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Bound states in bent soft waveguides

Pavel Exner and Semjon Vugalter

Abstract. The aim of this paper is to show that a two-dimensional Schrödinger operator with
the potential in the form of a ‘ditch’ of a fixed profile can have a geometrically induced discrete
spectrum. This occurs if such a potential channel has a single or multiple bends, being straight
outside a compact. Moreover, under stronger geometric restrictions, the claim remains true in
the presence of a potential bias at one of the channel ‘banks.’

To Brian Davies on the occasion of his 80th birthday

1. Introduction

The behavior of quantum particles confined to tubular regions has attracted a lot of
attention in recent decades, with motivation coming from two sources. On the physics
side, it was the possibility to use such models to describe a guided dynamics in various
condensed matter systems. At the same time, this appeared to be a source of interest-
ing mathematical problems, in particular, those concerning spectral effects coming
from the geometry of the confinement; for an introduction to the topic and a bibliog-
raphy, we refer to the book [7].

There are different ways to localize a particle in the configuration space. One
possibility is a hard confinement where the Hamiltonian is typically the Dirichlet
Laplacian associated with a tube in Rd (or more complicated regions such as layers,
networks, etc.). From the point of view of application to objects like semiconduc-
tor wires, such a model has a drawback: it does not take into account the tunneling
between different parts of the waveguide. This fact motivated investigation of the
‘leaky’ confinement in which the Hamiltonian is instead a Schrödinger operator with
an attractive singular interaction supported by a curve (or a surface, metric graph,
etc.). To have it well defined, the codimension of the interaction support must not
exceed three.
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If we stay for simplicity in the two-dimensional situation, both models exhibit
curvature-induced bound states: whenever the strip, or the curve supporting the ı
interaction, is non-straight but asymptotically straight, the corresponding Hamiltonian
has a non-void discrete spectrum. This claim is valid universally modulo technical
requirements on the regularity and asymptotic behavior.

The leaky guide model has another drawback in assuming that the interaction
support has zero width. This recently motivated the investigation of a more realistic
situation when the potential in the Schrödinger operator is regular in the form of a
channel of a fixed profile [3, 4]. The term coined was soft waveguides; the analogous
problem was studied in three dimensions [5] as well as for soft layers [2,12]. One has
to add that such operators were considered before [6,16], however, the focus was then
on the limit in which the potential shrinks transversally to a manifold; in the physics
literature, the idea of determining the right ‘quantization’ on a manifold through such
a limit was examined a long time ago [11, 15].

Not very surprisingly, soft waveguides were already shown to share properties
with their hard and leaky counterparts, an example is the ground state optimization
in a loop-shaped geometry [8]. Some results have also been obtained concerning the
problem we are interested in here, the existence of curvature-induced bound states,
however, so far they lack the universal character indicated above. In [3, 4] Birman–
Schwinger principle was used to derive a sufficient condition under which the discrete
spectrum is nonempty, expressed in terms of positivity of a certain integral which, in
general, is not easy to evaluate. An alternative is to apply the variational method; in
this way, the existence was established in the example of a particular geometry, often
referred to as a ‘bookcover’ [10]. We note in passing that it is paradoxically easier
to establish the existence in conic-shaped soft layers, where the discrete spectrum is
infinite [2, 12].

The trouble with the variational approach is that it is not easy, beyond the sim-
ple example mentioned, to find a suitable trial function. The aim of this paper is to
extend the existence result using a variational method to a much wider, even if still
not optimal class of soft waveguides. The main restrictions in our analysis are the
limitation of the curved part into a bounded region, a compact support of the potential
defining the channel profile, and the requirement of the profile symmetry. The latter
restriction can be relaxed in some situations, in particular, if the profile potential is
sign-changing and the transverse part of the operator, the operator (2.2) below, has a
zero-energy resonance.

We will also consider the situation when the system has a constant positive poten-
tial bias in one of the regions separated by the profile potential support. In this case, we
have a stronger geometric restriction: we have to assume that one of the two regions
is convex. If the bias potential is supported in it, we can again prove the existence of
a discrete spectrum, even without the symmetry assumption. If the bias is supported



Bound states in bent soft waveguides 429

in the opposite region, we have the existence again, however, except in the situation
when the operator (2.2) has a zero-energy resonance; this is in agreement with the
result of [9] where we treated a system which can be regarded as a singular version
of the present system. Let us stress that the convexity makes it also possible to prove
the existence in the absence of the bias and the symmetry restriction, provided that
operator (2.2) has a negative eigenvalue.

In the following section, we will state the problem in proper terms and present the
main results. The rest of the paper is devoted to the proofs. The next two sections deal
with the case without the bias; in Section 3 we prove Theorem 2.2 (a) which concerns
the situation when the operator (2.2) has a zero-energy resonance, Section 4 provides
the proof of Theorem 2.4 (a) which addresses the case when the operator has a neg-
ative eigenvalue and the channel profile is symmetric. Finally, in Section 5 we prove
Theorem 2.2 (b) and Theorem 2.4 (b), which establish the existence results in the sit-
uation when one of the two regions to which the potential channel, not necessarily
symmetric, divides the plane is convex. This holds even in the absence of the bias,
except in the zero-energy resonance case.

2. Statement of the problem and main results

Let us now state the problem described in the introduction. We begin with the assump-
tions which are split into two groups: the first one concerns the support of the poten-
tial; the other the channel profile. The former is a strip built around a curve � , under-
stood as the graph of a function �WR! R2 such that j� 0.s/j D 1. Without repeating
it at every occasion, we always exclude the trivial situation when � is a straight line.
In addition, we suppose the following.

(s1) � is C 1, piecewise C 3-smooth, non-straight but straight outside a compact.
Its curved part consists of a finite number of segments such that on each of
them the monotonicity character of the signed curvature �.�/ of � and its sign
are preserved.

(s2) j�.sC/ � �.s�/j ! 1 as s˙ !˙1. In other words, the two straight parts
of � are either not parallel, or if they are, they point in the opposite directions.

(s3) The strip neighborhood�a´¹x 2R2 W dist.x;�/<aº of � with a halfwidth
a > 0 does not intersect itself.

Assumption (s3) has various equivalent expressions: one can say, for instance, that the
function dist.x; �.�// has for any fixed x 2 �a a unique minimum, or that the map

x.s; t/ 7! .�1.s/ � t� 02.s/; �2.s/C t� 01.s// (2.1)
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Figure 1. Scheme of the waveguide

from the straight strip �a0 ´ R � .�a; a/ to R2 is a bijection, in fact, a diffeomor-
phism; En.s/ D .�� 02.s/; � 01.s// is, of course, the (inward) normal to the curve at the
point �.s/. Under assumption (s1), the signed curvature �.s/D .� 02� 001 � � 01� 002 /.s/ is
piecewise smooth and compactly supported function; a necessary, but in general not
sufficient, condition for (s3) to hold is ak�k1 < 1, which ensures the local injectivity
of the map. The curve divides the plane into open regions which we denote as �˙;
for the sake of definiteness, we assume that �C is on the left side when one looks in
the direction of the increasing arc length variable s.

We also introduce �a
˙
´ �˙ \�a so that we have �a D �aC [ � [�a�; given

our choice of the normal orientation, the labels correspond to the sign of the transver-
sal variable t . Finally, we will use a natural symbol for the complement of the strip,
namely �out ´ R2 n�a, and its one-sided components will be denoted as �out

˙
´

�˙ n�a – cf. Figure 1.
The second group of assumptions concerns the potential. Its profile is determined

by a function vWR! R of which we assume

(p1) v 2 L2.R/ and supp v � Œ�a; a�.
In some situations, specifically in Theorem 2.4 (a) below, we will require it addition-
ally to be mirror-symmetric,
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(p2) v.t/ D v.�t / for t 2 Œ�a; a�.
In addition to the potential defining the channel, we are going to consider, in general,
also a one-sided potential bias of the system. To this aim, we introduce the one-dimen-
sional Schrödinger operator

h´ � d2

d t2
C v.t/C V0�Œa;1/.t/; V0 � 0: (2.2)

The crucial role will be played by the spectral bottom of this operator, specifically we
will be concerned with the following two possibilities.

