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The pseudospectrum of an operator with Bessel-type
singularities

Lyonell Boulton and Marco Marletta

Abstract. In this paper, we examine the asymptotic structure of the pseudospectrum of the
singular Sturm–Liouville operator LD @x.f @x/C @x subject to periodic boundary conditions
on a symmetric interval, where the coefficient f is a regular odd function that has only a simple
zero at the origin. The operator L is closely related to a remarkable model examined by Davies
in 2007, which exhibits surprising spectral properties balancing symmetries and strong non-self-
adjointness. In our main result, we derive a concrete construction of classical pseudo-modes for
L and give explicit exponential bounds of growth for the resolvent norm in rays away from the
spectrum.

Dedicated to Professor E. Brian Davies FRS on the occasion of his 80th birthday

1. Introduction

Let f 2 C2.Œ�1; 1�IR/ be an odd function such that f 0.0/ 6D 0 and f .x/ > 0 for
x > 0. We associate with f a second-order differential expression l defined on suit-
able functions u by

.lu/.x/ D .f .x/u0.x/C u.x//0:

Note that l has an interior singularity at x D 0.
In this paper, we will study the pseudospectra of a closed operator realisation L

of l , specified by periodic boundary conditions and regularity at x D 0. We focus
particularly on the asymptotic behaviour of the resolvent norm far from the spectrum.
The fact that the numerical range of L is easily shown to be the whole complex plane
means that there is no “direction of escape” to infinity in which the behaviour of the
pseudospectra can easily be foreseen.

Interest in this type of operator seems to have started with an idealised model for
a thin layer of viscous fluid inside a rotating cylinder, examined by Benilov, O’Brien,
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and Sazonov [4]; their case corresponds to f .x/ D 2"
�

sin.�x/ (0 < " < 1), resulting
in additional singularities at the endpoints. Benilov et al. presented various obser-
vations concerning the spectrum and the associated time-evolution linear problem –
most prominently, they noted that the spectrum appeared to be purely imaginary. Their
conjectures have been systematically addressed in recent years for various trigonomet-
ric f , resulting in several articles concerning both the spectrum and the ill-posedness
of the corresponding evolution equation, e.g., [8–10, 13, 15, 33, 34]. Some of these
results were generalised in [5] to a wider class of f (odd, positive on .0; �/ and 2�-
periodic, with various regularity assumptions), where it is shown that the eigenvalues
are always purely imaginary; and also in [6], where it is shown that the spectrum is
discrete and infinite, the resolvent is of Schatten class Cp for p > 2

3
, but the eigen-

functions do not form an unconditional basis.
Beyond these results, for f .x/D 2"

�
sin.�x/, Figure 6 of [4] shows a numerically

computed graph of the pseudospectrum, rotated by �
2

, for one (unspecified) value
of ". The pseudospectral level sets appear qualitatively to be curves asymptotically
close to parabolas fitting the symmetry of the spectrum, though to the best of our
knowledge this has never been proved. Similar pictures appear for a related operator
on [31, pp. 124–125 and 406–408], again obtained by numerical methods.

Most rigorous results that we know concerning pseudospectra of differential oper-
ators such as L depend upon the construction of pseudo-modes. We will give a review
of some of these immediately after the statement of Theorem 3 below, but broadly
they are either semi-classical [17] or an evolved form of WKB type [24]. The pseudo-
modes that they generate are localised functions, and no boundary conditions need be
accommodated. By contrast, below we construct pseudo-modes for the operator L by
modifying the unique regular-at-the-origin solution of the differential equation

l� D E�

using a “periodiser” to satisfy periodic boundary conditions. We analyse the beha-
viour of these resulting pseudo-modes as the spectral parameter E escapes to infinity
on rays. The spectrum of L would be quite different were the boundary conditions not
periodic: a fortiori, these boundary conditions therefore play a crucial role in determ-
ining the pseudospectra, despite the fact that resolvents corresponding to different
boundary conditions only differ by finite-rank terms.

For f .x/ D 2"x, the regular-at-the-origin solution is given explicitly in terms of
Bessel functions. This yields a direct construction of our pseudo-modes. For general
f , we use special transformators [7,32] to show that the underlying linearised f still
determines the dominant behaviour of our pseudo-modes for large E. As always for
transformators, it is the E-independence of the underlying kernel which makes them
so well adapted to asymptotic analysis.
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2. Summary of main results and scope of the work

Throughout this paper, the function f W Œ�1; 1�! R is twice continuously differenti-
able with f .�x/ D �f .x/ and sgn.f .x// D sgn.x/. Additionally,

f .x/ D
2"x

1C xr.x/
;

where " 2 .0; 1/ is a fixed parameter and r is a fixed, twice continuously differentiable
function, which is odd and analytic at x D 0. Note that

1

f .x/
D

1

2"x
C
r.x/

2"

and f .x/ D 2"x CO.x3/ as x ! 0; also, f .˙1/ 6D 0.
We define a differential operator L on a domain in L2.�1; 1/ by

Dom.L/ D
®
u 2 C.Œ�1; 1�/ W f u0 C u 2 AC.�1; 1/; u.�1/ D u.1/

¯
;

with
.Lu/.x/ D .lu/.x/ D .f .x/u0.x/C u.x//0

for u 2 Dom.L/. Note in particular that any u 2 Dom.L/ must be continuous at the
origin and 2-periodic in the sense that u.�1/ D u.1/.

The following lemma is proved at the end of Section 3; although its proof involves
classical arguments, the result is not an immediate consequence of existing theory;
hence, we give full details of its validity.

Lemma 1. The densely defined linear operator L W Dom.L/! L2.�1; 1/ is closed
and has compact resolvent.

It is convenient to introduce two symmetries commuting with L. Let

Pu.x/ D u.�x/ and T u.x/ D u.x/

be the parity and transposition isometries. (Note that T is conjugate linear.) Then,
P 2u.x/ D T 2u.x/ D u.x/, and P and T leave invariant the subspace Dom.L/.
Moreover,

LPu D �PLu and LT u D T Lu

for all u 2 Dom.L/.
Let � 2 AC.�1; 0/ \ AC.0; 1/ and E 2 C be such that

.f �0 C �/0 D E�: (2.1)
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Then, .f .z�/0C z�/0 D �E z� for z� D P� and .f x�0C x�/0 D xE x� for x� D T �. Hence,
if E is an eigenvalue of L (which additionally requires that � 2 Dom.L/ n ¹0º), then
also �E and ˙ xE will be eigenvalues of L. Thus, the spectrum of L is symmetric
under reflection with respect to the real and imaginary axes. Note that 0 is always
an eigenvalue with corresponding eigenfunction the constant function. Moreover, we
have the following analogue of similar results reported in [5, 6] for the case when
f .˙1/ D 0.

Theorem 1. The spectrum of L is purely discrete and purely imaginary.

The first statement is immediately implied by Lemma 1. The proof of the second
statement will be given in Section 5.

The pseudospectrum of L is also symmetric with respect to the axes. This follows
from the fact that

P .L �E/�1P D �.LCE/�1 and T .L �E/�1T D .L � xE/�1:

Indeed, these identities imply that

k.L �E/�1k D k.LCE/�1k D k.L� xE/�1k

for all E in the resolvent set of L.
The upper bound on the resolvent norm given in the next theorem, which we will

prove at the end of the paper in Section 7, is a consequence of general Carleman-type
bounds and the fact that the resolvent of L is in the Schatten classes Cp for all p > 2

3
.

Theorem 2. Let ˛ 62 ¹ .2kC1/�
2
ºk2Z be fixed. For all p > 2

3
, there exist constants

a; c > 0 such that

k.L � jEjei˛/�1k < c expŒajEjp�

for all jEj � 1. The constants a and c can be chosen uniformly for ˛ on a compact
set. Both depend on f .�/.

The main result of this paper is the next theorem, which confirms that the resolvent
norm is indeed exponentially large away from the spectrum. It also gives concrete
evidence about the shape of the pseudospectrum of L.

Theorem 3. Let ˛ 62 ¹k�
2
ºk2Z be fixed. There exist constants a; c > 0 such that

k.L � jEjei˛/�1k > c exp
h
ajEj

1
2

ˇ̌̌
sin

˛

2

ˇ̌̌i
for all jEj � 1. The constant a is independent of ˛ and the constant c can be chosen
uniformly for ˛ on a compact set. Both depend on f .�/.
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By making jEj
1
2 sin ˛

2
equal to a constant, then solving for ˛ in terms of jEj, we

observe that if E D jEjei˛ , then

jRe.E/j � k1jEj and jIm.E/j � k2jEj
1
2

as jEj ! 1 for the exponential term to become constant on the right-hand side. This
provides further evidence that the pseudospectra of the operator L include regions
that, in the regime jEj ! 1, have boundaries asymptotic to parabolas with direct-
rices the imaginary line and axes of symmetry the real line. This is consistent with
the graphs reported in [4, Figure 6] for f .x/ D 2"

�
sin.x/ and those included in [31,

pp. 124–125 and 406–408] for a perturbation of the operator. It also confirms the phe-
nomenon observed in those graphs that the spacing of the pseudospectral boundaries
for level lines 10�n is close to linear in n.

