Published by EMS Press This work is licensed under a CC BY 4.0 license

An extension of the Liouville theorem for Fourier multipliers to sub-exponentially growing solutions

David Berger, René L. Schilling, Eugene Shargorodsky, and Teo Sharia

Abstract. We study the equation m(D) f = 0 in a large class of sub-exponentially growing functions. Under appropriate restrictions on $m \in C(\mathbb{R}^n)$, we show that every such solution can be analytically continued to a sub-exponentially growing entire function on \mathbb{C}^n if, and only if, $m(\xi) \neq 0$ for $\xi \neq 0$.

1. Introduction

The classical Liouville theorem for the Laplace operator $\Delta := \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}$ on \mathbb{R}^n says that every bounded (polynomially bounded) solution of the equation $\Delta f = 0$ is in fact constant (is a polynomial). Recently, similar results have been obtained for solutions of more general equations of the form m(D)f = 0, where $m(D) := \mathcal{F}^{-1}m(\xi)\mathcal{F}$, and

$$\mathcal{F}\varphi(\xi) = \hat{\varphi}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi}\varphi(x) \, dx \quad \text{and} \quad \mathcal{F}^{-1}u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix\cdot\xi}u(\xi) \, d\xi$$

are the Fourier and the inverse Fourier transforms, see [1–3, 12], and the references therein. Namely, it was shown that, under appropriate restrictions on $m \in C(\mathbb{R}^n)$, the implication

$$f$$
 is bounded (polynomially bounded) and $m(D) f = 0$
 $\implies f$ is constant (is a polynomial)

holds if, and only if, $m(\xi) \neq 0$ for $\xi \neq 0$. Much of this research has been motivated by applications to infinitesimal generators of Lévy processes.

Mathematics Subject Classification 2020: 42B15 (primary); 32A15, 35A20, 35E20, 35B53, 35S05 (secondary).

Keywords: Fourier multipliers, Liouville theorem, entire functions, Beurling–Domar condition.

In this paper, we study solutions of m(D)f = 0 that can grow faster than any polynomial. Of course, one cannot expect such solutions to have a simple structure, not even in the case of $\Delta f = 0$ in \mathbb{R}^2 , see, e.g., [22, Chapter I, Section 2]. We consider sub-exponentially growing solutions whose growth is controlled by a submultiplicative function, cf. (2.1), satisfying the Beurling-Domar condition (2.3), and we show that, under appropriate restrictions on $m \in C(\mathbb{R}^n)$, every such solution admits analytic continuation to a sub-exponentially growing entire function on \mathbb{C}^n if, and only if, $m(\xi) \neq 0$ for $\xi \neq 0$, see Corollary 4.4. Results of this type have been obtained for solutions of partial differential equations with constant coefficients by A. Kaneko and G. E. Šilov, see [17, 18, 26], [7, Chapter 10, Section 2, Theorem 2], and Section 5 below.

Keeping in mind applications to infinitesimal generators of Lévy processes, we do not assume that m is the Fourier transform of a distribution with compact support, so our setting is different from that in, e.g., [6] and [16, Chapter XVI].

The paper is organised as follows. In Chapter 2, we consider submultiplicative functions satisfying the Beurling-Domar condition. For every such function g, we introduce an auxiliary function S_g , see (2.11), (2.12), which appears in our main estimates. Chapter 3 contains weighted L^p estimates for entire functions on \mathbb{C}^n , which are a key ingredient in the proof of our main results in Chapter 4. Another key ingredient is the Tauberian Theorem 4.1, which is similar to [3, Theorem 7] and [24, Theorem 9.3]. The main difference is that the function f in Theorem 4.1 is not assumed to be polynomially bounded, and hence it might not be a tempered distribution. So, we avoid using the Fourier transform $\hat{f} = \mathcal{F}f$ and its support (and non-quasianalytic-type ultradistributions). Although we are mainly interested in the case $m(\xi) \neq 0$ for $\xi \neq 0$, we also prove a Liouville type result for m with compact zero set $\{\xi \in \mathbb{R}^n \mid m(\xi) = 0\}$, see Theorem 4.3. Finally, we discuss in Section 5 A. Kaneko's Liouville-type results for partial differential equations with constant coefficients, cf. [17, 18], which show that the Beurling-Domar condition is in a sense optimal in our setting.

2. Submultiplicative functions and the Beurling–Domar condition

Let $g: \mathbb{R}^n \to (0, \infty)$ be a locally bounded, measurable *submultiplicative* function, i.e., a locally bounded measurable function satisfying

$$g(x + y) \le Cg(x)g(y)$$
 for all $x, y \in \mathbb{R}^n$,

where the constant $C \in [1, \infty)$ does not depend on x and y. Without loss of generality, we will always assume that $g \ge 1$, as otherwise we can replace g with g + 1. Also,

replacing g with Cg, we can assume that

$$g(x+y) \le g(x)g(y)$$
 for all $x, y \in \mathbb{R}^n$. (2.1)

A locally bounded submultiplicative function is exponentially bounded, i.e.,

$$|g(x)| \le Ce^{a|x|} \tag{2.2}$$

for suitable constants C, a > 0, see [25, Section 25] or [14, Chapter VII].

We will say that g satisfies the Beurling-Domar condition if

$$\sum_{l=1}^{\infty} \frac{\log g(lx)}{l^2} < \infty \quad \text{for all } x \in \mathbb{R}^n.$$
 (2.3)

If g satisfies the Beurling–Domar condition, then it also satisfies the Gelfand–Raikov–Shilov condition

$$\lim_{l \to \infty} g(lx)^{1/l} = 1 \quad \text{for all } x \in \mathbb{R}^n,$$

while $g(x) = e^{|x|/\log(e+|x|)}$ satisfies the latter but not the former condition, see [10]. It is also easy to see that $g(x) = e^{|x|/\log^{\gamma}(e+|x|)}$ satisfies the Beurling–Domar condition if, and only if, $\gamma > 1$. The function

$$g(x) = e^{a|x|^b} (1 + |x|)^s (\log(e + |x|))^t$$

satisfies the Beurling–Domar condition for any $a, s, t \ge 0$ and $b \in [0, 1)$, see [10].

Lemma 2.1. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3). Then, for every $\varepsilon > 0$, there exists $R_{\varepsilon} \in (0, \infty)$ such that

$$\int_{R_{-}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d\tau < \varepsilon \quad \text{for all } x \in \mathbb{S}^{n-1} := \{ y \in \mathbb{R}^{n} : |y| = 1 \}.$$

Proof. Since $g \ge 1$ is locally bounded,

$$0 \leqslant M := \sup_{|y| \leqslant 1} \log g(y) < \infty. \tag{2.4}$$

Take any $x \in \mathbb{S}^{n-1}$. It follows from (2.1) that

$$\log g((l+1)x) - M \le \log g(\tau x) \le \log g(lx) + M \quad \text{for all } \tau \in [l, l+1].$$

Hence,

$$\sum_{l=L}^{\infty} \frac{\log g((l+1)x) - M}{(l+1)^2} \le \sum_{l=L}^{\infty} \int_{l}^{l+1} \frac{\log g(\tau x)}{\tau^2} d\tau \le \sum_{l=L}^{\infty} \frac{\log g(lx) + M}{l^2},$$

and this implies for all $L \in \mathbb{N}$ that

$$\sum_{l=L+1}^{\infty} \frac{\log g(lx)}{l^2} - \frac{M}{L} \le \int_{L}^{\infty} \frac{\log g(\tau x)}{\tau^2} d\tau \le \sum_{l=L}^{\infty} \frac{\log g(lx)}{l^2} + \frac{M}{L-1}.$$
 (2.5)

Let

$$\mathbf{e}_{j} := (\underbrace{0, \dots, 0}_{j-1}, 1, 0, \dots, 0), \ j = 1, \dots, n, \quad \mathbf{e}_{0} := \frac{1}{\sqrt{n}} (1, \dots, 1),$$

$$Q := \left\{ y = (y_{1}, \dots, y_{n}) \in \mathbb{R}^{n} : \frac{1}{2\sqrt{n}} < y_{j} < \frac{2}{\sqrt{n}}, \ j = 1, \dots, n \right\}.$$
(2.6)

For every $x \in \mathbb{S}^{n-1}$, there exists an orthogonal matrix $A_x \in O(n)$ such that $x = A_x \mathbf{e}_0$. Hence, $\{AQ\}_{A \in O(n)}$ is an open cover of \mathbb{S}^{n-1} . Let $\{A_k Q\}_{k=1,...,K}$ be a finite subcover. Take an arbitrary $\varepsilon > 0$. It follows from (2.3) and (2.5) that there exists some $R_{\varepsilon} > 0$ for which

$$\int_{\frac{R_{\varepsilon}}{2\sqrt{n}}}^{\infty} \frac{\log g(\tau A_k \mathbf{e}_j)}{\tau^2} d\tau < \frac{\varepsilon}{2\sqrt{n}}, \quad k = 1, \dots, K, \ j = 1, \dots, n.$$

For any $x \in \mathbb{S}^{n-1}$, there exist $k = 1, \dots, K$ and $a_j \in \left(\frac{1}{2\sqrt{n}}, \frac{2}{\sqrt{n}}\right)$, $j = 1, \dots, n$ such that

$$x = \sum_{j=1}^{n} a_j A_k \mathbf{e}_j.$$

Using (2.1), one gets

$$\int_{R_{\varepsilon}}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d\tau \leq \sum_{j=1}^{n} \int_{R_{\varepsilon}}^{\infty} \frac{\log g(\tau a_{j} A_{k} \mathbf{e}_{j})}{\tau^{2}} d\tau = \sum_{j=1}^{n} a_{j} \int_{a_{j} R_{\varepsilon}}^{\infty} \frac{\log g(r A_{k} \mathbf{e}_{j})}{r^{2}} dr$$

$$\leq \sum_{j=1}^{n} \frac{2}{\sqrt{n}} \int_{\frac{R_{\varepsilon}}{2\sqrt{n}}}^{\infty} \frac{\log g(r A_{k} \mathbf{e}_{j})}{r^{2}} dr < \sum_{j=1}^{n} \frac{2}{\sqrt{n}} \cdot \frac{\varepsilon}{2\sqrt{n}} = n \frac{\varepsilon}{n} = \varepsilon. \blacksquare$$

Let

$$\begin{split} I_{g,x}(r) &:= \int\limits_{\max\{r,1\}}^{\infty} \frac{\log g(\tau x)}{\tau^2} \, d\tau < \infty, \\ J_{g,x}(r) &:= \frac{1}{\max\{r,1\}^2} \int\limits_{0}^{r} \log g(\tau x) \, d\tau < \infty, \\ S_{g,x}(r) &:= \frac{1}{\pi} \int\limits_{-\infty}^{\infty} \frac{\log g(\tau x)}{\tau^2 + \max\{r,1\}^2} \, d\tau \quad r \geqslant 0, \ x \in \mathbb{S}^{n-1}. \end{split}$$

One has, for r > 1 and any $\beta \in (0, 1)$,

$$J_{g,x}(r) = \frac{1}{r^2} \int_0^r \log g(\tau x) d\tau$$

$$= \frac{1}{r^2} \int_0^1 \log g(\tau x) d\tau + \frac{1}{r^{2(1-\beta)}} \int_1^{r^\beta} \frac{\log g(\tau x)}{r^{2\beta}} d\tau + \int_{r^\beta}^r \frac{\log g(\tau x)}{r^2} d\tau$$

$$\leq \frac{M}{r^2} + \frac{1}{r^{2(1-\beta)}} \int_1^r \frac{\log g(\tau x)}{\tau^2} d\tau + \int_{r^\beta}^r \frac{\log g(\tau x)}{\tau^2} d\tau$$

$$\leq \frac{M}{r^2} + \frac{I_{g,x}(1)}{r^{2(1-\beta)}} + I_{g,x}(r^\beta), \tag{2.7}$$

see (2.4). Further, if r > 1, then

$$\pi S_{g,x}(r) = \int_{0}^{\infty} \frac{\log g(\tau x)}{\tau^{2} + r^{2}} d\tau + \int_{0}^{\infty} \frac{\log g(-\tau x)}{\tau^{2} + r^{2}} d\tau$$

$$\leq \int_{0}^{r} \frac{\log g(\tau x)}{r^{2}} d\tau + \int_{r}^{\infty} \frac{\log g(\tau x)}{\tau^{2}} d\tau$$

$$+ \int_{0}^{r} \frac{\log g(-\tau x)}{r^{2}} d\tau + \int_{r}^{\infty} \frac{\log g(-\tau x)}{\tau^{2}} d\tau$$

$$= I_{g,x}(r) + J_{g,x}(r) + I_{g,-x}(r) + J_{g,-x}(r), \tag{2.8}$$

and, with a similar calculation,

$$\pi S_{g,x}(r) \ge \int_{0}^{r} \frac{\log g(\tau x)}{2r^{2}} d\tau + \int_{r}^{\infty} \frac{\log g(\tau x)}{2\tau^{2}} d\tau + \int_{0}^{r} \frac{\log g(-\tau x)}{2r^{2}} d\tau + \int_{r}^{\infty} \frac{\log g(-\tau x)}{2\tau^{2}} d\tau = \frac{1}{2} (I_{g,x}(r) + J_{g,x}(r) + I_{g,-x}(r) + J_{g,-x}(r)).$$
 (2.9)

