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Manifolds whose Weyl spectral asymptotics
have small but not tiny remainders

Michael Taylor

Abstract. A compact, n-dimensional Riemannian manifold M has Weyl spectral asymptotics
with remainderEM .R/; i.e., the spectral counting function satisfies N .�M ;R/DC.M/RnC

EM .R/, with EM .R/ D o.Rn/. Generally, one actually has EM .R/ D O.Rn�1/, and one
seeks geometrical conditions under which stronger estimates hold on the remainder and also
conditions limiting how extra small the remainder can be. Here, we produce n-dimensional
manifolds whose Weyl remainders are o.Rn�1/ but not O.Rn�1�˛/ for any ˛ > 0.

1. Introduction

If M is a compact, n-dimensional Riemannian manifold with Laplace operator �M ,
then L2.M/ has an orthonormal basis of eigenfunctions ¹uj º, satisfying

�Muj D ��
2
j uj ; �j %1:

We define the spectral counting function by

N .�M ; R/ D #¹j W �j � Rº:

For this, there is the Weyl asymptotic formula

N .�M ; R/ D C.M/Rn CEM .R/; (1.1)

with EM .R/ D o.Rn/, the Weyl remainder. A classical improvement of this estimate
is

EM .R/ D O.R
n�1/I (1.2)

see [7]. Much work has been done to see when this estimate can be further improved.
In [5], it is shown that one can take

EM .R/ D o.R
n�1/ (1.3)
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if M has “not too many” closed geodesics. It was shown in [1] that, under certain
geometric hypotheses involving no conjugate points, one can improve (1.3) to

EM .R/ D O.R
n�1= logR/: (1.4)

The recent paper [3] obtained such an estimate in much greater generality. Going
further, there are various examples for which one has

EM .R/ D O.R
n�1�˛/ (1.5)

for some ˛ > 0. We say M has spectral asymptotics with algebraically small Weyl
remainder. The classical example for (1.5) is M D Tn, the flat torus. (The sharp
value of ˛ for which (1.5) holds is not known; cf. [2].) In [9], (1.5) is established
for Cartesian products of spheres (with at least 2 factors). Other examples are studied
in [8, 11].

In this paper, we produce examples of compact Riemannian manifolds M for
which the remainder estimate (1.3) holds, but for which the stronger estimate (1.5)
fails for each ˛ > 0.

Before describing our main results on this, we recall the classical cases for which
the estimate (1.3) fails, namely, the n-dimensional unit spheres Sn in RnC1. In such
cases, there are exact formulas for the eigenvalues of �Sn , and for the dimensions
of the eigenspaces, and these dimensions are seen to be sufficiently large that no
improvement of (1.2) is possible. For later use, we describe this situation for S2

in more detail. As is well known, L2.S2/ has an orthonormal basis ¹Y `
k
W k 2 ZC;

` 2 Z; j`j � kº (of “spherical harmonics”), satisfying

�S2Y
`
k D �k.k C 1/Y

`
k ; XY `k D `Y

`
k ; k 2 ZC; j`j � k;

where
X D iZ;

and Z is the vector field generating 2�-periodic rotation of R3 about the x3-axis. In
this case, the �k.k C 1/-eigenspace of �S2 has dimension 2k C 1, foreclosing the
possibility of (1.3) holding.

To start with 2D examples, our construction of examples where (1.5) fails will
involve taking M D S2 as a manifold but giving M a different metric tensor. The
new metric tensor .gij / will match up with the standard metric .ij / of S2, to infinite
order, at the equator x3 D 0 but will differ from .ij / off x3 D 0. To show that (1.5)
fails for such M , we will show that, for each � 2 .1=2; 1/, the sequence of spaces

Wk.S
2/ D W

�

k
.S2/ D Span¹Y `k W k � k

�
� ` � kº; k 2 ZC; (1.6)

yields quasimodes for �M (a concept introduced in [4]). One ingredient in this anal-
ysis is to examine how the functions u 2 Wk.S2/ concentrate on the equator x3 D 0
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as k !1. In Section 2, we establish such concentration results. For � 2 N; s � 0,
we obtain

u 2 Wk.S
2/) kx�3ukH s.S2/ � CkukH s��ı=2.S2/

� Cks��ı=2kukL2 ; ı D 1 � �; (1.7)

which is an effective concentration result when �ı=2 > s.
We bring in tools from microlocal analysis to establish (1.7) and related estimates.

