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Spectral instabilities:
variations on a theme loved by Brian Davies

Albrecht Böttcher

Abstract. Minor perturbations to a linear operator may drastically change its spectrum, and
hence the difficulty of deciding whether or not a numerically computed quantity is zero causes
problems in spectral theory. The purpose of this expository paper is to illustrate such instability
phenomena by some examples with Toeplitz-like operators and matrices.

For Brian Davies on his 80th birthday

1. The theme

Instability of the spectrum under tiny perturbations to the operator, though being a
very old topic, is one of the favorite topics studied by Brian Davies. See, e.g., [1,19,20]
and [22–33]. I love this topic, too. The opportunity to make a contribution to this birth-
day issue motivated me to embark on the subject once more and to illustrate it by some
insights I have gained in my work and which are scattered in several publications. To
put it into an analogy with music, I want to refer to the topic as a theme and to con-
sider this paper as a set of variations on the theme. As the instrument I can play best
is Toeplitz operators and matrices, the variations will all have a Toeplitz tune.

But let us begin with the theme. Here it is as it appears in Brian’s paper [27]. “If
c 2 R then the operator AW `2.Z/! `2.Z/ defined by

.Af /n D

´
cfnC1 if n D 0;

fnC1 otherwise

has classical spectrum ¹z W jzj D 1º if c ¤ 0 and classical spectrum ¹z W jzj � 1º if
c D 0. If c is a very small constructively defined real number and one is not able to
determine whether or not c D 0, then the spectrum of A cannot be computed even
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approximately even though A is well defined constructively. This implies that there
exist straightforward bounded operators whose spectrum will probably never be deter-
mined.”

The example with the operator A cited by Brian can already be found as Prob-
lem 85 in Halmos’ Hilbert space problem book [37], where it is attributed to Günter
Lumer. In the second edition of the book, by Springer in 1982, it is Problem 102.

2. Variation one

For c D 1, the operator A we encounter in the Theme is a Laurent operator. A Laurent
operator is given by a doubly-infinite matrix .aj�k/1j;kD�1 on `2.Z/. This matrix
induces a bounded operator if and only if the sequence ¹akº1kD�1 is the sequence of
the Fourier coefficients of a function a in L1 over the unit circle T D ¹z W jzj D 1º,

ak D
1

2�

2�Z
0

a.ei� /e�ik� d� .k 2 Z/:

In that case, we denote the corresponding Laurent matrix and the operator it defines
on `2.Z/ by L.a/ and refer to the function a as the symbol. The Laurent operator
L.a/ is unitarily similar to multiplication by a on L2.T/, and hence both the spec-
trum �.L.a// and the essential spectrum �ess.L.a// are equal to the essential range
R.a/ of a. Recall that the essential spectrum is the set of all complex numbers � for
which L.a/� �I D L.a� �/ is not Fredholm, that is, not invertible modulo compact
operators.

Thus, the operator A in the Theme may be written as A D L.z�1/C .c � 1/E0;1
where Ej;k denotes the doubly-infinite matrix whose j; k entry is 1 and all other
entries of which are zero. Let us consider the slightly more general operator

Ac;b D L.z
�1/C .c � 1/E0;1 C bE�1;1;

which results from A D Ac;0 by putting a b at the matrix site immediately above c.
Alternatively, we may define the operatorAc;b by .Ac;bf /�1Df0C bf1, .Ac;bf /0D
cf1, and .Ac;bf /n D fnC1 for n … ¹�1; 0º. Since �ess.L.z

�1// D T and Ac;b is at
most a rank 2 perturbation of L.z�1/, we conclude that T is always a subset of the
spectrum �.Ac;b/. Now, let j�j < 1. Then L.z�1 � �/ is invertible and we have

Ac;b � �I D L.z
�1
� �/¹I C ŒL.z�1 � �/��1Œ.c � 1/E0;1 C bE�1;1�º:

As ŒL.z�1 � �/��1 D L.z C �z2 C �2z3 C � � � /, a simple computation shows that
the operator in braces is invertible if and only if so is the matrix

�
1 b
0 �bCc

�
, that is, if
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and only if �b C c ¤ 0. This gives us the part of the spectrum of Ac;b contained in
the unit disk D D ¹� W j�j < 1º. If j�j > 1, then ŒL.z�1 � �/��1 is upper triangular
and the operator in braces is always invertible. Consequently, no point outside of T
belongs to the spectrum of Ac;b . In summary, we have the following:

�.Ac;b/ D

8̂̂<̂
:̂

T if b D 0 and c ¤ 0 or if b ¤ 0 and jcj � jbj;

T [ ¹�c=bº if b ¤ 0 and jcj < jbj;

T [ D if b D c D 0:

3. Variation two

This variation is based on paper [7]. Let a.z/D
Pr
jD�r aj z

j be a Laurent polynomial
and consider the Laurent operator L.a/ on `2.Z/. The matrix of L.a/ is banded. We
assume that at least one of the coefficients ar and a�r is nonzero. Let Pn be the
projection on `2.Z/ defined by .Pnf /j D fj for j 2 ¹0;1; : : : ;n� 1º and .Pnf /j D 0
otherwise. If A is given by an infinite matrix on `2.Z/, then the operator Pn APn may
be identified with an n � n matrix in a natural fashion. It is well known (and easily
seen by taking, e.g., a.z/ D z) that the spectrum of PnL.a/Pn does in general not
approximate the spectrum of L.a/ as n!1.

For n � 2r C 1, let Cn.a/ be the n � n circulant matrix whose first row is

. a0 a�1 : : : a�r 0 : : : 0 ar ar�1 : : : a1 /:

The spectrum of Cn.a/ can be shown to be a.Tn/, where Tn is the set of the nth roots
of 1, and hence �.Cn.a// approximates �.L.a// D a.T/.

Consider now the operator L.a/ C K where the matrix of K has only finitely
many nonzero entries. Since �ess.L.a// D a.T/, we have �.L.a/CK/ D a.T/[X
with some (possibly empty) set X . The question is whether we can somehow approx-
imate �.L.a/CK/ by the eigenvalues of the matrices Cn.a/C PnKPn. The Theme
shows that X may contain entire connected components of C n a.T/, and one expects
that these cannot be exhausted by approximations. Indeed, if L.a/CK D L.z�1/C
.c � 1/E0;1 is the operator Ac;0 we met above, then �.Cn.a/ C PnKPn/ can be
shown to be the set ¹� W �n D cº, which converges to �.L.a/C K/ D T for c ¤ 0
but does not converge to �.L.a/CK/ D T [ D for c D 0.

The following result of [7] tells us that we can findX \G by approximations ifG
is a connected component of C n a.T/ that does not entirely belong to the spectrum of
L.a/CK. Convergence of plane sets is understood as convergence of compact sets
in the Hausdorff metric. We denote by xG the closure of G and by @G D xG n G the
boundary of G.
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Theorem 1. If a connected component G of C n a.T/ is not entirely contained in the
spectrum of L.a/CK, then

lim
n!1

..�.Cn.a/C PnKPn/ \G/ [ @G/ D �.L.a/CK/ \ xG: (1)

Equality (1) holds in particular if G is the unbounded component of C n a.T/.
In the case of a single-entry perturbation K D !Ej;k the reasoning of Variation 1
shows �.L.a/C !Ej;k/ is the union of a.T/ and the set X of all � 2 C for which
1C Œ.a��/�1�k�j!D 0, where Œ.a��/�1�k�j denotes .k � j /th Fourier coefficient
of 1=.a � �/. If Œ.a � �/�1�k�j equals a constant c throughout G and 1 C c! D
0, then all of G is contained in X and Theorem 1 is not applicable. However, if
Œ.a � �/�1�k�j is either identically zero in G or assumes at least two different values
in G, which is the same as requiring that Œ.a � �/�1�k�j is not a nonzero constant
in G, then the hypothesis of Theorem 1 is satisfied and hence (1) holds.