(p3) inf �.h/ is a negative (ground state) eigenvalue � associated with a real-
valued eigenfunction �0 which we may without loss of generality normalize
by the requirement �0.�a/ D 1.

(p4) The operator h has a zero-energy resonance (virtual level), meaning that
h � 0 and �.1 � "/ d2

d t2
C v.t/C V0�Œa;1/.t/ has a negative eigenvalue for

any " > 0. In this case, the equation h�D 0 has a solution �0 2 PH 1.R/where
PH 1.R/ is the Hilbert space with the norm k�k2 ´ R

jxj�1
j�.x/j2 d x CR

R j�0.x/j2 d x , cf. [1]. Since supp v � Œ�a; a�, this solution is nonzero and
constant for jt j > a in the absence of the bias, for V0 > 0 this is true for
t < �a only. The solution will be again supposed to satisfy the normaliza-
tion condition �0.�a/ D 1.

The main object of our interest is the Schrödinger operator

H�;V D ��C V.x/ (2.3a)

on L2.R2/ with the potential defined using the locally orthogonal coordinates .s; t/
appearing in (2.1) as

V.x/ D

8̂̂<̂
:̂
v.t/ if x 2 �a;
V0 if x 2 �Cn�a;
0 otherwise.

(2.3b)

We will often drop the subscript of H�;V if it is clear from the context.

Proposition 2.1. Under assumptions (s1)–(s3) and (p1), the operator (2.3) is self-
adjoint, D.H�;V / D H 2.R2/, and its essential spectrum is the same as for � being
a straight line, �ess.H�;V / D Œ�;1/. The threshold � is the lowest eigenvalue of h
if (p3) is valid, while if the discrete spectrum of h is empty, we have � D 0.

Proof. The self-adjointness is easy to check: it is sufficient to ascertain, using assump-
tion (p1), that the potential (2.3b) is infinitely small with respect to ��. We will do
it in the form sense using the KLMN theorem [13, Section X.1] by checking that
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to any a > 0 there is a b > 0 such that . ; V / � akr k2 C bk k2 holds for
all  2 H 1.R2/. Suppose first that V0 D 0. We decompose any such  into a sum
 D  C C  0 C  � of H 1 functions such that supp ˙��a contains the straight
parts of the strip and supp 0��a is bounded and contains the curved part. To the
latter, the theorem applies directly since V�supp 0

2 L2. In the straight parts, we get
first using (p1) the one-dimensional version of the inequality in the transverse vari-
able; then we lift it to two dimensions using the inequality k@t k2 � kr k2. The
constants bj ; j D 0;˙, in the obtained inequalities are in general different; we put
b ´ 3max¹bC; b0; b�º. Using then the triangle and Schwarz inequalities, which, in
particular, give k k2 � 3Pj k j k2, we arrive at the desired conclusion. Finally, the
self-adjointness is certainly not affected by adding the bounded potential V0��outC .

The identification of the essential spectrum of H�;V with the interval Œ�;1/,
where � D inf �.h/, was established in [3, Proposition 3.1] under slightly differ-
ent assumptions. The argument can be easily modified for our present purpose; the
requirement on the smoothness of � we made is stronger than there, and neither the
substitution of a bounded negative v by a possibly sign indefinite square integrable
one, nor the addition of a potential bias alters the conclusion.

Note also that the above Hamiltonian can be investigated using the associate
quadratic form Q�;V , mostly written without the indices specifying the curve and
the potential, and defined by

QŒ �´ kr k2 C
Z
�

V.x/j .x/j2 d x; D.Q/ D H 1.R2/: (2.3c)

In the absence of the potential bias the potential of the profile v is integrated over�a,
while for V0 > 0 we have in addition V0

R
�outC
j .x/j2 d x on the right-hand side.

Now, we are in position to state our main results. The assumptions may appear in
various combinations. We group them according to the spectral threshold � starting
with the situation when operator (2.2) has a zero-energy resonance.

Theorem 2.2 (Threshold resonance case). Assume (s1)–(s3), (p1), and (p4); then the
following claims are valid.

(a) If the bias is absent, V0 D 0, and

Œ�0.a/
2 � �0.�a/2�

Z
R

�.s/ d s � 0 (2.4)

holds, then H�;V has at least one negative eigenvalue.

(b) The same is true if V0 > 0 and �C is convex.



Bound states in bent soft waveguides 433

Remark 2.3. Recall that by assumption � does not vanish identically. Condition (2.4)
is naturally satisfied if �0.a/ D �0.�a/, in particular, under the mirror-symmetry
assumption (p2). Consider further the asymmetric situation, �0.a/ ¤ �0.�a/, and
recall that the integral in (2.4) equals � � 2� where 2� is the angle between the
asymptotes. Consequently, at least one bound state exists then in the zero-energy res-
onance case if the asymptotes of � are parallel and pointing in the opposite directions,
� D 1

2
� , or if they are not parallel and the resonance solution �0 is larger at the ‘outer’

side of the strip �a.

If h has negative eigenvalues so that � < 0, the situation is more complicated and we
have to make stronger restrictions on the profile or the shape of the waveguide.

Theorem 2.4 (Eigenvalue case). Assume (s1)–(s3) together with (p1) and (p3). Then
�disc.H�;V / is nonempty under any of the following conditions:

(a) V0 D 0 and assumption (p2) is satisfied;

(b) V0 � 0 and one of the regions �˙ is convex.

3. Proof of Theorems 2.2 (a) and 2.4 (a)

With the later purpose in mind, we will formulate the argument first in the general
situation which involves both the bound-state and zero-energy-resonance cases as well
as the possible potential bias. In view of Proposition 2.1, it is sufficient to construct a
trial function  2 H 1.R2/ such that QŒ � < �k k2. Let us first fix the geometry. If
the two straight parts of � are not parallel – cf. Figure 1 – their line extensions intersect
at a point which we choose as the originO , and use polar coordinates with this center,
in which the two halflines correspond to the angles ˙�0 for the appropriate �0 2
.0; 1

2
�/. Furthermore, we fix the point s D 0 in such a way that for large jsj the points

with the coordinates˙s have the same Euclidean distance from O – cf. Figure 2.
If the asymptotes are parallel (and pointing in the opposite directions according

to (s2)), we choose the origin as the point with equal distance from the endpoints of
the two halflines. The point with s D 0 on the curve is likewise chosen so that those
with the coordinates ˙s have the same Euclidean distance from the origin; in both
cases one can check easily that such a choice is unique.
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Figure 2. Parallel and polar coordinates used in the proof

3.1. Trial function inside the strip

For fixed values s0, such that the points with coordinates ˙s0 lay outside the curved
part of � , and s� > s0, to be chosen later, we define

�in.s/´

8̂̂<̂
:̂
1 if jsj < s0;
ln s�
jsj

�
ln s�
s0

��1 if s0 � jsj � s�;
0 if jsj > s�:

(3.1)

Recalling that �0 is the ground-state eigenfunction or the zero-energy solution nor-
malized by �0.�a/ D 1, we put

 .s; t/ D �0.t/�in.s/C �g.s; t/; jt j � a; (3.2)

where the parameter � and the function g, compactly supported within .�s0; s0/ �
.�a; a/, will be chosen later. We denote by QintŒ � the contribution to the shifted
quadratic form, QŒ � � �k k2, coming from the strip �a, which can be using the
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parallel coordinates expressed as

