1. We must then check
that (H1)–(H3) are satisfied for nC 1 given they hold for n. By the previous paragraph,
we are free to apply the estimates from Lemma 39 as long as N is sufficiently large.

We now check that (H1) holds for nC 1. By (69), we obtain

"l0;nC1 � Cs;`.�
k1�s=10
n "1��s;n C "

9=8

l0;n
/:
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By applying (H1) and (H2) to each term on the right it suffices to show

Cs;`.N
˛.k1�s=10/.1C�/

n

N .1��/.1C�/n
CN�.9=8/.1C�/

n

/ < N�.1C�/
nC1

: (90)

By our choice of s, ˛, and � , the lower bound in (88) implies that

˛.k1 � s=10/C .1 � �/ < �.1C �/:

In addition, by (89), �9=8 < �.1C �/. Thus for sufficiently large N the left hand side
of (90) is bounded above by N�.1C�/

nC1
.

Next we check (H2) holds for nC 1. By (71),

"s;nC1 � Cs;`�
k2
n "s;n:

Hence,
"s � Cs;`N

k2˛.1C�/
n

N .1C�/n :

By (88), 1C k2˛ < 1C � and hence, assumingN is sufficiently large, the right hand side
is bounded by N .1C�/nC1 , which shows that (H2) is satisfied.

We now check (H3). This follows easily by the application of (70), which gives

dC0.Ri;n; Ri;nC1/ � Cs;`
�
"l0;n C .�

k1�s=4
n "s;n C "

3=2

l0;n
/1��

�
: (91)

Applying (H1) and (H2) and the definition of �n to estimate the right hand side of (91),
we find that for the  given in (H3) and N sufficiently large,

dC0.Ri;n; Ri;nC1/ � N
� 12 .1C�/

n

; (92)

and (H3) holds for nC 1.
We have now finished the induction but not the proof. We have shown that there exists

a sequence �n and a choice s;˛; `; �;N such that if the initial conditions of the scheme are
satisfied then we may iterate indefinitely and be assured of the estimates in (H1)–(H3) at
each step. We must now check that the conjugacies  n are converging in C1 and that the
tuples .R1;n; : : : ; Rm;n/ are converging. The latter is immediate because by (92) this is a
Cauchy sequence. In fact, we choseN large enough that we never leave U, hence the limit
is in U. As the group of isometries of M is C 0 closed and the distance from the tuples
.f1;n; : : : ; fm;n/ to a tuple of isometries is converging to 0, it follows that .f1;n; : : : ; fm;n/
is converging to a tuple of isometries. To show that the  n converge in C1, we obtain
for every s an estimate on dC s .�n; Id/. By a similar induction to that just performed, the
estimate (72) implies

dC s .�n; Id/ � CsN .1C�/n :

Let j > 0 be an integer. By Lemma 53, interpolating with �D 1� 1=10 between the C l0

distance and the C jl0 distance of �n to the identity gives

dC :9l0C.j=10/l0 .�n; Id/ � CjN
�:9.1C�/nN :1.1C�/n

D CjN
�:8.1C�/n :
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Thus by increasing j , we see that there exists � 0 > 0 such that for each s,

dC s .�n; Id/ < C 0sN
�.1C� 0/n :

The previous line is summable in n. Hence we can apply Lemma 51 to obtain convergence
of the  n D �n ı � � � ı �1 in the C s norm for each s and thus C1 convergence.

Thus we see that we have simultaneously conjugated all fi into Isom.M/. In order to
obtain the full theorem, we must be assured that �1fi lies in the subgroup of Isom.M/

generated by .R1; : : : ;Rm/. Note that Isom.M/=Isom.M/ı is a finite group and that  is
homotopic to the identity by construction. Thus we see that the image of the group gener-
ated by . �1f1 ; : : : ; �1fm / in Isom.M/=Isom.M/ı is the same as the image of the
group generated by .R1; : : : ;Rm/. By our choice ofN , the tuple . �1f1 ; : : : ; �1fm /
is in U and thus generates Isom.M/ı. Thus the original tuple and the new one generate
the same subgroup of Isom.M/ and we are done.

6.3. Taylor expansion of Lyapunov exponents

In order to recover Dolgopyat and Krikorian’s Taylor expansion in the setting of isotropic
manifolds, we would need to apply Proposition 26 for each 0 � r � dimM . However,
one of the hypotheses of Proposition 26 is that Isom.M/ı acts transitively on Grr .M/. In
Proposition 41, we see that unlessM is Sn or R Pn, Isom.M/ does not act transitively on
Grr .M/ for r ¤ 1 or d � 1. Despite Proposition 41, we are able to obtain a partial result:
the greatest and least Lyapunov exponents are symmetric about the “average” Lyapunov
exponent 1

d
ƒd .�/.

Theorem 40. Suppose that M d is a closed isotropic manifold other than S1 and that
.R1; : : : ; Rm/ is a subset of Isom.M/ that generates a subgroup of Isom.M/ containing
Isom.M/ı. Suppose that .f1; : : : ; fm/ is a collection of C1 diffeomorphisms ofM . Then
there exists k0 such that if � is an ergodic stationary measure of the random dynamical
system generated by .f1; : : : ; fm/, thenˇ̌̌̌

�1.�/ �

�
��d .�/C

2

d
ƒd .�/

�ˇ̌̌̌
� o.1/j�d .�/j; (93)

where the o.1/ term goes to 0 as maxi dCk0 .fi ; Ri /! 0. The o.1/ term depends only on
.R1; : : : ; Rm/.

Proof. By Theorem 1, there are two cases: either .f1; : : : ; fm/ is conjugate to isome-
tries or it is not. In the isometric case (93) is immediate, so we may assume that there
is an ergodic stationary measure � with �d .�/ non-zero. The proof that follows is then
essentially an observation about what happens when the KAM scheme is run on a system
that has a measure with such a non-zero Lyapunov exponent. If we run the KAM scheme
without assuming that .f1; : : : ; fm/ has a measure with zero exponents, we can keep run-
ning the scheme until the non-trivial exponents prevent us from continuing. At a certain
point in the procedure, the non-trivial exponents cause a certain inequality to fail. Using
the failed inequality then gives the result.
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We now give the details. Fix an ergodic stationary measure � and consider equa-
tion (76) appearing in the KAM step:

�d .�/ D
�1

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
�.d � 1/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol

�

Z
Grd�1.M/

U. d�1/ dvolC
Z

Grd .M/

U. d / dvolCO.k zY k3
Ck1

/: (94)

This allows us to use the fact that the exponent �d is small in magnitude. In the KAM
step, we proceed from this estimate by estimating the k zY k3

Ck1
term as well as the U

terms. Inequality (78) and the choice of `5 imply that these terms satisfyˇ̌̌̌Z
Grd�1.M/

U. d�1/ dvol�
Z

Grd .M/

U. d / dvolCO.k zY k3
Ck1

/

ˇ̌̌̌
� C8;s"`5.�

k3�s=2"s C "
2
`5
/: (95)

Hence as long as

j�d .�/j < .C9;s � C8;s/."`5.�
k3�s=2"s C "

2
`5
//; (96)

the proof of Lemma 39 may proceed to (79) even if there is not a sequence of measures
�n such that j�d .�n/j ! 0. Hence we may continue running the KAM scheme until
inequality (96) fails to hold.