Since g is locally bounded, it follows from Lemma 2.1 that I_g defined by

$$I_g(r) := \sup_{x \in \mathbb{S}^{n-1}} I_{g,x}(r) = \sup_{x \in \mathbb{S}^{n-1}} \int_{\max\{r,1\}}^{\infty} \frac{\log g(\tau x)}{\tau^2} d\tau < \infty,$$

is a decreasing function such that

$$I_{\mathfrak{g}}(r) \to 0 \quad \text{as } r \to \infty.$$
 (2.10)

Let

$$J_{g}(r) := \sup_{x \in \mathbb{S}^{n-1}} J_{g,x}(r) = \sup_{x \in \mathbb{S}^{n-1}} \frac{1}{\max\{r, 1\}^{2}} \int_{0}^{r} \log g(\tau x) d\tau,$$

$$S_{g}(r) := \sup_{x \in \mathbb{S}^{n-1}} S_{g,x}(r) = \sup_{x \in \mathbb{S}^{n-1}} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau x)}{\tau^{2} + \max\{r, 1\}^{2}} d\tau. \tag{2.11}$$

Then, in view of (2.7), (2.8), and (2.9),

$$J_g(r) \leq \frac{M}{r^2} + \frac{I_g(1)}{r^{2(1-\beta)}} + I_g(r^{\beta}),$$

$$\frac{1}{2\pi} \max\{I_g(r), J_g(r)\} \leq S_g(r) \leq \frac{2}{\pi}(I_g(r) + J_g(r)).$$

Thus, $J_g(r) \to 0$, and

$$S_g(r) \to 0 \quad \text{as } r \to \infty,$$
 (2.12)

see (2.10). It is clear that

$$S_g(r) = S_g(1)$$
 for $r \in [0, 1]$ and S_g is a decreasing function. (2.13)

Examples. (1) If $g(x) = (1 + |x|)^s$, $s \ge 0$, then we have for all $r \ge 1$

$$S_{g}(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s \log(1 + |\tau|)}{\tau^{2} + r^{2}} d\tau$$

$$= \frac{s}{\pi r} \int_{-\infty}^{\infty} \frac{\log(1 + r|\lambda|)}{\lambda^{2} + 1} d\lambda$$

$$\leq \frac{s}{\pi r} \int_{-\infty}^{\infty} \frac{\log(1 + |\lambda|)}{\lambda^{2} + 1} d\lambda + \frac{s \log(1 + r)}{\pi r} \int_{-\infty}^{\infty} \frac{1}{\lambda^{2} + 1} d\lambda$$

$$= \frac{c_{1}s}{\pi} + \frac{s \log(1 + r)}{\pi}, \qquad (2.14)$$

where

$$c_1 := \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log(1+|\lambda|)}{\lambda^2 + 1} d\lambda < \infty.$$

(2) If $g(x) = (\log(e + |x|))^t$, $t \ge 0$, then using the obvious inequality

$$u + v \leq 2uv$$
, $u, v \geq 1$,

yields for $r \ge 1$

$$S_{g}(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{t \log \log (e + |\tau|)}{\tau^{2} + r^{2}} d\tau = \frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log \log (e + r|\lambda|)}{\lambda^{2} + 1} d\lambda$$

$$\leq \frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log (\log (e + |\lambda|) + \log (e + r))}{\lambda^{2} + 1} d\lambda$$

$$\leq \frac{t}{\pi r} \int_{-\infty}^{\infty} \frac{\log (2 \log (e + |\lambda|))}{\lambda^{2} + 1} d\lambda + \frac{t \log \log (e + r)}{\pi r} \int_{-\infty}^{\infty} \frac{1}{\lambda^{2} + 1} d\lambda$$

$$= \frac{c_{2}t}{r} + \frac{t \log \log (e + r)}{r}, \qquad (2.15)$$

where

$$c_2 := \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\log(2\log(e + |\lambda|))}{\lambda^2 + 1} d\lambda < \infty.$$

(3) If $g(x) = e^{a|x|^b}$, $a \ge 0$, $b \in [0, 1)$, then we have for all $r \ge 1$

$$S_g(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a|\tau|^b}{\tau^2 + r^2} d\tau = \frac{ar^{b-1}}{\pi} \int_{-\infty}^{\infty} \frac{|\lambda|^b}{\lambda^2 + 1} d\lambda = \frac{2ar^{b-1}}{\pi} \int_{0}^{\infty} \frac{t^b}{t^2 + 1} dt$$
$$= \frac{ar^{b-1}}{\pi} \int_{0}^{\infty} \frac{s^{\frac{b-1}{2}}}{s+1} ds = \frac{ar^{b-1}}{\sin(\frac{1-b}{2}\pi)}, \tag{2.16}$$

see, e.g., [4, Chapter V, Example 2.12].

(4) Finally, let $g(x) = e^{|x|/\log^{\gamma}(e+|x|)}$, $\gamma > 1$. Since

$$\frac{\tau(e+\tau)}{\tau^2 + r^2} = \frac{1 + \frac{e}{\tau}}{1 + \frac{r^2}{\tau^2}} \le 1 + \frac{e}{\tau} \le 1 + \frac{e}{r} \quad \text{for } \tau \ge r,$$

then for any $\beta \in (0, 1)$ and $r \ge 1$

$$S_{g}(r) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|\tau|}{(\tau^{2} + r^{2}) \log^{\gamma}(e + |\tau|)} d\tau = \frac{2}{\pi} \int_{0}^{\infty} \frac{\tau}{(\tau^{2} + r^{2}) \log^{\gamma}(e + \tau)} d\tau$$

$$= \frac{2}{\pi} \left(\int_{0}^{r^{\beta}} + \int_{r^{\beta}}^{r} + \int_{r}^{\infty} \right) \frac{\tau}{(\tau^{2} + r^{2}) \log^{\gamma}(e + \tau)} d\tau$$

$$\leq \frac{2}{\pi} \int_{0}^{r^{\beta}} \frac{\tau}{\tau^{2} + r^{2}} d\tau + \frac{2}{\pi \log^{\gamma}(e + r^{\beta})} \int_{r^{\beta}}^{r} \frac{\tau}{\tau^{2} + r^{2}} d\tau$$

$$+ \frac{2}{\pi} \left(1 + \frac{e}{r} \right) \int_{r}^{\infty} \frac{1}{(e + \tau) \log^{\gamma}(e + \tau)} d\tau$$

$$= \frac{1}{\pi} \log(\tau^{2} + r^{2}) |_{0}^{r^{\beta}} + \frac{1}{\pi \log^{\gamma}(e + r^{\beta})} \log(\tau^{2} + r^{2})|_{r^{\beta}}^{r}$$

$$+ \frac{2}{\pi} \left(1 + \frac{e}{r} \right) \frac{1}{1 - \gamma} \log^{1 - \gamma}(e + \tau)|_{r^{\alpha}}^{r}$$

$$\leq \frac{1}{\pi} \log(1 + r^{2(\beta - 1)}) + \frac{\log 2}{\pi \log^{\gamma}(e + r^{\beta})} + \frac{2}{\pi} \left(1 + \frac{e}{r} \right) \frac{1}{\gamma - 1} \log^{1 - \gamma}(e + r)$$

$$\leq \frac{r^{2(\beta - 1)}}{\pi} + \frac{\log 2}{\pi \log^{\gamma}(e + r^{\beta})} + \frac{2}{\pi} \left(1 + \frac{e}{r} \right) \frac{1}{\gamma - 1} \log^{1 - \gamma}(e + r).$$

Since

$$\lim_{r \to \infty} \frac{r^{2(\beta - 1)} + (\log 2) \log^{-\gamma} (e + r^{\beta})}{\log^{-\gamma} (e + r)} = \frac{\log 2}{\beta^{\gamma}} \quad \text{for all } \beta \in (0, 1),$$

one gets, if we take $\beta \in ((\log 2)^{1/\gamma}, 1)$, the following estimate

$$S_g(r) \le \frac{\log^{-\gamma}(e+r)}{\pi} + \frac{2}{\pi} \left(1 + \frac{e}{r}\right) \frac{1}{\gamma - 1} \log^{1-\gamma}(e+r)$$
 (2.17)

for sufficiently large r.

3. Estimates for entire functions

Let $1 \le p \le \infty$ and let $\omega: \mathbb{R}^n \to [0, \infty)$ be a measurable function such that $\omega > 0$ Lebesgue almost everywhere. We set

$$||f||_{L^p_\omega} := ||\omega f||_{L^p} \quad \text{and} \quad L^p_\omega(\mathbb{R}^n) := \{ f : \mathbb{R}^n \to \mathbb{C} \mid f \text{ measurable}, ||f||_{L^p_\omega} < \infty \}.$$

$$(3.1)$$

Lemma 3.1. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3). Let φ be a measurable function such that for almost every $x' = (x_2, \ldots, x_n) \in \mathbb{R}^{n-1}$, $\varphi(z_1, x')$ is analytic in z_1 for $\operatorname{Im} z_1 > 0$ and continuous up to \mathbb{R} . Suppose also that $\log |\varphi(z_1, x')| = O(|z_1|)$ for $|z_1|$ large, $\operatorname{Im} z_1 \geq 0$, and that the restriction of φ to \mathbb{R}^n belongs to $L_{g\pm 1}^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Finally, suppose that

$$k_{\varphi} := \operatorname{ess\,sup}_{x' \in \mathbb{R}^{n-1}} \left(\limsup_{0 < y_1 \to \infty} \frac{\log |\varphi(iy_1, x')|}{y_1} \right) < \infty.$$

Then

$$\|\varphi(\cdot + iy_1, \cdot)\|_{L^p_{g^{\pm 1}}(\mathbb{R}^n)} \le C_g e^{(k_{\varphi} + S_g(y_1))y_1} \|\varphi\|_{L^p_{g^{\pm 1}}(\mathbb{R}^n)}, \quad y_1 > 0,$$
 (3.2)

see (2.11), (2.12), where the constant $C_g < \infty$ depends only on g.