QintŒ � D
Z
jt j�a

°�@ 
@s

�2
.1 � �.s/t/�1 C

�@ 
@t

�2
.1 � �.s/t/

C .v.t/ � �/j j2.1 � �.s/t/
±

d s d t:

The first term on the right-hand side can be estimated asZ
jt j�a

�@ 
@s

�2
.1 � �.s/t/�1 d s d t � 2��10 k�0�Œ�a;a� k2k�0ink2 C C�2;

where the norm refers to L2.R/, �0´ 1� ak�k1 is positive by (s3), and C depends
on the function g only; we will use the same letter for generic constants in the follow-
ing. Note that choosing the parameter s� in (3.1) large one can make for any fixed s0
the norm k�0ink D

�
ln s�
s0

��1� 1
s0
� 1
s�
�1=2 small. As for the other two terms, we haveZ

jt j�a

°�@ 
@t

�2
.1 � �.s/t/C .v.t/ � �/j j2.1 � �.s/t/

±
d s d t

D
Z
jt j�a

®
.�00.t//

2 C .v.t/ � �/j�0.t/j2
¯
�2in.s/.1 � �.s/t/ d s d t

C 2�
Z
jt j�a

°
�00
@g

@t
C .v.t/ � �/�0g

±
�in.s/.1 � �.s/t/ d s d t

C �2
Z
jt j�a

°�@g
@t

�2
C .v.t/ � �/jgj2

±
.1 � �.s/t/ d s d t; (3.3)

where the last term on right-hand side can be again estimated by C�2 with a C
depending on the function g only. Furthermore, integrating the middle term by parts
with respect to t , we get

2�

Z
jt j�a

Œ��000 C .v.t/ � �/�0��in.s/g.s; t/.1 � �.s/t/ d s d t

C 2�
Z
jt j�a

�00.t/�in.s/g.s; t/�.s/ d s d t; (3.4)

where the square bracket in the first integral is zero by assumption.
Notice next that �00 cannot vanish identically in the interval Œ�a; a�. Indeed, it

is continuous in R and we have v.t/ D 0 for jt j > a, hence should the derivative
�00 be zero in Œ�a; a�, the function must have been a constant one; however, that is
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impossible for an eigenfunction or a zero-energy resonance solution. This observation
allows us to choose the function g in such a way that the last integral is negative. To
this aim, it suffices to have it supported in a region where both �00 and � do not change
sign – recall that �in.s/ D 1 holds on the support of � – and to pick the sign of g.s; t/
accordingly. With such a choice, expression (3.4) will be equal to �ı�, where �ı < 0
is the value of the last integral. For small �, this linear term will dominate over those
estimated by C�2, and, consequently, there is a �0 > 0 such that, for all � 2 .0; �0/
and any s0; s� indicated in (3.1), the sum of the last two terms on the right-hand side
of (3.3) will be smaller than �1

2
ı�. Note that, for a fixed v determining �0 and �, and

fixed g.s; t/, the value �0 depends continuously on �. Hence, if we have two curves
� and z� , the curvatures of which do not differ much, the corresponding values of �0
are close to each other too; we will use this fact later in Section 4.3.

It remains to deal with the first term on the right-hand side of (3.3). To simplify
the notation, we introduce the following symbols:

�C D �0.a/; �C D �
p
j�j C V0; �� D

p
j�j; (3.5)

which allows us to write �00.a/ D �C�C and �0.�a/ D ��. Recall that �0.�a/ D 1
holds by assumption. The expression in question then can be rewritten using integra-
tion by parts as follows:Z

jt j�a

®
.�00.t//

2 C .v.t/ � �/j�0.t/j2
¯
�2in.s/.1 � �.s/t/ d s d t

D
Z
R

�
�C�

2
C.1 � �.s/a/ � ��.1C �.s/a/

�
�2in.s/ d s

C
Z
jt j�a

���000 .t/C .v.t/ � �/�0.t/��0.t/.1 � �.s/t/�2in.s/ d s d t

C
Z
jt j�a

�00.t/�0.t/�.s/�
2
in.s/ d s d t

D Œ�C�2C � ���k�ink2 � Œ�C�2C C ���a
Z
R

�.s/�2in.s/ d s

C 1

2
.�2C � 1/

Z
R

�.s/�2in.s/ d s; (3.6)

where the norm in the last expression refers to L2.R/ and we have used the identity
�00�0 D 1

2
.�20/

0. Since � has a compact support and �2in.s/ D 1 holds on it by (3.1),
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we can replace the integrals in the last part of (3.6) by
R

R �.s/ d s. Summarizing the
estimate, we have obtained for all sufficiently small � the inequality

QintŒ � � � 1
2
ı� C Œ�C�2C � ���k�ink2 � Œ�C�2C C ��� a

Z
R

�.s/ d s

C 1

2
.�2C � 1/

Z
R

�.s/ d s C ��10 k�0�Œ�a;a� k2k�0ink2: (3.7)

Choosing for a fixed � 2 .0; �0/ and �0 D 1 � ak�k1 the ratio at the right-hand side
of (3.1) as s�

s0
� 1, one can achieve that the last term in (3.7) will be smaller than

1
4
ı�.

This general estimate simplifies in various situations indicated above. In particu-
lar, the assumptions (p2) and V0 D 0 used in Theorem 2.4 (a) imply �C D �� D 1
and �� D ��C, so that (3.7) becomes

QintŒ � � �1
4
ı� � 2j�j1=2k�ink2 (3.8)

for all � 2 .0; �0/, the ratio s�
s0

large enough, and s0 such that the points referring to
the curved part of � are inside Œ�s0; s0�. On the other hand, assumption (p4) used in
Theorem 2.2 (a) together with the absence of the bias, V0 D 0, means that �˙ D 0,
so the second and the third term on the right-hand side of (3.7) vanish, and since
the fourth one is now supposed to be non-positive, the estimate reduces simply to
QintŒ � � �14ı�.

3.2. Completing the proof of Theorem 2.2 (a)

In view of the last observation, to conclude the proof of Theorem 2.2 (a) we have thus
to choose the outer part of trial function in such a way that its contribution to the
quadratic form can be made smaller than any fixed positive number. Under assump-
tion (p4), �0 is constant outside the potential support, �0.t/ D �˙ for ˙t � a; we
recall that �� D 1 by assumption. We choose the trial function outside �a as the �˙
multiplier of the mollifier �out of which we require the following properties:

(i) in R2 n�a the function �out depends on � D dist.x;O/ only;

(ii) we have continuity at the boundary: at the points x.s;˙a/ the relation
�out.x/ D �in.s/ holds.

Let us consider the situation where the extensions of the asymptotes of � cross;
the case of parallel asymptotes pointing in the opposite directions can be dealt with
analogously. We again choose s0 in such a way that the points �.˙s0/ belong to
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the straight parts of the curve, then dist.�.s/; O/ D �s ´ .jsj � s0/ C d0, where
d0 D dist.�.s0/; O/ (recall that �.�s0/ D �.s0/ holds by assumption).

