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Inequalities à la Pólya for the Aharonov–Bohm eigenvalues
of the disk

Nikolay Filonov, Michael Levitin, Iosif Polterovich, and David A. Sher

Abstract. We prove an analogue of Pólya’s conjecture for the eigenvalues of the magnetic
Schrödinger operator with Aharonov–Bohm potential on the disk for Dirichlet and magnetic
Neumann boundary conditions. This answers a question posed by R. L. Frank and A. M.
Hansson.

Dedicated to E. Brian Davies on the occasion of his eightieth birthday:
to a wonderful man and a brilliant mathematician who taught us, among other

things, that proofs and numerics can coexist

1. Introduction and main results

Consider a magnetic Schrödinger operator on R2 with an Aharonov–Bohm potential,

Ap;˛ WD .�ir � ˛Ap/2;

where p D .p1; p2/ 2 R2, ˛ 2 R, and Ap D jx � pj�2
� p2�x2
x1�p1

�
, x D .x1; x2/ 2 R2.

We refer to Ap;˛ for brevity as the Aharonov–Bohm operator [9]. It can be rewritten
as

Ap;˛u D ��uC ˛
2
jApj2uC 2i˛hru;Api;

where�D @2x1 C @
2
x2

is the Laplacian and u is a complex-valued function. The point
p is called the pole of the potential, and the number ˛ is called the flux; cf. (1.1)
below. If ˛ � ˛0 2 Z, one can show that the operator Ap;˛ is unitarily equivalent to
Ap;˛0 . (This is also known as gauge invariance; see, for instance, [3, Appendix A.4].)
Moreover, changing the sign of the flux is equivalent to choosing a coordinate system
centred at p and interchanging the coordinates. Therefore, we may assume without
loss of generality that ˛ 2 Œ0; 1

2
�.
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The operator Ap;˛ arises in the study of an important phenomenon in quantum
physics called the Aharonov–Bohm effect [1], which, roughly speaking, shows that a
magnetic potential may affect a charged particle even if the corresponding magnetic
field vanishes. Let

Ap D
p2 � x2

jx � pj2
dx1 C

x1 � p1

jx � pj2
dx2

be the dual 1-form to the vector potential Ap . Recall that a 1-form A is called closed
if dA D 0, and it is called exact if there is a smooth function f such that A D df ;
it is well known that adding a magnetic potential corresponding to an exact 1-form
does not change the magnetic Laplacian up to unitary equivalence. One can check
that Ap is a closed form on R2 n ¹pº, and hence, the magnetic field dAp generated
by the Aharonov–Bohm potential on R2 n ¹pº is equal to zero. At the same time, a
direct calculation yields that Ap D d� , where � is the angular coordinate in a polar
coordinate system centred at p. Therefore, for any simple closed curve � containing
p in its interior,

1

2�

I
�

Ap D 1; (1.1)

and thus, the form Ap is not exact. Note that (1.1) implies that the (normalised) flux
of the potential ˛Ap is equal to ˛, which motivates the terminology. As shown below,
the spectral properties of the operator Ap;˛ depend on the position of the pole p and
on the value of ˛, despite the fact that the magnetic field is zero. This can be viewed
as a manifestation of the Aharonov–Bohm effect. There is a vast literature in spectral
theory on the subject; see, for example, [2, 3, 9, 11, 14] and references therein.

More specifically, let � � R2 be a bounded planar domain. Consider the eigen-
value problem Ap;˛uD �u in� for the Aharonov–Bohm operator with either Dirich-
let

uj@� D 0

or magnetic Neumann
h.ru � i˛Apu/j@�;ni D 0

boundary conditions. Here, n denotes the external unit normal at the boundary. It is
well known that the Dirichlet problem has discrete spectrum for any bounded domain
�, and the same is true for the magnetic Neumann problem under the standard regu-
larity assumptions; e.g., if @� is Lipschitz, see [3, Appendix A].

Applying a coordinate change if necessary, we may assume without loss of gen-
erality that the pole p coincides with the origin o, and we set A˛ WD Ao;˛ , ˛ 2 Œ0; 1

2
�.

Moreover, we may assume that o lies in the simply connected hull of�, i.e., the smal-
lest simply connected set containing �. Indeed, otherwise, the flux of the potential
over any closed curve contained in � is equal to zero; hence, the form Ap is exact in
�, and the magnetic potential vanishes after an application of a gauge transformation.
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We will denote the Dirichlet eigenvalues of A˛ on � by

�D
1 .�; ˛/ � �

D
2 .�; ˛/ � � � � % C1

and the magnetic Neumann eigenvalues by

�N
1 .�; ˛/ � �

N
2 .�; ˛/ � � � � % C1:

For ˛ D 0, they coincide, respectively, with the Dirichlet and Neumann eigenvalues
of the usual Laplacian on �.