Suppose that we iterate the KAM scheme until (96) fails. We consider the estimates
available in the KAM scheme at the step of failure. By applying Proposition 26 with r
equal to 1, d , and d � 1, we obtain

ƒ1.�/ D
�1

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
.d � 1/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol

C

Z
G1.M/

U. 1/ dvolCO.k zY k3
Ck1

/;

ƒd�1.�/ D
�.d � 1/

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
.d � 1/

.d C 2/.d � 1/m

mX
iD1

Z
M

kE
zfi
NC k

2 dvol

C

Z
Gd�1.M/

U. d�1/ dvolCO.k zY k3
Ck1

/;

ƒd .�/ D
�d

2dm

mX
iD1

Z
M

kE
zfi
C k

2 dvolC
Z
Gd .M/

U. d / dvolCO.k zY k3
Ck1

/:

(97)
Write Ui as shorthand for

R
Gri .M/

U. i / dvol. Then

�1.�/ �

�
��d .�/C

2

d
ƒd .�/

�
D ƒ1.�/ �ƒd�1.�/C

d � 2

d
ƒd .�/

D U1 CUd�1 CUd CO.k zY k
3

Ck1
/: (98)
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Using (78), (75), and `5 > k1 C ˛, we bound the right hand side of (98) to findˇ̌̌̌
�1.�/ �

�
��d .�/C

2

d
ƒd .�/

�ˇ̌̌̌
� 4C8;s.�

k3�s=2
n "s"`5 C "

3
`5
/:

But by the failure of (96), we may bound the right hand side to obtainˇ̌̌̌
�1.�/ �

�
��d .�/C

2

d
ƒd .�/

�ˇ̌̌̌
�

4

C9;s � C8;s
j�d .�/j: (99)

Note that in the above inequality the larger C9;s , the smaller the left hand side. We can
take C9;s as large as we like and still run the KAM scheme. Running the KAM scheme
with a larger C9;s only requires that we assume our initial perturbation is closer to the
original system of rotations in the C k0 norm. Hence by assuming that the initial distance
is arbitrarily small in the C k0 norm, we may take C9;s as large as we like. Thus (93)
follows from (99).

We now check the claim about isotropic manifolds.

Proposition 41. Suppose that M is a closed isotropic manifold other than R Pn or Sn.
Then Isom.M/ does not act transitively on Grk.M/ for k ¤ 0; 1; dimM � 1, dimM .

Proof. From Section 2.5, we have a list of all closed isotropic manifolds, so we may give
an argument for each of the families, C Pn, H Pn, and F4=Spin.9/.

The isometry group of C Pn is PSU.n C 1/. If we fix a point p in C Pn, then the
isotropy group is naturally identified with SU.n/. It is then immediate that the action of
the isotropy group preserves complex subspaces of Grk.C Pn/. Consequently, Isom.C Pn/
does not act transitively on Grk.C Pn/ as C Pn has subspaces that are not complex. In the
case of H Pn, which is constructed similarly to C Pn, a similar argument works where we
use instead the fact that the isotropy group is Sp.k/, the compact symplectic group.

We now turn to the Cayley plane, for which we give a dimension counting argument.
The dimension of F4 is 52while dimF4=Spin.9/D 16. Recall that ifM is a manifold and
dimM D d then dim Grk.M/ D .k C 1/d C k.k C 1/=2. Hence dim Gr3.F4=Spin.9//
> 52. If Isom.M/ acts transitively on 2-planes then M must have constant sectional cur-
vature and hence is a sphere. The Cayley plane does not have constant sectional curvature,
hence k D 2 is ruled out. Similarly, a dimension count excludes the possibility that F4
acts transitively on Grk.F4=Spin.0// when k ¤ 0; 1; 15; 16.

Appendix A. C k estimates

In this section of the appendix, we collect some basic results concerning the calculus
of C k functions. Most of the estimates stated here are used to compare constructions
coming from Riemannian geometry and constructions coming from a chart.

Most of the estimates we prove below involve the following definition, which is an
appropriate form for a second order term in the C k setting.
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Definition 42. Suppose thatX;Y;Z are vector fields andZ DZ.X;Y / is a function ofX
and Y . We say that Z is quadratic in X and Y if there exists a fixed ` such that for each k
there is a constant Ck depending only on Z such that

kZkCk � Ck.kXk
2
CkC`

C kY k2
CkC`

/: (100)

In addition to quadratic, we may also refer to Z as being second order in X and Y . When
Z depends only on X , the definition is analogous.

One thinks of (100) as a quadratic tameness estimate. Our main use of this notion is
the following proposition, which allows us to compose diffeomorphisms up to a quadratic
error. As before, if Y is a vector field on M , we write  Y for the map of M given by
x 7! expx Y.x/. To emphasize that  depends on a metric g, we may write  gY .

The main result of this section is the following, which is used in the KAM scheme
to see how the linearized error between fi and Ri changes when fi is conjugated by a
diffeomorphism  .

Proposition 43 ([10, (8)]). Suppose that .M; g/ is a closed Riemannian manifold and R
is an isometry of M . Suppose that f is a diffeomorphism of M that is C 1 close to R.
Let Y.x/ D exp�1

R.x/
f .x/. If C is a C 1 small vector field on M , then the error field

exp�1
R.x/

 Cf  
�1
C is equal to

Y C C �R�C CQ.C; Y /;

where Q is quadratic in C and Y .

The proof of Proposition 43 is straightforward. It particularly relies on the following
proposition, which simplifies working with diffeomorphisms of the form  X .

Proposition 44. Let M be a compact Riemannian manifold. If X; Y 2 Vect1.M/ are
sufficiently C 1 small and we define Z by

 Y ı  X D  XCYCZ ;

then there exists a fixed ` such that for each k there exists Ck such that

kZkCk � Ck.kXk
2
CkC`

C kY k2
CkC`

/;

i.e. Z is quadratic in X and Y .

The proof of Proposition 44 uses the following two lemmas concerning maps of Rn.

Lemma 45 ([19, Thm. A.7]). Suppose that B is a compact convex domain in Rn with
interior points. Then for k � 0, there exists C such if f; g are C k maps from B to R, then

kfgkCk � Ck.kf kCkkgkC0 C kf kC0kgkCk /:

Lemma 46 ([19, Thm. A.8]). For i 2 ¹1; 2; 3º, let Bi be a fixed compact convex domain
in Rni with interior points. Let k � 1. There exists Ck > 0 such that if f WB1 ! B2 and
gWB2 ! B3 are both C k , then f ı g is C k and

kf ı gkCk � Ck.kf kCkkgk
k
C1
C kf kC1kgkCk C kf ı gkC0/:
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Using the previous two lemmas, we prove the following.

Proposition 47. Suppose that g is a metric on Rn. For a smooth vector field Y such that
kY kC1 < 1, and  gY is defined, let

Z.x/ D  
g
Y .x/ � Y.x/ � x:

Let B be a compact convex domain in Rn with interior points. Then ZjB is quadratic
in Y . In fact, for each k there exists Ck such that

kZjBkCk � CkkY k
2
Ck
:

Proof. Set .Y.x/; t/D expx tY.x/�x, so that .Y.x/;1/CxD gY and .Y.x/;0/D 0.
We rewrite Z:

Z D  
g
Y .x/ � x � Y.x/ D .Y.x/; 1/ � Y.x/

D

Z 1

0

Œ P.Y.x/; t/ � Y.x/� dt D

Z 1

0

Œ P.Y.x/; t/ � P.Y.x/; 0/� dt

D

Z 1

0

Z 1

0

t R.Y.x/; st/ ds dt D

Z 1

0

t

Z 1

0

R.Y.x/; st/ ds dt:

By differentiating under the integral, we see that the nth derivatives of Z are controlled
by the maximum of the nth derivatives of R.Y.x/; t/ for each fixed t . Hence it suffices to
show for each t 2 Œ0; 1� that R.Y.x/; t/ is second order in Y .

