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Analytic Besov functional calculus
for several commuting operators

Charles Batty, Alexander Gomilko, Dominik Kobos, and Yuri Tomilov

Abstract. This paper investigates analytic Besov functions of n variables which act on the
generators of n commuting C0-semigroups on a Banach space. The theory for nD 1 has already
been published, and the present paper uses a different approach to that case as well as extending
to the cases when n � 2. It also clarifies some spectral mapping properties and provides some
operator norm estimates.
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1. Introduction

Let A be an (unbounded) operator on a complex Banach space X , and assume that
�A is the generator of a boundedC0-semigroup .e�tA/t�0 onX . The so-called Hille–
Phillips functional calculus for A assigns a bounded operator f .A/ to each function
f in the Hille–Phillips (HP) algebra LM. If A is sectorial of angle less than �=2,
so the semigroup is bounded and holomorphic on a sector in CC, then there is a
theory of a holomorphic calculus forAwhich may be applied to bounded holomorphic
functions on a sector, but there is no guarantee that this calculus assigns a bounded
operator to all bounded holomorphic functions. However, in the sectorial case there is
a bounded calculus for A for all functions in the Banach algebra B1 of analytic Besov
functions on CC, as shown originally in [31]. We have recently developed a theory of
a B1-calculus, which applies to many semigroup generators, but not to all of them.
There is a B1-calculus forA ifA is sectorial of angle less than �=2 or ifX is a Hilbert
space and the semigroup .e�tA/t�0 is bounded. The theory of the B1-calculus is set
out in detail in [7, 8], but readers may prefer to read the summary in [9] in order to
understand the setting of B1.
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Some applications of the B1-calculus are given in [7, 8], and others have been
found subsequently. For example, a new variant of the Katznelson–Tzafriri theorem
for the B1-calculus has been proved in [11], provided that A has a B1-calculus.
Estimates involving functions in LM can be improved by using the B1-calculus
norm, instead of the HP-norm; the difference is considerable in some cases.

Functional calculus is often used to investigate the various notions of joint spec-
trum for several commuting operators. Such work has had limited success, and work
on functional calculi for two or more generators of C0-semigroups has been sparse.
The Hille–Phillips calculus for bounded C0-semigroups extends to several commut-
ing semigroups in a straightforward fashion. The holomorphic calculus for sectorial
operators can be applied in some cases. Some partial results for several commuting
holomorphic semigroups have been obtained in [5,6,25] and other papers, and a multi-
variable version of the Bochner–Phillips functional calculus was set up in [28]. Some
functional calculi for non-holomorphic functions have been introduced for operators
with real spectrum (for example, in [15]), and versions for several operators have
been studied in [2, 3, 29]. The B1-calculus does not apply to generators of bounded
C0-groups, except in very special cases. Nevertheless, Arveson’s theory of represent-
ations of locally abelian groups can be applied to generators of bounded C0-groups
(see [14, Chapter 8]) and to finitely many commuting C0-groups, in ways which help
to develop the theory of the B1-calculus. In addition, the book [1, Chapter 3] devel-
ops a functional calculus for tuples of commuting generators of C0-groups from a
different perspective and uses it for the study of commutators and other applications
to mathematical physics.

A two-variable version B2 of B1 and a theory of the B2-calculus for two com-
muting operators have been covered in the thesis [23], using the same methods as
in [7, 8]. In this paper we extend the results to an arbitrary finite number of variables
and commuting operators. Moreover, we use techniques which are quite different
from those in [7,8]. We base them on a reproducing formula for analytic Besov func-
tions (see Corollary 3.3), which was first used in [7], and later used in different ways
in [8, 10]. This formula provides a route to the essential properties of the Bn-calcu-
lus: mapping Bn into L.X/, showing it is a homomorphism, and that it is unique (see
Section 5). This route is more direct, and clearer, than the arguments used in [7, 8].

We introduce the Banach algebras Bn, and their elementary decomposition into
2n subalgebras, in Section 2. In the case n D 1, the two subalgebras were an ideal
B1
0 and the one-dimensional space of constant functions. In the general case, we need

more sophisticated notation in our presentation of the decomposition, but the out-
comes in this paper are natural generalisations from the one-variable and two-variable
cases. In Section 3, we obtain a reproducing formula for the elementary components
of a given function f 2 Bn (Corollary 3.3). In Section 4, we define the Bn-calculus
initially as a function from Bn to L.X;X��/, and then we prove in Section 5 that it
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is a functional calculus. These proofs proceed in an unusual way, as did the corres-
ponding proofs in [7]. In Sections 6–8, we establish various further properties of the
family of B-calculi, including compatibility across operators, spectral inclusions, and
operator norm estimates.

1.1. Preliminaries

Notation. For n 2 N, we let In ´ ¹1; 2; : : : ; nº and Pn be the power-set of In. We
denote elements of Pn by symbols such as �;‰. For � 2 Pn, let �c ´ In n�, and
j�j be the cardinality of �.

We use the notation RC for the interval Œ0;1/, CC for the open right half-plane
¹�2C WRe�> 0º and xCC for the closed right half-plane. Real numbers may typically
be represented by s; t; ˛; ˇ; 
 , and complex numbers by z; �; �; �.

We use bold print to denote elements of Rn and Cn
C; for example, t denotes

.t1; : : : ; tn/ in Rn, z denotes an n-tuple .z1; z2; : : : ; zn/ in Cn
C, and similarly � denotes

an n-tuple .�1; �2; : : : ; �n/.

Holomorphic functions. For a holomorphic function f on Cn
C, we let Djf be the

partial derivative of f with respect to the j th coordinate variable zj where j 2 In.
For � 2 Pn, we let D� be the composition of the derivatives Dj for j 2 � (once
each). If � D ;, then D;f D f . For � D In, we may write Dn instead of DIn .

Let f 2 H1.Cn
C/. We will make use of the following properties:

• for ˛ 2 .0;1/n,

sup
Re zD˛

jf .z/j D sup
Re z�˛

jf .z/j (Maximum Principle);

• for z 2 Cn
C,

jD�f .z/j �
kf k1

2j�j
Q
j2� Re zj

(Cauchy’s inequality).

Cauchy’s inequality extends to higher-order derivatives, by repeated use of first-order
cases.

Several variants of resolvent functions appear frequently, including the following:

• for z; � 2 CC, we put r�.z/ D .z C �/�1;

• for � 2 CC, j 2 In and z 2 Cn
C, we put r�;j .z/ D .zj C �/�1;

• for z;� 2 Cn
C, we put r�.z/ D

Qn
jD1.zj C �j /

�1;

• for z; � 2 CC, we put K.z; �/ D .�2=�/.z C �/�2;

• for z;� 2 Cn
C, we put Kn.z;�/ D

Qn
jD1K.zj ; �j /.
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Measures. We may denote the Lebesgue measure on RnC by d˛ or dt, and the
Lebesgue measure on Cn

C by dSn. We let

dV.�/ D ˛ dˇ d˛; � D ˛ C iˇ 2 CC;

and dVn be the n-fold product measure of dV , so

dVn.�/ D
� nY
jD1

j̨

�
dSn.�/; � D . j̨ C i ǰ /

n
jD1 2 Cn

C:

Operators. In this paper an “operator” may be either a bounded linear operator on
a Banach space X or an unbounded operator with dense domain in X . The notation
L.X/ and L.X; Y / denote the spaces of bounded linear operators from X to X and
from X to Y , respectively. Bounded operators will typically be denoted by T and
unbounded operators by A.

An operator A on X is sectorial of angle less than �=2 if and only if the spec-
trum �.A/ of A is contained in CC [ ¹0º and MA´ sup�2CC

k�.�C A/�1k <1.
Equivalently, the operator �A is the generator of a sectorially bounded holomorphic
C0-semigroup on X .

2. The algebra Bn

Let f be a holomorphic function on Cn
C, � 2 Pn and k D j�j. Let H�f be the

function of variables ˛�´ . j̨ /j2� 2 .0;1/
k for j 2 �, defined by

.H�f /.˛�/´ sup
z2W˛�

j.D�f /.z/j; (2.1)

where
W˛� ´ ¹z 2 Cn

C W Re zj D j̨ for all j 2 �º:

If f is bounded and j̨ > 0 for each j 2 �, then Cauchy’s inequality and the max-
imum principle imply that the supremum in (2.1) is finite, and H�f is a decreasing
function of each variable j̨ for j 2 �.

We define
kf kBn

�
´

Z
Rk
C

.H�f /.˛�/ d˛�;

where d˛� denotes Lebesgue measure on RkC. This integral may be infinite. When
� is the empty set, H;f and kf kBn

;
are both equal to the H1-norm kf k1 of f .
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We define Bn to be the vector space of all holomorphic functions f on Cn
C such

that kf kBn
�

is finite for all� 2 Pn, so thatH�f is integrable over RkC. Then k � kBn
�

is a seminorm on Bn, and there is a norm on Bn defined by

kf kBn ´
X
�2Pn

kf kBn
�
: (2.2)

For n D 1, this definition agrees with the norm on B1 defined in [7, p. 33], and, for
n D 2, it agrees with the norm on B2 defined in [23, p. 37].

The definitions of Bn and its norm are clearly invariant under permutation of
the variables. For ease of presentation, in a proof of any statement involving one set
� 2 Pn, we may choose to assume that � D Ik or �c D Ik .

A useful property of functions f 2 Bn is that they are bounded and uniformly
continuous on Cn

C, so they extend to bounded, uniformly continuous functions on
xCn
C. This was noted for n D 1 in [7, Proposition 2.1] and shown for n D 2 in [23,

Proposition 3.2.4]. In general, the uniform continuity can be proved by elementary
methods (as in [23]) or by a special case of an argument in the proof of Remark 3.7 (1).
As a preliminary taste, we will show here that both properties can be deduced using
only the finiteness of the norms kf kBn

�
for every singleton subset � of In. However

this is an exceptional case, and we need to include the H1-norm in the definition of
kf kBn in order that Proposition 2.2 is true and later proofs can be simplified.

Proposition 2.1. Let f be a holomorphic function on Cn
C, and assume that kf kBn

�
is

finite for every singleton subset� of In. Then f is bounded and uniformly continuous
on Cn

C.

Proof. Let z and z0 be points in Cn
C. To estimate jf .z/ � f .z0/j, we will consider

the variables one at a time. The first step will be from z to zŒ1� D .z01; z2; : : : ; zn/, as
follows.

Let � 2 .0; �=2/ and � D sec � > 1. Consider the following path �1 in CC from
z1 to z01:

(a) the line-segment from z1 to z01 if the gradient is in Œ� cot �; cot ��;

(b) otherwise, two line-segments, one from z1 and the other from z01, one with
gradient cot � and the other with gradient �� , chosen so that the two lines
cross at a point z001 to the right of z and z01.

Then

jf .z/ � f .zŒ1�/j D

ˇ̌̌̌ Z
�1

.D1f /.�; z2; : : : ; zn/ d�

ˇ̌̌̌
� �

Z
J1

H¹1º.t/ dt:
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Here J1 represents the interval in RC between Re z1 and Re z01 in case (a). In case (b),
it represents both the interval between Re z1 and Re z001 and the interval between
Re z01 and Re z001 , with the two integrals added together. There is a similar estimate
for jf .zŒ1�/ � f .zŒ2�/j, where zŒ2� D .z01; z

0
2; z3; : : : ; zn/, and so on. Eventually, we

obtain

jf .z/ � f .z0/j � �

nX
jD1

Z
Jj

H¹j º.t/ dt � 2�

nX
jD1

kf kBn
¹jº

<1:

By fixing z0, this proves that f is bounded. By letting � ! 0, one may conclude that
the estimate also holds for � D 1.