Proof. Let $a^+ := \max\{a, 0\}$ for $a \in \mathbb{R}$. It follows from (2.1) that

$$\int_{-\infty}^{\infty} \frac{\log^{+}(g^{\mp 1}(t, x'))}{1 + t^{2}} dt \leq \int_{-\infty}^{\infty} \frac{\log(g(t, x'))}{1 + t^{2}} dt$$

$$\leq \int_{-\infty}^{\infty} \frac{\log(g(t, 0)) + \log(g(0, x'))}{1 + t^{2}} dt$$

$$\leq \pi(S_{g}(1) + \log(g(0, x'))) < +\infty.$$

Since $g^{\pm 1}\varphi \in L^p(\mathbb{R}^n)$, Fubini's theorem implies that

$$g^{\pm 1}(\cdot, x')\varphi(\cdot, x') \in L^p(\mathbb{R})$$

for Lebesgue almost all $x' \in \mathbb{R}^{n-1}$. For such $x' \in \mathbb{R}^{n-1}$,

$$\int_{-\infty}^{\infty} \frac{\log^{+} |\varphi(t, x')|}{1 + t^{2}} dt \leqslant \int_{-\infty}^{\infty} \frac{\log^{+} (g^{\pm 1}(t, x') |\varphi(t, x')|)}{1 + t^{2}} dt + \int_{-\infty}^{\infty} \frac{\log^{+} (g^{\mp 1}(t, x'))}{1 + t^{2}} dt < \infty.$$

Then

$$\log |\varphi(x_1 + iy_1, x')| \le k_{\varphi} y_1 + \frac{y_1}{\pi} \int_{-\infty}^{\infty} \frac{\log |\varphi(t, x')|}{(t - x_1)^2 + y_1^2} dt, \quad x_1 \in \mathbb{R}, \ y_1 > 0,$$

cf. [20, Chapter III, G, 2], see also [22, Chapter V, Theorems 5 and 7]. Applying (2.1) again, one gets

$$\log g(x) \le \log g(t, x') + \log g(x_1 - t, 0),$$

$$\log g(t, x') \le \log g(x) + \log g(t - x_1, 0) \quad \text{for all } x = (x_1, x') \in \mathbb{R}^n, \ t \in \mathbb{R}.$$

The latter inequality can be rewritten as follows

$$\log g^{-1}(x) \le \log g^{-1}(t, x') + \log g(t - x_1, 0).$$

Hence,

$$\log g^{\pm 1}(x) \le \log g^{\pm 1}(t, x') + \log g(\pm (x_1 - t), 0)$$

for all $x = (x_1, x') \in \mathbb{R}^n$, $t \in \mathbb{R}$, and

$$\begin{split} &\log(|\varphi(x_{1}+iy_{1},x')|g^{\pm 1}(x)) \\ &\leqslant k_{\varphi}y_{1} + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log|\varphi(t,x')|}{(t-x_{1})^{2} + y_{1}^{2}} dt + \log g^{\pm 1}(x) \\ &= k_{\varphi}y_{1} + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log|\varphi(t,x')| + \log g^{\pm 1}(x)}{(t-x_{1})^{2} + y_{1}^{2}} dt \\ &\leqslant k_{\varphi}y_{1} + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log(|\varphi(t,x')|g^{\pm 1}(t,x'))}{(t-x_{1})^{2} + y_{1}^{2}} dt + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\pm(x_{1}-t),0)}{(t-x_{1})^{2} + y_{1}^{2}} dt \\ &= k_{\varphi}y_{1} + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log(|\varphi(t,x')|g^{\pm 1}(t,x'))}{(t-x_{1})^{2} + y_{1}^{2}} dt + \frac{y_{1}}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau,0)}{\tau^{2} + y_{1}^{2}} d\tau. \end{split}$$

If $y_1 \in [0, 1]$, then

$$\begin{split} \frac{y_1}{\pi} \int\limits_0^\infty \frac{\log g(\tau,0)}{\tau^2 + y_1^2} \, d\tau &\leq M \frac{y_1}{\pi} \int\limits_0^1 \frac{1}{\tau^2 + y_1^2} \, d\tau + \frac{y_1}{\pi} \int\limits_1^\infty \frac{\log g(\tau,0)}{\tau^2 + y_1^2} \, d\tau \\ &\leq M \frac{y_1}{\pi} \int\limits_{\mathbb{R}} \frac{1}{\tau^2 + y_1^2} \, d\tau + \frac{1}{\pi} \int\limits_1^\infty \frac{\log g(\tau,0)}{\tau^2} \, d\tau \\ &\leq M + \frac{I_g(1)}{\pi}. \end{split}$$

It follows from (2.11) that for $y_1 > 1$,

$$\frac{y_1}{\pi} \int_{-\infty}^{\infty} \frac{\log g(\tau, 0)}{\tau^2 + y_1^2} d\tau \le y_1 S_g(y_1).$$

So,

$$\log(|\varphi(x_1 + iy_1, x')|g^{\pm 1}(x)) \le c_g + (k_{\varphi} + S_g(y_1))y_1 + \frac{y_1}{\pi} \int_{-\infty}^{\infty} \frac{\log(|\varphi(t, x')|g^{\pm 1}(t, x'))}{(t - x_1)^2 + y_1^2} dt,$$

where $c_g := M + \frac{I_g(1)}{\pi}$. Using Jensen's inequality, one gets

$$|\varphi(x_1+iy_1,x')|g^{\pm 1}(x) \leq C_g e^{(k_\varphi+S_g(y_1))y_1} \frac{y_1}{\pi} \int_{-\infty}^{\infty} \frac{|\varphi(t,x')|g^{\pm 1}(t,x')}{(t-x_1)^2+y_1^2} dt,$$

where

$$C_g := e^{M + \frac{I_g(1)}{\pi}}. (3.3)$$

Estimate (3.2) now follows from Young's convolution inequality and (3.1).

Remark 3.2. Let n = 1, $g: \mathbb{R} \to [1, \infty)$ be a Hölder continuous submultiplicative function satisfying the Beurling–Domar condition, g(0) = 1, and let

$$w(x+iy) := \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\log g(t)}{(t-x)^2 + y^2} dt + \frac{i}{\pi} \int_{-\infty}^{\infty} \left(\frac{x-t}{(t-x)^2 + y^2} + \frac{t}{t^2 + 1} \right) \log g(t) dt, \quad x \in \mathbb{R}, \ y > 0.$$

Then $\varphi(z) := e^{w(z)}$ is analytic in z for Im z > 0 and continuous up to \mathbb{R} ,

$$|\varphi(x)| = e^{\operatorname{Re}(w(x))} = e^{\log g(x)} = g(x), \quad x \in \mathbb{R},$$

see, e.g., [8, Chapter III, Section 1], and

$$|\varphi(iy)| = e^{\operatorname{Re}(w(iy))} = \exp\left(\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\log g(t)}{t^2 + y^2} dt\right) = e^{S_g(y)y}, \quad y \geqslant 1.$$

So,

$$k_{\varphi} = \limsup_{0 < y \to \infty} \frac{\log |\varphi(iy)|}{y} = \limsup_{y \to \infty} S_g(y) = 0$$

see (2.12), and

$$\begin{split} \|\varphi(\cdot + iy)\|_{L_{g^{-1}}^{\infty}(\mathbb{R})} &\geq \frac{|\varphi(iy)|}{g(0)} = |\varphi(iy)| = e^{S_g(y)y} = e^{S_g(y)y} \|1\|_{L^{\infty}(\mathbb{R})} \\ &= e^{S_g(y)y} \|g^{-1}\varphi\|_{L^{\infty}(\mathbb{R})} = e^{S_g(y)y} \|\varphi\|_{L_{g^{-1}}^{\infty}(\mathbb{R})}, \end{split}$$

which shows that the factor $e^{S_g(y_1)y_1}$ in the right-hand side of (3.2) is optimal in this case.

Clearly,

$$S_{\check{g}} = S_g, \quad C_{\check{g}} = C_g, \tag{3.4}$$

where $\check{g}(x) := g(Ax)$ and $A \in O(n)$ is an arbitrary orthogonal matrix, see (2.11), (3.3) and (2.4).

Theorem 3.3. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3). Let $\varphi: \mathbb{C}^n \to \mathbb{C}$ be an entire function such that $\log |\varphi(z)| = O(|z|)$ for |z| large, $z \in \mathbb{C}^n$, and suppose that the restriction of φ to \mathbb{R}^n belongs to $L_{g^{\pm 1}}^p(\mathbb{R}^n)$, $1 \le p \le \infty$. Then, for every multiindex $\alpha \in \mathbb{Z}_+^n$,

$$\|(\partial^{\alpha}\varphi)(\cdot+iy)\|_{L^{p}_{g^{\pm 1}}(\mathbb{R}^{n})} \leq C_{\alpha}e^{(\kappa_{\varphi}(y/|y|)+S_{g}(|y|))|y|}\|\varphi\|_{L^{p}_{g^{\pm 1}}(\mathbb{R}^{n})}, \quad y \in \mathbb{R}^{n}, (3.5)$$

where

$$\kappa_{\varphi}(\omega) := \sup_{x \in \mathbb{R}^n} \left(\limsup_{0 < t \to \infty} \frac{\log |\varphi(x + it\omega)|}{t} \right) < \infty, \quad \omega \in \mathbb{S}^{n-1}, \tag{3.6}$$

and the constant $C_{\alpha} \in (0, \infty)$ depends only on α and g.

Proof (Cf. the proof of [21, Lemma 9.29]). Take any $y \in \mathbb{R}^n \setminus \{0\}$. There exists an orthogonal matrix $A \in O(n)$ such that $A\mathbf{e}_1 = \omega := y/|y|$, see (2.6). Define the functions $\check{\varphi}(z) := \varphi(Az), z \in \mathbb{C}^n$, and $\check{g}(x) := g(Ax), x \in \mathbb{R}^n$. Then $\check{\varphi} : \mathbb{C}^n \to \mathbb{C}$ is an entire function, and one can apply to it Lemma 3.1 with \check{g} in place of g, see (3.4).

For any $x \in \mathbb{R}^n$, one has $\varphi(x + iy) = \check{\varphi}(\tilde{x} + i|y|\mathbf{e}_1) = \check{\varphi}(\tilde{x}_1 + i|y|, \tilde{x}_2, \dots, \tilde{x}_n)$, where $\tilde{x} := A^{-1}x$. Hence,

$$\begin{split} &\|\varphi(\cdot+iy)\|_{L^{p}_{g^{\pm 1}}(\mathbb{R}^{n})} \\ &= \|\check{\varphi}(\cdot+i|y|,\cdot)\|_{L^{p}_{\check{g}^{\pm 1}}(\mathbb{R}^{n})} \leqslant C_{\check{g}}e^{(k_{\check{\varphi}}+S_{\check{g}}(|y|))|y|}\|\check{\varphi}\|_{L^{p}_{\check{g}^{\pm 1}}(\mathbb{R}^{n})} \\ &\leqslant C_{g}e^{(\kappa_{\varphi}(y/|y|)+S_{g}(|y|))|y|}\|\check{\varphi}\|_{L^{p}_{\check{g}^{\pm 1}}(\mathbb{R}^{n})} = C_{g}e^{(\kappa_{\varphi}(y/|y|)+S_{g}(|y|))|y|}\|\varphi\|_{L^{p}_{g^{\pm 1}}(\mathbb{R}^{n})}, \end{split}$$

see (3.4), which proves (3.5) for $\alpha = 0$ and $y \neq 0$. This estimate is trivial for $\alpha = 0$ and y = 0.

Iterating the standard Cauchy integral formula for one complex variable, one gets

$$\varphi(\zeta) = \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} \frac{\varphi(z_1 + e^{i\theta_1}, \dots, z_n + e^{i\theta_n})}{\prod_{k=1}^n (z_k + e^{i\theta_k} - \zeta_k)} \Big(\prod_{k=1}^n e^{i\theta_k} \Big) d\theta_1 \dots d\theta_n,$$

$$\zeta \in \Delta(z) := \{ \eta \in \mathbb{C}^n : |\eta_k - z_k| < 1, k = 1, \dots, n \}, z \in \mathbb{C}^n$$

(cf. [21, Chapter 1, Section 1]), which implies

$$\partial^{\alpha}\varphi(\zeta) = \frac{\alpha!}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} \frac{\varphi(z_1 + e^{i\theta_1}, \dots, z_n + e^{i\theta_n})}{\prod_{k=1}^n (z_k + e^{i\theta_k} - \zeta_k)^{\alpha_k + 1}} \Big(\prod_{k=1}^n e^{i\theta_k}\Big) d\theta_1 \dots d\theta_n.$$

Hence,

$$\partial^{\alpha}\varphi(z) = \frac{\alpha!}{(2\pi)^n} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \frac{\varphi(z_1 + e^{i\theta_1}, \dots, z_n + e^{i\theta_n})}{\prod_{k=1}^n e^{i\alpha_k\theta_k}} d\theta_1 \dots d\theta_n,$$

and

$$|\partial^{\alpha}\varphi(z)| \leq \frac{\alpha!}{(2\pi)^{n}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} |\varphi(z_{1} + e^{i\theta_{1}}, \dots, z_{n} + e^{i\theta_{n}})| d\theta_{1} \dots d\theta_{n}.$$
 (3.7)