Dropping the explicit dependence on x, we recall the coordinate expression of the
geodesic equation. For a coordinate frame Œe1; : : : ; en� and indices 1 � �; �; � � n, we
define the Christoffel symbols ���� by hre�e� ; e�i: In addition, we write P� for h P; e�i
and similarly for R . The coordinate expression for the geodesic equation is then

R� D ����� P
�
P� :

We estimate the C k norm of the right hand side. Write �t for the geodesic flow, and
let TB denote the tangent vectors to Rn with basepoint in B . Note that as B is compact,
for any tangent vector v 2 TB , �t .v/ is defined for some positive amount of time. For
fixed r > 0 in TB , let TB.r/ be the set of vectors v 2 TB such that kvk < r . Note that
k�t jTB.r/kCk is bounded. Let � be the projection from a tangent vector in TRn to its
basepoint in Rn. Then

.x; t/ D � ı �t ı Y.x/:

Hence, writing P� for the geodesic spray,

P.x; t/ D D� ı P�j�t .Y.x//: (101)

D� ı P�t jTB.r/ has its C k norm uniformly bounded in t by some Dk . By Lemma 46
because kY kC1 < 1 it follows that k�t .Y.x/; t/kCk � CkkY kCk .

Hence by applying Lemma 46 to (101), and similarly using the fact that kY kC1 < 1
and D� ı P� is uniformly bounded, we find

k.D� ı P�t / ı Y kCk � C
0
k.DkkY kC1 CD1kY kCk C kY kC0/:
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Hence
k P.x; t/kCk D kD� ı P�j�t .Y.x//kCk � CkkY kCk :

The geodesic equation shows that at each point the coordinates of R are a quadratic poly-
nomial in the coordinates of P . Hence by Lemma 45,

k R.x; t/kCk � C
00
k kY k

2
Ck

for all t 2 Œ0; 1�. Thus we obtain a uniform estimate on Z.

Proof of Proposition 44. As before, it suffices to prove the estimate in a chart. So, we are
reduced to working in a neighborhood of 0 2 Rn. Fix some k; then by Proposition 47 we
may write

 Y .x/ D x C Y.x/CZY .x/;

where ZY .x/ is quadratic in Y . Similarly define ZX .x/ and ZXCY .x/. Then

 Y ı  X D  Y .x CX.x/CZX .x//

D x CX.x/CZX .x/C Y.x CX.x/CZX .x//CZY .x CX.x/CZX .x//:

To prove this proposition, we compare the previous line with

 XCY D x CX.x/C Y.x/CZXCY .x/:

The difference is

 Y ı  X �  XCY D ZX .x/ �ZXCY .x/C Y.x CX.x/CZX .x// � Y.x/

CZY .x CX.x/CZX .x//:

The first and second terms satisfy the appropriate quadratic C k estimate already. For the
last term, we apply Lemma 46. Hence by assuming that kXkC1 is sufficiently small, we
conclude that the ZY term is quadratic. We now turn to the Y terms:

Y.x CX.x/CZX .x// � Y.x/:

For this we apply the same trick as before. Write

Y.x CX.x/CZX .x// � Y.x/ D

Z 1

0

Y 0.x C t .X.x/CZX .x///kX.x/CZX .x/k dt:

By differentiating under the integral, it suffices to show that the integrand is quadratic
in X and Y . By Lemma 45, the integrand will be quadratic if there exists ` such that
for each k there is a constant Ck such that both of kY 0.x C t .X.x/C ZX .x///kCk and
kX.x/C ZX .x/kCk are bounded by Ck.kXkCkC` C kY kCkC`/. This follows for both
terms by the application of Lemma 46, so we are done.

We now show another basic fact: near to the identity map a diffeomorphism and its
inverse have comparable size.



Simultaneous linearization of diffeomorphisms of isotropic manifolds 2951

Lemma 48. Suppose that M is a closed Riemannian manifold. Then there exists � > 0
such that for all k � 0 there exists Ck such that if f 2 Diffk.M/ and dC1.f; Id/ < � then

dCk .f
�1; Id/ � CkdCk .f; Id/:

Proof. This proof follows the outline of the similar estimate in [16, Lem. 2.3.6]. For
convenience, write g D f �1. In a chart, we write f .x/ D x CX.x/ where the C k norm
of X is bounded by dCk .f; Id/. Similarly write g.x/ D x C Y.x/. We now apply the
chain rule to differentiate g ı f . The case where n D 1 is immediate by differentiating
g ı f D x CX.x/C Y.x CX.x//, which gives

DX CDY.IdCDX/ D 0:

Hence
DY D �DX.IdCDX/�1;

which is uniformly comparable to kDXk because dC1.f; Id/ is uniformly bounded.
For k > 1, we must estimate the higher order derivatives of Y . Note that for k > 1 we

have Dkg D DkY and Dkf D DkX .
Applying the chain rule to f ı g D Id to calculate the kth derivative gives

0 D

kX
lD1

X
j1C���CjlDk

Cl;j1;:::;jlD
l
g.x/f ¹D

j1
x g; : : : ;D

jl
x gº;

and hence

Dk
xgD�.Dg.x/f /

�1

kX
lD2

X
j1C���CjlDk

Cl;j1;:::;jlD
l
g.x/f ¹D

j1
x g.x/; : : : ;D

jl
x g.x/º: (102)

As .Df /�1 has uniformly bounded norm, it suffices to show that each term in the sum
has norm bounded by kXkCn .

We use the interpolation estimate in Lemma 52. If j > 1, then

kDjgk D kDjY k:

By interpolation between the C 1 and C n�1 norms, for 1 � j � n � 1,

kY kCj � C1;n�1kY k
n�j�1
n�2

C1
kY k

j�1
n�2

Cn�1
:

By interpolation between the C 1 and C n norms, for 1 � j � n,

kXkCj � C1;nkXk
n�j
n�1

C1
kXk

j�1
n�1

Cn :

We now estimate the terms on the right hand side of (102). If ji D 1 for some i , then
Djig D Id C DY . Hence the right hand side of (102) may be rewritten as the sum of
terms of the form

Dl
g.x/X¹A1; : : : ; Alº;
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where each Ai is either Id or DjiY and the sum of the ji is less than or equal to k. If
kY kCk�1 � 1, then we are immediately done as the norm of this expression is at most
kDkf k. Otherwise, we may suppose that kY kCk�1 � 1. The C 1 norms of X and Y are
uniformly bounded. Hence by interpolating between the C 1 and C k norms to estimate
theDlX term and between the C 1 and C k�1 norms to estimate the Ai terms, we find that

kDk
g.x/X¹A1; : : : ; Akºk � C

0
kXk

l�1
k�1

Ck
kY k

k�r
n�2

Ck�1
;

where r � l . But as kY kCk�1 > 1, this is bounded above by

C 0kXk
l�1
k�1

Ck
kY k

k�l
k�2

Ck�1
:

Thus

kDkY kC0 � C
00

kX
lD2

kXk
l�1
k�1

Ck
kY k

k�l
k�2

Ck�1
:

We may now proceed by induction on k. We already established the theorem for k D 1.
Now, given that kY kCk�1 � Ck�1kXkCk�1 , it follows that

kDkY kC0 � C
000

kX
lD2

kXk
l�1
k�1

Ck
kXk

k�l
k�2

Ck�1
:

By interpolation between the C 1 and C k norms, and the uniform bound on the C 1 norm,

we find that kXkCk�1 � DkkXk
k�2
k�1

Ck
. This yields

kDkY kC0 � D
0

kX
lD2

kXk
l�1
k�1

Ck
kXk

k�l
k�1

Ck
� D00kXkCk ;

which is the desired result.

