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Complete quadrics: Schubert calculus for Gaussian
models and semidefinite programming

Received December 10, 2020; revised January 13, 2022

Abstract. We establish connections between the maximum likelihood degree (ML-degree) for lin-
ear concentration models, the algebraic degree of semidefinite programming (SDP), and Schubert
calculus for complete quadrics. We prove a conjecture by Sturmfels and Uhler on the polynomi-
ality of the ML-degree. We also prove a conjecture by Nie, Ranestad and Sturmfels providing an
explicit formula for the degree of SDP. The interactions between the three fields shed new light on
the asymptotic behaviour of enumerative invariants for the variety of complete quadrics. We also
extend these results to spaces of general matrices and of skew-symmetric matrices.
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1. Introduction

Maximum likelihood degree and quadrics

Although this paper is mainly about enumerative geometry and symmetric functions, the
main motivations come from algebraic statistics and multivariate Gaussian models. These
are generalizations of the well-known Gaussian distribution to higher dimensions. In the
one-dimensional case, in order to determine a Gaussian distribution on R, one needs to
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specify its mean � 2R and its variance � 2R>0. In the n-dimensional case, the mean is a
vector � 2 Rn, and the second parameter is a positive definite n� n covariance matrix†.
The corresponding Gaussian distribution on Rn is given by

f�;†.x/ WD
1p

.2�/n det†
e�

1
2 .x��/

T†�1.x��/;

where T denotes the transpose. Equivalently to determining it by � and†, one may repre-
sent the distribution by � and the concentration matrix K WD †�1, which is also positive
definite. Our primary interest lies in linear concentration models, i.e. statistical models
which assume that K belongs to a fixed d -dimensional space L of n � n symmetric
matrices. These were introduced by Anderson half a century ago [1]. In particular, this
means that † should belong to the set L�1 of inverses of matrices from L.

In statistics, typically one gathers data as sample vectors x1; : : : ; xs 2Rn. This allows
one to estimate the mean � as the mean of the xi ’s. Furthermore, each xi provides a
matrix †i WD .xi � �/.xi � �/T . Next, one considers the sample covariance matrix S ,
that is, the mean of the †i ’s. Note that in most situations, it is not true that S 2 L�1.
The aim is then to find † that best explains the observations. From the point of view of
statistics, it is natural to maximize the likelihood function

f�;†.x1/ : : : f�;†.xs/;

that is, to find a positive definite matrix † 2 L�1 for which the above value is maxi-
mal. Classical theorems in statistics assert that the solution to this optimization problem
is essentially geometric [4, Theorems 3.6, 5.5], [23, Theorem 4.4]. Namely, under mild
genericity assumptions, the optimal † is the unique positive definite matrix in L�1 that
maps to the same point as S under projection from L?.

This is one of the main reasons why the complex variety that is the Zariski closure
of L�1 (which abusing notation we also denote by L�1) and the rational map � defined
as the projection from L? are intensively studied in algebraic statistics. Note that for
generic L, and after projectivization, � becomes a finite map. The following is the central
definition of the article.

Definition 1.1 (ML-degree). The ML-degree of a linear concentration model represented
by a space L is the degree of the projection from the space L? restricted to the vari-
ety L�1.

The ML-degree is the basic measure of the complexity of the model. When L is
a generic space, the ML-degree only depends on the size n of the symmetric matrices
and on the (affine) dimension d of L. By a theorem of Teissier [39, 40] (cf. [22, Corol-
lary 2.6]) or Sturmfels and Uhler [38, Theorem 1], the ML-degree equals the degree of
the variety L�1. Following Sturmfels and Uhler [38] we denote it by �.n; d/. We refer
algebraists interested in statistics to [10] for more information.

Definition 1.2. For n 2 Z>0 and 1 � d �
�
nC1
2

�
, we define �.n; d/ to be the degree of

the variety L�1, where L is a general d -dimensional linear subspace of S2Cn.
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Thus, our main result concerns a very basic algebro-geometric object: the degree of
the variety obtained by inverting all symmetric matrices in a general linear space. In Sec-
tion 4, we confirm the following conjecture of Sturmfels and Uhler [38, p. 611], [22, Con-
jecture 2.8]. This theorem is actually a corollary of a similar polynomiality result for the
algebraic degree of semidefinite programming, which will be discussed in the next section.

Theorem 1.3. For any fixed positive integer d , the ML-degree �.n;d/ is polynomial in n.

Astonishingly, it appears that the numbers �.n; d/ were studied for the last 150
years! In 1879 Schubert presented his fundamental results on quadrics satisfying various
tangency conditions [31]. His contributions shaped the field of enumerative geometry,
inspiring many mathematicians for centuries to come. A nondegenerate quadric being
given, the set of its tangent hyperplanes (its projective dual, in modern language) is noth-
ing other than the inverse quadric. This implies that �.n; d/ is also the solution to the
following enumerative problem:

What is the number of nondegenerate quadrics in n variables, passing through�
nC1
2

�
� d general points and tangent to d � 1 general hyperplanes?

In modern language, such problems can be solved by performing computations in the
cohomology ring of the variety of complete quadrics. This is now a classical topic with
many beautiful results [7–9, 16, 20, 32, 34, 41–43]. In particular, the cohomology ring has
been described by generators and relations, and algorithms have been devised that allow
one to compute any given intersection number. But this only applies for n fixed. Algebraic
statistics suggested changing the perspective and fixing d instead of n. This explains, in
a way, why the polynomiality property of �.n; d/ is only proved now.

Semidefinite programming and projective duality

The second domain of mathematics that inspired our research is semidefinite program-
ming (SDP), an important subject in optimization theory. The goal is to study linear
optimization problems over spectrahedra. This subject is a direct generalization of lin-
ear programming, that is, optimization of linear functions over polyhedra. For a short
introduction we refer to [24, Chapter 12].

The coordinates of the optimal solution for an SDP problem, defined over rational
numbers, are algebraic numbers. Their algebraic degree is governed by the algebraic
degree of semidefinite programming. For more information we refer to the fundamental
article [25]. To stress the importance of this degree let us just quote that paper:

The algebraic degree of semidefinite programming addresses the computational complexity
at a fundamental level. To solve the semidefinite programming exactly essentially reduces
to solve a class of univariate polynomial equations whose degrees are the algebraic degree.

Let us provide a precise definition of the algebraic degree of SDP, in the language of
algebraic geometry, without referring to optimization. (However, the fact that this defini-
tion is correct is actually a nontrivial result [25, Theorem 13].)
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Definition 1.4. For 0 < m <
�
nC1
2

�
and 0 < r < n, let L � S2Cn be a general linear

space of symmetric matrices, of (affine) dimension mC 1, and let SDr;nm � P .L/ denote
the projectivization of the cone of matrices of rank at most r in L. The algebraic degree of
semidefinite programming ı.m;n; r/ is the degree of the projective dual .SDr;nm /� of SDr;nm
if this dual is a hypersurface, and zero otherwise.

Projective duality is a classical topic, to which a huge literature has been devoted.
Computing the degree of a dual variety is well-known to be hard, especially when the
variety in question is singular, which is often the case for our SDr;nm . Nevertheless, Ranes-
tad and Graf von Bothmer [14] suggested the use of conormal varieties, and managed to
obtain an algebraic expression for ı.m; n; r/ in terms of what we call the Lascoux coeffi-
cients. These are integer coefficients that govern the Segre classes of the symmetric square
of a given vector bundle; algebraically, they are defined by the formal identityY

1�i�j�s

1

1 � .xi C xj /
D

X
I

 I s�.I/.x1; : : : ; xs/;

where the sum is over the increasing sets I D .i1 < � � � < is/ of nonnegative integers,
�.I / D .is � s C 1; : : : ; i2 � 1; i1/ is the associated partition, and s�.I/.x1; : : : ; xs/ the
corresponding Schur function in the variables x1; : : : ; xs . These coefficients were intro-
duced and studied in [16, 26], whose influence on our work cannot be underestimated.
Graf von Bothmer and Ranestad found a formula for ı.m; n; r/ in terms of the Lascoux
coefficients (see Theorem 3.7). Delving into the combinatorics of those coefficients, in
Section 4 we prove the following polynomiality result:

Theorem 1.5. For any fixed m; s > 0, the function ı.m; n; n � s/ is a polynomial in n.

Moreover, in Section 5 we confirm [25, Conjecture 21], providing another explicit
formula for ı.m; n; r/, and another proof of the above theorem.

Theorem 1.6 ([25, Conjecture 21]). Let m; n; s be positive integers. Then

ı.m; n; n � s/ D
X

P
I�m�s

.�1/m�s�
P
I IbI .n/

�
m � 1

m � s �
P
I

�
where the sum is over sets of nonnegative integers of cardinality s.

In this formula,
P
I D i1C � � �C is , and bI .n/ is a polynomial function of n defined in

Section 5. Actually, bI .n/ is obtained by evaluating a Schur Q-polynomial on n identical
variables; by the work of Stembridge [35], it counts certain shifted tableaux of shape
determined by I , numbered by integers not greater than n. Theorem 1.5 also confirms the
polynomiality of the ML-degree, since elementary relations in the cohomology ring of the
variety of complete quadrics imply the fundamental identity (see Corollary 3.6)

�.n; d/ D
1

n

X
.sC12 /�d

sı.d; n; n � s/:
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Our approach also applies to linear spaces of general square matrices or of skew-
symmetric matrices, and allows us to obtain closed formulas for the dual degrees of their
determinantal loci. In particular, the analogues of the Nie–Ranestad–Sturmfels conjec-
ture hold true. This means in particular that these dual degrees can be computed by the
class formula, essentially as if those determinantal loci were always smooth (which is
certainly not the case in general!). Since the dual degree is well-known to be extremely
sensitive to singularities, it would be very interesting to have a conceptual explanation of
this phenomenon.

Computations

The proofs of Theorems 1.3, 1.5, 1.6 give rise to explicit polynomial formulas for
ı.m; n; n � s/ and �.n; d/, which can be evaluated using software. We illustrate this
on a Sage worksheet, available at https://mathrepo.mis.mpg.de/. So far the exact formula
for �.n; d/ has only been known for d � 5 [6, 22, 36, 38]. We compute it explicitly for
d � 50, confirming in particular [22, Conjecture 5.1].

2. Notation and preliminaries

2.A. Partitions, Schur polynomials

Notation 2.1. For a set I D ¹i1; : : : ; irº of nonnegative integers, we assume i1 < � � � < ir
and we define the corresponding partition

�.I / WD .ir � .r � 1/; ir�1 � .r � 2/; : : : ; i2 � 1; i1/:

Analogously, for a partition �D .�1; : : : ; �r /, which means �1 � � � � � �r � 0 (zeroes
are allowed), we define the corresponding set

I.�/ WD ¹�r ; �r�1 C 1; : : : ; �2 C r � 2; �1 C r � 1º:

The length of a partition � (i.e. the number of nonzero entries) will be denoted by
length.�/. We denote by j�j the size of the partition,

Pr
iD1 �r , and by Q� the partition

conjugate to �, e.g. A.3; 1/ D .2; 1; 1/.
We will abbreviate ¹0; : : : ; n � 1º to Œn�. Let

P
I WD i1 C � � � C ir denote the sum of

elements of I and #I D r its cardinality. For two sets I D¹i1; : : : ; irº and J D¹j1; : : : ; jrº
we say that I � J if ik � jk for all 1 � k � r .

Notation 2.2. For a partition � we denote by s� the corresponding Schur polynomial.

Definition 2.3. Let I; J be sets of nonnegative integers of cardinality r . We define sI;J
to be the unique integers which satisfy the polynomial equation

s�.I/.x1 C 1; : : : ; xr C 1/ D
X
J�I

sI;J s�.J /.x1; : : : ; xr /:

https://mathrepo.mis.mpg.de/MLdegreeCompleteQuadrics/index.html


L. Manivel, M. Michałek, L. Monin, T. Seynnaeve, M. Vodička 3096

Note that since s�.I/ is a homogeneous polynomial, we also have the identity

s�.I/.x1 � 1; : : : ; xr � 1/ D
X
J�I

.�1/
P
I�

P
J sI;J s�.J /.x1; : : : ; xr /:

As a consequence, the triangular matrices .sI;J /I;J and ..�1/
P
I�

P
J sI;J /I;J are

inverses of each other.

Lemma 2.4. Let I D ¹i1; : : : ; irº and J D ¹j1; : : : ; jrº be two sets of nonnegative inte-
gers. Let MI;J D .mkl / be the r � r matrix with mkl D

�
ik
jl

�
. Then

(a) sI;J D det.MI;J /,

(b) s.d/.x1 C 1; : : : ; xr C 1/ D
Pd
iD0

�
dCr�1
d�i

�
s.i/.x1; : : : ; xr /.

Proof. Part (a) is proved in [19, Section I.3, Example 10]. In particular, it implies

sŒrCd�;ŒrCi� D

�
d C r � 1

r C i � 1

�
D

�
d C r � 1

d � i

�
:

From this, the equation in part (b) becomes the defining equation for sI;J .