Davies and Kuijlaars were the first to observe exponential growth of the coef-
ficients in spectral projections for Schrödinger operators with complex potential on
R for the complex harmonic oscillator [14]. This work was extended and refined by
Henry [21, 22]. Davies [12] later used semi-group methods to offer a semi-classical
analysis of resolvent growth for families of operators at fixed spectral parameter
which, for the particular case of the complex harmonic oscillator, may be combined
with a dilation trick to recover exponential resolvent growth results for a fixed oper-
ator at large energies. In fact, the semi-classical study of pseudospectra at fixed energy
had already been taken up independently by Dencker, Sjöstrand, and Zworski [17]
and became a topic of active research with contributions by Dencker [16], Helf-
fer [20], Pravda-Starov [28], Hitrik, Sjöstrand and Viola [23], Galkowski [19], and
Almog and Henry [1], among others. More recently, for problems in which there is
no semi-classical parameter but the energy goes to infinity, Krejčiřík, Siegl, Tater, and
Viola [25] and Arnal and Siegl [2] have shown that the exponential growth of the
resolvent norm is sharp and prevalent. Their methods do not require smooth poten-
tials, but rather a sufficiently rapid growth of the potential at infinity. Mityagin, Siegl,
and Viola have also returned to the spectral projection results in [14] and generalised
them to a wider class of 1D operators [26].

For periodic boundary conditions, the numerical evidence presented by Trefethen
in [30] indicates that similar resolvent-norm-growth behaviour also holds for classes
of semi-classical Schrödinger operators on finite intervals. The article also gives some
insights into the shape of the pseudo-modes which might be used in an attempt to
prove such a result rigorously.

Our results are not semi-classical. The nature of our problem is such that we are
not aware of any simple, rigorous argument that might be used to obtain large-energy
results from fixed-energy semi-classical results for a suitable family of operators. The
proof of Theorem 3 below involves constructing pseudo-modes which look similar to
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those in [30] away from x D 0. However, they have the property that there is a jump
in the derivatives of order three near the singularity at x D 0. In Section 4, we present
this construction and establish Theorem 3, for leading-order coefficient f .x/ D 2"x.
In Appendix A, we include graphs illustrating the different shapes of these pseudo-
modes in terms of E.

For general f , we first transform the differential equation into a Schrödinger
equation (Section 4) with singularity of Calogero type at the origin and a bounded
potential. Unfortunately, the role of this transformed equation in the analysis is such
that we cannot use the pseudo-mode constructions of Krejčiřík and Siegl [24]. The
singular part is already present for the special case f .x/D 2"x; the bounded potential
comes from the difference f .x/ � 2"x. The transformation of the differential equa-
tion involves a number of intermediate steps, so to aid the reader, we have included
a summary of the variables used and relations between them in Table 1 at the end
of the paper. Having performed these transformations, we use special transformator
kernels from [7] in Section 5 to quantify rather precisely the effect of the presence
of the bounded potential upon the solutions and complete the proof of Theorem 3 in
Section 6.

3. The closed operator L

In the first part of this section, we show that the solutions to (2.1) for any fixed E 2 C

are characterised via a change of variables by an ODE whose asymptotic behaviour is
driven by Bessel’s equation. From this, we will eventually identify a solution which
is bounded. In the forthcoming sections, this bounded solution will determine eigen-
functions and pseudo-modes associated with L.

In order to describe the solutions � for E 2 C, without loss of generality, we
restrict the variable to x > 0, then invoke the symmetry P to determine �.x/ for
x < 0 from the solution for �E. So, set �.x/ D F.g.x// for x 2 Œ0; 1�, where g.�/,
independent of E and ", is determined up to a scaling by

f .x/g0.x/ D "g.x/: (3.1)

Then, with b1 D g.1/, it follows that F W Œ0; b1�! R must solve

."yF 0.y//0 C F 0.y/ D Eh.y/F.y/; where h.y/ D
f .g�1.y//

"y
(3.2)

is independent ofE and ". Indeed, observe that f .x/�0.x/D "g.x/F 0.g.x// and that
.f .x/�0.x//0 D "g0.x/ŒyF 0.y/�0

yDg.x/
. As

E�.x/ D .f .x/�0.x//0 C �0.x/ D g0.x/Œ."yF 0.y//0 C F 0.y/�yDg.x/;



The pseudospectrum of an operator with Bessel-type singularities 563

re-ordering this and writing everything in terms of the variable y shows that F.y/
satisfies (3.2). Here and elsewhere, the variable y 2 Œ0; b1�. The constant b1 is fixed
by Lemma 2 below and depends on r.�/ but not on E or ": for example, b1 D 1 for
r.x/ D 0.

The following lemma fixes the scaling of g and gives its asymptotic behaviour
near the origin.

Lemma 2. The equation (3.1) has a positive, increasing solution g 2 C3..0; 1�/ such
that1 g.x/ � x

1
2 and g0.x/ � 1

2
x�

1
2 as x ! 0.

Proof. A solution to (3.1) is g.x/ D Qg.x/ such that

.log Qg/0.x/ D
1

2x
C
r.x/

2
:

Hence, we may choose

log Qg.x/ D log x
1
2 C r2.x/; where r2.x/ D

1

2

Z x

1

r.s/ ds;

so that

r2.x/ �
a1

4
x2 C a2

and r2.x/ is an even analytic function at x D 0. This, and the fact that (3.1) is homo-
geneous, gives a solution

g.x/ D x
1
2 er2.x/�a2 : (3.3)

The latter is such that g.x/ � x
1
2 and g0.x/ � 1

2
x�

1
2 as x ! 0. Moreover, g.x/ is

C3, increasing and positive. This follows from the equation and the fact that f .x/ is
positive for x > 0 and twice continuously differentiable.

If we pick g.x/ as in this lemma to determine equation (3.2), then h.y/ on the
right-hand side there is well defined, twice continuously differentiable and

h.y/ D 2y CO.y3/; y ! 0: (3.4)

Indeed, set x D g�1.g.x// � g�1.x
1
2 /. From (3.3) and the fact that r2.x/ is even and

analytic near x D 0, we have

g.x/ D x
1
2 .1C a2x

2
C a4x

4
C � � � /

1Here and in all places below, the expression a.w/ � b.w/ as w ! c means that
limw!c a.w/b.w/

D 1. The limit is taken in context, depending on whether w lies in a real or
complex set.
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in a neighbourhood of x D 0. Calling x D z2 and y D z.1 C a2z
4 C a4z

8 C � � � /

gives z2 D y2 CO.y4/. Therefore,

g�1.y/ D y2 C �1.y/; where �1.y/ D O.y4/:

Thus, the asymptotic behaviour of f .x/ and a substitution into the expression for
h.y/ give (3.4).

As we will see later, from (3.4), it follows that the behaviour of �.x/ near x D 0
will be driven by a Bessel function. This should be expected by rewriting (3.2) as

".yF 0.y//0 C F 0.y/ D 2E.y C �3.y//F.y/; (3.5)

where �3.y/ D O.y3/ as y ! 0.
Without further mention, everywhere below, we will denote by g W Œ�1; 1�! R

the following function. For x � 0, g.x/will be the solution to (3.1) with the behaviour
near x D 0 as in Lemma 2. For x < 0, g.�x/ D g.x/. In this convention, we then
have

g 2 C.Œ�1; 1�/ \ C3
�
Œ�1; 0/ [ .0; 1�

�
:

In the remaining part of this section, we give the proof of Lemma 1. It will follow
from the next statement characterising Dom.L/.

Lemma 3. The function u lies in Dom.L/ and satisfies

.f u0 C u/0 D v (3.6)

for v 2 L2.�1; 1/ if and only ifZ 1

�1

�
g
1
" .1/ � g

1
" .z/

�
v.z/ dz D 0 (3.7)

and

u.x/ D k C

Z x

0

�
1 �

g
1
" .z/

g
1
" .x/

�
v.z/ dz (3.8)

for some k 2 C.

Proof. We begin the proof by describing the solutions to the homogeneous equation

.f �0 C �/0 D 0:

Putting E D 0 in (3.2), then substituting back �.x/ D F.g.x//, gives a general solu-
tion of the form

�.x/ D Ag�
1
" .x/C B
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for all x 2 .0; 1/. Now, P�.x/D �.�x/must also solve this homogeneous equation.
Thus, a full solution such that �; f �0 C � 2 AC.�1; 0/ [ AC.0; 1/ is

�.x/ D

8<:ACg�
1
" .x/C BC; x 2 .0; 1/;

A�g�
1
" .x/C B�; x 2 .�1; 0/:

Now, by variation of parameters, we have that, for any v 2 L1loc..�1; 0/ [ .0; 1//, the
solution to (3.6) will have to be

u.x/ D �g�
1
" .x/

�Z x

˙1

v.z/g.z/
1
" dz C k˙2

�
C

�Z x

˙1

v.z/ dz C k˙1

�
; (3.9)

where the sign is chosen as ‘C’ for x 2 .0; 1/ and as ‘�’ for x 2 .�1; 0/. With this
formula at hand, consider the claim of the lemma.

Let us show the “only if” direction first. Let v 2 L2.�1; 1/ and u 2 Dom.L/ be
related by the identity (3.6). By virtue of Lemma 2, and since 1

"
> 1, we know that

g�
1
" 62 L2.0; ı/

for any ı > 0. Since Dom.L/ � L2.�1; 1/, then necessarilyZ 0

˙1

v.z/g.˙z/
1
" dz C k˙2 D 0:

Hence,

u.x/ D �g�
1
" .x/

Z x

0

v.z/g
1
" .z/ dz C

Z x

0

v.z/ dz C k˙:

Now, the integrals on the right-hand side of this expression are absolutely continuous
functions of x 2 Œ�1; 1�. Moreover,ˇ̌̌̌

g�
1
" .x/

Z x

0

v.z/g.z/
1
" dz

ˇ̌̌̌
� jg.x/j�

1
" kvk

�Z x

0

jg.z/j
2
" dz

� 1
2

� c3kvk jxj
1
2 (3.10)

as x! 0. Therefore, since u is continuous, kC D k�. This yields (3.8). Finally, since
u.�1/ D u.1/ and g is an even function, it follows that (3.7) should hold true.