In more detail, with � 2 .1=2; 1/ and ƒ D .��S2 C 1=4/1=2 � 1=2, we set

F.ƒ;X/ D '
�
.ƒ �X/ƒ��

�
;

where we pick

' 2 C10 .R/; '.�/ D 1 for j� j � 1; 0 for j� j � 2:

Results of [13] and [14, Chapter 12] imply that F.ƒ;X/ is a pseudodifferential oper-
ator (of non-classical type):

F.ƒ;X/ 2 OPS0�;ı ; principal symbol f .x; �/ D F.j�jx; hY.x/; �i/;

leading on the one hand to

u D F.ƒ;X/u; for u 2 Wk.S2/; (1.8)

and on the other to
x�3F.ƒ;X/ 2 OPS��ı=2

�;ı
; (1.9)

from which we deduce (1.7).
We take up concentration estimates of the eigenfunctions of the Laplace operator

�S on Sn for n � 3 in Section 3. In such a case, L2.Sn/ is an orthogonal direct sum
of eigenspaces

Vk.S
n/ D ¹u 2 C1.Sn/ W �Su D ��

2
kuº; �2k D k

2
C .n � 1/k:

Here, we look at the joint spectrum of the commuting operators �S and L, a second-
order differential operator that acts like the Laplace operator on .n� 1/-spheres. (For
n D 2; L D �X2.) Instead of the pair .ƒ;X/, we take

.ƒ;ƒ0/; ƒ D .��S /
1=2; ƒ0 D �Lƒ

�1;

and instead of F.ƒ;X/, we use

G.ƒ;ƒ0/ D '
�
.ƒ �ƒ0/ƒ

��
�
;



M. Taylor 700

as before, with � 2 .1=2; 1/. Instead of (1.6), we take

Wk.S
n/ D W

�

k
.Sn/ D

M
j

®
zVkj .S

n/ W �2k � �
1C�

k
� �2j � �

2
k

¯
;

where
zVkj .S

n/ D ¹u 2 Vk.S
n/ W Lu D ��2j uº;

so

Vk.S
n/ D

kM
jD0

zVkj .S
n/; �2j D j.j C n � 2/:

In place of (1.8)–(1.9), we have

u D G.ƒ;ƒ0/u; for u 2 Wk.Sn/; (1.10)

and (again with ı D 1 � �)

x�nC1G.ƒ;ƒ0/ 2 OPS��ı=2
�;ı

: (1.11)

To use the spaces Wk.Sn/ in our search for manifolds M for which (1.5) fails, it
is important to have a good lower bound on their dimensions. We show that

dimWk.S
n/ � Ck�ı dimVk.S

n/; (1.12)

which is clear from (1.6) when n D 2. For n � 3, we get this from the isomorphism

zVkj .S
n/ � Vj .S

n�1/; 0 � j � k;

a result that can be restated in terms of an SO.n/-equivariant isomorphism

Vk.S
n/ �

kM
`D0

V`.S
n�1/:

This is established in Section 3, with the help of a dimension count, done in Appendix
A.

In Section 4, we introduce the following family of n-dimensional Riemannian
manifolds. We take M to be Sn, endowed with a metric tensor .gij / that agrees with
the standard metric tensor .ij / of Sn to order � on the equator (for some integer
� � 2), i.e.,

gij D ij C �ij ; �ij D O.x
�
nC1/:

In such a case, we have from (1.9) and (1.11) that

.�S ��M /G D Q 2 OPS2��ı=2
�;ı

;
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where G D F.ƒ; X/ for n D 2, G D G.ƒ; ƒ0/ for n � 3. We deduce from (1.8)
and (1.10) that

u 2 Wk.S
n/) .��M � �

2
k/u D Qu;

and hence,
u 2 Wk.S

n/) k.ƒM � �k/ukL2 � Ck
��
kukL2 ; (1.13)

with

ƒM D .��M /
1=2; � D

�ı

2
� 1:

Recall that we take � 2 .1=2;1/; ıD 1� �. If we pick � sufficiently large, then � > 0.
The estimate (1.13) establishes that elements of Wk.Sn/ are quasimodes for �M .

Using this set of quasimodes, we establish Proposition 4.2, which shows that, for
k sufficiently large,

�2k D k.k C n � 1/;

there is an orthonormal set

¹ `k W 1 � ` � dimWk.S
n/º � L2.M/;

of eigenfunctions of �M , satisfying

ƒM 
`
k D �k` 

`
k; j�k` � �kj � Ck

�� : (1.14)

Note that there are dimWk.S
n/ elements in this set, and we have the estimate (1.12).

This puts us in a position to show in Section 5 that, in such a situation, and with
the hypothesis on � strengthened to

�

2
> 1C

1

ı
;

so � > ı in (1.14), then, if the remainder estimate holds, we must have ˛ � 1 � �.
Taking �% 1 (ı & 0), we obtain in Theorem 5.2 the following result.