2.B. Lascoux coefficients

Definition 2.5. We define the Lascoux coefficients  I by the following formula:

s.d/.¹xi C xj j 1 � i � j � rº/ D
X

�.I/`d
#IDr

 I s�.I/.x1; : : : ; xr /:

Here s.d/ is the complete symmetric polynomial of degree d in the
�
rC1
2

�
variables xiCxj .

Hence, the coefficients  I appear in the expansion, in the Schur basis, of the complete
symmetric polynomial evaluated at sums of variables.

Equivalently, the Lascoux coefficients appear in the expansion of the d -th Segre class
of the second symmetric power of any rank r vector bundle in terms of its Schur classes.
In particular, for the universal bundle U over the Grassmannian G.r; n/ for n � r C d ,

Segd .S
2U/ D

X
�.I/`d

#IDr

 I��.I/;

where �� denote the Schubert classes in the Chow ring of the Grassmannian. (For r �
n < r C d the identity is still true, but some of the Schubert classes ��.I/ will be zero.)

Example 2.6. Let us consider r D 2 and nD 4, i.e. the GrassmannianG.2;4/. The rank 2
universal vector bundle U has two Chern roots x1; x2. Recall that the cohomology ring of
G.2; 4/ is six-dimensional with basis corresponding to Young diagrams contained in the
2 � 2 square. We have formal equalities

x1 C x2 D � ; x1 � x2 D :
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The Chern roots of S2U are 2x1; x1 C x2; 2x2. Computing the elementary symmetric
polynomials in those we obtain the respective three Chern classes:

�3 ; 2 C 6 ; �4 :

By inverting the Chern polynomial we obtain the Segre classes:

3 ; 7 C 3 ; 10 ; 10 :

Their coefficients are the Lascoux coefficients, namely:

 0;2 D 3;  0;3 D 7;  1;2 D 3;  1;3 D 10;  2;3 D 10:

We use boldface and emphasis above and below to indicate the corresponding numbers.
We may also compute them by expanding complete symmetric polynomials, where now
x1; x2 are simply formal variables:

s.2/.2x1; x1 C x2; 2x2/ D 7x
2
1 C 7x

2
2 C 10x1x2

D 7.x21 C x1x2 C x
2
2/C 3x1x2 D 7s.2;0/.x1; x2/C 3s.1;1/.x1; x2/:

We note that Lascoux coefficients appear in many publications with different nota-
tions. In particular one needs to be careful with the shift:  ¹j1;:::;jr º as defined above
equals  ¹j1C1;:::;jrC1º in [14]. On the other hand, our notation is consistent with [17,25].

The lemma below gives a closed formula for the Lascoux coefficients, in terms of
Pfaffians.

Lemma 2.7 ([26, Prop. 7.12]). Let I D ¹i1; : : : ; irº be a set of nonnegative integers. If
r D 1;2 then I is given by ¹iº D 2i and ¹i;j º D

Pj

kDiC1

�
iCj
k

�
respectively. For r > 2,

 I can be computed as

 I D

´
Pf. ¹ik ;il º/0<k<l�n for r even;

Pf. ¹ik ;il º/0�k<l�n for r odd;

where  ¹i0;ikº WD  ¹ikº:

2.C. SDP-degree and ML-degree

Recall Definitions 1.2 and 1.4 of the ML-degree �.n; d/ and the SDP-degree ı.m; n; r/.

Remark 2.8. For our polynomiality results in Section 4, it will be useful to extend the
definitions of � and ı as follows:

� For d >
�
nC1
2

�
, we put �.n; d/ D 0.

� For m D 0 and r < n, we define ı.0; n; r/ D 0.

� For m �
�
nC1
2

�
or s � n, we put ı.m; n; n � s/ D 0, with one exception: in the case

m D
�
nC1
2

�
and s D n, we define ı

��
nC1
2

�
; n; 0

�
D 1. See also Remark 3.9.

Now �.n; d/ is defined for all n; d > 0, and ı.m; n; n � s/ is defined for all m; n; s > 0.
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For later reference, we recall the description of ı.m; n; r/ in terms of the bidegrees of
a conormal variety:

Theorem 2.9 ([25, Theorem 10]). Let Zr � P .S2V / � P .S2V �/ be the conormal vari-
ety to the variety SDr � P .S2V / of matrices of rank at most r . Explicitly, Zr consists
of pairs .X; Y / of symmetric matrices, up to scalars, with rkX � r , rk Y � n � r , and
X � Y D 0. Then the multidegree of Zr is given by

ŒZr � D

.nC12 /X
mD0

ı.m; n; r/Hm
1 H

.nC12 /�m
n�1 :

HereH1 andHn�1 denote the pull-backs of the hyperplane classes from P .S2V / and
P .S2V �/.

Remark 2.10. From this description, we immediately get the following duality relation
(see also [25, Proposition 9]):

ı.m; n; n � s/ D ı

��
nC 1

2

�
�m; n; s

�
:

3. ML-degrees via complete quadrics

3.A. Spaces of complete quadrics

Let V be an n-dimensional vector space over C. The space CQ.V / of complete quadrics
is a particular compactification of the space of smooth quadrics in P .V /, or equivalently,
of the space of invertible symmetric matrices (up to scalars) P .S2V /ı � P .S2V /. The
space CQ.V / has several equivalent descriptions; below we will describe some of them.
For more information we refer the reader to [16, 20, 41].

For A 2 S2.V / let
Vk

A 2 S2.
Vk

V / be the corresponding form on
Vk

V . If we
viewA as a symmetric matrix, then

Vk
A is the matrix of k � k minors ofA. In particular,Vn�1

A is the inverse of A up to scaling (by the determinant).

Definition 3.1. The space of complete quadrics, CQ.V /, is the closure of �.P .S2V /ı/,
where

� W P .S2V /ı ! P .S2V / � P .S2.V ^ V // � � � � � P .S2.
Vn�1

V //

is given by
ŒA� 7! .ŒA�; Œ

V2
A�; : : : ; Œ

Vn�1
A�/:

To simplify the notation we will also denote CQ.V / by CQn.

The natural projection to the j -th factor induces a regular map

�j W CQ.V /! P .S2.
Vj

V //:



Schubert calculus for Gaussian models and semidefinite programming 3099

In particular, the map �1 W CQ.V /! P .S2V /, which is an isomorphism on �.P .S2V /ı/,
can be described as a sequence of blow-downs. This provides the second description of
the space of complete quadrics.

Definition 3.2. The space of complete quadrics, CQ.V /, is the successive blow-up of
P .S2V /:

CQ.V / D Bl zDn�1Bl zDn�2 : : :BlD1P .S
2V /;

where zDi is the proper transform of the space of symmetric matrices of rank at most i
under the previous blow-ups.

Theorem 3.3 ([43, Theorem 6.3]). Definitions 3.1 and 3.2 of the space of complete
quadrics are equivalent.

The space of complete quadrics admits other descriptions; we would like to men-
tion two of them. The first one describes the space of complete quadrics as an equivariant
compactification of the space of invertible symmetric matrices, which is a spherical homo-
geneous space:

P .S2V /ı ' SLn =N.SOn/;

where N.SOn/ is the normalizer of SOn. The second description realises the space of
complete quadrics as a subvariety of the Kontsevich moduli space of stable maps to the
Lagrangian Grassmannian; for details see [22, 41].

The space of complete quadrics has two natural series of special classes of divisors.
The first series S1; : : : ; Sn�1 is given by the classes of the (strict transforms) of the excep-
tional divisors E1; : : : ; En�1 of the successive blow-ups in Definition 3.2 (which are
precisely the SLn-invariant prime divisors on CQ.V /). The second series L1; : : : ; Ln�1
is obtained by pulling back the hyperplane classes by the projections �1; : : : ; �n�1.

Proposition 3.4. The classes L1; : : : ; Ln�1 form a basis of Pic.CQ.V //, in which the
classes S1; : : : ; Sn�1 are given by the relations

Si D �Li�1 C 2Li � LiC1

with L0 D Ln WD 0.

Proof. These relations were already known to Schubert [30]. For a modern treatment, see
for example [20, Proposition 3.6 and Theorem 3.13].

The inverse relations are given by the .n � 1/ � .n � 1/ matrix M given by

Mi;j D min.i; j / � ij=n:

In particular, we have

nL1 D .n � 1/S1 C .n � 2/S2 C � � � C Sn�1;

nLn�1 D S1 C 2S2 C � � � C .n � 1/Sn�1:
(3.1)
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3.B. Intersection theory

We are ready to relate the computation of the ML-degree and of the algebraic degree of
semidefinite programming to the intersection theory of CQ.V /.

Proposition 3.5. The ML-degree and the algebraic degree of semidefinite programming
can be computed as the following intersection numbers on CQ.V /:

�.n; d/ D

Z
CQn

L
.nC12 /�d
1 Ld�1n�1 ;

ı.m; n; r/ D

Z
Er

L
.nC12 /�m�1
1 Lm�1n�1 D

Z
CQn

SrL
.nC12 /�m�1
1 Lm�1n�1

D

Z
P.S2U/�G.r;n/P.S2Q�/

QL
.nC12 /�m�1
1

QLm�1n�1 ;

where Er and P .S2U/ �G.r;n/ P .S2Q�/ are birational and QLi is the transform of Li .

Proof. As the morphisms �1 and �n�1 resolve the inversion map P .S2V /Ü P .S2V �/,
we can compute the degree of L�1, for L� P .S2V �/ a general d � 1-dimensional linear

subspace, as ��1 .H
.nC12 /�d
1 /��n�1.H

d�1
n�1 /, where H1 and Hn�1 are hyperplane classes in

P .S2V / and P .S2V �/ respectively. Indeed, the factor H.
nC1
2 /�d

1 imposes
�
nC1
2

�
� d

linear conditions on matrices in P .S2V /, defining a linear subspace P .L/ of projective
dimension d � 1, while the factor Hd�1

n�1 imposes d � 1 linear conditions on P .L�1/,
hence computing the degree �.n; d/.

For ı.m; n; r/, the main observation is that Er is birationally equivalent to the conor-
mal variety Zr . Indeed, the inductive properties of the spaces of complete quadrics imply
that Er can be described as a space of relative complete quadrics; more precisely,

Er D CQr .U/ �G.r;n/ CQn�r .Q
�/:

The equality above may be derived from the quotient construction of the variety of com-
plete quadrics [22, 41]. In particular, the variety Er is birationally equivalent to Yr D
P .S2U/ �G.r;n/ P .S2Q�/. As observed for example in [14], this is also a smooth model
for the conormal variety Zr . By Theorem 2.9 we have

ı.m; n; r/ D

Z
Zr

L
.nC12 /�m�1
1 Lm�1n�1 :

As the divisors Li are base point free, the above intersection on Zr is realized by a zero-
dimensional scheme, which may be assumed not to be supported on any closed, proper
subvariety. In fact, by Kleiman’s transversality theorem this zero-dimensional scheme
consists precisely of ı.m; n; r/ reduced points. As Yr and Zr are birational, we may
consider classes of divisors QLi on Yr which are transforms of Li on Zr . We conclude as
before that the intersection of respective QLi ’s also consists of ı.m; n; r/ reduced points:

ı.m; n; r/ D

Z
Zr

L
.nC12 /�m�1
1 Lm�1n�1 D

Z
Yr

QL
.nC12 /�m�1
1

QLm�1n�1 :

This implies our claim.
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Since Sr projects in P .S2V / to the locus of matrices of rank at most r , we must

have SrL
.nC12 /�m�1
1 D 0 when m is smaller that the codimension of this locus. Similarly

SrL
m�1
n�1 D 0 whenm is large enough. One can deduce that the following Pataki inequali-

ties are necessary and sufficient conditions for ı.m;n; r/ to be nonzero [25, Proposition 5
and Theorem 7]: �

n � r C 1

2

�
� m �

�
nC 1

2

�
�

�
r C 1

2

�
: (3.2)

We can then use (3.1) to write the ML-degree in terms of the SDP-degree:

Corollary 3.6. For any n; d > 0, the following fundamental relation holds:

�.n; d/ D
1

n

X
1�.sC12 /�d

sı.d; n; n � s/:

Proof. First, for d >
�
nC1
2

�
, both sides are 0, and for d D

�
nC1
2

�
both sides equal 1 (see

Remark 2.8), so the relation holds. For 1 � d <
�
nC1
2

�
, we can write

�.n; d/ D

Z
CQn

L
.nC12 /�d
1 Ld�1n�1

D
1

n

Z
CQn

L
.nC12 /�d�1
1 Ld�1n�1

n�1X
sD1

sSn�s

D
1

n

n�1X
sD1

sı.d; n; n � s/ D
1

n

X
1�.sC12 /�d

sı.d; n; n � s/: (3.3)

The last equality follows from the Pataki inequalities, since ı.d; n; n � s/ D 0 whenever�
sC1
2

�
> d .

All our computations can now be reduced to the intersection theory of Grassmannians.