4. Variation three

In this variation we follow [7, 8]. Let the symbol a be a Laurent polynomial as above
and recall thatEj;k stands for the infinite matrix with 1 at site j;k and zeros elsewhere.
We here consider the single-entry perturbations L.a/C !Ej;k where ! is taken from
a prescribed compact subset � of C which contains the origin. We are interested in
the sets

�
.j;k/
� Cn.a/D

[
!2�

�.Cn.a/C !PnEj;kPn/; �
.j;k/
� L.a/D

[
!2�

�.L.a/C !Ej;k/:

In [7] we proved the following.

Theorem 2. LetG be a connected component of C n a.T/ and suppose the .k � j /th
Fourier coefficient of 1=.a � �/ is not a nonzero constant throughout G. Then

lim
n!1

.�
.j;k/
� Cn.a/ \ xG/ D �

.j;k/
� L.a/ \ xG: (2)

Note again that equality (2) is in particular true if G is the unbounded component
of C n a.T/.

From what was said at the end of Variation 2 we obtain that � .j;k/� L.a/ is the
union of a.T/ and the set of all � 2 C for which there is an ! 2 � such that 1 C
Œ.a � �/�1�k�j! D 0. In the special case where � is the line segment Œ�"; "� � R,
this implies that � .j;k/

Œ�";"�
L.a/ is the union of a.T/ and the set

¹� 2 C n a.T/ W Œ.a � �/�1�k�j 2 .�1;�1="� [ Œ1=";1/º:
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Consequently, unless Œ.a� �/�1�k�j is a nonzero constant on a connected component
of C n a.T/, the intersection of � .j;k/

Œ�";"�
L.a/ with this open component is either empty

or an at most countable union of analytic arcs. In several cases, including the case
of tridiagonal matrices and thus symbols of the form a.z/ D z C ˛2z�1, one can
compute everything explicitly. In [8] we explicitly determined � .j;k/

Œ�";"�
L.a/ for all j; k

in the case where a.z/D zC ˛2z�1 with ˛ 2 Œ0; 1�. Superimposing these sets, that is,
considering

S
j�k¤�1 �

.j;k/

Œ�4;4�
L.a/ for ˛D 1=3we got Figure 1. The case j � k D�1

fills the entire interior of the ellipse, by virtue of which we omitted these perturbations
in the picture. Clearly, Figure 1 also nicely illustrates Theorem 2.

Figure 1. The set
S

j�k¤�1 �
.j;k/

Œ�4;4�
L.a/ (top) and eigenvalues of single entry perturbations

to C250.a/ at random sites j; k with j � k ¤ �1 by random numbers in Œ�4; 4� (bottom) for
the symbol a.z/ D z C z�1=9. The lower plot superimposes the eigenvalues of 2000 samples.
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5. Variation four

We now turn to Toeplitz operators. These are given by the lower-right quarter of
Laurent operators. Thus, they act on `2.ZC/ by a matrix of the form .aj�k/

1
j;kD0

.
Such a matrix induces a bounded operator if and only if the numbers ak (k 2 Z)
are the Fourier coefficients of a function a 2 L1.T/, in which case the operator is
denoted by T .a/ and a is referred to as the symbol of the operator. One can show
that kT .a/k D kak1, with the operator norm on the left and the L1.T/ norm on the
right.

Let M be the metric space of all non-empty compact subsets of the plane with
the Hausdorff metric. For a sequence ¹Mnº

1
nD1 in M, the set lim infMn is defined as

the set of all � for which there are �n 2 Mn such that �n ! �, while lim supMn is
the set of all � for which there are n1 < n2 < � � � and �nj

2Mnj
such that �nj

! �.
Hausdorff himself showed that lim infMn D lim supMn µ M if and only if Mn

converges to M in M, that is, in the metric nowadays named after him; see [41] or
Proposition 3.6 of [36].

The spectral theory of Toeplitz operators is incomparably more difficult and richer
than its Laurent counterpart. If a 2 C.T/, then �ess.T .a// D a.T/ and �.T .a// is
the union of a.T/ and of all points in the plane that have nonzero winding number
with respect to a.T/. If a is piecewise continuous, a 2 PC.T/, the same is true with
a.T/ replaced by the curve that results from the essential range of a on T by filling in
straight line segments between the endpoints a.z � 0/ and a.zC 0/ of each jump. This
reveals that small changes of a lead to only small changes in �ess.T .a// and �.T .a//.
It was suspected that this is also the case for general a 2 L1.T/. In other terms, the
question was whether the maps a 7! �ess.T .a// and a 7! �.T .a// of L1.T/ into M

are continuous. This was indeed proved for many classes of symbols, including the
algebra C CH1, almost periodic symbols, or piecewise quasicontinuous symbols;
see [34, 43]. But L1 is an abyss!

A bit surprisingly, it turned out that we had not to dive too deep into this abyss.
The theme of Chapter 4 of the book [16] is that all evil with Toeplitz operators begins
with SAP, the C �-algebra of semi-almost periodic function on T, and the negative
answer to the above question found in [13] is just from SAP. Here is it.

Theorem 3. There exist functions an and a in SAP such that

kan � ak1 ! 0; �.T .an// D �ess.T .an// D T; �.T .a// D �ess.T .a// D xD:

The C �-subalgebra SAP of L1.T/ was introduced by Sarason [46], who also
developed a spectral theory for Toeplitz operators with SAP symbols. Let AP.R/ be
the L1.R/ closure of the set of all almost periodic polynomials, that is, let AP.R/ be
the smallest closed subalgebra of L1.R/ which contains the functions e�.x/ D ei�x
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for all � 2 R. Let further C.xR/ denote the collection of all functions in C.R/ which
have finite limits at ˙1. Then SAP.R/ is defined as the smallest closed subalgebra
of L1.R/ which contains AP.R/ [ C.xR/. Finally, when x moves along R from �1
to C1, then .x � i/=.x C i/ traces out the punctured unit circle T n ¹1º counter-
clockwise starting and terminating at 1, and SAP D SAP.T/ is defined as the set of
function a..x � i/=.x C i// with a ranging through SAP.R/.

Incidentally, the functions appearing in Theorem 3 can be constructed explicitly.
Let ˇ 2 AP.R/ be the 2�-periodic function which increases linearly from 0 to 2� on
Œ��; 0� and decreases linearly from 2� to 0 on Œ0; ��, define 'n and ' in C.xR/ by

'n.x/ D exp
�
i
�
1 �

1

n

�
arctan x

�
; '.x/ D exp.i arctan x/;

and put ˛n D e�iˇ'n, ˛ D e�iˇ'. Then Theorem 3 holds with

an

� x � i
x C i

�
D ˛n.x/; a

� x � i
x C i

�
D ˛.x/:

If an and a are as in Theorem 3, then lim inf �.T .an// D lim sup �.T .an// ¤
�.T .a//. When choosing bn D an for odd n and bn D a for even n, we get a uni-
formly convergent sequence ¹bnº such that lim inf�.T .bn//¤ lim sup�.T .bn//. The
following theorem of [13] shows that at the price of leaving SAP we obtain even
Toeplitz operators for which all the three sets are different.

