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An extension of the Liouville theorem for Fourier multipliers
to sub-exponentially growing solutions

David Berger, René L. Schilling, Eugene Shargorodsky, and Teo Sharia

Abstract. We study the equation m(D) f = 0 in a large class of sub-exponentially growing
functions. Under appropriate restrictions on m € C(R"), we show that every such solution can
be analytically continued to a sub-exponentially growing entire function on C” if, and only if,

m(&) # 0 for & #£ 0.

1. Introduction

The classical Liouville theorem for the Laplace operator A := >y _, £C—22 on R” says
that every bounded (polynomially bounded) solution of the equation A f g 0is in fact
constant (is a polynomial). Recently, similar results have been obtained for solutions
of more general equations of the form m(D) f = 0, where m(D) := F " 'm(§)F,

and
Fo®) =06 = [ Epdx and Tt = @0 [ e ds
R” R”
are the Fourier and the inverse Fourier transforms, see [1-3, 12], and the references
therein. Namely, it was shown that, under appropriate restrictions on m € C(R"), the
implication
f is bounded (polynomially bounded) and m(D) f = 0
= f is constant (is a polynomial)

holds if, and only if, m (&) # 0 for & # 0. Much of this research has been motivated
by applications to infinitesimal generators of Lévy processes.
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In this paper, we study solutions of m (D) f = 0 that can grow faster than any
polynomial. Of course, one cannot expect such solutions to have a simple structure,
not even in the case of A f =0in R2, see, e. g.,[22, Chapter I, Section 2]. We consider
sub-exponentially growing solutions whose growth is controlled by a submultiplicat-
ive function, cf. (2.1), satisfying the Beurling—Domar condition (2.3), and we show
that, under appropriate restrictions on m € C(R"), every such solution admits ana-
lytic continuation to a sub-exponentially growing entire function on C” if, and only
if, m(&) # 0 for £ # 0, see Corollary 4.4. Results of this type have been obtained
for solutions of partial differential equations with constant coefficients by A. Kaneko
and G. E. Silov, see [17,18,26], [7, Chapter 10, Section 2, Theorem 2], and Section 5
below.

Keeping in mind applications to infinitesimal generators of Lévy processes, we do
not assume that m is the Fourier transform of a distribution with compact support, so
our setting is different from that in, e.g., [6] and [16, Chapter X VI].

The paper is organised as follows. In Chapter 2, we consider submultiplicative
functions satisfying the Beurling—Domar condition. For every such function g, we
introduce an auxiliary function Sg, see (2.11), (2.12), which appears in our main
estimates. Chapter 3 contains weighted L” estimates for entire functions on C”,
which are a key ingredient in the proof of our main results in Chapter 4. Another
key ingredient is the Tauberian Theorem 4.1, which is similar to [3, Theorem 7] and
[24, Theorem 9.3]. The main difference is that the function f in Theorem 4.1 is
not assumed to be polynomially bounded, and hence it might not be a tempered dis-
tribution. So, we avoid using the Fourier transform f = Ff and its support (and
non-quasianalytic-type ultradistributions). Although we are mainly interested in the
case m(§) # 0 for £ # 0, we also prove a Liouville type result for m with compact
zero set {§ € R" | m(§) = 0}, see Theorem 4.3. Finally, we discuss in Section 5
A. Kaneko’s Liouville-type results for partial differential equations with constant
coefficients, cf. [17, 18], which show that the Beurling—Domar condition is in a sense
optimal in our setting.

2. Submultiplicative functions and the Beurling—Domar condition

Let g:R" — (0, 00) be a locally bounded, measurable submultiplicative function, i.e.,
a locally bounded measurable function satisfying

gx+y)<Cgx)g(y) forallx,y e R",

where the constant C € [1, 00) does not depend on x and y. Without loss of generality,
we will always assume that g > 1, as otherwise we can replace g with g + 1. Also,
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replacing g with Cg, we can assume that
glx+y)<glx)g(y) forallx,yeR". 2.1
A locally bounded submultiplicative function is exponentially bounded, i.e.,
|g(x)] < CeM 2.2)
for suitable constants C,a > 0, see [25, Section 25] or [14, Chapter VII].
We will say that g satisfies the Beurling—Domar condition if
00

5 log g(Ix)

2 < oo forallx € R”. 2.3)

1=1
If g satisfies the Beurling—Domar condition, then it also satisfies the Gelfand—Raikov—

Shilov condition

lim g(Ix)"/! =1 forall x € R”,
[—o00

while g(x) = el¥!/Togle+Ix) satisfies the latter but not the former condition, see [10]. It
is also easy to see that g(x) = el*!/log” (¢+1x) gatisfies the Beurling—Domar condition
if, and only if, y > 1. The function

g(x) = e (1 + |x])* (log(e + [x]))’
satisfies the Beurling—Domar condition for any a, s, = 0 and b € [0, 1), see [10].

Lemma 2.1. Let g:R" — [1, 00) be a locally bounded, measurable submultiplicative
function satisfying the Beurling—Domar condition (2.3). Then, for every ¢ > 0, there
exists R, € (0, 00) such that

]olog g(tx)

2 dt <e forallx e S" ':={yeR":|y| =1}

Re

Proof. Since g = 1 is locally bounded,

0< M := sup logg(y) < oc. 2.4)
lyl<1

Take any x € S"~!. It follows from (2.1) that

logg(({ + 1)x) — M <logg(tx) <logg(lx)+ M forallt ell,]+1].
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Hence,

2 log g((I + 1)x) — logg(tx) > logg(lx) + M
I=ZL (I +1)2 s Z / TS I_ZL 2z

and this implies for all L € N that

o0 [e.e]
logg(lx) M log g(tx) log g(Ix)
y, estd M / drs Yy BN L 2 e
I=L+1 I=L
Let
1
e :=(0,...,0,1,0,...,0), j =1,....n, e€o:=—(1,....1),
= ). J moeo= )
j-1 (2.6)
Q3={y=(y1 yn) ER": o— < y; ij:l ”}
yeeesVn 2\/— 'j \/ﬁ’ IEEEEY (2D