Given that the distance of the points x.s;˙a/ from the origin is
p
�2s C a2, in

accordance with requirements (i) and (ii) we put

�out.�/´
´
�in.

p
�2 � a2 � d0 C s0/ if

p
�2 � a2 � d0;

1 if � � pd20 C a2

This, in particular, means that �out vanishes if its argument exceeds s�, in other words,
for � >

p
.s� � s0 C d0/2 C a2. Since � D 0 holds by assumption and the potential

is zero away from �a, the quantity to be estimated is the kinetic energy contribution
to the form (2.3c) from the outer part of the trial function,Z
�n�a

jr out.x/j2 d x

� 2� max¹�2C; 1º

p
.s��s0Cd0/2Ca2Z
q
d2

0
Ca2

ˇ̌̌ d
d �
�in.

p
�2 � a2 � d0 C s0/

ˇ̌̌2
� d �: (3.9)

Relation (3.8) tells us that one can choose parameters ı and � for which the inner
contribution to the form is negative (using a sufficiently large s�), hence to prove the
claim it is enough to show that the integral on the right-hand side of (3.9) vanishes
if s0; d0 !1 with the difference s0 � d0 bounded and s�

s0
!1. The values of the

integrated function on the support of r out can be expressed using (3.1) to beˇ̌̌ d
d �
�in.

p
�2 � a2 � d0 C s/

ˇ̌̌2
D
ˇ̌̌�

ln
s�

s0

��1 1p
�2 � a2 � d0 C s0

@s

@�

ˇ̌̌2
D
�

ln
s�

s0

��2
.
p
�2 � a2 � d0 C s0/�2;

because @s
@�
D 1 in the considered region. Substituting from here to (3.9), we getZ

�n�a

jr out.x/j2 d x

� 2� max¹�2C; 1º
�

ln
s�

s0

��2 p.s��s0Cd0/2Ca2Z
q
d2

0
Ca2

� d �

.
p
�2 � a2 � d0 C s0/2

Since s0 � d0 is bounded and a is fixed, we can choose a c 2 .0; 1/ in such a way thatp
�2 � a2 � d0 C s0 � c�
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holds for all � � pd20 C a2, in which case we haveZ
�n�a

jr out.x/j2 d x � 2�c�2 max¹�2C; 1º
�

ln
s�

s0

��2
ln �

ˇ̌̌p.s��s0Cd0/2Ca2q
d2

0
Ca2

: (3.10)

Using again the fact that s�; d0 !1 while a is fixed and s0 � d0 bounded, we see
that the parameters can be chosen so that

ln

p
.s� � s0 C d0/2 C a2q

d20 C a2
� ln

c�s�

c0s0
D ln

s�

s0
C ln c� � ln c0 (3.11)

for c� > 1 and c0 2 .0; 1/. Substituting from (3.11) into (3.10), we get the needed
result; this concludes the proof of Theorem 2.2 (a).

4. Completing the proof of Theorem 2.4 (a)

Let us pass to the situation where there is again no bias, V0 D 0, the channel profile
is symmetric, and the transverse operator (2.2) is subcritical, � < 0.

4.1. Trial function outside �a

This is the most difficult part of the argument. For the interior, we can use the result of
Section 3.1 noting that in view of the assumption (p2) we have �C D 1 and �C D���
which means that the inequality (3.8) is still valid. To begin with, we introduce in�out

function � defined as

�.x/´ exp¹��.dist.x; �/ � a/º; x 2 R2 n�a; (4.1)

where � ´ �� D ��C D j�j1=2. The sought trial function will be then of the form
 out D ��out with the mollifier �out to be specified below. As before, we will focus on
the situation where the asymptotes of � are not parallel, the case with �0 D �

2
can be

treated in a similar way.
Since �0 > 0 by assumption, we can choose conical neighborhoods of the asymp-

totes which do not intersect, that is, to pick��0 sufficiently small so that Œ��0 ���0;
��0 C ��0� \ Œ�0 � ��0; �0 C ��0� D ;. Furthermore, we pick an r0 > 0 large
enough to ensure that the curved part of � is contained in the disk of one half that
radius, B 1

2 r0
.O/, centered at the coordinate origin O . In addition, we assume that s0

in (3.1) is sufficiently large so that the parts of � with jsj > s0 are outside the disk
Br0.O/ of the doubled radius. At the points of the corresponding conical sectors, x D
.�;�/ 2R2 nBr0.O/with � 2 Œ�0 ���0; �0C��0� or � 2 Œ��0 ���0;��0C��0�,
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we can use the .s; t/ coordinates – cf. Figure 3 – and define the mollifier �out depend-
ing on the longitudinal variable only,

�out.s; t/ D �in.s/;

where the right-hand side is given by (3.1). Furthermore, at the points x2Br0.O/ n�a
we put �out.x/ D 1, and finally, in the remaining part of the plane we choose �out

independent of � ; in other words, as a function of the distance � from the origin O
only, and such that �out is continuous in �out. It is clear that the radial decay of such
an external mollifier is determined by the behavior of the function (3.1).

s

Os

K

KC

0

B 1
2 r0
.O/

Figure 3. The regions used in the proof of Theorem 2.4

Since the potential is supported in�a, the contribution to the quadratic form (2.3c)
in the exterior region comes from the kinetic term only. The trial function factorizes
into a product and our first goal is to show that the cross-term containing the integral
of 2r� � r�out is small for large r0; in particular, that one can make it smaller than
1
16
ı� with respect to the quantities appearing in (3.8).
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Lemma 4.1. We haveZ
�out

jr out.x/j2 d x �
Z
�out

jr�.x/j2�2out.x/ d x

C
Z
�out

j�.x/j2jr�out.x/j2 d x CO.r�10 / as r0 !1: (4.2)

Proof. Since outD ��out for x 2�out, we have to estimate the integral
R
�out
jr�.x/ �

r�out.x/jdx to deal with the cross-term. To this aim, we first note that �out D 1 holds
inside Br0.O/ so we have to consider only the complement of the disk. In the conical
sectors of R2 nBr0.O/with � 2 Œ˙�0 ���0;˙�0C��0�, the point nearest to .x; �/
lies on the straight part of � , as the distance to it is at most ��� < 1

2
� while that to the

curved part is at least � � 1
2
r0 >

1
2
�. This implies that r� is perpendicular to r�out,

and the corresponding contribution to the integral vanishes too. Finally, in view of
our definition of �out in combination with (3.1), we see that r�out is bounded outside
Br0.O/ and the two sectors, and, furthermore, we have jr�.x/j � ��.x/ � C e��=2

which yields Z
�out

jr�.x/ � r�out.x/j d x � C 0
Z
�out

jr�.x/j d x D O.r�10 /

as r0 !1 which we set out to prove.

Let us turn to the second term on the right-hand side of (4.2).

Lemma 4.2. We haveZ
�out

j�.x/j2jr�out.x/j2 d x D O.r�10 / as r0 !1: (4.3)

Proof. The integral over the disk Br0.O/ is again zero and using an argument anal-
ogous to that of the previous proof, one can check that the integral over the region
outside the conical sectors is O.r�10 / as r0 !1. Inside the sectors, we have

j�.x/j2jr�out.x/j2 D j�0.t/j2j�0in.s/j2 � j�0in.s/j2

with �in given by (3.1); recall that outside �a the function �0 decays exponentially
with the distance from � and �0.˙a/ D 1 holds by assumption. Hence, the integral
in (4.3) can be estimated by the squared norm of �0in, and since to a given r0 the value
of s0 was chosen so that the parts of � with jsj > s0 lay outside Br0.O/, one can
pick an s� D s�.r0/ in such a way that ln s�

s0
> Cr0 for some C > 0, and the claim

follows.
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Combining these two lemmata, we see that for any fixed � 2 .0;�0/ one can choose
r0; s0, and s�

s0
sufficiently large to satisfy the inequalityZ
�out

jr out.x/j2 d x �
Z
�out

jr�.x/j2�2out.x/ d x C 1

8
ı�: (4.4)