Now, let us show the ‘if’ part. Assume that v 2 L2.�1; 1/ satisfies (3.7) and that
u.x/ is given by (3.8). As the integral is absolutely continuous for all x 2 Œ�1;1� and g
is continuous and non-vanishing for x 6D 0, then u is a function absolutely continuous
on any closed sub-interval of Œ�1; 0/ [ .0; 1�. But, since (3.10) holds true, u is also
continuous at x D 0 with u.0/ D k. That is, u 2 C.Œ�1; 1�/.
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Having shown continuity, the identity (3.7) implies that u.�1/D u.1/. Moreover,
the construction of the integral representation (3.9), of which (3.8) is a particular
case, was such that (3.6) holds true in the distributional sense. But .f u0 C u/0 D v 2
L2.�1; 1/, so indeed f u0 C u 2 AC.�1; 1/. This yields u 2 Dom.L/ and completes
the proof of Lemma 3.

In this lemma, the conditions (3.7) and (3.8) are compatible with those given in [8,
Proposition 2.2] or the more general [6, Lemma 4]. Indeed, whenever f .˙1/ D 0,
which is not covered in the present paper, periodicity of the functions in the domain
would require2 hvi D 0 instead of (3.7) due to the fact that g.x/ would also van-
ish at x D ˙1. Note that we only require u.�1/ D u.1/ in the domain, irrespect-
ively of whether f .˙1/ vanishes, since the endpoints ˙1 are of limit-circle type for
f .˙1/ D 0.

We now show that Dom.L/ is indeed a domain of closure for L and that the
resolvent of L is compact.

Proof of Lemma 1. According to Lemma 3, we know that

Ker.L/ D Span¹1º � L2.�1; 1/:

We show that the reduced operator

zL W Dom.zL/ D Dom.L/ \ ¹1º? ! Ran.L/

is invertible and its inverse is compact.
Firstly, note that v 2 Ran.L/ if and only if (3.7) holds true. Then,

Ran.L/ D ¹g
1
" .1/ � g

1
" .x/º?:

Therefore, Ran.L/ is a closed subspace of L2.�1; 1/ with codimension 1. Let S W
Ran.L/! Dom.L/ be given by

Sv.x/ D

Z 1

�1

H.x; z/v.z/ dz;

where

H.x; z/ D sgn.x/
�
1 �

g
1
" .z/

g
1
" .x/

�
1.0;jxj�.sgn.x/z/: (3.11)

That is, Sv.x/Du.x/ in formula (3.8) with the constant kD 0. By virtue of Lemma 2,
we know that

sup
�1�x;z�1

jH.x; z/j <1:

Thus, S is a compact operator.

2Here and everywhere below, hvi D 1
2

R 1
�1
v.x/ dx.
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Let
zSv.x/ D Sv.x/ � hSvi:

Then, zS W Ran.L/! Dom.zL/. Indeed, by virtue of (3.8), for all v satisfying (3.7),
we have zSv D u 2 Dom.L/ and h zSvi D 0. Moreover, zS is the inverse of zL. Indeed,
according to Lemma 3, zL zSvDL zSvD v for all v satisfying (3.7) and zS zLD zS.Lu/D
u for all u 2 Dom.zL/ � Dom.L/. This confirms that zL is invertible. Finally, as zS is
a rank-one perturbation of S , then it is also a compact operator.

4. Proof of Theorems 1 and 3 for leading order

In this section, we describe the spectrum and pseudospectrum ofL in the specific case
r.x/ D 0; that is, f .x/ D 2"x. We begin by finding a regular-at-the-origin solution
to (2.1), denoted by ˆ.xIE/ or just ˆ.x/, such that ˆ.0/ D 1.

Since r.x/ D 0 yields g.x/ D jxj
1
2 and h.y/ D 2y in (3.2), the latter reduces to

Bessel’s equation
".yF 0.y//0 C F 0.y/ D 2EyF.y/:

Let
G.y/ D yˇF.y/ for ˇ D

1

2"
C
1

2
: (4.1)

Since

G0.y/ D ˇyˇ�1F.y/C yˇF 0.y/;

G00.y/ D yˇ�1
�
.yF 0.y//0 C .2ˇ � 1/F 0.y/C

ˇ.ˇ � 1/

y
F.y/

�
;

it follows that

G00.y/C

�
�2 �

m2 � 1
4

y2

�
G.y/ D 0; (4.2)

where, from now on, we set the parameters

m D
1

2"
and �2 D �4mE: (4.3)

An unscaled solution to (4.2) is [27, Section 10.13.1]

zG.y/ D y
1
2Jm.�y/;

giving zF .y/ D y�mJm.�y/. Since near y D 0

zF .y/ D
�mJm.�y/

.�y/m
�

�m

2m�.mC 1/
D zF .0/;
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�1:0 �0:5

1

�1

�2

�3

0:5 1:0
lm.ˆ.x//

Re.ˆ.x//

�1:0

�0:5
0:0

x 0:5
1:0
�3

�2
�1

0
1

1

0

�1

Re.ˆ.x//

lm.ˆ.x//

Figure 1. For f .x/D x
2

, the graphs show the eigenfunction ˆ.x/ associated with the first non-
zero eigenvalue E � 47:8853i .

we obtain that

F.y/ D
2m�.mC 1/

�m
y�mJm.�y/

such that F.0/D 1. Sinceˆ should be analytic at x D 0, then, irrespective of whether
x > 0 or x < 0,

ˆ.x/ D
2m�.mC 1/

�m
x�

m
2 Jm.�x

1
2 /; x 2 Œ�1; 1�; (4.4)

is a solution to (2.1) for r.x/ D 0 such that ˆ.0/ D 1. Expanding the Bessel function
in a power series gives

ˆ.xIE/ D ˆ.x/ D

1X
kD0

.�1/k
�.mC 1/

kŠ�.mC k C 1/

�
�

2

�2k
xk; (4.5)

which converges for all x 2 Œ�1; 1� (in fact, for all x 2 C). This is the regular solution
required. See Figure 1.

The proof of the next particular case of Theorem 1 follows the same argument as
the proof of [5, Theorem 2.1], but in this case f .˙1/ 6D 0.

Lemma 4. Let f .x/ D 2"x for 0 < " < 1. Then, the spectrum of L is purely imagin-
ary.

Proof. The complex number E is an eigenvalue of L if and only if ˆ.�1IE/ D
ˆ.1IE/. This is equivalent to

e
im�
2 Jm.i�/ D Jm.�/:

Hence, a necessary condition for E to be an eigenvalue is thatˇ̌̌̌
Jm.i�/

Jm.�/

ˇ̌̌̌
D 1: (4.6)
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Now, we know that Jm. Nz/ D Jm.z/ and Jm.zei�/ D ei�mJm.z/ for all z 2 C. Then,
(4.6) holds true for all � such that arg.�/ 2 ¹˙�

4
; ˙3�

4
º. The proof of the lemma will

follow from the fact that the latter is also necessary for the identity (4.6).
Indeed, according to [27, Section 10.9.4],

Jm.z/ D
2
�
1
2
z
�m

p
��

�
mC 1

2

� Z 1

0

.1 � t2/m�
1
2 cos.zt/ dt:

Recall that m > 1
2

, j cos.zt/j � exp.jzj/ for 0 � t � 1 and
R 1
0
.1 � t2/m�

1
2 dt � 1.

Then,

jJm.z/j �
21�mjzjm exp.jzj/
p
��

�
mC 1

2

� : (4.7)

Hence, the analytic function Jm.z/ has growth order 1. The function

� 7!
e
im�
2 Jm.i�/

Jm.�/

is therefore a meromorphic function with poles on the real axis (the Bessel zeros),
zeros on the imaginary axis, and it has growth order less than or equal to 1 in suitable
sectors of the plane. By the Phragmén–Lindelöf principle and the fact that (4.6) holds
for all � with arg.�/ 2 ¹˙�

4
; ˙3�

4
º,ˇ̌̌̌

Jm.i�/

Jm.�/

ˇ̌̌̌
< 1 for

�

4
< arg.˙�/ <

3�

4
:

Moreover, replacing � by i�, necessarily the opposite inequality holds,ˇ̌̌̌
Jm.i�/

Jm.�/

ˇ̌̌̌
> 1 for �

�

4
< arg.˙�/ <

�

4
:

Hence, (4.6) is only possible when arg.�/ 2 ¹˙�
4
; ˙3�

4
º. This completes the proof

of the lemma.