Since $g \ge 1$ is locally bounded,

$$1 \leqslant M_1 := \sup_{|s_k| \leqslant 1, k=1,\dots,n} g(s) < \infty.$$

Then it follows from (2.1) that

$$g^{\pm 1}(x_1 - \cos \theta_1, \dots, x_n - \cos \theta_n) \le M_1 g^{\pm 1}(x).$$
 (3.8)

According to the conditions of the theorem, there exists a constant $c_{\varphi} \in (0, \infty)$ such that one has $\log |\varphi(\zeta)| \leq c_{\varphi}|\zeta|$ for $|\zeta|$ large. Then $\kappa_{\varphi}(\omega) \leq c_{\varphi}$, see (3.6). Let one set $\varphi_y := \varphi(\cdot + iy)$, $y = (\operatorname{Im} z_1, \dots, \operatorname{Im} z_n)$. Then, similarly to the above inequality, $\kappa_{\varphi_y}(\omega) \leq c_{\varphi}$. Applying (3.5) with $\alpha = 0$ to the function φ_y in place of φ and using (2.13), (3.8), one derives from (3.7)

$$\begin{split} &\|(\partial^{\alpha}\varphi)(\cdot + iy)\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})} \\ &\leqslant \frac{\alpha!}{(2\pi)^{n}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \|\varphi(\cdot + iy_{1} + e^{i\theta_{1}}, \dots, \cdot + iy_{n} + e^{i\theta_{n}})\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})} d\theta_{1} \dots d\theta_{n} \\ &\leqslant \frac{\alpha!}{(2\pi)^{n}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} M_{1} \|\varphi(\cdot + iy_{1} + i\sin\theta_{1}, \dots, \cdot + iy_{n} + i\sin\theta_{n})\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})} \\ &\qquad \qquad \otimes d\theta_{1} \dots d\theta_{n} \\ &\leqslant \frac{\alpha!}{(2\pi)^{n}} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} M_{1} C_{0} e^{(c_{\varphi} + S_{g}(1))\sqrt{n}} \|\varphi(\cdot + iy)\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})} d\theta_{1} \dots d\theta_{n} \\ &= \alpha! M_{1} C_{0} e^{(c_{\varphi} + S_{g}(1))\sqrt{n}} \|\varphi(\cdot + iy)\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})}. \end{split}$$

Applying (3.5) with $\alpha = 0$ again, one gets

$$\begin{split} &\|(\partial^{\alpha}\varphi)(\cdot+iy)\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})} \\ &\leq \alpha! M_{1} C_{0}^{2} e^{(c_{\varphi}+S_{g}(1))\sqrt{n}} e^{(\kappa_{\varphi}(y/|y|)+S_{g}(|y|))|y|} \|\varphi\|_{L_{g^{\pm 1}}^{p}(\mathbb{R}^{n})}. \end{split}$$

Corollary 3.4. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3). Let $\varphi: \mathbb{C}^n \to \mathbb{C}$ be an entire function such that $\log |\varphi(z)| = O(|z|)$ for |z| large, $z \in \mathbb{C}^n$, and that the restriction of φ to \mathbb{R}^n belongs to $L^p_{g^{\pm 1}}(\mathbb{R}^n)$, $1 \le p \le \infty$. Then, for every multi-index $\alpha \in \mathbb{Z}^n_+$ and every $\varepsilon > 0$,

$$\|(\partial^{\alpha}\varphi)(\cdot+iy)\|_{L^{p}_{\varrho^{\pm 1}}(\mathbb{R}^{n})} \leq C_{\alpha,\varepsilon}e^{(\kappa_{\varphi}(y/|y|)+\varepsilon)|y|}\|\varphi\|_{L^{p}_{\varrho^{\pm 1}}(\mathbb{R}^{n})}, \quad y \in \mathbb{R}^{n}, \quad (3.9)$$

where κ_{φ} is defined by (3.6), and the constant $C_{\alpha,\varepsilon} \in (0,\infty)$ depends only on α , ε , and g.

Proof. It follows from (2.12) that, for every $\varepsilon > 0$, there exists some c_{ε} such that

$$S_g(|y|)|y| \le c_\varepsilon + \varepsilon |y|$$
 for all $y \in \mathbb{R}^n$.

Hence, (3.5) implies (3.9).

4. Main results

We will use the notation $\tilde{g}(x) := g(-x), x \in \mathbb{R}^n$. It follows from submultiplicativity of \tilde{g} that $L^1_{\tilde{g}}(\mathbb{R}^n)$ is a convolution algebra.

Taking y - x in place of y in (2.1) and rearranging, one gets

$$\frac{1}{g(x)} \leqslant \frac{g(y-x)}{g(y)}. (4.1)$$

Using (4.1), one can easily show that $f * u \in L^{\infty}_{g^{-1}}(\mathbb{R}^n)$ for every $f \in L^{\infty}_{g^{-1}}(\mathbb{R}^n)$ and $u \in L^{1}_{\tilde{g}}(\mathbb{R}^n)$. The Fubini-Tonelli theorem implies that

$$f * (v * u) = (f * v) * u \text{ for all } f \in L^{\infty}_{g^{-1}}(\mathbb{R}^n) \text{ and } v, u \in L^{1}_{\tilde{g}}(\mathbb{R}^n).$$
 (4.2)

Let $A_{\tilde{g}} := \{c\delta + g \mid c \in \mathbb{C}, g \in L^1_{\tilde{g}}(\mathbb{R}^n)\}$, where δ is the Dirac measure on \mathbb{R}^n . This is the algebra $L^1_{\tilde{g}}(\mathbb{R}^n)$ with a unit attached, cf. Rudin [24, 10.3 (d), 11.13 (e)]. Clearly, (4.2) holds for any $v, u \in A_{\tilde{g}}$.

Theorem 4.1. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3), $f \in L^{\infty}_{g^{-1}}(\mathbb{R}^n)$, and Y be a linear subspace of $L^1_{\widetilde{g}}(\mathbb{R}^n)$ such that

$$f * v = 0 \quad for \ every \ v \in Y. \tag{4.3}$$

Suppose the set

$$Z(Y) := \bigcap_{v \in Y} \{ \xi \in \mathbb{R}^n \mid \hat{v}(\xi) = 0 \}$$

is bounded, and $u \in L^1_{\tilde{g}}(\mathbb{R}^n)$ is such that $\hat{u} = 1$ in a neighbourhood of Z(Y). Then f = f * u. If $Z(Y) = \emptyset$, then f = 0.

Proof. In order to prove the equality f = f * u, it is sufficient to show that

$$\langle f, h \rangle = \langle f * u, h \rangle$$
 for every $h \in L_g^1(\mathbb{R}^n)$. (4.4)

Since the set of functions h with compactly supported Fourier transforms \hat{h} is dense in $L_g^1(\mathbb{R}^n)$, see [5, Theorem 1.52 and 2.11], it is enough to prove (4.4) for such h. Further,

$$\langle f, h \rangle = (f * \tilde{h})(0).$$

So, we have to show only that

$$f * w = f * u * w$$

for every $w \in L^1_{\widetilde{g}}(\mathbb{R}^n)$ with compactly supported Fourier transform \widehat{w} . Take any such w and choose R > 0 such that the support of \widehat{w} lies in $B_R := \{\xi \in \mathbb{R}^n : |\xi| \leq R\}$. It is clear that \widetilde{g} satisfies the Beurling–Domar condition. Then there exists $u_R \in L^1_{\widetilde{g}}(\mathbb{R}^n)$ such that $0 \leq \widehat{u_R} \leq 1$, $\widehat{u_R}(\xi) = 1$ for $|\xi| \leq R$, and $\widehat{u_R}(\xi) = 0$ for $|\xi| \geq R + 1$, see [5, Lemma 1.24].

If $Z(Y) \neq \emptyset$, let V be an open neighbourhood of Z(Y) such that $\hat{u} = 1$ in V. Similarly to the above, there exists $u_0 \in L^1_{\widetilde{g}}(\mathbb{R}^n)$ such that $0 \leq \widehat{u_0} \leq 1$, $\widehat{u_0} = 1$ in a neighbourhood $V_0 \subset V$ of Z(Y), and $\widehat{u_0} = 0$ outside V, see [5, Lemma 1.24]. If $Z(Y) = \emptyset$, one can take $u = u_0 = 0$ and $V_0 = \emptyset$ below.

Since Y is a linear subspace, for every $\eta \in B_{R+1} \setminus V_0 \subset \mathbb{R}^n \setminus Z(Y)$, there exists $v_{\eta} \in Y$ such that $\widehat{v_{\eta}}(\eta) = 1$. Since $v_{\eta} \in L^1(\mathbb{R}^n)$, $\widehat{v_{\eta}}$ is continuous, and there is a neighbourhood V_{η} of η such that $|\widehat{v_{\eta}}(\xi) - 1| < 1/2$ for all $\xi \in V_{\eta}$. Similarly to the above, there exists $u_{\eta} \in L^1_{\widetilde{g}}(\mathbb{R}^n)$ such that $\operatorname{Re}(\widehat{v_{\eta}}\widehat{u_{\eta}}) \geqslant 0$, and $\operatorname{Re}(\widehat{v_{\eta}}\widehat{u_{\eta}}) > \frac{1}{2}$ in a neighbourhood $V_{\eta}^0 \subset V_{\eta}$ of η .

Since $B_{R+1} \setminus V_0$ is compact, the open cover $\{V_{\eta}^0\}_{\eta \in B_{R+1} \setminus V_0}$ has a finite subcover. So, there exist functions $v_j \in Y$ and $u_j \in L^1_{\tilde{\varphi}}(\mathbb{R}^n), j = 1, \ldots, N$, such that

$$\operatorname{Re}(\sigma) > \frac{1}{2}$$
, where $\sigma := \widehat{u_0} + \sum_{i=1}^{N} \widehat{v_i} \widehat{u_i} + 1 - \widehat{u_R}$.

Then there exists $v \in A_{\tilde{g}}$ such that $\hat{v} = 1/\sigma$, see [5, Theorem 1.53]. Since $\hat{u_0}(1-\hat{u}) = 0$ and $(1-\hat{u_R})\hat{w} = 0$, one has

It now follows from (4.2) and (4.3) that

$$f * w = f * \left(u + \sum_{j=1}^{N} v_j * u_j * (v - v * u)\right) * w$$

$$= f * u * w + f * \left(\sum_{j=1}^{N} v_j * u_j * (v - v * u)\right) * w$$

$$= f * u * w + \sum_{j=1}^{N} (f * v_j) * u_j * (v - v * u) * w = f * u * w.$$

If $Z(Y) = \emptyset$, one can take u = 0, and the equality f = f * u means that f = 0.

For a bounded set $E \subset \mathbb{R}^n$, let conv(E) denote its closed convex hull, and H_E denote its support function:

$$H_E(y) := \sup_{\xi \in E} y \cdot \xi = \sup_{\xi \in \text{conv}(E)} y \cdot \xi, \quad y \in \mathbb{R}^n.$$

Clearly, H_E is positively homogeneous and convex: for all $x, y \in \mathbb{R}^n$ and $\tau \ge 0$, we have

$$H_E(\tau y) = \tau H_E(y), \quad H_E(y+x) \leqslant H_E(y) + H_E(x).$$

For every positively homogeneous convex function H,

$$K := \{ \xi \in \mathbb{R}^n \mid y \cdot \xi \leqslant H(y) \text{ for all } y \in \mathbb{R}^n \}$$
 (4.5)

is the unique convex compact set such that $H_K = H$, see, e.g., [15, Theorem 4.3.2].

Theorem 4.2. Let g, f, and Y satisfy the conditions of Theorem 4.1, and let

$$\mathcal{H}_Y(y) := H_{Z(Y)}(-y) = \sup_{\xi \in Z(Y)} (-y) \cdot \xi = -\inf_{\xi \in Z(Y)} y \cdot \xi, \quad y \in \mathbb{R}^n.$$

Then f admits analytic continuation to an entire function $f: \mathbb{C}^n \to \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}_+^n$,

$$\|(\partial^{\alpha} f)(\cdot + iy)\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})} \leq C_{\alpha} e^{\mathcal{H}_{Y}(y) + S_{g}(|y|)|y|} \|f\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})}, \quad y \in \mathbb{R}^{n}, \quad (4.6)$$

see (2.11), (2.12), where the constant $C_{\alpha} \in (0, \infty)$ depends only on α and g.