For every x € S"7!, there exists an orthogonal matrix A, € O(n) such that x =
Axeq. Hence, {AQ}4c0() is an open cover of S™ 1. Let {Ak O}k=1,.. k be a finite
subcover. Take an arbitrary € > 0. It follows from (2.3) and (2.5) that there exists some
R, > 0 for which

o0
/logg(rAkej) dr < _F

72 2n’
v
For any x € S"~!, there exist k = I,....,Kandg; € (2\1/5,%),]' =1,...,nsuch

that
n
X = ZajAkej.
j=1

Using (2.1), one gets

[o,0)
log g(tx) logg(ta,AkeJ) " log g(rAxe;)
/T (S Z/ T—z = Zai r—zdr

Re 7= le j=1 a;Re

n o0 n
2 log g(rAxe;) 2 e &
< — ————dr < ———=n—-—=c.n
;ﬁ/ r2 ;\/ﬁ 2/n n

£
2/n
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Let

o0
1
Ig x(r) = / —ngitx) dt < 00,

max{r,1}

r

1
Jox(r) = m/logg(tx)dr < 00,
0

o0
1 log g(tx) 1
S =— | ————d >0, xeS".
g (r) i / 72 + max{r, 1}2 £ o
—0o0

One has, for 7 > 1 and any 8 € (0, 1),

1 r
Jox(r) = r—2/10gg(tx)dt
0

rﬁ r

669

1
1 1 log g(tx) log g(tx)
= r—z/logg(tx)dt—i- rZ(I—B)/ 28 dr+/—r2 dt
0

1 B
M 1 T logg(ex) [ log g(tx)
ogg(tx ogg(tx
< o ,,2(1—/3)/ 2 dt+/—12 dt
1 B
M Ige() p
Sz T namp Tlexl):
see (2.4). Further, if r > 1, then

[logg(x) [ logg(~rx)

ogg(tx ogg(—1x
nSg,x(r)zf 242 dr+f 212 dt
0 0
r o0
s/loggz(rx) dt+/logg§tx) dt
r T

0 r
A 1 ool

+/ ogg(z—rx)err/ ogg(z—rX)dr

r T
0 r

=g x(r) + Jgx(r) + Ig—x(r) + Jg,—x(r),

2.7)

(2.8)
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and, with a similar calculation,

r oo

log g(tx) log g(tx)
nSg’x(r)Z/Tdf-i_/Tdt
0 r
r o0

log g(—1x) log g(—1x)
+/—2r2 dr+/—212 dt
0 r

1
= E(Ig,x (r) + Jgx(r) + Ig—x(r) + Jg —x(r)). (2.9)

Since g is locally bounded, it follows from Lemma 2.1 that /, defined by

o)

lo
Ig(r) := sup Igx(r)= sup / wdr<oo,
xeSn—1 xeSn—1 T
max{r,1}

is a decreasing function such that
Ig(r) >0 asr — oo. (2.10)

Let

r

Jo(r):= sup Jo(r)= sup —— | lo tx)dr,
()= S Ty = s 0/ eg(v)

[e.e]
1 log g(tx)
Sg(r):= sup Sgx(r)= sup — ——dr. 2.11
g( ) xesf_] gy.x( ) xesf_] T ‘[2 +maX{r, 1}2 ( )
—0oQ0

Then, in view of (2.7), (2.8), and (2.9),

M g

TN < 5+ 565

B
r2 + Ig(r )a

%max{lg(r), Jg(r)} < Sg(r) < ;(Ig(i’) + Jg(r)).

Thus, Jg(r) — 0, and
Sg(r) >0 asr — oo, (2.12)

see (2.10). It is clear that

Sg(r) = Sg(1) forr € [0,1] and S, is adecreasing function. (2.13)
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Examples. (1) If g(x) = (1 4 |x])*, s = 0, then we have forall r > 1

o0
1 slog (1 + |])
— - | 22EE TRV,
Sg(r) n/ 2 472 ’
—00
[ log (14 r|A])
S og(l+r
LI e S
r / A2+ 1
—0Q
T log (14 |A]) log(147r) [ 1
s og (I + slog(l +r
< — dA dA
nr/ A2 +1 + nr //\z—l-l
—00 —00
I 1
_as  sloed+n) (2.14)
r r
where
1 T log (14 A
. og(l+
Cl.—;//\z—HdA<OO.
—00

(2) If g(x) = (log(e + |x]))?, ¢ = 0, then using the obvious inequality
u+v<2uv, u,v =1,

yields forr = 1

o0

o0
1 tloglog (e + |z|) t / loglog (e + r|A|)
5(r) JT/ 2+ 72 T A2 +1

“'00 —00

dA

/N

A2 +1

i3 70 log(log (e + |A]) + log (e + 1))
Tr

t log(2log (e + |A])) tloglog(e +r) 7 1
\Jtr/ A2 +1 i + Tr )uz—}—ld)L

cat . tloglog (e +r)
r r '

(2.15)

where

1 7 log(2log (e + |A]))

2= 21

dA < oo.

—00
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3) If g(x) = e’ a > 0,b € [0, 1), then we have for all r > 1

o0 o0 o0
1 alz|? arb-1 AP 2arb1 tb
g(r) n/12+r2 f T A2+ 1 T /t2+1
—0Q —00 0
-1 F b5l b—1
ar s 2 ar

= ds = , 2.16

b4 ,0/ s+ 1 sin(ﬂ ) ( )

see, e.g., [4, Chapter V, Example 2.12].
(4) Finally, let g(x) = elxl/log”e+IxD 5, 5 1 Since

tle+1) 1+¢
2 2 2
T“+r 1_|_;_2

e e
<l4+-<14+- fort=>r,
T r

then for any 8 € (0,1) and r > 1

T T
g(r) b1 / (2 + r?)log? (e + |t]) ’ T / (2 +r?)log?(e + 1) ’
AR 0

rﬁ r o0
o (t2 +r?)log”(e + 1) ‘
o 4B 7

B

/N

,
2 T 2 T
— | ——d d
n/r2+r2 T+nlog”(e+r5)/12+r2 t
0 B

2 e T 1
—(1+ - d
+7r( +r)/(e+r)10gy(e+f) !

1
=— log(¢? + r2)|(r)B + log(z? + r2)|:3

1
7 log” (e + rP)

2 e 1 1—y 0o
+;(1+;)1_ylog (e + )7

1 log?2 2 e 1
< —1 1 2(8-1) - (1 bl 1 1—y
nog( +r )+nlog”(e+rﬂ)+n( +r) 7 log (e +r)

r2B-1) log2 2 e
< + +=(1+2)
b4 wlog’(e+rf) =«

log! (e 4 r).

y—1
Since

i r2B=1 4 (log2)log™(e +rf)  log2
m =
r—00 log™7 (e +r) BY

forall B € (0, 1),
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one gets, if we take B € ((log2)'/?, 1), the following estimate

Sg(r) < log' ™" (e + r) (2.17)

log V(e +r 2 e
L)+—(1+—)
b4 /4 r’y—1

for sufficiently large r.