Theorem 4. There exist cn and c inL1.T/ which are continuous on T n ¹�1;1º such
that kcn � ck1 ! 0 and

�.T .c// D �ess.T .c// D xD [ .2C xD/;

�.T .cn// D �ess.T .cn// D

´
T [ .2C T/ if n is odd,

T [ .2C xD/ if n is even.

In particular, lim inf �.T .cn//, lim sup �.T .cn//, �.T .c// are three different sets.

6. Variation five

Let Tn.a/D .aj�k/n�1j;kD0
denote the principal n� n truncation of the infinite Toeplitz

matrix T .a/. The problem of describing the eigenvalue distribution of the matrices
Tn.a/ as n goes to infinity is a big business for a century. The books [15,17,36,49,51]
are recent treatises of the problem.

In the case where a is a Laurent polynomial as in Variation 2, the limiting set

ƒ.a/´ lim sup �.Tn.a//
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was determined by Schmidt and Spitzer [47] in 1960, who also showed ƒ.a/ coin-
cides with lim inf �.Tn.a//. The set ƒ.a/ is the union of a finite number of analytic
arcs and in general ƒ.a/ is significantly different from �.T .a// although always
ƒ.a/ � �.T .a//. Schmidt and Spitzer expressed the set via formulas, but eventu-
ally identifying it remains a challenge. Paper [11] presents a numerical algorithm in
the spirit of Beam and Warming [3] that, given a grid parameter h D 1=N , reduces
testing O.N 2/ points in the plane for membership in the limiting set to testing only
O.N/ points along some one-dimensional curves.

Formulas of the Szegő type describe the asymptotic eigenvalue distribution of
Tn.a/ in the form

lim
n!1

1

n

nX
jD1

F.�
.n/
j / D

1

2�

2�Z
0

F.a.ei� // d�; (3)

where �.n/1 ; : : : ; �
.n/
n are the eigenvalues of Tn.a/ and F , the “test function”, can be an

arbitrary compactly supported continuous function of C to C. Formula (3) is true for
real-valued a 2 L1.T/, in which case all involved Toeplitz matrices are Hermitian.
We here are interested in the non-Hermitian case. Then the formula is still valid for
certain classes of continuous or piecewise continuous symbols a; in addition to the
books cited above, see [2, 50, 52]. Notice that (3) implies that, up to o.n/ possible
outliers, the eigenvalues cluster along the (essential) range a.T/ of the symbol, but
that (3) does not tell us whether the possible o.n/ outliers produce additional pieces
of ƒ.a/. Thus, we cannot have recourse to results like (3) when looking for ƒ.a/.

One possibility of determiningƒ.a/ could be to approximate a by a Laurent poly-
nomial an (not to be confused with the nth Fourier coefficient of a), surmising that
ƒ.an/ is close toƒ.a/. Clearly, this approach fails for piecewise continuous symbols,
since a properly piecewise continuous function can never be approximated uniformly
by Laurent polynomials as closely as desired. Unexpectedly, this approach does in
general also not work for continuous symbols. This is a consequence of the following
result, which was established in [14] and shows that, in contrast to the continuity of the
spectrum on the space of continuous symbols discussed in Variation 4, the asymptotic
spectrum ƒ.a/ is discontinuous on the space of continuous symbols.

Theorem 5. There exist cn and c in C.T/ such that kcn � ck1 ! 0 but ƒ.cn/ does
not converge to ƒ.c/ in the Hausdorff metric.

In [14] we proved the theorem with explicitly constructed symbols cn and c. The
function c is given by c.z/D z�1.33� .zC z2/.1� z2/3=4/ for jzj D 1 and cn is the
nth partial sum of the Fourier series of c. The matrices T .c/ and T .cn/ are thus lower
Hessenberg matrices. Note that the Fourier series of c converges absolutely, which
implies that cn! c not only in C.T/ but even in the Wiener algebra on T. I also want
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to remark that c is a continuous function which is piecewise C1 but not C1. The
results of Widom [52] therefore imply that (3) is valid and numerical computations
indicate that indeed ƒ.c/ D c.T/. The proof of Theorem 5 given in [14] does not
require knowledge of the set ƒ.c/. We there prove that ƒ.c/ \ D D ; but 0 2 ƒ.cn/
for all odd n� 5. Pictures showing the evolution ofƒ.cn/ are in [14] and [15, p. 285].

7. Intermezzo

Many interesting Toeplitz matrices are nonnormal and hence their eigenvalues are
very sensitive to perturbation. I cannot resist to say it with Nick Trefethen and Mark
Embree [51, p. 11], who complement their message that the spectrum gives an opera-
tor a personality with the words “In the highly nonnormal case, vivid though the image
may be, the location of the eigenvalues may be as fragile an indicator of underlying
character as the hair color of a Hollywood actor. We shall see that pseudospectra pro-
vide equally compelling images that may capture the spirit underneath more robustly.”

For " > 0, the "-pseudospectrum of an operator or a matrix A is defined as the set

�".A/ D �.A/ [ ¹� 2 C n �.A/ W k.A � �I/�1k � 1="º;

where k � k is the operator norm (D spectral norm in the matrix case). One can show
(or take as an alternative definition) that

�".A/ D
[
kEk�"

�.ACE/:

Various examples and pictures can be found in [15, 17, 44, 51].
In contrast to the spectrum, the "-pseudospectrum is continuous: if Bn; B are

bounded Hilbert space operators and Bn ! B in the norm, then �".Bn/ ! �".B/

in the Hausdorff metric; see [51, p. 484] or [39, Theorem 4.4 (v)]. Consequently, let-
ting Ac D Ac;0 be as in the Theme and Variation 1, we get �".Ac/ ! �".A0/ as
c ! 0 for each " > 0. Thus, the discontinuity disappears when passing from spectra
to pseudospectra. In the special case at hand, even more can be said.

If jcj � 1 and jcj < ", then �".Ac/ equals the closed disk of radius 1C " centered
at the origin, �".Ac/ D .1C "/xD, and in particular, �".Ac/ D �".A0/.

This can be proved as follows. We always have

�.B/C "xD � �".B/ � W.B/C "xD;

where W.B/ is the numerical range of B; see [51, Chapter 17]. Since �.A0/ D
W.A0/ D xD, we arrive at the conclusion that �".A0/ D .1 C "/xD. If jcj � 1, then
kAck D 1, so W.Ac/ � xD, and we obtain that �".Ac/ � .1 C "/xD. Theorem 52.4
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of [51] implies that if jcj<", then xD� .1C "� jcj/xDD �"�jcj.A0/� �".Ac/. Finally,
taking into account that TC "xD D �.Ac/C "xD � �".Ac/, we see that �".Ac/ is all
of .1C "/xD for jcj � 1 and jcj < ", which completes the proof.

We remark that the restriction to jcj � 1 is essential. Consider the matrix cE0;1.
The norm k.cE0;1��/�1k equals the norm of the inverse of the 2� 2matrix

�
�� c
0 ��

�
.

This along with an elementary computation shows that

�ı.cE0;1/ D
°
� W f

�
jcj

j�j

�
�
jcj

ı

±
with f .y/ D y

s
1C

y2

2
C y

r
1C

y2

4
:

Now, let 1 < jcj < ". Thinking of Ac as a perturbation of cE0;1 by an operator of
norm 1, we deduce from Theorem 52.4 of [51] that

�"�1.cE0;1/ � �".Ac/ � �"C1.cE0;1/:

Taking c D 10 and "D 11 and using the formula we have just derived with ı D "˙ 1,
we get after some calculation that

¹� W j�j � 14º � �11.A10/ � ¹� W j�j � 17º;

and thus �".Ac/ is different from both .1C "/xD D ¹� W j�j � 12º and .jcj C "/xD D
¹� W j�j � 21º.