We now develop asymptotic resolvent norm estimates for L. These describe the
pseudospectrum of L away from the spectrum. Since L and the symmetries P and
T commute, without loss of generality, we can assume that E is in the open first
quadrant. Recalling (4.3), we therefore set

� D j�jei.
�
2C�/ for � 2

�
0;
�

4

�
: (4.8)

Then,
ˆ.�1/

ˆ.1/
D e�

i�m
2
Jm.�j�jei� /
Jm.i j�jei� /

:
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Now, we recall [27, Section 10.7.8] that

Jm.z/ D
ei.z�

�
4 �m

�
2 / C e�i.z�

�
4 �m

�
2 /

p
2�z

1
2

C

p
2ejIm zj
p
�z

1
2

o.1/ (4.9)

as z !1 in sectors jarg.z/j � � � ı, where the limit is uniform for any fixed 0 <
ı < � . Thus, for all � > 0 and � 2 .0; �

4
/ fixed,

ˇ̌
Jm.�j�j�ei� /

ˇ̌
�

ej�j� sin �

p
2�j�j

1
2 �

1
2

and
ˇ̌
Jm.i j�j�ei� /

ˇ̌
�

ej�j� cos �

p
2�j�j

1
2 �

1
2

(4.10)

as j�j !1. Moreover, these limits are uniform in � for all � 2 Œı; �
4
� on the left-hand

side and for all � 2 Œ0; �
4
� ı� on the right-hand side. Hence, for � 2 .0; �

4
/, uniformly

in Œı; �
4
� ı�, we know that ˇ̌̌̌

ˆ.�1/

ˆ.1/

ˇ̌̌̌
� ej�j.sin ��cos �/

as j�j ! 1. Note that this estimate is always decaying in j�j. We also remark at this
stage that we know that jˆ.�1/

ˆ.1/
j< 1 for all j�j> 0 and � in the sector considered here,

from the proof of Lemma 4.
The following proposition gives Theorem 3 for linear f .x/. The constantR below

is independent of �, m, and ı.

Proposition 1. Let f .x/ D x
m

, where m > 1
2

. Let � 2 C lie in the sector prescribed

by (4.8), and set E � E� D � �
2

4m
. Let 0 < ı < �

8
be fixed. There exists a constant

R > 0 ensuring the following. For all j�j � R and � 2
�
ı; �

4
� ı

�
, we can find a

pseudo-mode u � u� 2 Dom.L/ such that

k.L �E�/u�k
ku�k

�
2
p
2�e

1
2

�
32
m
C 4

�
2m�.mC 1/

j�jmC
3
2 e�

j�jp
2

sin �
: (4.11)

Proof. The proof is split into three main steps.

Step 1: construction of u. We write u.x/ as the product of a periodiser �.x/ and the
bounded solution ˆ.x/ as follows; see Figure 2. Let

p.x/ D

R 1
x
t2.1 � t /2 dtR 1

0
t2.1 � t /2 dt

D 1 � 10x3 C 15x4 � 6x5:

Then, p.0/D 1, p0.0/Dp00.0/D 0, p.1/Dp0.1/Dp00.1/D 0 and p.x/ is decreasing
on Œ0; 1�. Moreover,

sup
x2Œ0;1�

jp0.x/j D
15

8
< 2 and sup

x2Œ0;1�

jp00.x/j < 6;
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�1:0 �0:5

10

�10

�20

0:5 1:0

Re.ˆ.x//

lm.ˆ.x//

(a)
�0:020 �0:015 �0:010 �0:005

0:2

0:4

0:6

0:8

1:0

Re.�.x//

lm.�.x//

(b)

�1:0 �0:5

6

4

2

�2

�4

0:5 1:0

Re.u.x//

lm.u.x//

(c)

�0:020 �0:015 �0:010 �0:005

1:0

0:8

0:6

0:4

0:2

�0:2

Re.u.x//

lm.u.x//

(d)

Figure 2. Illustration of the construction of the pseudo-mode for f .x/ D x
2

and � D �7C 9i .
(a) Solutionˆ.x/, (b) periodiser �.x/ in the vicinity of Œ� 2

j�j2
;� 1

j�j2
�, pseudo-mode u.x/ (c) in

Œ�1; 1�, and (d) in the vicinity of Œ� 2

j�j2
;� 1

j�j2
�.

where the latter supremum is achieved at x D 3˙
p
3

6
. Let

�.x/ D

8̂̂̂<̂
ˆ̂:
1; �1 � x � � 2

j�j2
;��

1 � ˆ.�1/
ˆ.1/

�
p
�
j�j2x C 2

�
C

ˆ.�1/
ˆ.1/

�
; � 2

j�j2
� x � � 1

j�j2
;

ˆ.�1/
ˆ.1/

; �
1
j�j2
� x � 1:

(4.12)

Then, � 2 C2.Œ�1; 1�/. Moreover, from the upper bounds on the derivatives of p.x/
above, we get that for all x 2 Œ�1; 1�,

j�0.x/j �
15

4
j�j2 and j�00.x/j � 12j�j4: (4.13)

Now, set u.x/ D �.x/ˆ.x/. Note that by construction u 2 C2.Œ�1; 1�/ and u.�1/ D
u.1/, so u 2 Dom.L/.

Step 2: lower bound on the denominator of (4.11). We now show that there exists
R > 0 such that

kuk �
2m�.mC 1/

2
p
2�j�jmC

1
2

e
j�j sin�p

2 (4.14)
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for all j�j � R. Indeed, let x 2 Œ�1;�1
2
�. From the expression for ˆ.x/ in (4.4) and

the restriction on the argument of � from (4.8), it follows that

jˆ.x/j �
2m�.mC 1/

j�jm

ˇ̌
Jm
�
� j�jjxj

1
2 ei�

�ˇ̌
:

According to the first identity in (4.10), the right-hand side of this is

�
2m�.mC 1/
p
2�j�jmC

1
2 jxj

1
4

ej�jjxj
1
2 sin �

for j�j ! 1 and fixed x 2 Œ�1;�1
2
�. Then, for all c > 1, there is a sufficiently large

R > 0 such that

jˆ.x/j � c
2m�.mC 1/
p
2�j�jmC

1
2

e
j�j sin�p

2

for all x 2 Œ�1;�1
2
� and j�j > R. Integrating in mean square and taking square roots,

gives (4.14).

Step 3: upper bound on the numerator of (4.11). We now show that

k.L �E/uk � j�je
1
2

�
32

m
C 4

�
(4.15)

for all j�j � 2. For this, we begin by noting that

.L �E/u D �.L �E/ˆCˆŒL��C 2f�0ˆ0

D ˆŒL��C 2f�0ˆ0:

From the Maclaurin expansion (4.5) of ˆ.x/, it follows that

jˆ.x/j �

1X
rD0

2r

22rrŠ
D e

1
2

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� whenever j�j � 2. Now,

ˆ0.x/ D

1X
rD0

.�1/rC1
�.mC 1/

rŠ�.mC r C 2/

�
�2

4

�rC1
xr :

Then,

jˆ0.x/j �

1X
rD0

�
j�j2

4

�rC1
1

rŠ

�
2

j�j2

�r
D
j�j2

4
e
1
2
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for all such x and � too. Next, using 2"jxj � 2" 2
j�j2

, along with (4.13), we obtain

jLŒ��.x/j D j2"x�00.x/C .2"C 1/�0.x/j � 2"
2

j�j2
12j�j4 C .2"C 1/

15

4
j�j2

D

�
55
1

2
"C

15

4

�
j�j2 D

�
273
4

m
C
15

4

�
j�j2:

Therefore, integrating in the segment where �.x/ is not constant gives the following:

k.L �E/uk � kˆLŒ��k C k2f�0ˆ0k

�
1

j�j

�
kˆLŒ��k1 C

4

mj�j2
k�0ˆ0k1

�
� e

1
2

�
273
4

m
C
15

4

�
j�j C

15
4
j�j

m
e
1
2 � j�je

1
2

�
32

m
C 4

�
for j�j � 2.

Combining Steps 2 and 3, the statement in the proposition is confirmed. Note that
the claim that R can be chosen uniform in � 2 Œı; �

4
� ı� follows from the analogous

property already confirmed for (4.10).

As a consequence of the above, we see that, for E 2 C with fixed arg.E/ 62
¹
k�
2
ºk2Z, the resolvent norm k.L � E/�1k ! 1 in the context of Theorem 3 with

a D "
1
2

4
.

5. Integral representation of the solution and proof of Theorem 1

For the remainder of this paper, we return to general f . Applying several changes
of variables, whose parameters are summarised in Table 1, we rewrite (3.2) as a
Schrödinger equation with a perturbed Calogero potential on a finite segment. We
derive an integral representation of the regular-at-zero solution by applying the theory
of transformators to this Schrödinger equation. We will then see that the growth-order
1 of Jm.z/ (see (4.7)) carries over to the solutions for general f , allowing us to show
that the spectrum of L is purely imaginary. The integral representation of solutions
also carries over the finer asymptotic estimates from the case f .x/D 2"x. Therefore,
the properties of a pseudo-mode constructed in the same fashion as in Proposition 1
are preserved, as we will see in Section 6.

For non-linear f , the change of variables (4.1) leads to

G00.y/ �
m2 � 1

4

y2
G.y/ D 4mE.1C �.y//G.y/; (5.1)
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where y 2 Œ0; b1� and �.y/ 6� 0 is given by

�.y/ D
�3.y/

y
D
h.y/

y
� 2 D O.y2/

as y! 0. The function h is given in (3.2) and satisfies (3.4), and recall that b1D g.1/.
This intermediate problem can now be rewritten in Liouville normal form as follows.

Lemma 5. The change of variables

t D

Z y

0

.1C �.s//
1
2 ds and Z.t/ D .1C �.y//

1
4G.y/ (5.2)

transforms equation (5.1) into the equation

�Z00.t/C q.t/Z.t/C
`.`C 1/

t2
Z.t/ D �4mEZ.t/ (5.3)

for t 2 .0; b2� and

` D
1

2"
�
1

2
D m �

1

2
> 0;

where b2 D
R b1
0
.1C �.s//

1
2 ds and the potential q W Œ0; b2�! R is continuous and

bounded.