Consider the Dirichlet problem first. Let

N D
� .�I˛/ D #¹n 2 N W �D

n.�; ˛/ � �
2
º

be the eigenvalue counting function. It is known to satisfy Weyl’s law ([6, Theorem
A.1]; see also [8, Theorem 6]):

N D
� .�I˛/ D

Area.�/�2

4�
C o.�2/; (1.2)

as �!1. If ˛ D 0, the celebrated Pólya’s eigenvalue conjecture [18] states that, for
any bounded domain � � R2,

N D
� .�I 0/ �

Area.�/�2

4�
(1.3)

for all � � 0. It was proved by Pólya for tiling domains [19] and has been recently
obtained for the disk in [5]; we refer to [15, Section 3.3.3] for an overview of this
topic. One may ask if Pólya’s conjecture can be extended to magnetic Schrödinger
operators. It is known to be false in the case of constant magnetic field [10]. At the
same time, numerical experiments presented in [9] suggested that it holds for the
Aharonov–Bohm operator on certain domains, in particular, for the disk. The goal of
this paper is to confirm the latter, developing the approach proposed in [5].

From now on, let � be the unit disk D centred at the origin. The (non-ordered)
eigenvalues of the Aharonov–Bohm operator A˛ on D are given by [9, Section 5.2]

�D
i;k WD j

2
ji�˛j;k; i 2 Z; k 2 N; (1.4)

where j�;k is the kth positive root of the Bessel function J�.x/.
Our first main result is the following theorem.

Theorem 1.1. Let ˛ 2 Œ0; 1
2
�. Then,

N D
D .�I˛/ <

�2

4
for all � 2 .0;C1/: (1.5)
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Figure 1. Some zeros of Bessel functions as functions of ˛.

We recall [5, Remark 1.1] that (1.5) can be equivalently rewritten as

�D
n.D; ˛/ > 4n for all n 2 N:

We prove Theorem 1.1 in Section 2.

Remark 1.2. We note that there is no uniform (in n) monotonicity relations in ˛
between �D

n.D; ˛/ and �D
n.D; 0/, and hence, (1.5) cannot be easily deduced from the

already known case ˛ D 0. Indeed, for ˛ 2 .0; 1
2
� and m > 0, each double eigenvalue

j 2
m;k

of the Dirichlet Laplacian splits into a smaller eigenvalue j 2
m�˛;k

and a bigger
eigenvalue j 2

mC˛;k
of the Aharonov–Bohm operator, whereas the single eigenvalues

j 2
0;k

of the Dirichlet Laplacian all move up to become the eigenvalues j 2
˛;k

of A˛; see
Figure 1.

Consider now the magnetic Neumann problem. Let

N N
� .�I˛/ D #¹n 2 N W �N

n.�; ˛/ � �
2
º:

For ˛ D 0, we recover the counting function of the Neumann Laplacian. In this case,
Pólya’s conjecture states that

N N
� .�I 0/ �

Area.�/�2

4�
: (1.6)

Similar to (1.3), inequality (1.6) is known to hold for tiling domains [13, 19] and for
the disk [5]. We would like to extend it for the Aharonov–Bohm operator on the disk
with an arbitrary flux ˛. We note, first of all, that since we assume that the potential
has the pole at the origin, the magnetic Neumann boundary conditions simplify to the
ordinary Neumann conditions

hruj@D;ni D 0:
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The (non-ordered) eigenvalues of the Neumann Aharonov–Bohm operator A˛ on the
disk are given by [3, Section B.3]

�N
i;k WD .j

0
ji�˛j;k/

2; i 2 Z; k 2 N; (1.7)

where j 0
�;k

is the kth positive root of the derivative of the Bessel function J 0�.x/, with
an exception j 00;1D 0. We immediately note that, unlike the case ˛D 0 for which (1.8)
holds for all � > 0, we need to impose some restrictions when ˛ > 0. Indeed, in this
case, the first eigenvalue of the Neumann Aharonov–Bohm operator is no longer zero,

�N
1 .D; ˛/ D .j

0
˛;1/

2 > 0:

Therefore, N N
� .�I 0/ D 0 for all � 2 Œ0; j 0˛;1/, and (1.6) cannot hold in this interval.

However, outside of this interval, Pólya’s conjecture for the Aharonov–Bohm operator
on the disk with magnetic Neumann boundary condition still holds.

Theorem 1.3. Let ˛ 2 Œ0; 1
2
�. Then,

N N
D .�I˛/ >

�2

4
(1.8)

holds for all � � j 0˛;1.

Equivalently, we have

�N
nC1.�; ˛/ < 4n for all n 2 N: (1.9)

Theorem 1.3 is proved in Section 3. We note that in the interval � 2 Œ5
2
; 9�we use a

rigorous computer-assisted argument based on integer arithmetic; see Proposition 3.8.