8. Variation six

Let us return to Toeplitz matrices. In contrast to the spectrum of the matrices Tn.a/,
their pesudospectra behave as nicely as one could ever expect. For example, one can
show that if a 2 PC.T/, then �".Tn.a// converges in the Hausdorff metric to �".T .a//
for each " > 0. Such a result was first established by Reichel and Trefethen [44]. They
had it for symbols a 2 C.T/ with absolutely convergent Fourier series. The extension
to piecewise continuous symbols was proved in [5]. Note that Tn.a/ (when identified
with Tn.a/Pn on `2.ZC/) does not converge to T .a/ in the norm; the convergence is
only pointwise.

The proof given in [5] is based on working withC �-algebras. It had been known at
least since [35] that, for a 2 PC.T/, the operator T .a/� �I D T .a � �/ is invertible
if and only if the matrices Tn.a � �/ are invertible for all sufficiently large n and the
norms of their inverses remain uniformly bounded as n!1 This may be written as

lim sup
n!1

kŒTn.a � �/�
�1
k <1 () kŒT .a � �/��1k <1: (4)

The right-hand side of this equivalence is obviously a statement on the spectrum of
T .a/. The left-hand side may be interpreted as invertibility of the matrix sequence
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¹Tn.a � �/º in a certain algebra of norm-bounded sequences modulo sequences con-
verging to zero in the norm and is thus a statement on the spectrum of the sequence
¹Tn.a/º. Elaborating this idea, which includes paying the price of extending (4) to
operators of the formX

j

Y
k

Tn.ajk/ � �Pn and
X
j

Y
k

T .ajk/ � �I; (5)

one gets a C �-algebra homomorphism between two unital C �-algebras which pre-
serves spectra. The point is that such C �-algebra homomorphisms automatically pre-
serve norms, by virtue of which (4) can be sharpened to the equality

lim
n!1

kŒTn.a � �/�
�1
k D kŒT .a � �/��1k; (6)

with the convention that if one side is infinite, then so also is the other. The existence
of the limit in (6) is part of the conclusion.

Clearly, with (6) at hand one has everything to prove the convergence of �".Tn.a//
to �".T .a//. Or not? Indeed, not! At some point of the final stage of the proof, one
needs the fact that the pseudospectrum �".T .a// cannot make sudden “jumps” when "
changes continuously, which is equivalent to the question whether the resolvent norm
k.A� �I/�1k of a Hilbert space operator A can be locally constant. I reported on this
question during a Banach semester in Warsaw, and in 1994, Andrzeij Daniluk sent
me a proof of what I needed; see [5] or [17, Theorem 3.14]. Actually, the question
of whether the resolvent norm can be locally constant has both a prehistory and a
posthistory. In this connection, I recommend papers [32, 48].

The bonus of the C �-algebra approach is that the convergence of �".Tn.a// to
�".T .a// can be extended to operators like (5). To summarize, we have the following;
see [5] or [17, Chapter 3].

Theorem 6. (a) If ajk 2 PC.T/ and Qajk.z/´ ajk.z
�1/, then

lim
n!1

�"

�X
j

Y
k

Tn.ajk/
�
D �"

�X
j

Y
k

T .ajk/
�
[ �"

�X
j

Y
k

T . Qajk/
�
;

(b) if a 2 PC.T/ and K is a compact operator, then

lim
n!1

�".Tn.a/C PnKPn/ D �".T .a/CK/ [ �".T .a//;

(c) if a 2 PC.T/, then

lim
n!1

�".Tn.a// D �".T .a//:
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We remark that T . Qa/ is nothing but the transpose of T .a/. Note also that always
�.T .a// � �.T .a/CK/. This is the well-known Coburn–Simonenko theorem. Only
recently Steffen Roch [45] proved that, even for continuous symbols, �".T .a// is
not necessarily a subset of �".T .a/CK/. Thus, we cannot omit �".T .a// in Theo-
rem 6 (b).

To finish this variation, I want to mention that there is an impressive development
of the pseudospectral idea to compute or approximate spectra initiated by Anders
Hansen [38]. However, embarking on this development would be beyond the frame
of a variation, and I instead invite the interested reader to consult [4, 21, 39, 40], for
example.

9. Variation seven

The two infinite Toeplitz matrices

A D

0BBBBBBBB@

0 1
1

1
2

1
3

: : :

1
1

0 1
1

1
2

: : :

1
2

1
1

0 1
1

: : :

1
3

1
2

1
1

0
: : :

:::
: : :

: : :
: : :

: : :

1CCCCCCCCA
; B D

0BBBBBBBB@

0 �1
1
�
1
2
�
1
3

: : :

1
1

0 �1
1
�
1
2

: : :

1
2

1
1

0 �1
1

: : :

1
3

1
2

1
1

0
: : :

:::
: : :

: : :
: : :

: : :

1CCCCCCCCA
differ only in a sign change, but they induce very different operators: we have A D
T .a/ and B D T .b/ with

a.ei� / D � log.1 � ei� / � log.1 � e�i� /; b.ei� / D i.� � �/; � 2 .0; 2�/:

As a.ei� / D �2 log j1 � ei� j is not in L1.T/, the operator T .a/ is unbounded. The
function b is bounded, and hence T .b/ is a bounded operator with symbol in PC.T/.
In a sense, B D T .b/ is a lucky exception. The symbol of

D D

0BBBBBBBB@

0 c 1
1

c 1
2

c 1
3

: : :

1
1

0 c 1
1

c 1
2

: : :

1
2

1
1

0 c 1
1

: : :

1
3

1
2

1
1

0
: : :

:::
: : :

: : :
: : :

: : :

1CCCCCCCCA
is d.ei� / D i.� � �/ � .1C c/ log.1 � e�i� /, and this is a bounded function if and
only if c D �1, that is, if and only if D D B .
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Theorem 6 (c) implies that �".Tn.b//! �".T .b//. The matrices Tn.b/ and T .b/
are skew-symmetric and hence normal. So, their "-pseudospectra are nothing else
than the closed "-neigborhoods of their spectra. Moreover, since iTn.b/ and iT .b/
are Hermitian, we conclude from (3) that even the spectra of Tn.b/ converge to the
spectrum �.T .b// D i Œ��;�� and thus the convergence �".Tn.b//! �".T .b// sim-
ply mimics the convergence of the spectra. The eigenvalues of Tn.b/ eventually fill
i Œ��; �� evenly and densely, and hence the convergence of �".Tn.b// to �".T .b// is
reasonably fast.

Things change in the non-normal case. Consider the so-called Hilbert Toeplitz
matrix

T .h/ D .1=.j � k C 1=2//1j;kD0:

The symbol of this Toeplitz matrix is h.ei� / D �ie�i�=2, again a function in PC.T/.
Consequently, the spectrum of T .h/ is the closed half-disk bounded by the half-circle
¹�ie�i�=2 W � 2 Œ0; 2��º and the line segment i Œ��;��. In [9] it is shown that the con-
vergence �".Tn.h//! �".T .h// is spectacularly slow. The reason is that the resolvent
norm kŒTn.h � �/��1k grows very slowly as n goes to infinity, so that it takes astro-
nomically large n to make this norm reach 1=". For example, if � D 1=2, then this
norm grows roughly like 3:8n0:30. At this rate, the resolvent norm will not exceed 105

until n � 1015. For � D 0, kŒTn.h� �/��1k grows roughly like 0:4 lognC 1:5 and it
will not exceed 105 until n � 10108572.