Theorem A. IfM is an n-dimensional Riemannian manifold as described above and
if its metric tensor matches the standard metric tensor on Sn to infinite order at the
equator, then the remainder estimate (1.5) in the Weyl asymptotic formula (1.1) cannot
hold for any ˛ > 0.

One can find Riemannian manifolds M of the sort described in Theorem 5.2,
having the property that the set of closed geodesics has measure zero, so [5] implies
EM .R/ D o.R

n�1/. We present some examples in Appendix B. Going further, it is
intriguing to guess that some of these can be shown to satisfy the conditions in [3],
yielding an estimate of the form (1.4). We intend to look into this in future work.
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2. Concentration of spherical harmonics on the equator of S 2

Here, we take � 2 .1=2; 1/, consider the family

Wk.S
2/ D Span¹Y `k W k � k

�
� ` � kº; (2.1)

and examine how elements ofWk.S2/ concentrate on the equator x3D 0 of the sphere
S2, as k !1. It is convenient to bring in the operator

ƒ D
�
��S2 C

1

4

�1=2
�
1

2
;

an elliptic, first-order pseudodifferential operator on S2. (We write ƒ 2 OPS1.S2/.)
Note that

ƒY `k D kY
`
k ; XY `k D `Y

`
k

for k � 0, j`j � k. We next set

F.ƒ;X/ D '
�
.ƒ �X/ƒ��

�
; (2.2)

where we pick

' 2 C10 .R/; supp' � Œ�2; 2�; '.�/ D 1 for j� j � 1: (2.3)

For convenience, we also assume that

' � 0; '.�/& for � � 0: (2.4)

Note that
Y `k 2 Wk.S

2/) F.ƒ;X/Y `k D Y
`
k : (2.5)

What makes (2.5) effective for concentration estimates comes from the analysis
of F.ƒ;X/ as a pseudodifferential operator. Indeed, for � 2 .0; 1�, the function

F.�/ D '
�
.�1 � �2/�

��
1

�
satisfies estimates

jD˛
�F.�/j � C˛h�i

��j˛j; on S1 D ¹� W �1 � 1; j�2j � �1º: (2.6)

We establish (2.6) and also some more precise estimates of use for Proposition 2.2. It
is convenient to make a linear change of variable,

�1 D �1; �2 D �1 � �2

and estimate derivatives of
ˆ.�/ D '.�2�

��
1 /
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on a set of the form
S2 D ¹� W �1 � 1; j�2j � c�1º:

We have
@1ˆ.�/ D ���

���1
1 �2'

0.�2�
��
1 / D ��11 '1.�

��
1 �2/;

where
'.�/ D ���'0.�/; '1 2 C

1
0 .R/:

Iteratively,
@`1ˆ.�/ D �

�`
1 '`.�

��
1 �2/; '` 2 C

1
0 .R/I

hence,
@m2 @

`
1ˆ.�/ D �

�`�m�
1 '

.m/

`
.�
��
1 �2/; (2.7)

yielding
j@m2 @

`
1ˆ.�/j � C`mh�i

�`�m�

� zC`mh�i
�.`Cm/�; on S2:

This yields (2.6). A more precise estimate, from (2.7), is

jˆ.˛/.�/j � C˛h�i
��j˛j
j ˛.�

��
1 �2/j;

on S2; hence,
jF .˛/.�/j � C˛h�i

��j˛j
j ˛..�1 � �2/�

��
1 /j; (2.8)

on S1, with  ˛ 2 C10 .R/.
As a consequence of these estimates, one has, for � 2 .1=2; 1�,

F.ƒ;X/ 2 OPS0�;ı.S
2/; ı D 1 � �; (2.9)

with principal symbol

f .x; �/ D F.j�jx; hZ.x/; �i/; mod S�.��ı/
�;ı

: (2.10)

The implication that, for � 2 .1=2; 1�,

(2.6)) (2.9)–(2.10)

is established in [13], and in [14, Chapter 11, Theorem 1.3], with complements in
(1.2)–(1.4) on p. 297, in the broader setting of F.A1; : : : ;Ak/, where Aj are commut-
ing, self-adjoint operators in OPS1.M/, satisfying the ellipticity condition

A21 C � � � C A
2
k is elliptic in OPS2.M/:

This is also established in [10] for � D 1, but here we need it for 1=2 < � < 1.