Remark 1.4. In fact, apart from the ground state [3,4], the magnetic Neumann eigen-
values of the Aharonov–Bohm operator appear to be less explored than the Dirichlet
ones. In particular, even the one-term Weyl’s law,

N N
� .�I˛/ D

Area.�/�2

4�
C o.�2/ as �!C1; (1.10)

has not been worked out in the literature in full detail. We note that the standard
smooth methods do not apply due the presence of a singularity at the pole. To fill in
this gap, we present an argument that was communicated to us by R. L. Frank [7].
As before, assume that � has Lipschitz boundary and consider the Aharonov–Bohm
operator A˛ with a pole at the origin o 2�. Since Ao 2L2loc.� n ¹oº/, it follows from
[12, Theorem 1.3] that the pointwise difference between the Neumann and Dirichlet
heat kernels for A˛ on the diagonal satisfiesˇ̌

e�tA
N
˛ .x; x/ � e�tA

D
˛ .x; x/

ˇ̌
� et�

N
.x; x/ � et�

D
.x; x/; x 2 � n ¹oº; t > 0:
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Integrating both sides over x, multiplying by td=2, and using the heat trace asymptot-
ics for the Dirichlet and Neumann Laplacian, we get

td=2
�

Tr e�tA
N
˛ � Tr e�tA

D
˛
�
! 0 as t ! 0C: (1.11)

By an Abelian theorem, the Weyl asymptotics (1.2) implies the one-term asymptotics
for the Dirichlet heat trace for the Aharonov–Bohm operator, which by (1.11) implies
the same asymptotics for the Neumann heat trace. The standard Tauberian argument
then implies (1.10).

Remark 1.5. It would be interesting to know if analogues of Theorems 1.1 and 1.3
hold for other domains, even numerically. As we have mentioned previously, in the
Dirichlet case, it was checked computationally in [9] for some annuli and the square
with the centred potential. We have conducted some rough numerical experiments for
the disk, with both the Dirichlet and the Neumann conditions, and an off-centred pole
position, which seem to indicate that experimentally the analogues of Pólya’s conjec-
ture still hold in these cases (with an appropriate modification for the first Neumann
eigenvalue as above) for all ˛ and all pole placements, but we do not have a proof of
this claim.

2. Proof of Theorem 1.1

Recall formula (1.4). With an alternative parametrisation, we can split the eigenvalues
into two double-index sequences

j 2mC˛;k;

j 2mC.1�˛/;k;
m 2 N [ ¹0º; k 2 N:

Therefore, the counting function of eigenvalues which are less than or equal to a given
�2 2 Œ0;C1/ is

N D
D .�I˛/ WD #¹n 2 N W �D

n.D; ˛/ � �
2
º D #¹.i; k/ 2 Z �N W �D

i;k � �
2
º

D

1X
mD0

#¹k 2 N W jmC˛;k � �º C
1X
mD0

#¹k 2 N W jmC.1�˛/;k � �º

D

b��˛cX
mD0

#¹k 2 N W jmC˛;k � �º C
b��.1�˛/cX
mD0

#¹k 2 N W jmC.1�˛/;k � �º;

(2.1)

where in the last line we used the fact that j�;1 > �, and therefore,

#¹k 2 N W j�;k � �º D 0
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whenever � > �. Here and further on, bxc and dxe stand, as usual, for the floor and
the ceiling of a real number x, respectively.

The main ideas of the proof are similar to those in the case of the Dirichlet Lapla-
cian [5], with some notable changes. The first important ingredient is a uniform upper
bound on the number of zeros of a Bessel function in a given interval, which is dir-
ectly borrowed from [5,20]. For � � 0, we define the functionG� W Œ0;C1/! Œ0; �

�
�

as

G�.z/ WD

8<: 1
�

�p
�2 � z2 � z arccos z

�

�
if z 2 Œ0; ��;

0 if z 2 .�;C1/:
(2.2)

We note that G�.z/ is convex on its domain, strictly monotone decreasing on Œ0; ��
with �1

2
� G0

�
.z/ � 0 everywhere, and thatZ �

0

G�.z/ dz D
�2

8
I (2.3)

see [5, Lemmas 4.5 and 4.6].

Lemma 2.1 ([5, Proposition 3.1]). Let � � 0 and � > 0. Then,

#¹k W j�;k � �º �
�
G�.�/C

1

4

�
:

Applying now Lemma 2.1 to the right-hand side of equation (2.1), we immediately
get

N D
D .�I˛/ �

d�e�1X
mD0

��
G�.mC ˛/C

1

4

�
C

�
G�.mC .1 � ˛//C

1

4

��
DW P D

˛ .�/: (2.4)

Remark 2.2. It may happen that, formD d�e � 1, the argumentmC .1� ˛/, either
on its own or together with mC ˛, exceeds �, in which case the corresponding terms
do not contribute to P D

˛ .�/ according to the definition of G�.

