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On a degenerate elliptic problem arising in the least
action principle for Rayleigh—Taylor subsolutions

Bjorn Gebhard, Jonas Hirsch, and J6zsef J. Kolumbén

Abstract. We address a degenerate elliptic variational problem arising in the application of the
least action principle to averaged solutions of the inhomogeneous Euler equations in the Boussi-
nesq approximation emanating from the horizontally flat Rayleigh—Taylor configuration. We give a
detailed derivation of the functional starting from the differential inclusion associated with the Euler
equations, i.e. the notion of an averaged solution is that of a subsolution in the context of convex
integration, and illustrate how it is linked to the generalized least action principle introduced by Bre-
nier [J. Amer. Math. Soc. 2 (1989), 225-255; in: New trends and results in mathematical description
of fluid flows (2018), 53-75]. Concerning the investigation of the functional itself, we use a regu-
lar approximation in order to show the existence of a minimizer enjoying partial regularity, as well
as other properties important for the construction of actual Euler solutions induced by the mini-
mizer. Furthermore, we discuss to what extent such an application of the least action principle to
subsolutions can serve as a selection criterion.

1. Introduction

Since its introduction in 2009 by De Lellis and Székelyhidi [18] in the context of fluid
dynamics, the method of convex integration has been a powerful tool to show ill-posedness
of initial value problems and to provide counterexamples to the conservation of physical
quantities in a low enough regularity regime; we refer to [6,20] for recent surveys. Besides
being an engine for counterexamples, due to their highly oscillatory nature, the solutions
obtained by convex integration shortly after also began to be utilized to describe turbu-
lent behavior in situations where a regular solution simply cannot exist due to irregular
initial data. Examples include vortex sheets in the homogeneous two-dimensional Euler
equations [36,43], as well as the Muskat problem for the incompressible porous media
equation [7-9, 15, 28,32,35,38,44], and the horizontally flat Rayleigh—Taylor instability
in the inhomogeneous Euler equations [29, 30].

The existence of solutions emanating in the stated situations relies on a general convex
integration theorem for the corresponding system, saying that a subsolution, which can be
seen as an averaged solution, induces infinitely many turbulent solutions that are close in
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a weak sense to the subsolution; see Theorem 2.1 below for example. Therefore, having
such a theorem at hand, it remains to construct a suitable subsolution. However, typically
there are plenty of admissible subsolutions emanating from the same initial data, i.e. also
on the level of averaged motion, a vast number of evolutions differing, for instance, in the
quantitative size of the induced turbulence of the solutions, are possible. One therefore has
to choose a particular subsolution based on a meaningful selection criterion. Up to now,
essentially two strategies have been used: reduction after some ansatzes to a hyperbolic
conservation law and selection of the unique entropy solution [30,43,44], and in the case
of the Euler equations short-time selection by means of maximal initial energy dissipation
[29,36].

In the case of the incompressible porous media equation with flat initial configuration,
the former strategy has been applied by Székelyhidi [44] yielding a family of subsolutions
out of which the one with “maximal mixing” coincides with the unique solution of a
different relaxation given by Otto [39] based on gradient flows. Regarding nonflat initial
interfaces, local-in-time subsolutions of different types have been constructed in [7,28,38],
also in the only partially unstable case [9]. Properties of the subsolutions selected in the
flat case by either of the above-mentioned relaxations have been incorporated in these
constructions; see for instance [7, Remark 4.2].

The latter criterion, i.e. maximal initial energy dissipation in the case of the Euler
equations, was motivated by the entropy rate admissibility criterion of Dafermos [16]. It
has also been discussed in the context of solutions obtained by convex integration for the
compressible Euler equations [12,27].

Motivated by the search for a global-in-time selection criterion and the well-known
fact that the Euler equations can formally be derived from the least action principle (see
Section 2 for more details), the present article originates from the question of what hap-
pens if one imposes the least action principle on the level of subsolutions.

In the current paper we follow this question in the setting of the flat Rayleigh-Taylor
instability modeled by the Euler equations in the Boussinesq approximation, while in gen-
eral we believe that similar research can be extended to other models and configurations.
The setting here has been chosen due to the presence of multiple symmetries (flat initial
data, normalization of p to &-1). In detail, we consider

d;v+diviv @ v) + Vp = —pgde,,
divv =0, (1.1)
d;p + div(pv) = 0,

stated on (0, T) x D with T > 0, D = (0,1)"~! x (=L, L) C R”, and with initial data
p(0, x) = sign(x,), v(0,x)=0, xed. (1.2)
On the boundary of O we set the usual no-penetration boundary condition,

v.-v=0 ondd x[0,T), (1.3)
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in order to complement the incompressibility condition. Here, v denotes the exterior unit
normal of 0D.

System (1.1), (1.2), (1.3) models two incompressible ideal fluids with homogeneous
densities 0 < p— < p4, with p — p— small, initially at rest, and separated by a horizontally
flat interface under the influence of gravity, i.e. in one of the most classical occurrences of
the Rayleigh—Taylor instability. The unknowns are the normalized fluid density p: [0, T) x
D — R, ie. p € {£1} a.e., the velocity field v: [0, T) x D — R”, and the pressure of
the fluid p: [0, T) x & — R. Furthermore, ¢, € R” is used to denote the nth coordinate
vector, g > 0 the gravitational constant, and 4 := g::%’:): is the Atwood number.

The article splits into two essentially independent parts. The first part, consisting of
Section 2 and complemented by Appendices A, B, addresses the application of the least
action principle. In Section 2 we first of all recall the relaxation of (1.1) seen as a differ-
ential inclusion and then illustrate how the least action principle imposed on a suitable
class of one-dimensional subsolutions gives rise to a variational problem. In Appendix A
we show how this problem relates to the relaxation of the least action principle by Bre-
nier [2,4] in terms of generalized flows. Appendix B contains details regarding a needed
variation of the usual convex integration result stated in Theorem 2.1.

The variational problem derived in Section 2 is of the type

minimize 4A(u) foru € X, (1.4)
where the functional +4 is given by
Au) = / F(Vu) —V(xo,u)dx (1.5)
Q

with Q := (0,T) x (=L, L) C R?, F:R? — [0, +o0],

0 if 1= 07

+o00 if 0, >1,
P1 .

5 otherwise,

2(1 - p3)

and V:[-L,L] xR — R, (x3,z) — V(x2, z) is a suitable nonlinear potential. To give an
example, the reader may think of

3gA
V(x2.2) = —gAz + 5=z = (%2 = L)*. (17)
The (affine) space of functions under consideration reads
X={ueH(Q) ulx;,£L) =0, u(0,x2) = —u(T.x2) = |x2| —L}.  (1.8)

The functional # is elliptic but degenerate in the sense that the minimal eigenvalue
of D?F(p) vanishes for p; = 0, while the maximal eigenvalue of D?F(p) becomes
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infinite as |p,| approaches 1 from below. The functional will be further introduced and
investigated in Sections 3—7, which form the second part of our paper. A reader only
interested in the variational problem itself might directly jump to these sections, which are
readable without the background given in Section 2. We would like to point out though
that some aspects of our investigation, in particular in Section 7, stem from the usability
of the minimizer as a subsolution for the Boussinesq system (1.1), (1.2), (1.3).

The two parts of our investigation are brought together again in the final Section 8,
where we summarize our results and discuss some open problems. A rough version of our
main theorem can be written here as follows.

Theorem 1.1. Under suitable conditions on the potential V, problem (1.4) has a mini-
mizer u € X N €°%Q) enjoying €2 regularity on a nonempty open set Q' C Q of which
every connected component is simply connected. On Q' there holds dx,u > 0, |0y, u| < 1,
while outside Q' we have 0x,u = 0, |0x,u| < 1 a.e. The gradient of u can be used to
define a one-dimensional subsolution of (1.1), (1.2), (1.3) and it thus induces infinitely
many solutions via convex integration.

As stated, a more detailed version including statements on energy dissipation and
attainment of initial and boundary data can be found in Section 8. There we also sum-
marize the ansatzes we make and reflect upon our initial question regarding a selection
criterion for subsolutions emanating from Rayleigh—Taylor initial data.

2. The action functional for subsolutions

The main point of this section is the derivation of the variational problem (1.4). We begin
with a short review of related previous work before recalling the notion of a subsolution.

2.1. The Boussinesq system and previous results

For a sufficiently regular initial data system (1.1), (1.3) is locally well posed; see [10, 17,
23], where in [23] it also has been shown that finite-time singularity formation occurs for
smooth data. We note however that the initial data of our interest (1.2), with py being only
essentially bounded, does not fall into the regularity classes considered in [10, 17,23].
Contrary to local well-posedness for lower regularity classes the existence of infinitely
many weak solutions can be shown by means of convex integration. Relying on the con-
vex integration method for the homogeneous Euler equations from [18], the existence of
infinitely many solutions with compact space-time support for (1.1) without the influence
of gravity, i.e. g = 0, has been shown in [5]. Moreover, the paper [13] addresses system
(1.1) under the additional influence of the Coriolis force in the momentum balance and
dissipation in the continuity equation. For this dissipative Boussinesq system, it is shown
that for a given initial density pg € €2 N L, there exists an irregular initial velocity field
vg inducing infinitely many solutions which are admissible in the sense that, for almost
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every positive time, the total energy of the solutions does not exceed the total initial energy.
This is an important property both from a physical point of view and for the mathematical
weak-strong uniqueness property; see [49] for an overview and [11] for the particular case
of system (1.1).

In order to obtain existence of turbulently mixing solutions emanating from the actual
Rayleigh-Taylor interface (1.2), Székelyhidi and the first and third authors have estab-
lished in [30] the full relaxation of the inhomogeneous incompressible Euler equations
(without the Boussinesq approximation) allowing them to construct admissible solutions
to the corresponding initial value problem under the condition that the quotient of the two
fluid densities satisfies

P+ o (4 + 2@)2
p— = 3
This translates to an Atwood number A > 0.845, i.e. in the so-called “ultra-high” regime.

In view of this Atwood number condition, the first and third authors thereafter
addressed in [29] the Euler equations in the Boussinesq approximation, which is applica-
ble for low Atwood number. In the latter paper the full relaxation could also be explicitly
given and, in contrast to [30], admissible turbulent solutions for (1.1), (1.2), (1.3) be con-
structed, respectively selected, without restrictions on the size of A > 0. Of course, the
equations cannot be seen as a reasonable physical system for larger A. The selection
of these subsolutions (cf. Definition 2.1 below) is based on imposing maximal initial
energy dissipation in the class of one-dimensional self-similar subsolutions. Imposing
these requirements leads to a variational problem for the self-similar density profile and
the initial speed of the opening of the mixing zone. The problem could be solved explicitly,
giving a possible small-time selection of subsolutions within the stated class.

While in [29] the first and third authors achieved the computation of the full relaxation
of the Boussinesq system as a differential inclusion and the construction of first examples
of subsolutions by means of the previously described short-time selection criterion, the
present article in contrast picks up at the established relaxation and explores the utiliza-
tion of the least action principle as a global-in-time selection criterion that is consistent
with the underlying geometric structure of the Euler equations. Unlike [29], this approach
for example allows us to tie connections between convex integration subsolutions and Bre-
nier’s 1989 relaxation [2]; see Appendix A for details. The resulting variational problem,
and consequently its analysis, is entirely different to that for the self-similar subsolutions
considered in [29].

In the following subsections we will derive this problem, i.e. problem (1.4), by apply-
ing the least action principle to the relaxation given in [29]. However, on the topic of
connections between variational principles and convex integration subsolutions, we would
first like to add a short comparison to another paper by Brenier [3].

The least action principle gives a way to derive the Euler equations. However, if in
practice one would like to utilize the principle itself, it has the disadvantage that one has
to specify not only the initial configuration but also a target or final configuration; see
Section 2.6 for example. Brenier [3] designs a variational principle for the homogeneous
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Euler equations (p = 1, g = 0) that gets by solely with the initial condition, by adding
the Euler equations themselves as a constraint. After reformulations he shows that the
corresponding dual problem, which is a concave maximization problem, always admits
a solution. Regarding consistency, he shows that smooth solutions to the Euler equations
indeed give rise to maximizers of the dual problem.

Moreover, for a continuous initial velocity field Vj, Brenier also relates the optimal
value of this concave problem to the infimum of a functional considered over all (non-
strict) subsolutions emanating from Vj. These two values coincide [3, Theorem 2.6]. After
some reformulations one can see that this functional is the kinetic energy and thus, in the
homogeneous case, the action associated with the subsolutions. However, the analysis of
[3] only states that the infimum of the “initial value subsolution action” equals the max-
imum of the designed dual functional for the Euler initial value problem. In particular, it
does not give the existence of an optimal subsolution minimizing the action, or any strict
subsolution emanating from Vj.

To the best of our knowledge, [3] is the only instance prior to the present article where
an action functional for convex integration subsolutions of homogeneous or inhomoge-
neous Euler equations appears in some form.

2.2. Relaxation as a differential inclusion

We first of all rephrase (1.1) as a differential inclusion. As before, letn > 2, L >0, T > 0,
D =(0,1)""x(—L,L)and set Z := R x R" x R" x §*" x R, where $2*" denotes
the set of symmetric trace-free matrices.

Consider the linear system

d;v+dive + Vp = —pgde,,

divv =0, 2.1
d;p+divm =0,
in (0, T) x O, with boundary conditions
m-v=0, v-v=0 2.2)

on (0,7T) x 0D, as well as for given functions eg, ¢1: (0, 7) x D — R witheg £ e; > 0
the family of sets K )y C Z, (¢,x) € (0,T) x D defined by (p, v, m, 0, p) € K x) if
and only if

lol=1, m=pv, v®v—0 =/ (et x)+ pei(t,x))id. (23)

1
loc

It is easy to see that if a tuple z := (p,v,m, 0, p) of L
(2.1), (2.2) distributionally and if there holds

functions satisfies system

z(l,x) € K(t,x) 24
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for almost every (¢, x) € (0, T) x D, then (p, v) is a solution of the inviscid Boussinesq
system with local energy density function

&(t,x) = %|v(l, x)|* + p(t, x)gAx,
= Z(eo(t,x) + p(t. X)er(t,%)) + plt. X)gAxs. 2.5)

Similarly in the other direction, if (p,v) € L%°((0,T) x D) x L2((0, T) x D) solves
(1.1), (1.3) and p € {—1, 1} a.e., then one can set m = pv, 0 = (v ® v)° to see that there
exist eg, €1, and a pressure, such that one obtains a solution to the differential inclusion
(2.1), (2.2), (2.4) with K x) defined with respect to the functions e, ej.

Note that at this point there is no unique or canonical choice for ey and e;. As can be
seen from (2.5) they dictate the form of the local kinetic energy and should be continuous
for the application of convex integration; cf. Theorem 2.1 below. The introduction of two
such continuous functions in [29] instead of only one in the case of the homogeneous Euler
equations [19] allows the kinetic energy of the solutions to oscillate along the oscillations
of the density p. This additional flexibility turned out to be advantageous in setting up
variational problems on the level of subsolutions and will also be exploited in Sections
2.3, 2.4 below.

For the relaxation of the Boussinesq system in the sense of differential inclusions,
condition (2.4) is replaced by requiring the tuple z(¢, x) to take values in the interior of
the convex hull K ft‘”x), or more generally of the A-convex hull K (}’x), instead. In the case
of (2.1), (2.4) the two notions of convex hulls coincide and its interior is given by

2
Ut =z =(p,v.m.0.p) : Ipl < 1, n‘r('::)l‘)z <eo(t,x) +e1(r,x), (2.6)
—vl2
—n‘r(':)—lil)z <eo(t,x) —ei(t, x),
Amax(w+U®U—U)<eo(l,x)+pel(t,x)};

see [29, Proposition 3.6].

Definition 2.1. We say that z = (p, v, m, g, p) is a subsolution with respect to a pair
of measurable functions eg, e; iff p € L®((0,T) x D), v,m € L*((0,T) x D), 0 €
LY((0,T) x D), p is a distribution, z satisfies the linear system (2.1) with boundary and
initial data (2.2), (1.2), there holds

eo +per € LY((0,T) x D), (1 —p?)er € L'((0,T) x D), (2.7)
pe; <0ae.on (0,T) x D, (2.8)

and in addition there exists an open set U C (0, T') x D such that

(a) the functions ey, e1, p, v, m, o are continuous on U, and z (¢, x) € Uy, x) for every
(,x) € Ws
(b) z(t,x) € K(,x) for almost every (¢,x) € ((0,7) x D) \ U.
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We call the set U the mixing zone associated with z. Of course, the definition extends
to initial conditions other than (1.2) compatible with |[pg| = 1 a.e. and divvp = 0 in D,
vo+-v =00ndD.

Note that condition (2.7) is a slight generalization of the one from [29] where it was
assumed that eg, e; are essentially bounded. This is done in view of the subsolutions we
will obtain in this article for which it is not clear that even eg, e; € L'((0, T) x D) holds
true. However, condition (2.8) allows these less integrable subsolutions to still induce
infinitely many weak solutions whose energy can be controlled. More precisely, there
holds the following convex integration theorem, whose proof, i.e. the necessary modifica-
tions due to (2.7) instead of eg, ¢; € L, can be found in Appendix B.

Theorem 2.1. Given an arbitrary error function §:[0, T] — R with §(0) = 0 and §(¢) > 0
fort > 0, and a subsolution zy, there exist infinitely many solutions (psor, Vso1) of (1.1),
(1.2), (1.3) coinciding with (psup, Vsup) outside U, and on U having the local energy density

n
Esol (1, x) = —(eo(t, x) + psot (1, x)e1 (1, x)) + psor(t, x)gAxy

2
n

= E(e"(t’ X) + psun(t, x)e1(t, X)) + psub(t, X)gAXn
+ &5 (t,x) + X1, %), 2.9)

with 881 = 5e1(Psol — Psub), 882 = gAx, (0sol — Psub) satisfying

‘/ Ei(t,x) dx
D

Moreover; the solutions are found arbitrarily close to (psub, Vsup) in the weak L?(U) topol-
0gy.