For rational symbols f , the norm kŒTn.f ��/��1k increases exponentially, which
results in fast convergence of the pseudospectra. So, one is expecting that the slow
convergence described in the preceding paragraph is caused by the discontinuity of
the symbol and that it should not happen for continuous symbols. However, in [12]
we showed that the phenomenon also occurs (and is, in a sense, even generic) within
the continuous symbols. The Fourier coefficients fn of a function f in C 2.T/ decay
as O.1=n2/. Therefore, the two functions

.Pf /.z/ D

1X
nD0

fnz
n; .Qf /.z/ D

1X
nD1

f�nz
�n .jzj D 1/

are well defined for f 2 C 2.T/. Here are two results of [12].

Theorem 7. (a) Given any number q > 0, there exists a function f 2 C.T/ such the
kŒTn.f � �/�

�1k D O.nq/ for some point � 2 �.T .f // n f .T/.
(b) Let f 2 C 2.T/ and let � 2C be a point whose winding number with respect to

f .T/ is �1 ( resp. 1 ). Then kŒTn.f � �/��1k increases faster than every polynomial,

lim
n!1

kŒTn.f � �/�
�1
kn�q D1 for each q > 0;

if and only if Pf ( resp. Qf ) belongs to C1.T/.
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10. Variation eight

As outlined in [10], a problem in lattice theory leads to the computation of the deter-
minant of the n � n matrix Vn which results from the pentadiagonal Toeplitz matrix

An´ Tn.j1 � zj
4/ D Tn.6 � 4.z C z

�1/C .z2 C z�2//

by placing ones in the upper-right and lower-left corners. For example,

V6 D

0BBBBBBB@

6 �4 1 0 0 1

�4 6 �4 1 0 0

1 �4 6 �4 1 0

0 1 �4 6 �4 1

0 0 1 �4 6 �4

1 0 0 1 �4 6

1CCCCCCCA :

It turns out that det Vn D .n C 1/3. The determinant of An is a so-called Fisher–
Hartwig determinant, and it had been known for a long time that

detAn D
1

12
.nC 1/.nC 2/2.nC 3/ �

n4

12
: (7)

Paper [10] originated from the intriguing question why the perturbations in the corners
of An lower the growth from n4 to n3. To put it into the context of these variations,
let An.c/ denote the matrix An with the two corner entries 0 replaced by a number c.
In the notation used above,

An.c/ D Tn.j1 � zj
4/C c.E0;n�1 CEn�1;0/:

Obviously, An D An.0/ and Vn D An.1/. How does the growth of detAn.c/ depend
on c?

Corollary 4.4 of [10] deals with much more general situations and in the special
case at hand it gives

detAn.c/
detAn

D 1 � c2 C
4

n
.c C 2c2/CO

� 1
n2

�
:

From this and (7), we get after elementary calculations

detAn.c/ D .1 � c2/
n4

12
C .1 � c2/

2n3

3
C .c C 2c2/

n3

3
CO.n2/:

Consequently, the growth of detAn.c/ is as n4 for c ¤ ˙1 and as n3 if c D 1 or
c D �1. To state things in less precise form but more drastically, we have

lim
n!1

detAn.c/
n3

D

8̂̂<̂
:̂
1 if c ¤ ˙1;

1 if c D 1;

1=3 if c D �1:
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Note that in [10] we actually consider the limit of det.Tn.a/C En/= detTn.a/ under
the sole assumption that a 2 L1.T/, a � 0 almost everywhere, log a 2 L1.T/ and
with n � n matrices En whose nonzero entries are four fixed m0 �m0 blocks placed
in the four corners of the matrix.

11. Variation nine

In 2004, after many years of work with Toeplitz matrices, I arrived at the question of
how to ascertain whether a given matrix is a Toeplitz matrix. This might sound strange
at the first glance, but assume our machine has computed and stored an n � n matrix
X D .xjk/

n
j;kD1

with a very large n and we want to know whether it is a Toeplitz
matrix. How could we do this?

We could ask the machine to check whether the entries are constant along the
diagonals. To perform this task, we take the n � n forward-shift matrix U , that is,
the matrix with ones on the subdiagonal and zeros elsewhere, and let the machine
compute XU � UX , which equals0BBBBBB@

x12 x13 : : : x1;n�1 0

x22 � x11 x23 � x12 : : : x2n � x1;n�1 �x1n

x32 � x21 x33 � x22 : : : x3n � x2;n�1 �x2n
:::

:::
:::

:::

xn2 � xn�1;1 xn3 � xn�1;2 : : : xnn � xn�1;n�1 �xn�1;n

1CCCCCCA :

LetD.X/ denote the lower-left .n� 1/� .n� 1/ submatrix of this matrix. Clearly, the
original matrix X is Toeplitz if and only if D.X/ is the zero matrix. Thus, we arrived
at the critical issue of testing whether something is zero. All we can do is to test
whether D.X/ is small, say whether kD.X/k2 < ", where kAk2 D .

P
j;k jajkj

2/1=2

denotes the Frobenius norm (D Hilbert–Schmidt norm) of A. Does this imply that X
is close to a Toeplitz matrix?

Take, for example, X D diag.x1; x2; : : : ; xn/ with xj D exp.2�ij=n/. Then

kD.X/k22 D jx1 � x2j
2
C jx2 � x3j

2
C � � � C jxn�1 � xnj

2

D .n � 1/je2�i=n � 1j2 D 4.n � 1/ sin2
�

n
;

which is small for large n. Let Tn be the set of all n � n Toeplitz matrices with entries
in K where either K D C or K D R. It easily seen that, for diagonal matrices X ,

dist22.X; Tn/´ min
T2Tn

kX � T k22 D

nX
jD1

ˇ̌̌
xj �

1

n

nX
kD1

xk

ˇ̌̌2
:
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In our case
P
xk D 0, which gives dist22.X; Tn/ D

P
jxj j

2 D n, and this is large.
In [6], the following is proved for general matrices X .

Theorem 8. We have

max
X…Tn

dist2.X; Tn/
kD.X/k2

D
1

2 sin �
2n

�
n

�
:

Thus, if kD.X/k2 D " then dist2.X; Tn/ is at most about n"=� . This may be
large, but the linear growth prevents n"=� from becoming an astronomic number if "
and n are appropriately adapted. Moreover, the following result of [6] tells us that the
worst-case situation of Theorem 8 is a very rare event for matrices of large sizes.

Theorem 9. Equip the space Kn�n of the n � n matrices over K with the Frobenius
norm and takeX randomly from the unit sphere of Kn�n with the uniform distribution.
Put dist2.X; Tn/=kD.X/k2 D 0 if kD.X/k2 D 0. Then

Probability
�dist2.X; Tn/
kD.X/k2

> 10
�
<
13

n2
for n � 10:

Thus, although the question on whether we can figure out whether a given matrix
is Toeplitz has a negative answer theoretically, these two theorems say that practically
and optimistically the answer to this question is in the affirmative.