We note that the quantity P D
˛ .�/ appearing in the right-hand side of (2.4) is exactly

the number of those points of shifted lattices .Z˙ ˛/ � .Z � 1
4
/ which lie in the first

quadrant under or on the graph of the function G�.
Some novel methods for estimating the number of shifted lattice points under

a graph of a convex decreasing function have been developed in [5]; they are not,
however, directly applicable to the sum P D

˛ .�/ for ˛ > 0. The case ˛ D 0 has been
dealt with in [5, Theorem 5.1]; the following result is its extension for ˛ 2 .0; 1

2
�. This

is the second main ingredient of the proof of Theorem 1.1.
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Theorem 2.3. Let b 2 N and ˛ 2 Œ0; 1
2
�. Let g be a non-negative decreasing convex

function on Œ0; b� such that g.b/ D 0 and

jg.z/ � g.w/j �
1

2
jz � wj (2.5)

for all z; w 2 Œ0; b�. Then,

b�1X
mD0

��
g.mC ˛/C

1

4

�
C

�
g.mC .1 � ˛//C

1

4

��
� 2

Z b

0

g.z/ dz: (2.6)

The proof of Theorem 2.3 is based on the following lemma.

Lemma 2.4. Let i; j 2 Z, i < j , let ˛ 2 Œ0; 1
2
�, and let g be a decreasing convex

function on Œi; j C 1� satisfying (2.5) for all z; w 2 Œi; j C 1�. We assume that

nC 1 � g.i C 1/ � g.j / � n � g.j C 1/; (2.7)

and that
Z WD min¹z 2 Œi; j C 1� W g.z/ D nº < j C 1: (2.8)

Then,

j�1X
mDi

��
g.mC ˛/C

1

4

�
C

�
g.mC .1 � ˛//C

1

4

��
� 2

Z j

i

g.z/ dz: (2.9)

Proof of Lemma 2.4. The validity of the statement does not change if an integer con-
stant is added to g, so without loss of generality we can take nD 0, in which case (2.7)
becomes

1 � g.i C 1/ � g.j / � 0 � g.j C 1/;

and (2.8) becomes

Z WD min¹z 2 Œi; j C 1� W g.z/ D 0º < j C 1;

which means that we exclude the situation when x D j C 1 is the first and only zero
of g.x/ in the interval Œi; j C 1�.

Consider the sequence

g.i C ˛/ � g.i C .1 � ˛// � � � � � g.j � 1C ˛/ � g.j � ˛/:

We will distinguish five cases depending on which element of this sequence first drops
below 3

4
.

Case 1: 3
4
> g.i C ˛/. The left-hand side of (2.9) is zero, and the right-hand side is

non-negative.
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Case 2: g.i C ˛/ � 3
4
> g.i C 1 � ˛/. The left-hand side of (2.9) equals one. We

have g.i/ � g.i C ˛/ � 3
4

by monotonicity, and therefore, g.z/ � 3
4
�
z�i
2

for z 2
Œi; j � � Œi; i C 1� by (2.5). Thus,

2

Z j

i

g.z/ dz � 2
Z iC1

i

�
3

4
�
z � i

2

�
dz D 1:

Case 3: g.i C 1 � ˛/ � 3
4
> g.i C 1C ˛/. The left-hand side of (2.9) equals two.

We have g.i C 1
2
/ � g.i C 1� ˛/ � 3

4
by monotonicity, and therefore, g.i C 1/ � 1

2

and g.i C 2/ � 0 by (2.5). This also ensures thatZ � i C 2; hence, Œi; j � � Œi; i C 2�,
and by convexity,

2

Z j

i

g.z/ dz � 2
Z iC2

i

g.z/ dz � 4g.i C 1/ � 2:

Case 4: g.i C k C ˛/ � 3
4
> g.i C k C 1 � ˛/ for some k 2 N. The left-hand side

of (2.9) is equal to 2k C 1. We have, by convexity,

g.i C 1/C g.i C 2k C 2˛ � 1/ � 2g.i C k C ˛/ �
3

2
;

and therefore,

g.i C 2k C 2˛ � 1/ �
3

2
� g.i C 1/ �

1

2
:

Then, by (2.5), g.i C 2k/ � 1�.1�2˛/
2

� 0, and additionally, Z � i C 2k so that
Œi; j � � Œi; i C 2k�, and by convexity and monotonicity,

2

Z j

i

g.z/ dz � 2
Z iC2k

i

g.z/ dz � 4kg.i C k/ � 4kg.i C k C ˛/ � 3k � 2k C 1

as k � 1.