M. Taylor 704

The analysis in [13,14] involved representing eiy�A, for small y 2 Rk , as a family
of Fourier integral operators,

eiy�Au.x/ D .2�/�n=2
Z
b.y; x; �/ei'.y;x;�/ Ou.�/ d�;

modulo smoothing operators, and deducing that if F 2 Sm� .R
k/,

F.A/u.x/ D .2�/�n=2
Z
q.x; �/eix�� Ou.�/ d�;

modulo smoothing, where

q.x; �/eix�� D F.Dy/
�
b.y; x; �/ei'.y;x;�/

�ˇ̌
yD0

;

to which a stationary-phase analysis applies, yielding

q.x; �/ � F.a.x; �//C
X
j˛j�1

F .˛/.a.x; �// ˛.x; �/;

 ˛.x; �/ 2 S
Œj˛j=2�

cl
;

(2.11)

where a.x; �/ D .a1.x; �/; : : : ; ak.x; �// and Œz� denotes the greatest integer � z.
Compare [6, Theorem 2.16].

Returning to the setting of (2.2)–(2.3), we have the following.

Proposition 2.1. Given � 2 .1=2; 1/, the operator F.ƒ; X/ defined by (2.2)–(2.3)
satisfies

F.ƒ;X/ 2 OPS0�;ı.S
2/; ı D 1 � �;

with principal symbol

f .x; �/ D '
�
.1 � hZ.x/; y�i/j�jıx

�
; y� D

�

j�jx
: (2.12)

To proceed, note that hZ.x/; y�i � jZ.x/j, and hence,

1 � hZ.x/; y�i � Cx23 ; (2.13)

so (2.12) yields
jf .x; �/j � '.cx23 j�j

ı/I

hence, for M 2 .0;1/, �
x23 j�j

ı
�M
jf .x; �/j � CM :

We can estimate the total symbol of F.ƒ;X/ and its derivatives via (2.11) and (2.8).
This leads to the following proposition.



Manifolds whose Weyl spectral asymptotics have small but not tiny remainders 705

Proposition 2.2. In the setting of Proposition 2.1, we have, for each � 2 N,

x�3F.ƒ;X/ 2 OPS��ı=2
�;ı

.S2/; ı D 1 � �:

In light of the Sobolev mapping property

P 2 OPSm�;ı.M/) P W H sCm.M/! H s.M/;

valid for 0 � ı < � � 1, hence for ı D 1 � �; � 2 .1=2; 1/, we have, for � 2 N,

u 2 Wk.S
2/) kx�3ukH s D kx

�
3F.ƒ;X/ukH s

� C�kukH s��ı=2

� C�k
s��ı=2

kukL2 ; (2.14)

as advertised in (1.7). Note that, by (2.1),

dimWk.S
2/ � k�: (2.15)

3. Concentration of spherical harmonics on the equator of S n

The Laplace operator �S on Sn has eigenspaces

Vk D ¹u 2 L
2.Sn/ W ��Su D �

2
kuº; �2k D k

2
C .n � 1/k; (3.1)

mutually orthogonal spaces of dimension

dimVk D

�
k C n � 1

k

�
C

�
k C n � 2

k � 1

�
; (3.2)

spanning L2.Sn/. See [15, Chapter 8, Section 4]. We want to analyze how certain
elements of Vk concentrate on the equator

Sn�1 D ¹! 2 Sn W !nC1 D 0º;

as k!1, extending the results of Section 2. To do this, we bring in the second-order
differential operator L on Sn, the image of the Laplace operator on SO.n/ under its
action on Sn � RnC1, via rotation in the .x1; : : : ; xn/-plane, normalized so that, for
u 2 C1.Sn/,

Lu
ˇ̌
Sn�1

D �Sn�1
�
u
ˇ̌
Sn�1

�
:

The operators �S and L commute and are self-adjoint on L2.Sn/. In case n D 2,
L D Z2. We can write

Vk D
M
`

Vk`; Vk` D ¹u 2 Vk W Lu D �`
2uº: (3.3)
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(Here, ` runs over RC; it need not be an integer.) We will obtain estimates on how
elements of Vk` concentrate on the equator for ` sufficiently close to �k .

To proceed, we fix � 2 .1=2; 1/, take ' 2 C10 .R/, satisfying (2.3)–(2.4), and set

G.ƒ;ƒ0/ D '.�.�S � L/ƒ
�1ƒ��/

D '..ƒ �ƒ0/ƒ
��/; (3.4)

where
ƒ D

p
��S ; ƒ0 D �Lƒ

�1
2 OPS1.Sn/: (3.5)

Parallel to (2.9), we have

G.ƒ;ƒ0/ 2 OPS0�;ı.S
n/; ı D 1 � �: (3.6)

Note that

u 2 Vk`) ƒ0u D
`2

�k
u

) .ƒ �ƒ0/ƒ
��u D

�2
k
� `2

�
1C�

k

u:

Hence, if we set
Wk D

M
`

¹Vk` W �
2
k � `

2
� �

1C�

k
º; (3.7)

we have
u 2 Wk ) G.ƒ;ƒ0/u D u: (3.8)