To establish uniform continuity, we fix � 2 .0; �=2/ and thereby we fix � > 1.
Take ı > 0 and assume that jz � z0j < ı. Then the length of each interval involved in
the sets Jj is at most ı cot � . Since the functions H¹j º are integrable over RC, there
exists ı > 0 so small that all the integrals used above are less than ", and then we can
conclude that jf .z/ � f .z0/j < 2�n" whenever jz � z0j < ı.

We choose the norm k � kBn because it makes Bn into a Banach algebra. There
are numerous norms on Bn which are equivalent to k � kBn . Examples for n D 1 may
be found in [7, p. 33] and for n D 2 in [23, Section 3.4].

Proposition 2.2. The normed space .Bn; k � kBn/ is a Banach algebra.

Proof. The proof of completeness of the space is a straightforward, but uninteresting,
extension of the proofs for B1 in [7, Proposition 2.3] and B2 in [23, Proposition
3.2.1].

To show that Bn is a Banach algebra, we need to show that, for any f; g 2 Bn,
the product fg satisfies kfgkBn � kf kBnkgkBn .

Let � 2 Pn. By the product rule,

D�.fg/ D
X
‰��

.D‰f /.D�n‰g/:

For ‰ � �,

sup¹j.D‰f /.D�n‰g/.z/j W z 2 Cn
C;Re zj D j̨ .j 2 �/º

� sup¹j.D‰f /.z/j W z 2 Cn
C;Re zj D j̨ .j 2 ‰/º

� sup¹j.D�n‰g/.z/j W z 2 Cn
C;Re zj D j̨ .j 2 � n‰/º:

The variables j̨ for j 2 ‰ separate from those for j 2 � n‰ on the right-hand side,
so integration with respect to Lebesgue measure on RnC shows that

kfgkBn
�
�

X
‰��

kf kBn
‰
kgkBn

�n‰
:
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Hence,

kfgkBn �
X
�2Pn

X
‰��

kf kBn
‰
kgkBn

�n‰
�

X
‰2Pn

kf kBn
‰

X
‰2Pn

kgkBn
‰

D kf kBnkgkBn :

We note the following facts, which extend the corresponding statements for nD 1
or n D 2. The first result is almost immediate from the definitions. The other proofs
are either similar to those in [7,23], or, in some cases, they can be deduced from those
results.

Proposition 2.3. Let f 2Bn,�2Pn with j�j D k, and �j 2CC be fixed for j 2�c .
For z 2 Cn

C, let z� D .zj /j2�, and zC� D .z
�
j /j2In , where

z�j D

´
zj ; j 2 �;

�j ; j 2 �c :

Let ‰ be a subset of �c , and

g.z�/ D .D‰f /.z
C

�/:

Then g 2 Bk . In particular, the function z� 7! f .zC�/ is in Bk .

Proof. It suffices to consider the case when � D In�1 and show that g 2 Bn�1, in
the cases when ‰ is empty or ‰ D ¹nº. Then, we can conclude the result for general
� by the symmetry of the variables, and considering the variables in�c successively.

Let ‡ 2 Pn�1. If ‰ is empty, then it is clear that .H‡g/.˛‡ / � .H‡f /.˛‡ /,
and so g 2 Bn�1. In the case when ‰ D ¹nº, we consider �n 2 CC, ‡ 2 Pn�1 with
j‡ j D m and ‡C D ‡ [ ¹nº. Since f 2 Bn, the function

.˛‡ ; ˛n/ 7! .H‡Cf /.˛‡ ; ˛n/

is integrable over RmC1C . By Fubini’s theorem, the function

˛‡ 7! .H‡Cf /.˛‡ ; ˛n/

is integrable over RmC for almost all ˛n 2 .0;1/. By the maximum principle, these
functions of ˛‡ form a family of non-negative functions which are non-increasing
with respect to ˛n, and the functions are integrable over RmC for almost all ˛n > 0, so
they are integrable for all ˛n > 0. Moreover,

.H‡g/.˛‡ / � .H‡Cf /.˛‡ ;Re �n/;

so H‡g is integrable.
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Let f 2 Bn, and � 2 Pn. The following result was shown in [7, Proposition 2.2]
for n D 1, and in [23, Proposition 3.2.2] for n D 2. The existence of iterated limits
follows by applying the one-variable result repeatedly, but some additional arguments
are needed to obtain a limit over several variables simultaneously.

Proposition 2.4. Let f 2 Bn, � 2 Pn, j�j D k, and z� D .zj /j2� 2 Ck
C. Then the

following limit exists in C:

f�.z�/´ lim
Re zj!1;j2�c

f .z/:

Moreover, f� 2 Bk , and the map f 7! f� is bounded and linear from Bn to Bk .

Proof. By symmetry of the variables, it suffices to consider the case when � D Ik .
First, we show the result when k D n � 1. For this case, we use the notation z to
denote .z1; : : : ; zn�1/ 2 Cn�1

C , and � for the variable zn.
By Proposition 2.3, for each z 2 Cn�1

C the function � 7! f .z; �/ is in B1. By
[7, Proposition 2.2], we know that

g1.z/´ lim
Re �!1

f .z; �/

exists. In fact,

jf .z; �/ � g1.z/j �

ˇ̌̌̌ 1Z
Re �

.Dnf /.z; t C i Im �/ dt

ˇ̌̌̌
�

1Z
Re �

.H¹nºf /.t/ dt ! 0; (2.3)

uniformly with respect to z 2 Cn�1
C , as Re � !1. It follows from Vitali’s theorem

for several variables that g1 is holomorphic, and the partial derivatives of f .�; �/ con-
verge (pointwise) to the corresponding derivatives of g1 as Re � !1. This implies
that H‡g1 � H‡f on .0;1/j‡ j for all ‡ 2 Pn�1, and therefore g1 2 Bn�1 and
kg1kBn�1 � kf kBn .

If � D Ik where k 2 ¹0; 1; : : : ; n � 2º, one may apply the argument above to g1
to show that there is a function g2 2 Bn�2 such that

lim
Re �!1

.g1.z
0; �/ � g2.z

0// D 0;

uniformly for z0 2 Cn�2
C . In combination with (2.3), it follows that the statement is

proved for � D In�2. Continuing in this way, it can be proved for � D Ik .

Remarks 2.5. (1) In Proposition 2.4, f; is the constant function limRe zj!1; j2Inf .z/

and fIn D f .
(2) Note that the limits involved in Proposition 2.4 are as Re zj !1. Functions

f 2 Bn may not have limits as jzj j ! 1.
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(3) The function f� in Proposition 2.4 may be denoted in various ways. In par-
ticular, we may replace the variable zj by the symbol1 for each j 2 �c , and then
regard f as being defined on an extended domain. Proposition 2.3 remains true if
�j D 1 for some j 2 �c . The function f� is holomorphic, by a simple application
of Vitali’s theorem, and then the rest of the proof remains valid.

We denote by Bn
0 the ideal of Bn consisting of those functions f 2 Bn such that

f� is identically zero for all proper subsets � of In. It suffices that

lim
Re zj!1

f .z/ D 0

whenever j 2 In and zk 2 CC are fixed for each j ¤ k. Adopting the practice
described in Remark 2.5, it suffices that f 2 Bn

0 if and only if f .z/ D 0 whenever
zj D1 for at least one j 2 In. We stress that the two sentences above mean precisely
the same.

The seminorm k � kBn
In

is a norm on Bn
0 , and we denote this seminorm by k � kBn

0
.

Now, we show that the norms k � kBn
0

and k � kBn are equivalent on Bn
0 . In addition,

finiteness of kf kBn
0

, boundedness of f , and the condition above of vanishing (at
infinity, to the right) imply that f 2 Bn

0 .

Proposition 2.6. Let f 2 H1.Cn
C/, kf kBn0 <1, and assume that

lim
Re zj!1

f .z/ D 0 (2.4)

whenever j 2 In and zk is fixed for all k ¤ j . Then f 2Bn and kf kBn � 2nkf kBn
0

.

Proof. Let � 2 Pn, � 6D In, and j�j D k. From the boundedness of f , (2.4), and
Cauchy’s inequality, we infer that, for all ‰ 2 Pn such that � � ‰, any j 2 �c and
zk fixed for k ¤ j ,

lim
Re zj!1

D‰f .z/ D 0;

and thus
D�f .z/ D

Z
Rn�k
C

Dnf .zC ˛�c / d˛�c ; z 2 Cn
C:

By the maximum principle for functions from H1.Cn/, we have

jDnf .z/j �

Z
Rn�k
C

sup
�jDzj ; j2�

Re�jDRe zj ; j2�c

jDnf .�C ˛�c /j d˛�c

�

Z
Rn�k
C

sup
�jDzj ; j2�

Re�jD0; j2�c

jDnf .�C ˛�c /j d˛�c ;
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so that

kf kBn
�
D sup

z2W˛�

jD�f .z/j �

Z
Rn�k
C

sup
z2W˛In

jDnf .z/j d˛�c D kf kBn
0
:

This implies that f 2 Bn
0 and

kf kBn D
X
�2Pn

kf kBn
�
� 2nkf kBn

0
:

Note that k � kBn
In

is not a norm on Bn, because some functions do not depend
on all the n variables. Those functions satisfy Dnf D 0 and hence kf kBn

In
D 0.

However, linear combinations g of such functions may depend on all the variables
while satisfying Dng D 0 (see Remark 2.9(2) below). Consequently, we will decom-
pose Bn into the direct sum of 2n closed ideals, one for each subset of In. This was
achieved for B1 in [7], where one summand contained only the constant functions,
and also for B2 in [23], where two summands each contained functions of one of the
two variables.

Let f 2 Bn, and let�f 2 Pn be the subset of In representing the variables zj on
which f depends. It is easy to see that they are the variables for which Djf is not
identically zero. We will use the following terminology:

(a) �f is the support of f ,

(b) j�f j is the degree of f ,

(c) f is elementary if f .z/ D 0 whenever zj D1 for at least one j 2 �f .

For � 2 Pn, we define subspaces of Bn:

Bn
� D ¹f 2 Bn

W �f � �º D ¹f 2 Bn
W Djf D 0 for all j 2 �cº;

Bn
�;0 D ¹f 2 Bn

� W f .z/ D 0 whenever zj D1 for at least one j 2 �º:

It is easy to see that Bn
� and Bn

�;0 are closed subalgebras of Bn. The spaces Bn
In

and Bn
In;0

are the spaces Bn and Bn
0 , respectively, and the space Bn

;
is the space of

constant functions. Note that

(i) f 2 Bn is elementary if and only if f 2 Bn
�f ;0

, and

(ii) if f 2 Bn
0 and Dnf D 0, then f D 0.

For f 2 Bn, let
fel.z/ D

X
�2Pn

.�1/n�j�jf�.z�/;

where f�.z�/ is defined in Proposition 2.4. For example, if n D 2 then

fel.z1; z2/ D f .z1; z2/ � f .z1;1/ � f .1; z2/C f .1;1/:
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Then
f D fel C

X
�2Pn
�¤In

.�1/n�j�j�1f�;

where fel is elementary of degree n, and each function f� for�¤ In is of degree less
than n. The empty set is in Pn, and f; D f;;0 is a constant equal to f .1; : : : ;1/.