Next, we note that in Theorem 2.4 (a) the bias is absent, V0 D 0, which means that
function (4.1) satisfies

jr�j2 � �j�j2 D 2jr�j2

almost everywhere in �out. This means that we can estimate the whole exterior con-
tribution to the form QŒ � � �k k2 by doubling the kinetic term and neglecting the
one containing the eigenvalue �. Combining then estimates (3.8) and (4.4), we further
infer that in order to prove the theorem it is sufficient to check that

2

Z
�out

jr�.x/j2�2out.x/ d x � 2j�j1=2k�ink2 C 1

8
ı�

holds for some � 2 .0;�0/ and sufficiently large r0; s0, and s�
s0

depending on the values
of ı and �. Moreover, this is, in view of jr�j2 D ��j�j2, further equivalent toZ

�out

j�.x/�out.x/j2 d x � j�j�1=2k�ink2 C 1

16
j�j�1ı�: (4.5)

The rest of the proof consists of verification of inequality (4.5). To begin with,
we estimate the contribution to its left-hand side from the parts of the plane adjacent
to the straight parts of the waveguide; we choose them as conical sectors similar to
those used in the proof of Lemma 4.1. We recall that for x D .�; �/ with � � r0 and
� 2 Œ˙�0 ���0;˙�0 C��0� we can use the .s; t/ coordinates simultaneously with
the polar ones. We choose an Os � r0 so that the parts of � with jsj � Os lay outside
Br0.O/, and at the same time we choose s0 of (3.1) in such a way that s0 > Os. Then
we define

K˙´ ¹xW jsj � Os; jt j � a; � 2 Œ˙�0 ���0;˙�0 C��0�º: (4.6)

Within these sets, the closest points of � are those on the straight parts of the curve
with the same coordinate s. Then it is easy to see thatZ

�out\¹KC[K�º

j�.x/�out.x/j2 d x � j�j�1=2k�ink2L2..�1;�Os�[ŒOs;1//
(4.7)

It remains to integrate the function j��outj2 over �out n ¹KC [ K�º. Obviously,
the integral will increase if we replace �out by one, hence to complete the proof, it
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is in view of (3.8) and (4.7) enough to check the following inequality for the fixed ı
given by our choice of the function g, some � 2 .0; �0/, r0 > 0 and ��0 > 0:Z

�outn¹KC[K�º

j�.x/j2 d x � 2Osj�j�1=2 C 1

16
j�j�1ı�I (4.8)

we have used here the fact that k�ink2L2..�Os;Os//
D 2Os. Let us note that it is easy to see

that if (4.8) holds for some r0, the same is true for any r 00 > r0.

4.2. Curves with a piecewise constant curvature

We divide the verification of inequality (4.8) into two parts, considering first a partic-
ular class of the generating curves assuming additionally that

(s4) � is a C 1 curve consisting of two halflines and a finite array of circular arcs;
we allow some of these arcs to be straight segments of a finite length.

Consequently, the signed curvature �.�/ of such a curve is a step function, being zero
on the straight parts of � . To estimate the indicated integral under the additional
assumption (s4), the two parts of � corresponding to jsj > Os will be considered as
arcs of zero curvature, cf. Remark 4.4 below. First of all, we note that the function
dx WR! RC, defined by dx.s/´ dist.x; �.s//, is C 1-smooth for any x 2 R2, and
under the assumption (s4) it is piecewise monotonous because on each arc it can have
at most one extremum. At the same time, dx.s/!1 holds as s ! ˙1, hence the
function has a global minimum at a point s0x , positive as long as x does not lie on the
curve, and in view of its continuity it may also have a finite number of local extrema.
Among those, the extrema with largest and smallest value of s are clearly both min-
ima. As a result, the numbers of local extrema with s < s0x and s > s0x are both even;
they come in pairs of an adjacent minimum and maximum. Let s1x and s2x be the coor-
dinates of such a pair, respectively; then we have obviously dx.s1x/ < dx.s

2
x/, and

consequently

exp¹�2�.dx.s1x/ � a/º � exp¹�2�.dx.s2x/ � a/º � 0: (4.9)

Let us denote by M"x the subset of coordinates of the local maxima and by M#x the
subset of coordinates of all the minima. Summing the inequalities (4.9) over the pairs
of local extrema, we getX

si
x2M

#
x

si
x¤s

0
x

exp¹�2�.dx.six/ � a/º �
X

si
x2M

"
x

exp¹�2�.dx.six/ � a/º � 0:
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a
j

j

!3j

!1j

!2j
2a

Figure 4. The regions appearing in Proposition 4.3

Adding finally exp¹�2�.dx.s0x/ � a/º to both sides of this inequality, we arrive at

exp¹�2�.dx.s0x/ � a/º � �
X

si
x2M

"
x

exp¹�2�.dx.six/ � a/º

C
X

si
x2M

#
x

exp¹�2�.dx.six/ � a/º; (4.10)

for all x 2 �out, where the last sum now runs over all the minima. To estimate the
integral in (4.8), we have to integrate the right-hand side of (4.10) over �out n ¹KC [
K�º. To this aim, let us first collect several simple geometric statements easy to check.

Proposition 4.3. Let �j be one of the arcs of � and denote by !1j ; !2j ; !3j , and �aj
the open regions shown in Figure 4. Then the following holds true.

(i) If x 2 !1j [ !2j , then dx.�/ has a minimum in the interior of �j .

(ii) If x 2 !3j , then dx.�/ has a maximum in the interior of �j .

(iii) x 62 N!1j [ N!2j [ N!3j [ x�aj , then dx.�/ has no extremum on �j .

(iv) dx.�/ cannot have more than one critical point in the interior of �j .

(v) If x 2 !kj for any of k D 1; 2; 3, then the one-sided derivative d 0x.s/¤ 0 at
the endpoints of �j .

Remark 4.4. With an abuse of terminology, we include into (s4) also situations when
a �j is a straight segment, that is, �.s/D 0 holds on �j . In that case the wedge-shaped
regions!1j and!2j become semi-infinite strips and!3j does not exist. This concerns,
in particular, the two straight parts of � corresponding to jsj > Os.
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Within the regions, we introduced the minimal and maximal distances are easily
expressed; we have

dx.s
i
x/D dist.x; �j / if six 2 �j \M#x I

dx.s
i
x/D j�j j�1 C dist.x;Oj / if six 2 �j \M"x ;

(4.11)

where Oj is the center of the corresponding circular arc.
Let �1;2j and �3j be the characteristic functions of the sets !1j [ !2j and !3j ,

respectively. In view of Proposition 4.3 and relations (4.11), we can replace the first
term at the right-hand side of (4.10), everywhere except the zero measure set referring
to the boundaries of the regions !kj ; k D 1; 2; 3, with

�
X
j

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º�3j .x/ (4.12)

and the second term similarly byX
j

exp¹�2�.dist.x; �j / � a/º�1;2j .x/ (4.13)

Integrating now (4.12) and (4.13) over �out n ¹KC [K�º and exchanging the order
of integration over x with summation over j , using (4.10) we can estimateZ

�outn¹KC[K�º

exp¹�2�.dx.s0x/ � a/º d x

from above byX
j

Z
.!1j[!2j /\¹�outn¹KC[K�ºº

exp¹�2�.dist.x; �j / � a/º d x

�
X
j

Z
!3j\¹�outn¹KC[K�ºº

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x; (4.14)

where the sums run over all the indices of �j including those of the straight segments
of the curve with jsj> Os. Note that this estimate includes in general a double counting
since the same x may belong to different !kj ; this does not matter as long as we
consider the contributions referring of a given �j together.