<é(t) foraete(0,T)i=12. (2.10)

Remark 2.2. Conditions (2.9), (2.10) allow us to conclude that the induced solutions are
weakly admissible provided that the subsolution satisfies

/@ 2 (eolt. )+ panlt ¥)er (1) + pun(t, X)g Ay dx < /@ po(X)gAxn dx (2.11)

fora.e.t € (0, T). Here, the right-hand side is precisely the total initial energy associated
with (1.2).

Remark 2.3. The solutions (psol, Vso) given by Theorem 2.1 satisfy |pso(2, x)| = 1 for
a.e. (t,x) € (0,T) x D. This is a consequence of (2.3), where this condition has been
imposed as part of the differential inclusion consistent with the transport equation in (1.1)
and the initial data py. Note however that the conclusion of Theorem 2.1 remains valid if
(Psub» Vsup) satisfies

) z(t, x) e K x) or p(t,x) € (—1,1), (v,m,0,e9,e1)(t, x) = (0,0,0,0,0) for
almost every (t,x) € (0, T) x D) \ U,
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instead of Definition 2.1 (b). This is indeed true because the convex integration (cf. Appen-
dix B) is carried out on U and the specified O-state is already a solution to the Boussinesq
system. The difference is that the induced solutions (s, Vso1) may have regions of positive
Lebesgue measure where the fluid is at rest, vy = 0, but | pso1| < 1. We refer to this slightly
relaxed notion of subsolutions as “subsolutions with mixed resting regions”.

2.3. One-dimensional subsolutions

Since the initial data (1.2) that we consider only depends on x,, one can consider subso-
lutions which are obtained by averaging solutions in all other spatial directions, i.e.

2(t %) :=/ (6o X) d (¥ n).
[0,1]7—1

One can then easily see thatdivy =0 and v - v = 0 imply v = 0, as well as dx,;m = 0 for
j=1,...,n—landm-v=0implym; =0forj =1,...,n— 1.

Definition 2.4. A subsolution z = (p, v, m, 0, p) is called a one-dimensional subsolution
provided z (¢, x) depends only on (¢,x,) € (0,T) x (=L, L) andv =0, m; =0, j =
1,...,n—1.
Lemma 2.2. Let z be a one-dimensional subsolution with respect to eq, e1. Then p(t,x) =
p(t, xp) and m(t, x) = my(t, xp)ey, enjoy the following properties:

(1)  9¢p + dx,mp = 0 weakly,

(i) mu(-,£L) =0, p(0,-) = sign weakly,

(i) there exists W C (0,T) x (=L, L) open such that p,m, € €°(W), |p| <1onW,

@) |pl =1, my = 0 a.e. outside W,

2
n

(V) lrfp2 € Ll (u/))

2
iz on w.

Conversely, let p,my:(0,T) x (—L, L) — R be measurable functions satisfying properties
(i)~(v) and é € €°(W) N LY (W), é > 0. Then for suitable eq, ey the pair (p, m,) induces
a one-dimensional subsolution z with p(t, x) = p(t, x,), m(t, x) = mu(t, xp)e,, U =
{(¢,x) : (t,xn) € W} and kinetic energy density given by

m
1—

(vi) n(eo + per) >

|m’l ([’ xn)|2

20— pt.xn)?) e(t, xn) (2.12)

%(eo(f»x) + p(t, x)er(t, x)) =

for (t,x) € U.

Remark 2.5. The weak notion of solution in Lemma 2.2 (i), (ii) is understood in the sense
that

T /L L
/ / POr@ + My 0y, @ dx, dt + / sign(x,) (0, x,) dx, =0 (2.13)
o J-L 3

forallp € €°([0,T) x [-L, L]).
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Remark 2.6. If (p, m,) satisfies (i)—(iii), (v), but instead of (iv) only
m, =0, |p| <1a.e.outside U,

then (p, m,) induces a one-dimensional subsolution with mixed resting regions as de-
scribed in Remark 2.3.

Proof of Lemma 2.2. If z is a one-dimensional subsolution with respect to eg, e; and mix-
ing zone U, then properties (i)—(iv) clearly hold true for U being the projection of U.
Moreover, (v) follows from (vi). Thus it remains to prove (vi).

By definition of a subsolution (cf. (2.6)), there holds

m® ml®_ (2.14)
————<ete, —— <ep—eq, .
np+D2 T wpe—p2 0
inside the mixing zone U. It follows that
I+p 1—p
n(eo + per) = ”( > (eo +e1) + (eo — 61))
<1+p m|? 1—p |m]? )_ my
2 n(p+1)2 2 np-12)  1—p?

Now let p, m,, and é be given as stated. We will define z and suitable eg, e; in terms
of these three functions. We set U := {(¢,x) € (0,T) x D : (¢, x,) € U'}.

Since v has to be 0 throughout (0, 7') x O for a one-dimensional subsolution, we have
tosetm = pv =0,0 = (v®v)° =0, and n(eg + pe;) = |v|> = 0, hence ey = —pe,
outside the mixing zone U. Without loss of generality we set eg = e¢; = 0 on ((0, T') x
D) \ U. In consequence, for a.e. (¢, x) ¢ U there holds z (¢, x) € K, x) with K(; x) defined
in (2.3) foreg = e; = 0.

On the other hand, inside the mixing zone we of course set p(¢, x) = p(t, x, ), m(t, x) =
my(t, x)e, and observe that for z (¢, x) € Uy y) it remains to satisty

ﬂ <eo(t,x) + eyt x), L <eo(t,x)—e(t,x),
n(p +1)? n(p—1)?
ml?
)Lmax(|—|2€n R e, — 0) < eo(t,x) + pei(t, x).
l—p

First of all we claim that the third inequality automatically holds true provided the first
two inequalities are valid and we define o € $§*” such that

mP mP
— e ep—0=———id.
1—p2 "5 n(1—p?)
Indeed, in that case, as just shown, there holds
5 ( Im|? % ) m? N
max (4 ey —0 ) = ——— e e1.
1—p? n n n(l = p2) 0 T pe1
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Moreover, turning to the set of linear equations (2.1) one has
d;v +divo + pgAen = (0x,0nn + pgA)en,

which can always be written as —V p by setting

Xn
p(t,x) == —0pn(t, x) —/ p(t,x))dx,, gA.
0

The other two equations in (2.1) with correct initial and boundary data hold true by
assumption.

In order to have a subsolution, it therefore only remains to find ey, 1 such that the two
inequalities (2.14) are valid. It is easy to check that these conditions and (2.12) hold true
for

_ImPP(+p?) b e = 2p|m|?
CT (-2 T TN -7
Observing that conditions (2.7), (2.8) indeed hold true finishes the construction of the
subsolution induced by p and m,,. ]

2.4. Applying the least action principle

In the classical case, the action functional consists of the difference between kinetic and
potential energy and yields when minimized over suitable paths the equations of motion
for the described mechanical system. Going back to Arnold it is well known that this
principle can formally also be used to derive the Euler equations; see Appendix A and the
references therein for more detail. We will now state it on the level of subsolutions.

The total potential energy of a one-dimensional subsolution z = zy, at time ¢ € [0, T']
is given by

L
Epo(?) = / o(t, x)gAx, dx = / p(t, xn)gAx, dxy,.
D -L
Note that, in view of Theorem 2.1, for any given error function §(¢) there exist solutions
Zso1 Whose total potential energy f D Psol§Axy dx at time 7 is §(1)-close to Ep(?).

In a similar way, it follows from Theorem 2.1 that there exist solutions having at time
¢t a total kinetic energy arbitrarily close to

/ ’l(eo(t,x) + p(t,x)ey(t, x)) dx.
o2

Moreover, given p and m of a one-dimensional subsolution z = zg,, Lemma 2.2 shows
that pointwise on U there holds

inf{%(éo + péy) : Z subsolution with respect to &g, €1, p = p, M = m} =
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Including this pointwise minimization over all possible subsolutions coinciding with z in
the p and m components, we therefore define the total (least) kinetic energy of a one-
dimensional subsolution z by

_ L Im(l,xn)|2
Ein(1) := [_L 2(1 — p(t. x2)?)

Here, the integrand is understood to be 0 when (¢, x) is outside the mixing zone, i.e. where
|p| = 1, m = 0. Indeed, outside the mixing zone there holds ey + pe; = O for any one-
dimensional subsolution.

Note that the pointwise optimization above does not affect the potential energy Epo(?).
It is therefore compatible with the following least action principle:

minimize 4 (z) over one-dimensional subsolutions z, (2.15)

where the action is defined as
T
A0(2) = [ Bun(t) = Byt d
0

/ /L 2(1m_n(;(txr;) B) — pt, xp)gAXn dxp dt. (2.16)

As subsolutions relax the notion of solution for the Euler equations, the least action
principle (2.15) can be seen as a generalization of the classical least action principle giving
rise to the equations itself. We will show in Appendix A that this generalization is formally
equivalent to the generalization of the least action principle given by Brenier in [2,4].

Note that at this point we have not yet specified the final configuration for the subsolu-
tions at the end time 7', which is usually done in applications of the least action principle.
This is postponed to Section 2.6.

2.5. Reformulation

Before continuing let us simplify our notation. First of all, from a one-dimensional subso-
lution z we keep only the information relevant for the action, that is, the density p and the
last component of the momentum m, which we again denote by m.

Furthermore, let Q2 := (0, T) x (—L, L) and identify a point (¢, x,) € Q simply by
x = (x1, x2). That is, time is denoted now by x; and the last coordinate in the box D by
X». Thus the action functional (2.16) can be written as

m?
Ao(p,m):/ 2(1 o) pgszdx:/QF(m,p)—pgszdx,

where F' is defined in (1.6). Recall here that the kinetic energy density satisfies =0

whenever m = 0.

_m?
2(1—p?)
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As seen in Lemma 2.2, the pair (m, p): Q — R? has to satisfy properties (i)—(v) of the
said lemma in order to correspond to a one-dimensional subsolution in the sense of Defi-
nitions 2.1, 2.4. Some of these properties will be implemented directly into the variational
formulation, while others will be shown a posteriori for an existing minimizer.

First of all, observe that property (v), i.e. the L !-integrability of 1’1’—;2, aswellas |[p| <1
a.e. follows for (m, p) measurable with finite action g (p, ).

Next, property (i), i.e. the equation dx, p + dx,m = 0, will be encoded by introducing
a stream function for the divergence-free vector field (p, m). If the action is finite we have
(p,m) € L?(2;R?) and therefore find u € H'(Q) withm = —0dy,u, p = Ox,u.

Moreover, in view of the needed initial and boundary data, i.e. property (ii), we require
the stream function u € H'(Q) to satisfy

u(0,x3) = |x2| = L, xp € (=L,L), u(x1,£L)=0, x1€(0,7) 2.17)

in the sense of traces. Indeed, one can easily check that for ¢ € €°([0, T) x [-L, L])
there holds

L
/s; 0x,U0x, @ — Oy, Udx,p dX = [L(|xz| — L)0x,0(0, x2) dx

L
= —/ sign(x2)@(0, x2) dx;.
-L

Hence (2.13) and therefore Lemma 2.2 (i), (ii) are satisfied. In Section 7.3 we will in fact
show that the boundary and initial data are attained in a stronger sense. Moreover, our
investigation will in addition show that m(0,-) = —d, u(0,-) = 0 in this sense; see Lemma
7.5.

The remaining properties Lemma 2.2 (iii), (iv), as well as the admissibility of the total
energy (cf. (2.11)), will be part of our investigation.

At this point the action functional in terms of a stream function u satisfying (2.17) can
be written as

Ao(u) = /Q F(Vu) + gAudx, (2.18)

i.e. we have arrived at (1.5) with V(x,,u) = —gAu.

2.6. Final configuration

As mentioned above, the least action principle is formulated with respect to variations over
a class of trajectories connecting a given initial and target configuration. While our initial
configuration is clear, there are plenty of target configurations possible. In the present
article we simply chose the stable interface configuration —pg. This configuration has the
overall least potential energy, thus also the overall least total energy provided the fluid is
at rest, and therefore is a canonical candidate for the long-time limit of the system.

In terms of the introduced stream function u# we therefore add

u(T,xz) =L —|x2|, xpe(-L.L) (2.19)
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to the list of requirements (2.17). Note that this implies that in Remark 2.5 the equation
can be tested against ¢ € €% (Q), while adding f_LL sign(x,)¢(T, x,) dx, to the left-hand
side of (2.13).

2.7. Energy dissipation

It is a well-known built-in feature of the least action principle that solutions conserve the
total energy, which in our case at time x; reads

L
Ei(xy) := /_L F(Vu(x)) — gAu(x) dx,. (2.20)

Indeed, up to formally admitting the Euler-Lagrange equations div(V F(Vu)) = gA of
(2.18), here one also has

d L
—FEio = / VF(Vu) - V(0x,u) — gAdx, u dxs
dx L

L

= / BPIF(Vu)ai%u — 0y, (0p, F(VU)) 0, u — gA0x, u dxs
—L
L a

= / d—(a,,l F(Vu)dy,u) — div(F(Vu))dyx,u — gAdx, u dxa
—L axy
L a

:/ —(0p, F(Vu)0x,u) —2gA0x,u dx;
—L dx1

L g d
= / —Q2F(Vu)) —2gA0x,udxy; = 2——Ey.
_1 dxy dxy

Hence the total energy is constant in time. This formal computation will be made rigorous
in Section 7.2.

This is of course undesirable in the context of turbulent fluid dynamics where energy is
anomalously dissipated. Note also that, as can be seen in (2.9), the energy of the associated
solutions obtained via convex integration differs from the energy of the subsolution with
a small margin of error. However, if the energy of the subsolution is conserved, it can
happen a priori that due to this margin of error, the energy of the solution will increase.

There are plenty of modifications and extensions of the least action principle in order
to include energy dissipation; see for instance also the discussion in [4].

In the present article we overcome the issue of energy conservation by introducing an
additional nonlinear potential energy. That is, instead of #( we consider (1.5), where now
V:[-L, L] x R — R has the form

V(x2,z) = —gAz + f(x2,2).

Through similar formal calculations to previously, one obtains that the total energy (2.20)
now changes according to

d

L L
—/ F(Vu) — gAu dx, = —/ 0z f(x2,u)0x,u dxs. 2.21)
dx1 —L

—L
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We will show that dx, u > 0 (see Corollary 5.5), which means that the average momentum
m = —0y, u is negative. Thus, if 9, f > 0, then strict energy dissipation for the subsolution,
and hence also for the associated solutions, is possible.

Integrating (2.21) in time one obtains that

L
Eyin(x1) + Epor(x1) + /L S(x2,u(x)) dx,

is constant for minimizers of (1.5). Hence the dissipated kinetic and potential energy is
absorbed in the new energy

L
Er(xy) = /_L f(x2,u(x))dx;.

Furthermore, note that in (2.21), only points where d,,u > 0 contribute to a dissipation,
i.e. no points outside the mixing zone U'. In terms of the induced solutions this means that
the energy is only dissipated inside the mixing zone, where they are wildly oscillating.

Of course at this point there are plenty of choices for f possible. A specific example
is given in Section 2.9 below, after we have introduced one more condition in the next
Section 2.8. We refer also to the discussion in Section 8.

2.8. Initial and final energies
Formally taking the limits x; — 0, x; — T we deduce that
Ef(T) - Ef(o) = _(Ekin(T) - Ekin(o) + Epot(T) - Epol(o))-

The initial and final potential energies can easily be computed for u satisfying (2.17),
(2.19). There holds
—Epot(T) = Epot(0) = gAL>.
Thus, requiring
Ef(T)— Ef(0) = 2gAL>

renders the solutions to start and end with the same kinetic energy Eyi,(0) = Exin(T),
which in view of (1.2), (2.11) should be 0. Note that then the fluid is at rest also at the
final time.

In order to achieve Ey,(0) = Eyin(7T) = 0 as a consequence of minimizing the action
functional (1.5) we chose f such that, for

sy = sup{ [T, V(x2. @) dxy 1 ¢ € €°([~L. L), |p(x2)| < L — |x2l}.
there holds
L
sy = / V(x2,¢)dx, ifandonlyif ¢ = (L — |x3]). (2.22)
—-L

In fact, we will show in Section 7.4 that this condition allows us to conclude that the
subsolution starts and ends with O kinetic energy at least as 7 — +oo. This can be seen
similarly to the existence of heteroclinic orbits, for instance in pendulum equations.
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2.9. Example

One of the simplest examples for f satisfying the requested properties is

f(x2,2) = %(z — (|x2] — L))?, (2.23)

which is also stated in (1.7).
Indeed, the monotonicity with respect to z holds true for z > |x,| — L, which in view
of Corollary 5.5 turns out to be enough. Regarding (2.22) we first of all observe that

L L
/L V(xa, L —|x2|) dxy = /L V(xa, |x2] — L) = gAL?

by the choice of the constant % in (2.23). It remains to show that

L
V(p) = /_ Ve p(e) dxs < gAL?

for any ¢:[—L, L] — R continuous, with |¢(x2)| < L — |x2|, but ¢(x,) not identical to
L — |x2| or —(L — |x3]). Let ¢ be such a function, i.e. there exists an open interval I C
(=L, L) on which |@(x3)| < L — |x3|. Considering perturbations ¢ + ey with suppy C 1
and |e| small enough, one concludes that & — V(¢ + &) is a uniformly convex €2
function, and thus cannot have its supremum achieved in ¢ = 0.