A Toeplitz-plus-Hankel matrix (TCH matrix for short) is a matrix of the form
.tj�k C hjCk/

n
j;kD1

. In contrast to the pure Toeplitz or pure Hankel structures, it is
not immediately seen whether a given n � n matrix X (with n being small) is TCH.
For example, with unskilled eyes it is not trivial to decide which of the matrices0B@ 2:9 2:3 �1:9

5:4 0:3 0:7

5:2 �1:2 1:9

1CA ;
0B@ 2:9 2:3 �1:9

5:4 0:4 0:7

5:2 �1:2 1:9

1CA ;
0B@ 2:9 2:3 �1:9

5:4 0:4 0:8

5:2 �1:2 1:9

1CA
are TCH. However, Heinig, and Rost [42] discovered that X is TCH if and only if
the central .n� 2/ � .n� 2/ submatrix of XW �WX is zero, where W D U C U>

is the n � n matrix with ones on the first superdiagonal and the first subdiagonal and
with zeros elsewhere. Thus, let us denote the central .n � 2/ � .n � 2/ submatrix
of XW � WX by F.X/ and let T Hn stand for the space of TCH matrices with
tj�k; hjCk 2 R. In [6], analogs of Theorems 8 and 9 were proved: there are constants
C1; C2 such that

C1n
2 < max

X…T Hn

dist2.X; T Hn/

kF.X/k2
< C2n

2;

and if X is randomly drawn from the unit sphere of Rn�n with the uniform distribu-
tion, then

Probability
�dist2.X; T Hn/

kF.X/k2
> 10

�
<
79

n2
for n � 10:
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A statistical test was designed in [18]. Suppose n � 20 and X is from the unit
sphere of Rn�n with the uniform distribution. Compute � D kF.X/k22=kXk

2
2. If � <

1:91 (resp. 0:29), we accept X to be TCH. Then the probability for accepting the
matrix as TCH although it is not TCH does not exceed 5% (resp. 1%).

Acknowledgments. I thank the referee for reading the paper with exceptional care
and for improving it by useful comments.

References

[1] A. Aslanyan and E. B. Davies, Spectral instability for some Schrödinger operators. Numer.
Math. 85 (2000), no. 4, 525–552 Zbl 0964.65076 MR 1770658

[2] E. L. Basor and K. E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues.
Linear Algebra Appl. 202 (1994), 129–142 Zbl 0805.15004 MR 1288485

[3] R. M. Beam and R. F. Warming, The asymptotic spectra of banded Toeplitz and quasi-
Toeplitz matrices. SIAM J. Sci. Comput. 14 (1993), no. 4, 971–1006 Zbl 0788.65049
MR 1223283

[4] J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, and M. Seidel, New barriers in complexity
theory: on the solvability complexity index and the towers of algorithms. C. R. Math.
Acad. Sci. Paris 353 (2015), no. 10, 931–936 Zbl 1343.68078 MR 3411224

[5] A. Böttcher, Pseudospectra and singular values of large convolution operators. J. Integral
Equations Appl. 6 (1994), no. 3, 267–301 Zbl 0819.45002 MR 1312518

[6] A. Böttcher, On the problem of testing the structure of a matrix of displacement operators.
SIAM J. Numer. Anal. 44 (2006), no. 1, 41–54 Zbl 1117.65058 MR 2217370

[7] A. Böttcher, M. Embree, and M. Lindner, Spectral approximation of banded Laurent matri-
ces with localized random perturbations. Integral Equations Operator Theory 42 (2002),
no. 2, 142–165 Zbl 0995.47021 MR 1870436

[8] A. Böttcher, M. Embree, and V. I. Sokolov, Infinite Toeplitz and Laurent matrices with
localized impurities. Linear Algebra Appl. 343/344 (2002), 101–118 Zbl 0995.15013
MR 1878938

[9] A. Böttcher, M. Embree, and L. N. Trefethen, Piecewise continuous Toeplitz matrices and
operators: slow approach to infinity. SIAM J. Matrix Anal. Appl. 24 (2002), no. 2, 484–489
Zbl 1022.47018 MR 1951133

[10] A. Böttcher, L. Fukshansky, S. R. Garcia, and H. Maharaj, Toeplitz determinants with
perturbations in the corners. J. Funct. Anal. 268 (2015), no. 1, 171–193 Zbl 1300.15010
MR 3280056

[11] A. Böttcher, J. Gasca, S. M. Grudsky, and A. V. Kozak, Eigenvalue clusters of large tetra-
diagonal Toeplitz matrices. Integral Equations Operator Theory 93 (2021), no. 1, article
no. 8 Zbl 1477.47023 MR 4208115

[12] A. Böttcher and S. Grudsky, Toeplitz matrices with slowly growing pseudospectra. In Fac-
torization, singular operators and related problems (Funchal, 2002), pp. 43–54, Kluwer
Acad. Publ., Dordrecht, 2003 Zbl 1037.47017 MR 2001590

https://doi.org/10.1007/PL00005391
https://zbmath.org/?q=an:0964.65076
https://mathscinet.ams.org/mathscinet-getitem?mr=1770658
https://doi.org/10.1016/0024-3795(94)90187-2
https://zbmath.org/?q=an:0805.15004
https://mathscinet.ams.org/mathscinet-getitem?mr=1288485
https://doi.org/10.1137/0914059
https://doi.org/10.1137/0914059
https://zbmath.org/?q=an:0788.65049
https://mathscinet.ams.org/mathscinet-getitem?mr=1223283
https://doi.org/10.1016/j.crma.2015.08.002
https://doi.org/10.1016/j.crma.2015.08.002
https://zbmath.org/?q=an:1343.68078
https://mathscinet.ams.org/mathscinet-getitem?mr=3411224
https://doi.org/10.1216/jiea/1181075815
https://zbmath.org/?q=an:0819.45002
https://mathscinet.ams.org/mathscinet-getitem?mr=1312518
https://doi.org/10.1137/040620035
https://zbmath.org/?q=an:1117.65058
https://mathscinet.ams.org/mathscinet-getitem?mr=2217370
https://doi.org/10.1007/BF01275512
https://doi.org/10.1007/BF01275512
https://zbmath.org/?q=an:0995.47021
https://mathscinet.ams.org/mathscinet-getitem?mr=1870436
https://doi.org/10.1016/S0024-3795(01)00343-3
https://doi.org/10.1016/S0024-3795(01)00343-3
https://zbmath.org/?q=an:0995.15013
https://mathscinet.ams.org/mathscinet-getitem?mr=1878938
https://doi.org/10.1137/S0895479800376971
https://doi.org/10.1137/S0895479800376971
https://zbmath.org/?q=an:1022.47018
https://mathscinet.ams.org/mathscinet-getitem?mr=1951133
https://doi.org/10.1016/j.jfa.2014.10.023
https://doi.org/10.1016/j.jfa.2014.10.023
https://zbmath.org/?q=an:1300.15010
https://mathscinet.ams.org/mathscinet-getitem?mr=3280056
https://doi.org/10.1007/s00020-020-02619-z
https://doi.org/10.1007/s00020-020-02619-z
https://zbmath.org/?q=an:1477.47023
https://mathscinet.ams.org/mathscinet-getitem?mr=4208115
https://zbmath.org/?q=an:1037.47017
https://mathscinet.ams.org/mathscinet-getitem?mr=2001590


A. Böttcher 476

[13] A. Böttcher, S. Grudsky, and I. Spitkovsky, The spectrum is discontinuous on the manifold
of Toeplitz operators. Arch. Math. (Basel) 75 (2000), no. 1, 46–52 Zbl 0966.47015
MR 1764891

[14] A. Böttcher and S. M. Grudsky, Asymptotic spectra of dense Toeplitz matrices are unsta-
ble. Numer. Algorithms 33 (2003), no.1-4, 105—112 Zbl 1038.65030 MR 2005555

[15] A. Böttcher and S. M. Grudsky, Spectral properties of banded Toeplitz matrices. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005
Zbl 1089.47001 MR 2179973

[16] A. Böttcher, Y. I. Karlovich, and I. M. Spitkovsky, Convolution operators and factorization
of almost periodic matrix functions. Oper. Theory Adv. Appl. 131, Birkhäuser, Basel, 2002
Zbl 1011.47001 MR 1898405