3. Estimates for entire functions

Let 1 < p < o0 and let w: R" — [0, 0c0) be a measurable function such that @ > 0
Lebesgue almost everywhere. We set

If Lz == llofllLr and LEMR?):={f:R" — C| f measurable, || f||» < oo}.
3.1

Lemma 3.1. Let g: R" — [1, 00) be a locally bounded, measurable submultiplicat-
ive function satisfying the Beurling—Domar condition (2.3). Let ¢ be a measurable
function such that for almost every x' = (xa,...,x,) € R"™1, @(z1,x") is analytic in
z1 for Imzy > 0 and continuous up to R. Suppose also that log |¢(zq, x")| = O(|z1])
for |z1| large, Im z1 = 0, and that the restriction of ¢ to R" belongs to L;’il (R"),
1 < p < oo. Finally, suppose that

log [¢(iy1, x')|

ky 1= esssup,cpn—1 < lim sup —) < o0
0<y|—>00 1

Then

(- +iy1, .)”LP:H(R") < Cge(kw+Sg(y1))y1 ”(‘DHLpil(Rn)’ y1 > 0, (3.2)
g

g

see (2.11), (2.12), where the constant Cg < 0o depends only on g.

Proof. Leta™ := max{a, 0} for a € R. It follows from (2.1) that

oo oo

+ (o F1 ! !
/log (g (Z,X))dtS / log(g(t,x))dt
1+1¢2 1+1¢2
e /
1+1¢2

< 7(Sg(1) + log(g(0, x7))) < +o0.
Since g*'¢ € L?(R"), Fubini’s theorem implies that

g= (. x)o(.x') € LP(R)
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for Lebesgue almost all x” € R”™! For such x’ € R* 71,

o0 o0

+ l + +1 / I
[E (.3, & (! (1. )lp(t. X))
1+ 12 1+1¢2
—00 —00
ool + F1 I
+/og@ R
1+ 12
—00

Then

o0
lo t,x'
10g|(p()€1+iy1,x’)|sk(pyl—|—y1 gl )|2dt, x1 €R, y; >0,

7 )t —x1)?+ )
—0Q0

cf. [20, Chapter 111, G, 2], see also [22, Chapter V, Theorems 5 and 7].
Applying (2.1) again, one gets

logg(x) < logg(r,x) +logg(x1 —1,0),
logg(t,x") <logg(x) +logg(t —x1,0) forallx = (x1,x") € R”, r € R.

The latter inequality can be rewritten as follows
logg™!(x) < logg™'(t,x') +log g(t — x1,0).
Hence,
log g™ (x) < log g™ (1, x) + log g(£(x1 — 1), 0)
forall x = (x1,x’) € R",t € R, and
log (Jp(x1 + iy1. X)) g™ (x))

e A
)1 log [o(z, x")|

— —=  dt +10 +1 X
4 (t—x1)2+yf & ( )
—00

<koyr +

o0
i [ logle(r,x')| +log g*! (x)
b (t —x1)2 + y?

dt

=koy1 +

)1 / log (le(r. x") g™ (1. ")) a4t / log g(£(x1 —1),0)
T (t—x1)?+y7 (t —x1)2 +y7
—0o0 —0o0
o0 o0

1 t,x")|gF(t, x' 1 ,0
=k¢y1+&/ og (Jlo(r. x")lg (2X))dt+&/ ogg(r 2)dT'
(t —x1)? + 3 w T2+ )7

—00 —00

< koy1 + dt
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If y; € [0, 1], then

o0 1 00
1 ,0 1 1 ,0
ﬂ/—ogzg(f 0 ge< M2 2dr+ﬂ/—°gg(f 0 4e
T T2 + y3 m ) 2+ y; b1 2 4 y;
0
1 11 0
<mZ [ — 2dt+—/—0gg(;’ ) e
b/ ° 4+ ¥y b/ T
R 1
<m+ 2D
7

It follows from (2.11) that for y; > 1,

o0
yi [ logg(z,0)
— | —==—"—dt<yS )
n/ 2 4 52 T < y18Sg(n)
—0Q

So,

log (Jo(x1 + iy1,x)]g=! (x)) < cg + (kg + Sg(y1)y1

- / log (J(. x)|g*! (¢, x7))
T 2 2
T (t—x1)? + 7

dt,

where ¢, 1= M + L"T(l) Using Jensen’s inequality, one gets

o0
) yi [ le@ x)|gx! (. x)
X1+ i ’x/ +1 x)<C e(kw+Sg(YI))y1_
lo(x1 +iy1, x)[g™ (x) g - (1 —x1) + 92

—00

s

where
Ig()
T

Cp = M+ (3.3)

Estimate (3.2) now follows from Young’s convolution inequality and (3.1). [ ]

Remark 3.2. Let n = 1, g: R — [1, 0c0) be a Holder continuous submultiplicative
function satisfying the Beurling—Domar condition, g(0) = 1, and let

w(x +iy) =2 / Ma’l

T (t —x)2+ y2
—0Q
. o0
i x—t t
— 1 t)dt, eR, y>0.
+n/((t—x)2+y2+t2+1)ogg() o Y
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Then ¢(z) := ¢¥® is analytic in z for Imz > 0 and continuous up to R,
[p(0)] = TV = 2t W = g(x), xR,

see, e.g., [8, Chapter III, Section 1], and

o0
p(iy)] = eFe®@@) = exp(z / lc;gg(t) dt) =S50 >
T 12+ y2
—0o0
So,
1 .
k(p = lim sup M = lim sup Sg(y) =0
0<y—o0 y y—>0o0

see (2.12), and

lp(iy)]
g(0)

loC +iy)llLee, @ = = |p(iy)| = €% = 5OV ||| Lo g)

= %O g gl = 5O gL, @).

which shows that the factor eS¢ 1)1 in the right-hand side of (3.2) is optimal in this
case.

Clearly,

where g(x) := g(Ax) and A € O(n) is an arbitrary orthogonal matrix, see (2.11),
(3.3) and (2.4).