Proof. Take any $\varepsilon > 0$. There exists $u \in L^1_{\widetilde{g}}(\mathbb{R}^n)$ such that $\hat{u} = 1$ in a neighbourhood of Z(Y), and $\hat{u} = 0$ outside the $\frac{\varepsilon}{2}$ -neighbourhood of Z(Y), see [5, Lemma 1.24]. It follows from the Paley–Wiener–Schwartz theorem, see, e.g., [15, Theorem 7.3.1] that $u = \mathcal{F}^{-1}\hat{u}$ admits analytic continuation to an entire function $u: \mathbb{C}^n \to \mathbb{C}$ satisfying the estimate

$$|u(x+iy)| \le c_{\varepsilon} e^{\mathcal{H}_Y(y)+\varepsilon|y|/2}$$
 for all $x, y \in \mathbb{R}^n$

with some constant $c_{\varepsilon} \in (0, \infty)$. So, u satisfies the conditions of Corollary 3.4 with \tilde{g} in place of g, and

$$||u(\cdot+iy)||_{L^1_{\tilde{\varrho}}(\mathbb{R}^n)} \leq C_{0,\varepsilon/2} e^{\mathcal{H}_Y(y)+\varepsilon|y|} ||u||_{L^1_{\tilde{\varrho}}(\mathbb{R}^n)}, \quad y \in \mathbb{R}^n.$$

Since

$$f(x) = \int_{\mathbb{D}^n} u(x - s) f(s) \, ds,$$

see Theorem 4.1, f admits analytic continuation

$$f(x+iy) := \int_{\mathbb{R}^n} u(x+iy-s) f(s) ds,$$

see Corollary 3.4, and

$$\begin{split} \|f(\cdot + iy)\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^{n})} &\leq \|u(\cdot + iy)\|_{L^{1}_{\tilde{g}}(\mathbb{R}^{n})} \|f\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^{n})} \\ &\leq C_{0,\varepsilon/2} e^{\mathcal{H}_{Y}(y) + \varepsilon|y|} \|u\|_{L^{1}_{\tilde{g}}(\mathbb{R}^{n})} \|f\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^{n})} \\ &=: M_{\varepsilon} e^{\mathcal{H}_{Y}(y) + \varepsilon|y|} \|f\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^{n})}, \end{split}$$

see (4.1). Since

$$\frac{|f(x+iy)|}{g(x)} \leq M_{\varepsilon} e^{\mathcal{H}_{Y}(y)+\varepsilon|y|} ||f||_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})},$$

one has $\log |f(x+iy)| = O(|x+iy|)$ for |x+iy| large, see (2.2), and

$$\limsup_{0 < t \to \infty} \frac{\log |f(x + it\omega)|}{t} \leq \limsup_{0 < t \to \infty} \frac{\log (M_{\varepsilon}g(x)||f||_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})}) + t\mathcal{H}_{Y}(\omega) + \varepsilon t}{t}$$

$$= \mathcal{H}_{Y}(\omega) + \varepsilon.$$

Hence,

$$\kappa_f(\omega) := \sup_{x \in \mathbb{R}^n} \left(\limsup_{0 < t \to \infty} \frac{\log |f(x + it\omega)|}{t} \right) \leqslant \mathcal{H}_Y(\omega) + \varepsilon$$

for every $\varepsilon > 0$, i.e.,

$$\kappa_f(\omega) \leqslant \mathcal{H}_Y(\omega).$$

So, (4.6) follows from Theorem 3.3.

Theorem 4.3. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3), and let $m \in C(\mathbb{R}^n)$ be such that the Fourier multiplier operator

$$C_c^{\infty}(\mathbb{R}^n) \ni \varphi \mapsto \widetilde{m}(D)\varphi := \mathcal{F}^{-1}(\widetilde{m}\hat{\varphi})$$

maps $C_c^{\infty}(\mathbb{R}^n)$ into $L_g^1(\mathbb{R}^n)$. Suppose $f \in L_{g^{-1}}^{\infty}(\mathbb{R}^n)$ is such that m(D)f = 0 as a distribution, i.e.,

$$\langle f, \widetilde{m}(D)\varphi \rangle = 0 \quad \text{for all } \varphi \in C_c^{\infty}(\mathbb{R}^n).$$
 (4.7)

If $K := \{ \eta \in \mathbb{R}^n \mid m(\eta) = 0 \}$ is compact, then f admits analytic continuation to an entire function $f : \mathbb{C}^n \to \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}^n_+$,

$$\|(\partial^{\alpha} f)(\cdot + iy)\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})} \leq C_{\alpha} e^{H(y) + S_{g}(|y|)|y|} \|f\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})}, \quad y \in \mathbb{R}^{n}, \quad (4.8)$$

see (2.11), (2.12), where $H(y) := H_K(-y)$, and the constant $C_\alpha \in (0, \infty)$ depends only on α and g.

Conversely, if every $f \in L^{\infty}(\mathbb{R}^n)$ satisfying (4.7) admits analytic continuation to an entire function $f: \mathbb{C}^n \to \mathbb{C}$ such that

$$||f(\cdot + iy)||_{L^{\infty}_{g^{-1}}(\mathbb{R}^n)} \leq M_{\varepsilon}e^{H(y) + \varepsilon|y|}||f||_{L^{\infty}_{g^{-1}}(\mathbb{R}^n)}, \quad y \in \mathbb{R}^n,$$
(4.9)

holds for every $\varepsilon > 0$ with a constant $M_{\varepsilon} \in (0, \infty)$ that depends only on ε , m, and g, then $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\} \subseteq K$, where K is the unique convex compact set such that $H_K(y) = H(-y)$; cf. (4.5).

Proof. Denote by $(T_{\upsilon}\varphi)(x) := \varphi(x - \upsilon)$, $x, \upsilon \in \mathbb{R}^n$ the shift by υ . Since $T_{\upsilon}\varphi \in C_c^{\infty}(\mathbb{R}^n)$ for every $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ and all $\upsilon \in \mathbb{R}^n$, it follows from (4.7) that

$$(f * \widetilde{m}(D)\varphi)(\upsilon) = \langle f, T_{\upsilon}\widetilde{m}(D)\varphi \rangle = \langle f, \widetilde{m}(D)(T_{\upsilon}\varphi) \rangle = 0$$
 for all $\upsilon \in \mathbb{R}^n$.

Hence,

$$f * \widetilde{\widetilde{m}(D)\varphi} = 0$$
 for all $\varphi \in C_c^{\infty}(\mathbb{R}^n)$.

It is easy to see that

$$\bigcap_{\varphi \in C_c^{\infty}(\mathbb{R}^n)} \{ \eta \in \mathbb{R}^n \mid \widehat{\widetilde{m}(D)\varphi}(\eta) = 0 \} = \bigcap_{\varphi \in C_c^{\infty}(\mathbb{R}^n)} \{ \eta \in \mathbb{R}^n \mid \widehat{\widetilde{m}(D)\varphi}(-\eta) = 0 \}
= \bigcap_{\varphi \in C_c^{\infty}(\mathbb{R}^n)} \{ \eta \in \mathbb{R}^n \mid m(\eta)\widehat{\varphi}(-\eta) = 0 \}
= \{ \eta \in \mathbb{R}^n \mid m(\eta) = 0 \} = K.$$

Applying Theorem 4.2 with

$$Y:=\{\widetilde{\widetilde{m}(D)\varphi}\mid \varphi\in C_c^\infty(\mathbb{R}^n)\}\subset L^1_{\widetilde{g}}(\mathbb{R}^n)$$

and Z(Y) = K, one gets (4.8).

For the converse direction, we assume the contrary, that is, that the zero-set $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\}$ contains some $\gamma \notin K$, see (4.5). Then there exists a $y_0 \in \mathbb{R}^n \setminus \{0\}$ such that $y_0 \cdot \gamma > H_K(y_0) = H(-y_0)$. It is easy to see that $f(x) := e^{ix \cdot \gamma}$ satisfies $m(D)e^{ix \cdot \gamma} = e^{ix \cdot \gamma}m(\gamma) = 0$ for all $x \in \mathbb{R}^n$. Take $\varepsilon < (y_0 \cdot \gamma - H(-y_0))/|y_0|$. Clearly,

 $f \in L^{\infty}(\mathbb{R}^n)$, and

$$\frac{\|f(\cdot-i\tau y_0)\|_{L^\infty_{g^{-1}}(\mathbb{R}^n)}}{e^{H(-\tau y_0)+\varepsilon|\tau y_0|}\|f\|_{L^\infty_{g^{-1}}(\mathbb{R}^n)}}=\frac{e^{\tau(y_0\cdot\gamma)}}{e^{\tau(H(-y_0)+\varepsilon|y_0|)}}=e^{\tau(y_0\cdot\gamma-H(-y_0)-\varepsilon|y_0|)}\xrightarrow[\tau\to\infty]{}\infty.$$

So, f does not satisfy (4.9).

Corollary 4.4. Let $g: \mathbb{R}^n \to [1, \infty)$ be a locally bounded, measurable submultiplicative function satisfying the Beurling–Domar condition (2.3) and let $m \in C(\mathbb{R}^n)$ be such that the Fourier multiplier operator

$$C_c^{\infty}(\mathbb{R}^n) \ni \varphi \mapsto \widetilde{m}(D)\varphi := \mathcal{F}^{-1}(\widetilde{m}\widehat{\varphi})$$

maps $C_c^{\infty}(\mathbb{R}^n)$ into $L_g^1(\mathbb{R}^n)$. Suppose $f \in L_{g^{-1}}^{\infty}(\mathbb{R}^n)$ is such that m(D) f = 0 as a distribution, i.e., (4.7) holds. If $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\} = \{0\}$, then f admits analytic continuation to an entire function $f: \mathbb{C}^n \to \mathbb{C}$ such that for every multi-index $\alpha \in \mathbb{Z}_+^n$,

$$\|(\partial^{\alpha} f)(\cdot + iy)\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})} \leq C_{\alpha} e^{S_{g}(|y|)|y|} \|f\|_{L_{g^{-1}}^{\infty}(\mathbb{R}^{n})}, \quad y \in \mathbb{R}^{n}, \tag{4.10}$$

where the constant $C_{\alpha} \in (0, \infty)$ depends only on α and g. If $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\} = \emptyset$, then f = 0.

Conversely, if every $f \in L^{\infty}(\mathbb{R}^n)$ satisfying (4.7) admits analytic continuation to an entire function $f: \mathbb{C}^n \to \mathbb{C}$ such that

$$||f(\cdot + iy)||_{L^{\infty}_{g^{-1}}(\mathbb{R}^n)} \le M_{\varepsilon} e^{\varepsilon |y|} ||f||_{L^{\infty}_{g^{-1}}(\mathbb{R}^n)}, \quad y \in \mathbb{R}^n,$$

holds for every $\varepsilon > 0$ with a constant $M_{\varepsilon} \in (0, \infty)$ that depends only on ε , m, and g, then $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\} \subseteq \{0\}$.

Proof. The only part that does not follow immediately from Theorem 4.3 is that f = 0 in the case $\{\eta \in \mathbb{R}^n \mid m(\eta) = 0\} = \emptyset$. In this case, one can take the same Y as in the proof of Theorem 4.3, note that $Z(Y) = \emptyset$ and apply Theorem 4.1 to conclude that f = 0. (It is instructive to compare this result to [18, Proposition 2.2].)

Remark 4.5. The condition that $\widetilde{m}(D)$ maps $C_c^{\infty}(\mathbb{R}^n)$ to $L_g^1(\mathbb{R}^n)$ is satisfied if m is a linear combination of terms of the form ab, where $a = F\mu$, μ is a finite complex Borel measure on \mathbb{R}^n such that

$$\int_{\mathbb{R}^n} \tilde{g}(y) |\mu|(dy) < \infty,$$

and b is the Fourier transform of a compactly supported distribution. Indeed, it is easy to see that $\tilde{b}(D)$ maps $C_c^{\infty}(\mathbb{R}^n)$ into itself, while the convolution operator $\varphi \mapsto \tilde{\mu} * \varphi$ maps $C_c^{\infty}(\mathbb{R}^n)$ to $L_g^1(\mathbb{R}^n)$.