Theorem 3.7 ([14, Theorem 1.1]). For 0 < m <
�
nC1
2

�
and 0 < r < n,

ı.m; n; r/ D
X
I�Œn�

#IDn�rP
IDm�nCr

 I Œn�nI :

Idea of proof. As already mentioned, ı.m; n; r/ can be computed as an intersection num-
ber on Yr , which is a fiber bundle over the Grassmannian G.r; n/. By push-forward, one
obtains

ı.m; n; r/ D

Z
G.r;n/

Seg
..nC12 /�m�.

rC1
2 //

.S2U/Seg
.m�.n�rC12 //.S

2Q�/:

We then obtain the theorem by expanding these Segre classes, and using the fundamental
duality properties of Schubert classes.

Remark 3.8. Recall that our definition of  I is shifted with respect to [14], which
explains why our formula looks slightly different.
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Remark 3.9. One can easily verify that the above formula is still true for the
extended definition of ı from Remark 2.8. The only nontrivial case is ı

��
nC1
2

�
; n; 0

�
D

 Œn� Œn�nŒn� D 1.

4. Polynomiality of the ML-degree

In this section and the next one, we present three proofs of the following polynomiality
result for the algebraic degree of semidefinite programming:

Theorem 4.1. For any fixed m; s > 0, the function ı.m; n; n � s/ is a polynomial in n.
Moreover, this polynomial vanishes at n D 0.

As an immediate corollary, we obtain one of the main results of this paper: the poly-
nomiality of the ML-degree for linear concentration models. This property was first con-
jectured by Sturmfels and Uhler [38] and confirmed in small, special cases in [6, 22, 36].

Theorem 4.2. For any fixed d > 0, the function �.n; d/ is a polynomial for n > 0.

Proof. For all n; d > 0, by Corollary 3.6, we have

�.n; d/ D
1

n

X
1�.sC12 /�d

sı.d; n; n � s/: (4.1)

By Theorem 4.1 every term on the right hand side of (4.1) is a polynomial divisible
by n, hence the theorem follows.

Each of our proofs of Theorem 4.1 has its advantages. The first one is quite elemen-
tary, being based on algebraic recursive formulas, which also have a geometric meaning.
It provides very efficient methods for explicit computations. The second proof is more
technical, but it allows one to derive the leading coefficients of the polynomials we study.
The last one is simply a corollary of the conjecture of Nie, Ranestad and Sturmfels that
we prove in Section 5.

Our first two proofs of Theorem 4.1 are based on the following theorem.

Theorem 4.3. Let I D ¹i1; : : : ; irº be a set of strictly increasing nonnegative integers.
For n � 0 the function

LPI .n/ WD

´
 Œn�nI if I � Œn�;

0 otherwise;
is a polynomial.

Before we prove Theorem 4.3 let us note that it immediately implies Theorem 4.1.
Indeed, by Theorem 3.7, we have

ı.m; n; n � s/ D
X
I�Œn�
#IDsP
IDm�s

 I Œn�nI D
X

#IDsP
IDm�s

 ILPI .n/:
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By Theorem 4.3, each of the summands is a polynomial in n that vanishes for n D 0.
Moreover, the number of summands in the last sum depends only on m and s, and not
on n. Thus ı.m;n; n� s/ is also a polynomial in n, which proves Theorem 4.1, and hence
Theorem 4.2.

In the remainder of this section, we will present two proofs of Theorem 4.3. But let us
first give a few examples.

Example 4.4. By induction, one can check the following formulas for LPI , when I has
cardinality 1 or 2:

LP.i/.n/ D
�

n

j C 1

�
; LP.0;j /.n/ D j

�
nC 1

j C 2

�
;

and more generally, for i < j ,

LP.i;j /.n/ D
.j � i/ŒnC 1�jC2

.i C 1/Š.j C 1/Š.i C j C 2/Š

iX
dD0

.�1/dai;d .i C j C 1 � d/ŠŒn�i�d ;

where ai;d D
Qd�1
kD0.i � k/.i � k C 1/ and Œn�d D n.n � 1/ : : : .n � d C 1/.

4.A. First proof

The following recursive relations are central to our first proof.

Lemma 4.5. (1) For j1 > 0 we have

 ¹j1;:::;jr º D .r C 1/ ¹0;j1;:::;jr º � 2

rX
`D1

 ¹0;j1;:::;j`�1;:::;jr º; (4.2)

where the summation is over ` for which j` � 1 > j`�1 and we set j0 WD 0.

(2) For j1 D 0 we have
 ¹j1;j2;:::;jr º D

X
j`�j

0
`
<j`C1

 ¹j 0
1
;:::;j 0

r�1
º: (4.3)

Proof. For the first formula see [26, p. 446], [17, (A.15.7)] or [28, pp. 163–166].
To prove the second formula, recall that s.d/ is the complete homogeneous symmetric

polynomial of degree d , and we have

s.d/.¹xi C xj j 1 � i � j � rº/ D
X

�.I/`d
#IDr

 I s�.I/.x1; : : : ; xr /:

Substituting xr D 0 we obtain
dX
iD0

s.i/.¹xi C xj j 1 � i � j � r � 1º/s.d�i/.x1; : : : ; xr�1/

D s.d/.¹xi C xj j 1 � i � j � r � 1º; x1; : : : ; xr�1/

D

X
�.I/`d

length.�.I//�r�1

 I s�.I/.x1; : : : ; xr�1/:
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We note that length.�.I // � r � 1 if and only if 0 2 I . On the other hand, we may apply
Pieri’s rule to

dX
iD0

s.i/.¹xi C xj j 1 � i � j � r � 1º/s.d�i/.x1; : : : ; xr�1/

D

dX
iD0

� X
�.I/`i

#IDr�1

 I s�.I/.x1; : : : ; xr�1/
�
s.d�i/.x1; : : : ; xr�1/:

Comparing the coefficients of Schur polynomials in both expressions gives the desired
formula.

First proof of Theorem 4.3. We proceed by induction first on #I , then on
P
I WDP

ij2I
ij . The base case is I D ;, when  ¹0;:::;n�1º D 1.

For the induction step, fix I , and assume the theorem has been proven for all I 0 with
#I 0 < #I , and for all I 0 with #I 0 D #I and

P
I 0 <

P
I . We consider two cases:

Case 1: i1 D 0. We claim that for every n � 0,

LPI .n/ D .n � r C 1/LPIn¹0º.n/ � 2
X

`W i`C1>i`C1

LPIn¹0;i`ºt¹i`C1º.n/;

where for summation we formally assume irC1 D C1. Indeed, if n � ir then both sides
are 0, and if n > ir then the equation is precisely Lemma 4.5 (1).

Case 2: i1 > 0. We claim that for every n � 0,

LPI .n/ � LPI .n � 1/ D
X
J

LPJ .n � 1/;

where the sum is over all J ¤ I of the form ¹i1 � �1; : : : ; ir � �rº with �` 2 ¹0; 1º. Again,
if n � ir then both sides are 0, and if n > ir then the equation is precisely Lemma 4.5 (2).

In both cases, it follows that LPI is a polynomial.

4.B. Second proof

Our second proof is based on an explicit interpretation of  I as a sum of minors in the
Pascal triangle. We denote by E the Pascal triangle matrix, i.e. Eij D

�
i
j

�
. We will always

consider only finite submatrices of E so despite the fact that it is an infinite matrix there
will be no computations with infinite matrices.

Notation 4.6. For an n � n matrix A and sets I; J � Œn� we denote by AI;J the #I � #J
matrix which is obtained from A by taking rows indexed by I and columns indexed by J .
Here we index rows and columns from 0. In the case I D J we write simply AI;I D AI .

For sets K;C � N with #K D #C we denote by V.K; C / the Vandermonde matrix
with entries V.K;C /ij D k

cjC1
iC1 . We also set V.K/ WD V.K; Œ#K�/, i.e. V.K/ij D k

j
iC1.

For two sets A; B � N we denote by "A;B the sign of the permutation of A [ B
determined by A;B if they are disjoint. If they are not, we define "A;B D 0.
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We begin with a characterization of  I as a sum of minors of the matrix E, which
follows from [17, Proposition 2.8].

Proposition 4.7. The following equality holds:

 I D
X
J�I

det.EI;J /:

In what follows we will need the following lemma that may be easily proved by induc-
tion.

Lemma 4.8. Let a; b be nonnegative integers.

(a) If a > b then
Pa
iD0.�1/

i
�
a
i

�
ib D 0.

(b) If a D b then
Pa
iD0.�1/

a�i
�
a
i

�
ib D aŠ.

To compute special minors of the matrix E we use the following lemma.

Lemma 4.9. Let I D ¹i1; : : : ; irº � Œn�. Then

det.EŒn�nŒr�;Œn�nI / D

Q
1�j<k�n�r .ik � ij /

.r � 1/Š.r � 2/Š : : : 2Š1Š
D

det.V .I //
.r � 1/Š.r � 2/Š : : : 2Š1Š

Proof. We fix r and proceed by induction on n. The case ir < n � 1 is trivial. If ir D
n � 1 we express the determinant via Laplace expansion along the n-th row, and use the
induction hypothesis and Lemma 4.8 to conclude.

Now we are able to present our second proof of Theorem 4.3.

Second proof of Theorem 4.3. Let #I D r andm WD ir C 1. First, assume n � m. We use
the formula from Proposition 4.7. We express the determinantsEŒn�nI;J using the Laplace
expansion along the firstm� r rows, choosing the columns indexed by L. For the rest we
use Lemma 4.9. To simplify notation we let K WD Œn� n J . We obtain

 Œn�nI D
X

J�Œn�nI

det.EŒn�nI;J /

D

X
J�Œn�nI

X
L�J

#LDm�r

"L;JnL det.EŒm�nI;L/ det.EŒn�nŒm�;JnL/

D

X
#LDm�r
L�Œm�nI

det.EŒm�nI;L/
X

#KDr
K\LD;
K�Œn�

"L;Œn�n.K[L/ det.EŒn�nŒm�;Œn�n.K[L//

D

X
#LDm�r
L�Œm�nI

det.EŒm�nI;L/
X

#KDr
K�Œn�

"L;K"L;Œn�nL
det.V .L [K//

.m � 1/Š.m � 2/Š : : : 2Š1Š

D

X
#LDm�r
L�Œm�nI

"L;Œn�nL det.EŒm�nI;L/
.m � 1/Š.m � 2/Š : : : 2Š1Š

X
#KDr
K�Œn�

det.V �.L [K//
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where V �.L[K/ is the matrix V.L[K/ with the rows indexed by L put first. Note that
we may drop the assumption L � Œm� n I , since otherwise det.EŒm�nI;L/ D 0. Similarly,
we can extend our sum and drop the conditionL\K D; since we add only zero terms. If
we fix L and denote the elements of K by k1 < � � � < kr , then det.V �.L[K// is clearly
a polynomial in k1; : : : ; kr . ThenX

#KDr
K�Œn�

det.V �.L [K// D
X

0�k1<���<kr<n

det.V �.L [K//

is a polynomial in n for L fixed. Moreover, the sum over L does not depend on n and
therefore also  Œn�nI is a polynomial in n. Our computations are correct only for n � m.
However, the last expression makes sense and is a polynomial for all n� 0. Clearly, it is 0
for n < m. This proves the theorem.

With this approach we can even compute the leading coefficient of LPI . For this we
will need two technical lemmas. The proof of the first one is straightforward, e.g. by
induction.

Lemma 4.10. Let a1; : : : ; ar be nonnegative integers. ThenX
0�k1<k2<���<kr<n

k
a1
1 k

a2
2 : : : karr

is a polynomial in n of degree
Pr
iD1 ai C r , with leading coefficient

1

.a1 C 1/.a1 C a2 C 2/ : : : .a1 C � � � C ar C r/
:

Lemma 4.11. The following identity of rational functions in r variables holds:X
�2Sr

.�1/�
1

.x�.1//.x�.1/ C x�.2// : : : .x�.1/ C � � � C x�.r//
D

Q
i>j .xi � xj /Q

i xi
Q
i>j .xi C xj /

:

Proof. We proceed by induction on r . It is easy to check that for r D 1; 2 the statement
holds. For r > 2, we split the sum depending on �.r/ and apply the induction hypothesis
to the partial sums:X
�2Sr

.�1/�
1

.x�.1//.x�.1/ C x�.2// : : : .x�.1/ C � � � C x�.r//

D
1

x1 C � � � C xr

rX
kD1

X
�2Sr
�.r/Dk

.�1/�
1

.x�.1//.x�.1/ C x�.2// : : : .x�.1/ C � � � C x�.r�1//

D
1

x1 C � � � C xr

rX
kD1

.�1/r�k

Q
i>j I i;j¤k.xi � xj /Q

i¤k xi
Q
i>j I i;j;¤k.xi C xj /
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D
1

.x1C� � �Cxr /
Q
i xi

Q
i>j .xiCxj /

rX
kD1

.�1/r�kxk
Y

i>j I i;j¤k

.xi �xj /
Y
i¤k

.xiCxk/

D
1

.x1C� � �Cxr /
Q
i xi

Q
i>j .xiCxj /

Q.x1; : : : ; xr /;

whereQ is a homogeneous polynomial of degree
�
r
2

�
C 1. Moreover,Q is skew-symmet-

ric: if we exchange xi and xj we just change the sign. Therefore

Q.x1; : : : ; xr / D
Y
i>j

.xi � xj /R.x1; : : : ; xr /

for R a symmetric polynomial of degree 1. This implies that R is a multiple of
x1 C � � � C xr . Finally, it is easy to check that the coefficient of xrrx

r�2
r�1x

r�3
r�2 : : : x2 in Q

is 1. Therefore R D x1 C � � � C xr and the proof is complete.