To apply (3.8) to estimate how elements ofWk concentrate on the equator, we aim
to bring in arguments parallel to those provided to prove Propositions 2.1 and 2.2.
First, parallel to (2.12), the operator G.ƒ;ƒ0/ has principal symbol

g.x; �/ D '..1 � ��L.x; y�//j�j
ı
x/;

y� D
�

j�jx
;

with complete symbol expansion derived from (2.11). Next, parallel to (2.13), we have

��L.x; y�/ � 1 � cx
2
nC1I

hence,
1 � ��L.x; y�/ � cx

2
nC1;

and therefore,
jg.x; �/j � '.cx2nC1j�j

ı/;

so, for M 2 .0;1/,
.x2nC1j�j

ı/M jg.x; �/j � CM :

This leads to the following proposition.
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Proposition 3.1. Given � 2 .1=2; 1/, the operator G.ƒ;ƒ0/, defined by (3.4)–(3.5),
satisfies, for each � 2 ZC,

x�nC1G.ƒ;ƒ0/ 2 OPS��ı=2
�;ı

.Sn/; ı D 1 � �: (3.9)

Having (3.9), we bring in (3.8) to deduce that, for � 2 N; s 2 R,

u 2 Wk ) kx
�
nC1ukH s D kx

�
nC1G.ƒ;ƒ0/ukH s

� C�kukH s��ı=2

� C��
s��ı=2

k
kukL2 ;

parallel to (2.14). As before, this estimate is particularly valuable for �ı=2 > s.
At this point, it behooves us to establish a lower estimate on

dimWk;

extending the estimate (2.15), done for n D 2. We aim to establish an estimate of the
form

dimWk � C.dimVk/k
��1: (3.10)

To tackle this, it is convenient to refine our notation a bit, relabeling Vk in (3.1) as

Vk.S
n/ D ¹u 2 L2.Sn/ W �Su D �k.k C n � 1/uº

and rewriting (3.3) as

Vk.S
n/ D

kM
jD0

zVkj .S
n/; (3.11)

where

zVkj .S
n/ D ¹u 2 Vk.S

n/ W Lu D �j.j C n � 2/uº: (3.12)

We also relabel Wk as Wk.Sn/ and, in place of (3.7), write

Wk.S
n/ D

M
j

°
zVkj .S

n/ W �2k � �
1C�

k
� �2j � �

2
k

±
;

�2k D k.k C n � 1/; �2j D j.j C n � 2/:

(3.13)

The following proposition is key to our dimension estimate.

Proposition 3.2. For 0 � j � k, n � 3,

zVkj .S
n/ � Vj .S

n�1/: (3.14)
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Proof. Note that the natural action of SO.n/ on L2.Sn/ leaves each space zVkj .Sn/
in (3.11) invariant. In view of (3.12), we see that, for each j 2 ¹0; : : : ; kº, zVkj .Sn/ is
either 0 or a direct sum of spaces isomorphic to Vj .Sn�1/. Furthermore, [12, Propo-
sition 2.4] implies that if zVkj .Sn/ ¤ 0, then

SO.n/ acts irreducibly on zVkj .Sn/:

Hence, either (3.14) holds or zVkj D 0.
At this point, we see that Proposition 3.2 is equivalent to the assertion that there

is an SO.n/-equivariant isomorphism

Vk.S
n/ �

kM
jD0

Vj .S
n�1/; (3.15)

and so far, we know that the left-hand side of (3.15) is isomorphic to an SO.n/-
invariant linear subspace of the right-hand side. Hence, the proof of Proposition 3.2 is
done if we show that

dimVk.S
n/ D

kX
jD0

dimVj .S
n�1/:

This computation is carried out in Appendix A.

To proceed toward a proof of (3.10), we have from (3.14) that

dimWk.S
n/ D

X
j

®
dimVj .S

n�1/ W �2k � �
1C�

k
� �2j � �

2
k

¯
: (3.16)

Note that the restriction on j (beyond 0 � j � k) can be written as

�k

q
1 � �

��1

k
� �j � �k;

so in light of (3.13), the number of summands in (3.16) is

�
1

2
�
�

k
�
1

2
k�

for large k. We bring in the asymptotics

dimVk.S
n/ � Cnk

n�1; as k !1;

which follow from (3.2), and the variant

dimVj .S
n�1/ � Cn�1j

n�2:
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This leads to the estimate

dimWk.S
n/ � Ckn�2 � k�

� C dimVk.S
n/ k��1;

as asserted in (3.10).
Summarizing the main results of this section, we have the following proposition.