A particular example is the characteristic exponent of a Lévy process (this is a stochastic process with stationary and independent increments, such that the trajectories are right-continuous with finite left limits, see, e.g., Sato [25])

$$m(\xi) = -ib \cdot \xi + \frac{1}{2} \xi \cdot Q \xi + \int_{0 < |y| < 1} (1 - e^{iy \cdot \xi} + iy \cdot \xi) \nu(dy) + \int_{|y| \ge 1} (1 - e^{iy \cdot \xi}) \nu(dy),$$

where $b \in \mathbb{R}^n$, $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix, and ν is a measure on $\mathbb{R}^n \setminus \{0\}$ such that $\int_{0<|y|<1} |y|^2 \nu(dy) + \int_{|y|\geqslant 1} g(y) \, \nu(dy) < \infty$. More generally, one can take

$$m(\xi) = \sum_{|\alpha|=0}^{2s} c_{\alpha} \frac{i^{|\alpha|}}{\alpha!} \xi^{\alpha} + \int_{0 < |y| < 1} \left[1 - e^{iy \cdot \xi} + \sum_{|\alpha|=0}^{2s-1} \frac{i^{|\alpha|}}{\alpha!} y^{\alpha} \xi^{\alpha} \right] \nu(dy)$$
$$+ \int_{|y| \ge 1} (1 - e^{iy \cdot \xi}) \nu(dy)$$

with $s \in \mathbb{N}$, $c_{\alpha} \in \mathbb{R}$, and a measure ν on $\mathbb{R}^n \setminus \{0\}$ such that $\int_{0<|y|<1} |y|^{2s} \nu(dy) + \int_{|y|\geqslant 1} g(y)\nu(dy) < \infty$. (As usual, for any $\alpha \in \mathbb{N}_0^n$ and $\xi \in \mathbb{R}^n$, we define $\alpha! := \prod_{1}^n \alpha_k!$ and $\xi^{\alpha} := \prod_{1}^n \xi_k^{\alpha_k}$.) Functions of this type appear naturally in positivity questions related to generalised functions (see, e.g., [9, Chapter II, Section 4] or [28, Chapter 8]). Some authors call the function -m for such an m (under suitable additional conditions on the c_{α} 's) a *conditionally positive definite function*.

Remark 4.6. We are mostly interested in super-polynomially growing weights as polynomially growing ones have been dealt with in our previous paper [3]. Nevertheless, it is instructive to look at the behaviour of the factor $e^{S_g(|y|)|y|}$ for typical super-polynomially, polynomially, and sub-polynomially growing weights.

It follows from (2.17) that if $g(x) = e^{|x|/\log^{\gamma}(e+|x|)}$, $\gamma > 1$, then there exists a constant C_{γ} such that

$$\begin{split} e^{S_g(|y|)|y|} & \leq C_{\gamma} e^{\frac{1}{\pi}|y|\log^{-\gamma}(e+|y|)(1+\frac{2}{\gamma-1}\log(e+|y|))} \\ & = C_{\gamma} (e^{|y|/\log^{\gamma}(e+|y|)})^{\frac{1}{\pi}(1+\frac{2}{\gamma-1}\log(e+|y|))} \\ & = C_{\gamma} (g(y))^{\frac{1}{\pi}(1+\frac{2}{\gamma-1}\log(e+|y|))}. \end{split}$$

Similarly, if $g(x) = e^{a|x|^b}$, $a \ge 0$, $b \in [0, 1)$, then (2.16) implies

$$e^{S_g(|y|)|y|} = e^{a|y|^b(\sin(\frac{1-b}{2}\pi))^{-1}} = (g(y))^{(\sin(\frac{1-b}{2}\pi))^{-1}}.$$
 (4.11)

If $g(x) = (1 + |x|)^s$, $s \ge 0$, then (2.14) implies

$$e^{S_g(|y|)|y|} \le e^{c_1 s + s \log(1+|y|)} = C_s(1+|y|)^s = C_s g(y).$$
 (4.12)

Finally, if $g(x) = (\log(e + |x|))^t$, $t \ge 0$, then (2.15) implies

$$e^{S_g(|y|)|y|} \le e^{c_2t+t\log\log(e+|y|)} = C_t(\log(e+|y|))^t = C_tg(y).$$

Remark 4.7. If g is polynomially bounded in Corollary 4.4, then it follows from (4.10) and (4.12) that f is a polynomially bounded entire function on \mathbb{C}^n , hence a polynomial, see, e.g., [21, Corollary 1.7]. The fact that f is a polynomial in this case was established in [3, 12].

Remark 4.8. Let n = 2, $g(x) := (1 + |x|)^k$, $k \in \mathbb{N}$, $f(x_1, x_2) := (x_1 + ix_2)^k$ (or $f(x_1, x_2) := (x_1 + ix_2)^k + (x_1 - ix_2)^k$ if one prefers to have a real-valued f). Then $f \in L^{\infty}_{g^{-1}}(\mathbb{R}^2)$, $\Delta f = 0$, $f(x + iy_1\mathbf{e}_1) = (x_1 + iy_1 + ix_2)^k$ for any $y_1 \in \mathbb{R}$, see (2.6), and

$$\frac{\|f(\cdot + iy_1\mathbf{e}_1)\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^2)}}{g(y_1\mathbf{e}_1)} \geqslant \frac{|y_1|^k}{(1 + |y_1|)^k} \xrightarrow[|y_1| \to \infty]{} 1 = \|f\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^2)}.$$

So, the factor $e^{S_g(|y|)|y|} \le C_k g(y)$, see (4.12), is optimal in (4.10) in this case.

The case $g(x) = e^{a|x|^b}$, a > 0, $b \in [0, 1)$, is perhaps more interesting. Let us take $b = \frac{1}{2}$. Then it follows from (4.11) that $e^{S_g(|y|)|y|} = (g(y))^{\sqrt{2}}$. Let us show that one cannot replace this factor in (4.10) with $(g(y))^{\sqrt{2}(1-\varepsilon)}$, $\varepsilon > 0$. Take any $\varepsilon > 0$. Since

$$\sqrt[4]{1+\tau^2}\cos\left(\frac{1}{2}\arctan\frac{1}{\tau}\right)\xrightarrow[\tau\to 0,\ \tau>0]{}\frac{1}{\sqrt{2}}$$

there exists some $\tau_{\varepsilon} > 0$ such that

$$\sqrt[4]{1+\tau_{\varepsilon}^2}\cos\left(\frac{1}{2}\arctan\frac{1}{\tau_{\varepsilon}}\right) \leqslant \frac{1+\varepsilon}{\sqrt{2}}.$$

Let us estimate Re $\sqrt{x_1 + i\kappa x_2}$, where $x = (x_1, x_2) \in \mathbb{R}^2$, $\kappa > 0$ is a constant to be chosen later, and $\sqrt{\cdot}$ is the branch of the square root that is analytic in $\mathbb{C} \setminus (-\infty, 0]$ and positive on $(0, +\infty)$. If $x_1 \ge \tau_{\varepsilon} \kappa |x_2|$, then

$$\begin{aligned} \operatorname{Re} \sqrt{x_1 + i\kappa x_2} & \leq |\sqrt{x_1 + i\kappa x_2}| = \sqrt[4]{x_1^2 + \kappa^2 x_2^2} \\ & \leq \sqrt[4]{\left(1 + \frac{1}{\tau_{\varepsilon}^2}\right) x_1^2} \leq \left(1 + \frac{1}{\tau_{\varepsilon}^2}\right)^{1/4} \sqrt{x_1} \leq \left(1 + \frac{1}{\tau_{\varepsilon}^2}\right)^{1/4} \sqrt{|x|}. \end{aligned}$$

If $0 < x_1 < \tau_{\varepsilon} \kappa |x_2|$, then

$$\begin{aligned} \operatorname{Re} \sqrt{x_1 + i\kappa x_2} &= |\sqrt{x_1 + i\kappa x_2}| \cos\left(\frac{1}{2}\arctan\frac{\kappa|x_2|}{x_1}\right) \\ &\leq |\sqrt{\tau_{\varepsilon}\kappa|x_2| + i\kappa x_2}| \cos\left(\frac{1}{2}\arctan\frac{1}{\tau_{\varepsilon}}\right) \\ &= \kappa^{1/2}|x_2|^{1/2} \sqrt[4]{1 + \tau_{\varepsilon}^2} \cos\left(\frac{1}{2}\arctan\frac{1}{\tau_{\varepsilon}}\right) \\ &\leq \frac{1 + \varepsilon}{\sqrt{2}} \kappa^{1/2}|x|^{1/2}. \end{aligned}$$

Now, take $\kappa_{\varepsilon} \geqslant 1$ such that

$$\frac{1+\varepsilon}{\sqrt{2}}\kappa_{\varepsilon}^{1/2} \geqslant \left(1+\frac{1}{\tau_{\varepsilon}^2}\right)^{1/4}.$$

Then

$$\operatorname{Re}\sqrt{x_1 + i\kappa_{\varepsilon}x_2} \leqslant \frac{1 + \varepsilon}{\sqrt{2}}\kappa_{\varepsilon}^{1/2}|x|^{1/2} \tag{4.13}$$

for $x_1 > 0$. If $x_1 \le 0$, then the argument of $\sqrt{x_1 + i\kappa_{\varepsilon}x_2}$ belongs to $[\pi/4, \pi/2]$, respectively $[-\pi/2, -\pi/4]$, depending on the sign of x_2 . Hence,

$$\operatorname{Re} \sqrt{x_1 + i\kappa_{\varepsilon} x_2} \leqslant |\sqrt{x_1 + i\kappa_{\varepsilon} x_2}| \cos \frac{\pi}{4} \leqslant \frac{1}{\sqrt{2}} \kappa_{\varepsilon}^{1/2} |x|^{1/2},$$

and (4.13) holds for all $x = (x_1, x_2) \in \mathbb{R}^2$.

Since the Taylor series of $\cos w$ contains only even powers of w, $\cos(i\sqrt{z})$ is an analytic function of $z \in \mathbb{C}$. So, $\cos(i\sqrt{x_1+ix_2})$ is a harmonic function of the variable $x=(x_1,x_2)\in\mathbb{R}^2$. Hence, $f(x_1,x_2):=\cos(i\sqrt{x_1+i\kappa_\varepsilon x_2})$ is a solution of the elliptic partial differential equation

$$\left(\partial_{x_1}^2 + \frac{1}{\kappa_2^2} \partial_{x_2}^2\right) f(x_1, x_2) = 0.$$

It follows from (4.13) that

$$|f(x_1,x_2)| \leq \frac{1}{2} (1 + e^{\operatorname{Re} \sqrt{x_1 + i\kappa_{\varepsilon} x_2}}) \leq e^{\frac{1+\varepsilon}{\sqrt{2}} \kappa_{\varepsilon}^{1/2} |x|^{1/2}}.$$

So, $f \in L^{\infty}_{g^{-1}}(\mathbb{R}^2)$, where $g(x) = e^{a|x|^{1/2}}$ with $a = \frac{1+\varepsilon}{\sqrt{2}}\kappa_{\varepsilon}^{1/2}$. Clearly, the analytic continuation of f to \mathbb{C}^2 is given by the formula

$$f(x_1 + iy_1, x_2 + iy_2) = \cos(i\sqrt{x_1 + iy_1 + i\kappa_{\varepsilon}(x_2 + iy_2)}).$$

Finally, see (2.6), letting $(-\infty, 0) \ni y_2 \to -\infty$, we arrive at

$$\frac{\|f(\cdot + iy_2\mathbf{e}_2)\|_{L^{\infty}_{g^{-1}}(\mathbb{R}^2)}}{(g(y_2\mathbf{e}_2))^{\sqrt{2}(1-\varepsilon)}} \geqslant \frac{|f(0 + iy_2\mathbf{e}_2)|}{g(0)(g(y_2\mathbf{e}_2))^{\sqrt{2}(1-\varepsilon)}} = \frac{|\cos(i\sqrt{-\kappa_{\varepsilon}y_2})|}{e^{\sqrt{2}(1-\varepsilon)\frac{1+\varepsilon}{\sqrt{2}}\kappa_{\varepsilon}^{1/2}|y_2|^{1/2}}}
\geqslant \frac{e^{\kappa_{\varepsilon}^{1/2}|y_2|^{1/2}}}{2e^{(1-\varepsilon^2)\kappa_{\varepsilon}^{1/2}|y_2|^{1/2}}} = \frac{1}{2}e^{\varepsilon^2\kappa_{\varepsilon}^{1/2}|y_2|^{1/2}} \xrightarrow{y_2 \to -\infty} \infty.$$

5. Concluding remarks

Corollary 4.4 shows that sub-exponentially growing solutions of m(D) f = 0 admit analytic continuation to entire functions on \mathbb{C}^n . It is well known that no growth restrictions are necessary in the case when m(D) is an elliptic partial differential operator with constant coefficients, and every solution of m(D) f = 0 in \mathbb{R}^n admits analytic continuation to an entire function on \mathbb{C}^n , see [6, 23].