Theorem 3.3. Ler g: R" — [1, 00) be a locally bounded, measurable submultiplic-
ative function satisfying the Beurling—Domar condition (2.3). Let ¢: C"* — C be an
entire function such that log |p(z)| = O(|z]) for |z| large, z € C", and suppose that
the restriction of ¢ to R" belongs to Lgil (R™), 1 < p < oo. Then, for every multi-
index o € Z’_’I_,

1*O) ¢+ iy, @ < Cae(Kw(y/‘y|)+Sg(ly‘))lyl||‘P”L”il(R")’ y eR", (3.5)
g

g

where

1 it
(limsup w) <00, weS" (3.6)

ky(w) := sup
0<t—>o00 t

xeR”

and the constant Cy, € (0, 00) depends only on o and g.
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Proof (Cf. the proof of [21, Lemma 9.29]). Take any y € R” \ {0}. There exists an
orthogonal matrix A € O(n) such that Ae; = w := y/|y|, see (2.6). Define the func-
tions @(z) := ¢(Az), z € C"*, and g(x) := g(Ax), x € R”. Then ¢: C" — C is an
entire function, and one can apply to it Lemma 3.1 with g in place of g, see (3.4).

For any x € R”,onehas p(x +iy) =@(Xx +i|yle1) = ¢(X1 +i|y|, X2,...,%n),
where ¥ := A 1x. Hence,

ot +i9)lze,,

= I¢C+ily1 e, @y < Ce kot Sz D), L2, @)

(@) = G/,

< Cge(/<<o(y/b’|)+~5’g(Iy\))lyl”(ﬁ”L{,jE - ®")>
g

see (3.4), which proves (3.5) for « = 0 and y # 0. This estimate is trivial for @ = 0
and y = 0.
Iterating the standard Cauchy integral formula for one complex variable, one gets

2w 2m

! (p(21+6191 . 'vZn‘l‘eien) E 10
@) 0/0/ MGt o gy (L1e™)don...an

k=1

@0 =

(eAz)=neC": mk—zk|<1l,k=1,...,n}, zeC"

(cf. [21, Chapter 1, Section 1]), which implies

| 2 2 ( i, i0 ) n
ol oz +e7, ...z, e 0
% = - Yk )dOy ...d0O,.
o0 = Gy | | e -z [Te)an...ao,
0 0 =
Hence,
, oz ( i9 i)
o! o(z1+e7, ...,z + et
%p(z) = By // [T, cionf doy ...do,,
. =
and
2 2
[0%p(2)| < on )n/ /lgo(zl + ez, + €9 dby ... db,. (3.7)

Since g = 1 is locally bounded,

1 <M= sup g(s) < oo.

Isg|<1,k=1,....,n



D. Berger, R. L. Schilling, E. Shargorodsky, and T. Sharia 678

Then it follows from (2.1) that
gt (x1 —cos by, ..., x, —cosby) < MigT (x). (3.8)

According to the conditions of the theorem, there exists a constant ¢, € (0, 00) such
that one has log [¢({)| < ¢,|¢| for |¢] large. Then ky(w) < ¢y, see (3.6). Let one
set ¢y := (- +1y), y = (Imzy,...,Imz,). Then, similarly to the above inequal-
ity, Ky, (®) < ¢y. Applying (3.5) with & = 0 to the function ¢, in place of ¢ and
using (2.13), (3.8), one derives from (3.7)

@)+ NLr, | @y

| 2m 2r
o! ) . ' .
S 2oy /[ oG+ iyy + €'+ iy +e"’")llL§i1<Rn>d91---d9n
0
2w 2w
o! . .
(2 T / /Mlllfp( +iyp+isinby, ...+ iy, +i sm0n)||L§il(Rn)
®db...do,
| 2m 2n
o!
/- / MiCoe SO 1y) 1, ny 6y .. d
(27r)”
0
= a!Mlcoew”g“W loC+ivlzr, @n)-
g
Applying (3.5) with @ = 0 again, one gets
[(0%p) (- +IJ’)||LP (R
< alM;C2e (cw+sg(1)>f oG/ D+S (Y g1 L7,y .

Corollary 3.4. Let g: R" — [1, 00) be a locally bounded, measurable submultiplic-
ative function satisfying the Beurling—Domar condition (2.3). Let ¢: C"* — C be an
entire function such thatlog |¢(z)| = O(|z|) for |z| large, z € C", and that the restric-
tion of ¢ to R™ belongs to L;il (R™), 1 < p < oc. Then, for every multi-index o € 7",
and every € > 0,

||(8ocg0)( + ly)”Ll’ (@) S < C, e(ch(J’/|J’\)+e)|Y|”(p”Lpi ®n: Y E R”, (3.9)

where K, is defined by (3.6), and the constant Cy ¢ € (0, 00) depends only on a, ¢,
and g.

Proof. 1t follows from (2.12) that, for every ¢ > 0, there exists some ¢, such that
Se(IyD|y] < ce +¢ly| forally e R".

Hence, (3.5) implies (3.9). ]
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4. Main results

We will use the notation g(x) := g(—x), x € R”. It follows from submultiplicativity
of g that Lé (R") is a convolution algebra.
Taking y — x in place of y in (2.1) and rearranging, one gets

1 < gy —x)
g(x) g

4.1

Using (4.1), one can easily show that f % u € L:fil (R™) for every f € L;‘il (R™)
andu € Lé (R™). The Fubini-Tonelli theorem implies that

fx@Wxu)=(f*v)*xu forall f € L;o_l(]R”) and v,u € Lé(]R”). 4.2)

Let Az :={c6+g|ceC,ge L}E (R™)}, where § is the Dirac measure on R”. This
is the algebra L;; (R™) with a unit attached, cf. Rudin [24, 10.3 (d), 11.13 (e)]. Clearly,
(4.2) holds for any v,u € Az.

Theorem 4.1. Let g: R" — [1, 00) be a locally bounded, measurable submultiplic-
ative function satisfying the Beurling—Domar condition (2.3), f € Lz"_l (R™), and Y

be a linear subspace of Lé, (R™) such that
fxv=0 foreveryvel. 4.3)
Suppose the set

Z(Y):= [{E eR" | D(§) = 0}

veY

is bounded, and u € L;;(R”) is such that 1 = 1 in a neighbourhood of Z(Y'). Then
f=f*xulfZ(Y)=0,then f =0.

Proof. In order to prove the equality f = f * u, it is sufficient to show that

(f,h)y =(f xu,h) foreveryh € Lé(R”). 4.4

Since the set of functions # with compactly supported Fourier transforms h is dense
in L;(R”), see [5, Theorem 1.52 and 2.11], it is enough to prove (4.4) for such A.
Further,

(fh) = (f * ) 0).
So, we have to show only that

fxw=f*xu*xw
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for every w € L;; (R™) with compactly supported Fourier transform w. Take any such
w and choose R > 0 such that the support of w lies in Bg :={§ € R" : |§]| < R}. Itis
clear that g satisfies the Beurling—Domar condition. Then there exists ug € L;;(R”)
such that 0 < ug < 1, ug(§) = 1 for [§| < R, and ug(§) = 0 for |§] = R + 1, see
[5, Lemma 1.24].