Theorem 4.12. The polynomial LPI has degree
P
I C #I . Its leading coefficient isQ

j>k.ij � ik/

.i1 C 1/Š : : : .ir C 1/Š
Q
j>k.ij C ik C 2/

:

Proof. We continue with the calculation from the second proof of Theorem 4.3. We take
the Laplace expansion of Vandermonde along the first m � r rows. We getX
#LDm�r
L�Œm�nI

"L;Œm�nL det.EŒm�nI;L/
X

#KDr
K�Œn�

det.V �.L [K//

D

X
#LDm�r
L�Œm�nI

"L;Œm�nL det.EŒm�nI;L/
X

#CDm�r
C�Œm�

"C;Œm�nC det.V .L; C //
X

#KDr
K�Œn�

det.V .K; Œm� n C//

D

X
#CDm�r
C�Œm�

"C;Œm�nC
X

#LDm�r
L�Œm�nI

"L;Œm�nL det.EŒm�nI;L/ det.V .L; C //
X

#KDr
K�Œn�

det.V .K; Œm� n C//

D

X
#CDm�r
C�Œm�

"C;Œm�nC det.A/
X

#KDr
K�Œn�

det.V .K; Œm� n C//;

whereA WD .diag.1;�1; : : : ;�1m�1/EŒm�nI;Œm�V.Œm�;C //. Let Œm� n I D ¹b1; : : : ; bm�rº,
C D ¹c1; : : : ; cm�rº, where, as always, we assume that the elements of these sets are
ordered increasingly. Notice that cm�r < bm�r implies that the last row of the matrix A
is 0 by Lemma 4.8 and so is detA. In general, if ci < bi , then AŒm�r�nŒi�1�;Œi� D 0 and we
also get detA D 0.

The necessary condition for det A ¤ 0 is ci � bi for all 1 � i � m � r . There-
fore, we will sum only over such sets C . In the border case when C D Œm� n I we
find that the matrix A is upper triangular and by Lemma 4.8 we have "C;Œm�nC detA D
.b1/Š : : : .bm�r /Š.

Note that
P

#KDr;K�Œn� det.V .K; Œm� n C// is clearly a polynomial in n of degree
at most

P
.Œm� n C/ C r D

�
m
2

�
C r �

P
C . Since we are summing only over C with



L. Manivel, M. Michałek, L. Monin, T. Seynnaeve, M. Vodička 3108

P
C �

P
.Œm� n I /, we immediately see that the degree of this polynomial is at mostP

I C r . Moreover, the only summand which contributes to the term of degree
P
I C r

is the one with C D Œm� n I . We finish the proof of the theorem by computing this sum-
mand. In this case we get the polynomial

eLP I .n/ WD
X

#KDr
K�Œn�

det.V .K; Œm� n C//

D

X
�2Sr

X
0�k1<���<kr<n

.�1/�k
i�.1/
1 : : : k

i�.r/
r :

By Lemma 4.10 the leading coefficient of eLP I isX
�2Sr

.�1/�
1

.i�.1/ C 1/.i�.1/ C i�.2/ C 2/ : : : .i�.1/ C � � � C i�.r/ C r/

Now we apply Lemma 4.11 for xj D ij C 1 to conclude that the leading coefficient isQ
j>k.ij � ik/Q

j .ij C 1/
Q
j>k.ij C ik C 2/

;

which is obviously non-zero. This shows that the degree of LPI is
P
I C r and its leading

coefficient is

1

.m � 1/Š.m � 2/Š : : : 1Š
� .b1Š/ : : : .bm�r /Š �

Q
j>k.ij � ik/Q

j .ij C 1/
Q
j>k.ij C ik C 2/

D

Q
j>k.ij � ik/

.i1/Š : : : .ir /Š
Q
j .ij C 1/

Q
j>k.ij C ik C 2/

:

Corollary 4.13. The polynomial ı.m; n; n � s/ from Theorem 4.1 has degree m, and the
polynomial �.n; d/ from Theorem 4.2 has degree d � 1.

5. The Nie–Ranestad–Sturmfels conjecture

In this section we present a proof of the formula for the degree of semidefinite pro-
gramming which was conjectured by Nie, Ranestad and Sturmfels [25]. The formula was
proved so far only for special values of the parameters. To state it we introduce the fol-
lowing coefficients.

Definition 5.1 (Coefficients bI ). Let I be a set of s nonnegative integers. We define

bI .n/ D QIC1s .1=2; : : : ; 1=2„ ƒ‚ …
n times

/;

where I C 1s is the set obtained from I by adding 1 to each of its elements. The function
QIC1s is the Schur Q-function [19, Section III.8] and its argument 1=2 appears n times.
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Since the Schur Q-function QIC1s is homogeneous of degree
P
I C s, there is an

equivalent formula:

bI .n/ D

�
1

2

�P ICs

QIC1s .1; : : : ; 1„ ƒ‚ …
n times

/;

These coefficients may be computed recursively as described in [25, Section 6]. We
note that in this reference the authors use the convention that I � ¹1; : : : ; nº while in
this article I � Œn� D ¹0; : : : ; n � 1º. This results in the difference in notation for the
coefficient bI exchanging I and I C 1s .

The main theorem of this section, confirming the Nie–Ranestad–Sturmfels conjecture,
is the following.

Theorem 5.2 ([25, Conjecture 21]). Let m; n; s be positive integers. Then

ı.m; n; n � s/ D
X

P
I�m�s

.�1/m�s�
P
I IbI .n/

�
m � 1

m � s �
P
I

�
;

where the sum is over sets of nonnegative integers of cardinality s.

As we already mentioned, Theorem 4.1 is an immediate corollary of Theorem 5.2,
since the coefficients bI .n/ are known to be polynomials. Hence, as soon as we have
proven Theorem 5.2, we have a third proof of Theorem 4.1.

Remark 5.3. We note that if the Pataki inequality (3.2), m �
�
sC1
2

�
, is not satisfied, then

both sides of the equality above are trivially zero.

For the rest of the section we fix the numbersm;n;s as in the statement of the theorem.
Theorem 5.2 presents a relation between the numbers bI .n/ and  I , our proof of which
will be algebraic, with the coefficients sI;J from Definition 2.3 playing a prominent role.
The following lemma describes the relations between bI .n/ and sI;J :

Lemma 5.4. Let I be a set of s nonnegative integers. Then

bI .n/ D
X
J�I

�
1

2

�P I�
P
J

sI;JLPJ .n/; LPI .n/ D
X
J�I

�
�
1

2

�P I�
P
J

sI;J bJ .n/:

These two identities are equivalent, by the discussion following Definition 2.3. We
present two proofs: one based on simple algebra, and one on more sophisticated methods
from algebraic geometry.

For the first proof, let us recall two statements from linear algebra which will allow us
to prove Pfaffian formulas also for set complements.

Lemma 5.5 (Jacobi’s Theorem). Let A be an n � n matrix, and AC its cofactor matrix.
Then

det.AŒn�nI;Œn�nJ / D det.ACI;J / det.A/#I�1

for all sets I; J � Œn� with #I D #J .
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Corollary 5.6. The cofactor matrix AC of an n � n skew-symmetric matrix A is given by

ACij D Pf.AŒn�n¹i;j º/Pf.A/:

Lemma 5.7. Let I D ¹i1; : : : ; irº be a set of nonnegative integers. Then

 Œn�nI D

´
Pf. Œn�n¹ik ;il º/0<k<l�r for #I even;

Pf. Œn�n¹ik ;il º/0�k<l�r for #I odd;

where  Œn�n¹i0;ikº WD  Œn�n¹ikº:

Proof. Let us consider the case where both n and #I are even. Consider the skew-sym-
metric matrixA such thatAk;l D ¹k;lº for 0� k < l < n. Then using Lemmas 5.5 and 2.7
we get

 Œn�nI D Pf.AŒn�nI / D Pf.ACI /Pf.A/#I�1 D Pf.ACI /;

since det.A/ D  ¹0;1;:::;n�1º D 1. Moreover, by Corollary 5.6, the entries of the cofactor
matrix AC are Pf.AŒn�n¹k;lº/Pf.A/ D  Œn�n¹k;lº, which proves the lemma in this case.

The proof in the other cases is similar. The only difference is that we consider a dif-
ferent matrix A. If n is odd we take A D . ¹k;lº/�1�k<l<n and if n is even and #I is
odd we take A D . ¹k;lº/�2�k<l<n. We interpret  ¹�1;kº and  ¹�2;kº as  ¹kº and we put
 ¹�1;�2º D 1. Then we conclude in the same way.

Corollary 5.8.

#I Œn�nI D

´
2
P
1�k<l�r .�1/

kClC1 Œn�n¹ik ;il º Œn�n.In¹ik ;il º/ if #I is even;

2
P
0�k<l�r .�1/

kClC1 Œn�n¹ik ;il º Œn�n.In¹ik ;il º/ if #I is odd;

where  Œn�n¹i0;ikº WD  Œn�n¹ikº:

Proof. For every skew-symmetric r � r matrix A (with r even) and every k D 1; : : : ; r ,
we have the following recursive formula for the Pfaffian:

Pf.A/ D
k�1X
lD1

.�1/kClak;l Pf.A Ok Ol / �
rX

lDkC1

.�1/kClak;l Pf.A Ok Ol /;

where A Ok Ol is the submatrix obtained by removing the k-th and l-th rows and columns.
Summing over all k gives the desired equality.

Remark 5.9. If we define  Œn�nI D 0 for I D ¹i1; : : : ; irº a multiset/partition with at least
one repeated entry, the recursion from Corollary 5.8 still holds.

Remark 5.10. Corollary 5.8 can be seen as a recursive relation between the polynomials
LPI .n/ from Theorem 4.3. In particular, we can obtain in this way one more proof of
Theorem 4.3.

First proof of Lemma 5.4. We will use induction on the length of I , which we will denote
by s. The base cases s D 1; 2 are left to the reader.
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We proceed with the general case s > 2. We will assume that s is even; the odd case
is analogous. Since bI D Pf.bip ;iq /1�p<q�s , we have (as in Corollary 5.8) the following
recursive relations between the bI ’s:

sbI D 2
X

1�p<q�n

.�1/pCqC1b¹ip ;iqºbIn¹ip ;iqº:

In order to use induction, we need to show that

s
X
J�I

2
P
J sI;J Œn�nJ D 2

X
1�p<q�n

.�1/pCqC1

�

� X
J�¹ip ;iqº

2
P
J s¹ip ;iqº;J Œn�nJ

�� X
J�In¹ip ;iqº

2
P
J sIn¹ip ;iqº;J Œn�nJ

�
:

This follows immediately from the following claim:

Claim 5.11. For every J � I , where J may have repeated elements,

sI;J Œn�nJ D
2

s

X
1�p<q�n

.�1/pCqC1

�

� X
1�s<t<n

s¹ip ;iqº;¹js ;jt º Œn�n¹js ;jt ºsIn¹ip ;iqº;Jn¹js ;jt º Œn�n.Jn¹js ;jt º/

�
:

Indeed, using Laplace expansion, for any t; u we can write

sI;J D
X
p<q

.�1/pCqCtCus¹ip ;iqº;¹jt ;juºsIn¹ip ;iqº;Jn¹jt ;juº:

Hence, the right hand side can be rewritten as

2sI;J
X

1�t<u<n

.�1/tCuC1 Œn�n¹jt ;juº Œn�n.Jn¹jt ;juº/:

It remains to show that

s Œn�nJ D 2
X

1�t<u<n

.�1/tCuC1 Œn�n¹jt ;juº Œn�n.Jn¹jt ;juº/:

But this is precisely Corollary 5.8, which concludes the first proof of the formula.

The ideas of the second proof were suggested to us by Andrzej Weber.

Second proof of Lemma 5.4. We start with a projection formula, which is a special case
of [13, (4.7)]. The proofs of the formula were first provided by Pragacz [28, 29]. Note
that this formula is stated in terms of Schur P -polynomials, while we work with Schur
Q-polynomials, which accounts for an additional factor of a power of 2.

For a vector bundle E of rank n over some base X , we consider the relative Grass-
mannian Gs.E/ of rank s quotients of E , with its projection � to X . We denote by K



L. Manivel, M. Michałek, L. Monin, T. Seynnaeve, M. Vodička 3112

and Q the relative tautological subbundle and quotient bundle of ��E , of respective ranks
r D n � s and s. Then

QIC1s .E/ D ��.ctop.K ˝Q/QIC1s .Q//; (5.1)

whereC1s indicates adding 1 to all s elements of I (cf. [13, Example 2, p. 50]). Moreover,
the formula of [13, (4.5)] and [27, Proposition 2.2] can be written as

QIC1s .Q/ D 2
sctop.