Remark 5.1. The latter result has a local version similar to Hayman's theorem on harmonic functions, see [13, Theorem 1]: for every elliptic partial differential operator m(D) with constant coefficients there exists a constant $c_m \in (0, 1)$ such that every solution of m(D) f = 0 in the ball $\{x \in \mathbb{R}^n : |x| < R\}$ of any radius R > 0 admits continuation to an analytic function in the ball $\{x \in \mathbb{C}^n : |x| < c_m R\}$. Indeed, let $m_0(D) = \sum_{|\alpha|=N} a_\alpha D^\alpha$ be the principal part of $m(D) = \sum_{|\alpha| \le N} a_\alpha D^\alpha$. There exists $C_m > 0$ such that

$$\sum_{|\alpha|=N} a_{\alpha}(a+ib)^{\alpha} = 0, \quad a,b \in \mathbb{R}^n \implies |a| \geqslant C_m|b|,$$

see, for example, [27, Section 7]. Then the same argument as in the proof of [19, Corollary 8.2] shows that f admits continuation to an analytic function in the ball $\{x \in \mathbb{C}^n : |x| < (1 + C_m^{-2})^{-1/2} R\}$. Note that in the case of the Laplacian, one can take $C_m = 1$ and $c_m = (1 + C_m^{-2})^{-1/2} = \frac{1}{\sqrt{2}}$, which is the optimal constant for harmonic functions, see [13].

Let us return to equations in \mathbb{R}^n . Below, $m(\xi)$ will always denote a polynomial with $\{\xi \in \mathbb{R}^n \mid m(\xi) = 0\} \subseteq \{0\}$. For non-elliptic partial differential operators m(D), one needs to place growth restrictions on solutions of m(D)f = 0 to make sure that they admit analytic continuation to entire functions on \mathbb{C}^n .

We say that a function f defined on \mathbb{R}^n (or \mathbb{C}^n) is of *infra-exponential* growth, if for every $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

$$|f(z)| \le C_{\varepsilon} e^{\varepsilon |z|}$$
 for all $z \in \mathbb{R}^n$ $(z \in \mathbb{C}^n)$.

Let $\mu:[0,\infty)\to[0,\infty)$ be an increasing function, which increases to infinity and satisfies

$$\mu(t) \leqslant At + B, \quad t \geqslant 0$$

for some A, B > 0, and

$$\int_{1}^{\infty} \frac{\mu(t)}{t^2} dt < \infty. \tag{5.1}$$

Suppose $\{\xi \in \mathbb{R}^n \mid m(\xi) = 0\} = \{0\}$. Then, under additional restrictions on μ , every solution f of m(D) f = 0 that has growth $O(e^{\varepsilon \mu(|x|)})$ for every $\varepsilon > 0$ admits analytic continuation to an entire function of infra-exponential growth on \mathbb{C}^n see [18]. It is easy to see that (5.1) is equivalent to the Beurling–Domar condition (2.3) for the function $g(x) := e^{\varepsilon \mu(|x|)}$.

One cannot replace $O(e^{\varepsilon \mu(|x|)})$ with $O(e^{\varepsilon |x|})$ in the above result without placing a restriction on the complex zeros of m. If there exists $\delta > 0$ such that $m(\zeta)$ has no complex zeros in

$$|\operatorname{Im} \zeta| < \delta, \quad |\operatorname{Re} \zeta| > \delta^{-1},$$
 (5.2)

then every solution of m(D) f = 0 that, together with its partial derivatives up to the order of m(D), is of infra-exponential growth on \mathbb{R}^n , admits analytic continuation to an entire function of infra-exponential growth on \mathbb{C}^n , see [17, 18].

On the other hand, if for every $\delta > 0$, (5.2) contains complex zeros of $m(\zeta)$, then m(D) f = 0 has a solution in C^{∞} all of whose derivatives are of infra-exponential growth on \mathbb{R}^n , but which is not entire infra-exponential in \mathbb{C}^n . The proof of the latter result in [17, 18] is not constructive, and the author writes: "Unfortunately we cannot present concrete examples of such solutions." However, it is not difficult to construct, for any $\varepsilon > 0$, a solution in C^{∞} all of whose derivatives have growth $O(e^{\varepsilon|x|})$, but which is not real-analytic. Indeed, according to the assumption, there exist complex zeros

$$\zeta_k = \xi_k + i\eta_k, \quad \xi_k, \eta_k \in \mathbb{R}^n, \quad k \in \mathbb{N}$$

of $m(\zeta)$ such that

$$|\eta_k| < k^{-1}, \quad |\xi_k| > k.$$
 (5.3)

Choosing a subsequence, we can assume that $\omega_k := |\xi_k|^{-1} \xi_k$ converge to a point $\omega_0 \in \mathbb{S}^{n-1} := \{ \xi \in \mathbb{R}^n : |\xi| = 1 \}$ as $k \to \infty$, and that $|\omega_k - \omega_0| < 1$ for all $k \in \mathbb{N}$. Then

$$\omega_k \cdot \omega_0 = \frac{|\omega_k|^2 + |\omega_0|^2 - |\omega_k - \omega_0|^2}{2} > \frac{1 + 1 - 1}{2} = \frac{1}{2}, \quad k \in \mathbb{N}.$$
 (5.4)

Consider

$$f(x) := \sum_{k > \varepsilon^{-1}} \frac{e^{i\xi_k \cdot x}}{e^{|\xi_k|^{1/2}}} = \sum_{k > \varepsilon^{-1}} \frac{e^{i\xi_k \cdot x - \eta_k \cdot x}}{e^{|\xi_k|^{1/2}}}, \quad x \in \mathbb{R}^n.$$
 (5.5)

Then, for every multi-index α and every $x \in \mathbb{R}^n$,

$$\begin{aligned} |\partial^{\alpha} f(x)| &= \Big| \sum_{k > \varepsilon^{-1}} \frac{(i\zeta_{k})^{\alpha} e^{i\zeta_{k} \cdot x}}{e^{|\xi_{k}|^{1/2}}} \Big| \leqslant \sum_{k > \varepsilon^{-1}} \frac{(|\xi_{k}| + 1)^{|\alpha|} e^{|\eta_{k}||x|}}{e^{|\xi_{k}|^{1/2}}} \\ &\leqslant e^{\varepsilon |x|} \sum_{k > \varepsilon^{-1}} \frac{(|\xi_{k}| + 1)^{|\alpha|}}{e^{|\xi_{k}|^{1/2}}} =: C_{\alpha} e^{\varepsilon |x|}, \end{aligned}$$

see (5.3). Further,

$$m(D) f(x) = \sum_{k > e^{-1}} \frac{m(\zeta_k) e^{i\zeta_k \cdot x}}{e^{|\xi_k|^{1/2}}} = 0.$$

On the other hand, f is not real-analytic. Before we prove this, note that formally putting $x - it\omega_0$, t > 0 in place of x in the right-hand side of (5.5), one gets a divergent series. Indeed, its terms can be estimated as follows:

$$\left|\frac{e^{i\xi_k\cdot x + t\xi_k\cdot \omega_0 - \eta_k\cdot x + it\eta_k\cdot \omega_0}}{e^{|\xi_k|^{1/2}}}\right| = \frac{e^{t|\xi_k|\omega_k\cdot \omega_0 - \eta_k\cdot x}}{e^{|\xi_k|^{1/2}}} \geqslant e^{-\varepsilon|x|}\frac{e^{t|\xi_k|/2}}{e^{|\xi_k|^{1/2}}} \to \infty$$

as $k \to \infty$, see (5.3), (5.4).

For any $j > \varepsilon^{-1}$, there exists $\ell_i \in \mathbb{N}$ such that

$$\ell_j \le |\xi_j|^{1/2} < \ell_j + 1. \tag{5.6}$$

It is clear that $\ell_j \to \infty$ as $j \to \infty$, see (5.3). Note that

$$|\arg(\omega_0 \cdot \zeta_k)| \le \frac{|\omega_0 \cdot \eta_k|}{|\omega_0 \cdot \xi_k|} \le \frac{2}{k|\xi_k|}.$$

If $|\xi_k| \ge 6\ell_j/\pi k$, then

$$|\arg(\omega_0\cdot\zeta_k)^{\ell_j}| \leqslant \frac{2\ell_j}{k|\xi_k|} \leqslant \frac{\pi}{3},$$

and

$$\operatorname{Re}(\omega_0 \cdot \zeta_k)^{\ell_j} \geqslant \frac{1}{2} |\omega_0 \cdot \zeta_k|^{\ell_j} \geqslant \frac{1}{2^{\ell_j + 1}} |\xi_k|^{\ell_j}.$$

Clearly, $|\xi_j| \ge \frac{6\ell_j}{\pi j}$ for sufficiently large j, see (5.6). Hence, one has the following estimate for the directional derivative ∂_{ω_0} :

$$\begin{split} |((-i\,\partial_{\omega_0})^{\ell_j}\,f)(0)| &\geqslant \sum_{k>\varepsilon^{-1}} \frac{\mathrm{Re}(\omega_0 \cdot \zeta_k)^{\ell_j}}{e^{|\xi_k|^{1/2}}} \\ &\geqslant -\sum_{k>\varepsilon^{-1}, \; |\xi_k| < \frac{6\ell_j}{\pi k}} \frac{|\zeta_k|^{\ell_j}}{e^{|\xi_k|^{1/2}}} + \sum_{k>\varepsilon^{-1}, \; |\xi_k| \geqslant \frac{6\ell_j}{\pi k}} \frac{|\xi_k|^{\ell_j}}{2^{\ell_j+1}e^{|\xi_k|^{1/2}}} \\ &\geqslant -\sum_{k>\varepsilon^{-1}, \; |\xi_k| < \frac{6\ell_j}{\pi k}} \frac{(|\xi_k| + \frac{1}{k})^{\ell_j}}{e^{|\xi_k|^{1/2}}} + \frac{|\xi_j|^{\ell_j}}{2^{\ell_j+1}e^{|\xi_j|^{1/2}}} \\ &\geqslant -\sum_{k>\varepsilon^{-1}, \; |\xi_k| < \frac{6\ell_j}{\pi k}} \frac{1}{e^{|\xi_k|^{1/2}}} \left(\frac{10\ell_j}{\pi k}\right)^{\ell_j} + \frac{\ell_j^{2\ell_j}}{2^{\ell_j+1}e^{(\ell_j^2+1)^{1/2}}} \\ &\geqslant -(10\ell_j)^{\ell_j} \sum_{k=1}^{\infty} \frac{1}{e^{|\xi_k|^{1/2}}k^2} + \frac{\ell_j^{2\ell_j}}{2^{\ell_j+1}e^{\ell_j+1}} \\ &= -C(10\ell_j)^{\ell_j} + (2e)^{-(\ell_j+1)}\ell_j^{2\ell_j}. \end{split}$$

Hence,

$$|((-i\,\partial_{\omega_0})^{\ell_j}\,f)(0)| \geqslant \ell_j^{\frac{3}{2\ell_j}}$$

for all sufficiently large j, which means that f is not real-analytic in a neighbourhood of 0.