We remark that for this specific example the new energy term absorbing kinetic and
potential energies can be expressed in terms of the actual variables (p, m) (instead of the
potential u) as

3gA

3gA
Ef(X]) = E”u(xla') —M(O, .)lliz(—L,L) = E”p(xla) _POH%{—l(_L,L),

where H ' (—L, L) denotes the dual of H/ (—L, L) with respect to the topology induced
by the norm ||d,, (')||L2(—L,L)-

3. A degenerate variational problem

We now turn to the investigation of problem (1.4). More precisely, we seek to minimize

Au) = /sz F(Vu) —V(x,u)dx 3.D

over the class of functions ¥ € X with F defined in (1.6) and X given by (1.8).
The nonlinear potential V: Q x R — R, (x,z) — V(x, z) is supposed to satisfy the
following regularity condition:

V is 3 times differentiable with respect to z,

_ (Vreg)
8’2‘ V:QxR —>R, k=0,...,3 are Lipschitz continuous and bounded. *
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This condition will be assumed throughout the remainder of the article. Note that the
example given in (1.7) and Section 2.9 satisfies (V,) when the stated V' is extended
smoothly outside  x [—L, L], such that V and its z-derivatives are globally bounded.
We remark that the precise extension turns out to be irrelevant in view of Corollary 5.5.
Moreover, we will frequently also assume that the potential is autonomous with respect
to xp, i.e.
V(x,z) = V(x2.2), x€Q, zeR, Vau)

such that then (3.1) reduces to (1.5).

Two other conditions on V', as indicated in Sections 2.7, 2.8, will be introduced when
needed, which is only in the very last part of our investigation in Section 7.4 when it comes
to the interpretation of our minimizer as a subsolution for the Boussinesq system.

For now our main goal is to show the following existence and partial regularity result
for the variational problem

find u € X such that A(u) = in)f( Au), 3.2)
ue

as well as the associated energy balance in the autonomous case.

Theorem 3.1. Suppose that (V .,) holds. Then problem (3.2) with 4 defined in (3.1) has
a solution u and there exists Q' C Q open, nonempty such that u|q is of class €2 with
Oy #0, [0x,u| < 10on Q' and dx,u(x) =0, |0x,u(x)| < 1forae x ¢ Q. Moreover, if
in addition (V ) holds true, then u € €°(Q), dx,u > 0 on Q' and there holds

d L
L / F(Vu(x) + V(xa, u(x)) dxs = 0 (3.3)
dxy J-r

weakly on (0, T).

The main difficulty lies in the degeneracy of the convex, lower semi-continuous
integrand F'. Indeed, denoting by A(p), A(p) the maximal and minimal eigenvalues of
D2F(p) (cf. (4.1) with e = 0), for p; # 0, | p2| < 1 there holds

A(p) —> +ooas|p] > 1 and A(p) - 0as p; — 0.

Thus the problem degenerates on the nonconvex set £ := {0} x [-1, 1] U R x {£1}, with
indefinite behavior for det D2 F(p) as p — (0, £1).

This is in contrast with the prototype of degenerate problems, i.e. the p-Laplace prob-
lem with F(§) = |£|?, where the ellipticity constants degenerate only at the single point
E = {0} and with definite behavior for all eigenvalues as £ — 0. In that case, €1:%-
regularity for minimizers is known; see [24,34,45-47].

Another proof for the regularity of p-harmonic maps is given by Wang [48], relying
on a separation between degenerate and nondegenerate points and the fact that near the
degenerate set Vu is small anyway. Beyond the p-Laplacian, Colombo and Figalli [14]
also applied a separation strategy based on ideas of [48] to problems that degenerate on a
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bounded convex set E having 0 in its interior. One of these “very degenerate” integrands
is for example F(£) = (|€| — 1)?, which arises in problems related to traffic congestion.
The main theorem of [14] states that for this type of problem with V(x, z) = V(x), the
composition V F(Vu) is continuous. This extends the work by Santambrogio and Vespri
[40] relying on two-dimensional methods for £ = B;(0), to any dimension and a general
convex bounded E with O € int(E).

Near nondegenerate points, the proof of [14] is based on a compactness result for
small solutions to elliptic equations in the spirit of Savin [41] which in the present work
also renders one of the main ingredients in the proof of Theorem 3.1. However, the nature
of the degeneracy of our F has not so far allowed us to conclude a global regularity result
like the one in [14].

De Silva and Savin [21] considered a different type of degenerate variational problem
arising, for instance, in questions related to limits of random surfaces. There the integrand
F is a bounded function defined on the closure of a bounded two-dimensional polygon
N and the set of degeneracy is given by the union of dN and finitely many points inside
N. Apart from this union, F is smooth and strictly convex. There is no potential term,
i.e. V = 0. In that setting, [21, Theorem 1.3] provides a partial regularity result for the
unique minimizer u and characterizes the behavior at points where Vu is not continuous.
More precisely, every point of discontinuity is connected to the boundary of €2 along a
straight segment perpendicular to one of the sides of N and on that segment u is affine
linear. Besides the unboundedness of our F' and our degeneracy set E, the absence of the
maximum principle due to the nonlinear potential V'(x, z) prevents us from applying the
methods of [21].

Still, in the following sense, points of discontinuity of Vu are, for certain V, also in
our case connected to €2

Lemma 3.2. Suppose that V satisfies (V,eo), (Vau), and 02V (x2,z) > 0 for all x5,z €
[—L, L]. Whenever Q" C Q is open with Q" C Q', where Q' is the set from Theorem
3.1, then there holds Q" C Q'.

For a further, more general overview on degenerate variational problems we refer to
the survey [37].

The proof of Theorem 3.1 is carried out in Sections 4—7. We begin in Section 4.1 with
the construction of regular approximations F, for the degenerate integrand F. Here, some
extra attention has to be paid (see Lemma 4.1 (iii)) in order to later conclude the energy
balance (3.3). Having a family of regularized variational problems at hand, we deduce in
Sections 4.2—4.4 the existence of regular minimizers u, enjoying corresponding e-versions
of the energy balance (3.3) or Lemma 3.2 for instance. After that, Section 5 deals with
the limit & — 0. We prove I'-convergence with respect to the weak H !-topology and
characterize in terms of the corresponding Young measure how strong convergence might
fail. In particular, we deduce the existence of a minimizer u to the degenerate problem
(3.2). Section 6 contains the proof of the partial regularity property which, as mentioned
earlier, uses the compactness result of Savin [41]. Section 7 collects various additional
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properties of u, for example (3.3), Lemma 3.2, but also further properties that rely on
the mentioned additional conditions on V. Finally, Section 8 contains a summary of all
conditions on V together with the corresponding conclusions, as well as a discussion of
open questions in the variational problem itself, but also regarding our application to the
Boussinesq system.

4. A regular approximation

In order to deal with the possible singularity in the denominator of F and the degeneracy
of D?F(p) when p; = 0, in this section we introduce the following regular approxima-
tion. For e > 0,let Fe:{p € R? : |ps| <1+ ¢} - R,

_ it

2((1+e)? = p3)

where 6 € (1,2) is a fixed constant. A quick calculation yields

Fs(p) =

_ p1 P+ ps )T
VE:(p) = ((1+s)2—p§ rer—pir)
1 . 2p1p2 .
2 (1+e)2—p ((1+&)2—p3)?
D*F¢(p) = 201> ’ (p%+sﬁ)((1+s)%+3p§) ’ 4.1
((1+6)2—p3)? ((1+¢)2—p3)?
2 6 2 2
1 3
det(Dst(p)) — D1 € (( +8) + pz)

(I+e2-p3)? (1+e?=p)*

Hence F; is uniformly convex.

4.1. Global extension

Next, we define the compact sets
K :={peR*:|p| <& |ps| <1+e—e*}

and extend Fy - in a uniformly elliptic way onto all of R?, with some additional proper-
ties. The stated uniform bound in (ii) for instance will be used to achieve I"-convergence
in Section 5, while property (iii) will be needed in order to conclude the energy balance in
Section 7.

Lemma 4.1. For every ¢ € (0, 1) there exists a smooth extension F:R? > [0, 0) of
Fy ke satisfying
1) Agid < Dzﬁg(p) < Agid for all p € R? with some constants 0 < Ag, Ay < 00,

(i) Apid < Dzﬁg(p) for |pal =1 +¢&—¢* or|pi| = 1 with a constant Ly > 0
independent of ¢ € (0, 1),
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(i) —e < aplﬁg(p)pl < 3ﬁe(p)for all p € R2.
The proof of Lemma 4.1 relies on Lemmas 4.2, 4.3.

Lemma 4.2. Let N, := max Fyge + 1, Ky, = F,'((—00, Ng]). There exists a convex
and globally Lipschitz extension Fg: R? — [0, 00) of Fy Ky, Satisfying

0 < 3, Fe(p)p1 < 2Fe(p) (4.2)

for almost every p € R2. Moreover, on K , the extension F,is differentiable with VF, =
VF,.

Proof. We abbreviate N = N, and consider the smallest convex extension of Fy g,
defined by F;:R? — R,

Fe(p) = sup {Fe(p) + VFe(p)- (p— p)}
ﬁeaKN

for p ¢ Ky and Fg(p) = F.(p) for p € Ky.
A priori, F, as a convex function is only locally Lipschitz, but since the subdifferential
of F; at p ¢ int(Ky) is given by

IF:(p) = {VF.(p): p € KN, Fo(p) = Fe(p) + VF:(p)- (p— p)}°  (43)

(cf. [50, Theorem 2.4.18]) and Ky is compact, it follows that ||Vf8||Lw(Rz) is finite.
Moreover, the strict convexity of F, and (4.3) imply

0Fe(p) = {VF:(p)} forall p € dKy,.

Next, knowing that 0 < 9,, Fe(p)p1 < 2F:(p), p € R?, |p2| < 1 + ¢ holds true, let
us prove (4.2) whenever Fj is differentiable at p € R?.
In order to do this let us suppose that the supremum is achieved at some p = p(p) €
0Ky and let us write F, = %eg, with
g(p) = g(p) = log(p} + &%) —log((1 + &)* — p3).
We obtain that
Fe(p) = N(1 +Vg(p)-(p— D)) (4.4)
and under the assumption of differentiability that VF, (p) = NVg(p).
Since p € 0Ky = {F; = N}, we have
P2 +e® —2N((1+ 6% -p2) =0, (4.5)

and hence we may rewrite

p1p1+ 2N papr — 2N(1 + )% — &%)
N((1+¢)?-p3 '

Vegp)-(p—p) = (4.6)

We first of all observe that dp, ﬁe(p)pl = Ndp, g(p)p1 = 0 as otherwise (—p1, p2) would
be a better choice for the supremum.
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For the upper bound we distinguish two cases:

Case (a): p» — p2 < 0. Since p maximizes (4.6) under the constraint (4.5), there exists a
Lagrange multiplier A € R such that there holds

D1
N((1+¢)2 - p3)

—2Ap; =0,

N, A7

N((1+e)? = p3)

2N pa
N((1+¢)? - p3)

+Vg(p)-(p—p) —4NAp2 = 0.

We may assume without loss of generality that neither p; nor p, is zero. Indeed, if
p1 = 0, from (4.7) it follows that p; = 0, and hence the inequality that we want to prove
follows trivially. If p, = 0, from (4.7) once more it follows that p, = 0, which contradicts
p2—p2 <0.

Expressing A from both equations and simplifying leads to

_ _ P1 P2
Vep)-(p—p)=——-—. (4.8)
P1 D2
As described we need to estimate d,,, g(p) p1, which is given by

D1P1 D1 _ _ D2 _ _
S =2—=2Ve(p)-(p—p)+2=-=2Veg(p)-(p—p) +2,
pite D1 D2

aplg(P_)Pl =2

where we have used (4.8) and the fact that we are in the case % < 1. Hence, using (4.4),
it follows that

Ipy Fe(p)p1 = N3y g(P)p1 <2N(Vg(p) - (p— p) + 1) = 2F:(p),
which is the desired inequality.

Case (b): p» — p> > 0. Observe that since p, — F¢(p) is even, we may assume without
loss of generality that p, > 0. In (4.6), replacing the denominator by %( P+ %) via (4.5)
it follows that p, > 0, as otherwise (p, —p,) would be better. This however implies that

_ 2p>

ad =—>0.
p28(P) G2 >

We may then write

0p,&(P)P1 =VE(P)-(p—P) + 0p,8(P) D1

)
_ _ P
g(p)-(p—p) P

<Vg(p)-(p—p)+2=2Vg(p)-(p—p)+2,

from where we conclude as in the previous case. This finishes the proof of the lemma. m
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Lemma 4.3. Let ¢, € €° (BZ’, 0),n>0 lae a standazd symmetric mollifier and F, from
Lemma 4.2. The convolution F) = oy * I satisfies F!' > F, and
—cen < 3p, B (p)p1 < 2F1(p) + cen, (4.9)
where c; > 0 depends only on e. Moreover, there exists Ag; > 0 with
0<D?F"(p) < Agpid, peR2 (4.10)

Proof. Denoting by ¢, > 0 the global Lipschitz constant of F, and using (4.2) one con-
cludes

I F2 01 = [ 0@ Folp =) a0 da + [ or(@0p, Fulp - a1 dg
<2F](p) +cen

and 9, Fl(p)p1 = —Cell-
Moreover, since F,' is a convex smooth function there holds

0= D2 E 0 = [ Velp =) o)Vl v dq = [ Vool dalol

for any v € R2. ]

Proof of Lemma 4.1. We will now construct the extension ﬁg. Let Ng, Kn,, ﬁg and FS",
1 > 0 be as in Lemmas 4.2 and 4.3 respectively. Furthermore, consider Q,, F, F,': R? —
R defined by

p? + 2N p32
2N (1 + )2 — &b’
3 LN, 3 s Ne
Fe(p) == Fe(p) + T(Qe(l?) -1, FMp)=F!(p)+ T(Qe(l)) —1).

Note that O, = 1 on 3K, by the definition of Ky,.
We claim that there exist constants C = C, > 0 and §’ = §, > 0, such that for any
§ € (0,8') and ¢ € R? with dist(¢, 9K y,) = § there holds

Qc(p) =

< —Cé, q ¢ KNS,

4.11)
> (3, q EKNS.

Fe(q) — Fe(q) {
For g € Ky, , where also 14:8 is smooth, this is a straightforward consequence of the fact
that on 0Ky, the functions Fy, F, coincide, while their gradients are related via VF, =
VF, + %V Q¢; cf. Lemma 4.2. For g ¢ Ky, we can argue by convexity instead. Indeed,

let pe 0Ky, andg = p +6 \ggzggl' Note that any ¢ ¢ Ky, with dist(g, dKy,) = § can
be written like this. There holds

g . A
Fe(q) = Fo(p) = (VFe(p) = VFe(p)) - (g — p) + 0(8) = =V Qe(p)I§ + 0(9).

with an error uniform in p € dKy,. Thus (4.11) follows.
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Next we fix § € (0,8’) small, such that Bs(Ky,) CC {p € R?: |pa| < 1 + ¢}, dist(K?,
B3 (0K y,)) > 0 and such that

3 -~
ZNS < Fy(p) forall p ¢ Ky, and all p € Ky, with dist(p, 0Ky,) < 8. (4.12)

‘We then choose the convolution scale n > 0 such that 12" satisfies

. <-C$)2, Ky,. dist(g, 0Ky,) = 8,
Fs(q>—F!<q){— /247 K. ditla. 0w

(4.13)
>C§8/2, q € Ky,, dist(q,0Ky,) = 6.

Finally, we define the extension Fy: R2 — R by

Fs(p), pE KNE, diSt(p, BKNE) > 5,
Fo(p) = { max;(Fe(p), FX(p)), dist(p,dKn,) <6,
E(p), p ¢ Ky,. dist(p, 0Ky,) > 8.

Here maxz, 77 > 0 is a sufficiently sharp convolution of the maximum of two numbers,
that is,

maxs(y1, y2) == /2 ¢7(y1 —ay, y2 —az) max{a;,az} da.
R

By this definition and (4.13) we see that F, is indeed a smooth function for any 7 > 0
chosen smaller than C§/4. Also, ﬁ€| ke = Fg ke by the choice of §. It thus remains to
verify properties (i)—(iii).

We begin with (iii): F, clearly satisfies (iii) with a factor 2 on the right-hand side.
Moreover, the definition of Q. and (4.9), (4.12) imply

. g N 2\ «
—cen) < 0p, F () p1 < 2F](p) + 78 +cen < (2 + 3) o (p) +cen

forall p ¢ Ky, and all p € Ky, with dist(p, 0Ky,) < §. Hence, by shrinking 7 further,
we obtain that F, o (p) satisfies (iii) with a factor 2 + % on the right-hand side for the said
points p.

It remains to observe that in the transition zone dist(p, 0K y,) < &, the gradient of F,
is given by the convex combination

VFE:(p) = VF:(p) 07 (Fe(p) — a1, FM(p) — az) da

{a1>az}

+ VE](p) 0i(Fe(p) — ar, EM(p) — az) da

{a1<az}
= M(p)VFe(p) + (1 = A(p)VE] (p),
while the values satisfy
|Fe(p) — (A(P)Fe(p) + (1 = A(p) F2(p))| < 7.

Thus by shrinking /) we deduce property (iii) for F..