If Z(Y) # @, let V be an open neighbourhood of Z(Y') such that # = 1 in V.
Similarly to the above, there exists ug € Lél; (R™) such that 0 < 11y < 1, g = 1 in
a neighbourhood Vo C V of Z(Y), and uy = 0 outside V, see [5, Lemma 1.24]. If
Z(Y) = @, one can take u = up = 0 and Vp = @ below.

Since Y is a linear subspace, for every n € Bry1 \ Vo C R? \ Z(Y), there exists
vy € Y such that U, (n) = 1. Since v, € L'(R"), 0, is continuous, and there is a
neighbourhood Vj, of 7 such that |v,(§) — 1| < 1/2 for all £ € V},. Similarly to the
above, there exists u, € LE(R") such that Re(v,u5) = 0, and Re(0,u,) > % ina
neighbourhood V,? C V; of .

Since Br+1 \ Vo is compact, the open cover {V,)O},,e Br41\Vp has afinite subcover.

So, there exist functions v; € ¥ and u; € L;;(R”), j =1,...,N,such that
1 N
Re(o) > > where o ::ifo+z;ﬁ}zi} +1—ug.
j:

Then there exists v € Ag such that U = 1/0, see [5, Theorem 1.53].
Since tg(1 — %) = 0 and (1 — ug)W = 0, one has

N
(ﬁ + Y GO =) = (i + (0 — G + 1 = TR)O(L — )b
= = (il + (1 — 1) — (o + 1 —wR)D(1 — )b
(1-QQ—-ur)o(1 —0))w

— % — (1 —aR)HO( — 1) = .

It now follows from (4.2) and (4.3) that

N
f*w=f*(u+2vj*uj*(U—U*u))*w
j=1

N
:f*u*w+f*(2vj*uj*(v—v*u))*w
j=1

N

=f*u*w—l—Z(f*vj)*uj*(v—v*u)*wzf*u*w.
j=1

If Z(Y) = @, one can take u = 0, and the equality f = f % u means that f =0. =
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For a bounded set £ C R”, let conv(E) denote its closed convex hull, and Hg
denote its support function:

Hg(y):=supy-§= sup y-£ yeR"
EcE Eeconv(E)

Clearly, HEg is positively homogeneous and convex: for all x, y € R” and r = 0, we
have

Hp(ty) = tHp(y). Hp(y +x) < Hp(y) + Hg (x).
For every positively homogeneous convex function H,
K:={ecR"|y-£§ <H(y)forall y € R"} 4.5)

is the unique convex compact set such that Hxy = H, see, e.g., [15, Theorem 4.3.2].

Theorem 4.2. Let g, f, and Y satisfy the conditions of Theorem 4.1, and let

Hy (y) := Hzy)(=y) = sup (=y)-§=— inf y-£ yeR"
g€Z(Y) EeZ(Y)

Then f admits analytic continuation to an entire function f:C" — C such that for
every multi-index o € 7",

3% £) (- + l'y)”L:f’_l(Rﬂ) < Caeﬂf’y(y)-i-Sg(\yl)\yl||f||L§o_l(Rn)’ yeR", (46)

see (2.11), (2.12), where the constant Cy € (0, 00) depends only on « and g.

Proof. Take any ¢ > 0. There exists u € Lé(]R”) such that ## = 1 in a neighbourhood
of Z(Y), and it = 0 outside the §-neighbourhood of Z(Y'), see [5, Lemma 1.24]. It
follows from the Paley—Wiener—Schwartz theorem, see, e.g., [15, Theorem 7.3.1] that
u = F 110 admits analytic continuation to an entire function u: C" — C satisfying
the estimate

lu(x 4 iy)| < cee” D *eDI2 forall x, y e R”

with some constant ¢, € (0, 00). So, u satisfies the conditions of Corollary 3.4 with g
in place of g, and

: g
flue (- + zy)||L}1:)(R,,) < Coe/2e Y(y)+€|y|||““L}§(Rn)’ y € R,
Since

£ = / u(x — ) £s) ds.

R”
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see Theorem 4.1, f admits analytic continuation

Flx+iy) = / u(x + iy — 5) £(s) ds.

R~

see Corollary 3.4, and

17C+ 9)llzas, @y < G+ i)l oy L/ e, e

H
< Coera™ O W] 1 oy 1 1222, ey

=M™ O £ ).

see (4.1). Since

|f(x +iy)|

<M eIty () +elyl o (RN,
.0 e 1/ llzee @y

one has log | f(x + iy)| = O(|x 4 iy|) for |x + iy| large, see (2.2), and

log | f(x + itw)] log(Meg () fllLoe ) + 1 Hy (@) + et

lim sup < lim sup
0<t—o00 t 0<t—o00 t
= Hy(w) + &.
Hence,
Io x+itw
Kr(w) := sup <limsup glflx + )l) < Hy(w) + ¢
xR N\ 0<t—00 f

for every ¢ > 0, i.e.,
kr(w) < Hy ().
So, (4.6) follows from Theorem 3.3. [ ]

Theorem 4.3. Let g: R" — [1, 00) be a locally bounded, measurable submultiplic-
ative function satisfying the Beurling—Domar condition (2.3), and let m € C(R") be
such that the Fourier multiplier operator

CE(R™) 3 ¢ > (D) = F (i)

maps CX°(R") into Lél, (R™). Suppose f € L?’_l (R™) is such that m(D) f = 0as a
distribution, i.e.,

(f.7(D)p) =0 forallp € CP(R"). A.7)
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If K :={n e R" | m(n) = 0} is compact, then f admits analytic continuation to an
entire function f:C" — C such that for every multi-index o € 7",

1% £) (- + iy)||L;c>_l(Rn) < CaeH(y)+Sg(|yD|y\||f||L;o_l(Rn)’ yeR", (48)

see (2.11), (2.12), where H(y) := Hg(—Y), and the constant Cy € (0, 00) depends
onlyona and g.

Conversely, if every f € L (R") satisfying (4.7) admits analytic continuation to
an entire function f:C" — C such that

(NACRS iY)||L:°_1(Rn) < MeeH(y)+8‘y|||f||L:j>_l(Rn), y € R", 4.9

holds for every ¢ > 0 with a constant M, € (0, 00) that depends only on &, m, and g,
then {n € R" | m(n) = 0} C K, where K is the unique convex compact set such that

Hi(y) = H(=y); cf. (4.5).