The operator m(D) in the previous example is not hypoelliptic. If m(D) is hypoelliptic, then every solution of m(D) f = 0, such that $|f(x)| \le Ae^{a|x|}$, $x \in \mathbb{R}^n$, for some constants A, a > 0, admits analytic continuation to an entire function of order one on \mathbb{C}^n , see [11, Section 4, Corollary 2]. For elliptic operators, this result can be strengthened: every solution of m(D) f = 0, such that $|f(x)| \le Ae^{a|x|^{\beta}}$, $x \in \mathbb{R}^n$, for $\beta \ge 1$ and some constants A, a > 0, admits analytic continuation to an entire function of order β on \mathbb{C}^n , see [11, Section 4, Corollary 3]. Let us show that for every $\beta > 1$ there exists a semi-elliptic operator m(D), see [16, Theorem 11.1.11], and a C^{∞} solution of m(D) f = 0, all of whose derivatives have growth $O(e^{a|x|^{\beta}})$, but which does not admit analytic continuation to an entire function on \mathbb{C}^n .

A simple example of such a semi-elliptic operator is $\partial_{x_1}^2 + \partial_{x_2}^{4\ell+2}$ with $\ell \in \mathbb{N}$ satisfying $1 + \frac{1}{2\ell} \leq \beta$, i.e., $\ell \geq \frac{1}{2(\beta-1)}$.

Let

$$f(x_1, x_2) := \sum_{k=1}^{\infty} \frac{e^{-ik^{2\ell+1}x_1 + kx_2}}{e^{k^{2\ell+1}}}, \quad (x_1, x_2) \in \mathbb{R}^2.$$

If $x_2 > 0$, then the function $t \mapsto tx_2 - t^{2\ell+1}$ achieves a maximum at $t = (\frac{x_2}{2\ell+1})^{\frac{1}{2\ell}}$, and this maximum is equal to

$$2\ell \left(\frac{1}{2\ell+1}\right)^{1+\frac{1}{2\ell}} x_2^{1+\frac{1}{2\ell}} =: c_{\ell} x_2^{1+\frac{1}{2\ell}}.$$

Hence, for every multi-index α ,

$$\begin{split} |\partial^{\alpha}f(x_{1},x_{2})| &\leqslant \sum_{k=1}^{\infty}k^{(2\ell+1)|\alpha|}e^{kx_{2}-k^{2\ell+1}} \\ &= \sum_{k=1}^{[x_{2}^{\frac{1}{2\ell}}]+1}k^{(2\ell+1)|\alpha|}e^{kx_{2}-k^{2\ell+1}} + \sum_{k=[x_{2}^{\frac{1}{2\ell}}]+2}^{\infty}k^{(2\ell+1)|\alpha|}e^{k(x_{2}-k^{2\ell})} \\ &\leqslant ([x_{2}^{\frac{1}{2\ell}}]+1)^{(2\ell+1)|\alpha|+1}e^{c_{\ell}x_{2}^{1+\frac{1}{2\ell}}} + \sum_{k=1}^{\infty}k^{(2\ell+1)|\alpha|}e^{-k} \\ &\leqslant 2^{(2\ell+1)|\alpha|+1}(x_{2}^{2|\alpha|+1}+1)e^{c_{\ell}x_{2}^{1+\frac{1}{2\ell}}} + c_{\ell,\alpha} \leqslant C_{\ell,\alpha}e^{(c_{\ell}+1)x_{2}^{1+\frac{1}{2\ell}}}. \end{split}$$

If $x_2 \leq 0$, then

$$|\partial^{\alpha} f(x_1, x_2)| \le \sum_{k=1}^{\infty} \frac{k^{(2\ell+1)|\alpha|}}{e^{k^{2\ell+1}}} < \sum_{j=1}^{\infty} \frac{j^{|\alpha|}}{e^j} =: C_{\alpha} < \infty.$$

So, $f \in C^{\infty}(\mathbb{R}^2)$, and $\partial^{\alpha} f(x_1, x_2) = O(e^{(c_{\ell} + 1)|x_2|^{1 + \frac{1}{2\ell}}}) = O(e^{(c_{\ell} + 1)|x|^{1 + \frac{1}{2\ell}}})$. It is easy to see that $(\partial_{x_1}^2 + \partial_{x_2}^{4\ell + 2}) f(x_1, x_2) = 0$.

The function f admits analytic continuation to the set

$$\Pi_1 := \{(z_1, z_2) \in \mathbb{C}^2 \mid \operatorname{Im} z_1 < 1\}.$$

Indeed, let

$$f(z_1, z_2) = f(x_1 + iy_1, x_2 + iy_2) = \sum_{k=1}^{\infty} \frac{e^{-ik^{2\ell+1}(x_1 + iy_1) + k(x_2 + iy_2)}}{e^{k^{2\ell+1}}}$$
$$= \sum_{k=1}^{\infty} e^{i(ky_2 - k^{2\ell+1}x_1)} e^{k^{2\ell+1}(y_1 - 1) + kx_2}.$$

It is easy to see that the last series is uniformly convergent on compact subsets of Π_1 . So, f admits analytic continuation to Π_1 . On the other hand, $f(iy_1, 0) \to \infty$ as $y_1 \to 1 - 0$. Indeed,

$$f(iy_1, 0) = \sum_{k=1}^{\infty} e^{k^{2\ell+1}(y_1-1)}.$$

Take any $N \in \mathbb{N}$. If $y_1 > 1 - N^{-(2\ell+1)}$, then

$$f(iy_1,0) > \sum_{k=1}^{\infty} e^{-k^{2\ell+1}N^{-(2\ell+1)}} > \sum_{k=1}^{N} e^{-k^{2\ell+1}N^{-(2\ell+1)}} \geqslant \sum_{k=1}^{N} e^{-1} = \frac{N}{e}.$$

So,
$$f(iy_1, 0) \rightarrow \infty$$
 as $y_1 \rightarrow 1 - 0$.

Acknowledgements. We are grateful for the careful comments of an expert referee, who helped us to improve the exposition of this paper.

Funding. Financial support for the first two authors through the DFG-NCN Beethoven Classic 3 project SCHI419/11-1 & NCN 2018/31/G/ST1/02252, the 6G-life project (BMBF programme "Souverän. Digital. Vernetzt." 16KISK001K) and the SCADS.AI centre is gratefully acknowledged.

References

- [1] N. Alibaud, F. del Teso, J. Endal, and E. R. Jakobsen, The Liouville theorem and linear operators satisfying the maximum principle. *J. Math. Pures Appl.* (9) 142 (2020), 229–242 Zbl 1448.35061 MR 4149690
- [2] D. Berger and R. L. Schilling, On the Liouville and strong Liouville properties for a class of non-local operators. *Math. Scand.* 128 (2022), no. 2, 365–388 Zbl 07572348 MR 4472712
- [3] D. Berger, R. L. Schilling, and E. Shargorodsky, The Liouville theorem for a class of Fourier multipliers and its connection to coupling. *Bull. London Math. Soc.* DOI 10.1112/blms.13060
- [4] J. B. Conway, *Functions of one complex variable*. Second edn., Grad. Texts in Math. 11, Springer, Berlin etc., 1978 Zbl 0277.30001 MR 0503901
- [5] Y. Domar, Harmonic analysis based on certain commutative Banach algebras. *Acta Math.*96 (1956), 1–66 Zbl 0071.11302 MR 0078666
- [6] L. Ehrenpreis, Solution of some problems of division. IV. Invertible and elliptic operators. Amer. J. Math. 82 (1960), 522–588 Zbl 0098.08401 MR 0119082
- [7] A. Friedman, Generalized functions and partial differential equations. Prentice Hall, Englewood Cliffs, NJ, 1963 Zbl 0116.07002 MR 0165388

- [8] J. B. Garnett, *Bounded analytic functions*. First edn., Grad. Texts in Math. 236, Springer, New York, 2007 Zbl 1106.30001 MR 2261424
- [9] I. M. Gel'fand and N. Y. Vilenkin, *Generalized functions*. Vol. 4: Applications of harmonic analysis. Academic Press, New York and London, 1964 Zbl 0136.11201 MR 0173945
- [10] K. Gröchenig, Weight functions in time-frequency analysis. In Pseudo-differential operators: partial differential equations and time-frequency analysis. In Pseudo-differential operators. Partial differential equations and time-frequency analysis, pp. 343–366, Fields Inst. Commun., American Mathematical Society, Providence, RI, 2007 Zbl 1132.42313 MR 2385335
- [11] V. V. Grušin, The connection between local and global properties of the solutions of hypoelliptic equations with constant coefficients. *Mat. Sb. (N.S.)* 66(108) (1966), 525–550 Zbl 0163.12402 MR 0178249
- [12] T. Grzywny and M. Kwaśnicki, Liouville's theorems for Lévy operators. 2023, arXiv:2301.08540v1
- [13] W. K. Hayman, Power series expansions for harmonic functions. *Bull. London Math. Soc.* 2 (1970), 152–158 Zbl 0201.43302 MR 0267114
- [14] E. Hille and R. S. Phillips, Functional analysis and semi-groups. Second edn. Amer. Math. Soc. Colloq. Publ. 31, American Mathematical Society, Providence, RI, 1957 Zbl 0078.10004 MR 0089373
- [15] L. Hörmander, *The analysis of linear partial differential operators*. I. Grundlehren Math. Wiss. 256, Springer, Berlin, 1983 Zbl 0521.35001 MR 0717035
- [16] L. Hörmander, The analysis of linear partial differential operators. II. Grundlehren Math. Wiss. 257, Springer, Berlin, 1983 Zbl 0521.35002 MR 0705278
- [17] A. Kaneko, Liouville type theorem for solutions of infra-exponential growth of linear partial differential equations with constant coefficients. *Natur. Sci. Rep. Ochanomizu Univ.* 49 (1998), no. 1, 1–5 Zbl 1044.35508 MR 1693006
- [18] A. Kaneko, Liouville type theorem for solutions of linear partial differential equations with constant coefficients. Ann. Polon. Math. 74 (2000), 143–159 Zbl 0973.35018 MR 1808993
- [19] D. Khavinson and E. Lundberg, *Linear holomorphic partial differential equations and classical potential theory*. Math. Surveys Monogr. 232, American Mathematical Society, Providence, RI, 2018 Zbl 1426.30002 MR 3821527
- [20] P. Koosis, *The logarithmic integral*. I. Cambridge Stud. Adv. Math. 12, Cambridge University Press, Cambridge, 1998 Zbl 0665.30038 MR 1670244
- [21] P. Lelong and L. Gruman, *Entire functions of several complex variables*. Grundlehren Math. Wiss. 282, Springer, Berlin, 1986 Zbl 0583.32001 MR 0837659
- [22] B. J. Levin, *Distribution of zeros of entire functions*. American Mathematical Society, Providence, RI, 1964 Zbl 0152.06703 MR 0156975
- [23] I. G. Petrowsky, Sur l'analyticité des solutions des systèmes d'équations différentielles. *Rec. Math. N.S. [Mat. Sbornik]* **5(47)** (1939), 3–70 JFM 65.0405.02 MR 0001425
- [24] W. Rudin, Functional analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York etc., 1973 Zbl 0253.46001 MR 0365062

- [25] K. Sato, *Lévy processes and infinitely divisible distributions*. Cambridge Stud. Adv. Math. 68, Cambridge University Press, Cambridge, 2013 Zbl 1287.60003 MR 3185174
- [26] G. E. Šilov, An analogue of a theorem of Laurent Schwartz. *Izv. Vysš. Učebn. Zaved. Matematika* **1961** (1961), no. 4(23), 137–147 Zbl 0161.29903 MR 0139003
- [27] G. E. Šilov, Local properties of solutions of partial differential equations with constant coefficients. *Uspehi Mat. Nauk* 14 (1959), no.5, 3–44; English transl. in *Translations of the American Mathematical Society* (Ser. 2) 42, pp. 129–173, American Mathematical Society, Providence, RI, 1964 MR 0118939 Zbl 0148.34102
- [28] H. Wendland, *Scattered data approximation*. Cambridge Monogr. Appl. Comput. Math. 17, Cambridge University Press, Cambridge, 2005 Zbl 1075.65021 MR 2131724

Received 12 December 2023; revised 17 February 2024.

David Berger

Institute of Stochastics, Faculty of Mathematics, TU Dresden, 01062 Dresden, Germany; david.berger2@tu-dresden.de

René L. Schilling

Institute of Stochastics, Faculty of Mathematics, TU Dresden, 01062 Dresden, Germany; rene.schilling@tu-dresden.de

Eugene Shargorodsky

Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK; eugene.shargorodsky@kcl.ac.uk

Teo Sharia

Department of Mathematics, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK; t.sharia@rhul.ac.uk