B. Gebhard, J. Hirsch, and J. J. Kolumban 24

Next we turn to (ii). Regarding FJ( p) we have

N, 1
AN,(1 + )2 — 269 — 16

v

~ Ng
/\min(Dngn(p)) > T)Lmin(DzQs(p)) =

Regarding the original F,, observe that 1 4+ & > | pa| > 1 4 ¢ — &*? implies

0
1
F(p)2 5 > ¢

. 4.14
= 2.46% ~ 8 (19

The same estimate also holds true for p € R2, | po| < 1 + & with |py| > 1.
For p € R2, |ps| < 1 + & such that (4.14) holds true, we abbreviate the quantity o :=
(1 4+ &)? — p3 < 4 and estimate by means of (4.1) the minimal eigenvalue as follows:

det(D2Fs(p)) _ p?+0 e ((1+ )2+ 3p)
tr(D2Fe(p)) o2+ (p7 +9)((1 + &) + 3p3)
471 p7 + 4710 1 1
. > —,
T 4o +16(p? +¢f)  8Fs(p)~'+64 ~ 128

Amin(D? Fs(p)) =

Thus we set Lo = ﬁ and it remains to check the behavior of the minimal eigenvalue

in the transition zone dist(p, 0Ky,) < §. From what we have seen it follows that for both
functions f := F, f» := F,' there holds

A
fip) =ai = fi(po) = ai +V fi(po) - (p = po) + T |p = pol®

for all points p, po € R? which are §-close to dKy, and a; € R. Therefore,
R = [ ¢i(@ max{ fi(p) — a1, fa(p) — az)} da
A:={f1(po)—a1> f2(po)—az}

B:={f1 (po)—a1 @i (a) max{ f1(p) — a1, f2(p) —az}da

</f2(po)—az}

A
= [ e@(fi(o0) ~ a1 + Vo) (p = po) + 21y = pol?) da
A
A
+ [ @ o0 = a2+ (o) (0 = po) + F1p = o) da

A ~ A
= Fe(po) + VEe(po) - (p = po) + 1P = pol’.

which shows (ii).
Finally, property (i) follows in a similar way by observing that F, and F,' are uni-
formly elliptic with e-dependent bounds; cf. also (4.10). ]
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4.2. The regularized variational problem

Our regular approximation of the action functional +#4(u) defined in (3.1) then reads
Ae(u) = / F.(Vu) = V(x,u)dx
Q

with ﬁg from Lemma 4.1.
Moreover, we will not only use an approximation of the integrand, but also introduce
e-dependent boundary data, which is used for the a priori bounds in Section 4.3. We set

Xe={ue H'(Q) :u(,£L) =0, u(0,") = ~U,, u(T,") = Uy},

where Ug:[-L, L] — R,

B
P
Ue(x2) == L — |x2| + Z(Lz - x3)

for some fixed constant 8 € (1,3 — ). The boundary data is again attained in the trace
sense. Also observe that +, is well defined on all of H!(2) due to the uniform ellipticity
of F,. We then consider the corresponding regularized minimization problem

find u, € X, such that A, (u,) = inf,ex, A:(1). (4.15)

The uniform ellipticity of the approximations allows us to conclude the existence of
sufficiently smooth minimizers in a standard way.

Lemma 4.4. Problem (4.15) admits a solution. Every solution belongs to €°(Q), as
well as €**(K) for any compact K contained in Q and having a positive distance to

{(0,£L),(T,£L), (0,0),(T,0)}.

Proof. Lemma 4.5 below in particular shows that infy, +, is finite. The existence of a
minimizer ¥, € X, of A, then follows by the boundedness of V' and the uniform convexity
of I*:g (e.g. [25, Chapter 8.2]). Due to the ellipticity condition Lemma 4.1 (i) and (V ), the
regularity follows in the classical manner, e.g. from u, € H' to u, € H? to Vu, € €%*
to u, € €>%; see [25,31]. The points excluded are the points where either the boundary
or the boundary data lacks the necessary smoothness. ]

Lemma 4.5. There holds

sup inf Ag(u) < oo.
£€(0,1) ¥ Xe

Proof. Define w,: Q2 — R, we(x) = —Ug(x32) cos(rxy/T). Then w, € X, and

4
|aJC1w8| S Ts |ax2ws| S 1 +€ﬂ
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Hence, for sufficiently small ¢ > 0, we have Vw®(x) € K¢ and therefore

/ Fo(Vws(x)) dx = / Fo(Vwe(x)) dx
Q Q

. / Us(x2)? sin?(xy/ T)2n%/T? + ¢°
~Ja (148)? —Ul(x2)?cos?(x1/ T)
- 2L72U,(0)? 2LTé?

T T +e)? (1+8)2—(1+eP)2

The right-hand side is uniformly bounded as ¢ — 0, since the exponents 6, 8 are both
bigger than 1.

The uniform boundedness of A, (w,) follows since V is uniformly bounded due to
condition (V). ]

4.3. A priori bounds

Next we establish some first a priori bounds for solutions of the regularized problem
(4.15). Let u, be such a solution. In view of Lemma 4.4, u, is a classical, and therefore in
particular also a viscosity, solution of the associated Euler—Lagrange equation

div(VFs(Vu)) + 0, V(x,u) = D>F,(Vu) : D*u + 3,V(x,u) = 0. (4.16)

We quickly recall the notion of being a solution in viscosity sense.

Definition 4.1. A viscosity subsolution of (4.16) is a continuous function u: 2 — R, such
that whenever u is touched at a point xo € Q from above by a function ¢ € €2(Bs(xo)),
then

D?>F(Ve(x0)) : D?¢(x0) + 9:V(x0, ¢(x0)) = 0.

If the above inequality is strict in every such situation we say that u is a strict viscosity
subsolution. The notion of a (strict) supersolution is defined analogously, and a viscosity
solution is both a viscosity sub- and supersolution.

Lemma 4.6. For ¢ > 0 sufficiently small, the functions @ > x — Uz(x3) +c € R, c e R
are strict viscosity supersolutions. The corresponding functions induced by —U, are strict
viscosity subsolutions.

Proof. Consider U, as an x1-independent function defined on Q. For x¢ € 2 with x» # 0
there holds

B
~ &
D? Fe(VUs(x0)) : V?Us(x0) = _fazst(VUs(xo))
0
< —eP* < _Cghto-3

T L((1+ )2 — (sign(xo0) + % x02)2)°
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for a suitable constant C > 0 independent of x¢. By the choice of the exponents 6 € (1,2),
B € (1,3 — 0) and the boundedness of . V' (cf. (V..)), we deduce that

D2 F¢(VUe(xp)) : V2Ue(x0) + 8,V (x0, Ue(x0) +¢) <0

provided ¢ € (0, &9) for some ¢ > 0 small enough and independent of x¢ and c. The same
inequality holds true for any €2 function ¢ touching U, + ¢ from below at xo. Note that
U; + ¢ can only be touched by a €2 function from below at points with x¢ > 7 0. Thus
U, + c is a strict viscosity supersolution. Similarly, one concludes that —U, + c is a strict
viscosity subsolution. ]

Corollary 4.7. For ¢ > O sufficiently small, any minimizer ug € X, of A, satisfies |ug(x)|
< Ug(x3) for all x € Q. Moreover, the inequality is strict for x € Q2.

Proof. Consider again U, as a function defined on all of Q. Assuming to the contrary
that u, touches U, + ¢ for some ¢ > 0 from below at a point xo € Q with x¢ # 0
(touching at a point with x> = 0 again is not possible) directly gives a contradiction
with the fact that U, + c is a strict viscosity supersolution and u, € €2(R) is a solution.
Hence u, < U, on Q. An analogous statement regarding the comparison of u, with —U,
is obtained similarly. ]

4.4. Autonomous potentials

In this section, under condition (V,,) we conclude the positiveness of dx,u, and the
existence of a first integral, which is the total energy. Moreover, we lay the basis for
Lemma 3.2.

Lemma 4.8. Assume that V in addition to (V...) satisfies (V) and let ug be a solution
of (4.15). Then dx,us > 0 on Q for ¢ > 0 sufficiently small.

Proof. Consider the function w := u, 4+ U,, which is nonnegative by Corollary 4.7. As
before, U, is considered here as an x;-independent function defined on 2. For every
x € Q, x5 # 0, Lemma 4.6 implies

div(A(x)Vw(x)) + c(x)w(x) < 0,

where
1 1
A(x) = / D2F,(=VU, + sVw)ds, c¢(x):= / 2V (x, —Us + sw) ds.
0 0
Splitting the zeroth-order term into ¢ = ¢ — ¢~ with ¢, ¢~ > 0 and neglecting ¢ Tw >
0, the Hopf maximum principle implies that dx,u¢(0, x2) = 95, w(0, x2) > 0 for x, €
(—L, L), x # 0. Similarly one sees that dx,u.(T, x) > 0 for x5 € (—L, L), x5 # 0.
Next we claim that (x,u;)~ € Hg (£2). Indeed, the difference quotients

ug(x1 4 h,x2) — g (x)
h

vp(x) =
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satisfy v,” € H} (Qp), Q5 = (0,T —h) x (L, L) by Corollary 4.7. We therefore can
use v, as a test function for the equation

div(B(x)Vup(x)) + d(x)vp(x) =0, x € Qp, (4.17)

where

1
B(x) := /0 D2 F,(Vugs(x) + shVuy(x)) ds.

d(x) = /01 3? V(x,ug(x) + shvp(x)) ds.

Note that the potential V' is autonomous with respect to x; by assumption (V). Now
testing (4.17) with v, we obtain

0= / B(x)Vvy, - Vv, —d(x)vpvy, dx
{vn <0}

= / B(x)Vv, - Vv, — d(x)(v;)2 dx.
Q2

Hence the uniform ellipticity of D2 F, (for fixed ¢), the boundedness of 32V and ., u, €
L2(S2) imply a bound on || Vv 2@, or IV, | 22() when extending Vv, by 0 outside
Q. Now, by the regularity of u, in Q, there holds Vv, (x) — V(dx,u)™(x) for all
x € Q as h — 0, which together with the L2 bound for Vvy, implies V (9, u:)~ € L?(R).
Therefore, (dx,ue)~ € Hg (Q).

Now using ¥ := (dx,u,)~ as a test function for the differentiated equation

div(C(x)Vox, ue(x)) + e(x)0x,us(x) =0, x €,

where this time C(x) := Dzﬁa(Vug(x)), e(x) = 02V (x,us(x)), we deduce
0= / CX)VY -V —e(x)y? dx.
Q

On the other hand, since u, is a minimizer of #;, we also have for any ¢ € HO1 ()

that
2

0< %‘Szod\w(ug +5¢) = /;z C(X)V -V — e(x)p2 dx.

Hence, if we assume i # 0, then the first eigenvalue of the self-adjoint operator £¢ =
—div(C(x)Ve) — e(x)¢ is 0 and  is in the associated eigenspace. However, the eigen-
space associated with the first eigenvalue is one-dimensional and spanned by a function
which is positive a.e. on 2. This contradicts the fact that i is vanishing in a neighbor-
hood of (0, L/2), due to dx,u-(0, L/2) > 0 and the continuity of dx,u, at that point. In
consequence, (0x,Us)~ = ¥ = 0. |
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Lemma 4.9. Under the additional assumption (V) the quantity

L
f 8y Fo(Vito ()1 (x) — Fu(Vite () + V(xa. () dva @.18)
-L

is independent of x1 € (0, T) for any solution u, of (4.15).

Proof. Let us denote the function in the integral (4.18) by ﬁg(x). Using the Euler—
Lagrange equation (4.16) and (V) one easily checks that inside €2 there holds

0, He + 3y (9, Fe (Vate) 1)
= div(V, Fo (Vi) dx 1) + 0V (- ue)dx e — Oy, (Fe(Vig)) = 0.
Integration and 0,4, = 0 on (0, T') x {£L} imply the stated conservation. L]

Lemma 4.10. Suppose (V) and 8% V(x2,2) > 0 for |x2| < L, |z| < L + 1; then there
holds the following one-sided maximum principle for 0y, ue:

isrzl/faxlu‘B = zlarslzf' Ox,Usg
Sorall Q' cC Q.

Proof. Differentiation, the imposed convexity of V' with respect to z, Corollary 4.7, and
Lemma 4.8 show that w, := 0y, U, indeed satisfies

—div(Vzﬁa(Vug)Vwa) = BgV(xz,u,g)w‘s > 0. [

5. T -convergence and Young measure representation

In this section we will show that the found regular minimizers converge to a minimizer of
the corresponding unperturbed variational problems.

Proposition 5.1. Let u,, ¢ > 0 be a solution of (4.15); then there exists a solution u of
the variational problem (3.2) such that uy — u in H'(Q) along a subsequence.

The proof of Proposition 5.1 is contained in the proof of Proposition 5.4 below, which
by means of the Young measure representation will also characterize where and how
strong convergence can fail.

5.1. The recovery sequence

Recall that X consists of all u € H!($2) which satisfy ||0x,u||Lx(q) < 1 and agree in the

trace sense with
X1

PN 2
Oo() = (S = 1) Uo(x2) 5.1)
on €2, where Uy(x) = L — |x3|.
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Lemma 5.2. For every u € X with A(u) < oo there exists a sequence u® € X, with
u® — uin H'(Q) and
lim sup o, (u®) < A(u).

e—>0

Proof. We first define an H ' ($2) function #® by setting

—cos(x1)Up(x2), x1 € (0,6),

il (x) = cos(S)u(T f28 (x1 —5),)62), x1 €@, T-9),
cos(T — x1)Up(x2), x1 €(T-=46,T).

It is easy to see that i1% actually belongs to X and that #® — u in H'() as § — 0.

Next we improve the integrability of 8x1ﬁ5 from L2 to L in order to be able to
evaluate the extension 1’?,S on the set K¢ where it agrees with the old F. In order to do
this, fix § > 0 and extend #® onto (=8, T + §) x (—L, L) by setting

) = { ~(2—cos(x))Us(xa).  x1 € (=8.0), 52)
(2 —cos(T — x1))Up(x2), x1 € (T, T +56).

Due to this symmetric extension we can now convolute % in the x; -direction and conserve
the boundary data, i.e. for x € 2 we set

77 (x) 1= (g 1 %) (x) = [ o (1 — 9)ii® (5, x2) ds
R

with a symmetric one-dimensional kernel ¢, of scale n € (0,4/2).
Observe that "% indeed agrees with Uy on 9 and that for a.e. x €  there holds

82
02,87 ()| < e @ oo, [958 (0)] < 2= cos(§) =1+ = +0(5)
with a constant ¢ > 0 depending only on the kernel ¢;. Since |||z~ is bounded (as a
bounded extension of a function in X), we will pick n(¢) = £? and §(¢) = ¢ in order to
satisfy Vii7(®)-3(8) ¢ K¢ ae. for sufficiently small &.
It remains to adapt the boundary data. Therefore, we finally set

u(x) = i1 (x) + U (x) — Do (x),
where in analogy with (5.1) the function U.: Q — R is defined as

~ _ 2x1 A 2x1 P 5 5
00 = (S = 1)Uew2) = o) + (2= 1) 572 =D 53)
By our construction it is clear that u® € X, and that still Vu®(x) € K® fora.e. x € Q

and ¢ > 0 small enough. Hence 138 o Vué = F, o Vu?® ae.
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Next we will show that u® — u in H!(Q). Clearly, u® —i® * - 0in H'(Q) ase — 0
In order to see that 7#° ¢ — u,letit € H'((=1,T + 1) x (=L, L)) be the extension of u

with the values given in (5.2) for 5. Then
%7 —ullgi@) < llges x1 @° =) |1y + [1@e0 *1 8 — il 1)

< 1#° —dillm @) + l@e *1 0 — il gi@) — 0
Finally, it remains to look at the values of the action functionals. The just shown

convergence u® — u in H () and condition (V) easily imply

/V(x,ﬁ%x))dx—)/ Vix,u(x))dx.
Q Q

Concerning F, we first of all observe that

lim sup / Fs(Vu®) dx = limsup / Fo(Vu®) dx
e—>0 Q e—>0 Q
9 ~89,e 2
< limsup/ (O, )~ - dx,
0 2(1 + & — (35, 77%)?)

e—>0

O(e?) in Wh®(Q) ase — 0and 0, B > 1. The

where we have used that u® — i
function F:{p e R?: |pa| <1+¢} =R
ri

Fa(p) = 2(1 +8—_p§)’

is also convex. Hence Jensen’s inequality implies

/ F. (Vﬁse’e) dx = / Fy(p,0 %1 Vii®) dx < [ @0 *1 (Fg o Vii®)dx
Q Q
/ 01 () Fu(Vit* (x1 + 56, x2) d (5, %),

where D = (—1, 1) x . We now split the domain of integration into the following sets
Dy ={(s.x) € D : x +se? < 0}, Dy={(s.x)eD:0<x; + se? <&},

D3—{(S,X)€DI£<)C1+S80<T—€}
D5={(s,x)eD:x1+ss9>T}

Dy = {(s,x) eD:T—s<x +s¢ < T}
, I5. There holds

and estimate the corresponding integrals /7,
12 0 2
sin“(xy + se”)Up(x
(1 )Uo(x2) d(s, x)

= / §01(S) 20 +e—(2— cos(x1 + s£%))2)

z -

dxyds <2913 .
X148 = z& ledlle 1_’_5

3
=L ||‘/’1||L°°/ / o 4+4cos(x1+ss9)
I+ T sin?(xg +se9)

Hence I} — 0 as ¢ — 0. A similar reasoning also yields Ip + Is + Is - 0ase — 0
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For I3 we use the transformation x; — y1(s, x1) = %(xl + se? — g) in order to
see that
1 T—e—se® /L T 2 v u s x1). x 2
I :/ (pl(S) / (leris) ( X1 (yl( ’ 1)7 2)) 5 dxzdxl ds
-1 e—sef 2(m — (BX2u(y1(s,x1),xz)) )
T T L _
< Fe(Vu(y1,x2))dxady; — | F(Vu)dx
T—-2Jo JoL Q

by means of monotone convergence, since F(Vu) € L!() by assumption.
Altogether we therefore have shown

lim sup/ Fo(Vu®) — V(x,u®) dx < / F(Vu) —V(x,u)dx. [
Q Q

e—>0

5.2. Young measures

Before stating a general convergence result, which contains the weak lower semi-
continuity for the I'-convergence, we quickly recall the notion of generalized Young mea-
sures; see e.g. [33].