Proof. Firstly, note that

Z00.t/ �
m2 � 1

4

y2
Z.t/ D 4mEZ.t/

C

"�
�0.y/
4
.1C �.y//�

5
4

�0
.1C �.y//

3
4

�
.m2 � 1

4
/�.y/

y2.1C �.y//

#
Z.t/: (5.4)

We wish to replace the coefficient m
2� 14

y2
by m2� 14

t2
on the left-hand side. Write

q.t/ D

�
m2 �

1

4

��
1

t2
�
1

y2

�
C

"�
�0.y/
4
.1C �.y//�

5
4

�0
.1C �.y//

3
4

�
.m2 � 1

4
/�.y/

y2.1C �.y//

#
:

Since f is twice continuously differentiable, �00 and hence q are continuous (and thus
bounded) outside any neighbourhood of the origin.

To show that q is bounded for all t 2 Œ0; b2�, therefore, we need only to check that
it is bounded at t D 0. For �.y/ � ˛y2, where y is small,

t D y C
˛

6
y3 C � � � and y D t �

˛

6
t3 C � � � ;
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where t is small. Then,

1

y2
D
1

t2

�
1 �

˛

6
t2 C � � �

��2
D
1

t2

�
1C

˛

3
t2 CO.t4/

�
D
1

t2
C
˛

3
CO.t2/:

Hence, 1
t2
�

1
y2

is O.1/ for small t . Moreover, for small y, �.y/
y2
D ˛ D O.1/. Fur-

thermore, all other terms in the expression for q.t/ are O.1/ for small t . Thus, q is
indeed bounded.

Finally, since

m2 �
1

4
D

�
1

2"
�
1

2

��
1

2"
C
1

2

�
D `.`C 1/;

the expression (5.3) is confirmed.

Remark 1. Denote Z.t/ and ˆ.x/ by Z.t IE/ and ˆ.xIE/ to indicate explicitly
the dependence on E. In the proof of Theorem 1 below, we will study the zeros of
the map E 7! ˆ.1IE/. These will be expressed in terms of the eigenvalues of (5.3)
on .0; b2� with Dirichlet boundary condition Z.b2IE/ D 0. The associated operator
is self-adjoint when m � 1 since the singularity at the origin is then of limit-point
type [11]. For 1

2
< m < 1, the singularity at the origin is of limit-circle-nonoscillatory

type; its unique self-adjoint Friedrichs extension has eigenfunctions which are the
“principal solutions” at the origin [29], and so, they coincide with the transformation
of ˆ.xIE/.

We now proceed to wrap up all the transformations by expressing ˆ.x/ in terms
of Z.t/. Since ˆ.x/ D F.g.x// and G.y/ D yˇF.y/, we have

ˆ.x/ D g.x/�ˇG.g.x//:

Since (5.2) gives

G.y/ D
�
1C �.y/

�� 14 Z�Z y

0

p
1C �.s/

�
;

then, as ˇ D 1
2
C

1
2"
D `C 1,

ˆ.x/ D .1C �.g.x///�
1
4g.x/�.`C1/Z

�Z g.x/

0

p
1C �.s/ ds

�
: (5.5)

In order to ensure ˆ.0/ D 1, here and everywhere below, we choose a solution Z.t/
of (5.3) such that

Z.t/ D t`C1 C o.t`C
5
2 /

as t ! 0 (a “principal solution”). It is straightforward to see that this solution exists.



L. Boulton and M. Marletta 576

Indicating the dependence on q.�/ and E explicitly, we use Zq.�IE/ to denote the
solution of (5.3). In this notation,

Z0.t IE/ D
2m�.mC 1/

�m
t
1
2Jm.�t/ (5.6)

is the solution in the case q.t/ D 0. Recall that �2 D �4mE. Let

�.x/ D

Z g.x/

0

p
1C �.s/ ds

so that �.x/ � jxj
1
2 as x ! 0. It will be convenient to rewrite (5.5) as

ˆ.xIE/ D �4.g.x//Zq.�.x/IE/ for �4.y/ D .1C �.y//�
1
4y�.`C1/: (5.50)

Note that �4.y/ D O.y�.`C1// as y ! 0.
Our final task in this section before proving Theorem 1 is to write Zq.t IE/ in

terms of Z0.t IE/. For this, we will need the “transformator equation”

Zq.t IE/ D Z0.t IE/C

Z t

0

Kq.t; s/Z0.sIE/ ds (5.7)

in which Kq is an E-independent kernel, described in [7] and dating back to [32],
to map the known asymptotic results on Z0 to corresponding results for Zq . Before
doing so, we note the following properties of Kq .

(i) If q is continuous including at 0, then a solution Zq.t IE/ of (5.3) is given
by (5.7).

(ii) sup0�s�t�b2 jKq.t; s/j <1.

(iii) Kq.t; s/ solves�
@2t � @

2
s �

`.`C 1/

t2
C
`.`C 1/

s2
� q.t/

�
Kq D 0

in the region 0 < s < t with boundary conditionsKq.t; 0/D 0 for t � 0 and

2
d

dt
Kq.t; t/ D q.t/:

In the sequel, we will only use the properties (i) and (ii). The property (i) follows from
Lemma 5.

Proof of Theorem 1. Firstly, recall that E 2 Spec.L/ if and only if

ˆ.�1IE/ D ˆ.1IE/:
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Next, we claim that the function E 7! ˆ.1IE/ is an entire function of order 1
2

in E. The fact that the function is entire follows from the expression (5.6), the rep-
resentation (5.7), and the fact that Kq.t; s/, g.x/, and �.y/ are independent of E. To
show that the order is 1

2
, note that

jZq.t IE/j �
2�.mC 1/tmC

1
2 ej�jt

p
��

�
mC 1

2

� �
1C

Z t

0

jKq.t; s/j ds
�
;

as a consequence of (4.7) and (5.7). Then,

jˆ.xIE/j � A.x/ exp.j�j�.x//;

in which

A.x/ D �4.g.x//
2�.mC 1/�.x/mC

1
2

p
��

�
mC 1

2

� �
1C

Z �.x/

0

jKq.�.x/; s/j ds
�

is independent of �. Since j�j D O.jEj
1
2 /, it follows that E 7! ˆ.xIE/ has indeed

order 1
2

.
Now, we show that the functionE 7!ˆ.1IE/ has purely real zeros, zEn, satisfying

zEn � �c1n
2 for n 2 N and suitable constant c1 > 0. Indeed, from (5.50), one has

ˆ.1IE/ D 0 if and only if Zq.b2IE/ D 0, where b2 D �.1/. In the framework of
Lemma 5,Zq is an eigenfunction of the eigenvalue equation (5.3). The zeros ofˆ.1I �/
are given by

�4m zEn D �
2
n;

in which the �2n are the eigenvalues of the self-adjoint problem

�Z00.t/C
m2 � 1

4

t2
Z.t/C q.t/Z.t/ D �2Z.t/; Z.b2/ D 0;

with Friedrichs condition at t D 0 if required (see Remark 1). The zEn are therefore
purely real. They will satisfy the required asymptotics, if the corresponding �n are �
O.n/ for large n. The latter follows from the fact that q is bounded, via a comparison
result, removing the term q.t/Z.t/ and reducing the question to the corresponding
one for Bessel zeros already considered in the proof of Lemma 4.

We complete the proof as follows. Let '.�/ D ˆ.1;� �
2

2m
/: Then,

'.i�/ D ˆ.1I �E/ D ˆ.�1IE/;

and so, the condition for the matching of the boundary values of ˆ is

'.i�/

'.�/
D 1:
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Expanding ˆ.1IE/ as a Weierstrass product, using Hadamard’s theorem, gives

ˆ.1IE/ D e
.E/
1Y
nD1

�
1 �

E

zEn

�
for an entire function 
.E/, where the convergence of the product is ensured by the
fact that j zEnj � c1n2. The fact that ˆ.1IE/ has order 1

2
means that 
.E/ is constant.

Thus,

'.i�/

'.�/
D

1Y
nD1

1 � �2

�2n

1C �2

�2n

:

Since the �2n are on the real line and arg.˙�/ 2 .��
4
; �
4
/,ˇ̌̌̌

1 �
�2

�2n

ˇ̌̌̌
<

ˇ̌̌̌
1C

�2

�2n

ˇ̌̌̌
whence ˇ̌̌̌

'.i�/

'.�/

ˇ̌̌̌
< 1 (5.8)

for arg.˙�/ 2 .��
4
; �
4
/. These inequalities are swapped in the complementary �-

region arg.˙�/ 2 .�
4
; 3�
4
/. Hence,

'.i�/

'.�/
D 1

is only possible for arg.˙�/ D ˙�
4

, which corresponds to purely imaginary E.

6. Proof of Theorem 3

The construction of the pseudo-modes in Proposition 1 consisted of three steps, which
we now generalise. In order to complete Steps 2 and 3, we will need replacements
for the inequalities which were proved in Section 4 using explicit Bessel function
expressions. The idea is to consider the solution for general f as a perturbation of
these via the expression of ˆ.xIE/ in (5.5) and the integral representation (5.7). We
perform this task in the first part of this section and complete the proof in the second
part.

We refer to Table 1 for a summary of the specific relations between the different
parameters appearing in the various statements below.