Case 5: g.i C k � ˛/ � 3
4
> g.i C k C ˛/ for some integer k � 2. The left-hand

side of (2.9) is equal to 2k. By convexity,

g.i C 1/C g.i C 2k � 2˛ � 1/ � 2g.i C k � ˛/ �
3

2
;

and therefore,

g.i C 2k � 2˛ � 1/ �
3

2
� g.i C 1/ �

1

2
:

Then, by (2.5),

g.i C 2k � 1/ �
1 � 2˛

2
� 0 and Z � i C 2k � 1
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so that Œi; j � � Œi; i C 2k � 1�, and by convexity and monotonicity,

2

Z j

i

g.z/ dz � 2
Z iC2k�1

i

g.z/ dz

� 2.2k � 1/g

�
i C k �

1

2

�
� 2.2k � 1/g.i C k � ˛/

�
3.2k � 1/

2
> 2k

as k � 2.

Remark 2.5. It is easily checked that the equality in (2.9) can be attained only if the
function g is linear.

We can now proceed to the proof.

Proof of Theorem 2.3. We extend the function g by zero onto the interval .b; b C 1�.
Let N D bg.0/c � 0. We have two cases.

Case 1: N D 0. In this case,

1 > g.0/ � � � � � g.b/ D 0:

We apply Lemma 2.4 with i D 0 and j D b (and hence, j C 1 > b �Z), immediately
yielding (2.6).

Case 2: N � 1. We set, for k D 0; 1; : : : ; N ,

Lk WD max¹m 2 ¹0; : : : ; bº W g.m/ � kºI

see [5, Figure 5] for an illustration. Since, by the conditions of the theorem, the func-
tion g is strictly monotone decreasing at all points where it takes positive values, the
inverse function g�1 is well defined on .0; g.0/�, and Lk D bg�1.k/c for k > 0; also,
by definition, L0 D b. We also set

N1 D

´
N if LN D 0;

N C 1 if LN > 0;

and in the latter case, set LNC1 WD 0. In any case, we have 0D LN1 < � � � < L0 D b,
where the strict inequalities follow from (2.5).

Let n 2 ¹N1 � 1; : : : ; 0º, and consider the interval ŒLnC1; Ln�. If n > 0, then, by
construction, we have

nC 1 > g.LnC1 C 1/ > � � � > g.Ln/ � n > g.Ln C 1/:
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Similarly, if n D 0, then

1 > g.L1 C 1/ > � � � > g.L0/ D 0 D g.b C 1/:

In either case, we can apply Lemma 2.4 with i D LnC1 and j D Ln, giving

Ln�1X
mDLnC1

��
g.mC ˛/C

1

4

�
C

�
g.mC .1� ˛//C

1

4

��
� 2

Z Ln

LnC1

g.z/dz: (2.10)

Summing up (2.10) over n 2 ¹N1 � 1; : : : ; 0º with account of LN1 D 0 and L0 D b
yields (2.6).

The result of Theorem 1.1 now follows immediately from applying Theorem 2.3
to g D G� with b D d�e, using (2.3) and (2.4), and recalling that G�.z/ � 0 for
z 2 Œ�; d�e�. The strict inequality follows from Remark 2.5 and the fact that G� is not
(piecewise) linear.

3. Proof of Theorem 1.3

As in Section 2, in view of (1.7), the counting function of Neumann eigenvalues which
are less than or equal to �2 2 Œ0;C1/ is given by

N N
D .�I˛/ WD #¹n 2 N W �N

n.D; ˛/ � �
2
º D #¹.i; k/ 2 Z �N W �N

i;k � �
2
º

D

1X
mD0

#¹k 2 N W j 0mC˛;k � �º C
1X
mD0

#¹k 2 N W j 0mC.1�˛/;k � �º

D

b��˛cX
mD0

#¹k 2 N W j 0mC˛;k � �º C
b��.1�˛/cX
mD0

#¹k 2 N W j 0mC.1�˛/;k � �º;

(3.1)

where we used the fact that j 0�;1 � �, and therefore, #¹k 2N W j 0
�;k
� �º D 0whenever

� > �. The graphs of the first few zeros of Bessel derivatives appearing in (3.1) are
shown in Figure 2.

We split the proof of Theorem 1.3 into three parts for different intervals of �. The
proofs for very small and sufficiently large �s are analytic, and a small remaining gap
is closed with the help of a rigorous computer-assisted algorithm similar to that in
[5, Section 8].

We start with the case of small �s.