We now obtain the following corollary.

Corollary 49. Suppose that M is a closed Riemannian manifold. For smooth C 1 small
vector fields X on M , we may write

 �1X D  �XCZ ;

where Z is quadratic in X .

Proof. To begin we know by Proposition 44 that

 X ı  �X D  Z ;

where Z is quadratic in X . Note that  �X ı  �1Z D  �1X . By Lemma 48,  �1Z D  Z0

where Z0 is quadratic in X . Hence  �1X D  �X ı  Z0 . By Proposition 44, this gives
 �1X D  �XCZ0CQ, where Q is quadratic in X and Z0. Hence as Z0 is quadratic in X ,
the corollary follows.
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We can now complete the proof of the estimate on the error field of the conjugate
system.

Proof of Proposition 43. To show this, we repeatedly apply Proposition 44 and Corol-
lary 49. Writing Z for anything second order in C and Y , we find

 Cf  
�1
C D  C YR 

�1
C D  CCYCZR 

�1
C D  CCYCZR �CCZ

D  CCYCZCR�.�CCZ/R D  CCY�R�CCZR:

We now show two additional lemmas that we use in the KAM scheme.

Lemma 50. Let M be a closed Riemannian manifold. Fix k � 1. There exist Ck ; � > 0
such that ifR 2 Isom.M/ and f;g 2Diffk.M/ satisfy dC1.f;R/ < �, and dC1.g; Id/ < �,
then

dCk .f ı g;R/ � Ck.dCk .f;R/C dCk .g; Id//;

dCk .g ı f;R/ � Ck.dCk .f;R/C dCk .g; Id//:

Proof. To prove the first inequality, in coordinates write f .x/DR.x/CY.x/ and g.x/D
x CX.x/. Then we just need to estimate

f ı g.x/ �R.x/ D R.x CX.x// �R.x/C Y.x CX.x//:

The last term is controlled by dCk .f; R/C dCk .g; Id/ by Lemma 46. So, it suffices to
estimate the first term. The kth derivative of R.x CX.x// �R.x/ is then

kX
lD1

X
j1C���CjlDk

ŒCl;j1;:::;jlD
l
xCX.x/R¹D

j1
x g; : : : ;D

jl
x gº �D

l
xR�:

For all the terms with l < k, the same interpolation approach as in Lemma 48 gives the
appropriate estimate, i.e. they are bounded by

C

k�1X
lD1

kXk
l�1
k�1

Ck
kXk

k�l
k�2

Ck�1
:

There are two remaining terms which are unaccounted for:DkRxCX.x/ �D
kRx . This is

bounded by a constant time kXkC0 and the result follows.
We now consider the second inequality. As before, we must estimate

g ı f .x/ �R.x/ D X.x/C Y.R.x/CX.x//:

The important term is the second one. A similar argument to the one before then gives the
result as all derivatives of R are uniformly bounded independent of R.

Lemma 51. Let M be a closed Riemannian manifold and k � 0. If gn 2 Diffk.M/ is a
sequence of diffeomorphisms and

P
n dCk .gn; Id/ <1, then the sequence of composi-

tions of diffeomorphisms hn D gngn�1 � � �g2g1 converges in C k to a diffeomorphism.
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Proof. As before, we check in charts. Having fixed a chart, write gn.x/ D x C Xn.x/.
Write hn.x/ D 1C Yn.x/. Let an D kXnkCk and let bn D kYnkCk . Note that

hn.x/ D x C Yn�1.x/CXn.x C Yn.x//: (103)

Suppose for the moment that kYn�1kCk � 1. Using Lemma 46 and kYnkCk � 1, we have

kXn.xCYn�1/kCk � Ck.kXnkCkkxCYn�1k
k
C1
CkXnkC1kxCYn�1kCk CkXkC0/

� C 0k.anC anbn�1/ (104)

Hence it follows from (103) that there exists Dk such that if bn�1 � 1 then

bn � bn�1 CDkan.1C bn�1/:

By induction, under the same assumption that kYj kCk � 1 for j < n, it follows that

bn � �1C

nY
iD1

.1CDkai /:

By noting that
Q1
iD1.1C xn/ � exp.

P1
iD1 xn/ for xn � 0, we can conclude that a tail of

the sequence converges. Indeed, as
P
n an converges we can inductively check that these

inequalities hold starting the argument from an index N satisfying exp.
P1
iDN Dkai /� 1

< 1. Hence as a tail of the infinite composition converges, so does the whole composition.

Appendix B. Interpolation inequalities

There is a basic C k interpolation inequality, which may be found in the appendix of
[19, Thm A.5]:

Lemma 52. Suppose that M is a closed Riemannian manifold. For 0 � a � b <1 and
0 < � < 1 there exists a constant C.a; b; �/ such that for any real-valued C b function f
defined on M ,

kf kC�aC.1��/b � Ckf k
�
Cakf k

1��
Cb

:

The following is an immediate consequence of Lemma 52.

Lemma 53. Suppose that M is a closed Riemannian manifold. There exists � > 0 such
that for 0 � a � b <1 and 0 < � < 1 there exists a constant C.a; b; �/ such that for
any f 2 Diff1.M/ such that dC0.f; Id/ < �,

dC�aC.1��/b .f; Id/ � CdCa.f; Id/
�dCb .f; Id/

1��:

Lemma 54. Consider the space C1.M;N / where M and N are Riemannian manifolds
and M and N are closed. For all j; � > 0, there exists a natural number k and a number
�0 > 0 such that if f; g 2 C1.M;N /, kf � gkHj < �0 < 1, and kf � gkCk � 1=2 then
kf � gkCj � kf � gk

1��
Hj

.
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Proof. The proof is a relatively straightforward application of the Sobolev embedding the-
orem and interpolation inequalities. First, we recall an interpolation inequality for Sobolev
norms [2, Thm. 6.5.4]: For each 0 < � < 1, s0; s1, there exists a constant C such that if
we let s D .1 � �/s0 C �s1, then

kf � gkH s � Ckf � gk
1��
H s0 kf � gk

�
H s1 :

To begin the proof, note that it suffices to estimate kf � gkCjC1 . Fix ` large enough
that H ` embeds compactly in C jC1 by a Sobolev embedding. Then pick k large enough
that

kf � gkH` � C�;`kf � gk
1��
Hj
kf � gk�

Hk

for some 0 < � < � . The term kf � gk�
Hk

is uniformly bounded byCkkf � gk�Ck . Hence
as H ` compactly embeds in C jC1, there exists C 0 > 0 such that

kf � gkCjC1 � C
0
kf � gk1��

Hj
D C 0kf � gk���

Hj
kf � gk1��

Hj
:

If we choose �0 sufficiently small that C 0kf � gk���
Hj
� 1, then the result follows.