Lemma 6. Let E 2 C be such that arg.E/ 62 ¹k�
2
W k 2 Zº. The solution of (5.3)

satisfies the following estimate. There exist a constant R > 0 independent of q.�/ and
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a constant Cq > 0 such that

Zq.t IE/ D Z0.t IE/.1CWq.t IE//; (6.1)

where
jWq.t IE/j �

Cq

jEj
1
2

(6.2)

for all jEj > R and t 2 Œ0; b2�. For each sufficiently large R and sufficiently small ˛,
the estimate on Wq holds uniformly in the region°

E 2 C W jEj > R; inf
kD0;1;2;3

ˇ̌̌
arg.E/ �

k�

2

ˇ̌̌
� ˛

±
: (6.3)

Proof. Without loss of generality, we assume that arg.E/ 2 .0; �
2
/. Recall the corres-

pondence �2 D �4mE for � D j�jei.�C
�
2 / and � 2 .0; �

4
/. Fixing � is equivalent to

fixing arg.E/.
Let ı > 0 be small. We use (5.7), splitting the integral as

Zq.t IE/ D Z0.t IE/

²
1C

�Z min.t; ıp
jEj
/

0

C

Z t

min.t; ıp
jEj
/

�
Kq.t; s/

Z0.sIE/

Z0.t IE/
ds
³
;

and we show that both integrals are O.j�j�1/. Note that 0 < s
t
< 1 in both integrals.

From (5.6), we have
Z0.sIE/

Z0.t IE/
D

�s
t

� 1
2 Jm.�s/

Jm.�t/
:

For the first integral, we have to estimate the quotient Jm.�s/
Jm.�t/

either in the triangle

T D
²
.s; t/ 2 R2 W 0 < s < t <

2ım
1
2

j�j

³
;

whenever t < 2ım
1
2

j�j
, or in the strip

S D
²
.s; t/ 2 R2 W 0 < s <

2ım
1
2

j�j

³
whenever t � 2ım

1
2

j�j
. Since Jm.˛/

Jm.ˇ/
is bounded uniformly for all j˛j � jˇj � 2ım

1
2 ,

provided ı is chosen sufficiently small to avoid the first zero of Jm, we know that

sup
.s;t/2T

ˇ̌̌̌
Jm.�s/

Jm.�t/

ˇ̌̌̌
< c1;

where the constant c1 is independent of j�j. On S, the numerator Jm.�s/ is bounded
independently of � because j�sj is bounded, while in the denominator the term Jm.�t/
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is bounded away from zero by (4.9) and the fact that arg.�t/ 2 .�
2
; 3�
4
/. Note that, by

hypothesis, �t lies on a fixed ray �t D j�t j exp.i.� C �
2
//, away from Bessel zeros.

The above, together with the property (ii), that the sup-norm of the transformator
kernel Kq is finite implies thatˇ̌̌̌ Z ıp

jEj

0

Kq.t; s/
Z0.sIE/

Z0.t IE/
ds
ˇ̌̌̌
� c2j�j

�1;

for a constant c2 > 0 depending only upon arg.�/. This gives the estimate for the first
integral.

For the second integral, first, recall the right-hand side of (4.10). Then, we haveˇ̌̌̌
Z0.sIE/

Z0.t IE/

ˇ̌̌̌
D

�s
t

� 1
2 Jm.�s/

Jm.�t/

D

�s
t

� 1
2 jJm.i j�jse

i� /j

jJm.i j�jtei� /j

� ej�j.s�t/ cos � ;

where the limit is uniform for � 2 Œ0; �
4
� ı�. Therefore, there exists a constant c3 > 0

such that ˇ̌̌̌
Z0.sIE/

Z0.t IE/

ˇ̌̌̌
� c3 exp.j�j.s � t / cos �/

for all � 2 Œ0; �
4
� ı� and j�j > 1. Hence, the second integral is bounded by

c4

Z t

ıp
jEj

exp.�j�j.t � s/ cos �/ ds �
c4

j�j cos �
;

which is O.j�j�1/ for large j�j.
This ensures the existence of R > 0 and Cq > 0 satisfying (6.1). Note that c1, c2,

and c4 depend on q.�/, but we can choose R > 0 independent of q.�/. Also, note that
all the estimates above are uniform with respect to � and t .

By (6.1), the solution ˆ.xIE/ is such that

ˆ.xIE/ D �4.g.x//
2m�.mC 1/

�m
�.x/

1
2Jm.��.x//

�
1CO.j�j�1/

�
;

ˆ.xI �E/ D �4.g.x//
2m�.mC 1/

.i�/m
�.x/

1
2Jm.i��.x//

�
1CO.j�j�1/

� (6.4)

as j�j !1, where theO.j�j�1/ bounds are uniform forE D� �
2

4m
in the region (6.3)

of Lemma 6.
Now, we consider estimates leading to upper bounds for the norm of the action of

.L �E/ on the pseudo-modes constructed below.
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Lemma 7. Let �D j�jei.
�
2C�/, where � 2 .0; �

4
/ and j�j>

p
2. SetE �E� D� �

2

4m
.

Let 0 < ı < �
8

be fixed. Then, there exists a constant Cf > 0 only depending on f .�/
and ı such that

jˆ.xIE/j � Cf (6.5)

and

jˆ0.xIE/j � Cf j�j
2 (6.6)

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�.

Proof. Everywhere in this proof j�j >
p
2 is fixed and none of the constants cj

depends on j�j or � . Whenever this is not obvious, we will explain the reason for
this independence.

First, let us show (6.5). From Lemma 2 and the definition of �.x/, we have that
�.x/ � g.x/ � jxj

1
2 as x ! 0. Also, recall that �4.y/ D O.y�.`C1// as y ! 0. We

remark here that these functions are independent of � . Then, from the second equation
in (6.4), it follows that

jˆ.xIE/j D �4.g.x//

�
2m�.mC 1/

j�jm

�
�.x/

1
2 jJm.�j�j�.x/ei� /j.1CO.j�j�1//

D 2m�.mC 1/�4.g.x//�.x/
mC 12
jJm.�j�j�.x/ei� /j

.j�j�.x//m
.1CO.j�j�1//

� c1 sup
jzj�
p
2C 12

ˇ̌̌̌
Jm.z/

zm

ˇ̌̌̌
.1CO.j�j�1//

� c2

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�. Here, the constant c1 > 0 depends only

on f .�/, and, according to Lemma 6, c2 > 0 can be chosen to depend only on f .�/
and ı. This gives (6.5) as required in the statement.

Now, consider (6.6). The expression (5.50) and a straightforward calculation give

ˆ0.xIE/ D �
�0.g.x//g0.x/

4
Œ1C �.g.x//��

5
4
Zq.�.x/IE/

g.x/`C1

� .`C 1/
g0.x/

g.x/
Œ1C �.g.x//��

1
4
Zq.�.x/IE/

g.x/`C1

C
g0.x/

g.x/
Œ1C �.g.x//�

1
4

Z0q.�.x/IE/

g.x/`

D A.x/C B.x/CD.x/:

We provide estimates for the modulus of these three quantities, which lead to (6.6).
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Estimates for jA.x/j and jB.x/j. Recall the asymptotics in the regime x! 0: g.x/�
jxj

1
2 , �.g.x//DO.x/, and �0.g.x//g0.x/DO.1/, where the quantities involved only

depend on f .�/. By writing Zq.�.x/IE/ in terms of ˆ.xIE/ using (5.50), and by
applying (6.5), we then know that there exists a constant c3 > 0, only depending on
f .�/ and ı, such that

jA.x/j D
j�0.g.x//g0.x/j

4
Œ1C �.g.x//��1jˆ.xIE/j � c3

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�. Similarly, since g0.x/

g.x/
�

1
2
x�1 as x! 0,

there exists a constant c4 > 0, only depending on f .�/ and ı, such that

jB.x/j D .`C 1/

ˇ̌̌̌
g0.x/

g.x/

ˇ̌̌̌
jˆ.xIE/j � c4j�j

2

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�.

Estimate for jD.x/j. By integrating, we obtain

Z0q.�.x/IE/ D

Z �.x/

0

Z00q .sIE/ ds D
Z �.x/

0

�
m2 � 1

4

s2
� q.s/ � �2

�
Zq.sIE/ ds:

According to Lemma 6 and (5.6), we have

Zq.t IE/ D Z0.t IE/
�
1CO.jEj�

1
2 /
�

D 2m�.mC 1/tmC
1
2
Jm.�t/

.�t/m

�
1CO.j�j�1/

�
;

where, for fixed q.�/, m, and ı, the O.j�j�1/ bound is uniform for all � 2 Œı; �
4
� ı�

as j�j ! 1. Since
jJm.z/j

jzjm
�

1

2m�.mC 1/

for jzj ! 0, then there exists a constant c5 > 0 such that

jZ0q.�.x/IE/j � c5

Z �.x/

0

�
m2� 1

4

s2
Cjq.s/jCj�j2

�
smC

1
2 2m�.mC 1/

jJm.�s/j

.j�js/m
ds

� c5

Z �.x/

0

�
m2 � 1

4

s2
C kqk1 C j�j

2

�
smC

1
2 ds

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�. Moreover, for all such .x; �/,Z �.x/

0

m2 � 1
4

s2
smC

1
2 ds D

�
mC

1

2

�
�.x/m�

1
2 � c6j�j

1
2�m
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and Z �.x/

0

j�j2smC
1
2 ds D j�j2

�.x/mC
3
2

mC 3
2

� c7j�j
1
2�m;

where c6; c7 > 0 depend only on m. Since m > 1
2

and 1
2
� m D �`, we then can

conclude that there exists a constant c8 > 0 only depending on f .�/ and ı such that

jZ0q.�.x/IE/j

g.x/`
� c8

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�. Thus, for a suitable constant c9 > 0 only

depending on f .�/ and ı,

jD.x/j D

ˇ̌̌̌
g0.x/

g.x/

ˇ̌̌̌
Œ1C �.g.x//�

1
4

ˇ̌̌̌
jZ0q.�.x/IE/j

g.x/`

ˇ̌̌̌
� c9j�j

2

for all x 2 Œ� 2
j�j2

;� 1
j�j2

� and � 2 Œı; �
4
� ı�.