Our next goal is to show that expression (4.14) cannot decrease if we replace the
integration domains by .!1j [ !2j / n ¹KC [ K�º and !3j n ¹KC [ K�º, respec-
tively. To this aim, consider a fixed arc �j0

and the respective segment�aj0
of the strip

�a as indicated in Figure 4. For a point x 2 �aj0
, the function dx.�/ has the global
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minimum on �j0
with a coordinate s0x and all the local extrema, if they exist, come in

pairs situated outside �j0
. This yields the estimate

0 � �
X

si
x2M

"
x

exp¹�2�.dx.six/ � a/º C
X

si
x2M

#
x

si
x¤s

0
x

exp¹�2�.dx.six/ � a/º:

Using again Proposition 4.3, we get for any x 2 �aj0
the inequality

0 � �
X
j¤j0

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º�3j .x/

C
X
j¤j0

exp¹�2�.dist.x; �j / � a/º�1;2j .x/: (4.15)

Since x 2�aj0
, we are able to replace the indicator functions in this expression by their

restriction �3j� �
a
j0

and �1;2j � �aj0
, respectively. Noting further that !kj0

\ �aj0
D ;

holds for k D 1; 2; 3, we see that (4.15) remains valid if the summation is taken over
all the j ’s. Integrating then the right-hand side over x 2�a we arrive at the inequality

0 � �
X
j

Z
!3j\�

a
j0

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x

C
X
j

Z
.!1j[!2j /\�

a
j0

exp¹�2�.dist.x; �j / � a/º d x;

and summing this result over j0 we get

0 � �
X
j

Z
!3j\�

a

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x

C
X
j

Z
.!1j[!2j /\�

a

exp¹�2�.dist.x; �j / � a/º d x: (4.16)

Combining now (4.14) and (4.16), we obtainZ
�outn¹KC[K�º

j�.x/j2 d x

�
X
j

Z
.!1j[!2j /n¹KC[K�º

exp¹�2�.dist.x; �j / � a/º d x

�
X
j

Z
!3j n¹KC[K�º

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x: (4.17)
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The summation in (4.17) runs over all the curve segments including the straight ones.
Let us first estimate the contribution of these infinite ‘arcs’ to the positive part of (4.17)
having in mind that in accordance with Remark 4.4 the segments with � D 0 do not
contribute to the negative one. We denote by �C the segment with s > Os and by
!1C; !2C the corresponding semi-infinite strips, then we haveZ

.!1C[!2C/n¹KC[K�º

exp¹�2�.dist.x; �C/ � a/º d x

� 2
Z

!1CnKC

exp¹�2�.dist.x; �C/ � a/º d x

D 2
1Z

�.Os/ cos��

1Z
s sin��0

exp¹�2�.t � a/º d t d s

D e2�a

4�2 sin��0
e�� sin2��0��.Os/; (4.18)

where �.Os/ is the distance of the point �.Os/ to the origin. In view of our choice of Os we
have �.Os/ � r0 and the integral at the right-hand side of (4.18) can be made arbitrarily
small by choosing r0 large enough. An analogous argument applies to the segment of
� with s < �Os.

Denote now by
P�
j the sum over all the �j except of �˙. The conclusion just

made allows us to replace the sum
P
j in (4.18) by

P�
j with an error which can be

made arbitrarily small by choosing an appropriately large r0. Furthermore, we note
that the positive part of (4.14) cannot decrease if we enlarge the integration domain in
all the integrals there replacing .!1j [ !2j / n ¹KC [K�º by !1j [ !2j .

Our next goal is to argue that we can do the same in the negative part of (4.14)
replacing !3j n ¹KC [ K�º by !3j . In such a case, of course, the corresponding
change of the integrals goes in the wrong way; our aim is to show that it again pro-
duces an error which can be made small if r0 is large. Indeed, regions !3j exist only
for the curved segments of � and those are by assumption inside B 1

2 r0
.O/, while the

regions K˙ are outside Br0.O/. Consequently, the contributions from the extended
integration domains areZ

!3j\¹KC[K�º

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x

� e2�a j�j j
1Z

��
p
3r0=2

e�
p
3 �� � d � D j�j jO.e�3�r0=2/ (4.19)
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uniformly in j , and since the length of the curved part is finite, the error coming from
the extension of the integration domain is O.e�3�r0=2/. Combining (4.19) with (4.17)
we getZ

�outn¹KC[K�º

j�.x/j2 d x

�
X
j

�
Z

!1j[!2j

exp¹�2�.dist.x; �j / � a/º d x

�
X
j

�
Z
!3j

exp¹�2�.j�j j�1 C dist.x;Oj / � a/º d x CO.e�3�r0=2/: (4.20)

It is not difficult to evaluate the integrals appearing at the right-hand side of (4.20):
we have Z

!2j

exp¹�2�.dist.x;Oj / � a/º d x D
� 1
2�
C aj�j j

2�
C j�j j
4�2

�
j�j j

D j�j j
2�
C a

2�

Z
�j

j�.s/j d s C 1

4�2

Z
�j

j�.s/j d s (4.21)

andZ
!1j

exp¹�2�.dist.x;Oj / � a/º d x

D j�j j
2�
� a

2�

Z
�j

j�.s/j d s � 1

4�2

Z
�j

j�.s/j d s C 1

4�2

Z
�j

e�2�.j�.s/j
�1�a/j�.s/j d s

for the positive part of the estimate, while in the negative one we useZ
!3j

exp¹�2�.��1j C dist.x;Oj //º d x D 1

4�2

Z
�j

e�2�.j�.s/j
�1�a/j�.s/j d s:

Summing finally the contributions from given �j , we get j�j j��1; hence expres-
sion (4.14) is smaller that 2j�j�1=2 Os C o.r0/, which according to inequality (4.8)
proves Theorem 2.4 (a) under the additional assumption (s4).

4.3. Extension to the case when condition (s4) does not hold

Before turning to this task, let us recall how the parameters of the trial function con-
structed above depend on each other. Assume that the potential v, and thus � and �0,



Bound states in bent soft waveguides 449

and also g.t; s/ are fixed; then the parameters ı and �0 introduced in Section 3.1
depend on the curvature only. Note that this fact justifies a posteriori the possibility
to use a fixed function g.s; t/, since having a family of curves the curvatures of which
do not differ much, one can certainly find a common interval of the variable s on
which these curvatures do not change sign. As for �, it can be chosen as any number
in .0; �0/ noting, however, that if � ! 0, the parameters r0; s0; s� and Os which we
pick after fixing � must tend to infinity. The number ��0 in Section 4.1 depends on
the geometry of � only, more specifically on the angle between the asymptotes of � .

Proceeding with the choice of the parameters, we pick r0 > 0 depending on � and
��0; it must be sufficiently large so that the curved part of � is contained in B 1

2 r0
.O/

and, at the same time, the error in (4.8) coming from Lemmata 4.1 and 4.2 does not
exceed 1

16
j�j�1ı�. Next, to the chosen r0 we pick Os and s0 > Os so that the parts of

� with jsj > Os are outside Br0.O/, and finally, we pick an s� � s0 depending on s0
and �.

After this preliminary, let us turn to the proof that (4.8) remains valid without
assumption (s4). We will use the same trial function as before, in particular, its outer
part will be again of the form  out D ��out with � given (4.1); the idea is to approx-
imate the curve � satisfying (s1) by curves with a piecewise constant curvature, of
the same length and with the same halfline asymptotes. Specifically, we are going to
employ the following approximation result.

Theorem 4.5 (Sabitov and Slovesnov [14]). Let � be a C 3-smooth curve of a finite
length consisting of a finite number of segments such that on each of them the mono-
tonicity character of the signed curvature �.�/ of � and its sign are preserved. Then
� can be approximated by a C 1-smooth function y� of the same length, the curvature
of which is piecewise constant having jumps at the points s1 < s2 < � � � < sN , in the
sense that the estimates

k�.m/ � y�.m/k1 � C max
1�k�N�1

.skC1 � sk/3�m; m D 0; 1; 2; (4.22)

hold with some C > 0 for the function � and its two first derivatives. The endpoints
of � and y� coincide, and the same is true for the tangent vectors at these points, and
moreover, on each subinterval .sk; skC1/ the curvature O� of y� satisfies the inequality
mins2.sk ;skC1/ �.s/ � O�.s/ � maxs2.sk ;skC1/ �.s/.