By simple relabelling of the variables, the space Bn
� can be identified with Bk and

Bn
�;0 with Bk

0 , where k D j�j. By considering those f� for � ¤ In, and iterating
the procedure until we have obtained only elementary functions, we can obtain an
elementary decomposition of f as

f D
X
�2Pn

f�;0;

where f�;0 is either identically zero or an elementary function with support �.
The elementary decomposition of f 2Bn is unique. Suppose that

P
�2Pn

f�D0,
where f� is elementary with support�. By setting zj D1 for all j 2 In, one obtains
that the constant function f; D 0. By setting zj D1 for all zj except for j D 1, one
obtains that f¹1º D 0. Continuing in this way, one obtains that f� D 0 for all �.

So, far the discussion has been somewhat heuristic. An alternative description is
given in the following formulas, which can be readily verified.

Proposition 2.7. The Banach algebra Bn is the direct sum of the closed subalgebras
Bn
�;0 for � 2 Pn. In particular, the following properties hold.

(i) For all f 2 Bn,
f .z/ D

X
�2Pn

f�;0.z�/;

where
f�;0.z�/ D

X
‰��

.�1/j�j�j‰jf‰.z‰/ 2 Bn
�;0:

(ii) For each� 2 Pn, the map f 7! f�;0 for� 2 Pn is a contraction from Bn

to B j�j.

(iii) For f 2 Bn, Dnf D 0 if and only if f is a finite sum of holomorphic
functions with degree less than n. In that case,

f .z/ D
X
�2Pn
�¤In

.�1/n�j�j�1f�.z�/:

(iv) If g 2 H1.Cn
C/, Dng D 0, and g.z/ D 0 whenever zk D 1 for at least

one k 2 In, then g D 0.
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Example 2.8. The space LMn of all functions of the form L�, where � is a bounded
Borel measure on RnC and L� is its Laplace transform, is a Banach algebra in the
norm kL�kHP D k�k, and it is known as the Hille–Phillips algebra. It is continu-
ously included in Bn (see [7, Section 2.4] for the case n D 1).

Let f DL�2LMn. Then the elementary decomposition of f is given by f�;0D
L��, where �� is the restriction of � to the subset

RC;�´
nY

jD1

Cj ; Cj ´

´
.0;1/; j 2 �;

¹0º; j 2 �c :

Remarks 2.9. (1) In Propositions 2.3, 2.4, and 2.7, instead of letting Re zj tend to
1, we could choose to take fixed points �j 2 xCC. The results remain valid. Such
a change would produce a different elementary decomposition of functions f 2 Bn.
However, this is not a contradiction of the uniqueness, because the spaces Bn

�;0 would
also change.

(2) In the paper [27], Marti constructed a functional calculus for two commuting
closed operators under certain conditions. A subsequent short paper by Caradus [12]
showed that the conditions could be put in a better form and pointed out that the con-
struction could then be extended to n-tuples of commuting operators in a natural way.
Marti’s construction involved a decomposition of a similar type to [23, Section 3.5],
although the side conditions are different. Caradus did not specify a decomposition
but it would undoubtedly have been of similar form to the elementary decomposition
in Proposition 2.7 (i). Ichinose [22, p. 235] also used a similar decomposition in the
context of two operators.

3. Reproducing formulas and shifts

3.1. Reproducing formulas

A reproducing formula for f 2 B1 was given in [7, Proposition 2.20], and a version
for f 2 B2 was given in [23, Proposition 5.1.1]. In [10, Proposition 3.7], some for-
mulas were obtained and the specific formula with s D 1 can be applied with g D f 0

if f 2 B1. We state that formula here.

Proposition 3.1. Let g be a holomorphic function on CC such thatZ
CC

jg.z/jRe z
jzj2

dS1.z/ <1:



Analytic Besov functional calculus for several commuting operators 525

Define Qg on CC by

.Qg/.z/ D �
2

�

Z
CC

g.�/
Re�

.z C N�/2
dS1.�/:

Then Qg is holomorphic, and g D .Qg/0.

We will present the corresponding statement for functions of n variables in Pro-
position 3.2. We use the following kernel functions:

K.z; �/ D �
2

�.z C �/2
; z; � 2 CC; Kn.z;�/ D

nY
jD1

K.zj ; �j /; z;� 2 Cn
C:

Let g be a holomorphic function on Cn
C such thatZ

Cn
C

jg.�/j

nY
jD1

Re�j
j�j j2

dSn.�/ <1: (3.1)

Define the function Qng on Cn
C by

.Qng/.z/´

Z
Cn
C

Kn.z; N�/g.�/

nY
jD1

Re�j dSn.�/; z 2 Cn
C:

This function is holomorphic on Cn
C and the derivatives can be passed through the

integral sign, the justification being that the derivatives of the integrand with respect
to the z variables can be estimated locally uniformly by constant multiples of the
integrand in (3.1). Thus,

.DnQng/.z/ D

Z
Cn
C

DnKn.z; N�/g.�/ dVn.�/; z 2 Cn
C;

where the derivatives of Kn are with respect to the z variables.
We now extend Proposition 3.1 to obtain the following reproducing formula for

functions on Cn
C.

Proposition 3.2. Let g be a holomorphic function on Cn
C such that (3.1) holds. Then

Qng is holomorphic and
g D DnQng: (3.2)

Proof. The proof is by induction, and the case n D 1 is given in Proposition 3.1.
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Let n� 1 and assume that (3.2) holds for n variables. We consider now the case of
nC 1 variables .z; znC1/. Assume that g.z; znC1/ satisfies (3.1) for nC 1 variables.
For z 2Cn

C, let hz.znC1/D g.z; znC1/. By (3.1) and Fubini’s theorem, we obtain thatZ
CC

jhz.�/j
Re�
j�j2

dS.�/ <1

for almost all z 2 Cn
C. For those z, we can apply Proposition 3.1 to the function hz.

We obtain

g.z; znC1/ D hz.znC1/ D

Z
CC

DnC1K.znC1; �nC1/g.z; �nC1/ dV .�nC1/:

Now, let kznC1.z/ D g.z; znC1/. By applying Fubini’s theorem and the inductive
hypothesis to the functions kznC1 , we obtain that, for almost all znC1 2 CC,

g.z; znC1/

D

Z
Cn
C

DnKn.z; N�/kznC1.�/ dVn.�/

D

Z
Cn
C

DnKn.z; N�/

Z
CC

DnC1K.znC1; �nC1/g.�; �nC1/ dV .�nC1/ dVn.�/

D

Z
CnC1
C

DnC1KnC1.z; znC1; N�n; N�nC1/g.�; �nC1/ dVnC1.�; �nC1/

D .DnC1QnC1g/.z; znC1/:

This establishes that g D DnC1QnC1g almost everywhere. Since both functions are
holomorphic, it follows that they agree everywhere.

Corollary 3.3. Let f 2 Bn. Then Dnf D DnQnDnf , and fel D QnDnf , so

fel.z/ D

Z
Cn
C

Kn.z; N�/.Dnf /.�/dVn.�/; z 2 Cn
C: (3.3)

In particular, if f 2 Bn
0 , then f D QnDnf .

Proof. Let g D Dnf . ThenZ
Cn
C

jg.z/j

nY
jD1

Re zj
jzj j2

dSn.z/ �

Z
Rn
C

.HInf /.˛/

Z
Rn

nY
jD1

j̨

˛2j C t
2
j

dˇ d˛

D �nkf kBn
In
<1:

Thus, g satisfies (3.1), so Proposition 3.2 shows that g D DnQng.
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By the dominated convergence theorem, .QnDnf /.z/ ! 0 if Re zj ! 1 for
any one j . Moreover, fel �QnDnf is inH1.Cn

C/ and in the kernel of Dn with zero
limits as Rezj !1, and then it follows that fel DQnDnf (see Proposition 2.7 (iv)).

Example 3.4. In this example we establish the Bk-norms and other properties of
various resolvent functions.

For z D ˛ C iˇ 2 CC and � 2 CC, let rz.�/ D .�C z/�1. Then rz 2 B1
0 , and

krkz kB1
0
D ˛�k; krkz kB1 D 2˛

�k; k 2 N:

For z 2 Cn
C and � 2 Cn

C, let rz.�/´
Qn
jD1 rzj .�j /: Then rz 2 Bn

0 , and

krzkBn
0
D

nY
jD1

krzj kB1
0
D

nY
jD1

˛�1j ; krkz kBn0 D

nY
jD1

krkzj kB10
D

nY
jD1

˛�kj ;

where j̨ D Re zj and k 2 N.
For z; � 2 CC,

krz � r�kB1
0
D jz � �j krzr�kB1

0
� jz � �jkrzkB1k kr�kB1 �

4jz � �j

Re z Re �
! 0;

as z ! �. So, the map z 7! rz is continuous from CC to B1
0 .

For j 2 In, the map z 7! rzj is continuous from Cn
C to B1

0 . Let rz;j .�/D rz.�j /.
Then z 7! rz;j is continuous from Cn

C to Bn. Since rz D
Qn
jD1 rz;j , the map z 7! rz

is continuous from Cn
C to Bn

0 .
In fact, the map z 7! r.z/ is holomorphic from Cn

C to Bn
0 , but we do not need

this.

3.2. Shifts

We will use shifts of the variables zj for the construction of the B-calculus for operat-
ors. In [7,23], we used shifts not only in the horizontal direction but also in the vertical
directions. In this paper, we define the functional calculus by a different route, and we
do not need to use the vertical shifts. So, we present two lemmas here about the hori-
zontal shifts on Bn.

First, we will establish a variant of the reproducing formula (3.3) for shifted func-
tions in Bn

0 . This result is a special case of [7, Lemma 2.18(2)] for n D 1, and [23,
Proposition 5.4.1] for n D 2.

Lemma 3.5. If f 2 Bn
0 , then, for every t 2 RnC,

f .zC t/ D

Z
Cn
C

Kn.zC t; N�/.Dnf /.�/ dVn.�/; z 2 Cn
C: (3.4)
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Proof. We begin with the case when n D 1. From Corollary 3.3,

f .z C t / D �
2

�

1Z
0

˛

Z
R

f 0.˛ C t C iˇ/

.z C ˛ � iˇ/2
dˇ d˛; z 2 CC:

Changing variables in the inner integral, noting that f 0.˛C �/ is bounded for � 2CC
and a fixed ˛ > 0, and using Cauchy’s theorem, we obtainZ

R

f 0.˛ C t C iˇ/

.z C ˛ � iˇ/2
dˇ D �i

Z
tCiR

f 0.˛ C �/

.z C ˛ C t � �/2
d�

D �i

Z
iR

f 0.˛ C �/

.z C ˛ C t � �/2
d�

D

Z
R

f 0.˛ C iˇ/

.z C ˛ C t � iˇ/2
dˇ:

So, we obtain formula (3.4) for n D 1:

f .z C t / D �
2

�

1Z
0

˛

Z
R

f 0.˛ C iˇ/

.z C t C ˛ � iˇ/2
dˇ d˛; z 2 CC; t � 0:

For n > 1, we may consider the individual variables one at a time, applying the
same argument as above to show thatZ

Cn
C

Kn.zC tj�1; N�/.Dnf /.�C tj / dVn.�/

D

Z
Cn
C

Kn.zC tj ; N�/.Dnf /.�C tjC1/ dVn.�/;

where

tj D .t1; : : : ; tj ; 0; 0; : : : ; 0/; tj D .0; : : : ; 0; tj ; tjC1; : : : ; tn/; j 2 In:

Next, we show that horizontal shifts are strongly continuous on Bn. For f 2 Bn,
t D .t1; : : : ; tn/ 2 RnC, and z 2 Cn

C, let

.T .t/f /.z/´ f .zC t/: (3.5)

It is easy to see that T .t/ is a contraction on .Bn; k � kBn/. The following lemma was
proved in [7, Lemma 2.6] for n D 1 and in [23, Proposition 4.2.2] for n D 2.
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Lemma 3.6. The map T WRnC ! L.Bn/ is strongly continuous.