Proof. Denote by (Ty¢)(x) := ¢(x —v), x,v € R” the shift by v. Since Ty, €
CX(R") for every ¢ € CX(R") and all v € R”, it follows from (4.7) that

(f *m(D)p)(v) = (f. Tvm(D)g) = (f.mn(D)(Typ)) =0 forallv € R".
Hence,
fxm(D)p =0 forallp € CZR").

It is easy to see that

L —

N weR"[@Dypm=0= () {neR"|mD)p(-n =0}
9eCE°(RM) PeC°(R™)
= () meR" | mme(-n) =0}
PeCE(R™)

={neR"|m@mn =0} =K.
Applying Theorem 4.2 with
Y := {ii(D)g | ¢ € CXR")} C LLR™)

and Z(Y) = K, one gets (4.8).

For the converse direction, we assume the contrary, that is, that the zero-set
{n € R" | m(n) = 0} contains some y & K, see (4.5). Then there exists a yg € R" \ {0}
such that yo -y > Hx(yo) = H(—yp). It is easy to see that f(x) := ¥ satisfies
m(D)e™? = e m(y) =0forall x € R". Take & < (yo - ¥ — H(—Y0))/|yo|. Clearly,
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f e L®(R"), and

=it oo (Rn o)
17 yO)”Lg_l & = et = oToy—H(=yo)=¢lyol) __, o
eH(=tyo)+eltyol ||f||LZo_1 ®") eT(H(=y0)+elyol) 100
So, f does not satisfy (4.9). [

Corollary 4.4. Let g:R" — [1, 00) be a locally bounded, measurable submultiplic-
ative function satisfying the Beurling—Domar condition (2.3) and let m € C(R") be
such that the Fourier multiplier operator

CE(R™) 3 ¢ > (D) = F (i)

maps CX°(R") into Lé (R™). Suppose f € L?’_l (R™) is such that m(D) f = 0as a
distribution, i.e., (4.7) holds. If {n € R" | m(n) = 0} = {0}, then f admits analytic
continuation to an entire function f:C" — C such that for every multi-index o € 7",

||(80lf)( + iy)”L?il(Rn) < Caesg(lyl)lyl”f”Lz,il(R")v y e Rn’ (410)

where the constant Cy, € (0,00) depends only ona and g. If {n € R" | m(n) =0} =0,
then f = 0.

Conversely, if every f € L (R") satisfying (4.7) admits analytic continuation to
an entire function f:C" — C such that

L£C+ i)l @y < Mee™ | flise, @m. » € R,

holds for every ¢ > 0 with a constant M, € (0, 00) that depends only on &, m, and g,
then {n € R" | m(n) = 0} < {0}.

Proof. The only part that does not follow immediately from Theorem 4.3 is that f =0
in the case {n € R” | m(n) = 0} = @. In this case, one can take the same Y as in the
proof of Theorem 4.3, note that Z(Y') = @ and apply Theorem 4.1 to conclude that
f = 0. (It is instructive to compare this result to [18, Proposition 2.2].) ]

Remark 4.5. The condition that 72(D) maps C°(R”) to L;(R”) is satisfied if m is
a linear combination of terms of the form ab, where a = Fpu, p is a finite complex
Borel measure on R” such that

/ﬂwwww<w,
R”

and b is the Fourier transform of a compactly supported distribution. Indeed, it is easy
to see that b(D) maps C°(R") into itself, while the convolution operator ¢ > ji * ¢
maps C°(R") to L} (R").
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A particular example is the characteristic exponent of a Lévy process (this is a
stochastic process with stationary and independent increments, such that the traject-
ories are right-continuous with finite left limits, see, e.g., Sato [25])

m©) = —ib-g+ 3606+ [ (1= riy-puiay)

o<|y|<1
+ [ (1= ) (dy),
[y|=1

where b € R", 0 € R™" is a symmetric positive semidefinite matrix, and v is a
measure on R” \ {0} such that [o_ 1y|?2v(dy) + Jiyiz1 &) v(dy) < co. More
generally, one can take

2s i‘al 2s—1 'a\
@) = 3 caterr [ [1-eta 3y vian)
lee|=0 ’ 0<|yl<1 le|=0
+ / (1 — e %) (dy)
lyI=1

with s € N, ¢4 € R, and a measure v on R” \ {0} such that f0<\y|<1 |y 1% v(dy) +
f\yIZI g(y)v(dy) < co. (As usual, for any & € NJf and § € R”, we define ! := []] ag!
and £% := []] SZ" .) Functions of this type appear naturally in positivity questions
related to generalised functions (see, e.g., [9, Chapter II, Section 4] or [28, Chapter 8]).
Some authors call the function —m for such an m (under suitable additional conditions
on the ¢,’s) a conditionally positive definite function.

Remark 4.6. We are mostly interested in super-polynomially growing weights as
polynomially growing ones have been dealt with in our previous paper [3]. Never-
theless, it is instructive to look at the behaviour of the factor eSs{U¥DI¥! for typical
super-polynomially, polynomially, and sub-polynomially growing weights.

It follows from (2.17) that if g(x) = elXl/log”te+IxD) "y, 5 1 then there exists a
constant C), such that

eSeyDly] <C, e,,lyllog_”(e+|y\)(1+ =1 log(e+(y1))
=C, (e\yl/lc)g”(e+\y|))n(1+ —Z1 log(e+|y))

=C (g(y))ﬂ(l-i- 2 1Og(€+\}’|))

Similarly, if g(x) = ¢®*!”,a = 0, b € [0, 1), then (2.16) implies

eSeUyDlyl — a\ylb(bm(] ) (g(y))(bm( b))~ b 4.11)
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If g(x) = (1 + |x|)%, s = 0, then (2.14) implies
eSeYDIyl < perstslog+lyD) Cs(1 + |y])® = Csg(y). (4.12)
Finally, if g(x) = (log(e + |x|))?, t = 0, then (2.15) implies
eSe(YDIYl < peat+tloglogle+lyl) — C;(log(e + |y]))" = Cig(y).

Remark 4.7. If g is polynomially bounded in Corollary 4.4, then it follows from
(4.10) and (4.12) that f is a polynomially bounded entire function on C”, hence a
polynomial, see, e.g., [21, Corollary 1.7]. The fact that f is a polynomial in this case
was established in [3, 12].