Proposition 3.3. Take � 2 .1=2; 1/; ı D 1 � �; n � 2. For k � 1, there exist linear
subspaces Wk.Sn/ � Vk.Sn/ satisfying

dimWk.S
n/ � Ck�ı dimVk.S

n/; (3.17)

u 2 Wk.S
n/) G.ƒ;ƒ0/u D u; (3.18)

with G.ƒ;ƒ0/ as in (3.4)–(3.6) and (3.9), and, for � 2 N; s 2 R,

u 2 Wk.S
n/) kx�nC1ukH s � C��

s��ı=2

k
kukL2 :

(Recall that �k � k.)

4. Elements of Wk.S n/ as quasimodes for perturbed Laplace
operators

As indicated in the introduction, we take the Riemannian manifold M to be Sn,
endowed with a metric tensor that is a perturbation of the standard metric tensor of
the unit sphere, and investigate how elements of Wk.Sn/ yield quasimodes for the
Laplace–Beltrami operator �M . We start by examining how �S and �M are related.
The metric tensors .gij / of M and .ij / of Sn are related by

gij D ij C �ij ; �ij
ˇ̌
xnC1D0

D 0I (4.1)

more precisely, we assume that

�ij D O.x
�
nC1/ (4.2)

for some � 2 N (� � 2). Now, we compare Laplace operators

�Su D 
�1=2@i .

1=2 ij @ju/;

�Mu D g
�1=2@i .g

1=2gij @ju/:

We obtain
��M D ��S C h

ij @i@j C h
j @j ;

hij D O.x�nC1/; hj D O.x��1nC1/:
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Consequently, by Proposition 2.2, with n D 2, � 2 .1=2; 1/, ı D 1� �, and F.ƒ;X/
as in (2.2)–(2.3),

.�S ��M /F.ƒ;X/ D Q 2 OPS2��ı=2
�;ı

:

Similarly, by Proposition 3.1, with n � 3, � 2 .1=2; 1/, ı D 1 � �, and G.ƒ;ƒ0/ as
in (3.4)–(3.5),

.�S ��M /G.ƒ;ƒ0/ D Q 2 OPS2��ı=2
�;ı

:

Thanks to (2.5) for n D 2, (3.18), for n � 3, we therefore have (with �k as in (3.1))

u 2 Wk.S
n/) .��M � �

2
k/u D Qu:

Let us set

ƒM D .��M /
1=2; so ��M � �2k D .ƒM C �k/.ƒM � �k/:

It follows that, for u 2 Wk.Sn/,

k.ƒM � �k/ukL2 � �
�1
k k.��M � �

2
k/ukL2

� Ck�1kQukL2

� ck�1kukH�.�ı=2�2/

� Ck�.�ı=2�1/kukL2 :

We record our quasimode estimate.

Proposition 4.1. Take � 2 .1=2; 1/; ı D 1 � �, and pick � sufficiently large that

� D
�ı

2
� 1

is positive. Assume that the metric tensor on M satisfies (4.1)–(4.2). Then,

u 2 Wk.S
n/) k.ƒM � �k/ukL2 � Ck

��
kukL2 : (4.3)

We next show that there is a sequence of actual eigenvalues of ƒM close to �k .
To start, it follows directly from (4.3) that there exists  1

k
2 C1.M/ such that

k 1kkL2.M/ D 1; ƒM 
1
k D �k1 

1
k ; j�k1 � �kj � Ck

�� :

Of course, ƒM need not leave Wk.Sn/ invariant, and we cannot say that  1
k

is in, or
even particularly close to, Wk.Sn/. Set

Z1 D Span 1k :

Then,
.1CƒM /

�1
W Z?1 ! Z?1 :
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We have
dimWk.S

n/ � 2) Wk.S
n/ \Z?1 ¤ 0;

in which case
9 2k 2 Z

?
1 ; with unit norm, such that

ƒM 
2
k D �k2 

2
k ; j�k2 � �kj � Ck

�� :

Continue producing an orthonormal set  `
k

of smooth elements of L2.M/, satisfying

ƒM 
`
k D �k` 

`
k; j�k` � �kj � Ck

�� ; (4.4)

for 1 � ` � L, and set
ZL D Span. 1k ; : : : ;  

L
k /;

so .1CƒM /�1 W Z?L ! Z?L . We have

dimWk.S
n/ > L) Wk.S

n/ \Z?L ¤ 0;

in which case

9 LC1
k
2 Z?L ; with unit norm, such that

ƒM 
LC1
k
D �k;LC1 

LC1
k

; j�k;LC1 � �kj � Ck
�� :

We can do this right up to the point where

L D dimWk.S
n/:

This construction leads to the following result on eigenvalues of �M close to ��2
k

.