V2
Q/s�.I/C1s .Q/ D ctop.S

2Q/s�.I/.Q/:

Since ��E is an extension of Q by K , the bundle ��S2E admits a filtration whose suc-
cessive quotients are S2Q, K ˝Q and S2K . Hence the identity

c.K ˝Q/c.S2Q/ D s.S2K/��c.S2E/:

Equation (5.1) can thus be rewritten as

QIC1s .E/ D c.S
2E/��.s.S

2K/s�.I/.Q//jdegD
P
ICs;

where the last symbols mean we only keep the component of degree
P
I C s.

Now suppose that E D E0 ˝L for some line bundle L and a trivial vector bundle E0.
ThenGs.E/ is a trivial bundle overX , while K DK0˝L and QDQ0˝L are obtained
by pull-back of the tautological and quotient bundles K0, Q0 over a fixed Grassmannian
Gs.Cn/ (we omit the pull-backs in notation for simplicity). By Definition 2.3 (where
formally the xi ’s are the Chern roots of Q and we need to homogenize by using c1.L/),
we have

s�.I/.Q/ D
X
J�I

sI;J s�.J /.Q0/ı
P
I�

P
J ;

where ı D c1.L/. Moreover, the Segre classes of S2K�0 and S2K are related by

s.S2K/ D
X
`�0

.1C 2ı/�.
rC1
2 /�`s.`/.S

2K�0 /:

Plugging these two formulas into the previous one, and expanding each s.`/.S2K�0 / in
terms of s�.H/.K�0 / using Definition 2.5 (where H is simply another index for a subset
of nonnegative integers, like I and J ), we see that QIC1s .E/ equalsX
J�I

X
H

.1C 2ı/.
nC1
2 /�.

rC1
2 /�j�.H/jı

P
I�

P
J sI;J H��.s�.H/.K

�
0 /s�.J /.Q0//jdegD

P
ICs :

Now recall that the Schur classes s˛.K�0 / and sˇ .Q0/, for partitions ˛� .sr / and ˇ� .sk/,
that are nonzero, give dual bases of Schubert cycles on the Grassmannian Gs.Cn/. This
can be expressed as

��.s�.H/.K
�
0 /s�.J /.Q0// D ıH;Œn�=J ;

where ıH;Œn�=J is the Kronecker delta. Note thatH D Œn�=J implies that j�.H/j C j�.J /j
D sr . We thus get the formula

QIC1s .E/ D
�X
J�I

.1C 2ı/sC
P
J ı

P
I�

P
J sI;J Œn�=J

�
jdegD

P
ICs

:



Schubert calculus for Gaussian models and semidefinite programming 3113

But since the degree of the polynomial in brackets is exactly
P
I C s, we just need to

keep its top degree component, that is,

QIC1s .E/ D
X
J�I

2
P
JCssI;J Œn�=J ı

P
ICs :

We conclude by applying this formula to the bundle E D O.1/˚n over the projective
space.

Remark 5.12. We could also deduce the lemma by applying the last formula formally to
the bundle E D O.1=2/˚n, obtaining directly the defining formula for bI from Definition
5.1. Even though E is not a line bundle, by the squaring principle [15, pp. 76–78] we can
formally compute with E as if it were a line bundle.

Lemma 5.13. Let J be a set of nonnegative integers of length s with
P
J � m� s. Then

X
I�JP
I�m�s

 I

�
�
1

2

�P I�
P
J

sI;J

�
m � 1

m � s �
P
I

�
D

´
0 if

P
J < m � s;

 J if
P
J D m � s:

Proof. We prove the lemma at the same time for all the J ’s by multiplying the above
equation by the Schur polynomial s�.J /.x1; : : : ; xs/ and summing up. Since the Schur
polynomials form a basis of the space of symmetric polynomials, the statement of the
lemma is equivalent to the following polynomial identity:

X
P
J�m�s

X
I�JP
I�m�s

 I

�
�
1

2

�P I�
P
J

sI;J

�
m � 1

m � s �
P
I

�
s�.J /.x1; : : : ; xs/

D

X
P
JDm�s

 J s�.J /.x1; : : : ; xs/:

By Definition 2.5, the right hand side is equal to s.m�s�.s2//.xi C xj j 1 � i � j � s/.
For the left hand side we can use Definition 2.3 of the coefficients sI;J :

X
P
J�m�s

X
I�JP
I�m�s

 I

�
�
1

2

�P I�
P
J

sI;J

�
m � 1

m � s �
P
I

�
s�.J /.x1; : : : ; xs/

D

X
P
I�m�s

 I

�
m � 1

m � s �
P
I

�X
J�I

�
�
1

2

�P I�
P
J

sI;J s�.J /.x1; : : : ; xs/

D

X
P
I�m�s

 I

�
m � 1

m � s �
P
I

�
s�.I/.x1 � 1=2; : : : ; xs � 1=2/

D

m�sX
iD.s2/

X
P
IDi

�
m � 1

m � s � i

�
 I s�.I/.x1 � 1=2; : : : ; xs � 1=2/
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D

m�sX
iD.s2/

�
m � 1

m � s � i

� X
P
IDi

 I s�.I/.x1 � 1=2; : : : ; xs � 1=2/

D

m�sX
iD.s2/

�
m � 1

m � s � i

�
s.i�.s2//

.xi C xj � 1 j 1 � i � j � s/

D s.m�s�.s2//
.xi C xj j 1 � i � j � s/:

In the last equality we have applied Lemma 2.4 to the variables xi C xj � 1.

Now we are able to present the proof of Theorem 5.2:

Proof of Theorem 5.2. We replace bI .n/ by the expression from Lemma 5.4, change the
order of summation and use Lemma 5.13 in the last step:X
P
I�m�s

.�1/m�s�
P
I IbI .n/

�
m � 1

m � s �
P
I

�
D

X
P
I�m�s

X
J�I

sI;J Œn�nJ

�
1

2

�P I�
P
J

.�1/m�s�
P
I I

�
m � 1

m � s �
P
I

�
D

X
P
J�m�s

.�1/m�s�
P
J Œn�nJ

X
I�JP
I�m�s

sI;J

�
�
1

2

�P I�
P
J

 I

�
m � 1

m � s �
P
I

�

D

X
P
JDm�s

.�1/m�s�
P
J Œn�nJ J D ı.m; n; n � s/:

6. General square matrices

The results from the previous sections have natural analogues if we replace the space of
symmetric matrices (“type C ”) with the space of skew-symmetric matrices (“type D”),
or with the space of general matrices (“type A”). This section will be devoted to the latter
case, and the next section to the former one.

6.A. Codegrees of smooth determinantal loci

Let Mn denote the space of complex matrices of size n, and Dn�r;n � P .Mn/ the locus
of matrices of rank at most n � r . Denote by Dn�r;n

m its intersection with a general m-
dimensional projective space. Its dimension is d D m � r2 when this is nonnegative,
otherwise it is empty. The analogues of Pataki’s inequalities are given by

Proposition 6.1. The dual variety of Dn�r;n
m is a hypersurface if and only if

r2 � m � n2 � .n � r/2:
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As was done in [25] for symmetric matrices, the degree of this dual variety can be
computed by classical means when Dn�r;n

m is smooth, which is equivalent to r2 � m �
r2 C 2r . The class formula gives, in terms of topological Euler characteristics,

deg .Dn�r;n
m /� D .�1/d

�
�.Dn�r;n

m / � 2�.D
n�r;n
m�1 /C �.D

n�r;n
m�2 /

�
:

The Euler characteristics of smooth degeneracy loci have been computed by Pragacz [26].
For ' W F ! E a morphism of vector bundles of ranks f; e over a variety X , the formula
given in [13, p. 57] is

�.Dr .'// D

Z
X

Pr .E; F /c.X/;

where c.X/ denotes the total Chern class of X , while Pr .E;F / is a universal polynomial
in the Chern classes of E and F . Explicitly,

Pr .E; F / D
X
�;�

.�1/j�jCj�jD
n�r;m�r
�;�

s.m�r/n�rC�; Q�.E � F /;

where the sum is over partitions � and � of lengths n � r and m � r respectively, and Q�
is the dual partition of �. Moreover, the coefficients Dn�r;m�r

�;�
defined in [13] encode the

Segre classes of a tensor product of vector bundles. (In what follows, we will rather use
the notations of [17]; see Definition 6.7.)

We want to apply this formula to Dn�r;n
m , which we consider as the degeneracy locus

Dn�r .'/ of the tautological morphism ' W F D O.�1/˚n ! O˚n over X D Pm. Since
c.Pm/� 2hc.Pm�1/C h2c.Pm�2/D .1C h/m�1, where h denotes the hyperplane class,
we get the formula

deg .Dn�r;n
m /� D

X
�;�

.�1/j�jCj�j
�

m � 1

r2 C j�j C j�j

�
D
r;r
�;�
s.r/rC�; Q�.1; : : : ; 1„ ƒ‚ …

n times

/;

the sum being taken over partitions � and � of length r . Note that the dependence on n
for r and m fixed is only in the last term, more precisely in the number of 1’s on which
the Schur functions are evaluated. This dependence is well known to be polynomial in n;
very explicitly, for any partition �,

s�.1; : : : ; 1„ ƒ‚ …
n times

/ D dimS�C
n
D c�.n/=h.�/;

where c� is the content polynomial and h.�/ is the product of the hook lengths of � [19].
A priori this formula is only valid in the range r2 �m� r2C 2r , whenDn�r;n

m is smooth.
That it should be true in general would be an analogue of the NRS conjecture in type A.
We will prove below that this statement is correct.

We introduce the following notations, similar to those we used for symmetric matrices.

Definition 6.2. We define ıA.m; n; r/ to be the degree of the variety .Dr;n
m /� if it is a

hypersurface, and zero otherwise. Here Dr;n
m is the variety of n � n matrices of rank at

most r , intersected with a general (projective) m-dimensional subspace. Equivalently, if
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we let Zr � P .V � ˝ V / � P .V � ˝ V / be the variety of pairs of matrices .X; Y /, up to
scalars, with X � Y D Y � X D 0, rkX � r , rk Y � n � r , then the multidegree of Zr is
equal to

ŒZr � D
X
m

ıA.m; n; r/H
n2�m
1 Hm

n�1;

where H1 and Hn�1 denote the pull-backs of the hyperplane classes from P .V � ˝ V /
and P .V � ˝ V /, respectively.

Definition 6.3. The number �A.n;d/ is the degree of the variety L�1, where L� P .Mn/

is a general linear subspace of dimension d � 1.

6.B. Complete collineations

The correct space to work with is the space of complete collineations [16,20,33,41,42,44].
It can actually be defined for rectangular matrices, but for the sake of simplicity we will
restrict ourselves to square matrices.

Definition 6.4. Let V and W be two vector spaces of equal dimension n. The space
P .V � ˝W / represents linear maps from V to W ; the open subset of rank n linear maps
is denoted by P .V � ˝ W /ı. Then the space of complete collineations, CC.V; W /, is
defined as the closure of the image of the map

� W P .V �˝W /ı ! P .V �˝W /�P .
V2

V �˝
V2

W /�� � ��P .
Vn�1

V �˝
Vn�1

W /

given by
ŒA� 7! .ŒA�; Œ

V2
A�; : : : ; Œ

Vn�1
A�/:

As before, in coordinates this map sends a matrix to its minors of various sizes.

As in the symmetric case, the space of complete collineations can be constructed by
blowing up P .Mn/ along the subvariety of rank 1 matrices, then the strict transform of
the subvariety of matrices of rank at most 2, and so on. As such, it admits a first series
S1; : : : ; Sn�1 of special classes of divisors: the classes of (the strict transforms of) the
exceptional divisors E1; : : : ; En�1 of these successive blow-ups. A second natural series
L1; : : : ;Ln�1 of classes of divisors can be obtained by pulling back the hyperplane classes
under the projections �i W CC.V;W /! P .

Vi
V � ˝

Vi
W /.

The analogue of Proposition 3.4 holds:

Proposition 6.5. L1; : : : ; Ln�1 form a basis of Pic.CC.V; W //, in which the Si ’s are
given by the formulas

Si D �Li�1 C 2Li � LiC1;

with the convention that L0 D Ln WD 0.