Let S denote the unit sphere of V = R” and Q be a bounded domain in R? with 92
having 0 Lebesgue measure. Every weakly converging sequence Uy — U in L9(2,V)
induces a g-Young measure v = ((Vx)xe@. A, (V3°),cg). Thatis, (vx)xeq is a Lebesgue
measurable family of probability measures on V (oscillation measure), A is a positive mea-
sure on  (concentration measure), and (vV2°) g is a A-measurable family of probability
measures on S (concentration angle measure), such that for all g-admissible integrands
there holds

/ ®(x, Ur(x))dx —>/ / ®(x,v)dvy(v)dx + /_/ DT (x,v) dv(v) dA(x).
Q QJv QJs
A continuous function ®: Q x V — R is g-admissible provided the g-recession function

D(x,t
S1°(x.v) = lim &)
t—00 149

exists, is finite, and the convergence is locally uniform with respect to (x,v) € Q x (V \

{0}).
In terms of the Young measure, the weak limit U of Uy is represented as the barycenter
of vy, i.e.

U(x) =/ vdvy(v) forae. x € Q.
\%

Strong convergence Uy — U in L9(2, V) can equivalently be characterized by the
absence of concentration and oscillation, i.e. A = 0 and vy = Sy(x) fora.e. x € Q.
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5.3. A general convergence result

While the existence of a recovery sequence has been a construction specific to our partic-
ular problem, we now investigate a more general class of variational problems and their
approximations. The more general setting in this subsection is the following.

Let 0 € C C R™ be open, convex and f:C — [0, o0] be a convex lower semi-
continuous function. We suppose further that there exist convex functions fr: R™ —
[0, 00) with

f(©0) =0, fi(p) =c|p|? —d forall p € R", (54

for some constants ¢,d > 0 and ¢ € (1, co) independent of k, and

fr — f uniformly on any compact subset of C as k — oo, 5.5

fx(p) — 400 uniformly on any set with positive distance to C. (5.6)

Observe that these conditions imply f(0) = 0 and that f is continuous and finite on C.
We then consider the functionals

F(U) = /Q AU dx. FU) = /Q FUG) dx,

where U € L9(Q2;R™), @ C R’ open, bounded with 92 being a Lebesgue null set.
Lemma 5.3. Suppose Uy — U in LY(Q;R™) and let v = ((vx)xeq, A, (V) eg) be the
associated q-Young measure. Assume that supy Fi.(Uy) < oo. Then

() there holds supp vy C C fora.e. x € ,

(ii) there holds ¥ (U) < liminfy_, 4 o Fi (Ug),

(iii) and if there holds equality in (ii), then A = 0, and for a.e. x € Q2 there holds

supp vy N{U(x) + Rw} = {U(x)},
whenever w € R™ satisfies

fWUx) +sw)— f(U(x)) > sz0-w (5.7)
for a subgradient zo € R™ of f at U(x) and any s # 0 with U(x) + sw € C.

Part (i) implies U(x) € C fora.e. x € Q. Part (ii) states the weak lower semi-continuity,
except that the functionals are changing along the sequence. Part (iii) shows that, if the
values of the functional actually converge, then there is no concentration (A = 0). Fur-
thermore, strict convexity of the integrand f in direction w excludes oscillations in that
direction. In consequence, if f is strictly convex (in all directions) on C, U(x) € C for
a.e. x € Q, then Uy — U strongly in L9(€2; R™). Note here that a subgradient z¢ of f at
U(x), i.e. a vector z¢ for which (5.7) holds with sw replaced by any @ € C — U(x) and >
replaced by >, always exists when U(x) € C. In part (iii) the existence of a corresponding
subgradient zg is part of the condition.



B. Gebhard, J. Hirsch, and J. J. Kolumban 34
Proof of Lemma 5.3. Part (i). For § > 0 define K5 := {p € R” : dist(p, C) > §}. The
uniform boundedness of % (Uy) and condition (5.6) imply that
[{x € Q: Ui(x) € Ks}| - 0

as k — oo, where |-| denotes the /-dimensional Lebesgue measure. Now for any & €
f’o(R’”) with ® = 0onR™ \ K5 and 0 < ® < 1 on Ky, there holds

0= kli)rgo|{x € Q:Ug(x) € K5}| > kli)n;o/Q O(Ui(x))dx = /Q /Rm ®(v) dvy(v) dx

by the definition of the Young measure. Hence supp v, C R™ \ Kj for a.e. x € €, for all
§>0.

Part (ii). Let C; C R™, j € N be compact convex sets with

0eCicCncccC |(Jg=c
jeN
and define 7j: R™ — C; as the radial retraction onto Cj, that is Tj(p) = r;(p)p, where

ri(p) =inf{r > 0: r lpe C;}. Note that r; is convex. Thus 7} is continuous.
The convexity of f and fi(0) = 0 (cf. (5.4)) imply that

fe(Ti(p) = fi(ri(p)p + (1 =r;(p))O) < ri(p) fi(p) + 0 < fi(p) (5.8)

forevery k,j € N, p € R™.
In consequence, the functions g ;, g;: R™ — [0, 00),

gk,j (p) = max{ fi(Tj(p)). §|pl? —d}. g;j(p):=max{f(Tj(p)). §Ip|?—d}

with the constants ¢, d, ¢ taken from (5.4), are also continuous, and there holds

gk,j(p) < fi(p) foranyk,j e N, peR™ (5.9

By condition (5.5) we also see that gz ; — g; uniformly on all of R” as k — oo.
Furthermore, the functions g; are g-admissible (autonomous) integrands. Indeed, f|c,
is bounded by the compactness of C; and therefore the g-regression function reads

. — c
g/ " (p) = lim 1™g;(tp) = S1pl’,

while the convergence is locally uniform with respect to p € R™ \ {0}.
By (5.9), the uniform convergence gx, ; — g;, and the definition of the Young measure
associated with (Ug)ren, we therefore obtain for any j € N,

liminf % (Uy) > lim inf/ gk,j (Uk(x)) dx
k—o00 k—oo JQ
> lim inf[ gi (Ux(x)) dx + lim inf/ 8k,j (U (x)) — gj (Ui (x)) dx
k—oo JQ k—oo Jq

- /SZ/Egj(v)dvx(v) dx + %A(Q) +o.

In the last step we also used (i).
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Now, similarly to (5.8), one can check that the sequence g; is monotone increasing.
Thus by monotone convergence, assumption (5.4), and the lower semi-continuity of f we
conclude

lim inf %3 (Uy) z/ / lim g (v) dve(v) dx + SA(C)
k—00 Q JC i~ 2

c _
Z/Q/Ef(v)dvx(v)dx—FEA(C).

Therefore, Jensen’s inequality finally shows that
l}cminffk(Uk) > [ fUX))dx + %A(S_Z) > F ). (5.10)
—>00 Q

This finishes the proof of part (ii).

Part (iii). We immediately see that equality in (5.10) implies A = 0. Going one step back
there also has to hold

wamWw)=ﬂUu» 5.11)

for a.e. x € Q. Now we fix such a point x and suppose that f(U(x)) < oo, w € R™ \ {0},
zg € df (U(x)) (the subdifferential of f at U(x)) satisfy (5.7) for any s # 0 with U(x) +
sweC.

Assume to the contrary of the statement that supp v, N {U(x) + Rw} # {U(x)}, which
means that there exists 5o 7# 0 with

Ve (Br(U(x) + sow)) > 0 (5.12)

for all > 0. By the properties of f and (5.7) with s = 5o we can pick a radius ry > 0,
such that

f) = fUx)) > zo- (v —U(x)) (5.13)

forallve B:=CnN B, (U(x) + sow). Combining (5.11), (5.12), (5.13), and the fact that
z¢ is a subgradient yields the contradiction

fwu»=ﬁ fmmmw+[ F(0) dva(v)
CNB C\B
>[ ﬂwm+mw~UMMwm+[ F() dvy(v)
CnB C\B

zéfwmruww—mmwww
= fU)).

Hence supp vy N {U(x) + Rw} = {U(x)}. |
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5.4. Our case

Applying Lemmas 5.2, 5.3 to our case we obtain the following extended version of Propo-
sition 5.1.

Proposition 5.4. Let u., ¢ > 0 be a solution of (4.15). Then there exists a solution u of
the variational problem (3.2), such that uy — u in H'(Q), As(us) — Au), and

f Fo(Vug(x)) dx — / F(Vu(x))dx (5.14)
Q Q

along a subsequence. Moreover, in terms of the Young measure representation of the weak
limit of Vug there holds v = ((vx)xeq, 0,0) with

) Svu(x) (v), Jora.e. x € Q with dx,u(x) # 0,
ve(v) =
* 8o, u(x) (V1) ® Dx(v2) forae x € Q with 0y, u(x) =0,

where v € R? and Dy, is a probability measure on R with support in [—1, 1].

Proof. Letu, € X, be a minimizer of 4, (1). By Lemma 4.5 the minimal values (i),
& € (0, 1) are bounded. Using the uniform convexity of the extension F, outside the com-
pactset {p € R2:|p1| <1, |pa] <1+ &—&*} (cf. Lemma 4.1), we conclude

Fe(p) = c1lpl* —ea (5.15)

forall p € R2 and some constants ¢, ¢, > 0 independent of & € (0, 1). Condition (V)
therefore yields
”Vus”iz(g) < c3ohe(Ue) + Ca

with e-independent constants c3, ¢4 > 0. In consequence there exists a subsequence
(usk)k, as well as u € H'(Q) with ug, — u in H! (Q) Since u, — U, € HJ(Q) with
U‘9 defined in (5.3) we conclude that u coincides with Uo on 02 in the trace sense. In
order to see that u € X P it therefore remains to show ||dx,u||L=(q) < 1. For this we will
rely on Lemma 5.3.

It is easily seen (cf. (5.15)) that the set C := {p € R? : | p,| < 1}, the approximating
functions f;:R? — R, fi(p) == I?l/k(p) — ﬁl/k(O), p € R2, and the limiting function
f:C = R, f(p) := F(p) satisfy the conditions postulated in Section 5.3 with exponent
q = 2. We therefore can apply Lemma 5.3 with

Fe(U) = /Q feUG) dx. FU) = /Q FUR)) dx,

and Uy := Vug, . Observe that ¥ (Uy) is indeed uniformly bounded due to the bound-
edness of o, (u;) and condition (V). In consequence, Lemma 5.3 tells us that if v =
((vx)xe@, A, (V%) cg) denotes the Young measure representation for (Ug)k, then
suppvy C {p € R?:|py| <1} and

lim inf / Fe,(Vug,) — Fe (0) dx > / F(Vu)dx.
Q Q

k—o00
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It follows that [0y, u| < 1 a.e. and

lim inf Ay, (ug,) > Au),

since without loss of generality V (-, u,, ) — V(-,u) in LY(Q) by (Vieo)-

In particular, u € X and 4 (1) < co. Hence the recovery sequence Lemma 5.2 on one
hand shows that A(u) < #(u) for all # € X, i.e. u is a minimizer of (3.2), and on the
other hand it shows that

lim e, (s,) = AQ),
k—00

which enables us to utilize part (iii) of Lemma 5.3. Doing this we first of all see that
(Vug, ) does not concentrate, i.e. A = 0, vy°® = 0, x € Q. Next, since

F(p+sw)—F(p)—sVF(p)-w >0

for any triple (p,w,s) € {p € R?: | pa| < 1} x (R?\ {0}) x (R \ {0}) with p; # 0 or w; #
0 (cf. (4.1) for e = 0), there also holds supp vy = {Vu(x)} fora.e. x € Q with dx,u(x) #0,
[0x,u(x)] < 1,and supp vy C {(0,v2) : |v2| < 1} fora.e. x € Q with dy, u(x) = 0. Note
here that O is a subgradient of F, or rather f: C >R, at (0, £1). Moreover, due to the
fact that the set {x € 2 : 0y, u(x) # 0, |0x,u(x)| = 1} must be of zero measure, otherwise
A(u) would be infinite, we can also in the first case simply say supp vy = {Vu(x)} for
a.e. x € Q with dx,u(x) # 0. This finishes the proof of Proposition 5.4. (]

Proposition 5.4, Corollary 4.7, and Lemma 4.8 directly imply the following bounds.

Corollary 5.5. The minimizer u satisfies |u(x)| < L — |xa| for a.e. x € Q. If in addition
(Vau) holds true, then dx,u > 0 a.e.

Remark 5.1. In view of the bound on |u|, problem (3.2) can, as the degenerate variational
problem arising in the study of random surfaces in [21], be written as an obstacle problem:

| A(u) (+ boundary conditions).

mi
|x2|—L<u<L—|x»

5.5. Autonomous potentials
In the case of dx,u, > 0 we can extend the list of convergences as ¢ — 0 as follows.

Proposition 5.6. Let u., u be as in Proposition 5.4 and suppose that in addition there
holds (V). Then u, — u uniformly on Q2. In particular, the minimizer u is continuous.

The proof is a direct consequence of Lemma 4.8, as said, and Lemma 5.7 below.

Lemma 5.7. For any u € €°(Q) N'€1(Q) with d,,u > 0 there holds

[Vullr 2@

Vilogr|

osc(u; Br(z9)) <
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forany r € (0,1) and z¢ € R? such that B j:(z0) C 2, as well as

Vullp2(q)

osc(u; By (z0) N Q) <
[log 7|

+ osc(u; B s (z0) N 92),

forr € (0,1) and arbitrary zy € R?.
The proof relies on the classical Courant-Lebesgue lemma:

Lemma 5.8 (Courant-Lebesgue). Let u € €' (Q). For z € R? denote the length of
u(0B,(z) N Q) by L(r) = faBr(z)ﬂﬂlafuL where 0 u is the tangential derivative. Then
there holds

® L(r)?
/ dr < 271||Vu||i2(9),
0 r

and consequently
27 1Vul2, g

a<r<b log(b/a)

Proof. Using the parametrization 6 — u(z + re'?) of 3B, (z), one has

L(r)= r/ [0 u(z + rei9)| do
{6:z+reifeQ}

1/2
< r(Zﬂ/ |Vu(z +re’0)|2d9) ,
{0:z+reifeQ}

and hence

% L(r)? oo i6y)2 2
——dr <2m [Vu(z + re'”)| rd@dr=2n||Vu||L2(m. L]
0 r 0 {8:z+reifeQ}

Proof of Lemma 5.77. In either of the two cases it follows from Courant-Lebesgue that
there exists p > 0 such thatr < p < 4/r and

[ ——
[log(r)|

If now B ﬁ(zo) C Qand zq, 2 € Br(zp), we denote by Zl-i the associated boundary points
such that

0B,(z0) N {z; + Rey} = {z;, zr

1

Hence we may write
Var | Vul 2@
|log(r)]

where for the first inequality we use dx, u# > 0. This concludes the proof of the first part of
the lemma.

u(z1) —u(z2) <u(zf) —u(zy) < L(p) <
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For the second part, given z1, 23 € B_/z(z9) N Q, we denote by zilL the boundary points
now given by
0(Bp(z0) N Q) N {zi + Rey} = {z; zt).

i°“q

We may once more write

u(zy) —u(zp) < u(zl+) —u(z;) < L(p) + osc(u; By(zp) N IK2)
- Var|Vull 29
log(r)|

which finishes the proof of the lemma. ]

+ osc(u; B s(z0) N 92),

6. Partial regularity near good points

In this section we will apply the result of Savin [41] to the minimizers (u;),, in order
to obtain partial regularity for the limit . Throughout the section we mean by (u,), the
subsequence from Proposition 5.4 converging to a minimizer u of problem (3.2).

Let

G={peR>:p #£0, |p| <1},

and note that D2 F(p) is nondegenerate and positive definite for p € G. Therefore, we
would like to show that whenever Vu takes values in this “good” set, one may deduce
higher regularity of u via the Euler—-Lagrange equation. However, the set of points x € Q
for which Vu(x) € G is a priori not open, hence we will need to adapt our argument
and use the Euler—Lagrange equations associated with the approximation u, in order to
deduce the openness of this set, and hence the regularity. The main result of this section
is the following proposition, which allows us to directly conclude the partial regularity
stated in Theorem 3.1.

Proposition 6.1. For any pg € G there exists § > 0, Ry > 0 such that whenever B, (xq) C

Q, r € (0, Ry), and
£ vu-ml<s,
B (x0)

then u € €%%(B,/2(x0)) for some o € (0, 1).

The idea behind the proof is the following. Let x¢ € €2 and r > 0 be such that B, (x¢) C
Q,and letug € R, pg € G. For ¢ > 0 we know that u,: B, (x9) — R is a viscosity solution
(cf. Definition 4.1) to the Euler-Lagrange equation

D2F,(Vug) : D%ug + 0,V (x,ug) = 0.
We will show that after rescaling

Ug(x) = ug + po - (x — xo) + rve((x — x0)/7), 6.1
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which implies that v,: B1(0) — R is a (viscosity) solution of
Dzﬁs(po + Vv,) : D?vg +rd; V(xg + rx,uo + rpo-x +rvg) =0, (6.2)

and some further technical manipulations, we can apply the following regularity result of
Savin. Recall that $”*" denotes the set of symmetric #n X n matrices. We also set By :=
B1(0) C R™.

Theorem 6.2 (Savin [41, Theorem 1.3]). Let F:8"" x R" xR x By > R, (M, p,z,x)
— F (M, p,z,x) be a measurable map and K, § > 0, A > A > 0 constants satisfying
(Hl) if M,N € §8"" N >0, |p| <8, |z| <6, x € By, then

FM+N,p,z,x)>F M, p,z,x),
(H2) if M,N € 8™ N >0, |[M| <6, |N| <8, |p| <8, |z| <8, x € By, then
ANl = F(M + N,p,z,x) = F (M, p,z,x) = AN,

(H4) %(0,0,0,x) = 0, and in the §-neighborhood of {(0,0,0, x) : x € By} the map
F is of class €2 and there holds the uniform bound | D*¥ || < K.
Then there exists a constant ¢c1 > 0 depending only on K, 8, A, A such that if the function
u: By — R is a viscosity solution of:?(Dzu, Vu,u, x) = 0 with ||u||peo(p,) < c1, then
u € €>%(By,3) and lulle2ap, ) = 6.