Proof. Let

.Tj .t/f /.z/´ f .z1; : : : ; zj C t; : : : ; zn/; j 2 In; t � 0:

Then
T .t/ D T1.t1/ : : : Tn.tn/:

It suffices to show that the semigroups .Tj .t//t�0 are continuous in the strong oper-
ator topology on L.Bn/. Without loss of generality, we will take j D 1, and we will
write z D .z1; z

0/ 2 Cn
C.

Let f 2 Bn and � 2 Pn with k D j�j. We need to show that

lim
t!0
kT1.t/f � f kBn

�
D 0: (3.6)

There are two cases: (1) 1 2 �; (2) 1 … �.

Case 1. 1 2 �. Let ˛� D . j̨ /j2� 2 .0;1/
k , and let z 2 W˛� . By an extended

version of Cauchy’s inequality,

j.D1D�f /.z/j �
2�.k�1/kf k1

˛1
Q
j2� j̨

:

This estimate is valid for Re z1 > ˛1, by the maximum principle. Hence,

j.D�f /.z1 C t; z
0/ � .D�f /.z1; z

0/j �

tZ
0

j.D1D�f /.z1 C s; z
0/j ds

�
2�.k�1/tkf k1

˛1
Q
j2� j̨

:

Taking the supremum over all possible choices of z 2 W˛� , this establishes that

H�.T1.t/f � f /.˛�/ �
2�.k�1/tkf k1

˛1
Q
j2� j̨

! 0; t ! 0:

In addition,

H�.T1.t/f � f /.˛�/ � .H�T1.t/f /.˛�/CH�f .˛�/ � 2H�f .˛�/;

by the maximum principle. Hence, the dominated convergence theorem implies that
equation (3.6) holds.
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Case 2. 1 … �. Let �0 D � [ ¹1º, ˛� D . j̨ /j2� 2 .0;1/
k , and z 2 W˛� . Then

z�0 D .z1; z�/. The definition of H�0 and its monotonicity show that

j.D�f /.z1 C t; z
0/ � .D�f /.z1; z

0/j �

tZ
0

j.D�0f /.z1 C s; z
0/j ds

�

tZ
0

.H�0f /.˛1 C s;˛�/ ds

�

tZ
0

.H�0f /.s;˛�/ ds:

The final expression depends only on f , t and ˛�, so we may take the supremum
over all z 2 W˛� and infer that

H�.T1.t/f � f /.˛�/ �

tZ
0

.H�0f /.s;˛�/ ds: (3.7)

Since kf kBn
�0

is finite, H�0f is integrable over RkC1C . Fubini’s theorem implies that

˛1 7!

Z
Rk
C

.H�0f /.˛1;˛�/ d˛�

is integrable over RC, and then (3.7) and Fubini’s theorem imply that

kT1.t/f � f kBn
�
D

Z
Rk
C

H�.T1.t/f � f /.˛�/ d˛�

�

tZ
0

Z
Rk
C

.H�0f /.˛1;˛�/ d˛� d˛1 ! 0; t ! 0:

Remarks 3.7. (1) Case 2 of the proof above can be applied when � is empty, to
show that the left shifts are strongly continuous in theH1-norm, and hence that f is
uniformly continuous, as shown in Proposition 2.1.

(2) For n D 2, the proof above differs from [23, Proposition 4.2.2], where the
proof relies on switching to an equivalent norm on B2. That approach can also be
applied for n > 2. It simplifies the proof of Case 2 above, provided one accepts the
equivalence of norms.

(3) It was shown in [7, Proposition 4.6.2] that the shift semigroup on B1 extends
to a bounded holomorphic semigroup of angle �=2.



Analytic Besov functional calculus for several commuting operators 531

3.3. Sums of variables

In this section, we consider how very simple changes of the variables zj preserve Bn.
As noted in [7, Lemma 2.6 (5)] a trivial scaling of variables shows that if f 2 B1,
b > 0 and g.z/ D f .bz/, then g 2 B1, and kgkB1 D kf kB1 , and the same applies
for functions in Bn with scaling of some or all variables.

In addition, the family of algebras Bn is preserved by summing some or all of the
variables zj . In order to avoid heavy formulas, we present this only in the case where
all the variables are summed. For n D 2, the result was proved in [23, Lemma 3.8.1].

Proposition 3.8. Let f 2 B1, n 2 N, and define g on Cn
C by

g.z/ D f .z1 C � � � C zn/; z 2 Cn
C: (3.8)

Then g 2 Bn, and the map f 7! g from B1 to Bn is bounded.

Proof. We may assume that f 2 B1
0 . Clearly, g is holomorphic on Cn

C and g.z/! 0

as Rezj !1 for some j 2In. By Proposition 2.6, it suffices to show that kgkBn
0
<1.

We have
kgkBn

0
D

Z
Rn
C

sup
ˇ2R
jf .n/.˛1 C � � � C ˛n C iˇ/j d˛:

The change of variables

tk D

kX
jD1

j̨ ; k 2 In;

establishes that

kgkBn
0
D

Z
Sn

sup
ˇ2R
jf .n/.tn C iˇ/j dt;

where Sn D ¹.tk/k2In 2 RnC W 0 � t1 � t2 � � � � � tnº. Integrating with respect to
t1; : : : ; tn�1 and replacing tn by t shows that

kgkBn
0
D

1Z
0

tn�1

.n � 1/Š
sup
ˇ2R
jf .n/.t C iˇ/j dt:

A higher-order version of Cauchy’s inequality gives

tn�1 sup
y2R
jf .n/.t C iˇ/j � 2n�1Cn�1 sup

ˇ2R
jf 0.t=2C iˇ/j;

where Cn�1 is as in [7, Lemma 2.1 (4)]. Hence,

kgkBn
0
�
2n�1Cn�1

.n � 1/Š

1Z
0

sup
ˇ2R
jf 0.t=2C iˇ/j dt D

2nCn�1

.n � 1/Š
kf kB1

0
:
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This establishes that g 2 Bn
0 , and also that the map f 7! g is bounded from B1

to Bn.

If g as defined in (3.8) is in Bn, then f 2 B1, since f .z/ D g.z; 0; 0; : : : ; 0/.

4. The Bn-calculus: set up

In the remainder of this paper, A´ .A1; : : : ; An/ will be an n-tuple of commut-
ing operators on a Banach space X . The operators Aj commute in the sense that the
resolvent set of each operator Aj is non-empty and their resolvents commute with
each other. Moreover, we will always assume that the spectrum of each operator sat-
isfies

�.Aj / � xCC; j 2 In: (4.1)

Assuming that (4.1) holds, let � 2 Pn. We will say that A satisfies the (GSF�)
condition if the following holds for all x 2 X and x� 2 X�:

sup
j̨>0;j2�

Z
Rj�j

ˇ̌̌̌D Y
j2�

j̨ .Aj C j̨ � i ǰ /
�2x; x�

Eˇ̌̌̌
dˇ <1: (GSF�)

By the closed graph theorem, if (GSF�) holds, there is a constant 
A� such that� 2
�

�j�j Z
Rj�j

ˇ̌̌̌D Y
j2�

j̨ .Aj C j̨ � i ǰ /
�2x; x�

Eˇ̌̌̌
dˇ � 
A�kxk kx

�
k (4.2)

for all x 2 X and x� 2 X�. If� is empty, then the conditions above are deemed to be
satisfied with 
A; D 1. For � D ¹j º, the condition says that Aj satisfies the (GSF)
condition for the single operator Aj as in [7, Section 4.1]. If � D In, we will say that
A satisfies the (GSFn) condition and we will write 
A instead of 
In .

We will say that A satisfies the full (GSF) condition if A satisfies (GSF�) for all
� 2 Pn. For n D 2, the full (GSF) condition agrees with [23, Section 6.1].

Definition 4.1. A Bn-calculus for A is a bounded algebra homomorphismˆWBn!

L.X/ such that ˆ.r�;j / D .Aj C �/�1 for all j 2 In and � 2 CC.

There is a similar definition of a Bn
0 -calculus. In this and the next section, we will

show that the full (GSF) condition is a sufficient condition for A to have a Bn-calcu-
lus, but we first show that the full (GSF) condition is necessary. This was proved in
[8, Theorem 6.1] for n D 1 and in [23, Theorem 6.3.1] for n D 2. The proof below is
a variant of those proofs.

We will write rz.A/´
Qn
jD1.Aj C zj /

�1:
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Proposition 4.2. Let A be an n-tuple of commuting operators on a Banach space X
satisfying (4.1), and assume that there is a Bn

0 -calculus ˆ for A. Then A satisfies the
(GSFn) condition.

Proof. Let 'W Rn ! C be a continuous function with compact support, and ˛ 2
.0;1/n. As shown in Example 3.4, the map ˇ 7! r2

˛�iˇ is continuous from Rn to
Bn
0 and kr2

˛�iˇkB
n
0
� 4n

Qn
jD1 ˛

�1
j . Hence,

G˛;' ´

Z
Rn

'.ˇ/r2˛�iˇ dˇ;

exists as a Bochner integral with values in Bn
0 . Since ˆ is a bounded linear operator,

ˆ.G˛;'/ D

Z
Rn

'.ˇ/r˛�iˇ.A/
2 dˇ

and hence, for unit vectors x 2 X and x� 2 X�,

nY
jD1

j̨

ˇ̌̌̌ Z
Rn

'.ˇ/hr˛�iˇ.A/
2x; x�i dˇ

ˇ̌̌̌
� 4nk'k1kˆk:

Since this holds for all continuous functions ' with compact support, it follows that
(GSFn) holds.

Corollary 4.3. Let A be an n-tuple of commuting operators on a Banach space X
satisfying (4.1), and assume that there is a bounded algebra homomorphismˆWBn!

L.X/ such that ˆ.rz/ D rz.A/ for all z 2 Cn
C. Then A satisfies the full (GSF) con-

dition.

Proof. For � 2 Pn, we may deduce that (GSF�) holds, by applying Proposition 4.2
to B�

0 and the restriction of ˆ to that algebra.

Now, we give two classes of operators where A satisfies the full (GSF) condition
for all values of n. Proofs were given in [7] for n D 1 and in [23] for n D 2, and the
general proofs are minor variants of those cases.

Examples 4.4. (1) Let �Aj be the generator of a bounded C0-semigroup .e�tAj /t�0
on a Hilbert space X , for each j 2 In, and letKj D supt�0 ke

�tAj k. Assume that the
semigroups commute with each other (or equivalently, the resolvents of Aj commute
with each other). Then A satisfies the full (GSF) condition, with 
A D 2

n
Qn
jD1K

2
j .