These estimates for jA.x/j, jB.x/j, and jD.x/j directly imply (6.6) and confirm
the validity of the lemma.

We are now ready to complete the proof of Theorem 3, which will be a direct
corollary of the next proposition. Similarly to Proposition 1, here, we can choose the
constant R > 0 independent of �, ı, ", and r.�/. The constant Cf > 0, on the other
hand, is independent of � and ı but depends on r.�/ and ".

Proposition 2. Let � 2 C be given by (4.8), and set E � E� D � �
2

4m
. Let 0 < ı < �

8

be fixed. There exist a constant R > 0 and a constant Cf > 0, depending only upon
f .�/, such that, for all j�j � R and � 2 Œı; �

4
� ı�, we can find a pseudo-mode u �

u� 2 Dom.L/ satisfying the inequality

k.L �E�/u�k
ku�k

� Cf j�j
mC 32 e��.

1
2 /j�j sin � : (6.7)

Proof. As in the proof of Proposition 1, we construct the pseudo-mode u.x/ as the
product of the periodiser �.x/ and the regular solution ˆ.x;E/.

Step 1: construction of u. Let �.x/ be given by (4.12). Note that in the expression
for �.x/, the term ˆ.�1IE/

ˆ.1IE/
appears. According to (5.8) in the proof of Theorem 1, we

know that jˆ.�1IE/
ˆ.1IE/

j < 1 for all E D E�. So, the bounds (4.13) on the derivatives of
�.x/ continue to be valid.

Step 2: lower bound on the denominator of (6.7). This extends (4.14). We show that,
for a suitable constant c1 > 0 and sufficiently large R > 0, we have

kuk � c1
2m�.mC 1/

j�jmC
1
2

e�.
1
2 /j�j sin � (6.8)
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for all j�j � R. For this purpose, we first show that

jˆ.�xIE/j � c1
2m�.mC 1/

j�jmC
1
2

e�.
1
2 /j�j sin � (6.9)

for all x 2 Œ1
2
;1� and j�j �R. By virtue of the symmetry P , (5.50), Lemma 6, and (5.6),

we have

jˆ.�xIE/j D jˆ.xI �E/j

D �4.g.x//Zq.�.x/IE/

D �4.g.x//Z0.�.x/IE/.1CWq.�.x/IE//

D �4.g.x//
2m�.mC 1/

j�jm
�.x/

1
2Jm.�j�j�.x/ei� /.1CWq.�.x/IE//

in which x > 0 and jWq.�.x/IE/j D O.j�j�1/ satisfies (6.2). Hence, from the left-
hand side of (4.10),

jˆ.�xIE/j � j�4.g.x//j
2m�.mC 1/
p
2�j�jmC

1
2

ej�j�.x/ sin �

for jEj ! 1. From the fact that g.x/ is increasing (Lemma 2) and C3..0; 1�/, it
follows that there exists c2 > 0 such that

j�4.g.x//j D
ˇ̌
.1C �.g.x///�

1
4g.x/�.mC

1
2 /
ˇ̌
� c2

for all x 2 Œ1
2
; 1�. Therefore, since �.x/ is increasing with x, then (6.9) follows. Here,

note that c2 is independent of "; also that R > 0 can be chosen independent of r.�/
or " by making c1 > 0 dependent on q.�/ following Lemma 6. By integrating ju.x/j2

over Œ�1;�1
2
� and taking square roots, the proof of (6.8) follows.

Step 3: upper bound on the numerator of (6.7). We complete the proof by showing
that there exists a constant c3 > 0 such that, for all j�j >

p
2,

k.L �E/uk � c3j�j: (6.10)

We aim for an upper bound analogous to (4.15) in the proof of Proposition 1. Recall
that

.L �E/u D ˆŒL��C 2f�0ˆ0:

Hence,

k.L �E/uk � kˆLŒ��k C k2f�0ˆ0k

�
1

j�j

�
kˆLŒ��k1 C 2kf�

0ˆ0k1
�
:
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Consider the second term. We know that

sup
x2Œ 1
j�j2

; 2
j�j2

�

jf .x/j �
2kf 0k1

j�j2

for j�j >
p
2. From the bound for j�0.x/j in (4.13) and from (6.6), we then have

2kf�0ˆ0k1 � c4j�j
2 (6.11)

for j�j >
p
2.

Now, consider the first term. The bounds for j�0.x/j and j�00.x/j from (4.13), and
the fact that their supports lie in Œ� 2

j�j2
;� 1
j�j2

�, give

jLŒ��.x/j D
ˇ̌
f .x/�00.x/C .f 0.x/C 1/�0.x/

ˇ̌
� c5j�j

2

for a constant c5 > 0 only dependent on r.�/. According to (6.5),

sup
Œ� 2

j�j2
;� 1

j�j2
�

jˆ.xIE/j � c6:

Then,
kˆLŒ��k1 � c7j�j

2 (6.12)

for j�j >
p
2.

Estimates (6.11) and (6.12) imply (6.10).

7. Proof of Theorem 2

In this final section, we show that the upper bound given in Theorem 2 is valid by
first showing that the resolvent of L is in a suitable Schatten class. The next lemma
follows similar results established in [8, Proposition 4.3] and [6, Theorem 8]. We have
not found any evidence suggesting that the threshold 2

3
in the lemma is not optimal.

Lemma 8. For all p > 2
3

and E 62 Spec.L/, we have .L �E/�1 2 Cp .

Proof. Consider the reduced operator zL W Dom.zL/! Ran.L/ introduced in the proof
of Lemma 1 at the end of Section 3. Since both, domain and range, are closed sub-
spaces of co-dimension 1, it is enough to show that the inverse, zS , lies in the required
Schatten class. Now, zS is the compression to Ran.L/, of a rank-one perturbation of
the integral operator S W L2.�1; 1/! L2.�1; 1/,

Sw.z/ D

Z z

0

H.x; z/w.z/ dz;

where H.x; z/ is the kernel from the expression (3.11). Therefore, it is enough to
show that S 2 Cp for p > 2

3
. We split the proof of this into four steps.
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Step 1. Note thatZ 1

�1

H.x; z/w.z/ dz D
Z 1

�1

H.x; z/

�
d

dz

Z z

0

w.t/ dt
�

dz

D

�
H.x; z/

Z z

0

w.t/ dt
�zD1
zD�1

�

Z 1

�1

@zH.x; z/

Z z

0

w.t/ dt dz

D

Z 1

�1

zH.x; z/

�Z z

0

jzj�
w.t/ dt
�

dz;

where 
 2 .0; 1
2
/ and

zH.x; z/ D sgn.x/
jzj
g

1
" .z/

g
1
" .x/f .z/

1Œ0;jxj/.sgn.x/z/:

Therefore, S D T V , where T is the integral operator associated with the kernel
zH.x; z/ and V the integral operator associated with the kernel

v.z; t/ D sgn.z/jzj�
1Œ0;jzj/.sgn.z/t/:

Step 2. We show that T 2 C2. Indeed,Z 1

�1

Z 1

�1

j zH.x; z/j2 dz dx D
Z 1

�1

1

g
2
" .x/

�
sgn.x/

Z x

0

jzj2

ˇ̌̌̌
g
2
" .z/

f 2.z/

ˇ̌̌̌
dz
�

dx:

The only singularity of the integrand occurs at the origin. Now, since

jzj2

ˇ̌̌̌
g
2
" .z/

f 2.z/

ˇ̌̌̌
D O.jzj2
C

1
"�2/

as jzj ! 0, then Z x

0

jzj2

ˇ̌̌̌
g
2
" .z/

f 2.z/

ˇ̌̌̌
dz D O.jxj2
C

1
"�1/

as jxj ! 0. Then, Z 1

�1

Z 1

�1

j zH.x; z/j2 dz dx D
Z 1

�1

Qh.x/ dx;

where the function Qh.x/ is continuous in Œ�1; 0/ [ .0; 1� and

j Qh.x/j D O.jxj2
�1/ as jxj ! 0:

Therefore, the double integral is finite, so T 2 C2.
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Step 3. We now show that V 2 C 1
1�


. For this, see [18, p. 1117]; it is enough to show
that the kernel v.z; t/ satisfies the Hölder condition

ı
�
1
2

� Z 1

�1

jv.z; t C ı/ � v.z; t/j2 dz
� 1
2

� � (7.1)

for all �1 � t � 1 and ı > 0 small enough. To show this, note that the square of the
left-hand side is bounded byZ 1

0

ˇ̌
v.jzj; jt j C ı/ � v.jzj; jt j/

ˇ̌2
ı1�2


dz D
1

ı1�2


Z jt jCı
jt j

dz
jzj2


D
.jt j C ı/1�2
 � jt j1�2


.1 � 2
/ı1�2

:

But since the function y 7! y1�2
 is Hölder continuous of order 1� 2
 for y 2 .0; 1/,
indeed, there exists � > 0 such that (7.1) holds true. Then, V 2 C 1

1�

.