Remark 6.1. We will apply Theorem 6.2 to maps ¥ that are of class €2 with respect to

M, p, and z, whereas they are only Holder continuous with respect to x. That is, instead
of (H4) we have

(H4) #(0,0,0,x) = 0, and in the §- neighborhood of {(0,0,0, x) : x € By} the
derivatives D F exist, are continuous, and ||D( F|| < K. More-
over, | ¥ (M, p z, )||~€05(Bl) < K for some 8 € (0,1) and any (M, p,z) in the
said §-neighborhood.

However, the proof in [41, Sections 3 and 4] shows that the conclusions of Theorem 6.2
remain valid for any @ < f.

In the next two lemmas we show that the rescaled functions v.: By — R introduced in
(6.1) satisfy the needed L°°-bound for a suitable choice of the constant 1y € R.

Lemma 6.3. Let xg € 2, r > 0 such that B, (xo) C 2, po € G. There holds

1 ][ 5
|Vu — po|~dx.
(Po,l)z) By (x0)

Proof. Using the associated Young measure v = ((vx)xeq, 0,0) given in Proposition 5.4,
and in particular the fact that the concentration measure A vanishes, which allows us to

lim [Vu, — pol? dx < (1 +
€20.JB: (x0)
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approximate the noncontinuous indicator function of B,(x¢) by continuous integrands,
there holds

lim |Vu, — pol? dx
£>0 Br(x())

:f ( )/Rz|v—p0|2dvx(v)dx
r(Xo

1
_ 2 gn 2
~ o [ 1000 = pol diso2)dx + £y V0= pol?

{0x, u=0} {0x, u#0}
1
~ ey [ 102~ Poal? = o) = poal? di(v2) dn
{05, u=0} /!

+f |Vu — pol? dx.
Br(x())

‘We further estimate

1
Forceans [ 102 = o2l = 0s50) = poal? dis(2) d
{ |

Ox u=

1
— 2 2 gA
- fBr o /_ Il = () e di < fBr(xom dx

{0x, u=0} {0x, u=0}

- m)%)z f{g;f;:(zg} ) = poalds = s f (9w poftd,
which concludes the proof of the lemma. ]
Lemma 6.4. Let py € G, xg € 2, r > 0 with B,(x9) C @, and

|po,i| —4r]|d:V || Leo@xr) > 0. (6.3)

There exists g9 € (0, 1) such that for any € € (0, &g) there exist ug € R andry € (r/2,r),
such that the rescaled functions ve: By — R,
ug(Xo +r1x) —uo

Ve(x) = " —pPo- X

satisfy

2
||v€||Loo(Bl) <C (f |Vu — p0|2 dx) + 2r||82V||Lco(QxR) (6.4)
By (x0)
for a constant C > 0 depending only on (po1)~ L.

Proof. For pg and B, (x¢) as stated we set

E = ][ |Vu — pol? dx.
B (x0)
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We assume E > 0, otherwise our main goal, Proposition 6.1, is trivial. By Lemma 6.3
there exists ¢9 > 0 small enough such that

f |Vue — pol? dx < CoE
By (x0)

for € € (0, g9), where Cy = 2 + o )2 Moreover, in view of condition (6.3) we can,
after shrinking g9 > 0, also assume that for € € (0, &g) the extension F coincides with the
original approximation F; in a neighborhood of the segment

I :=[po—4r[0:V [oce1. po + 479:V [lsce1]. (6.5)

which is compactly contained in the good set G.
It follows that there exists r; € (r/2, r) such that

r

—/ |Vug — pol?dS < / |Vue, — pol® dx < CoEr’m,
2 JoB,, (x0) By (x0)

hence
1

2nry

/ [Vue — pol? dS < 2CoE
aBrl (x0)

Then, defining v, as stated with ug := fa B, (xo) Ue dS and r; as chosen before, one obtains
r
that

][ |V, |>dS < 2CyE.
aB1
By Morrey’s inequality for instance, we get
lvell Lo amy) < VE, (6.6)

with a proportionality constant depending only on ( po,l)_l-
Now define
Ao = [8:V oo (1 + £0)% = (p0.2)?),

and note that for any ¢ € (0, &¢), since B%ﬁg(po) = 02F.(po) = m, we have
81 Fe(po) Ao > 119z ||co. ©.7)
Finally, we want to show that
r14o

lvellzoo sy = lIvellLoe@sy + — (6.8)

We argue by contradiction: suppose that
r1A0
n= r%ax{vs — lvellLeo@By) — a- )} > 0.
1
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Then the function 43: B — R,

FIAO
(=),

P(x) =1+ |vellLo@ry) +

touches v, from above at some point X € Bj. Since v, is a viscosity solution to (6.2), there
must hold
0 < D?Fe(po + V(X)) : D2P(X) + r10:V(xo + ri¥.ug + r1po - ¥ + ré(¥))
< =0 Fe(po — riAo¥1en)ri Ao + r1]10:V llso = r1(=02, Fs(po) Ao + 1192V [|o).
which contradicts (6.7). Note here that in the last step we have made use of the fact that

po — r1AoXxie; lies on the segment I defined in (6.5).
A similar contradiction is obtained if one assumes that

. rnA
mln{vs + |lvellLeo @By + 170 (1- xf)} < 0.
B 2
Therefore, combining (6.6) and (6.8) we obtain the inequality stated in (6.4). [

The next lemma will help us to set up a family of functionals which satisfies the
conditions of Theorem 6.2.

Lemma 6.5. Let pg € G and o € (0, 1). There exist €1 € (0, 1) and r, > 0 such that for
anyug € R, xo € R2, r € (0,r3) with B, (x¢) C Q, & € [0, &1], the boundary value problem

{Dzﬁs(po + V) : V2 +rd,V(xe +rx,ug +rpo-x +r¢) =0 in By, 69)

¢ =0 on 0B,

has a €*% solution ¢, °"*P° satisfying || ¢y 0" *F° le2a(g,) — 0 as r — 0 uniformly
in (g, x9,ug) € [0,e1] x K forany K CC Q2 x R.

Proof. Let pp € G and o € (0, 1) be fixed. We first of all pick &y > 0 and 1 > 0 such
that By, (po) C G and Fe(po + p) = Fe(po + p) forall e € (0,&1], | p| < no.
Next let
B = {¢’ € €*%(B)): #1oB, =0, [|lle2a(s,) < 770}

and consider for R > 0 the family of maps &7 : [0, R) x B — €% (By),
Bio (1 9)(x) = D*Fe(po + Vo (x)) : V2P (x) + 1 V(xo + rx,uo + rpo - X + ré(x)),

where a is an abbreviation for the tuple of parameters a := (¢, x¢, 4g) satisfying € € [0, &1],
Xg € 2, dist(xg, 0R2) > R, ug € R. Observe that %ZO is well defined and that for € > 0 the
equation g (r,¢) = 0 holds true if and only if ¢ solves the boundary value problem (6.9).

Since F, is smooth on the closure of By, (po) and by (V.,), one can check that &y, is
continuous and Fréchet-differentiable with respect to ¢, and that the corresponding deriva-
tive Dy &%,:[0.00) x B — £({Y € €2*(By) : Y3, = 0}; €% (By)) is continuous. For
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later use we point out that not only is each D¢ 3§75, continuous as a function of (., ¢), but
also that the joint function

[0, £1] x {dist(x,982) > R} x R x [0, R) x B > (e, X0, Uo. T, ) —> DgFEr040) (r, ¢)

is continuous. The same is true for Fp, itself.
Moreover, there clearly holds 3_4; ,(0,0) = 0 for any considered parameter triple a and
L5, = Dy&5,(0,0):{y € ©2%(B1): Yjgp, = 0} — €%*(By) is given by

£5,[W1(x) = D*Fe(po) : VY (x).
By Schauder theory (cf. [31]) we see that £7 ' is an isomorphism with
||($;0)_1[9]||*e2,a(51) < C|0lleoa(s,) (6.10)

for all § € €%%(B;) and a constant C > 0 depending only on the ellipticity constants of
D2 F.(po). Therefore, since po € G is a good point, this constant can be chosen inde-
pendently of & € [0, &1]. Thus (6.10) holds with a constant C > 0 independent of the
considered parameter triple a = (&, xg, Ug).

Hence, by using a quantitative version of the implicit function theorem, we conclude
the existence of r, € (0, R) depending solely on pg, as well as for every a a continuous
family [0, r2) — B, r — @7 with ¢5 = 0 satisfying &5 (r, ¢7) = 0,r € [0,r2).

Now it only remains to show that the convergence ¢¢ — 0 in €2 (By) asr — 0 is
in fact uniform in a = (e, xg, ug) for ¢ € [0, 1] and (xg, up) taken from a compact subset
of 2 x R. First of all, note that there exists R > 0 such that the above-defined map &, is
well defined for any (xg, ug) € K.

The uniform convergence then follows from the fact that, as observed earlier, the maps
&po-» D& p, are continuous as functions of (e, xo, U, 1, ¢), such that the implicit function
theorem also provides us with the continuity of the joint map [0, 1] x {dist(x, 02) >
R} xR x[0,72) - B,

(g, x0,uqg,7) — qﬁfs’xo’”").

Now the stated uniform convergence is a direct consequence of the compactness of the set
[0,e1] x K x {0}. |

Proof of Proposition 6.1. We fix pg € G.Fore € (0,¢1),r € (0,13), xo € R2, B, (x0) C 2,

and 1o € R as in Lemma 6.5, we consider the family of nonlinear maps %,>"%"°: §2%2 x

R? x R x B; — R defined by

FEXM (M, p,z,x) := D*Fe(po + p + Vof (x)) : (M + D¢ (x))
+rd;V(xo +rx,ug +rpo-x +rz + ref(x)).

Here we have denoted by ¢9 = ¢;*"*P° the ©2% solution of (6.9) provided by
Lemma 6.5.
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We will now show that conditions (H1), (H2), and (H4) from Theorem 6.2, or rather
condition (H4') from Remark 6.1, are satisfied for %,°*°"°_ Indeed, condition (H1) in fact
even holds globally, while (H2) holds true with a constant §>0 independent of r, ¢, xo,
ug provided (xg, ug) is restricted to a compact subset of 2 x R and r, & are chosen small
enough. That this is possible is a consequence of pg being a good point and Lemma 6.5.

Furthermore, we see that 7°7°%°(0,0,0, x) = 0 by (6.9) and the partial second deriva-
tive D(ZM,p’Z) F£*" is bounded on a neighborhood of {(0, 0,0, x) : x € B;}. The size
of the neighborhood and the bound can be chosen with the same (in)-dependencies as
§ > 0 above in (H2). Moreover, in view of (V ;) and Lemma 6.5 we see that any Forouo
is Holder continuous with any exponent 8 € (0, 1), where for fixed 8 the corresponding
Holder norm can again be assumed to be bounded uniformly in r, &, x¢, ug for (xg, ug)
from a compact set, and r, ¢ small enough. We therefore also have property (H4").

We may then apply Theorem 6.2 to ,°**"*® and obtain a constant ¢; > 0 independent
of &, r small and (x¢, 1o) from a compact subset of 2 x R having the property that any
viscosity solution v: By — R of 7" = 0 with ||v||Le(5,) < c1 belongs to €%* (B /,)
and ||U||‘€2,a(31/2) <.

Let us now also fix xo € €2 and consider for ¢, r > 0 small, such that the above con-
clusions hold true, as well as the conclusions of Lemma 6.4, the function w,: By — R,

Ug(xg + r1x) —ug

ri

We (x) 1= ve(x) — G7FOHOPO(x) = — Po - X — @O0 (x),

where 11 € (r/2,r), up € R are given by Lemma 6.4.
Then w, satisfies F°"° (D?w,, Vwg, we, x) = 0 and by Lemma 6.4 there holds

2
||wg||Loo(Bl)sc(f |VM—P0|2dx) 200,V ooy
Br(xo)

+ Nl 0P| Loo(By)

for a constant C > 0 depending only on py. In view of Lemma 6.5 we therefore reach

lwellLoo(sy) < c1

by assuming that r > 0 and fBr (x0) |Vu — po|? dx are small enough. Therefore, we may
conclude that (w), is bounded in €%(By ).

It then follows that (u), is bounded in €%%(B,/2(x0)), and hence converges to the
limit u in €%~ (B,/2(xo)). This finishes the proof of Proposition 6.1. |

7. Further properties
Here we collect some additional properties for our minimizer that are important in relation

to the role of Vu as a subsolution to the Boussinesq equation. Throughout this section we
again consider (u.), and u as in Proposition 5.4.
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7.1. Topology of 2’

We begin by noting that Lemma 3.2 is a direct consequence of the one-sided maximum
principle in Lemma 4.10 and the uniform convergence in Proposition 5.6.

7.2. Energy balance

The Young measure representation in Proposition 5.1 allows us to pass to the limit in the
energy balance in Lemma 4.9.

Lemma 7.1. The measure (0, 1'?,3(Vug(x))8xl Ug(x)— ﬁe(Vug(x))) dx converges weakly
to F(Vu(x)) dx. In particular, if (V) holds true, then

d L
—/ F(Vu(x)) + V(xa,u(x))dx; =0 7.1
dxi J-L
in the weak sense.

Proof. Let ¥: @ — R be an arbitrary continuous, bounded function and set G4(p) =
0p, Fe(p)p1 — Fe(p), as well as

= [ GaVunw s, 1} [ GuTuso)pn(Vu) dx.
2= 1= 1} = [ GVusw )1~ n(Vue(o) dx,
where n: R? — [0, 1] is continuous with support compactly contained in the open strip
{peR>:|pa| < 1}.

By Proposition 5.4 and the convergence of G.(p) to dp, F(p)p1 — F(p) = F(p).
which is uniform on the support of 7, it follows that

lim 1! = / F(Vu)n(Vu)y dx.
e—>0 Q
For [ 82 we use Lemma 4.1 (iii) in order to estimate

112] < ¥ @) [Q (e + 4Fs(Vu)) (1 — n(Vatp)) dx

ST [Q F(Vu)(1 = n(Va) dx

as ¢ — 0. Indeed, the convergence of the integral can be seen by splitting it up, the use of
the convergence of the total kinetic energies (5.14), and the same argument as above for
the convergence of 1. We conclude

Ia—/ F(Vu)n(Vu)y dx
Q

<o()+C / F(Vu)(1 —n(Vu))dx
Q

as ¢ — 0, with a constant C > 0 depending on v, but not on 7.
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Now taking a sequence (77;); converging pointwise to 1 on {p € R? : |p2| < 1} we
deduce that

lim I, =/ F(Vu)y dx.
e—0 Q

Recall here that F(p) = 0 for p; = 0, | p2| = 1 and that the measure of the set [{x € Q :
Ox,u(x) # 0, |0x,u(x)| = 1} is O as otherwise F'(Vu) would not be integrable. Thus we
have shown the stated weak convergence.

Now, if (V) holds true, it easily follows from Lemma 4.9 that

T L
/ o' (x1) / F(Vu(x)) + V(xa, u(x)) dxs dxy = 0
0 —L
forall ¢ € 1‘?61 0,7). ™

Note that at this point all the claims of Theorem 3.1 have been shown.

7.3. Stronger attainment of boundary data

As already discussed in Sections 2.5, 2.6, considering functions u € X implies that p :=

Ox,u and m 1= —0y, u satisfy
L

/ POx, @ + m0x,p dx + / sign(x2)(¢(0, x2) + @(T.,x2)) dx2 =0 (7.2)
Q —L

forall p € H!(S2). Concerning the boundary data for m and the initial and final data for p,
we can conclude from this certain weak convergences; see for instance Lemma 7.2 below.
The goal of this subsection is to improve these weak convergences to strong convergences.
This is the statement of Lemmas 7.3, 7.4. Moreover, the energy balance allows us to also
conclude that m attains O initial and final data; see Lemma 7.5. This information has not
been encoded in the function space X, not even in a weaker form.

We begin with the claimed weak convergence of p near {x; = 0}. A similar statement
holds true near {x; = T}.

Lemma 7.2. Fora >0, letvg(x) :=u(axy,x2) — (|x2| — L). Then there holds 0x,v, X0
in L*°((0,1) x (—L, L)) asa — 0.

Proof. Let ¢ € €'([0,1] x [~L, L]) and define for a € (0, T) the function ¢,: Q2 — R,
1
Ya(x) = — ¥ (x], x2) dx

x1/a

for x; € [0,a) and ¢,(x) = 0 for x; > a. Then using (7.2) one computes
1 L
| [ v dr = [ o) = signtea)os ga o) dx
0 —

= / Ox, u(X)0x,0a(x)dx — 0 asa — 0.
Q

The general case ¥ € L'((0, 1) x (=L, L)) follows by observing that (dx,v4)4 is
bounded in L*°((0, 1) x (—L, L)) (cf. Proposition 5.4) and approximation. |
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This weak convergence can easily be improved.

Lemma 7.3. For v, as in Lemma 7.2 there holds dx,v, — 0 in L'((0,1) x (=L, L)) as
a—0.

Proof. Recalling that |dx,u| < 1 a.e. one may write

1 oL
10x,vall L1 (0,1)x(~L,L)) = / /L [0x,u(axy, x2) — sign(xz)| dx
0 —_

1 oL
— [ [ Qe = Ly ()0 (5 dx > 0
o Jo
by the previous weak convergence and the fact that the indicators are in L. ]

For a similar strong convergence of dx, u near {x, = +L} we argue directly.

Lemma 7.4. Let (V) be satisfied, such that dx,u > 0. There holds the convergence
[0, uC.—L + b)llL10,1)x(0,1)) = 0as b — 0.