Proposition 4.2. Keep the setting of Proposition 4.1, including having the metric
tensor on M satisfying (4.1)–(4.2). Then, for k sufficiently large, there exists an
orthonormal set

¹ `k W 1 � ` � dimWk.S
n/º � L2.M/

of eigenfunctions of �M , satisfying (4.4). Furthermore,

dimWk.S
n/ � Ck�ı dimVk.S

n/

� C 0kn�1�ı :

5. Necessary condition for an algebraically small Weyl remainder

As in Section 4, M is a compact, n-dimensional Riemannian manifold, whose metric
tensor is a perturbation of that of the standard sphere Sn, satisfying (4.1)–(4.2). We
seek a necessary condition that

N .�M ; R/ D C.M/Rn CO.Rn�1�˛/ (5.1)
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for some ˛ 2 .0; 1/. Having this, we deduce a sufficient condition for (5.1) to fail for
all ˛ > 0. Recall further details of this setup. We pick � 2 .1=2; 1/, ı D 1 � �, and
then take � in (4.2) sufficiently large that

� D
�ı

2
� 1

is positive.
To continue, if (5.1) holds for all (large) R, then, for b 2 Œ0; 1�,

N .�M ; RC b/ �N .�M ; R � b/ D 2nC.M/bRn�1 CO.Rn�1�˛/:

Let us take b D cR�� , so

N .�M ; RC cR
�� / �N .�M ; R � cR

�� /

D 2ncC.m/Rn�1�� CO.Rn�1�˛/:

Proposition 4.2 implies that there exists c 2 .0;1/ such that if R D �k , then

N .�M ; RC cR
�� / �N .�M ; R � cR

�� / � CRn�1�ı :

We deduce that (for R D �k)

CRn�1�ı � 2ncC.M/Rn�1�� CO.Rn�1�˛/: (5.2)

At this point, we strengthen our hypothesis on �, from � > 0 to

� > ı; i.e.,
�

2
>
ı C 1

ı
: (5.3)

With this arranged, we see that (5.2) implies

˛ � ı D 1 � �:

This establishes the following result.

Proposition 5.1. Let M be a compact, n-dimensional Riemannian manifold. Pick
� 2 .1=2; 1/, ı D 1 � �, and assume that � 2 N satisfies (5.3). Then, assume that
the metric tensor on M satisfies (4.1)–(4.2), i.e., matches the standard metric tensor
on Sn to order � at the equator. In such a case, if the Weyl asymptotic formula (5.1)
holds, we must have ˛ � 1 � �.

From here, we have the following conclusion.

Theorem 5.2. In the setting of Proposition 5.1, if the metric tensor onM matches the
standard metric tensor on Sn to infinite order at the equator, then (5.1) cannot hold
for any ˛ > 0.
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A. Dimension counts

Work in Section 3 makes use of the SO.n/-equivariant isomorphism

Vk.S
n/ �

kM
`D0

V`.S
n�1/; (A.1)

where Vk.Sn/ denotes the �k.k C n� 1/-eigenspace of the Laplace operator on Sn,
and V`.Sn�1/ is similarly defined. As seen there, results on irreducibility of certain
SO.n/ actions enable one to establish (A.1) once we have the identity

dimVk.S
n/ D

kX
`D0

dimV`.S
n�1/: (A.2)

We establish this here.
In preparation, we recall a standard approach to computing the left-hand side

of (A.2), using the isomorphism

Vk.S
n/ � Hk.R

nC1/; (A.3)

the space of harmonic polynomials on RnC1, homogeneous of degree k, and the
decomposition

Pk.R
nC1/ D Hk.R

nC1/˚ jxj2Pk�2.R
nC1/: (A.4)

Here and below,

Pk.R
nC1/ D space of polynomials on RnC1, homogeneous of degree k;

P k.RnC1/ D space of polynomials on RnC1, of degree � k;

dk.nC 1/ D dim Pk.R
nC1/:

(A.5)

Note that

dk.nC 1/ D dim P k.Rn/ D dk.n/C dk�1.n/C � � � C d0.n/; (A.6)

with a similar result for dj .m/, for other values of j and m.
Using (A.3)–(A.6) yields

dimVk.S
n/ D dk.nC 1/ � dk�2.nC 1/

D dk.n/C dk�1.n/: (A.7)

Similarly,
kX
`D0

dimV`.S
n�1/ D

kX
`D0

®
d`.n � 1/C d`�1.n � 1/

¯
:
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On the other hand, (A.6) (with n replaced by n � 1) gives

dk.n/ D

kX
`D0

d`.n � 1/; (A.8)

and similarly, we have

dk�1.n/ D

k�1X
`D0

d`.n � 1/ D

kX
`D0

d`�1.n � 1/: (A.9)

Together, (A.7)–(A.9) yield the desired identity (A.2).