This follows from applications of Plancherel’s theorem and the Cauchy–Schwarz
inequality. See the proofs for n D 1 in [7, Examples 4.1] and for n D 2 in [23,
Example 6.1.1].
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(2) Let Aj .j 2 In/ be sectorial operators of angle less than �=2 on a Banach
space X , and assume that the resolvents commute with each other (equivalently,
�Aj is the generator of a bounded holomorphic C0-semigroup .e�tAj /t�0 on a
Banach space X , for j 2 In, and the semigroups commute with each other). Let
Mj D supz2CC

kz.Aj C z/
�1k. Then A satisfies the full (GSF) condition, with 
A D

2n
Qn
jD1M

2
j . This follows from standard resolvent estimates for sectorial operators.

See the proofs for n D 1 in [7, Section 4.2] and for n D 2 in [23, Example 6.1.2].

Now, assume that A satisfies the (GSFn) condition, and let f 2 Bn
0 . Recall from

Corollary 3.3 that the following reproducing formula holds:

f .z/ D

Z
Cn
C

Kn.z; N�/.Dnf /.�/ dVn.�/; z 2 Cn
C:

We define f .A/ by the corresponding formula:

hf .A/x; x�i ´

Z
Cn
C

hKn.A; N�/x; x
�
i .Dnf /.�/ dVn.�/; (4.3)

where

Kn.A; N�/´
�
�
2

�

�n
r N�.A/

2

D

�
�
2

�

�n nY
jD1

.Aj C N�j /
�2; � 2 Cn

C: (4.4)

By the (GSFn) condition, the integral is absolutely convergent, and the formula (4.3)
defines f .A/ as a map inL.X;X��/, with norm at most 
Akf kBn

0
. In order to obtain

a Bn-calculus for A, we need to extend the definition of f .A/ to functions f 2 Bn,
show that f .A/ maps X into X for all f 2 Bn, and show that the map f 7! f .A/

is an algebra homomorphism from Bn to L.X/.
If the operators Aj are the negative generators of n commuting C0-semigroups,

and f D L� for some bounded measure � on RnC, then f .A/ as defined above
agrees with the Hille–Phillips calculus for LMn. This was shown in [7, Lemma 4.2]
for n D 1, and in [23, Lemma 6.1.4] for n D 2. The proof for n � 3 is similar, using
Example 2.8 and higher-order integrals. A consequence of this is that the definition
of Kn.A; N�/ in (4.4) agrees with the definition obtained by putting f .z/ DKn.z; N�/

in (4.3), for a fixed �.
Now, we assume that A satisfies the full (GSF) condition. If f is an elementary

function in Bn, with order k � 1 and support�, we can define f .A/ by applying the
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Bk
0 -calculus for A�´ .Aj /j2� to the function f� 2 Bk

0 , so

hf .A/x; x�i ´

Z
Ck
C

hKk.A�; N�/x; x
�
i .Dkf�/.�/ dVk.�/ (4.5)

for all x 2 X and x� 2 X�. In particular, if � D ¹j º for some j 2 In, g 2 B1, and
we define f .z/ D g.zj /, then we recover the B1-calculus for the operator Aj . Thus,
this definition establishes that f .A/ D .Aj C �/�1 if f .z/ D r�.zj /.

Now, let f be an arbitrary function in Bn. To define f .A/ we use the elementary
decomposition of f as in Proposition 2.7 (i). We define f;;0.A;/ D f;;0I 0 and

f .A/ D
X
�2Pn

f�;0.A�/: (4.6)

Then we define a bounded linear map from ˆAWB
n ! L.X;X��/ by

ˆA.f / D f .A/: (4.7)

Then kˆAk� 
A´max�2Pn 
A� , where 
A� is as in (4.2). The norm of the restric-
tion of ˆA to Bn

0 is the minimal value of 
An , and we will denote it by 
A;0.
In the next section, we will prove that ˆA is an algebra homomorphism from

Bn to L.X/. It will suffice to show that f .A/ 2 L.X/ and .fg/.A/ D f .A/g.A/
for all elementary functions f and g in Bn. These properties were proved in [7] for
n D 1 and in [23] for n D 2, by a rather complicated method, and the method used in
Section 5 is simpler, and illuminating even in the case n D 1.

Before moving on to the main proof, we present two lemmas. The first one may
help when considering (4.6).

Lemma 4.5. Assume that A D .A1; : : : ; An/ satisfies the full (GSF) condition, and
let An�1 D .A1; : : : ; An�1/, x 2 X and x� 2 X�.

(1) For f 2 Bn and � 2 Pn with j�j D k � 1,

hf�;0.A/x; x
�
i D

Z
Ck
C

hKk.A�; N�/x; x
�
i .D�f�/.�/ dVk.�/:

(2) Let f 2 Bn
0 . Then .Dnf /.�; �n/ 2 Bn�1

0 for all �n 2 CC, and

hf .A/x; x�i D

Z
CC

hK.An; N�n/.Dnf /.An�1; �n/x; x
�
i dV.�n/:

Proof. The first statement is proved in Corollary 3.3.
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Proposition 2.3, with � D In�1 and ‰ D ¹nº, establishes that .Dnf /.�; �n/ 2
Bn�1
0 for all �n 2 CC. Fubini’s theorem shows that

hf .A/x; x�i

D

Z
Cn
C

hKn�1.An�1; N�n�1/K.An; N�n/x; x
�
i .Dnf /.�n�1; �n/ dVn.�n�1; �n/

D

Z
CC

hK.An; N�n/.Dnf /.An�1; �n/x; x
�
i dV.�n/;

for all x 2 X and x� 2 X�.

In order to justify some applications of Fubini’s theorem, and differentiation
through integral signs, in the next section, we will apply estimates for n-tuples of
operators of the form A C t ´ .Aj C tj /j2In , where tj > 0, and we will use the
following fact. For n D 1, it is a special case of [7, Corollary 4.5]. Here .T .t//t2Rn

C

are the shifts as defined in (3.5).

Lemma 4.6. Assume that A satisfies the (GSFn) condition. Let f 2Bn
0 and t 2 RnC.

Then
f .AC t/ D .T .t/f /.A/:

This can easily be proved by the same method as in Lemma 3.5, with Kn.z; N�/

being replaced by hKn.A; N�/x; x
�i, Kn.z C t; N�/ by hKn.A C t; N�/x; x�i, and

.Dnf /.�/ by .Dnf /.�C t/.

5. The Bn-calculus: Developments

In this section, we assume that A WD .A1; : : : ; An/ is an n-tuple of commuting oper-
ators which satisfy the full (GSF) condition on a Banach space X , and we denote by
ˆA the map f 7! f .A/ from Bn to L.X;X��/, as defined in (4.5), (4.6), and (4.7).
We will establish three properties:

• the operator f .A/ maps X into X ,

• the operator ˆA is an algebra homomorphism,

• ˆA is the unique Bn-calculus for A.

The first two properties establish that ˆA is a Bn-calculus for A. For n D 1, all
three properties have been proved, the first two in [7, Theorem 4.4], and the third in
[8, Theorem 6.6]. For nD 2, they have been proved in [23]. The proofs in those papers
can probably be adapted to cover the same properties for arbitrary n 2 N, but we will
present more direct proofs of all three properties even for n D 1.
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We proceed with three lemmas which combine to prove the three properties, but
the three proofs are inter-related. We start by considering two non-zero elementary
functions f and g in Bn. We denote their supports by�f and�g with cardinalities k
andm, respectively. Thus, f and g belong to the spaces B

�f
0 and B

�g
0 , respectively.

Unlike the case when n D 1, the two supports may be different. As it turns out, this
does not cause a serious complication.

Lemma 5.1. Let A D .A1; : : : ; An/ be an n-tuple of operators which satisfy the full
(GSF) condition on a Banach space X . Let f and g be elementary functions in Bn,
and assume that g.AC t/ 2L.X/ for t D .t; : : : ; t /, t � 0. Then fg is an elementary
function in Bn and

.fg/.A/ D f .A/g.A/: (5.1)

In particular,
.f rz/.A/ D f .A/rz.A/; z 2 Cn

C:

Proof. If f or g are a constant function, the result holds. So, we assume that both
f and g are not constant functions, and their supports have cardinalities k and m,
respectively. It is clear that fg is an elementary function in Bn, and its support is
�´ �f [�g . Consequently, we can also assume that � D In.

Let t D .t; : : : ; t / 2 .0;1/n, ft.z/ D f .zC t/ and gt.z/ D g.zC t/. Apply-
ing (4.3) to f and g, we obtain, for z 2 Cn

C,

.ftgt/.z/ D

Z
Cm
C

Z
Ck
C

ŒKk.z�f C t�f ;
N�/Km.z�g C t�g ; N�/�

� .D�f f /.�/.D�gg/.�/ dVk.�/ dVm.�/:

Differentiation through the integral (which is easily justified) gives

Dn.ftgt/.z/ D

Z
Cm
C

Z
Ck
C

DnŒKk.z�f C t�f ;
N�/Km.z�g C t�g ; N�/�

� .D�f f /.�/.D�gg/.�/ dVk.�/ dVm.�/:

Combining (4.5), Lemma 3.5, and Fubini’s theorem (see the Appendix for justifica-
tion), we infer that

h.ftgt/.A/x; x
�
i

D

Z
Cn
C

hKn.A; Nz/x; x
�
i

Z
Cm
C

Z
Ck
C

Dn.Kk.z�f C t�f ;
N�/Km.z�g C t�g ; N�//

� .D�f f /.�/.D�gg/.�/ dVk.�/ dVm.�/ dVn.z/

D

Z
Cm
C

Z
Ck
C

.D�f f /.�/.D�gg/.�/Rt.�; �/ dVk.�/ dVm.�/; (5.2)
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where

Rt.�; �/ D

Z
Cn
C

hKn.A; Nz/x; x
�
iDn.Kk.z�f C t�f ;

N�/Km.z�g C t�g ; N�//dVn.z/:

For all � 2 Ck
C and � 2 Cm

C ,

Kk.� C t�f ;
N�/ 2 LMk

\Bk
0 ; Km.� C t�g ; N�/ 2 LMm

\Bm
0 ;

as functions of z�f and z�g , respectively. Both these functions, and their product,
are in LMn. Using (4.5) and the fact that the Hille–Phillips calculus is an algebra
homomorphism, we see that

Rt.�; �/ D hŒKk.� C t�f ;
N�/Km.� C t�g ; N�/�.A/x; x

�
i

D hKk.A�f C t�f ;
N�/Km.A�g C t�g ; N�/x; x

�
i:

Thus, by (5.2), (4.5), and Lemma 4.6,

h.ftgt/.A/x; x
�
i

D

Z
Cm
C

Z
Ck
C

.D�f f /.�/.D�gg/.�/

� hKk.A�f C t�f ;
N�/Km.A�g C t�g ; N�/x; x

�
i dVk.�/ dVm.�/

D

Z
Ck
C

.D�f f /.�/hg.AC t/Kk.A�f C t�f ;
N�/x; x�i dVk.�/

D

Z
Ck
C

.D�f f /.�/hKk.A�f C t�f ;
N�/g.AC t/x; x�i dVk.�/

D hf .AC t/g.AC t/x; x�i:

Hence, for all t > 0,
.ftgt/.A/ D ft.A/gt.A/: (5.3)

Letting t ! 0 in (5.3) and using the strong continuity of the shifts on Bn, we obtain
the assertion (5.1).