Proof. Using dx,u >0, u(-,x3) € H'(0,T) fora.e. x € (—L, L), as well as the continuity

of u (cf. Proposition 5.6), we observe that for any b > 0 there holds

T 1
[0x,u (o =L + b) |10, 7yx(0,1)) = /0 /(; Ox,u(x1,—L + bxz) dx

| (T [-L+b
= 5/0 /L Oy, u(x)dx
1

—L+b
= Z/ u(T, x2) —u(0, x2) dxo
—L
1 —L+b 1 —L+b
:—/ 2(L+x2)dx2§—2/ bdX2=2b,
b —L b —L

hence the claim follows. [ ]

Utilizing the energy balance from Lemma 7.1 we in addition obtain a corresponding
strong convergence of dx, u near {x; = 0} and {x; = T'}.

Lemma 7.5. Let (V) be satisfied. For the minimizer u there holds 0x,u(a-,-) — 0 in
LY(0,1) x (=L, L)) asa — 0%,

Proof. We may write

/(;1/_LL|8xlu(ax1,xz)|dx
:é/:/iaxlu(x)dxz 2/:[1; V2F (Vu(x)) /1 — dx,u(x)? dx

1 re rlL 1/2 | e rL . 12
= (E/(; /_L 2F(VM(X))dx) (E/(; /_L 1 —8x2u(x) dx) .
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Denoting by E( € R the constant total energy value given by the balance (7.1), the first
factor can be estimated against (2E¢ + 2|V || Lo (@xR)) 172 while for the second factor we
have

1 a rL 5 _1 a pL ) .
5/(; /—L 1= 0x,u(x)"dx = —/0 /;L(s1gn(x2) — 3, u(x)) (sign(x2) + Dy, u(x)) dx

a

< 2|[9x,vallL1(0.1)x(~L.,L)) = O
asa — 0 by Lemma 7.3. ]

Comparing Lemmas 7.3, 7.5 with [26, Theorem 5.7] one can say that the functions

L L
s [ lu) = sienGea)ldxa e [ ool dxa,
L L
which are a priori only in L°°(0, T), resp. L?(0,T), have atraceat x; = Oand x; = 7.

7.4. Admissibility

We will now discuss the actual energy balance of the Boussinesq subsolution induced by
the minimizer u. Recall that the one-dimensional subsolution (p, m) = (dx,u, —0dx, ) is
called weakly admissible provided (2.11), i.e.

L

L
Ea(x1) = /_ | F(Vu(0) - gAu(x) dxa < / mGgAndn  (13)

holds true for a.e. x; € (0, 7).
As indicated in Section 2.7 we in fact will have a monotone decay of the total energy
on (0, T') provided that, in addition to (V), V' also satisfies

V has the form V(x,z) = —gAz + f(x2,2)

: (Vdis)
with 0, f(x2,z) > 0 whenever |z| < L — |x3|.

Note that (Vi) contains (V).

As a direct consequence of Lemma 7.1 and the fact that our minimizer u satisfies
|x2] = L < u(x) < L — |x;| for all x € Q (cf. Corollary 5.5 and Proposition 5.6), we
indeed deduce the energy balance (2.21) on the open interval (0, 7).

Corollary 7.6. If'V satisfies (Vo) and (Vgis), then the sum of kinetic and potential energy
(given only by the gravity potential) satisfies

L L

F(Vu) — gAudx, = —/ 0z f(x2,u)0x,udxy <0
L

a’x1 —L —

weakly on (0, T).
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Thus we have strict dissipation of the total energy on any time interval I C (0,7) on
which ((L — |x2|)? — u?)dy, u is not essentially vanishing, i.e. u has to be different from
the initial and final configurations and the momentum —d,, u has to be strictly negative.

Let us now turn to the behavior of the energy as x; — 0 or x; — 7. Regarding the
potential energy Proposition 5.6 implies that

L L
lim Ep,(x1) ;== lim —gAu(x) dx, :/ —gA(|x2| = L) dx,
x1—>0 x1—>0 J_1 —L
L
=/ po(x2)gAxa dxa,
-L

and similarly, including the dissipated energy,

L L
lim V(xa,u(x))dx, = / V(xa, |x2| — L) dx;.
x1—>0 J_1 —L
The corresponding limits also exist at x; = 7.
Due to the continuity of the potential energy E,(f) at ¢ = 0 one sees that weak
admissibility (7.3) requires

L
esslim Exi(x1) := ess lim[ F(Vu(x))dx; = 0. 74
x1—>0 x1—>0 J_p

Although the initial momentum vanishes in the sense of Lemma 7.5 we can a priori
not conclude (7.4). However, we will show that for suitable V' the possible initial jump in
kinetic energy becomes arbitrarily small when the variational problem is considered over
a longer and longer time interval.

For that we no longer consider the final time 7 > 0 as a fixed constant and indicate the
T -dependency in our variational problem by writing Qr, A7, X7 instead of Q, A, X.

Moreover, as in Section 2.8 we define

sy = sup{ ", V(x2,9)dxs : ¢ € €°([~L, L)), |p(x2)| < L — |x2|}

and assume in addition to (Ve,), (Vis),

L
sy =0 and sy = / V(x2,¢)dx, if and only if ¢ = £(L — |x3]). (Vsup)
-L

Note that assuming sy to be 0 is not a restriction as one can always shift V' by a fixed
constant without changing the variational problem.

Lemma 7.7. Assume (V o), Vais), (Voup). Let ur, T > 0 be a minimizer of 41 over Xt
given by Proposition 5.4. For T > 1 there holds

L L
F(Vur(x))dx, = ess 1i10n/ F(Vur(x))dx, <
L =0 J_p

. Ar(ur)
ess lim .
T T

X1—>
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Proof. In view of Lemma 7.1 there exists a constant cy € R such that

L
/_ P () + Vi, ur () dxs = er

fora.e. x; € (0, T). By (Vq,p) we therefore have
L L
ess lim F(Vur(x))dx; = cr — lim / V(xa,ur(x))dx; = cr.
L x1—0 —L

x1—>0 J_

Similarly, we also conclude that the essential limit of the kinetic energy as x; — T is
given by cr. This shows the stated equality between the two limits. Note also that cz > 0.
Next let 7/ > T and define v € X7~ by setting

ur(x), x; €(0,7),
v(x) =
L—|X2|, X1 E(T, T/)
Due to (V) and F(0, 1) = 0 one deduces
A7 (urr) < A7 (v) = Ar(ur).
Thus (V) and Corollary 5.5 imply

0<Tcr <Tecr —2/ V(xa,ur(x))dx = Ar(ur) < A1(uy)

Qr

and the statement follows. [

8. Summary and further questions

Let us first of all repeat the full list of used requirements regarding the nonlinear potential
V(x, z) and formulate an extended version of Theorem 3.1. There is

BIZ‘V: QxR —>R, k=0,1,2,3exist, are Lipschitz and bounded, (Vieg)
V(x,z) = V(x2,2), x€Q, zeR, (Vau)

ZV(x,z) >0, xeQ,ze[-L—-1,L+1], (Veon)

V(x,z) = —gAz + f(x3,z) with 9, f(x2,z) > O whenever |z| < L —|x2|, (Vqis)

L

sy =0 and sy = / V(x2,¢)dx, if and only if ¢ = £(L — |x3]), (Vsup)
L

where

Sy = sup{f_LL V(xz.9)dxy : 9 € €°([—L. L)), |o(x2)| < L — |x2l}.
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We have seen (cf. Section 2.9) that a suitable extension of
3gA
Vix,z) = —gAz + f_L(Z — (]x2] — L))* + const.

satisfies all of the stated conditions. Summarizing the statements of Sections 4—7 there
holds the following extension of Theorem 3.1:

Theorem 8.1. Suppose that V satisfies all five conditions (V eg)—(Vsup). Then problem
(3.2) with A defined in (3.1) has a solution u with the following properties:
(@) u is continuous on Q@ with |u(x)| < L — |x2| and dx,u > 0, [0x,u| < 1 a.e.,

(b) there exists Q' C Q open, nonempty, and such that every connected component
of Q' is simply connected, on which u is of class €2 with x,u > 0, |0x,u| < 1,
while 0y, u(x) = 0 fora.e. x ¢ Q/,

(C) 8x1u(', :I:L) = 8X1u(07 ) = axlu(Tv ) = 0» a.XS2u(Os xz) = _aJCzu(T9 xz) =
sign(xy) in the sense specified in Lemmas 7.3, 7.4, 7.5,

(d) on (0, T) the balance

d L L
—/ F(Vu) — gAu dx, = —/ 0z f(x2,u)0x,udxz <0
dx1 —L —L

holds in a weak sense,
(e) whileat x1 =0, x; = T there holds

L L
ess lim F(Vu(x))dx, = ess lim/ F(Vu(x))dx, < a
—L x1—>0 J_p, T

x1—>T

forall T > 1 and a constant ¢y > 0 (specified in Lemma 7.7).

8.1. Use of Vu as a Boussinesq subsolution

Let u be the minimizer from Theorem 8.1 with partial regularity set Q' and set p, m,,:
0, T)yx(-L,L) > R,

pt,xp) = Ox,u(t, xn), mu(t,xp) = —0x,u(t,xn).

We indeed see that p, m,, and U := Q' satisfy Lemma 2.2 (i)—(iii), (v), while (iv) is
relaxed to m, = 0, |p| < 1 a.e. outside Q’. In consequence, Vu induces a subsolution
with mixed resting regions (cf. Remark 2.6) and therefore via Theorem 2.1 and Remark
2.3 infinitely many solutions (P, Uso1) to the Boussinesq system (1.1), (1.2), (1.3) that
are turbulently mixing on U, and of which the above density p, momentum m = myey,
and velocity v = 0 can be seen as horizontally averaged quantities.

At this point we have proven Theorem 1.1. Let us however state some consequences
of Theorem 8.1 for the induced subsolution and associated solutions. We conclude that

* the average momentum m is directed downwards (m, < 0),
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* outside the mixing zone U, the fluid is at rest (vs = 0), but our investigation does not
allow us to conclude that the density is in one of the two initial phases (|pso1| < 1 not
excluded),

* the resting regions, with or without ps,; € {Z1}, cannot be surrounded by the mixing
zone W,

* besides the initial and boundary conditions for (1.1), m also vanishes in a certain trace
sense as t — 0,1 — T, and p approaches the stable interface configuration —pg(x) as
t—>T,

* the total energy of the subsolution

L 2
mp (L, Xn)
Eap(t) = —_ t, Ax, d
sub(?) /;L 2(1= p(t,x0)?) + p(t, xn)gAXn dxn
might jump upwards from f_LL po(xn)gAx, dx, at t = 0, and then monotonically
decays on (0, 7] to — f_LL po(xn)gAx, dx, with areversed jump att = T,

* the heights of the initial and final energy jumps vanish as the considered time interval
(0, T') becomes unbounded.

We recall that induced solutions can be found with total energy FE,(¢) in an arbitrary
8(t)-neighborhood of Eg,(t); cf. Theorem 2.1.

8.2. Open questions

We discuss here some further questions regarding the variational problem (3.2), properties
of the induced subsolutions, and the modeling in general.

Starting with the list of the previous subsection it would be of interest to see whether,
under suitable conditions on V, the possibility of mixed resting regions can be excluded,
i.e. whether in Theorem 8.1 (b) one could have d,,u = 0 and |dx,u| = 1 a.e. outside Q’.
An analogous property, for instance, holds true in the setting of De Silva and Savin [21];
cf. Section 3 and Remark 5.1.

Other questions for problem (3.2) address uniqueness of minimizers (this property
holds true in [21]), global regularity, for instance comparable to the result of Colombo
and Figalli [14], and any further information regarding the partial regularity set &’ which
corresponds to the turbulent mixing zone of the induced solutions. Of particular interest
in applications is the growth of this zone in time.

On a larger scale of questions, we recall that our investigation was motivated by the
search for global-in-time selection criteria for subsolutions of the Euler equations. Here,
we first of all point out that the derivation of the nondissipative action functional #q(u)
in Sections 2.2-2.5 relies on almost no ansatzes besides the imposition of the least action
principle itself. The only a priori unjustified choice made is that the kinetic energy density
of the solutions (g1, Vso1) in the turbulent zone U satisfies |vgo1|? € €O (W) + peo1 €2 (U); cf.
(2.5). This choice was made in [29] and is, at least in the here-considered one-dimensional
initial configuration, a posteriori backed up by the fact that the functional 4 can also be
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derived from a different point of view, avoiding the notion of subsolutions at all; see
Appendix A.

However, after the derivation of «#g, in Section 2.7 we introduced the nonlinear poten-
tial V(x2,z) = —gAu + f(x2, z) that allowed us to have energy dissipation (up to the
initial jump controlled by 7~!) while staying within the variational framework of the
least action principle. Note that, in terms of the subsolution components p and m,,, the
associated Euler—Lagrange equations (formal on all of (0, T') x (—L, L), rigorous on )

are given by
2
Mp m;, p
(=) =t () — Vool = —ea.
where W is the nonlocal operator

Xn

Wp.ma)(t) = 02 f (v [ p(t.5)ds).

Besides the here-stated properties (Vi eo)—(Vsup), a further investigation and justification
concerning suitable choices of f, or more generally, of a different type of relation
W[p, m,] consistent with energy dissipation, remains open.

A. Relation to Brenier’s generalized least action principle

We quickly recall the least action principle, Brenier’s generalization of it, and thereafter
focus on a special one-dimensional problem leading to a functional formally equivalent to
our g derived in Section 2.

A.1. The least action principle

Let D C R” be a compact domain, 7 > 0, U: (0, T) x D — R be a given potential, and
po: D — (0, 0o) an initial mass distribution. It is well known, originating in the work of
Arnold [1], that the Euler equations

d;(pv) + div(pv ® v) + Vp = —pVU,
divv =0, (A.1)
d¢p + div(pv) =0,

can formally be derived by minimizing the action functional
T 1
A = [ po)(510080.0F = UG £0.20) dx
over trajectories ¢ — g(¢, -) in the manifold of volume-preserving diffeomorphisms O —

D connecting a given initial and end state, say g(0, -) = id, g(7,-) = h. Assuming the
existence of a regular minimizer g and an associated Lagrange multiplier p: (0,7) x D —
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R, one derives that the tuple (p, v, p), where v is the velocity field inducing the flow g,
ie. d;g(t,x) = v(t, g(t, x)), and p is the corresponding transported density distribution,
i.e. p(t, g(t,x)) = po(x), is a solution of (A.1) with initial mass distribution pg. For more
detail we refer to [4] and the references therein.

Rigorous existence results of minimizers for suitable target diffeomorphisms /4 not too
far away from the identity are due to Ebin and Marsden [22]. However, for a general 4 it
also has been shown by Shnirel’man [42] that there does not need to be a solution in the
classical sense described above.

In order to overcome this, Brenier [2] introduced the aforementioned generalization of
the least action principle, which allowed him to conclude the existence of a solution given
the existence of at least one competitor with finite action.

A.2. Relaxation via generalized flows

Let us recall that Brenier’s generalized action functional associated with (A.1) is defined
as

Aw = [ o) [ Noor-ue o) dr ) u(d)
7 Jawy P 0o 2 ’ e

where Q(D) :={[0,T] > — w(t) € D} = DT is equipped with the product topology,
hence compact, and u is a generalized flow, namely a regular Borel probability measure
on Q(D) satisfying the incompressibility constraint

Flo(®) u(dw) = ][ f(x)dx, forall f e €(D),tel0,T], (A2)
QD) D

as well as the initial and final data constraint
f f(w(0),w(T)) u(dw) = f f(x,h(x))dx, forall f € ‘6(!02). (A3)
Q((D) D

Here, h again denotes the target configuration, which in this setting is only required to be
a measure-preserving map (D, dx) — (D, dx), and not necessarily a diffeomorphism.

It was shown in [2] that if inf,, A() < +o00, then there exists a minimizer, and fur-
thermore, if system (A.1) has a solution (enjoying certain properties) then the minimizer
corresponds to the flow associated with the fluid velocity of the solution; see [2, Theorems
3.2, 5.1] for the precise statements.

Through slight modifications one sees that the same two properties remain valid for
the generalized action functional corresponding to the here-investigated Euler system in
the Boussinesq approximation (1.1), which reads

— Tl o
Aw) = /Q . /0 (51O = 90 00) gAon () di p(de). (A

with p(0, -) = sign being the normalized initial density distribution.
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A.3. One-dimensional two-phase flows

For the particular Rayleigh-Taylor situation we consider O = [0, 1]"! x [-L, L],
0(0, x) = sign(xy,), and the target transformation i: D — D, h(x', x,) = (X', hn(x,)),
where

- L, >0,
hp(xp) = n =
xp +L, x,<0.

That is,, i swaps the upper half D of the container with the lower half O_. Note that in
fact h even prescribes a particle-by-particle exchange of the two halves.

This situation (without the first #» — 1 dimensions and without the potential) appears
in Brenier’s revisitation of the least action principle [4] as one of the examples for gener-
alized incompressible flows; see [4, Section 4.3].

Also here, i.e. with potential term, it follows formally (ignoring the conditions on p
and T') from [2, Theorem 5.1] that the minimizer of (A.4) is given by a one-dimensional
two-phase flow provided the associated vector fields satisfy the corresponding Euler—
Lagrange equation.