Remark. There is the classical computation

dk.n/ D

�
k C n � 1

k

�
:

In light of this, the identity (A.8) is equivalent to

kX
`D0

�
`Cm

`

�
D

�
k CmC 1

k

�
(with m D n � 2), which is sometimes given the whimsical label, the “hockey stick
identity.”

B. Surfaces satisfying Theorem 5.2 and (1.3)

Our goal here is to exhibit some compact 2D surfaces M � R3 whose metric ten-
sors agree with that of the standard sphere S2 to infinite order on the “equator”
 D ¹.a;b; 0/ W a2C b2 D 1º �M , so Theorem 5.2 is applicable, and which also have
the property that the set of periodic geodesics on M has measure 0, so the remainder
estimate EM .R/ D o.Rn�1/ holds (with n D 2).

To simplify our arguments, we will impose further restrictions on M . For one, M
is invariant under rotation about the z-axis in R3. We also assume that M is convex,
with positive Gauss curvature. In other words,M is obtained by taking a simple closed
smooth curve � in the yz-plane, with positive curvature, and rotating it about the z-
axis in the xyz-space R3. In particular, we assume that � is invariant under reflection
.y; z/ 7! .�y; z/. In addition, we assume that � is invariant under reflection .y; z/ 7!
.y;�z/, so M is invariant under reflection .x; y; z/ 7! .x; y;�z/.

Assume .˙1; 0/ 2 � , and that � is tangent at these points to the unit circle S1

¹.a; b/ W a2C b2 D 1º to infinite order. We also assume that � is obtained from S1 by
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flattening it, in such a way that, for .y; z/ 2 � , y2 C z2 decreases strictly monotoni-
cally as y decreases from 1 to 0. Hence,M is tangent to S2 to infinite order along the
equator  DM \ S2, and

M n  � ¹.x; y; z/ W x2 C y2 C z2 < 1º: (B.1)

Our task is to study the geodesics on M . To start, the symmetry z 7! �z implies
that  is a closed geodesic on M . (So, does the tangency of M and S2 along  .) In
addition, the geometrical hypothesis of convexity made above implies that

each geodesic on M intersects  .

If � is a geodesic other than  , its intersections with  are all transverse. The symme-
tries ofM imply that if � is a geodesic onM , so is R�, for each rotation R about the
z-axis, and so is the “antipodal” geodesic ��. Now, we can concentrate on unit speed
geodesics starting out at p0 D .1; 0; 0/ 2  . If we identify Tp0M with the yz-plane,
such geodesics are of the form �� , having initial velocity vector v� D .cos �; sin �/.
In particular, �0 D  , and �� D z ( headed in the opposite direction). We claim that

�� is a periodic geodesic for only countably many values of � . (B.2)

This will imply that the set of periodic geodesics on M has measure 0.
We take � 2 .0; �/ and consider the behavior of �� .t/, satisfying

�� .0/ D p0; �0� .0/ D v� 2 Tp0M:

This curve leaves  at angle � . There is a first time t� > 0 at which �� .t/ intersects 
again:

�� .t� / D q� 2 ; �0� .t� / D Qv� 2 Tq�M:

There is a natural isomorphism Tq�M � Tp0M , given by parallel translation along 
(or equivalently by the action of the rotational symmetries R), yielding

Qv� D .cos �;� sin �/;

thanks to conservation of angular momentum for the geodesic flow on this surface of
revolution. We can write

q� D .cos!� ; sin!� ; 0/

for some !� 2 .0; 2�/. Keeping in mind the symmetries that are in play here, we see
that subsequent points where �� intersects  are given by

q�;k D .cos k!� ; sin k!� ; 0/:

Hence, we have the following result.
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Lemma B.1. The geodesic �� is periodic if and only if !� is a rational multiple of � .

Now, ifM were simply S2, we would have q� D �p0; hence, !� D � for all � 2
.0; �/. However, the flattening process, leading to (B.1), forces q� , hence !� , to vary
with � . Due to the flattening, the unique shortest geodesics from p0 to �p0 are ��=2
and���=2 (mirror images under z 7! �z), and the exponential map Expp0 W Tp0!M

maps a neighborhood of the ray ¹.0; z/ W 0 � z � dist.p0;�p0/º diffeomorphically
onto its image in M . Hence, !�=2 D � and .d=d�/!� j�D�=2 ¤ 0. The quantity !�
is not a monotone function of � on all of .0; �/, since also q� ! �p0 as � ! 0

and as � ! � , but it is piecewise strictly monotonic. Therefore, we have (B.2), as a
consequence of Lemma B.1.
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