Next we prove that for “smoothed” functions f 2 Bn
0 the reproducing formula

(3.3) can be interpreted as a Bn
0 -valued Bochner integral. Here 1 D .1; : : : ; 1/ 2 Rn.

Lemma 5.2. Let f 2 Bn
0 and t D .t; : : : ; t / 2 .0;1/n. Define FtWCn

C ! Bn
0 by

Ft.�/ D .Dn.f r21//.�/ r2
tCN�

; � 2 Cn
C:
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Then Ft is continuous and Bochner-integrable with respect to the measure dVn.�/.
Moreover, �

�
2

�

�n Z
Cn
C

Ft.�/ dVn.�/ D ftr
2
1Ct: (5.4)

Proof. The function � 7! r2
tCN�

is continuous from Cn
C to Bn

0 , and hence Ft is con-
tinuous. If �j D j̨ C i ǰ , then

kr2
tCN�
kBn

0
D

nY
jD1

1

. j̨ C t /2
:

Moreover, .Dn.f r
2
1 //.�/ is the sum of 2n terms of the following form, indexed by

� 2 Pn, where k D j�j,

Jn;�.�/´ .�2/n�k.D�f /.�/
Y
j2�

r1.�j /
2
Y
j2�c

r1.�j /
3;

and, by a standard estimate,

j.D�f /.�/j �
kf k1

2k
Q
j2� j̨

:

It follows thatZ
Cn
C

jJn;�.�/j kr
2

tCN�
kBn

0
dVn.�/

� 2n�2kkf k1

Z
Cn
C

Y
j2�

j̨

j̨ . j̨ C t /2j1C �j j2

Y
j2�c

j̨

. j̨ C t /2j1C �j j3
dSn.˛;ˇ/

� 2n�2k�nkf k1

� 1Z
0

d˛

.˛ C t /2

�n
D
.2�/n

4ktn
kf k1:

Hence,Z
Cn
C

jDn.f r1/.�/j kr
2

tCN�
kBn

0
dVn.�/ �

.2�/n

tn

nX
kD0

�
n

k

�
4�kkf k1 D

�5�
2t

�n
kf k1:

Thus,
R

Cn
C
kFt.�/kBn

0
dVn.�/ <1, so the Bochner integral of Ft exists. Since

point evaluations are continuous linear functionals on Bn
0 , the function on the left-

hand side of (5.4) maps z 2 Cn
C to�

�
2

�

�n Z
Cn
C

.Ft.�//.z/dVn.�/D

Z
Cn
C

Kn.zC t; N�/Dn.f r21/dVn.�/D .f r21/.zC t/;

using Lemma 3.5. Hence, (5.4) holds.
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Next, we apply the mapping ˆA to both sides of (5.4), and then deduce the three
properties of ˆA simultaneously. We say that

‡ WBn
0 7! L.X;X��/

is a (bounded) semi-homomorphism if ‡ is a bounded linear map satisfying

‡.f � rz/ D ‡.f /.zCA/�1; f 2 Bn
0 ; z 2 Cn

C: (5.5)

Lemma 5.1 shows that ˆA is a semi-homomorphism.

Lemma 5.3. Let A D .A1; : : : ; An/ be an n-tuple of commuting operators on X
satisfying (4.1). Let

‡ W Bn
0 7! L.X;X��/

be a semi-homomorphism such that ‡.rz/ D rz.A/; z 2 Cn
C. Then, for all f 2 Bn

0 ,

‡.f /r1.A/
2
D lim

t!0
Qt .f IA/; (5.6)

in operator-norm, where Qt .f IA/ 2 L.X/ is defined for t > 0 by

Qt .f IA/´
�
�
2

�

�n Z
Cn
C

.Dn.f r21//.�/.AC t C N�/�2 dVn.�/: (5.7)

Consequently, ‡ is uniquely determined by its values on ¹rz W z 2 Cn
Cº and

‡.f / 2 L.X/; f 2 Bn
0 : (5.8)

Proof. Using (5.5), Lemma 5.2, and Lemma 4.6, and applying‡ to both sides of (5.4),
we have

‡.ft/r1Ct.A/
2
D ‡.ft � r

2
1Ct/ D Qt .f IA/; t > 0; (5.9)

where Qt .f IA/ is given by (5.7), and the integral converges in the norm of L.X/.
By the continuity of shifts on Bn

0 , as in Lemma 3.6,

lim
t!0
k‡.ft/ � ‡.f /kL.X;X��/ D 0;

and, by the resolvent identity,

lim
t!0
kr1Ct.A/ � r1.A/kL.X/ D 0:

Thus, (5.9) implies (5.6) and (5.8).
Since dom.Aj / is dense in X , r1.Aj /2 has dense range for j 2 In, and then

r1.A/
2 has dense range. The uniqueness of ‡ follows from this and (5.6) and (5.7).

Since X is closed in X��, the assertion (5.8) holds.
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Now, we can conclude that ˆA, as defined in (4.5) and (4.6), is a Bn-calculus
for A, as defined in Definition 4.1.

Theorem 5.4. Let A D .A1; : : : ; An/ satisfy the full (GSF) condition on a Banach
space X . Then ˆA is a Bn-calculus for A, and it is unique. Consequently, A admits
the Bn-calculus if and only if A satisfies the full (GSF) condition.

Proof. Lemma 5.3 shows that ˆA maps Bn
0 into L.X/, and the same holds for the

maps on Bn
�;0. By Lemma 5.1, ˆA is multiplicative on elementary functions and

hence on Bn. Then ˆA maps Bn into L.X/, and is multiplicative on all functions in
Bn. In addition, ˆA maps the function z 7! .zj C �/

�1 to the operator .Aj C �/�1

for � 2 CC; j 2 In, so ˆA is a Bn-calculus for A.
Let f 2 Bn. Then f r1 2 Bn

0 and

ˆA.f /r1.A/ D ˆA.f r1/:

Since ˆA.f r1/ is uniquely determined (Lemma 5.3) and the range of r1.A/ is dense
in X , it follows that ˆA.f / is uniquely determined.

The last statement follows from the earlier statement and Corollary 4.3.

6. Possible simplifications

In this section, we consider three possible types of simplification that might come
into play when attempting to use the B-calculus. The first one would be a dramatic
simplification but it is not valid in general, while the other two are valid but restricted
in scope.

6.1. Reduction to one variable

Let AD .A1; : : : ;An/ be a commuting n-tuple where each Aj .j 2 In/ has a B1-cal-
culus. One might hope that this automatically implies that A has a Bn-calculus, but
this is not valid in general.

Let p 2 Œ1;1/;p¤ 2, and let Cp be the pth Schatten-von Neumann ideal on a sep-
arable, infinite-dimensional, Hilbert space. Using [24, Proposition 3 and Example 1],
together with results from [13, 16], and the equivalence in Theorem 5.4 for n D 1, it
follows that there are commuting bounded operators A1 and A2 on Cp , each of which
admit the B1-calculus, butA1CA2 does not admit the B1-calculus. Hence, .A1;A2/
does not admit the B2-calculus, since otherwise A1 CA2 would admit the B1-calcu-
lus (see Proposition 6.2). Thus, the existence of B1-calculi for operators A1 and A2
separately does not imply the existence of the B2-calculus for .A1; A2/.



C. Batty, A. Gomilko, D. Kobos, and Yu. Tomilov 542

6.2. Mergers

In some cases, two or more of the operators in an n-tuple A may coincide. We may
merge some or all of the repeated operators to form anm-tuple zAD . zAk/k2Im , where
there is a surjective function � from In to Im such thatAj D zA�.j / for all j 2 In. If A

satisfies (GSF), then it is trivial that zA also satisfies the full (GSF), because (GSFz�)
for zA coincides precisely with (GSF�) for A for some� 2 Pn where � is a bijection
from z� to �. We show in this section that the B-calculi for zA and A are compatible,
thus establishing that mergers of this type within the B-calculus are valid. A similar
result in a different context has been obtained in [3, Proposition 4.1].

Let f 2 Bn, and define

.‡f /.w/´ f .z/; w D .w1; : : : ; wm/ 2 Cm
C ; zj D w�.j /:

Proposition 6.1. Let A, zA and ‡ be as above, and assume that A satisfies the full
(GSF) condition. Let f 2Bn. Then‡.f / 2Bm, and .‡f /. zA/D f .A/ in the setting
of their respective B-calculi.

Proof. To see that‡f 2Bm, we first consider the case whenmD n� 1, and �.j /D
min.j; n � 1/. Let g D ‡f , and � 2 Pn�1.

Firstly, assume that zn�1 …�. Then .D�g/.z/D .D�f /.z; zn�1/, for z 2 Cn�1
C ,

and .H�g/.˛�/� .H�f /.˛�/, soH�g is integrable. Secondly, assume that n� 1 2
�. Let z� D .� n ¹n � 1º/ [ ¹nº. Then

.D�g/.z/ D .D�f /.z; zn�1/C .Dz�f /.z; zn�1/:

Hence,
.H�g/.˛�/ � .H�f /.˛�/C .Hz�f /.˛z�/:

It follows that H�g is integrable. Thus, g 2 Bn�1, and the map ‡ WBn ! Bn�1 is
bounded. By symmetry of the variables, this holds for any simple merger of just one
pair of variables. The general case follows by carrying out n �m simple mergers.

It is clear that ‡ is a bounded algebra homomorphism from Bn to Bm. Let
‡.f / D ˆ zA.‡f /, so ‡ WBn ! L.X/ is a bounded algebra homomorphism. Let
r�;j .z/ D .zj C �/

�1 where z 2 Cn
C. Then, for j 2 In and � 2 CC,

‡r�;j D r�;�.j /;

and
‰.r�;j / D . zA�.j / C �/

�1
D .Aj C �/

�1:

It follows from the uniqueness statement in Theorem 5.4 that ‡ D ˆA, as required.
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6.3. Sums of operators

It was observed in [7, Lemma 2.6 (5)] that if f 2 B1, b > 0 and g.z/ D f .bz/, then
g 2 B1 and kgkB1 D kf kB1 . Moreover, if A satisfies the (GSF) condition, then
g.A/ D f .bA/. This can be extended to the case of several variables, and the proofs
are very simple changes of variables. Such scalings can be combined with mergers as
above. For example, suppose that f 2 B2 and g.z/ D .b1z; b2z/, where b1; b2 > 0,
and A satisfies the (GSF) condition, then g.A/ D f .b1A; b2A/.

Here we discuss the case when the operators in A may be added together, in the
way that the variables zj were added in Proposition 3.8. We present only the case
where all the operators are added, but more general cases can be considered by the
same techniques.

Let A be an n-tuple of operators which satisfy the full (GSF) condition, f 2 B1

and f Œn�.z/ D f .z1 C � � � C zn/ for z 2 Cn
C. By Proposition 3.8, f Œn� 2 Bn. Thus,

f Œn�.A/ is defined in the Bn-calculus, but f .A1 C � � � C An/ is not defined in the
B1-calculus (except in rare cases), because the operator G0´ A1 C � � � C An, with
domain dom.G0/ D dom.A1/ \ � � � \ dom.An/, is not closed. However, dom.G0/ is
dense inX and the individual operators�Aj generate commuting boundedC0-semig-
roups .e�tAj /t�0, and the operators TA.t/´

Qn
jD1 e

�tAj form a boundedC0-semig-
roup whose negative generator G is the closure of G0 (see [14, Theorem 1.9]).

The following result was proved for n D 2 in [23, Lemma 6.2.3].