Proposition 3.1. For any ˛ 2 .0; 1
2
�, the bound (1.8) holds for all � 2 Œj 0˛;1; 2

p
2/.
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5

4

3

2

1

0:1 0:2 0:3 0:4 0:5
˛

j 04�˛;1

j 0
3C˛;1

j 03�˛;1

j 02�˛;1

j 01�˛;1

j 01�˛;2

j 0˛;2

j 0
2C˛;1

j 0
1C˛;1

j 0˛;1

Figure 2. Some zeros of derivatives of Bessel functions as functions of ˛.

Proof of Proposition 3.1. It is sufficient to show that, for all ˛ 2 .0; 1
2
�, (1.9) holds

with n D 1 and n D 2; namely, we have

�N
2 .D; ˛/ < 4 (3.2)

and
�N
3 .D; ˛/ < 8: (3.3)

It follows immediately from the monotonicity with respect to � of the zero j 0
�;k

[16,
Section 10.21 (iv)] and from the interlacing properties of these zeros [17, formula
(10)] that

�N
2 .D; ˛/ D .j

0
1�˛;1/

2 and �N
3 .D; ˛/ D .j

0
1C˛;1/

2
I

cf. Figure 2.
As j 01�˛;1 � j

0
1;1 and j 01C˛;1 � j

0
3
2 ;1

for all ˛ 2 Œ0; 1
2
�, we, in principle, could finish

the proof of Proposition 3.1 here by an elementary observation that

j 01;1 � 1:8412 and j 03
2 ;1
� 2:4605:

However, we deliberately avoid the use of floating-point approximations of zeros of
Bessel functions and their derivatives anywhere in this paper, so we continue to give
a fully analytic justification of (3.2) and (3.3).

Since j 01;1 D
q
�N
2 .D; 0/, which is less than 2 by Pólya’s conjecture for the Neu-

mann Laplacian in the disk, we have (3.2).
The Bessel functions of half-integer order can be expressed explicitly in terms of

trigonometric functions and powers of their argument, and as a result, j 03
2 ;1

coincides

with the first positive root of the function

S.z/ WD � cot z �
2

3
z C

1

z
:
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Elementary calculations show that

lim
z!0C

S.z/ D 0; lim
z!0C

S 0.z/ D �
1

3
; lim

z!��
S 0.z/ D C1;

S 00.z/ D 2

�
1

z3
�

cos z
sin3 z

�
> 0 for all z 2 .0; �/;

and therefore, S.z/ has a single root in .0; �/. As S.5�
6
/ D
p
3C 6

5�
�
5�
9
> 0, we

conclude that
j 03
2 ;1

<
5�

6
< 2
p
2;

thus proving (3.3).

We now switch to large values of �s and prove the following proposition.

Proposition 3.2. For any ˛ 2 .0; 1
2
�, the bound (1.8) holds for all � � 2500�

3481��10000
.

We note that 2500�
3481��10000

� 8:39205.
The proof of Proposition 3.2 is based on several results from [5], the first of which

complements Lemma 2.1.

Lemma 3.3 ([5, Proposition 3.1]). Let � � 0 and � > 0. Then,

#¹k W j 0�;k � �º �
�
G�.�/C

3

4

�
:

Applying Lemma 3.3 to the right-hand side of (3.1), we get

N N
D .�I˛/ �

b��˛cX
mD0

�
G�.mC ˛/C

3

4

�
C

b��1C˛cX
mD0

�
G�.mC .1 � ˛//C

3

4

�
DW P N

˛ .�/: (3.4)

In order to obtain a lower bound on P N
˛ .�/, we recall the following lemma.

Lemma 3.4 ([5, Theorem 6.1]). Let b > 0, and let g be a non-negative decreasing
convex function on Œ0; b� such that g.0/ � 1

4
, g.b/ D 0, and (2.5) holds for all z;w 2

Œ0; b�. Let

M0 DMg;0 WD 1Cmax
²
m 2 ¹0; : : : ; bbcº W g.m/ �

1

4

³
;

and assume that M0 � b. Then,

bbcX
mD0

�
g.m/C

3

4

�
�

Z M0

0

g.z/ dz C
M0

4
: (3.5)
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Remark 3.5. If g is strictly monotone on Œ0; b�, then

M0 D

�
g�1

�
1

4

��
C 1:

Remark 3.6. The bound in [5, Theorem 6.1] was stated slightly differently compared
to (3.5), giving a marginally weaker result; however, inequality (3.5) also appeared
there towards the end of the proof.

Proof of Proposition 3.2. We want to apply Lemma 3.4 to each of the sums in the
right-hand side of (3.4).