[17] A. Böttcher and B. Silbermann, Introduction to large truncated Toeplitz matrices. Univer-
sitext, Springer, New York, 1999 Zbl 0916.15012 MR 1724795

[18] A. Böttcher and D. Wenzel, On the verification of linear equations and the identification
of the Toeplitz-plus-Hankel structure. In Modern operator theory and applications, pp.
43–51, Oper. Theory Adv. Appl. 170, Birkhäuser, Basel, 2007 Zbl 1126.47027
MR 2279381

[19] V. I. Burenkov and E. B. Davies, Spectral stability of the Neumann Laplacian. J. Differen-
tial Equations 186 (2002), no. 2, 485–508 Zbl 1042.35035 MR 1942219

[20] S. N. Chandler-Wilde and E. B. Davies, Spectrum of a Feinberg-Zee random hopping
matrix. J. Spectr. Theory 2 (2012), no. 2, 147–179 Zbl 1262.15007 MR 2913876

[21] M. J. Colbrook, B. Roman, and A. C. Hansen, How to compute spectra with error control.
Phys. Rev. Lett. 122 (2019), no. 25, artile no. 250201 MR 3980052

[22] E. B. Davies, Pseudo-spectra, the harmonic oscillator and complex resonances. R. Soc.
Lond. Proc. Ser. A Math. Phys. Eng., Sci. 455 (1999), no. 1982, 585–599
Zbl 0931.70016 MR 1700903

[23] E. B. Davies, Wild spectral behaviour of anharmonic oscillators. Bull. London Math. Soc.
32 (2000), no. 4, 432–438 Zbl 1043.47502 MR 1760807

[24] E. B. Davies, Spectral properties of random non-self-adjoint matrices and operators.
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng., Sci. 457 (2001), no. 2005, 191–206
Zbl 1014.47002 MR 1843941

[25] E. B. Davies, Non-self-adjoint differential operators. Bull. London Math. Soc. 34 (2002),
no. 5, 513–532 Zbl 1052.47042 MR 1912874

[26] E. B. Davies, Eigenvalues of an elliptic system. Math. Z. 243 (2003), no. 4, 719–743
Zbl 1032.34078 MR 1974580

[27] E. B. Davies, A defence of mathematical pluralism. Philos. Math. (3) 13 (2005), no. 3,
252–276 Zbl 1093.03502 MR 2192174

[28] E. B. Davies, Approximate diagonalization. SIAM J. Matrix Anal. Appl. 29 (2007), no. 4,
1051–1064 Zbl 1157.65024 MR 2369283

[29] E. B. Davies and M. Hager, Perturbations of Jordan matrices. J. Approx. Theory 156
(2009), no. 1, 82–94 Zbl 1164.15004 MR 2490477

[30] E. B. Davies and M. Plum, Spectral pollution. IMA J. Numer. Anal. 24 (2004), no. 3,
417–438 Zbl 1062.65056 MR 2068830

https://doi.org/10.1007/s000130050472
https://doi.org/10.1007/s000130050472
https://zbmath.org/?q=an:0966.47015
https://mathscinet.ams.org/mathscinet-getitem?mr=1764891
https://doi.org/10.1023/A:1025547501771
https://doi.org/10.1023/A:1025547501771
https://zbmath.org/?q=an:1038.65030
https://mathscinet.ams.org/mathscinet-getitem?mr=2005555
https://doi.org/10.1137/1.9780898717853
https://zbmath.org/?q=an:1089.47001
https://mathscinet.ams.org/mathscinet-getitem?mr=2179973
https://doi.org/10.1007/978-3-0348-8152-4
https://doi.org/10.1007/978-3-0348-8152-4
https://zbmath.org/?q=an:1011.47001
https://mathscinet.ams.org/mathscinet-getitem?mr=1898405
https://doi.org/10.1007/978-1-4612-1426-7
https://zbmath.org/?q=an:0916.15012
https://mathscinet.ams.org/mathscinet-getitem?mr=1724795
https://doi.org/10.1007/978-3-7643-7737-3_3
https://doi.org/10.1007/978-3-7643-7737-3_3
https://zbmath.org/?q=an:1126.47027
https://mathscinet.ams.org/mathscinet-getitem?mr=2279381
https://doi.org/10.1016/S0022-0396(02)00033-5
https://zbmath.org/?q=an:1042.35035
https://mathscinet.ams.org/mathscinet-getitem?mr=1942219
https://doi.org/10.4171/JST/25
https://doi.org/10.4171/JST/25
https://zbmath.org/?q=an:1262.15007
https://mathscinet.ams.org/mathscinet-getitem?mr=2913876
https://doi.org/10.1103/PhysRevLett.122.250201
https://mathscinet.ams.org/mathscinet-getitem?mr=3980052
https://doi.org/10.1098/rspa.1999.0325
https://zbmath.org/?q=an:0931.70016
https://mathscinet.ams.org/mathscinet-getitem?mr=1700903
https://doi.org/10.1112/S0024609300007050
https://zbmath.org/?q=an:1043.47502
https://mathscinet.ams.org/mathscinet-getitem?mr=1760807
https://doi.org/10.1098/rspa.2000.0662
https://zbmath.org/?q=an:1014.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=1843941
https://doi.org/10.1112/S0024609302001248
https://zbmath.org/?q=an:1052.47042
https://mathscinet.ams.org/mathscinet-getitem?mr=1912874
https://doi.org/10.1007/s00209-002-0464-0
https://zbmath.org/?q=an:1032.34078
https://mathscinet.ams.org/mathscinet-getitem?mr=1974580
https://doi.org/10.1093/philmat/nki017
https://zbmath.org/?q=an:1093.03502
https://mathscinet.ams.org/mathscinet-getitem?mr=2192174
https://doi.org/10.1137/060659909
https://zbmath.org/?q=an:1157.65024
https://mathscinet.ams.org/mathscinet-getitem?mr=2369283
https://doi.org/10.1016/j.jat.2008.04.021
https://zbmath.org/?q=an:1164.15004
https://mathscinet.ams.org/mathscinet-getitem?mr=2490477
https://doi.org/10.1093/imanum/24.3.417
https://zbmath.org/?q=an:1062.65056
https://mathscinet.ams.org/mathscinet-getitem?mr=2068830


Spectral instabilities: variations on a theme loved by Brian Davies 477

[31] E. B. Davies and A. Pushnitski, Non-Weyl resonance asymptotics for quantum graphs.
Anal. PDE 4 (2011), no. 5, 729–756 Zbl 1268.34056 MR 2901564

[32] E. B. Davies and E. Shargorodsky, Level sets of the resolvent norm of a linear operator
revisited. Mathematika 62 (2016), no. 1, 243–265 Zbl 1328.47006 MR 3430382

[33] E. B. Davies and B. Simon, Spectral properties of Neumann Laplacian of horns. Geom.
Funct. Anal. 2 (1992), no. 1, 105–117 Zbl 0749.35024 MR 1143665

[34] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators. Trans.
Amer. Math. Soc. 348 (1996), no. 10, 4153–4174 Zbl 0862.47013 MR 1363943

[35] I. C. Gohberg and I. A. Feldman, Convolution equations and projection methods for
their solution. Transl. Math. Monogr. 41, American Mathematical Society, Providence,
RI, 1974 Zbl 0278.45008 MR 0355675

[36] R. Hagen, S. Roch, and B. Silbermann, C�-algebras and numerical analysis. Monogr.
Textbooks Pure Appl. Math. 236, Marcel Dekker, New York, 2001 Zbl 0964.65055
MR 1792428