A similar argument shows the following:

Lemma 55. Suppose that E is a smooth Riemannian vector bundle over a closed Rie-
mannian manifold M . For all choices j; `; �; D > 0 there exist k; �0 such that if f is a
smooth section of E and kf kHj � �0 < 1 and kf kCk � D then kf kC` � kf k

1��
Hj

.

Appendix C. Estimate on lifted error fields

The goal of this section is to prove a technical estimate on the error fields of a lifted
system. The proof is a computation in charts.

Lemma 56. Suppose that M is a closed Riemannian manifold. Fix numbers m; k � 0
and d such that 0 � d � dimM . There exists a constant C such that the following holds.
For any tuple .f1; : : : ; fm/ of diffeomorphisms of M and .r1; : : : ; rm/ a C 1 close tuple
of isometries of M , let Yi be the shortest vector field such that expri .x/ Yi .x/ D fi .x/.
Let Fi be the lift of fi to Grd .M/ and Ri be the lift of ri to Grd .M/. Let zYi be the
shortest vector field on Grd .M/ such that expRi .x/

zYi .x/ D Fi .x/. If k
P
i YikCk D �

and maxi kYikCk D �, then  mX
iD1

zYi


Ck�1

� C.� C �2/:

Proof. The proof is straightforward but tedious. We give the proof when each Ri is the
identity. Removing this assumption both complicates the argument in purely technical
ways and substantially obscures why the lemma is true. At the end of the argument, we
indicate the modifications needed for the general proof.
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For readability we redevelop some of the basic notions concerning Grassmannians.
First we recall the charts on Grd .V /, the Grassmannian of d -planes in a vector space V .
Recall that given a vector space V and a pair of complementary subspaces P andQ of V ,
if dimP D d we obtain a chart on Grd .V / in the following manner. Let L.P;Q/ denote
the space of linear maps from P to Q. For A 2 L.P; Q/, we send A to the subspace
¹xCAx W x 2 P º 2 Grd .V /. This gives a smooth parametrization of a subset of Grd .V /.
Having fixed a complementary pair of subspaces P and Q, let �P denote the projection
to P along Q.

Suppose that U is a chart on M and let @1; : : : ; @n denote the coordinate vector
fields. We use the usual coordinate framing of T U to give coordinates on the Grassman-
nian bundle Grd .M/. The tangent bundle to U naturally splits into subbundles spanned
by ¹@1; : : : ; @d º and ¹@dC1; : : : ; @nº. Call these subbundles P and Q, respectively. Let
End.P; Q/ denote the bundle of maps from P to Q. We obtain a coordinate chart via
associating to an element of A 2 End.P; Q/ and a point x 2 U the graph of A in the
tangent space over x.

As we have assumed that each ri is the identity, in charts we write fi .x/D xCXi .x/.
As the fi are C 1 small, we work in a single chart. It now suffices to prove the correspond-
ing estimate on the field Xi because Xi and Yi are equal up to an error that is quadratic
in the sense of Definition 42. We now calculate the action of f on Grd .U /. Suppose that
A 2 End.P;Q/. Then ¹Df.v CAv/º is a subspace of Tf .x/M . We must find the map A0

whose graph gives the same subspace. Let IA be the n � d matrix with top block I and
bottom block A. Then Df sends A to

A0 D DfIA.�PDfIA/
�1
� Id :

To see this, we must check that A0V �Q and ¹Df vCDfAv W v 2 V º D ¹vCA0vº. The
second condition is evident from the definition of A0. If v 2 P , then .�PDfIA/�1v D w
is an element of P satisfying �PDfIAw D v. Thus A0v DDfIA.�PDfIA/�1v � v 2Q
and hence A0V � Q. Write F for the induced map on Grd .U /. In coordinates, F is the
map

.x; A/ 7! .x;Df IA.�PDfIA/
�1
� Id/: (105)

Write Id for the d � d identity matrix. Let bDXi be the matrix consisting of the first d rows
of the matrix DXi . In the estimates below, we will assume that the size of A is uniformly
bounded. This does not restrict the generality as any subspace may be represented by such
a uniformly bounded A. Then note that�

�PDf

�
Id

A

���1
D

�
Id CbDX

�
Id

A

���1
D Id �bDX

�
Id

A

�
CO.DX2/;

where the O.DX2/ is quadratic in the sense of Definition 42. Write XA for the second
term above.
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We then have

DfIA.�PDfIA/
�1
� Id D .IdCDX/

�
Id

A

�
.Id �XA/ �

�
Id

0

�
CO.DX2/

D

�
Id

A

�
�

�
Id

A

�
XA CDX

�
Id

A

�
CDX

�
Id

A

�
XA �

�
Id

0

�
CO.DX2/

D

�
0

A

�
�

�
Id

A

�
XA CDX

�
Id

A

�
CO.DX2/

D

�
0

A

�
CH.A;DX/CO.DX2/;

whereH.A;DX/ is the sum of the second and third terms two lines above. Note thatH is
linear in DX , and kH.A;DX/k � CkDXk given our uniform boundedness assumption
on A.

Thus we see that in this chart on Grd .U /,

F.x;A/ � .x; A/ D .f .x/ � x;H.A;DX/CO.DX2//: (106)

In this chart, k
P
i fi .x/ � xkCk � �. Hence writing fi .x/ D x C Xi .x/ as before, we

have k
P
i DXi .x/kCk�1 � �. ThusX

i

Fi .x; A/ � .x; A/

Ck�1

D

X
i

.fi .x/ � x;H.A;DXi /CO.DX
2//

Ck�1

� C
�X

i

Xi


Ck
Cmax

i
kXik

2
Ck

�
by the linearity of H . This completes the proof in the special case where ri D Id for
each i .

In the general setting one follows the same sequence of steps. One writes fi .x/ D
ri .x/C Xi .ri .x//. One then does the same computation to determine the action on the
Grassmannian bundle. This is complicated by additional terms related to R. Having fin-
ished this computation, one finds a natural analog of H.A;DX/, which now comprises
eight terms instead of two, and also depends on ri . Recognizing the cancellation is then
somewhat complicated because of the dependence on ri . However, this dependence does
not cause an issue because the terms that would potentially cause trouble satisfy some
useful relations. These relations emerge when one keeps in mind the basepoints, which is
crucial when the isometries are non-trivial.

Appendix D. Determinants

Suppose that V andW are finite-dimensional inner product spaces. Consider a linear map
LWV !W . The determinant of the map L is defined as follows. If ¹viº is an orthonormal
basis for V , one may measure the size of the tensor Lv1 ^ � � � ^ Lvn with respect to the
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norm on tensors induced by the metric on W . If ¹v1; : : : ; vnº is a basis for V , then we
define

det.L; g1; g2/ WD

s
Det.hLvi ; Lvj ig2/

Det.hvi ; vj ig1/
;

where Det is the usual determinant of a square matrix. Sometimes we have a map
LWV ! W and a subspace E � V . We then define

det.L; g1; g2 j E/ D det.LjE ; g1jE ; g2/: (107)

When the spaces V and W are understood, we may write det.L j E/.
There are some properties of det that we will record for later use.