For the first sum, we take g.z/ D g1.z/ WD G�.z C ˛/, b D � � ˛, and

M0 DMg1;0 WD

�
g�11

�
1

4

��
C 1 D

�
G�1�

�
1

4

�
� ˛

�
C 1 (3.6)

and require that g1.0/ D G�.˛/ � 1
4

. We note also that in this case

M0 D

�
G�1�

�
1

4

�
� ˛

�
C 1 � G�1�

�
1

4

�
� ˛ C 1 � b D � � ˛

if �� 2 by [5, Lemma 4.8], so from now on, we assume this restriction on �. Applying
Lemma 3.4 gives

†1.�/ WD

b��˛cX
mD0

�
G�.mC ˛/C

3

4

�
�

Z Mg1;0

0

G�.z C ˛/ dz C
Mg1;0

4

D

Z Mg1;0C˛

˛

G�.z/ dz C
Mg1;0

4

�
�2

8
�

�Z ˛

0

C

Z �

Mg1;0C˛

�
G�.z/ dz C

Mg1;0

4
; (3.7)

where we used (2.3).
For the second sum, we take

g.z/ WD g2.z/ WD G�.z C 1 � ˛/; b D � � 1C ˛;

and

M0 DMg2;0 WD

�
g�1

�
1

4

��
C 1 D

�
G�1�

�
1

4

�
� 1C ˛

�
C 1
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and require that

g2.0/ D G�.1 � ˛/ �
1

4
:

Similar to the above, in this case, M0 � b if � � 2, and applying Lemma 3.4, we get

†2.�/ WD

b��1C˛cX
mD0

�
G�.mC 1 � ˛/C

3

4

�
�

Z Mg2;0

0

G�.z C 1 � ˛/ dz C
Mg2;0

4

�
�2

8
�

�Z 1�˛

0

C

Z �

Mg2;0C1�˛

�
G�.z/ dz C

Mg2;0

4
: (3.8)

Adding the two bounds (3.7) and (3.8) yields

P N
˛ .�/ D †1.�/C†2.�/

�
�2

4
�

�Z ˛

0

C

Z 1�˛

0

C

Z �

Mg1;0C˛

C

Z �

Mg2;0C1�˛

�
G�.z/ dz

C
Mg1;0 CMg2;0

4
: (3.9)

We note that we additionally require

G�.˛/ � G�.1 � ˛/ �
1

4
(3.10)

for (3.7)–(3.9) to be valid. We now check if we need to restrict the range of � further
to ensure that (3.10) holds. We can replace (3.10) by a stronger condition

G�.1/ D
1

�

�
p

�2 � 1 � arccos
1

�

�
�
1

4
:

Since G�.1/ is monotone increasing in � and G3.1/ > 2
p
2

�
�
1
2
> 1

4
, it is sufficient

to assume from now on that � � 3.
To make the bound in the right-hand side of (3.9) more explicit in terms of �, we

first estimate the integrals there. For integrals near zero, an obvious boundZ ˇ

0

G�.z/ dz � ˇG�.0/ D
ˇ�

�
for all ˇ 2 Œ0; �� (3.11)

holds due to monotonicity of G�. To estimate the integrals near �, we use the follow-
ing lemma.
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Lemma 3.7. Let G� be defined by (2.2), and let ˇ 2 Œ0; ��. Then,Z �

ˇ

G�.z/ dz �
2

5
.� � ˇ/G�.ˇ/:

Proof of Lemma 3.7. We fix � > 0, change the variable ˇ D � ,  2 Œ0; 1�, and intend
to show that

�./ WD

Z �

�

G�.z/ dz �
2

5
�.1 � /G�.�/ � 0 for all  2 Œ0; 1�:

We have, by an explicit calculation,

�0./ D
. C 2/�2

5�

�
arccos  �

3
p
1 � 2

 C 2

�
;

with �.1/ D 0; therefore, it is sufficient to show that

�./ WD arccos  �
3
p
1 � 2

 C 2
� 0 for all  2 Œ0; 1�:

We again have �.1/ D 0, and the result follows from the fact that

�0./ D �
.1 � /2

. C 2/2
p
1 � 2

� 0 for all  2 Œ0; 1�:

We now return to the previously obtained inequality (3.9) and estimate the integ-
rals in its right-hand side using (3.11) and Lemma 3.7. This gives

P N
˛ .�/ �

�2

4
�
�

�
�
2

5
.� �Mg1;0 � ˛/G�.Mg1;0 C ˛/

�
2

5
.� �Mg2;0 � 1C ˛/G�.Mg2;0 C 1 � ˛/C

Mg1;0 CMg2;0

4

D
�2

4
� �

�
1

�
C
2

5
.G�.Mg1;0 C ˛/CG�.Mg2;0 C 1 � ˛//

�
C
2

5
..Mg1;0C˛/G�.Mg1;0C˛/C.Mg2;0C1�˛/G�.Mg2;0C1�˛//

C
Mg1;0 CMg2;0

4
: (3.12)

From the definition (3.6) of Mg1;0, the inequality bxc C 1 � x, and monotonicity of
G�, we obtain