More precisely, a one-dimensional two-phase flow is a generalized flow of the type

wldw) = (/L+(0, X)86. (x) (@) + 1—(0, x)8g_(.’x)(a))) dx,

where
» the 6, (.x) denote Dirac measures on (D),

e Gi(t,x) = (x/, g+(t, x)) denote actual flows of two one-dimensional vector fields
Vi(t,x) = (0,vL(t, xp)), ie.

atg:l:(t’-xn) = v:l:(t’gi(t7xﬂ))7
8+0,x) = x4, g+(T.xp) =x, FL,

and the maps g4 (¢, -) are understood as orientation-preserving diffeomorphisms R —
R with the property that

g_l,_(t,[O,L]) - [_L,L], g—(ta [_L7O]) - [_L?L]ﬂ re [07 T]’ (AS)
» the functions p4: [0, T] x & — R indicate the two phases initially given by
p£(0.x) = DM, (v) = @L) ', (x)

and obeying
Py 4+ p—= QL)Y drps + O, (utvs) = 0. (A.6)

Note that the continuity equations imply

//L:I:([sg:l:(t7xn))ax,,g:|:([,xn) =+ (0, x,). (A7)
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One can then check using (A.5), (A.6), (A.7) that such a two-phase flow indeed
satisfies the incompressibility constraint (A.2). Condition (A.3) is directly stated. More-
over, it follows from (A.5), (A.6) that the average of the velocities satisfies

U—v—+ psvy =0 on[0,T] x D. (A.8)

As indicated above it follows formally from [2, Theorem 5.1] that such a two-phase
flow minimizes (A.4) provided v+ satisfy

1
0rvs + 0, (303 + p) = g4 forx, € g4 (1. [0. L.
(A9)

1
0rv— + 0y, (Evz + p) =gA forx, € g_(t,[-L,0)]),

with a pressure function p:[0,T] x [-L, L] = R, (¢, x,) + p(t, x,) independent of the
sign =+.

The generalized action of a two-phase flow with initial density p(0, x) = sign(x,)
transformed to Eulerian coordinates using (A.6), (A.7) reads

T L
1
A = [ Sk 4 n?) = A — e dmdr. (a10)

As a side remark we mention that as in [4] the action (A.10) for a two-phase flow can
be written solely in terms of the flow of one of the phases, i.e.

1 (T L 2L
A = — 9 t,x,)?( 1 dx, dt
() 2/0 /0 s (14— E ) d,

T oL
—2gAf / g+(t, xn)dxy, dt. (A.11)
o Jo

The computations for the kinetic energy are not original to us: this is precisely Brenier’s
example in [4, Section 4.3]. The stated form of the potential energy easily follows from the
incompressibility condition (A.2) applied to the odd map f(x) = x,. Also, here one can
check that condition (A.9) is precisely the (formal) Euler—Lagrange equation of (A.11).

A.4. Comparison

In order to see how the two-phase action (A.10) corresponds to the functional (2.16)
derived for subsolutions we define p, m: [0, T] x [-L, L] — R by

p=4Luy —1=1—4Lu_,
m:=4Luyvy = —4Lpu_v_,

and observe that (A.8) implies

2
2 2 V_V4 m
_v- + = — = s
Pt B O 2L 2L(1—p?)
M — e =210 Lo

2L 2L
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Thus (A.10) becomes

1 T L m2
A = — ——— — pgAx, dx, dt.
@) 2L/o /_Lz(l—pZ) pa&In 4

Finally, observe that the tuple (p, m) satisfies
atp + aJCnm = 4L(8tﬂ+ + 8Xn (/’L+v+)) = O

by (A.6). Thus we arrive at (2.16) and Lemma 2.2 (i).

Regarding Lemma 2.2 (ii) and (2.19) we point out that the conditions for initial and
final data for p are built into the two-phase-flow framework by specifying 4 (0, -) and the
target diffeomorphism /. As mentioned earlier, the specification of / is even stronger than
requiring p(T,-) = —po via (2.19) as it corresponds to a particle-by-particle exchange of
the two fluids.

Next we will convince ourselves that m(f, £L) = 0 holds true as well. Indeed, a
generalized flow p(dw) has to be a measure on the path space Q2(D). In terms of a two-
phase flow this is ensured by (A.5). Now, if g4+ (¢, x,) = L for some x, € [0, L], then
d: g4 (t, x,) <0, and thus vy (¢, L) < 0. On the other hand, if L ¢ g,(¢, [0, L]), then
n+(t, L) = 0. We therefore conclude m(¢, L) = 4Lu4 (¢, L)v4+ (¢, L) <0, and similarly
m(t,—L) > 0. Now, by means of (A.7), we compute

/ po(t,x)dx =4L/ uy(t,x)dx —2L =0,
D D

and therefore using (A.06) it follows that

jt / p(t,x)dx = —(m(t. L) —m(t.—L)) > 0.

Thus m(¢t, £L) = 0.

Following from here the same reformulation as in Section 2.5, we therefore have
shown that the variational problem (1.4) considered in this article can also be derived
from Brenier’s generalization of the least action principle, instead of subsolutions. The
relations are summarized in Figure 1.

B. Regarding the convex integration

In this section we prove Theorem 2.1. Let zy,;, be a subsolution with respect to eg, e; and
with mixing zone U and §: [0, T] — R be continuous with §(0) = 0, §(¢) > 0, for ¢ > 0.
We also define the set of functions

F = {%el, (t,x) — gAx,,}

and take open sets V; CC V; 11 C U with U]>1 =U, |dVj| = 0for j > 1. We convex
integrate recursively as follows:
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Arnold

(+ Boussinesq approx.) \

- Euler equations
L.AP. | (in Boussinesq approx.)

Breni|er 2] relaxation as
differential inclusion

l adding dissipation mechanism l
generalized L.A.P. + convex integration for minimizer subsolutions from [29]
restricted to 1D two-phase flows applying L.A.P. to
with £ as in [4, Section 4.3] 1D subsolutions

AN pd

variational problem
miny ey +o (1)

Figure 1. Relation between relaxations of the least action principle (L.A.P.) and Euler equations.

Step 1: Initiation. Let X be the set of tuples z = (p, v, m, 0, p) satisfying

(p,v.m,0) € (L® x L? x L? x L")((0,T) x D),

p is a distribution on (0, T') x D,

z satisfies the linear system (2.1) with (1.2), (2.2),

(0, v,m,0) is continuous on V7 and z (¢, x) € Uy x) for (¢,x) € V7,
z=zgpae. in(0,T)xD\ VW,

3C(z) € (0,1) with
40
2

) / Flo - pandx| < S9500)
D

forallt € [0,T]andall f € F.

Since eg and ey are continuous on V1, it follows that the set

Xy = {(p,vlv.mly,,0ln,) : z € X for some p)
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is bounded in L>®((0, T); L*(D)) x L*(V1; R" x R" x §§*"). Moreover, as in [29,
Remark 2.4] it follows that for any such z there holds p € €°([0, T]; L2 (D)).
Now let B ¢ L2(D), B® c L2(V;;R" x R" x $§™) be bounded balls such that

p(t,-) € BV, forallt € [0,T), (v]y,,mlv,,0ln,) € B®,

for any (p,v|y,,m|y,,0|y,) € X, o. Furthermore, let us denote by d M and d® the metriza-
tions of the respective weak-L? topologies on these balls, and set

dyi(y.y') = maX{ s[llpT]d(“(p(t,-),p’(t,-)),
t€lo,

d(z)((v|V1vm|VlvU|V1)’ (v,|Vl9m/|V1’G/|V1))}7

for y,y’ € X . We define X! as the closure of X with respect to dy1, such that (X!, dy1)
is a complete metric space.
Proceeding as in [29] one obtains that the functional

ho) = [ 0P de
Vi
is Baire-1 on X! and that

N() = /V d(y(t.x). (K g00)) d (2. %)

is continuous with respect to the strong-L? topology on X !. Here 7 is the canonical pro-
jection from R x R” x R” x §*" xR to R x R” x R"” x §§*", eliminating the pressure
component.

One may then use an argument based on a perturbation lemma (see for instance

[29, Lemma 3.13]) to show that J;~ 1(0) is residual in X1. Hence, for every g1 > 0, we
1)

find y; € J;1(0), which after augmentation by a suitable pM gives a subsolution Zaib»

£1-close to (Osub» Vsub» Msub» Osup)- More precisely, there holds

oz solves the linear system (2.1), (1.2), (2.2),

) _ :
*  Zgp = Zsuw outside V7,

(¢Y)

¢ Zsub

(t.x) € K x) forae. (¢,x) € V1,
e d @ (@O 1) (1

X1 ((psub, Usub’ msub’ Usub)’ (psubs Usub, Mgub, O-sub)) < €1,
o [ S8 — psub) dx| < 18(r) forall € [0,T), f € F.
That is, the mixing zone of zWis given by U \ V7.

sub
)]

Step 2: Recursion. Suppose that j > 1 and that there exists a subsolution zg;, with mix-

ing zone U \ I7j, ie.

. Zs(ifb) solves the linear system (2.1), (1.2), (2.2),
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. gb) = Zy outside V},
.« )

sub

€ K¢ x) forae. (t,x) € Vj,
1 1 i—1 1
dy) ((p(J) ) (1) (1)) (p(] ) (J ), 5] ) (1 ))) <é,

sub * sub’ sub’ sub sub sub

[ £ — ol ) dx| < £8(t) forallt € [0, 7], f € 7.
Here, the spaces (X7, dy ;) are defined recursively by first saying that a tuple z =
(p,v,m, o, p) belongs to X({H if and only if

o (p,v,m,0) € (L® x L?x L2 x LY((0,T) x D),
* pisadistribution on (0, T) x D,

* z satisfies the linear system (2.1) with (1.2), (2.2),
* (p,v,m,o)iscontinuouson W, 1 := V41 \ 17] and z(t,x) € Uy x) for (t,x) € W41,
s z =Z§l{b) a.e.in (0, 7) x D\ Wj1,

3C(z) € (0,1) with

8(t)

= i+l

’/\ﬂp—dﬁﬁh < L0
D

forallt € [0,T]and all f € F,

and then constructing an appropriate completion (X/*!, dy,+1) as in Step 1. Note that
the whole space X/*! depends on the previously chosen j th-order subsolution Zflfb)
As in Step 1, relying on the functionals /11, Jj41: X/t S R,

n0) = [ eoPden. 0= [ 0. mKen) e,
Wjt1 Wit
we may conclude the existence of subsolutions Zs(lfbﬂ) satisfying the properties listed at

the beginning of Step 2 with j replaced by j + 1 for any given g1 > 0.

Step 3: Conclusion. In this manner we may construct (infinitely many) sequences
{zs(l{b) }j=1 which further satisfy

2By, =Dy, fork = j > 1. (B.1)

For simplicity of notation we also set zs(l?g ‘= Zqb. Let us show that any such sequence

converges to a solution.
First of all, we claim that there exists a dimensional constant C = C(n) > 0 such that

|m(ﬁ)|2 + |U(j)|2 + |Cf(j)| < C(eo + ,o(j)el) ae.on (0,7) x D. (B.2)

sub sub sub
Indeed, outside the corresponding mixing zone this is clear by the definition of K, y),
whereas inside the mixing zone the inequalities involved in the definition of Uy, x) imply
Im+v*  m—vf |m+vf  |m-—v
2 2 I1+p 1—p
<n(eo +e1)(1 + p) +n(eo —e1)(l — p) = 2n(eo + per),

m|? + [v]* =
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as well as

VR®UV—p(v@m+mRU)+mQm
_/Xmin(o—) = /\max(_O) <eg+ peq + Amax (_ p( ) )

1 — p?
_ w+mw+m) (v—m)® (v—m)
=€ —|—,O€1 +Amax(_ 2(1 -I-p) - 2(1 _,0) )

< e + pey.

Note that the bound on —A iy (0) = |Amin(0)] is enough since o is trace-free.
As a consequence we can conclude the following equi-integrability.

Lemma B.1. For any & > 0 there exists § > 0 such that for any measurable set S C
(0, T) x D with |S| < § there holds

sub

/lp;{@I + |m§£|2 + |vs(£|2 + |o(j)| dxdt <e, forallj>1.
S

Proof. The equi-integrability of the p-component is clear due to the uniform L°°-bound.
Let us now show the equi-integrability of the o-component. Let ¢ > 0 and jo > 1 be
such that

T
2~ Jotl / 8(t)dt <e and / eo + pswper dx dt < e. (B.3)
0 UV},

Then there exists § > 0 such that for any measurable set S C (0, 7) x D with |S| < §
there holds

/S|osub|dx dt <e and /S|as(£|dx dt < e forall j < jo,

due to the equi-integrability of a finite family of integrable functions.
For j > jo,using f = Ze; € ¥ and (B.2), (B.3) we estimate

f|o§l{3|dxdz =[ |asub|dxdt+/ |of£|dxdt+/ oY) dx dt
s S\V; SNVi\Vj) S

Vio

528+/ lo2| dx dt 528+C/ eo + pUey dx di
u N

jo U\Vjy

2 (T :
= 2g+C(/ eo + pswper dx dt + —/ / f(ps(jg—,osub)dxdt)
U\Vj, nJo Jo

20 2 (T
<2e+Ce+ — E / dt
n > Jo
k=jo

k k
| =l ax

2C 400 T _
<2%4+Cet+— ) 2—<k+1>/ 8(t)dt < C(n)e.
" k=jo 0

The proof for the m- and v-components is the same. ]
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The previous lemma and (B.1) allow us to check that (pflfg , S(l{g mgg, g(ujb) )j is a
Cauchy sequence in L! x L2 x L? x L' and thus converging to a limit (p, v, m, o) solving
the linear system (2.1), (1.2), (2.2) with some distributional pressure p.

Furthermore, outside U we have z(f, x) = zgw(?, X) € K¢ x) a.e., while for every
(t,x) € U there exists j > 1 such that (¢, x) € V;, and hence z (¢, x) = z:j)(t x) € K x)
a.e. in U. So z is a solution to the Boussinesq system with |p| = 1 a.e. and its energy

density is given by
n
E(t.x) = S(eo(t. x) + p(t. X)e1 (t. X)) + p(t. X)g Axn.

Next we will show (2.10), i.e. we will show that

F(t) = /@ F(o - pan) dx

first of all is well defined and moreover satisfies | F(¢)| < §(¢) for a.e. t € (0, T) and every
f € ¥ .In order to do this we define

Fj(1) = /i) f(pﬁ(l{g — Psub) dX.

Since Pgub, ,o“fg € €%([0, T); L2/ (D)), and we have that pmg Psub 1s supported in V;,
where f is continuous, it follows that each F; is continuous. On the other hand, for j >
j' > 1 we may estimate

j—1

) - Fro) = Y /@ £V - p®) dx| <

Z 2_(k+1)5(t),

L=

hence {F }j>1 is Cauchy in 80([0 T1]), since § was assumed to be continuous. Thus,
Fj — F uniformly for some F, which satisfies | F (¢)| < §(¢) for all 7 € [0, T].

In order to conclude F(t) = F(¢) fora.e.t € (0,T), we will show that f(p — psup) €
LY((0,T) x D). This is of course clear in the case f = gAx,, but not for f = seq, as
e1 might be not integrable. Nonetheless, the claimed integrability for f(p — psu) follows
from the next lemma and monotone convergence.

Lemma B.2. There holds

T .
Sup/ / |el (ps(l{g - ,Osub)| dxdt < oo.
Jj Jo D

Proof. We abbreviate p/ := pgjg and p = peup. First of all note that if [p/| = 1, which is

the case almost everywhere on V;, then there holds the following equivalence:

o/ —pl <2(1 —p?) ifandonlyif p/p > 5
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We therefore estimate

T
/ /|e1||pf—ﬁ|dxdr=/ lello? — pldx di
o Jo v;

s/ lexl1p — | dx dt
Vin{p/ p<—1}
+2/ le|(1 = 32) dx di.
Vin{p/ p=—3}

Now, the second term is bounded by 2||e; (1 — p?)||1.1 ((0,T)x0)» Which is finite by assump-
tion (2.7).

Regarding the first term, observe that if p/ 5 < 0, then e;(p/ — p) > 0 by condition
(2.8). We therefore have

[ el =Aldxdi= [ el - pdxa
Vin{o/ p<—13} {0/ p<—1%}

/ [el(p —p)dxdi
_/ e1(p’ — p)dx dt
{0/ p=—1}
T
< /0 8(t) dt + 2ller(1 = )1 (0.1x)-

This finishes the proof of the lemma. ]

In consequence, F(¢) is well defined for a.e. € (0, T') and using dominated conver-
gence, one obtains that for any ¢ € L°°(0, T') there holds

T T .
| voFwa = tim [ o016 - punaxas
0 J—>+o00 Jo D
T

=_i§r+noo/Vj @(1) f(p — psub) dx dt =/ @(1)F(t) dt.

0
Thus F = F a.e. and therefore |F(t)| <6(t) forae.t € (0,7).

It remains to show the existence of a sequence of such solutions (pg, v )x converging
t0 (Psubs Vsub) Weakly in L2((0, T) x D). Indeed, Step 2 and what we have shown so far in

Step 3 allows us to have solutions (p, Vg, Mg, 0% ), kK > 1 that are generated by sequences

of subsolutions (,os(ig . vb(lfb) . mgl{g . Sub) +); such that for each fixed j > 1 there holds

G) D 05U
(psub & Vsubk> Msub,k * Osub, k) — (Osub> Vsubs Msubs Osub)

weakly in L2((0, T) x D).
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For the p- and v-components this weak convergence extends as follows. Let ¢ > 0,
@ € L?((0,T) x D) and pick a fixed j > 1 such that fu\V,» l¢| < e. Then

T
/ /,¢@k—mwﬁ”dl=/n (0 — p) dx d
0 D fi

u\v;

T .
[ ] o~ b
0 D
<2e+o(1)

as k — oo. Thus pr — psup as k — oo.
The convergence vy — vg, follows similarly, since for fixed j > 1 there holds

T
/ f (p(l)k - Usub) dx dt = / (ﬂ(vk — Usub) dx dt + 0(1)
0o JOD U\V;

< llellzzanvy) Uvellzz (o, 7)< 0) + vsullL2(0,7)x2)) + 0(1),

and

T
ko = [ [ nteo-+ pendxas
0

T
< nlleo + psweillL1o,r)x0) + 2/ 8(t)dt.
0

Thus we have shown the convex integration Theorem 2.1.
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