Proposition 6.2. Let A be an n-tuple of operators which satisfy the full (GSF) con-
dition, and let G be the closure of A1 C � � � C An. Then G satisfies (GSF1) and
f .G/ D f Œn�.A/ for all f 2 B1.

Proof. The mapping f 7! f Œn�.A/ is a bounded algebra homomorphism from B1 to
L.X/. It suffices to prove that r Œn�

�
.A/ D r�.G/ for � 2 CC. Then G has a B1-cal-

culus, so G satisfies (GSF1), and uniqueness of the B1-calculus implies that f .G/ D
f Œn�.A/.

Let � be the measure on Borel subsets of Cn
C given by �.E/D

R
zE
e��t dt , where

zE D ¹t 2 CC W .t; t; : : : ; t / 2 Eº. Then r Œn�
�

is the Laplace transform of the measure
�. Since the Bn-calculus agrees with the HP-calculus on LMn,

r
Œn�

�
.A/x D

Z
Rn
C

� nY
jD1

e�tjAj
�
x d�.t/ D

Z
RC

e��te�tGx dt D r�.G/x

for all x 2 X .
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7. Spectral mapping properties

Let A be an n-tuple of commuting operators on a Banach space X , satisfying the full
(GSF) condition, so A has a Bn-calculus. We will use the Shilov joint spectrum of A

as in [29, Definition 9] based on [20, Theorem 16.3.1].
Let A be the (commutative) Banach subalgebra ofL.X/ generated by all operators

of the form f .A/ for f 2 Bn and all their resolvents. The spectrum of f .A/ in A

coincides with the spectrum in L.X/, and it will be denoted by �.f .A//. For each
j 2 In, the Gelfand spectrum of A splits into two subsets Mj and Nj and there is a
continuous function �j on Mj such that, for all z 2 CC,

�..Aj C z/
�1/ D

´
.�j .�/C z/

�1 if � 2Mj ;

0 if � 2 Nj :

Then �.Aj / D �j .Mj /. The Shilov joint spectrum �.A/ of A is defined to be

�.A/ D
°
.�1.�/; : : : ; �n.�// W � 2

\
j2In

Mj

±
:

We have the following spectral inclusion theorem.

Theorem 7.1. Let A be an n-tuple of commuting operators which satisfy the full
(GSF) condition, and let f 2 Bn and � 2 �.A/. Then f .�/ 2 �.f .A//.

Proof. First we will assume that the resolvents of Aj are bounded on the left half-
plane. It follows from this assumption that there exists C such that, for all z 2 CC,

k.Aj C z/
�2.Aj C 1/

�2
k � C.1C jz � 1j/�2; j 2 In: (7.1)

Let f 2 Bn
0 . Then (4.5) and (7.1) can be used to obtain

f .A/r1.A/
2
D

Z
Cn
C

Kn.A; N�/r1.A/
2 .Dnf /.�/ dVn.�/; (7.2)

where the integral converges in operator norm.
Let � 2 �.A/. There is a character � of A such that � 2Mj and �..Aj C 1/�1/D

.�j C 1/
�1 for all j 2 In. Then �.r1.A// D r1.�/ and �.Kn.A; �// D Kn.�; �/.

Applying � to (7.2), we obtain

�.f .A//r1.�/
2
D

Z
Cn
C

Kn.�; N�/r1.�/
2 .Dnf /.�/ dVn.�/ D f .�/r1.�/

2:

Thus, f .�/ D �.f .A//.
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For a general f 2Bn, one may consider the terms f�;0 in the elementary decom-
position of f , using the same character �, adapting the formulas above accordingly
to show that f�;0.��/ D �.f�;0.A�//, and then summing over � 2 Pn to deduce
that f .�/ D �.f .A//.

Now, we cease to assume that the resolvents of Aj are bounded on the left half-
plane. Instead, we can consider the operatorsAj C ", where " > 0, and apply the result
above. The same � as above may be used for sufficiently small " > 0 to show that
f .�C "/D �.f .AC "//, where "D ."; : : : ; "/. Letting "! 0 and using Lemmas 3.6
and 4.6, it follows that f .�/ D �.f .A// 2 �.f .A//.

There are other results on spectral mappings for the Bn-calculus, as follows.

Proposition 7.2. Let A be an n-tuple of commuting operators on a Banach space X ,
satisfying the full (GSF) condition, and let f 2 Bn. The following results hold.

(1) If x 2 X is an eigenvector of Aj with eigenvalue �j for each j 2 In, then x
is an eigenvector for f .A/ with eigenvalue f .�/.

(2) If .xk/k2N are unit vectors in X forming an approximate eigenvector of Aj
with approximate eigenvalue �j for each j 2 In, then f .�/ is an approximate
eigenvalue of f .A/.

Proof. The first statement can be seen very easily from the definition of f .A/ in (4.3).
The second statement follows from the first, using an F -product as in [4]. For this,

let

`1T .X/ D ¹.xk/k2N W sup
k2N
kxkk <1; lim

t!0

nX
jD1

sup
k2N
ke�tAj xk � xkk D 0º;

c0.X/ D ¹.xk/k2N W lim
k!1

kxkk D 0º:

Then c0.X/ is a closed subspace of `1T .X/. Let XT D `1T .X/=c0.X/, and
� W`1T .X/!XT be the quotient map. For each j 2 In, the C0-semigroup .e�tAj /t�0
induces a C0-semigroup on XT . Let �Zj be the generator, and Z D .Z1; : : : ; Zn/.
The operators f .Z/ on X induce operators on XT which form a Bn-calculus for Z.

There are standard methods to show that (a) an approximate eigenvector .xk/k2N

for A is mapped by � to an approximate eigenvector for Z with eigenvalues �, and
(b) � is an eigenvalue for Z. By the first statement (1), f .�/ is an eigenvalue of
f .Z/. It then follows directly that � is an approximate eigenvalue of f .A/. Details
for (a) and (b) in the cases n D 1 and n D 2 may be found in [4, p. 20 and p. 78] and
[23, Propositions 2.3.17 and 6.4.4].
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If all the operators Aj are sectorial of angle less than �=2, then A satisfies the full
(GSF) condition and the formula (4.5) can be adapted to

f .A/ D

Z
Cn
C

Kn.A; N�/ .Dnf /.�/ dVn.�/; (7.3)

where the integral is convergent in operator norm.

Theorem 7.3. Let A be an n-tuple of commuting sectorial operators of angle less
than �=2 on a Banach space X , and let f 2 Bn. Then

�.f .A// �
[
�2Pn

f�.�.A//:

Proof. Let � be a character of A, and �� D ¹j 2 In W � 2Mj º. For j 2 ��, let �j
satisfy �..z C Aj /�1/ D .z C �j /�1 for all z 2 CC.

Let � 2 Pn, and k D j�j. Assume first that � � ��. Then �� 2 �.A�/, and
�.Kk.A�; N�// DKk.��; N�/. It follows from (7.3) that

�.f�;0.A// D

Z
Ck
C

Kk.��; N�/ .Dkf�;0/.�/ dVn.�/ D f�;0.��/:

Note that this conclusion is valid even if � is the empty set. Then f�;0 is a scalar.
If� is not contained in��, then, for some j 2 �, �.rz.Aj //D 0 for all z 2 CC,

so �.Kk.A; N�// D 0 and �.f�;0.A// D 0 D f�;0.�/.
Summing over all � 2 Pn, we obtain that �.f .A// D f��.�/.

Corollary 7.4. Let A be an n-tuple of commuting sectorial operators of angle less
than �=2 on a Banach space X , and let f 2 Bn

0 . Then

�.f .A// D f .�.A//:

Proof. Theorem 7.1 shows that f .�.A// � �.f .A//. For the reverse inclusion,
f�;0D 0 unless�DPn. Then the proof of Theorem 7.3 shows that �.f .A//D f .�/
for some � 2 �.A/, as required.

8. Estimates for functions and operators

Let AD .A1; : : : ;An/ be an n-tuple on commuting operators satisfying the full (GSF)
condition. In this section, we will use the Bn-calculus constructed in Theorem 5.4 to
provide several estimates for f .A/ in terms of kf k1 for f belonging to substantial
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subclasses of H1.Cn
C/. The estimates resemble the situation of a bounded H1-cal-

culus and thus could be potentially useful.
We will need a Fourier characterisation of functions inH1.Cn

C/ in terms of their
boundary values. If f 2 H1.Cn

C/, then f b.ˇ/´ lim˛!0C f .˛ C iˇ/ exists for
almost all ˇ 2 Rn (see [26, Theorem F]). Then f b 2 L1.RnC/. For f 2 L1.RnC/,
define the spectrum of f as sp.f /´ supp.F �1f /, where F stands for the (distribu-
tional) Fourier transform of f . LetH1.Rn/´ ¹f 2 L1.Rn/ W sp.f /� RnCº. Then
H1.Cn

C/ is isometrically isomorphic toH1.Rn/ via the mapping f ! f b , and the
inverse mapping is given by

f .˛C iˇ/ D .P˛ � f
b/.ˇ/ D

Z
Rn

P.˛;ˇ � t/f b.t/ dt; (8.1)

where ˛ 2 RnC; ˇ 2 Rn, and

P˛.ˇ/ D P.˛;ˇ/ D

nY
jD1

1

�

j̨

˛2j C ˇ
2
j

stands for the Poisson kernel. This fact is well known for n D 1 (see [19, Section
II.1.5]). For n > 1, it follows from [26, Theorem 2.7].

For � > 0, let H1.Œ�;1/n/´ ¹f 2 H1.Cn
C/ W sp.f b/ � Œ�;1/nº, and

e� .z/ D e
��.z1C���Czn/; z 2 Cn

C:

Then
H1.Œ�;1/n/ D e�H

1.Cn
C/; (8.2)

so that from (8.1), for f 2 H1.Œ�;1�n/,

jf .z/j � e��.
Pn
iD1 Re zi /kf bk1; z 2 Cn

C: (8.3)

Indeed, .e��f /b 2L1.Rn/ and sp.e��f /�RnC. If g.˛C iˇ/D .P˛ � .e��f /b/.ˇ/,
˛C iˇ 2 Cn

C, then by the above g 2 H1.Cn
C/ and .e�g/b D f b . Since both f and

e�g are inH1.Cn
C/we infer from (8.1) that e� .z/g.z/D f .z/ for all z 2Cn

C. Taking
into account (8.1), we obtain (8.3) which is well known for n D 1. It follows from a
standard Fourier characterisation of H1.CC/ and it was used essentially in [7], but
its multivariate counterpart seems not to have been noted in the literature.

We will use an elementary variant of Bernstein’s inequality, as follows (see [21,
Theorem 7.3.1] or [30, Chapter 3, p. 116]). If f 2 H1.Œ0; ��n/ then f is an entire
function of exponential type .�; : : : ; �/, as defined in [30, p. 98] and for all z D

˛C iˇ 2 Cn
C and � 2 Pn,

sup
ˇ2Rn

jD�f .˛C iˇ/j � �
j�j sup

ˇ2Rn
jf .˛C iˇ/j: (8.4)
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In the following lemmas, we show that functions of various classes belong to Bn
0 ,

and we give estimates for their norms. Then Proposition 2.6 shows that f 2 Bn and
kf kBn � 2

nkf kBn
0

. An alternative estimate of the Bn-norms can be obtained by an
extension of the method used for the Bn

0 -norms.