Mg1;0 C ˛ � G
�1
�

�
1

4

�
; G�.Mg1;0 C ˛/ �

1

4
;
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and exactly in the same manner,

Mg2;0 C 1 � ˛ � G
�1
�

�
1

4

�
; G�.Mg2;0 C 1 � ˛/ �

1

4
:

Substituting these bounds into (3.12), we get, after simplifications,

P N
˛ .�/ �

�2

4
� �

�
1

�
C
2

5
�
1

2

�
C
2

5

�
1

2
G�1�

�
1

4

��
C
1

2
G�1�

�
1

4

�
�
1

4

�
�2

4
� �

�
1

�
C
1

5

�
C

7

10
G�1�

�
1

4

�
�
1

4
: (3.13)

We further recall [5, Lemma 4.8] which after the substitution c D cos� states that

G�1�

�
1

4

�
� c� (3.14)

with c 2 .0; 1� if

� � q1.c/ WD
�

4.
p
1 � c2 � c arccos c/

:

Applying (3.14) in the right-hand side of (3.13), we obtain

P N
˛ .�/ �

�2

4
C

�
7

10
c �

1

�
�
1

5

�
� �

1

4
;

which is in turn greater than �2

4
assuming that

� > q2.c/ WD
5

2

�
7c � 2 � 10

�

� > 0:

We have therefore proved (1.8) for all

� > min
c2. 2�C107� ;1/

max¹q1.c/; q2.c/; 3º: (3.15)

It is easily checked that the equation

q1.c/ D q2.c/

has a single root c� 2 .2�C10
7�

; 1/, with c� � 0:78397 and

q� WD q1.c
�/ D q2.c

�/ � 8:2047I

see Figure 3.
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12

q��8:2047

6

0:75 c��0:78397 0:85
c

q1.c/

q2.c/

Figure 3. The functions q1.c/ and q2.c/.

To finish the proof of Proposition 3.2, we drop the minimisation in the right-hand
side of (3.15) and choose there the particular value c D 783

1000
. The method of verified

rational approximations from [5, Section 8] ensures that

q2

�
783

1000

�
D

2500�

3481� � 10000
> q1

�
783

1000

�
> 3:

The combination of Propositions 3.1 and 3.2 proves Theorem 1.3 except for

� 2

�
2
p
2;

2500�

3481� � 10000

�
�

�
5

2
; 9

�
:

In order to close the gap, we first obtain another lower bound for P N
˛ .�/ by moving

all arguments of G� appearing in its definition to the right to the nearest integer or
half-integer:

P N
˛ .�/ >

d�e�1X
mD0

��
G�

�
mC

1

2

�
C
3

4

�
C

�
G�.mC 1/C

3

4

��
DW Q.�/:

Note that Q.�/ does not depend on ˛. We have the following proposition.

Proposition 3.8. For any � 2 Œ5
2
; 9�,

Q.�/ �
�2

4
> 0I (3.16)

see Figure 4 for an illustration.

Proposition 3.8 is proved using the same strategy of applying a rigorous computer-
assisted algorithm for estimating Q.�/ (which requires a finite number of steps and
uses only integer arithmetic) as was done in the case of the Neumann Laplacian for
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Q.�/ � �2

4

3

2

1

2 3 4 5 6 7 8 9
�

Figure 4. The difference Q.�/ � �
2

4
plotted as a function of � 2 Œ5

2
; 9�. The plot has been pro-

duced using floating-point arithmetic and is included for illustration only: it does not constitute
a part of the proof.

Step � e.�/ ı.�/

1 5
2

7
16

15
46

2 65
23

2123
2116

190
299

3 45
13

679
676

7
13

4 4 1 8
17

5 76
17

290
289

210
493

6 142
29

846
841

354
899

7 164
31

964
961

328
899

8 164
29

1686
841

600
899

9 196
31

1928
961

505
837

10 187
27

5855
2916

5
9

11 202
27

1463
729

14
27

12 8 2 14
29

13 246
29

1691
841

467
1015

14 313
35

14731
4900

883
1365

15 374
39

> 9

Table 1. Detailed output of the computer-assisted algorithm.
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the count P N
0 .�/ in [5, Section 8]. Let, for x 2 R, x � x � x, where x; x 2 Q are

some lower and upper rational approximations of x. For � 2Q, we compute a verified
lower rational approximation Q.�/ using the techniques of [5, Section 8]. We now use
the analogue of [5, Lemma 8.1]: if (3.16) holds for some �0 2 Q, or, more precisely,
if

e.�0/ WD Q.�0/ �
�20
4
> 0;

then (3.16) also holds for all � 2 .�0 C ı.�0//, where

ı.�0/ WD

q
�20 C 4e.�0/ � �0:

The results of the calculations are shown in Table 1, and the script we used is available
at https://michaellevitin.net/polya.html#AB.
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