Remark 4.8. Letn =2, g(x) := (1 + |x)*, k € N, f(x1,x2) := (x1 + ix2)* (or
F(x1.x2) 1= (x1 + ix2)* + (x; — ix2)¥ if one prefers to have a real-valued f).
Then f € LZ‘LI(RZ), Af =0, f(x +iyier) = (x1 + iy1 + ixo)* forany y; € R,
see (2.6), and

||f('+iY1el)||L§°_1(R2) - |y1]*

g(yier) T (L4 yiDF ileoo

1= ”f”L;"_l(]RZ)-

So, the factor eSsIYDIY| < Crg(y), see (4.12), is optimal in (4.10) in this case.

The case g(x) = e“'xlb, a > 0,b €0, 1), is perhaps more interesting. Let us take

b= % Then it follows from (4.11) that eS¢ (¥DI¥| = (g(y))ﬁ. Let us show that one
cannot replace this factor in (4.10) with (g(y))ﬁ(l_g), e > 0. Take any ¢ > 0. Since

4 1 1
V1412 cos(i arctan —) -
T

1
>0, >0 E’

there exists some 7, > 0 such that

V1 —Frzcos(larc'[anl ) < Lte
¢ 2 Te N \/E

Let us estimate Re /x; + ikx,, where x = (x1,x3) € R2, k > 0 is a constant to be
chosen later, and /- is the branch of the square root that is analytic in C \ (—o0, 0]

and positive on (0, +00). If x1 = Tk (x|, then

; - 4
Re v/x1 +ikxy < |Vx1 +ikxa| = y/x7 +«k2x32

1 1\1/4 1\1/4
< ,4/(1 - —2)x% < (1 + —2) VX1 < (1 + —2) Vx|
7:8 TS TS
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If 0 < x1 < Tek|x2|, then

1 Klx
Re\/x1+i/cx2: |\/x1+i/<x2|cos(5arctan | 2|)
X1

1
< |V Tek |xz|+z/cxz|cos( arctan—)

Te

1 1
_ K1/2|x2|1/2 41 + 2 cos(— arctan —)
2 Te

<IEean e

V2

Now, take «; = 1 such that

1 1\1/4
ixg/zz(u— 2) :
V2 £

Then

1
Re v/x1 +ikgxs < j;;c;/2|x|1/2 (4.13)

for x; > 0. If x; < 0, then the argument of /x; + ixzx, belongs to [7/4, 7w /2],
respectively [—m/2, —m /4], depending on the sign of x,. Hence,

Re\/X1+lex2 \/x1+zK€xz|cos— f 81/2|9c|1/2
and (4.13) holds for all x = (x1, x2) € R2.
Since the Taylor series of cos w contains only even powers of w, cos(i/z) is
an analytic function of z € C. So, cos(i /X1 + ix2) is a harmonic function of the

variable x = (x1, x2) € R?. Hence, f(x1,X2) := cos(i »/X| + ikgx) is a solution of
the elliptic partial differential equation

(8)2‘1 zaiz)f(xl,xz) =0.

It follows from (4.13) that

[ f(x1,x2)| < —(1 + eRCW) - eljf ‘/2|x|1/2.

So. f € L%, (R?), where g(x) = "2 with ¢ = I:/Lf k}/2. Clearly, the analytic

continuation of f to C? is given by the formula

F(x1 +iy1.x2 +iy2) = cos(i /X1 + iy1 + ike(x2 + iy2)).
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Finally, see (2.6), letting (—o0,0) > y, — —o0, we arrive at

I7CHivaeallize @ £ +iyaen)  _ Jeosi yHed)|
(8(r2€2) Y2179 7 g(0)(g(32e2) V210 W201-0 a2

1/2
ok 2 1yal'?

1/2
— = —¢ [y2l S 0.

- 1 g2 }/2
-
2e(1_52)’<8 ‘YZ“/Z 2 Y2—>—00

5. Concluding remarks

Corollary 4.4 shows that sub-exponentially growing solutions of m(D) f = 0 admit
analytic continuation to entire functions on C”. It is well known that no growth restric-
tions are necessary in the case when m (D) is an elliptic partial differential operator
with constant coefficients, and every solution of m(D) f = 0 in R” admits analytic
continuation to an entire function on C”, see [6,23].

Remark 5.1. The latter result has a local version similar to Hayman’s theorem on
harmonic functions, see [13, Theorem 1]: for every elliptic partial differential operator
m(D) with constant coefficients there exists a constant ¢,, € (0, 1) such that every
solution of m(D) f = 0 in the ball {x € R” : |x| < R} of any radius R > 0 admits
continuation to an analytic function in the ball {x € C" : |x| < ¢, R}. Indeed, let
mo(D) =3, =y daD* be the principal part of m(D) =, <y da D*. There exists
Cy > 0 such that

)

Y aula+ib)* =0, a.beR" = l|a| = Cplb
la|=N

see, for example, [27, Section 7]. Then the same argument as in the proof of [19,
Corollary 8.2] shows that f admits continuation to an analytic function in the ball
{x e C":|x| < (1+C,,2)~/2R}. Note that in the case of the Laplacian, one can take
Cn=1landcy, = (14 C;2)712 = % which is the optimal constant for harmonic
functions, see [13].

Let us return to equations in R”. Below, m(§¢) will always denote a polynomial
with {& € R” | m(§) = 0} C {0}. For non-elliptic partial differential operators m (D),
one needs to place growth restrictions on solutions of m(D) f = 0 to make sure that
they admit analytic continuation to entire functions on C”.

We say that a function f defined on R” (or C") is of infra-exponential growth, if
for every ¢ > 0, there exists C; > 0 such that

| /(2)| < Cee®?! forallz € R” (z € C™).
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Let u: [0, 00) — [0, 00) be an increasing function, which increases to infinity and
satisfies

w(t) < At+B, 120

for some 4, B > 0, and
o0

/ %) dt < oco. 5.1

1

Suppose {§ € R" | m(¢§) = 0} = {0}. Then, under additional restrictions on u, every
solution f of m(D) f = 0 that has growth O(e?*(*D) for every & > 0 admits analytic
continuation to an entire function of infra-exponential growth on C” see [18]. It is
easy to see that (5.1) is equivalent to the Beurling—Domar condition (2.3) for the
function g(x) := e®*(xD,
One cannot replace O(e#*1*D) with O(e?*) in the above result without placing
a restriction on the complex zeros of m. If there exists § > 0 such that m({) has no
complex zeros in
[Im¢| <8, |Rel| > 871, (5.2)

then every solution of m(D) f = 0 that, together with its partial derivatives up to the
order of m(D), is of infra-exponential growth on R”, admits analytic continuation to
an entire function of infra-exponential growth on C”, see [17, 18].