[37] P. R. Halmos, A Hilbert space problem book. D. Van Nostrand Co., Princeton, N.J., etc.,
1967 Zbl 0144.38704 MR 208368

[38] A. C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces.
J. Funct. Anal. 254 (2008), no. 8, 2092–2126 Zbl 1138.47002 MR 2402104

[39] A. C. Hansen, On the solvability complexity index, the n-pseudospectrum and approxi-
mations of spectra of operators. J. Amer. Math. Soc. 24 (2011), no. 1, 81–124
Zbl 1210.47013 MR 2726600

[40] A. C. Hansen and O. Nevanlinna, Complexity issues in computing spectra, pseudospectra
and resolvents. In Études opératorielles, pp. 171–194, Banach Center Publ. 112, Polish
Acad. Sci. Inst. Math., Warsaw, 2017 Zbl 1480.47007 MR 3754078

[41] F. Hausdorff, Set theory. Chelsea Publishing Co., New York, 1957 Zbl 0081.04601
MR 86020

[42] G. Heinig and K. Rost, Algebraic methods for Toeplitz-like matrices and operators. Oper.
Theory Adv. Appl. 13, Birkhäuser, Basel, 1984 Zbl 0549.15013 MR 782105

[43] I. S. Hwang and W. Y. Lee, On the continuity of spectra of Toeplitz operators. Arch. Math.
(Basel) 70 (1998), no. 1, 66–73 Zbl 0910.47021 MR 1487456

[44] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices.
Linear Algebra Appl. 162/164 (1992), 153–185 Zbl 0748.15010 MR 1148398

[45] S. Roch, personal communication, May 2023
[46] D. Sarason, Toeplitz operators with semi-almost periodic symbols. Duke Math. J. 44

(1977), no. 2, 357–364 Zbl 0356.47018 MR 454717
[47] P. Schmidt and F. Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial. Math.

Scand. 8 (1960), 15–38 Zbl 0101.09203 MR 124665
[48] E. Shargorodsky, On the level sets of the resolvent norm of a linear operator. Bull. Lond.

Math. Soc. 40 (2008), no. 3, 493–504 Zbl 1147.47007 MR 2418805
[49] B. Simon, Orthogonal polynomials on the unit circle. Part 1. Classical Theory. Amer.

Math. Soc. Colloq. Publ. 54, American Mathematical Society, Providence, RI, 2005
Zbl 1082.42020 MR 2105088

https://doi.org/10.2140/apde.2011.4.729
https://zbmath.org/?q=an:1268.34056
https://mathscinet.ams.org/mathscinet-getitem?mr=2901564
https://doi.org/10.1112/S0025579315000194
https://doi.org/10.1112/S0025579315000194
https://zbmath.org/?q=an:1328.47006
https://mathscinet.ams.org/mathscinet-getitem?mr=3430382
https://doi.org/10.1007/BF01895707
https://zbmath.org/?q=an:0749.35024
https://mathscinet.ams.org/mathscinet-getitem?mr=1143665
https://doi.org/10.1090/S0002-9947-96-01683-2
https://zbmath.org/?q=an:0862.47013
https://mathscinet.ams.org/mathscinet-getitem?mr=1363943
https://zbmath.org/?q=an:0278.45008
https://mathscinet.ams.org/mathscinet-getitem?mr=0355675
https://doi.org/10.1201/9781482270679
https://zbmath.org/?q=an:0964.65055
https://mathscinet.ams.org/mathscinet-getitem?mr=1792428
https://zbmath.org/?q=an:0144.38704
https://mathscinet.ams.org/mathscinet-getitem?mr=208368
https://doi.org/10.1016/j.jfa.2008.01.006
https://zbmath.org/?q=an:1138.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=2402104
https://doi.org/10.1090/S0894-0347-2010-00676-5
https://doi.org/10.1090/S0894-0347-2010-00676-5
https://zbmath.org/?q=an:1210.47013
https://mathscinet.ams.org/mathscinet-getitem?mr=2726600
https://doi.org/10.4064/bc112-0-10
https://doi.org/10.4064/bc112-0-10
https://zbmath.org/?q=an:1480.47007
https://mathscinet.ams.org/mathscinet-getitem?mr=3754078
https://zbmath.org/?q=an:0081.04601
https://mathscinet.ams.org/mathscinet-getitem?mr=86020
https://doi.org/10.1007/978-3-0348-6241-7
https://zbmath.org/?q=an:0549.15013
https://mathscinet.ams.org/mathscinet-getitem?mr=782105
https://doi.org/10.1007/s000130050166
https://zbmath.org/?q=an:0910.47021
https://mathscinet.ams.org/mathscinet-getitem?mr=1487456
https://doi.org/10.1016/0024-3795(92)90374-J
https://zbmath.org/?q=an:0748.15010
https://mathscinet.ams.org/mathscinet-getitem?mr=1148398
https://doi.org/10.1215/s0012-7094-77-04415-5
https://zbmath.org/?q=an:0356.47018
https://mathscinet.ams.org/mathscinet-getitem?mr=454717
https://doi.org/10.7146/math.scand.a-10588
https://zbmath.org/?q=an:0101.09203
https://mathscinet.ams.org/mathscinet-getitem?mr=124665
https://doi.org/10.1112/blms/bdn038
https://zbmath.org/?q=an:1147.47007
https://mathscinet.ams.org/mathscinet-getitem?mr=2418805
https://doi.org/10.1090/coll054.1
https://zbmath.org/?q=an:1082.42020
https://mathscinet.ams.org/mathscinet-getitem?mr=2105088


A. Böttcher 478

[50] P. Tilli, Some results on complex Toeplitz eigenvalues. J. Math. Anal. Appl. 239 (1999),
no. 2, 390–401 Zbl 0935.15002 MR 1723067

[51] L. N. Trefethen and M. Embree, Spectra and pseudospectra. The behavior of nonnormal
matrices and operators. Princeton University Press, Princeton, NJ, 2005 Zbl 1085.15009
MR 2155029

[52] H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymp-
totics of Toeplitz determinants in the case of nonvanishing index. In Topics in operator
theory: Ernst D. Hellinger memorial volume, pp. 387–421, Oper. Theory Adv. Appl. 48,
Birkhäuser, Basel, 1990 Zbl 0733.15003 MR 1207410

Received 21 June 2023; revised 17 September 2023.

Albrecht Böttcher
Fakultät für Mathematik, Technische Universität Chemnitz, Reichenhainer Strasse 39,
09107 Chemnitz, Germany; aboettch@mathematik.tu-chemnitz.de

https://doi.org/10.1006/jmaa.1999.6572
https://zbmath.org/?q=an:0935.15002
https://mathscinet.ams.org/mathscinet-getitem?mr=1723067
https://doi.org/10.1515/9780691213101
https://doi.org/10.1515/9780691213101
https://zbmath.org/?q=an:1085.15009
https://mathscinet.ams.org/mathscinet-getitem?mr=2155029
https://doi.org/10.1016/0165-1765(89)90222-x
https://doi.org/10.1016/0165-1765(89)90222-x
https://zbmath.org/?q=an:0733.15003
https://mathscinet.ams.org/mathscinet-getitem?mr=1207410
mailto:aboettch@mathematik.tu-chemnitz.de

	1. The theme
	2. Variation one
	3. Variation two
	4. Variation three
	5. Variation four
	6. Variation five
	7. Intermezzo
	8. Variation six
	9. Variation seven
	10. Variation eight
	11. Variation nine
	References