Lemma 57. Fix a basis and suppose that V D W . Working with respect to this basis, the
determinant has the following properties:

det.L; g1; g2/ D det.Id; g1; L�g2/; (108)

det.Id; Id; A/ D
p

det.A; Id; Id/ D
p
jDet.A/j: (109)

Proof. For the first equality, let ¹viº be a basis of .V; g1/. Then

det.L; g1; g2/ D

s
Det.hLvi ; Lvj ig2/

Det.hvi ; vj ig1/
:

But hvi ; vj iL�g2 D hLvi ; Lvj ig2 , so this is equal tos
Det.hvi ; vj iL�g2/
Det.hvi ; vj ig1/

;

which is the definition of det.Id; g1; L�g2/.
For the second equality, fix an orthonormal basis ¹eiº. Then

det.Id; Id; A/ D
q

Det.hei ; ej iA/ D
q

Det.Aij /;

whereas

det.A; Id; Id/ D
q

Det.hAei ; Aej iId/ D
q

Det.ATA/ D
p
jDet.A/j2 D jDet.A/j:

We record the following estimate which is used in the proof.

Lemma 58. Let M be a closed manifold and let 0 � r � dimM . If g is an isometry of
M , then ln det.Df j Ex/, which is defined on Grr .M/, satisfies the following estimate:

kln det.Df j Ex/kCk D O.dCkC1.f; g// as f ! g in C kC1.

The big-O is uniform over all isometries g.
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Proof. It suffices to show that this estimate holds in charts. So, fix a pair of charts U
and V on M such that f .U / has compact closure inside of V . We define a map H W
Grd .U / � U � V � Rn

2
! R by sending the point .E; x; y; A/ to ln det.A; gx ; gy jE/,

where gx and gy denote the pullback metric from M . Using f we define a map zf W
Grd .U / � U ! Grd .U / � U � V �Rn

2
by

.E; x/ 7! .E; x; f .x/;Df /;

where we are using the coordinates to expressDf as a matrix. Then the quantity we wish
to estimate the C k norm of isH ı zf . If we analogously define zg, then note thatH ı zg� 0
because g is an isometry. By writing out the derivatives using the chain rule, and using the
fact that f is uniformly close to g, one sees that kH ı zg �H ı zf kCk DO.dCkC1.f;g//,
and the result follows.

Appendix E. Taylor expansions

E.1. Taylor expansion of the log Jacobian

Proposition 59. For C 1 small vector fields Y on a Riemannian manifold M , the follow-
ing approximation holds:Z

Grr .M/

ln det.Dx Y ; Id; g Y.x/ j Ex/ dvol

D �
r

2d

Z
M

kEC k
2 dvolC

r.d � r/

.d C 2/.d � 1/

Z
M

kENC k
2 dvolCO.kY k3

C1
/;

whereEC andENC are the conformal and non-conformal strain tensors associated to Y
as defined in Section 4.2. In addition, det is defined in Appendix D and  Y is defined
in (11).

Proof. The proof is a lengthy computation with several subordinate lemmas.
In order to estimate the integral over M , we will first obtain a pointwise estimate onZ

Grr .TxM/

ln det.Dx Y j E/ dE:

To estimate this we work in an exponential chart on M centered at x. In this chart, x is 0
and  Y .0/ D Y.0/. ThenZ

Grr .TxM/

ln det.Dx Y j E/ dE D
Z

Grr .TxM/

ln det.D0 Y ; Id; gY.0/ j E/ dE:

We now rewrite the above line so that we can apply the Taylor approximation in Proposi-
tions 62 and 63 below.
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Write the metric as IdC Og. As we are in an exponential chart, k OgY.0/k D O.kY k2C0/.
Write D Y D Id C O . The integral we are calculating only involves O 0 and OgY.0/, so
below we drop the subscripts. ThenZ

Grr .TxM/

ln det.Dx Y j E/ dE D
Z

Grr .TxM/

ln det.IdC O ; Id; IdC Og j E/ dE:

Now applying the Taylor expansions in Propositions 62 and 63, we obtain the following
expansion. For convenience let

K D
O C O T

2
�

Tr. O /
d

Id: (110)

ThenZ
Grr .TxM/

ln det.D Y ; Id; gY.0/ j E/ dE

D
r

d
Tr. O /C

�
�
r

2d
Tr. O 2/C

r.d � r/

.d C 2/.d � 1/
Tr.K2/

�
CO.k O 3k/

C
r

2d
Tr. Og/CO.k Ogk2/: (111)

Note that k O k D O.kY kC1/ and k Ogk D O.kY k2
C0
/, hence the big-O terms in the above

expression are each O.kY k3
C1
/.

We now eliminate the two trace terms that are not quadratic in their arguments. For
this, we use a Taylor expansion of the determinant.3 Thus

det.D ; Id; gY.0// D 1C Tr. O /C
.Tr. O //2 � Tr. O 2/

2
C

Tr. Og/
2
CO.kY k3

C1
/

The integral of the Jacobian is 1, so integrating the previous line over M against
volume we obtain

1 D 1C

Z
M

Tr. O /C
.Tr. O //2 � Tr. O 2/

2
C

Tr. Og/
2

dvolCO.kY k3
C1
/:

Thus Z
M

Tr. O /C
Tr. Og/
2
�

Tr. O 2/
2

dvol D �
Z
M

.Tr. O //2

2
dvolCO.kY k3

C1
/:

3Recall the usual Taylor expansion Det.IdC A/ D 1C Tr.A/C .Tr.A//2�Tr.A2/
2 CO.kAk3/.

We combine this with the first order Taylor expansion

det.Id; Id; IdCG/ D
p

Det.IdCG/ D
q
1C Tr.G/CO.kGk2/ D 1C Tr.G/=2CO.kGk2/:
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Now, we integrate (111) overM and apply the previous line to eliminate the non-quadratic
terms. This givesZ

Grr .M/

ln det.Dx Y ; Id; g Y.x/ j Ex/ dEx

D

Z
M

�
r

2d
.Tr. O x//2 C

r.d � r/

.d C 2/.d � 1/
Tr.K2x/ dvolCO.kY k3

C1
/; (112)

where we have written O x and Kx to emphasize the basepoint. The formula above is not
yet very usable as both Kx and O x are defined in terms of exponential charts. We now
obtain an intrinsic expression for these terms. Recall that pointwise we use the L2 norm
on tensors. Below we suppress the x in kEC .x/k and O x .

Lemma 60. Let EC be the conformal strain tensor associated to  Y . ThenZ
M

.Tr. O x//2 dvol D
Z
kEC k

2 dvolCO.kY k3
C1
/:

Proof. We use an exponential chart and compute a coordinate expression for kEC k2 in
the center of this chart. As before, write D Y D IdC O , where O D O.kY kC1/. Then
working in exponential coordinates, we obtain

Tr. �Y g � g/ D Tr..IdC O /T .IdCO.kY k2
C0
//.IdC O / � Id/

D Tr.IdC O T C O � Id/CO.kY k2
C1
/ D 2Tr. O /CO.kY k2

C1
/:

Thus since O D O.kY kC1/, by definition of EC , we have

kEC k
2
D

Tr. �Y g � g/
2d

Id
2 D 2Tr. O /

2d
Id
2

D
Tr. O /
d
kIdk2 D Tr. O /:

Integrating over M , we obtain the result.