It is obvious that the hypotheses of Theorem 4.5 are satisfied under our assump-
tion (s1) on the C 3 smooth parts of � .

Let ¹�nº by a sequence of curves with the following properties:

(i) �n coincides with � at all parts of the curve where �.s/ D 0, in particular,
all the �n’s have the same asymptotes as �;
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(ii) on the curved parts of � the �n’s approximate � in the sense of Theorem 4.5
with maxk jskC1 � skj < 1

n
.

Recall that the curved part of � has finite length which allows us to use Theorem 4.5,
and note also that we are abusing notation here using for the approximating curve the
symbol which coincides with the one which in the previous section meant the arcs of
a curve satisfying assumption (s4).

Let Oın and O�0;n be the quantities corresponding to y�n in the same way as ı and �0,
respectively, correspond to � . It is easy to see from (4.22) and the point (ii) above
that j O�n.s/ � �.s/j < Cn�1 holds for some C > 0 independent of s, which implies
Oın ! ı and O�0;n ! �0 as n!1. By �.n/out , we denote the region exterior to the strip
of halfwidth a built around y�n. The expression on the left-hand side of (4.8) can be in
this case rewritten asZ

�outn¹KC[K�º

j�.x/j2 d x D
Z

�
.n/
out n¹KC[K�º

j�.x/j2 d x C
Z

�outn�
.n/
out

j�.x/j2 d x (4.23)

Since � and y�n differ on a bounded interval of s only, and since j�.s/� y�n.s/j1! 0

holds as n!1 by Theorem 4.5, uniformly in s, in the second term on the right-hand
side we integrate the function j�.x/j2 � 1 over a region the measure of which tends
to zero as n!1. For the first integral on the right-hand side of (4.23), we haveZ

�
.n/
out n¹KC[K�º

j�.x/j2 d x � e2�k��y�nk1
Z

�
.n/
out n¹KC[K�º

e�2�¹dist.x;y�n/�aº d x

� Œ1C ".1/n �
h
2Osj�j�1=2 C 1

16
j�j�1 Oın O�n

i
; (4.24)

where �n 2 .0; �0;n/ is fixed and ".1/n ! 0 as n!1; we have used the fact that (4.8)
is valid for y�n as the latter satisfies condition (s4) and the approximation preserves by
Theorem 4.5 the length of the curve. Since the points s D ˙Os are on the straight parts
of � (coinciding with those of y�n), the distance between them along both � and y�n
is the same being equal to 2Os.

Moreover, to derive (4.8) for curves satisfying condition (s4) we required r0 and
Os which depend on � to be large. For the approximating curves, r0 depends on O�n but
we avoid the situation when O�n! 0 which would imply r0!1 as mentioned in the
opening of this section. For the sake of definiteness, we fix O�n D 1

2
O�0;n and consider n

sufficiently large to have O�0;n � 1
2
�0. Then we can choose Os in (4.24) independent

of n, which yieldsZ
�

.n/
out n¹KC[K�º

j�.x/j2 d x � 2Osj�j�1=2 C 1

16
j�j�1 Oın 1

4
�0 C ".2/n ; (4.25)
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where ".2/n ! 0 as n!1. Combining this with the fact that Oın ! ı for n!1 as
mentioned above, we infer from (4.25) that relation (4.8) holds for � D 1

8
�0 and all n

large enough; this concludes the proof.

5. Concluding proofs of Theorems 2.2 and Theorem 2.4

It remains to establish parts (b) of both the main results. Let us begin with Theorem 2.4
and prove it in the situation when �C is convex; by assumption (p3), we have � < 0.
Inside�a we choose the trial function as in the previous proofs so that inequality (3.7)
is valid for any V0 � 0; recall that we derived it assuming the presence of a bias.
Moreover, picking a suitable coordinate s� � s0 at the right-hand side of (3.1), the
last term in (3.7) can be made as before smaller than 1

4
ı�. Outside the strip �a, we

set
�.x/´ �˙ exp¹�j�˙j.dist.x; �/ � a/º if x 2 �out

˙ ; (5.1)

recalling that �� D 1, which is a natural generalization of (4.1), and we employ the
same mollifier �out as before, cf. Section 4.2. Repeating the argument of this section,
we arrive at inequality (4.4), however, now with the function � given by (5.1). Let us
split the outer contribution to the quadratic form into two parts referring, respectively,
to �out

˙
, for which we have

Q
.C/
out Œ out� D

Z
�outC

jr out.x/j2 d x C
Z
�outC

.V0 � �/j out.x/j2 d x

�
Z
�outC

®jr�.x/j2 C .V0 � �/j�.x/j2¯�out.x/
2 d x C 1

16
ı�; (5.2)

Q
.�/
out Œ out� �

Z
�out�

®jr�.x/j2 � �j�.x/j2¯�out.x/
2 d x C 1

16
ı�

in view Lemmata 4.1 and 4.2 provided that r0 is chosen large enough. As in the proof
of the first part of Theorem 2.2, we choose an Os 2 Œr0; s0/ for which the parts of
� with jsj � Os are outside Br0.O/ and use the regions K˙ introduced by (4.6). By
definition (5.1), we have

jr�j2 D �2˙j�j2 for x 2 �out
˙ :
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Within �out \ ¹KC [ K�º, we may use the .s; t/ coordinates, and noting the � is
independent of s there, and, as a function of t it coincides with the eigenfunction �0
of h, cf. (2.2), we getZ

�outC\¹KC[K�º

¹jr�.x/j2 C .V0 � �/j�.x/j2º�out.x/
2 d x

� j�Cj�2C k�ink2L2..�1;�Os�[ŒOs;1//
(5.3a)

and Z
�out� \¹KC[K�º

¹jr�.x/j2 � �j�.x/j2º�out.x/
2 d x

� ��k�ink2L2..�1;�Os�[ŒOs;1//
: (5.3b)

So far, we have not employed the convexity of �C; we will need it from now on
to estimate the integrals (5.3). As before, we will first prove the second claim of
Theorem 2.2 under the additional assumption (s4) using again the notation introduced
in Figure 4.

The part �.�/out consists then of a finite number of sectors !2j which in view of
the convexity assumption do not overlap mutually. Moreover, since � is a C 1 curve,
the neighboring sectors have common boundaries which are the halflines normal to
� at the points where the curvature changes value, and as a result, the closures of
sectors !2j cover the region �.�/out . Let �˙ and !k˙; k D 1; 2, be the same as in
Theorem 2.4 (a). By the same reasoning as in the proof of the latter, cf. (4.18), one
can check that the contribution of the regions !k˙ n ¹KC [K�º to the integrals (5.3)
can be made arbitrarily small by choosing r0 sufficiently large. Using further the fact
that j�outj � 1 in combination with (4.21), we getZ
�

.�/
out n¹KC[K�º

¹jr�.x/j2 � �j�.x/j2º�out.x/
2 d x

� 2j�j
�
2Os
2��
C a

2��

OsZ
�Os

�.s/ d s C 1

4�2�

OsZ
�Os

�.s/ d s
�
CO.e�cr0/

D 2�� Os C a��
OsZ
�Os

�.s/ d s C 1

2

OsZ
�Os

�.s/ d s CO.e�cr0/ (5.4)

for some c > 0, and since �.s/ D 0 for jsj > Os, we can let the variable s in the above
integrals run over the whole R. Comparing now the right-hand side of (5.4) with that
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of (3.7), we see that the terms containing �� in the latter have their counterparts here
with the opposite sign, hence they cancel mutually.