Proof. Follows from [20, Proposition 3.6, Theorem 3.13].
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Proposition 6.6. The numbers �A and ıA can be computed as intersection products of
the variety of complete collineations:

�A.n; d/ D

Z
CCn

Ln
2�d
1 Ld�1n�1 ;

ıA.m; n; r/ D

Z
CCn

SrL
n2�m�1
1 Lm�1n�1 D

Z
Er

Ln
2�m�1
1 Lm�1n�1 :

This implies the analogue of (3.3):

�A.n; d/ D
1

n

n�1X
rD1

rıA.d; n; n � r/: (6.1)

Definition 6.7. We define type A Lascoux coefficients dI;J as follows. For X D
.x1; : : : ; xk/ and Y D .y1; : : : ; yl / two sets of indeterminates, we denote by X C Y
the set of indeterminates xi C yj , 1 � i � k, 1 � j � l . Then the dI;J ’s are defined by
the formal identity

s.d/.X C Y / D
X

#IDk; #JDl
j�.I/jCj�.J /jDd

dI;J s�.I/.X/s�.J /.Y /:

Equivalently, for the product of the universal bundles U1 ˝U2 over a product of Grass-
mannians G.k;m/ �G.l; n/,

Segd .U1 ˝U2/ D
X

#IDk;#JDl
j�.I/jCj�.J /jDd

dI;J�
1
�.I/�

2
�.J /:

Analogously to Theorem 3.7, we have the following formula for ıA:

Theorem 6.8.
ıA.m; n; r/ D

X
I;J�Œn�

#ID#JDn�rP
IC

P
JDm�nCr

dI;JdŒn�nI;Œn�nJ :

6.C. Induction relations and polynomiality

We denote by D.t/ the infinite matrix with entries D.t/ij D
�
tCiCj
i

�
. This matrix gives

us a formula for dI;J [17, Proposition 2.8].

Proposition 6.9. Let I D ¹i1; : : : ; irº and J D ¹j1; : : : ; jsº be two sets of nonnegative
integers with r � s. Then

dI;J D

´
detD.s � r/I;¹js�rC1�.s�r/;:::;js�.s�r/º if ji D i � 1 for all 1 � i � s � r;

0 otherwise.

In particular, if #I D #J then dI;J D detD.0/I;J .
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Lemma 6.10. (1) Let I D ¹i1; : : : ; isº and J D ¹j1; : : : ; jsº with i1; j1 > 1. Write I0 D
¹0º [ I and J0 D ¹0º [ J . Then

dI;J D .s C 1/dI0;J0 �

sX
pD1

d.I0n¹ipº/[¹ip�1º;J0 �

sX
qD1

dI0;.J0n¹jqº/[¹jq�1º:

.Here, if .I0 n ¹ipº/ [ ¹ip � 1º is a multiset, then d.I0n¹ipº/[¹ip�1º;J0 D 0./

(2) For i1 D 0 or j1 D 0 we have

d¹i1;:::;isº;¹j1;j2;:::;jsº D
X

i`�i
0
`
<i`C1

j`�j
0
`
<j`C1

d¹i 0
1
;:::;i 0

s�1
º;¹j 0

1
;:::;j 0

s�1
º:

Proof. (1) We expand the determinant detD.0/I0;J0 along each row, and sum up:

.s C 1/dI0;J0 D

sX
p;qD0

.�1/pCq
�
ip C jq

ip

�
dI0n¹ipº;J0n¹jqº

D dI;J C

sX
pD1

.�1/pdI0n¹ipº;J C

sX
qD1

.�1/qdI;J0n¹jqº

C

sX
p;qD1

.�1/pCq
��

ip C jq � 1

ip

�
C

�
ip C jq � 1

ip � 1

��
dI0n¹ipº;J0n¹jqº

D dI;J C

sX
pD1

sX
qD0

.�1/pCq
�
ip C jq � 1

ip � 1

�
dI0n¹ipº;J0n¹jqº

C

sX
qD1

sX
pD0

.�1/pCq
�
ip C jq � 1

ip

�
dI0n¹ipº;J0n¹jqº

D dI;J C

sX
pD1

d.I0n¹ipº/[¹ip�1º;J0 C

sX
qD1

dI0;.J0n¹jqº/[¹jq�1º:

(2) The proof of the second formula is similar to the proof of (4.3) in Lemma 4.5. We
only consider the case i1 D 0 and in s.d/.¹xi C yj j 1 � i; j � sº/ we substitute xs D 0.
This yields

d¹i1;:::;isº;¹j1;:::;jsº D
X

j`�1<j
0
`
�j`

d¹i2�1;:::;is�1º;¹j 01;:::;j
0
sº
:

Then by Proposition 6.9 all summands with j 01 > 0 are zero. This allows us to substitute
ys D 0 in s.d/.¹xi C yj j 1 � i � s � 1; 1 � j � sº/ and deduce the lemma analogously
to formula (4.3).

Theorem 6.11. Let I D¹i1; : : : ; irº and J D¹j1; : : : ; jrº be two sets of strictly increasing
nonnegative integers. The function defined for n � 0 by

LPAI;J .n/ WD

´
dŒn�nI;Œn�nJ if I; J � Œn�;

0 otherwise;

is a polynomial in n.
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Proof. From Lemma 6.10 it follows that

LPAI;J .n/ D .n � r C 1/LPAIn¹0º;Jn¹0º.n/

�

X
`W i`C1>i`C1

LPA.In¹0;i`º/t¹i`C1º;Jn¹0º.n/ �
X

`W j`C1>j`C1

LPAIn¹0º;.Jn¹0;j`º/t¹j`C1º.n/

if i0 D j0 D 0, and otherwise

LPAI;J .n/ D
X
I 0;J 0

LPAI 0;J 0.n � 1/;

where the sum is over all pairs .I 0; J 0/D .¹i1 � �1; : : : ; ir � �rº; ¹j1 ��1; : : : ; jr ��rº/
with �`; �` 2 ¹0; 1º. As in the first proof of Theorem 4.3, it follows by induction that
LPAI;J is a polynomial.

Theorem 6.12. For any fixed m; s, the function ıA.m; n; n � s/ is a polynomial in n.

Proof. Follows from Theorems 6.8 and 6.11.

Theorem 6.13. For any fixed d , the function �A.n; d/ is a polynomial for n > 0.

Proof. Follows from (6.1) and Theorem 6.12.

6.D. Proof of the NRS conjecture for type A

We start with the following analogue of Lemma 5.13.

Lemma 6.14. Let K; L be sets of r nonnegative integers with
P
K C

P
L � m � r .

Then X
I�K

dI;L.�1/
P
I�

P
KsI;K

�
m � 1

m � r �
P
I �

P
L

�
D dK;L

if
P
K C

P
L D m � r , while this sum vanishes if

P
K C

P
L < m � r:

Proof. Using Lemma 2.4 we compute s.m�r2/.X C Y / to be

mX
kDr2

�
m � 1

m � k

�
s.k�r2/.X C Y � 1/

D

mX
kDr2

�
m � 1

m � k

� X
P
IC

P
LDk�r

dI;Ls�.I/.X � 1/s�.L/.Y /

D

mX
kDr2

�
m � 1

m � k

� X
P
IC

P
LDk�r

dI;L
X
K�I

.�1/
P
I�

P
KsI;Ks�.K/.X/s�.L/.Y /:

Comparing this expansion with that of Definition 6.7 yields the claim.
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Definition 6.15. For two partitions � D �.I /, � D �.J / of length r , we define the poly-
nomial

aI;J .n/ WD s.r/rC�; Q�.1; : : : ; 1„ ƒ‚ …
n times

/:

Lemma 6.16. Let I; J be two sets of r nonnegative integers. Then

aI;J .n/ D
X
L�I

sI;LdŒn�nL;Œn�nJ ;

dŒn�nI;Œn�nJ D
X
L�I

.�1/
P
I�

P
LsI;LaL;J .n/:

Proof. These two formulas being equivalent, we will prove the first one. We use the pro-
jection formula given in [26, Lemma 3.1], [13, Proposition 1, p. 51], where one considers
two vector bundles E; F of respective ranks n;m over some variety X . The Grassmann
bundlesGsE andGsF (parametrizing rank s subspaces and rank s quotients respectively)
over X admit tautological and quotient bundles SE ;QE and SF ;QF , where SE andQF
have rank s. Let � W G WD GsE �X GsF ! X denote the total projection. The variety G
is endowed with the vector bundle H WD ��Hom.F;E/=Hom.QF ; SE /. In our situation
we will suppose that m D n, and let r D n � s, which is the rank of both SF and QE .
Then the projection formula asserts that for any two partitions �;� of length at most r ,

s.r/rC�; Q�.E � F / D ��
�
s�.QE /s�.SF /ctop.H/

�
:

(In the original formula s�.SF / is replaced by s Q�.�SF /, but they are equal.) We can
replace ctop.H/ by c.H/ and keep only the term of the correct degree, which yields

c.Hom.F;E//��
�
s�.QE /s�.SF /s.Hom.QF ; SE //

�
jdegDr2Cj�jCj�j:

Now we specialize to the case where E D E0 ˝L and F D F0, where E0; F0 are trivial
vector bundles of rank n, and L is a line bundle on X with c1.L/ D ı. In this case

c.Hom.F;E// D .1C ı/s
2

:

The Grassmann bundlesGsE andGsF are then the trivial bundlesGsE0 �X andGsF D
GsF0 � X respectively, while the tautological and quotient bundles are SE D SE0 ˝ L,
QE D QE0 ˝ L, SF D SF0 and QF D QF0 , where we omit the obvious pull-backs. In
this situation,

s.Hom.QF ; SE // D
X
`�0

.1C ı/�s
2�`s`.Hom.QF0 ; SE0//:

Let � D �.I / and � D �.J /. Using Definition 6.7, Definition 2.3 and the duality proper-
ties of Schubert classes, we deduce that

s.r/rC�; Q�.E � F / D aI;J .n/ı
r2Cj�jCj�j
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can be computed by picking the term of the correct degree inX
`�0

.1C ı/n
2�s2�`

X
L

ı
P
I�

P
LsI;LdŒn�=J;Œn�=L;

where the size of L is constrained by the relation `C
P
LD n.n� 1/� s.s � 1/�

P
J .

This implies that n2 � s2 � `C
P
I �

P
L D r C

P
I C

P
J D r2 C j�j C j�j. So

the term of the correct degree is actually the term of maximal degree in ı, and the claim
follows.

We are now ready to prove the NRS conjecture in type A.

Theorem 6.17.

ıA.m;n;n� r/D
X

#ID#LDr;P
IC

P
L�m�r

dI;L.�1/
m�r�

P
I�

P
L

�
m � 1

m � r �
P
I �

P
L

�
aI;L.n/:

Proof. Using Theorem 6.8, Lemma 6.14 and Lemma 6.16, we get

ıA.m; n; n � r/ D
X
K;LP

KC
P
LDm�r

dK;LdŒn�=K;Œn�=L

D

X
K;LP

KC
P
L�m�r

.�1/m�r�
P
K�

P
L
X
I�K

X
L

dI;L

� .�1/
P
I�

P
KsI;K

�
m � 1

m � r �
P
I �

P
L

�
dŒn�=K;Œn�=L

D

X
I;LP

IC
P
L�m�r

.�1/m�r�
P
I�

P
LdI;L

�

�
m � 1

m � r �
P
I �

P
L

�X
K�I

.�1/
P
I�

P
KsI;KdŒn�=K;Œn�=L

D

X
I;LP

IC
P
L�m�r

.�1/m�r�
P
I�

P
LdI;L

�
m � 1

m � r �
P
I �

P
L

�
aI;L.n/:

7. Skew-symmetric matrices

7.A. Codegrees of smooth skew-symmetric determinantal loci

Let An denote the space of skew-symmetric complex matrices of size n, and ADn�r;n �
P .An/ the locus of matrices of rank at most n � r , where n � r is always supposed to be
even. Denote by ADn�r;nm its intersection with a general m-dimensional projective space.
Its dimension is d Dm�

�
r
2

�
when this is nonnegative, otherwise it is empty. The analogs

of Pataki’s inequalities are given by
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Proposition 7.1. The dual variety of ADn�r;nm is a hypersurface if and only if�
r

2

�
� m �

�
n

2

�
�

�
n � r

2

�
:

As in the previous case, the degree of this dual variety can be computed by classical
means when ADn�r;nm is smooth, which is equivalent to

�
r
2

�
� m �

�
r
2

�
C 2r . The class

formula gives, in terms of topological Euler characteristics,

deg .ADn�r;nm /� D .�1/d
�
�.ADn�r;nm / � 2�.ADn�r;nm�1 /C �.ADn�r;nm�2 /

�
:

The Euler characteristics of smooth skew-symmetric degeneracy loci have also been com-
puted by Pragacz [26]. For E a vector bundle of rank e over a variety X , and ' W E�! E

a skew-symmetric morphism, the formula given in [13, p. 64] is

�.Ds.'// D

Z
X

Ps.E/c.X/;

where c.X/ denotes the total Chern class of X , while Ps.E/ is a universal polynomial in
the Chern classes of E. Explicitly,

Ps.E/ D
X

`.�/�n�s

.�1/j�jŒ�C �.n � s � 1/�P�C�.n�s�1/.E/;

where the coefficients Œ� C �.n � s � 1/� are those appearing in the Segre class of the
skew-symmetric square of a vector bundle of rank n� s. These coefficients were denoted
˛I in [17], which we will rather follow, where I is a set of r D n� s nonnegative integers.