On the other hand, if for every § > 0, (5.2) contains complex zeros of m({), then
m(D) f = 0 has a solution in C* all of whose derivatives are of infra-exponential
growth on R”, but which is not entire infra-exponential in C”. The proof of the latter
result in [17, 18] is not constructive, and the author writes: “Unfortunately we cannot
present concrete examples of such solutions.” However, it is not difficult to construct,
for any & > 0, a solution in C° all of whose derivatives have growth O(eam), but
which is not real-analytic. Indeed, according to the assumption, there exist complex
Zeros

k=6 +ink, &k.mkeR", keN

of m(¢) such that
el <k, 6] > k. (5.3)

Choosing a subsequence, we can assume that wy := |£x|~'&; converge to a point
wo € Sl :={E eR": |§| =1} as k — oo, and that |w; — wg| < 1 forall k € N.
Then

_ loxl? + ool —fox —wol? 1411 _ 1
2 2 2’

Wk - Wo k e N, 5.4)
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Consider ' '
eibkx eiékx—ngx

o — n
f@) = Z eléxl1/? Zl elécl/2 x € R%. (-5)

k>g—1 k>e—

Then, for every multi-index « and every x € R”,

o ,ilkx
sl =| 2 e

CelE&72

Z (|&| + Dlelelnllxl

olEx]172

< et Z (16| + 1 )I “ =: Caes\xl

T EE T ’

see (5.3). Further,

_ m(Gr)e'r*
k>e—1
On the other hand, f is not real-analytic. Before we prove this, note that formally
putting x —ifwg, t > 0in place of x in the right-hand side of (5.5), one gets a divergent

series. Indeed, its terms can be estimated as follows:

eiEkx+tEp-wo—ni-x+itng-wo etléxlog-wo—ny-x | |et|$1c|/2
—&|X

el€k11/2 - el€x1/2 - elEk1/2

— X0

as k — oo, see (5.3), (5.4).
For any j > ¢!, there exists £ i € N such that

6 <|E1Y? <+ 1. (5.6)

Itis clear that £; — oo as j — oo, see (5.3). Note that

|wo - 77k| 2
|arg(wo - &x)| <
0 @0 |~ KJE]
If |£¢| = 6¢;/7k, then
20 T
eV < J <
Jarg(o 60" | < o < 5

and

1
Re(wo - &)Y = —|w0 Gl 2 .
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Clearly, |&;| = %’f for sufficiently large j, see (5.6). Hence, one has the following
estimate for the directional derivative 0,

L)
(i) O] = Y RGO

& 11/
k>e~1 ¢
L £
S _ Z |8k |/ n Z |§x|™
- el&I2 . ol +1 & |1/2
k>e=1, [ |< k>e=1, &=k

.y lalrbU o

elékl/? 2 +1,1811/2
6¢;
k>e=1, \§k|<Tlﬁ
2@1‘
o 3 1 (106,-)2_; N ¢
- 60 e|§k‘1/2 JTk 2€j+le(5§+1)1/2
k>e=L, |gcl<F
[e%e} 1 Ez_ej
> —(104;)% + —
= —(106) lc2—:1 eléklV/2 |2 26+t +1

= —C(10¢/)" + 2¢)" G DY

Hence,

3
J

(=i 000) £)(O)] = ¢,
for all sufficiently large j, which means that f is not real-analytic in a neighbourhood
of 0.

The operator m (D) in the previous example is not hypoelliptic. If m (D) is hypo-
elliptic, then every solution of m(D) f = 0, such that | f(x)| < Ae?*l, x € R”, for
some constants A,a > 0, admits analytic continuation to an entire function of order
one on C”, see [11, Section 4, Corollary 2]. For elliptic operators, this result can be
strengthened: every solution of m(D) f = 0, such that | f(x)| < Ae?¥? x e R™, for
B = 1 and some constants A,a > 0, admits analytic continuation to an entire function
of order 8 on C", see [11, Section 4, Corollary 3]. Let us show that for every § > 1
there exists a semi-elliptic operator m (D), see [16, Theorem 11.1.11], and a C*° solu-
tion of m(D) f = 0, all of whose derivatives have growth O (e?* |B), but which does
not admit analytic continuation to an entire function on C”.

A simple example of such a semi-elliptic operator is 0
satisfying 1 + 2—le < B,ie, = m

+ 9%+2 with £ € N

2
X1
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Let

0 —ik?tlx;+kx; 5
Sf(x1,x2) ::ZT’ (x1,x2) € R”.
=1 €

. . . 1
If x, > 0, then the function 7 > tx, — r2¢+1 achieves a maximum at ¢ = )20,
and this maximum is equal to

Z( 1 )1+21ex1+21£ _. 1+ﬁ‘
20 +1

Hence, for every multi-index o,

oo

|8°‘f(x1, X2)| < Z k(2€+1)|a|ekx2—k2€+l
k=1
1
[xzze]-i-l oo
_ Z J@UFDlal hxa—k2EHT Z @erDlal k(2 —k20)
k= 1
k=[x?%1+2

1+, 0
< ([xzze] + 1)(2€+1)|a|+lec'gx2 2¢ + Zk(26+1)|a|e—k

=
Il
—-

1454 1+ 5
< 2(2€+1)\a|+1(x§|0!|+1 + 1)eczx2 + Cla < C«Z’ae(cri-l)x2 ]

If x, <0, then

w et k(2€+1)|a| St jla\
|8 f(xl,x2)|SZek2—Hl<27=:Ca<oo.
k=1 j=1

1 1
So, f € C®(R2), and 3% f(x1, x5) = O(eCetDxl 20y — o pleetDIxI"T20y ¢
easy to see that (83(1 + 3i§+2)f(x1,x2) =0.
The function f admits analytic continuation to the set

I, :={(z1,22) € C? | Imz; < 1}.

Indeed, let

o e—ik2£+l(xl +iy1)+k(xa+iys)
fz1.22) = [ +iyxa +iy) =Y P
e

k=1
o0

— Z ei(km—kze"'lxl)ekze"'l(h —Dtkxs
k=1
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It is easy to see that the last series is uniformly convergent on compact subsets of
IT1;. So, f admits analytic continuation to I17. On the other hand, f(iy;,0) — oo as
y1 — 1 —0. Indeed,

o0
. 2¢+1 _
F(iy1.0) = § ek 1=1

k=1

Take any N € N.If y; > 1 — N~C¢+D then

> 2041 y—(2E+1) N 2041 y—(2E+1) N N
f(iy1,0) > E e kTN > Ze‘k N > Ze‘l = —.
e
k=1 k=1 k=1

So, f(iy1,0) — oo as y; — 1 —0.
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