Next, we estimate the contribution to (5.3a) coming from �
.C/
out . We note that

jr�j2 D .�� C V0/j�j2 D j�Cj2j�.x/j2 holds almost everywhere in �out
C which

means that the integral at the right-hand side of (5.2) can be rewritten as

2j�Cj2
Z
�outC

j�.x/j2�out.x/
2 d x:

In analogy with (4.10), we can estimate the function � using local extrema of the
distance function, namely

j�.x/j2 D �2C exp¹�2j�Cj.dx.s0x/ � a/º
� �2C

h
�
X

si
x2M

"
x

exp¹�2j�Cj.dx.six/�a/º C
X

si
x2M

#
x

exp¹�2j�Cj.dx.six/�a/º
i
:

(5.5)

As in Theorem 2.4 (a), we want to replace the integral of the expression at the right-
hand side of (5.5) over�.C/out n ¹KC [K�º by the sum of the integrals over the regions
!1j and !3j corresponding to the partition of the curve segment with s 2 Œ�Os; Os� into
circular arcs. In analogy with relation (4.14), we getZ

�
.C/
out n¹KC[K�º

j�.x/j2 d x

� �2C
X
j

² Z
!1j\¹�

.C/
out n¹KC[K�ºº

exp¹�2j�Cj.dist.x; �j / � a/º d x

�
Z

!3j\¹�
.C/
out n¹KC[K�ºº

exp¹�2j�Cj.j�j j�1 C dist.x;Oj / � a/º d x
³
; (5.6)

where in contrast to (4.14) the right-hand side (5.6) does not involve integrals over
!2j because in view of the convexity assumption we have �.C/out \ !2j D ; holds for
any j .

Following the strategy used in the proof of Theorem 2.4 (a), we want to replace
integrals over !kj \ ¹�.C/out n ¹KC [ K�ºº; k D 1; 3, with those over the extended
regions !kj n ¹KC [K�º, respectively. To this aim, we employ the following simple
geometric result.
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Lemma 5.1. Suppose that x 2 �� does not belong to the boundaries of !kj ; k D
1; 2; 3, for any j . Let further the distance function dx.s/ reach a minimum which is
not global at a point of the curve belonging to an arc �j�; then we have x 2 !1j� .

The lemma in fact says that if �C is convex, it cannot happen that x 2 !2j� , which
is obviously equivalent to the following claim.

Lemma 5.10. Let x 2 ��. For any distance function extremum, except the global
minimum, the segment Lix connecting the points x and �.six/ approaches the curve
from the side of �C.

Proof. The point of global minimum is obviously approached from the region where
x lies, that is, from��. The next two extrema on both sides of s0x , provided they exist,
are necessarily maxima, and in view of the assumed convexity of �C the segments
Lix cannot approach �.six/ from the side of ��. We denote by L.s/ the segment
connecting the point x with �.s/. The side from which L.s/ approaches the curve
can change only at the points where the angle ˇ.s/ between the segment L.s/ and
L0x corresponding to the global minimum of dx.�/ has, as a function of s, a local
maximum or minimum. Since the curve � is by assumptionC 1-smooth, and so is ˇ.�/,
the lines connecting such points with x are tangent to �, however, a convex region
cannot cross its own tangent, hence the extrema of the function ˇ.�/ are global, one
maximum and one minimum. The corresponding points six , provided both of them
exist, lie on both sides of s0x because a convex region can have only two tangents
passing through an exterior point x and the point �.six/ lies between the two tangent
points on the boundary of �C. The same tangent argument shows that once the L.s/
switches the side from which it approached � it can never come back.

As before, all the local extrema of dx.�/ for x 2 �� except the global minimum
come in pairs, so in analogy with (4.14) we are able to estimate the expression

�2C

Z
��n¹KC[K�º

exp¹�2j�Cj.dx.s0x/ � a/º d x

from above by

�2C

X
j

² Z
!1j\¹��n¹KC[K�ºº

exp¹�2j�Cj.dist.x; �j / � a/º d x

�
Z

!3j\¹��n¹KC[K�ºº

exp¹�2j�Cj.j�j j�1C dist.x;Oj / � a/º d x
³
; (5.7)
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where in view of Lemma 5.1 the first part does not include integration over !2j \
¹�� n ¹KC [K�ºº. Adding (5.7) to (5.6), we getZ

�
.C/
out n¹KC[K�º

j�.x/j2 d x

� �2C
X
j

² Z
!1j\

z�

exp¹�2j�Cj.dist.x; �j / � a/º d x

�
Z

!3j\
z�

exp¹�2j�Cj.j�j j�1 C dist.x;Oj / � a/º d x
³
; (5.8)

where z�´ �� [ ¹�.C/out n ¹KC [ K�ºº. Moreover, applying again the argument
that lead to (4.19) we infer that one can replace !1j \ z� and !3j \ z� in (5.8) by
!1j n ¹KC [ K�º and !3j n ¹KC [ K�º, respectively, with an error which can be
made arbitrarily small by choosing r0 large enough. The rest of the proof of Theo-
rem 2.4 (b) for a convex�C repeats the corresponding part of the proof of the part (a);
in the final step we take into account that a convex � can be approximated by convex
curves of piecewise constant curvature so we can proceed as in Section 4.3; note that
by (4.22) the curvature of � is approximated pointwise by the those of curves y�n.

To complete the proof of Theorem 2.4 (b), assume next that �C is concave. This
case is already easy given the fact that in the first part of the proof we have not used
the difference between j�Cj and j��j, or between �C and ��; the latter was set to one
for convenience only. The role of the convexity was just to help us to distinguish the
extrema of the distance function referring to the two outer parts of the trial function;
if �� is convex, we can repeat the argument step by step interchanging the roles of
�� and �C arriving thus at the sought claim.

It remains to prove Theorem 2.2 (b) where we have �D 0 by assumption and�C
is again convex. Since V0 > 0, the equation h� D 0 has a resonance solution �0 which
is constant for t � �a and decays exponentially for t > a; as before, we normalize it
putting �� D 1. We have to construct a trial function  2 H 2.R2/ which makes the
quadratic form (2.3c), now containing the potential bias, negative. We use elements
of the previous proofs. In particular, inside �a the function will be given by (3.2)
and (3.1). Outside �a, the trial function in �� will be the same as in the proof of
Theorem 2.2 (a), cf. Section 3.2, while in�C we choose it as in the of Theorem 2.4 (b)
discussed above, putting there �D 0, in other words, as (5.1) in which in view of (3.5)
we set �C D �

p
V0. Repeating then the estimates used to prove Theorem 2.2 (a) in
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�� and Theorem 2.4 (a) in �C, we obtain

QŒ � D �1
8
ı� �

Z
R

�.s/ d s C o. /; (5.9)

where the error term can be made arbitrarily small by choosing large r0 and s� in (3.1).
In view of the assumed convexity of �C we have

R
R �.s/ d s > 0, hence choosing

the parameters properly we can make the form negative; this concludes the proof of
Theorem 2.2 (b).

Remark 5.2. As we have noted in the introduction, the ‘two-sided’ validity of The-
orem 2.4 (b) does not extend to the zero-energy resonance case. The above proof
indicates the source of this difference. While for � < 0 we can use the trial function
from the proof of Theorem 2.2 (b) and simply switch the roles of �C and ��, a sim-
ilar interchange does not work if � D 0 because it leads to the sign change of the
second term on the right-hand side of (5.9) and we are obviously not free to choose
ı� to compensate this positive number.
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