Let us apply this formula to ADn�r;nm , which we consider formally as the degeneracy
locusDs.'/ of the tautological skew-symmetric morphism � WF DO.�1

2
/˚n!O.1

2
/˚n

overX D Pm. Since c.Pm/� 2hc.Pm�1/C h2c.Pm�2/D .1C h/m�1, where h denotes
the hyperplane class, we get the formula

deg .ADn�r;nm /� D
X
I

�
m � 1

m �
P
I

�
˛IPI .1; : : : ; 1„ ƒ‚ …

n times

/;

where the sum is over all sets I of r nonnegative integers. Once again the dependence
on n for r fixed is only in the last term, more precisely in the number of 1’s on which
the Schur P -functions are evaluated. We have already seen that this dependence is well
known to be polynomial in n.

A priori this formula is only valid in the range
�
r
2

�
� m �

�
r
2

�
C 2r , when ADn�r;nm

is smooth. That it should be true in general would be an analogue of the NRS conjecture
in type D. We will prove below that this statement is correct. Our notations for the dual
degrees will be as follows:

Definition 7.2. Define ıD.m; n; r/ to be the degree of the variety .AD2r;2nm /� if it is a
hypersurface, and zero otherwise. Here AD2r;2nm is the variety of rank at most 2r skew-
symmetric 2n � 2n matrices, intersected with a general (projective) m-dimensional sub-
space. Equivalently, if we let Zr � P .

V2
V �/ � P .

V2
V / be the variety of pairs .X; Y /
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of matrices, up to scalars, withX � Y D 0, rkX � 2r , rkY � n� 2r , then the multidegree
of Zr is equal to

ŒZr � D
X
m

ıD.m; n; r/H
.n2/�m
1 Hm

n�1;

where H1 and Hn�1 are the pull-backs of the hyperplane classes from P .
V2

V �/ and
P .
V2

V /.

7.B. Complete skew-symmetric forms

A well-known feature of skew-symmetric forms is that the cases of odd and even sizes are
quite different. In particular, the following definition only makes sense in the even case.

Definition 7.3. The number �D.n; d/ is the degree of the variety L�1, where L �

P .A2n/ is a general linear subspace of dimension d � 1.

In this section, we will only be working with skew-symmetric matrices of even size
2n � 2n. The relevant space to deal with is then the space of complete skew-forms. Just
as with complete quadrics, there are many ways of constructing this space. Here we give
just two, referring the reader to the literature [2, 21, 41] for other equivalent definitions.

Definition 7.4. Let V be a 2n-dimensional vector space. The space of complete skew-
forms, CS.V /, is defined as the closure of �.P .

V2
V /ı/, where

� W P .
V2

V /ı ! P .
V2

V / � P .
V4

V / � � � � � P .
V2n�2

V /

is given by
ŒA� 7! .ŒA�; Œ

V2
A�; : : : ; Œ

Vn�1
A�/:

We note that here
Vi

A is viewed as an element of
V2i

V ; see also [2, Section 3]. In
coordinates, the map

V2
V !

V2i
V sends the entries of a skew-symmetric matrix to the

Pfaffians of its principal 2i � 2i submatrices.
For simplicity we will also use the notation CS2n D CS.C2n/.

As in the symmetric case, the space of complete skew-forms can be constructed by
blowing up P .A2n/ along the subvariety of rank 2 matrices, then the strict transform of
the subvariety of matrices of rank at most 4, and so on. As such, it admits a first series
S1; : : : ; Sn�1 of special classes of divisors: the classes of (the strict transforms of) the
exceptional divisors E1; : : : ; En�1 of these successive blow-ups. A second natural series
L1; : : : ;Ln�1 of classes of divisors can be obtained by pulling back the hyperplane classes
under the projections �i W CS.V /! P .

V2i
V /.

The analogue of Proposition 3.4 holds:

Proposition 7.5. The classesL1; : : : ;Ln�1 form a basis of Pic.CS.V //, in which the Si ’s
are given by

Si D �Li�1 C 2Li � LiC1

with L0 D Ln WD 0.
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Proof. Follows from [21, Proposition 3.6, Theorem 3.9].

As with symmetric matrices, the numbers �D and ıD can be expressed as intersection
products in the Chow ring of CS2n:

Proposition 7.6.

�D.n; d/ D

Z
CS2n

L
.2n2 /�d
1 Ld�1n�1 ;

ıD.m; n; r/ D

Z
CS2n

SrL
.2n2 /�m�1
1 Lm�1n�1 D

Z
Er

L
.2n2 /�m�1
1 Lm�1n�1 :

Proof. Analogous to the proof of Proposition 3.5.

From the two propositions above and the Pataki inequalities, we deduce that

�D.n; d/ D
1

n

X
.r2/�d

rıD.d; n; n � r/; (7.1)

an analogue of (3.3).

Definition 7.7. We define type D Lascoux coefficients ˛I as follows. For X D
.x1; : : : ; xk/ a set of indeterminates, we denote by �.X/ the set of indeterminates xi C xj ,
1 � i < j � k. Then the ˛I ’s are defined by the formal identity

s.d/.�.X// D
X

#IDk
j�.I/jDd

˛I s�.I/.X/:

Equivalently, for the universal bundle U over a Grassmannian G.k;m/,

Segd .
V2

U/ D
X

#IDk
j�.I/jDd

˛I��.I/:

For more about these coefficients, see [17, Proposition A.16].

Theorem 7.8.
ıD.m; n; r/ D

X
I�Œ2n�

#ID2n�2rP
IDm

˛I˛Œ2n�nI :

Proof. Analogous to the proof of Theorem 3.7.

7.C. Induction relations and polynomiality

We will now prove the polynomiality (or more precisely, quasipolynomiality) of ˛Œk�nI .
The following recursive relations will be central to our proof:
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Lemma 7.9. (1) For j1 > 0 we have

˛¹j1;:::;jsº D

´
˛¹0;j1;:::;jsº if s is even,

0 if s is odd.
(7.2)

(2) For j1 D 0 we have

˛¹j1;:::;jsº D
X

j`�j
0
`
<j`C1

˛¹j 0
1
;:::;j 0

s�1
º: (7.3)

Proof. The first formula is [26, p. 446], [17, (A.16.3)] and [28, pp. 163–66]. The proof of
the second formula is analogous to the proof of (4.3) in Lemma 4.5.

Theorem 7.10. Let I D ¹i1; : : : ; isº be a set of strictly increasing nonnegative integers.
For k � 0 the function

LPDI .k/ WD

´
˛Œk�nI if I � Œk�;

0 otherwise;

is a quasipolynomial in k with period 2, i.e. for both even k and odd k it is a polynomial.

Proof. We proceed as in the first proof of Theorem 4.3 by induction on #I and then onP
I using the relations from Lemma 7.9. The difference is that in the case i0 D 0 we

have

LPDI .n/ D

´
LPD

In0
.n/ if n � #I is even,

0 if n � #I is odd,

which is clearly by induction hypothesis a quasipolynomial in n with period 2. The rest is
analogous to the proof of Theorem 4.3.

From Theorems 7.8 and 7.10 we deduce the polynomiality of ıD:

Theorem 7.11. For any fixed m; s, the function ıD.m; n; n � s/ is a polynomial in n.

Using (7.1),we also get the polynomiality of �D:

Theorem 7.12. For any fixed d , the function �D.n; d/ is a polynomial for n > 0.

7.D. Proof of the NRS conjecture in type D

The proof of Theorem 7.16 will be extremely similar to that of the original NRS conjec-
ture.

Lemma 7.13. Let J be a set of r nonnegative integers with
P
J � m. Then

X
I�JP
I�m

˛I

�
�
1

2

�P I�
P
J

sI;J

�
m � 1

m �
P
I

�
D

´
0 if

P
J < m;

˛J if
P
J D m:
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Proof. Given a setX D .x1; : : : ;xr / of r variables, we denote by �.X/ the set of variables
.xi C xj ; i < j /. Using Lemma 2.4 we compute s.m�.r2//.�.X// to be

mX
kD.r2/

�
m � 1

m � k

�
s.k�.r2//

.�.X/ � 1/ D

mX
kD.r2/

�
m � 1

m � k

�
s.k�.r2//

.�.X � 1=2//

D

mX
kD.r2/

�
m � 1

m � k

� X
P
IDk

˛I s�.I/.X � 1=2/

D

mX
kD.r2/

�
m � 1

m � k

� X
P
IDk

˛I
X
J�I

sI;J .�1=2/
P
I�

P
J s�.J /.X/:

Comparing this expression with the expansion in Definition 6.7 yields the claim.

Definition 7.14. For I a set of nonnegative integers, we define

dI .n/ WD PI .1=2; : : : ; 1=2„ ƒ‚ …
n times

/:

Analogously to Definition 5.1, we have an equivalent formula:

dI .n/ D

�
1

2

�P I

PI .1; : : : ; 1„ ƒ‚ …
n times

/:

Like the Schur P -polynomials themselves [19, Section III.8], these polynomials may
be computed recursively. The following lemma describes the relation between dI .n/ and
the Lascoux coefficients ˛J .

Lemma 7.15. Let I be a set of r nonnegative integers. Then

dI .n/ D
X
J�I

�
1

2

�P I�
P
J

sI;J˛Œn�nJ ;

˛Œn�nI D
X
J�I

�
�
1

2

�P I�
P
J

sI;JdJ .n/:

Proof. The two formulas are equivalent; we shall prove the first one. For a vector bundle E

of rank n over some base X , we consider the relative Grassmannian Gr .E/ of rank r
quotients of E , with its projection � to X . We denote by � and Q the relative tautological
subbundle and quotient bundle of ��E , of respective ranks s D n � r and r . Then for
I D .i1 < � � � < ir /,

PI .E/ D ��.ctop.� ˝Q/PI .Q//

(cf. [13, Example 2, p. 50]). Moreover, the result of [13, (4.5)] and [27, Proposition 2.2]
can be written as

PI .Q/ D ctop.
V2

Q/s�.I/.Q/:
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Since ��E is an extension of Q by � , the bundle ��.
V2

E/ admits a filtration whose
successive quotients are

V2
Q, � ˝Q and

V2
� . Hence the identity

c.� ˝Q/c.
V2

Q/ D s.
V2

��/��c.
V2

E/:

Equation (5.1) can thus be rewritten as

PI .E/ D c.
V2

E/��.s.
V2

��/s�.I/.Q//jdegD
P
I ;

where the last symbols mean we only keep the component of degree
P
I .

Now suppose E D E0 ˝ L for a line bundle L and a trivial vector bundle E0. Then

c.
V2

E/ D .1C 2ı/.
s
2/:

Moreover, Gr .E/ is a trivial bundle over X , while � D �0 ˝ L and Q D Q0 ˝ L are
obtained by pulling back the tautological and quotient bundles �0, Q0 over a fixed Grass-
mannian Gr .Cn/ (we omit the pull-backs for simplicity). By Definition 2.3 we have

s�.I/.Q/ D
X
J�I

sI;J s�.J /.Q0/ı
P
I�

P
J ;

where ı D c1.L/. Moreover, the Segre classes of
V2

��0 and
V2

��are related by the
formula

s.
V2

��/ D
X
`�0

.1C 2ı/�.
r
2/�`s`.

V2
��0 /:

Plugging these two formulas into the previous one, we get

PI .E/D
X
J�I

X
L

.1C2ı/.
n
2/�.

r
2/�j�.L/jı

P
I�

P
J sI;J˛L��.s�.L/.�

�
0 /s�.J /.Q0//jdegD

P
I :

Now recall that the Schur classes s˛.��0 / and sˇ .Q0/, for partitions ˛� .rs/ and ˇ� .sr /,
which are nonzero, give dual bases of Schubert cycles on the GrassmannianGr .Cn/. This
can be expressed as

��.s�.L/.�
�
0 /s�.J /.Q0// D ıL;Œn�=J ;

where ıS;T is the Kronecker delta. Note that L D Œn�=J implies that j�.L/j C j�.J /j
D rs. We thus get the formula

PI .E/ D
�X
J�I

.1C 2ı/
P
J ı

P
I�

P
J sI;J˛Œn�=J

�
jdegD

P
I
:

But since the degree of the polynomial in brackets is exactly
P
I , we just need to keep

its top degree component, that is,

PI .E/ D
X
J�I

2
P
J sI;J˛Œn�=J ı

P
I :

We conclude by applying formally this formula to the bundle E D O.1/˚n over the pro-
jective space.
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Theorem 7.16. Let m; n; r be positive integers. Then

ıD.m; n; n � r/ D
X

P
I�m

.�1/m�
P
I˛IdI .n/

�
m � 1

m �
P
I

�
;

where the sum is over sets of nonnegative integers of cardinality r .