8.1. Holomorphic extensions to the left

We will show here that if f 2 Bn extends to a bounded analytic function in a larger
half-space, then some damped versions of f are in Bn

0 with norm dominated by an
H1-norm of f . For nD 1, functions of this type were considered in [7, Section 5.2].

Let ! > 0 and H1! D H
1.¹z 2 Cn W Re zj > �!; j 2 Inº/. If f 2 H1! and

� 2 Pn, then Cauchy’s inequality gives

jD�f .z/j �
kf kH1!

2kj! C ˛�j
; z D ˛C iˇ 2 Cn

C; (8.5)

where k D j�j and
j! C ˛�j D

Y
j2�

.! C j̨ /:

Lemma 8.1. Let f 2 H1! , ! > 0 and let � > 0, � 2 CC, m D min¹!;Re�º. Let

R��.z/´

nY
jD1

.�C zj /
�� ; S��.z/´ .�C z1 C � � � C zn/

�� ; z 2 Cn
C: (8.6)

Then R�
�
f 2 Bn

0 and S�
�
f 2 Bn

0 . Moreover,

kR��f kBn0 � kf kH
1
!

� 1
2�
C

1

m�

�n
;

kS��f kBn0 �
kf kH1!
m�

� n
2�
C 1

�n
:

Proof. From (2.2) and (8.5), we have

kR��f kBn0 �
X
�2Pn

Z
Rn
C

sup
z2W˛In

j.D�R
�
�/.z/jj.D�cf /.z/j d˛

� kf kH1!

X
�2Pn

�j�j

2n�j�j

Z
Rj�j
C

d˛

jmC ˛�j1C�

D kf kH1!

nX
jD0

�
n
j

�
.2�/n�j

1

m�j
D kf kH1!

� 1
2�
C

1

m�

�n
:
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By a similar argument, we have (with dtn�j D dt1 : : : dtn�j ),

kS��f kBn0

� kf kH1!

nX
jD0

�
n
j

�
2n�j

j�1Y
kD0

.� C k/

Z
Rn
C

�
mC

nX
kD1

tk

��.�Cj / n�jY
kD1

.mC tk/
�1 dt

D kf kH1!

nX
jD0

�
n
j

�
2n�j

Z
Rn�j
C

�
mC

n�jX
kD1

tk

��� n�jY
kD1

.mC tk/
�1 dtn�j :

By replacing tk by mtk , taking the inequality
Qn�j

kD1
.1 C tk/ �

�
1 C

Pn�j

kD1
tk
�n�j

and raising it to the power ��=.n � j /, we arrive at

kS��f kBn0 �
kf kH1!
m�

nX
jD0

�
n
j

�
2n�j

Z
Rn�j
C

n�jY
kD1

.1C tk/
�.1C�=.n�j // dtn�j

D
kf kH1!
m�

nX
jD0

�
n

j

��n � j
2�

�n�j
�
kf kH1!
m�

� n
2�
C 1

�n
:

Now, we show that the damping in Lemma 8.1 is not necessary if sp.f / is separ-
ated from zero.

Lemma 8.2. Let f 2 H1.Œ�;1/n/ \H1! , � > 0, ! > 0. Then f 2 Bn
0 , and

kf kBn
0
� kf kH1! e

�n!�
�
1C

1

2
log
�
1C

1

�!

��n
:

Proof. By (8.3), there exists g 2 H1! such that f .z/ D e��.z1C���Czn/g.z/; z 2 Cn
C;

and thus kgkH1! D e
�n!�kf kH1! . From this and (8.5), we infer that

jDnf .z/j �
X
�2Pn

j.D�e
��.z1C���Czn//.D�cg.z//j

� e��.˛1C���C˛n/
X
�2Pn

� � j�j

2n�j�j! C ˛�c j

�
kgkH1! ;

where zj D j̨ C i ǰ . Since the variables in the integrals below over RnC split as the
product of j integrals of one function and n� j integrals of another function, we see
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that

kf kBn
0
� kgkH1!

X
�2Pn

� j�j

2n�j�j

Z
Rn
C

e��
Pn
jD1 j̨

� 1

j! C ˛�c j

�
d˛

D kgkH1!

nX
jD0

�
n

j

�
1

2n�j

� 1Z
0

�e��˛ d˛

�j� 1Z
0

e��˛.! C ˛/�1 d˛

�n�j
:

The first integral in the line above is equal to 1, and the second integral is shown in
the proof of [7, Lemma 3.2 (2)] to be less than log.1C .�!/�1/, so

kf kBn
0
� kgkH1!

nX
jD0

�
n

j

��1
2

log
�
1C

1

�!

��n�j
D kgkH1!

�
1C

1

2
log
�
1C

1

�!

��n
:

8.2. Functions with restricted spectrum

Instead of assuming that f 2 H1! , we now assume that sp.f / is separated from zero
and infinity and we obtain an estimate of kf kBn in terms of kf k1. We need the
following technical lemma. For t D .t1; : : : ; tk/ 2 .0;1/

k , let Lk.t/ D
Pk
jD1 tj and

Pk.t/ D
Qk
jD1 tj .

Lemma 8.3. For k 2 N and a 2 .0; 1/, let

Jk.a/´

Z
Rk
C

dt

Pk.t/C aeLk.t/
:

Then
Jk.a/ � 2

2k logk
�
1C

1

a

�
: (8.7)

Proof. We argue by induction. If kD1, then (8.7) has been proved in [7, p. 37, (2.12)].
Next, assume that (8.7) holds for some k � 1. Note that Jk is a decreasing function,
and by Fubini’s theorem,

JkC1.a/ D

1Z
0

Z
Rk
C

dt d�

Pk.t/� C aeLk.t/e�

D

1Z
0

Jk.ae
�=�/

d�

�
:
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Using the monotonicity of Jk , a change of variable u D e�� , and the inequalities
tJk.t/ � 1, and .4 log 2/kC1 � 2.k C 1/ if k � 1, we infer that

JkC1.a/ �

1Z
0

Jk.a=�/
d�

�
C

1Z
1

Jk.ae
� / d�

D

1Z
0

Jk.a=�/
d�

�
C

1=eZ
0

Jk.a=u/
du

u

� 2

1Z
0

Jk.1=s/
ds

s
C 2

1=aZ
1

Jk.1=s/
ds

s

� 2C 22kC1

1=aZ
1

logk.1C s/
ds

s

� 2C 22kC2

1=aZ
1

logk.1C s/
1C s

ds

D 2C
22kC2

k C 1
.logkC1.1C 1=a/ � logkC1 2/

� 22.kC1/ logkC1.1C 1=a/;

so (8.7) is true for k C 1. The assertion follows.

The following lemma was proved in [7, Lemma 2.5] for nD 1 and in [23, Lemma
4.1.1] for nD 2. The functions considered in those cases played crucial roles in those
papers.

Lemma 8.4. Let f 2 H1.Œ�; ��n/, where 0 < � < � . Then f 2 Bn
0 and

kf kBn
0
� 2nC1kf k1

�
log
�
1C

�2�
�

�n��n
: (8.8)

Proof. From (8.4), we have

jDnf .˛C iˇ/j � �
n sup
ˇ2Rn

jf .˛C iˇ/j � �ne��Ln.˛/kf k1: (8.9)

From Cauchy’s inequality,

jDnf .˛C iˇ/j �
kf k1

2nPn.˛/
:
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Thus,

jDnf .˛C iˇ/j � kf k1min¹�ne��Sn.˛/; 2�nPn.˛/�1º

�
2kf k1

2nPn.˛/C ��ne�Ln.˛/
:

From Lemma, 8.3,Z
Rn
C

d˛

Pn.˛/C ��ne�Ln.˛/
D Jn

�� �
2�

�n�
� 2n

�
log
�
1C

�2�
�

�n��n
:

Now, (8.8) follows.

Lemmas 8.1, 8.2, and 8.4 imply the following operator-norm estimates for
Bn-functions of n-tuples of operators satisfying the full (GSF) condition. They were
obtained in [7] for n D 1, providing direct alternative proofs for the results in [17,18,
31] and their improvements. The estimates quantify a deviation of the Bn-calculus
from the bounded H1-calculus, and they simplify operator norm-estimates in sev-
eral situations of interest. In statements (i) and (ii), f .A/ is not necessarily a bounded
operator, but it can be defined as a closed operator in the extended half-plane calcu-
lus for several variables. The proofs are consequences of Lemmas 8.1, 8.2, and 8.4.
For (ii), one uses (8.2).

Theorem 8.5. Let A be an n-tuple of operators on a Banach space X , satisfying the
full (GSF) condition, and let 
A;0 be the norm of ˆA on Bn

0 . Then the following hold.

(i) Let f 2 H1! , ! > 0, and let � > 0, � 2 CC, and m D min¹!;Re �º. Let
R�
�

and S�
�

be as in (8.6). Then

k.R��f /.A/k � 
A;0

� 1
2�
C
1

m

�n
kf kH1! :

and

k.S��f /.A/k � 
A;0m
��
� n
2�
C 1

�n
kf kH1! :

(ii) Let g 2 H1! , ! > 0 and � > 0. Then

k.ge�� /.A/k � 
A;0e
�n!�

�
1C

1

2
log
�
1C

1

�!

��n
kgkH1! :

(iii) Let f 2 H1.Œ�; ��n/, 0 < � < � . Then

kf .A/k � 2nC1
A;0

�
log
�
1C

�2�
�

�n��n
kf k1:
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9. Appendix

For the skeptical reader, we will justify the application of Fubini’s theorem in the
proof of Lemma 5.1 by showing that

Jt ´

Z
Cm
C

Z
Ck
C

j.D�f f /.�/j j.D�gg/.�/jSt.�; �/ dVk.�/dVm.�/ <1;

where f and g are elementary functions in Bn with supports �f and �g with car-
dinalities k andm respectively, and�f [�g D In. Here � and � are indexed by�f
and �g , respectively, and

St.�;�/D

Z
Cn
C

jhKn.A; Nz/x;x
�
ijjDn.Kk.z�fC t�f ;

N�/Km.z�gC t�g ; N�//jdVn.z/;

where Dn denotes differentiation with respect to all the zj variables (once each).
We may assume that kxk D kx�k D 1 and put ǰ D Re�j , �l D Re �l . Using the

(GSF) condition for A, we can estimate

St.�; �/ � 
A

Z
Rn
C

sup
Re zjD j̨

jDn.Kk.z�f C t�f ;
N�/Km.z�g C t�g ; N�//j d˛

� 
A

ˇ̌̌̌ Z
Rn
C

Dn.Kk.˛�f C t�f ;ˇ�f /Km.˛�g C t�g ;��g // d˛

ˇ̌̌̌

D 
AjKk.t�f ;ˇ�f /Km.t�g ;��g /j � 
A

� 2
�

�kCm Y
j2�f

1

2t ǰ

Y
l2�g

1

2t�l
:

The inequality in the second line is obtained by straightforward estimates on the integ-
rand on the function. Moving the absolute value signs outside the integral is justified,
because the integrand is real-valued, and its sign depends only on k andm. The equal-
ity in the third line comes from the fundamental theorem of calculus for each of the
variables. The final inequality is straightforward. Now,

Jt �

A

.�t/kCm

Z
Rm
C

Z
Rk
C

sup
Re�jD ǰ

Re �lD�l

j.D�f f /.�/jj.D�gg/.�/j dˇd�

D

A

.�t/kCm
kf kB�f ;0

kgkB�g;0 :
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