Lemma 61. Let ENC be the non-conformal strain tensor associated to  Y and let Kx
be as in (110). ThenZ

M

Tr.K2x/ dvol D
Z
M

kENC k
2 dvolCO.kY k3

C1
/:

Proof. As before, we first compute a local expression for the integrand and check that
this expression is comparable to the local expression for the non-conformal strain tensor.
We compute at the center of an exponential chart. As before, writeD Y D IdC O where
O D O.kY kC1/. In this case

 �Y g D .IdC O /
T .IdCO.kY k2

C0
//.IdC O / D IdC O T C O CO.kY k2

C1
/:
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Using the above line and the definition of ENC we then compute

kENC k
2
D

12
�
 �Y g � g �

Tr. �Y g � g/
d

g

�2
D
1

4
k.IdC O /T .IdCO.kY k2

C0
/.IdC O / � Id � 2

Tr. O /
d

IdCO.kY k2
C1
/k2

D
1

4

 O T C O � 2Tr. O /
d

IdCO.kY k2
C1
/

2
D
1

4
Tr
��
O T C O � 2

Tr. O /
d

IdCO.kY k2
C1
/

�2�
D Tr

��
O T C O 

2
�

Tr. O /
d

Id
�2�
CO.kY k3

C1
/ D Tr.K2/CO.kY k3

C1
/:

By integrating the above equality over M , the result follows.

Finally, Proposition 59 follows by applying Lemmas 60 and 61 to (112), which givesZ
Grr .M/

ln det.Dx Y ; Id; g Y.x/ j Ex/ dEx

D �
r

2d

Z
M

kEC k
2 dvolC

r.d � r/

.d C 2/.d � 1/

Z
M

kENC k
2 dvolCO.kY k3

C1
/:

E.2. Approximation of integrals over Grassmannians

Let Gr;d be the Grassmannian of r-planes in Rd . In this subsection, we prove the follow-
ing simple estimate.

Proposition 62. For 1 � r � d , let ƒr WEnd.Rd /! R be defined by

ƒr .L/ WD

Z
Gr;d

ln det.IdC L; Id; Id j E/ dE;

where dE denotes the Haar measure on Gr;d . Then the second order Taylor approxima-
tion for ƒr at 0 is

ƒr .L/ D
r

d
Tr.L/C

�
�
r

2d
Tr.L2/C

r.d � r/

.d C 2/.d � 1/
Tr.K2/

�
CO.kLk3/;

where

K D
LC LT

2
�

Tr.L/
d

Id :

Let �r .L/ D ƒr .L/ �ƒr�1.L/. Then the above expansion implies

�r .L/ D
1

d
Tr.L/C

�
�
1

2d
Tr.L2/C

d � 2r C 1

.d C 2/.d � 1/
Tr.K2/

�
CO.kLk3/:
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Proof. Before beginning, note from the definition of ƒr that if U is an orthogonal trans-
formation, then ƒr .U TLU/ D ƒr .L/. Consequently, if ˛i is the i th term in the Taylor
expansion of ƒr , then ˛i is invariant under conjugation by isometries.

The map ƒr is smooth, so it admits a Taylor expansion

ƒr .L/ D ˛1.L/C ˛2.L/CO.kLk
3/;

where ˛1 is linear in L and ˛2 is quadratic in L. The rest of the proof is a calculation of
˛1 and ˛2. Before we begin this calculation we describe the approach. In each case, we
reduce to the case of a symmetric matrix L. Then restricted to symmetric matrices, we
diagonalize. There are few linear or quadratic maps from End.Rn/ to R that are invariant
under conjugation by an orthogonal matrix. We then write ˛i as a linear combination of
such invariant maps from End.Rn/ to R and then solve for the coefficients of this linear
combination.

We begin by calculating ˛1.

Claim 3. With notation as above,

˛1.L/ D
r

d
Tr.L/:

Proof. Let zƒr .IdC L/ D ƒr .L/. Then from the definition, note that if U is an isometry
then zƒr .U.IdCL//D zƒr ..IdCL/U //Dƒr .L/. Suppose thatOt is some path tangent
to O.n/ � End.Rn/ such that O0 D Id. Then zƒr .Ot / D 0. Write Ot D IdC tS CO.t2/
where S is skew-symmetric. Then we see that

zƒr .IdC tS CO.t2// D O.t2/;

So, ƒr .tS/ D O.t2/. Hence ˛1 vanishes on skew-symmetric matrices.
Thus it suffices to evaluate ˛1 restricted to symmetric matrices. Suppose that A is a

symmetric matrix. Then there exists an orthogonal matrixU such thatU TAU is diagonal.
Restricted to the space of diagonal matrices, which we identify with Rd in the natural way,
observe that ˛1WRd ! R is invariant under permutation of the coordinates in Rd because
it is invariant under conjugation by isometries. There is a one-dimensional space of maps
having this property, and it is spanned by the trace, Tr. So, ˛1.A/ D ˛1.U

TAU/ D

a1 Tr.A/ for some constant a1. To compute a1 it suffices to consider a specific matrix,
e.g. A D Id:

˛1.Id/ D
d

d�

Z
ln det.IdC � Id j E/ dE

ˇ̌̌̌
�D0

D
d

d�

Z
ln.IdC �/r dE

ˇ̌̌̌
�D0

D
d

d�
r ln.1C �/

ˇ̌̌̌
�D0

D r:

So, a1 D r=d . Thus for L 2 End.Rd /, ˛1.L/ D r
d

Tr..LC LT /=2/ D r
d

Tr.L/.

We now compute ˛2.



J. DeWitt 2964

Claim 4. With notation as in the statement of Proposition 62,

˛2.L/ D �
r

2d
Tr.L2/C

r.d � r/

.d C 2/.d � 1/
Tr.K2/:

Proof. Let zƒr .IdC L/ D ƒr .L/. From the definition, note that for an isometry U , we
have zƒr ..IdC L/U / D zƒr .U /. Fix L and let J D .L � LT /=2. Observe that

.IdC L/e�J D IdC .L � J /C .J 2=2 � LJ /CO.jLj3/:

Thus we see that

ƒr .L/ D zƒr .IdC L/ D zƒr ..LC Id/e�J /

D zƒr .IdC .L � J /C .J 2=2 � LJ /CO.jLj3//

D ƒr ..L � J /C .J
2=2 � LJ //CO.jLj3/:

Now comparing the two Taylor expansions of zƒr .IdC L/, we find

˛2.L/ D ˛2.L � J /C ˛1.J
2=2 � LJ /:

Thus, as we have already determined ˛1,

˛2.L/ D ˛2..LC L
T /=2/C

r

d
Tr.J 2=2 � LJ /:

So, we are again reduced to the case of a symmetric matrix S . In fact, by invariance
of ˛2 under conjugation by isometries, we are reduced to determining ˛2 on the space
of diagonal matrices. Identify Rd with diagonal matrices as before. We see that ˛2 is
a symmetric polynomial of degree 2 in d variables. The space of such polynomials is
spanned by

P
x2i and

P
i;j xixj . It is convenient to observe that for a diagonal matrixD,

Tr.D2/ and .Tr.D//2 span this space as well. Hence

˛2.S/ D b1.Tr.S//2 C b2 Tr.S2/:

Now in order to calculate b1 and b2 we will explicitly calculate ˛2.Id/ and ˛2.P /,
where P is the orthogonal projection onto a coordinate axis.

In the first case,

2˛2.Id/ D
d

d�1

d

d�2

Z
Gr;d

ln det..IdC �1 C �2/ j E/ dE
ˇ̌̌̌
�1D0;�2D0

D
d2

d�2
ln.1C �/r

ˇ̌̌̌
�D0

D �r:

So, ˛2.Id/ D �r=2.
Next suppose that P is projection onto a fixed vector e. Suppose that †.e; E/ D � .