Proof. We replace dI .n/ by the expression from Lemma 5.4, change the order of sum-
mation and use Lemma 7.13 in the last step:X

P
I�m

.�1/m�
P
I˛IdI .n/

�
m � 1

m �
P
I

�
D

X
P
I�m

X
J�I

sI;J˛Œ2n�nJ

�
1

2

�P I�
P
J

.�1/m�
P
I˛I

�
m � 1

m �
P
I

�
D

X
P
J�m

.�1/m�
P
J˛Œ2n�nJ

X
I�JP
I�m

sI;J

�
�
1

2

�P I�
P
J

˛I

�
m � 1

m �
P
I

�

D

X
P
JDm

˛Œ2n�nJ˛J D ıD.m; n; n � s/:

8. Representation theory

In this section we will establish a formula which expresses the ML-degree as a linear com-
bination of dimensions of irreducible representations of SLn. Our construction is based
on the following folklore lemma.

Lemma 8.1. Let X be a smooth complete N -dimensional algebraic variety, and D1;D2
two divisors on X . Then the following identity holds:Z

X

Di
1D

N�i
2 D �

�
.1 �O.�D1//

i .1 �O.�D2//
N�i

�
;

where � denotes the holomorphic Euler characteristic.

Proof. By the additivity and multiplicativity properties of the Chern character we have

ch.1 �O.�Di // D
X
k�1

.�1/kC1
Dk
i

kŠ
;

and therefore

ch..1 �O.�D1//
i .1 �O.�D2//

N�i /

D

�X
k�1

.�1/kC1
Dk
1

kŠ

�i�X
k�1

.�1/kC1
Dk
2

kŠ

�N�i
D Di

1D
N�i
2 :
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Finally, by the Riemann–Roch theorem we get

�
�
.1 �O.�D1//

i .1 �O.�D2//
N�i

�
D

Z
X

Di
1D

N�i
2 td.X/ D

Z
X

Di
1D

N�i
2 :

We are going to apply Lemma 8.1 to the computation of the ML-degree

�.n; d/ D

Z
CQn

LNC1�d1 Ld�1n�1 ;

where N D
�
nC1
2

�
� 1 denotes the dimension of the variety of complete quadrics, CQn.

We will denote by ƒ the character lattice of SLn, and for a fundamental � 2 ƒ, we will
denote by V� the corresponding irreducible representation of SLn. We will also denote
by ˛1; : : : ; ˛n�1 and !1; : : : ; !n�1 the simple roots and fundamental weights of SLn�1,
respectively.

For a character � 2 ƒ, let us define an SLn-representation W� by

W� WD
M
�2ƒ

V �2� ;

where the sum is taken over dominant weights of the form � D � �
Pn�1
iD1 ki˛i with

ki 2 Z�0. In particular,W� D 0 if � cannot be represented as a sum � C
Pn�1
iD1 ki˛i with

� a dominant weight and ki 2 Z�0. For � D .i � 1/!1 C .j � 1/!n�1 �
Pn�1
lD1 !l , we

will denote the representation W� by W n
i;j .

Theorem 8.2. With the notation as above, the following identity holds:

�.n; d/ D 1C
X

0�i�N�dC1
0�j�d�1
iCj>0

.�1/iCjCN
�
N C 1 � d

i

��
d � 1

j

�
dim.W n

i;j /:

Proof. By Lemma 8.1 we have

�.n; d/ D �
�
.1 �L�11 /

NC1�d .1 �L�1n�1/
d�1

�
D

X
0�i�NC1�d
0�j�d�1

.�1/iCj
�
N C 1 � d

i

��
d � 1

j

�
�.L�i1 ˝L

�j
n�1/:

Since both L1 and Ln�1 are globally generated, and both are pull-backs of ample line
bundles by birational morphisms, their Iitaka dimensions satisfy �.L1/D �.Ln�1/DN .
By [3, Theorem 2.2], the cohomology of their negative powers must therefore vanish in
degree lower than the dimension, so that for i � 0; j � 0 and i C j > 0,

�.L�i1 ˝L
�j
n�1/ D .�1/

NhN .CQn;L
�i
1 ˝L

�j
n�1/

D .�1/Nh0.CQn; KCQn ˝Li
1 ˝L

j
n�1/:

The canonical divisor KCQn of the space of complete quadrics is given by [18, Corol-
lary 3]:

KCQn D �L1 � Ln�1 �

n�1X
lD1

Ll :
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In particular, CQn is Fano [20] and �.CQn;O/ D 1. Finally, the spaces of global sections
of line bundles on complete quadrics have been computed, as SLn-representations, by De
Concini and Procesi. It is a direct corollary of [8, Theorem 8.3] that

H 0.CQn;L
a1
1 ˝ � � � ˝L

an�1
n�1 / D Wa1!1C���Can�1!n�1 :

In particular, H 0.CQn; KCQn ˝Li
1 ˝L

j
n�1/ D W

n
ij , so our result follows.

Example 8.3. Let us compute �.3; 1/; �.3; 2/ and �.3; 3/ with the help of Theorem 8.2.
First we notice that

W 3
i;0 D W

3
0;i D 0 for i � 5; W 3

i;1 D W
3
1;i D 0 for i � 3:

Therefore we get

�.3; 1/ D 1C
X
1�i�5

.�1/iC1
�
5

i

�
dim.W 3

i;0/ D 1;

�.3; 2/ D 1C
X
0�i�4
0�j�1
iCj>0

.�1/iCjC1
�
4

i

�
dim.W 3

i;j / D 1C dim.W 3
4;1/ D 1C dim.V0/ D 2;

�.3; 3/ D 1C
X
0�i�3
0�j�2
iCj>0

.�1/iCjC1
�
3

i

��
2

j

�
dim.W 3

i;j / D 1� 3 � dim.W 3
2;2/C dim.W 3

3;2/;

where W 3
2;2 D V0 and W 3

3;2 D V
�
2!1

. By Weyl’s dimension formula,

dim.Vi!1Cj!2/ D
.i C 1/.j C 1/.i C j C 2/

2
;

we get �.3; 3/ D 1 � 3 � 1C 6 D 4.

Remark 8.4. Our representation-theoretic approach gives a closed formula for the ML-
degree. However, already for n D 4, the computation analogous to Example 8.3 is quite
involved. One reason why this computation is more complicated than other formulas is
that we obtain the answer to our intersection problem as a virtual representation, not only
its dimension. One could say that this gives more information than we ask for.

9. Future directions and conjectures

9.A. Dual degrees of defective determinantal loci

For symmetric matrices, Theorem 4.1 asserts that when SDn�s;nm is not dual defective,
that is, when Pataki’s inequalities (3.2) are satisfied, its codegree depends polynomially
on n when s andm are fixed. By the fundamental duality relation (Remark 2.10), this also
means that the codegree of SDs;n

.nC12 /�m
depends polynomially on n for s and m fixed.
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What happens in the defective cases? For example, by [15], one has the formula

codeg.SDs;n
.nC12 /�1

/ D deg.SDn�s;n
.nC12 /�1

/

D

sY
jD1

�
nCj�1
s�jC1

��
2j�1
j�1

� ;
which is clearly a polynomial in n. Note that in this case the dual defect is

�
sC1
2

�
� 1,

independently of n. Could it happen that the following holds?

Conjecture 9.1. For any fixed m > 0,

(1) the dual defect of SDs;n
.nC12 /�m

is equal to max
�
0;
�
sC1
2

�
�m

�
, independently of n,

(2) the codegree of SDs;n
.nC12 /�m

depends polynomially on n.

Similar statements should hold for general and skew-symmetric matrices. For general
matrices, the degrees of the determinantal loci have been computed in [15]. In particular,
this implies that

codeg.Ds;n

n2�1
/ D deg.Dn�s;n

n2�1
/

D

sY
jD1

�
nCj�1
2j�1

��
sCj�1
2j�1

�
is a polynomial in n. In this case the dual defect is s2 � 1, independently of n. Could it
happen that the following holds?

Conjecture 9.2. For any fixed m > 0,

(1) the dual defect of Ds;n

n2�m
is equal to max.0; s2 �m/, independently of n,

(2) the codegree of Ds;n

n2�m
depends polynomially on n.

Finally, for skew-symmetric matrices, the degrees of the determinantal loci have also
been computed in [15]. In particular, this implies that

codeg.AD2s;2n
.2n2 /�1

/ D deg.AD2n�2s;2n
.2n2 /�1

/

D
1

22s�1

2s�1Y
jD1

�
2nCj�1
2s�j

��
2j�1
j�1

�
is a polynomial in n. In this case the dual defect is

�
2s
2

�
� 1, independently of n. Could it

happen that the following holds, and a similar statement in odd dimensions?

Conjecture 9.3. For any fixed m > 0,

(1) the dual defect of AD2s;2n
.2n2 /�m

is equal to max
�
0;
�
2n
2

�
�m

�
, independently of n,

(2) the codegree of AD2s;2n
.2n2 /�m

depends polynomially on n.
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9.B. Dual degrees of singular varieties

There is a general Plücker formula for the degree of the dual variety X� of a possibly
singular projective variety X � Pn [11, Theorem 1.1]:

degX� D .�1/n.�.EuX / � 2�.EuX1/C �.EuX2//;

where X1 (resp. X2) is a general hyperplane section (resp. codimension 2 linear section)
of X . Here EuX denotes the Euler obstruction of X [12, Examples 4.2.9 and 19.1.7]. Our
Theorem 5.2 confirming the NRS conjecture, and their analogues for the other types of
determinantal loci, would immediately follow if one could prove that Pragacz’s formu-
las [26] for the topological Euler characteristics of determinantal loci, which a priori are
only valid in the smooth case, can also be used in the singular case, and compute the Euler
characteristics of the Euler obstructions. This is an approach we plan to investigate in the
near future, and which could potentially also apply to the defective cases.

9.C. Polynomiality of intersection products

Theorem 4.2 shows that for fixed d , the product

�.n; d/ D

Z
CQn

Ld�11 L
.nC12 /�d
n�1

is a polynomial in n. Can this result be generalized to other intersection products on CQ?
More precisely, we have the following question:

Question 9.4. Let d1; : : : ; dk 2 N with
P
di D d � 1. IsZ

CQn
L
d1
1 L

d2
2 � � �L

dk
k
L
.nC12 /�d
n�1

a polynomial in n > k C 1?
More generally: by which cohomology classes can one replace Ld11 L

d2
2 � � �L

dk
k

for
the polynomiality property to hold?

9.D. Representation theory

The version of the NRS conjecture that we proved in type A (Theorem 6.17) expresses
the codegree ıA.m; n; n � s/ as a linear combination of dimensions of Schur modules of
GL.n;C/, with highest weights and multiplicities depending only on m and r . In other
words, it is obtained as the dimensional evaluation of a fixed character, depending only
on m and s. A natural question is: what is really this character? Is there a natural (combi-
natorial, or geometric) interpretation of the corresponding representations?

The same question can be raised both in types B andD, where the dependence in n of
the codegrees ı.m; n; n � s/ and ıD.m; n; n � s/ only appears through the number of 1’s
on which a certain combination of Schur Q-functions or Schur P -functions is evaluated.
We mentioned in the introduction that these evaluations of Schur Q-functions or Schur
P -functions count certain types of shifted tableaux. An alternative interpretation is that
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they give the dimensions of certain representations of the queer Lie superalgebra q.n/

(see for example [5, Theorem 4.11]). So ı.m; n; n � s/ and ıD.m; n; n � s/ can also
be interpreted as dimensions of certain representations of q.n/, whose characters only
depend on m and s. What are these representations? Do they admit natural constructions
or interpretations?

9.E. Noncommutative matroids

We believe that our results may also be viewed in the context of noncommutative
matroids. Indeed, suppose we restrict to diagonal matrices, instead of symmetric. One
may still consider the rational map given by inverting matrices, which gives the classical
Cremona transformation. The famous resolution of that graph given by the permutohe-
dral variety is the analogue of the variety of complete quadrics. A representable matroid
may be viewed as a subspace of the space of diagonal matrices. Many interesting invari-
ants of this matroid may be read off from the cohomology class of its strict transform in
the permutohedral variety. In this analogy, the representable symmetric noncommutative
matroid, would be a subspace of symmetric matrices. Its crucial invariants should come
from the cohomology class of the strict transform of that subspace to the variety of com-
plete quadrics. For future work, it would be interesting to dare to define noncommutative
matroids as special cohomology classes of the variety of complete quadrics.

9.F. Algebraic statistics

In terms of algebraic statistics, the number �.n; d/ is equal to the maximum likelihood
degree of a general linear concentration model. A related quantity is the maximum like-
lihood degree of a general linear covariance model. For L � S2.Cn/, the ML-degree
of the associated linear concentration model is the number of pairs .†; K/ 2 S2.Cn/2

satisfying
† �K D Idn; K 2 L; † � S 2 L?;

where S is generic. In contrast, the ML-degree of the associated linear covariance model
is the number of pairs .†;K/ 2 S2.Cn/2 for which

† �K D Idn; † 2 L, KSK �K 2 L?:

In [37], it was conjectured that for generic L, these ML-degrees are also polynomial in n.
In future work, we plan to apply our geometric methods to prove this conjecture.
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esting discussions. We are grateful to Piotr Pragacz for important remarks about the article.
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