Step 4. We conclude the proof of the lemma as follows. The previous two steps and
the interpolation inequality of the Schatten classes [18, Lemma XI.9.9] give

kSkCp � 2
1
p kT kC2kV kC 1

1�


for 1
p
D

1
2
C 1 � 
 D 3

2
� 
 . But since 
 here can be made arbitrarily close to 0, we

have that, indeed, p > 2
3

can be made arbitrarily close to 2
3

.

The Carleman-type inequality we apply next was recently implemented in [2]
in order to derive optimal asymptotic estimates for the resolvent norm of complex
potential Schrödinger operators.

Proof of Theorem 2. Let

� D
1

2
min

®
j�j W � 2 SpecL n ¹0º

¯
> 0:

Without loss of generality, we will prove that the inequality in the conclusion of the
theorem,

k.L � jEjei˛/�1k < c expŒajEjp�;

holds true for all jEj � 2�. If it happens that 1 < 2� < 1, the same conclusion
holds for 1 � jEj � 2� by continuity and compactness. If � D 1 (which has not
been ruled out in our results above), we can take � D 1 in the next steps of this
proof. Moreover, without loss of generality, we will assume that the spectrum of L is
unbounded. Otherwise, the proof follows simpler arguments.
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Our goal is to apply the next remarkable estimate from [3, (1.2)]. If an operator
B 2 Cp , then

k.B � z/�1k �
1

dist.z;SpecB/
exp

�
a1

distp.z;SpecB/
C d1

�
(7.2)

for suitable constants a1 > 0 and d1 > 0, independent of z. Here, we let

B D .L � i�/�1 2 Cp:

By Theorem 1, we know that

SpecB D
²

1

� � i�
W � 2 SpecL

³
[ ¹0º

is purely imaginary.
First, let us show that there exist constants c3 > c2 > 0, which can be chosen

uniformly in ˛ on compact sets, such that

c2

jEj
� dist

�
1

E � i�
;SpecB

�
�
c3

jEj
(7.3)

for jEj � 2�. Let zE D E � i� D j zEjei z̨. Then, ei z̨ 62 iR,

jEj

2
< j zEj <

3jEj

2

and

dist
�

1

E � i�
;SpecB

�
D inf
�2SpecL

ˇ̌̌̌
1

zE
�

1

� � i�

ˇ̌̌̌
D

1

j zEj
inf

�2SpecL

ˇ̌̌̌
1 �
j zEjei z̨

� � i�

ˇ̌̌̌
:

We estimate bounds for this infimum. On the one hand,

inf
�2SpecL

ˇ̌̌̌
1 �
j zEjei z̨

� � i�

ˇ̌̌̌
� lim inf
j�j!1
�2SpecL

ˇ̌̌̌
1 �
j zEjei z̨

� � i�

ˇ̌̌̌
D 1:

Thus, the second inequality in (7.3) holds true for c3 D 2. On the other hand, since
� 2 SpecL implies � 2 i.�1;�2�� [ i Œ2�;1/ [ ¹0º,

inf
�2SpecL

ˇ̌̌̌
1 �
j zEjei z̨

� � i�

ˇ̌̌̌
� inf
w2.�1;���[Œ�;1/

ˇ̌̌̌
1 �

i j zEjei z̨

w

ˇ̌̌̌
� dist.1; ¹�iei z̨ W � 2 Rº/:



The pseudospectrum of an operator with Bessel-type singularities 589

Since iei z̨ 62 R, then the right-hand side is positive, and there exists c2 > 0 such that
the first inequality in (7.3) is also valid.

We complete the proof of the theorem as follows. Since

.L �E/�1 D B.I � .E � i�/B/�1 D
1

zE
B
�
.E � i�/�1 � B

��1
;

then

k.L �E/�1k �
2

jEj



�B � .E � i�/�1��1


for all jEj � 2�. Hence, substituting z D 1

E�i�
and (7.3) into (7.2) yields

k.L �E/�1k < exp.a2jEjp C d1/;

ensuring the validity of Theorem 2.

A. The shape of the pseudo-modes as jE j increases

The purpose of this appendix is to illustrate the evolution of the shape of the pseudo-
modes constructed in this paper. We consider those in the proof of Proposition 1.
Below, we show two figures with graphs of u�.x/ and ju�.x/j, normalised by

ku�k D 1;

for different values of �. We have produced these figures by plotting on a computer
the exact formula

u�.x/ D
1

k�ˆk
�.x/ˆ.x/;

where ˆ.x/ is the expression (4.4) and �.x/ is as in (4.12).
In Step 2 of the proof of Proposition 1, we have used the crucial fact that the total

mass of u� in Œ�1;�1
2
� is exponentially large compared to the norm k.L � E/u�k.

See the proof of (4.14) and the bound (4.15) as j�j increases. Figure 3 shows this
phenomenon in action. As j�j increases from 10 to 100, the pseudo-mode has a trans-
itional phase from being concentrated near the origin (j�j D 10; 25) to accumulating
most of the mass in Œ�1;�1

2
� (j�j D 50; 75; 100).

We also see in the same figure (left) that the quasi-mode develops an oscillat-
ory behaviour of its real and imaginary parts. Remarkably (right) this oscillatory
behaviour completely disappears in the modulus ju�.�/j. This phenomenon has been
observed numerically in the semi-classical regime for related operators cf. [30].
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j�j D 10

�1:0 �0:5 0:5 1:0

4

2

�2

�4

Re.u.x//

lm.u.x//

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

j�j D 25

�1:0 �0:5 0:5 1:0

4

2

�2

�4

Re.u.x//

lm.u.x//

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

j�j D 50

�1:0 �0:5 0:5 1:0

4

2

�2

�4

Re.u.x//

lm.u.x//

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

j�j D 75

�1:0 �0:5 0:5 1:0

4

2

�2

�4

Re.u.x//
lm.u.x//

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

j�j D 100

�1:0 �0:5 0:5 1:0

4

2

�2

�4

Re.u.x//

lm.u.x//
�1:0 �0:5 0:0 0:5 1:0

1

2

3

4 ju.x/j

Figure 3. Here, f .x/ D x
2

and � D j�jei
9�
16 . We show the pseudo-mode u�.x/ from Proposi-

tion 1 normalised to ku�k D 1 for j�j increasing.
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� D �
32

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

� D 3�
32

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

� D �
8

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

� D 5�
32

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

� D 3�
16

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

� D 7�
32

�1:0 �0:5 0:0 0:5 1:0

1

2

3

4

ju.x/j

Figure 4. Here, f .x/ D x
2

and � D 25ei.
�
2C�/ for � increasing. We show the modulus of the

pseudo-mode ju�.x/j from Proposition 1 normalised to ku�k D 1. For � D �
16

, see Figure 3.

In Figure 4, we fix j�j D 25 and change � 2 .0; �
4
/ in the expression

� D j�jei.
�
2C�/:

When � is close to 0, we see that the mass of the pseudo-mode is mostly accumulated
at the origin. (This mass will migrate to Œ�1;�1

2
� eventually as j�j increases.) This

corresponds to E near the real axis. As � increases, E gets closer to the imaginary
axis, where the spectrum lies, and we see that ju�.x/j now concentrates towards ˙1
with most of the mass in Œ�1;�1

2
� [ Œ1

2
; 1�.
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B. Notation used in the paper

Identities Parameter Constraint or definition

x �1 � x � 1

" 0 < " < 1

.f .x/�0.x/C �.x//0 D E�.x/ f .x/ Twice continuously differentiable, odd,
analytic at x D 0, sgn.f .x// D sgn.x/

(2.1), (3.1), (3.6), (5.5) f .x/ D 2"x
1Cxr.x/

D 2"x CO.x3/

r.x/ Odd, analytic at x D 0

E E 2 C

�.x/ Solution, no prescription of BC

ˆ.xIE/ Scaled solution, ˆ.0IE/ D 1

y y D g.x/, 0 � y � b1

."yF 0.y//0 C F 0.y/ D Eh.y/F.y/ b1 b1 D g.1/

g.x/ f .x/g0.x/ D "g.x/, g.x/ � jxj
1
2

(3.1), (3.2), (3.5) F.y/ �.x/ D F.g.x//

h.y/ h.y/ D f.g�1.y//
"y

D 2y CO.y3/

G.y/ G.y/ D yˇF.y/

G00.y/ �
m2� 14
y2

G.y/ ˇ ˇ D 2
"
C
1
2
2

D 4mE.1C �.y//G.y/ �, � �2 D �4mE

� D j�jei.
�
2C�/ for 0 < � < �

4

m m D 1
2"

(4.2), (5.1) �.y/ �.y/ D h.y/
y
� 2 D O.y2/

�3.y/ �3.y/ D y�.y/

(5.50) �4.y/ �4.y/ D .1C �.y//
� 14 y�.mC

1
2 /

� y�.mC
1
2 /

t 0 < t < b2, t D
R y
0

p
1C �.s/ ds

�Z00.t/C q.t/Z.t/C `.`C1/

t2
Z.t/ b2 b2 D

R b1
0

p
1C �.s/ ds

D �2Z.t/ Z.t IE/ Z.t IE/ D .1C �.y//
1
4G.y/

` ` D 1
2"
�
1
2
D m � 1

2

(5.3), (5.4), (5.7) q.t/ q W Œ0; b2�! R is continuous and
bounded. See Lemma 5

�.x/ �.x/ D
R g.x/
0

p
1C �.s/ ds � jxj

1
2

Table 1. Relation between the notation and changes of variables used throughout the paper.
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