We now compute ln det.IdC �P j E/. We fix a useful basis of E. Let v be a unit vector
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making angle †.e; E/ with e, and let e2; : : : ; er be unit vectors in E that are orthogonal
to e and v. Then using the basis v; e2; : : : ; er , we see that

det.IdC �P j E/ D
k.IdC �P /v ^ .IdC �P /e2 ^ � � � ^ .IdC �P /erk

kv ^ � � � ^ erk

D
p
h.IdC �P /v; .IdC �P /vi;

by considering the determinant defining the wedge product. But then as Pv D cos.�/e,p
hv C � cos.�/e; v C � cos.�/ei D

p
hv; vi C 2� cos.�/hv; ei C �2hPv;P vi

D

p
1C 2� cos2.�/C �2 cos2 �:

Now, the Taylor approximation for ln
p
1C x at x D 0 is x=2 � x2=4CO.x3/, so

ln det.IdC �P j E/ D � cos†.E; e/C �2
�

cos†.E; e/
2

� cos4†.E; e/
�
CO.�3/:

Hence, as this estimate is uniform over E, by integrating we haveZ
Gr;d

ln det.IdC �P j E/ dE

D �

Z
Gr;d

cos2†.E; e/ dE C �2
Z

Gr;d

�
cos2†.E; e/

2
� cos4†.E; e/

�
dE CO.�3/:

So, we are reduced to calculating the coefficient of �2 in the above expression. One
may rewrite the above integrals in the following manner, by definition of the Haar mea-
sure because Gr;d is a homogeneous space of SO.d/. Write x1; : : : ; xd for the restric-
tion of the Euclidean coordinates to the sphere. By fixing the coordinate plane E0 D

span ¹e1; : : : ; erº, and letting � D†..x1; : : : ; xd /;E/ we then have cos.�/D
qPr

iD1 x
2
i .

ThusZ
Gr;d

cos2†.E; e/ dE D
Z

SOd
cos2†.gE0; e/ dg D

Z
SOd

cos2†.E0; ge/ dg

D

Z
Sd�1

cos2†.E0; x/ dx D
Z
Sd�1

rX
iD1

x2i dx:

Similarly, fixing the plane E0 D span ¹e1; : : : ; erº, we see that since cos4 †.E0; x/ D
.
Pr
iD1 x

2
i /
2, Z

Gr;d

cos4†.E; e/ dE D
Z
Sd�1

� rX
iD1

x2i

�2
dx:

The evaluation of these integrals is immediate by using the following standard formulas:Z
Sd�1

x21 dx D
1

d
;

Z
Sd�1

x41 dx D
3

d.d C 2/
;

Z
Sd�1

x21x
2
2 dx D

1

d.d C 2/
:
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Thus we see thatZ
Gr;d

�
cos2†.E; e/

2
� cos4†.E; e/

�
dE D

r

2d
�
r.r C 2/

d.d C 2/
:

It follows that

˛2.P / D
r

2d
�
r.r C 2/

d.d C 2/
:

Returning to b1; b2, the coefficients of .Tr.S//2 and Tr.S2/, respectively, combining
the cases of Id and P gives

�
r

2
D b1d

2
C b2d;

r

2d
�
r.r C 2/

d.d C 2/
D b1 C b2:

We can now solve for b1 and b2 with respect to this basis of the space of conjugation
invariant quadratic functionals. However, the computation will be more direct if instead
we use a different basis and write ˛2.S/ as

b1.Tr.S//2 C b2 Tr
��
S �

Tr.S/
d

�2�
;

so that the second term is trace 0. Our computations above now show that

�
r

2
D b1d

2
C 0

and

r

2d
�
r.r C 2/

d.d C 2/
D b1 C

d � 1

d
b2

�
D b1.Tr.P //2 C b2 Tr

��
P �

Tr.P /
d

Id
�2��

:

The first equation implies that

b1 D �
r

2d2
:

The left hand side of the second equation of the pair is equal to

r.d � r/

d.d C 2/
�

r

2d
:

This gives

b2 D
r.d � r/

.d � 1/.d C 2/
�

r

2d
:

So, for symmetric L, we have

˛2.S/ D
�r

2d2
.Tr.S//2 C

�
r.d � r/

.d � 1/.d C 2/
�

r

2d

�
Tr
��
S �

Tr.S/
d

Id
�2�

: (113)

Recall that we specialized to the case of a symmetric matrix, and that for a non-symmetric
matrix there is another term. For L 2 End.Rd /, setting J D .L � LT /=2 as before, we
get

˛2.L/ D ˛2

�
LC LT

2

�
C
r

d
Tr
�
J 2

2
� LJ

�
:
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To simplify this we compute that

Tr
�
J 2

2
�LJ

�
D Tr

�
L2�LLT �LTLC .LT /2

8
�L

L�LT

2

�
D Tr

�
LLT �L2

4

�
:

Write

S D
LC LT

2
:

Observe that for an arbitrary matrix X , Tr..X � Tr.X/
d

Id/2/ D Tr.X2/ � .Tr.X//2=d .
Thus

�
r

2d2
.Tr.S//2 �

r

2d
Tr
��
S �

Tr.S/
d

Id
�2�
C
r

d
Tr
�
LLT � L2

4

�
D �

r

2d2
.Tr.S//2 �

r

2d
Tr.S2/ �

�r

2d2
.Tr.S//2 C

r

d
Tr
�
LLT � L2

4

�
D �

r

2d
Tr.S2/C

r

d
Tr
�
LLT � L2

4

�
D
r

d

�
�1

2
Tr
��

LC LT

2

�2�
C Tr

�
LLT � L2

4

��
D
r

d

�
�1

2
Tr
�
L2 C .LT /2 C 2LLT

4

�
C Tr

�
LLT � L2

4

��
D �

r

2d
Tr.L2/:

From above, we have

˛2.L/ D �
r

2d2
.Tr.S//2 C

�
r.d � r/

.d � 1/.d � 2/
�

r

2d

�
Tr
��
S �

Tr.S/
d

Id
�2�

C
r

d
Tr
�
LLT � L2

4

�
:

So substituting the previous calculation we obtain

˛2.L/ D �
r

2d
Tr.L2/C

r.d � r/

.d � 1/.d � 2/
Tr
��

LC LT

2
�

Tr.L/
d

Id
�2�

;

which is the desired formula.

We have now calculated ˛1 and ˛2. This concludes the proof of Proposition 62.

We will also use a first order Taylor expansion with respect to the metric.

Proposition 63. Let ƒr .G/ be defined for symmetric matrices G by

ƒr .G/ WD

Z
Gr;d

ln det.Id; Id; IdCG j E/ dE:

Then ƒr .G/ admits the following Taylor development:

ƒr .G/ D
r

2d
Tr.G/CO.kGk2/:
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Proof. The proof is substantially similar to that of the previous proposition. Let ˛1 denote
the first term in the Taylor expansion. Note that if U is an isometry then ƒr .U TGU/ D
ƒr .G/. Thus ˛1 is invariant under conjugation by isometries. Thus by conjugating by an
orthogonal matrix, we are reduced to the case of G and diagonal matrix. As before, we
see that ˛1.D/ is a multiple of Tr.D/ as Tr spans the linear forms on Rd that are invariant
under permutation of coordinates.

Thus it suffices to calculate the derivative for D D Id. So, we see that

˛1.Id/ D
d

d�

Z
E

ln det.Id; Id; IdC � Id j E/ dE:

Thus the integral is equal to ln
p
.1C �/r on every plane E. Hence the derivative is r=2

and so
˛1.Id/ D

r

2
D

r

2d
Tr.Id/:

And so the result follows.
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