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Sums of squares III: Hypoellipticity in the infinitely
degenerate regime

Lyudmila Korobenko and Eric Sawyer

Abstract. This is the third paper in a series of three dealing with sums of squares and
hypoellipticity in the infinitely degenerate regime. We establish a C 2,8 generalization
of M. Christ’s smooth sum of squares theorem, and then use a bootstrap argument
with the sum of squares decomposition for matrix functions, obtained in our second
paper of this series, to prove a hypoellipticity theorem that generalizes some cases of
the results of Christ, Hoshiro, Koike, Kusuoka and Stroock and Morimoto for sums
of squares, and of Fedii and Kohn for degeneracies not necessarily a sum of squares.

1. Introduction

The regularity theory of second order subelliptic linear equations with smooth coefficients
is well established, see, e.g., [10, 13]. In [13], Hormander obtained hypoellipticity of sums
of squares of smooth vector fields plus a lower order term, whose Lie algebra spans at
every point. In [10], Fefferman and Phong considered general nonnegative semidefinite
smooth self-adjoint linear operators, and characterized subellipticity in terms of a con-
tainment condition involving Euclidean balls and “subunit” balls related to the geometry
of the nonnegative semidefinite form associated to the operator. Of course subelliptic oper-
ators L with smooth coefficients are hypoelliptic, namely, every distribution solution u of
Lu = ¢ is smooth when ¢ is smooth. In the converse direction, Hérmander also showed
in [13] that a sum of squares of smooth vector fields in R”, with constant rank Lie algeb-
ras, is hypoelliptic if and only if the rank is n. See Treves [29] for a treatment of further
results on characterizing hypoellipticity in certain special cases.

However, the question of hypoellipticity in general remains largely a mystery. A pos-
sible form for a characterization involving the effective symbol ¢ (x, £) (when it exists)
is given by Christ in [6], motivated by his main hypoellipticity theorem for sums of
squares in the infinitely degenerate regime, see Main Theorem 2.3 in [7]. We will gen-
eralize this latter theorem of Christ to hold for C2% symbols, which will play a major
role in Theorems 2.2 and 2.5 below on hypoellipticity in the infinitely degenerate regime.
The difference between these two theorems is that in Theorem 2.5, we assume a par-
tial sum of squares decomposition for the operator L, while in Theorem 2.2, we assume
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differential inequalities on the coefficients of L that force this partial sum of squares
decomposition. These theorems will be compared to each other and to existing results
in the literature below.

Therefore, a basic obstacle to understanding hypoellipticity in general arises when
ellipticity degenerates to infinite order in some directions, and we briefly review what is
known in this infinite regime here. The theory has only had its surface scratched so far,
as evidenced by the results of Fedii [8], Kusuoka and Strook [21], Kohn [15], Koike [16],
Korobenko and Rios [17], Korobenko, Rios, Sawyer and Shen [18], Rios, Sawyer and
Wheeden [24], Morimoto [22], Akhunov, Korobenko and Rios [1], and the aforemen-
tioned paper of Christ [7], to name just a few. In the rough infinitely differentiable regime,
Rios, Sawyer and Wheeden [24] had earlier obtained in addition results analogous to those
above, but where L is “rough” hypoelliptic if every continuous weak solution u of Lu = ¢
is continuous when ¢ is bounded — continuity was removed in some cases in [18].

In [8], Fedii proved that the two-dimensional operator d/9x2 + f(x)? d/dy? is hypo-
elliptic merely under the assumption that f is smooth and positive away from x = 0.
In [21], Kusuoka and Strook showed using probabilistic methods that under the same con-
ditions on f(x), the three-dimensional analogue 92/dx2 + 92/dy? 4+ f(x)? 8%/0z2 of
Fedii’s operator is hypoelliptic if and only if

lim xIn f(x) = 0.
x—0

Morimoto [22] and Koike [16] introduced the use of nonprobabilistic methods, and fur-
ther refinements of this approach were obtained in Christ [7], using a general theorem
on hypoellipticity of sums of squares of smooth vector fields in the infinite regime, i.e.,
where the Lie algebra does not span at all points. In particular, for the operator L3 =
02/0x2 4+ a?(x) 0%/0y? + b2(x) 0%/0z2 in R3, Christ proved that if a,b € C™ are
even, elliptic, nondecreasing on [0, c0), and a(x) > b(x) for all x, and if in addition
limsup, _,o|x Ina(x)| # 0, and the coefficient b satisfies

lim b(x)x|lna(x)| =0,
x—0

then L3 is hypoelliptic. Moreover, he showed that if some partial derivative of b is nonzero
at x = 0, then L3 is hypoelliptic if and only if the above condition holds.

On the other hand, the novelty in Kohn [15], which was generalized in [17], and pur-
sued as well in [1], was the absence of any assumption regarding sums of squares of vector
fields. This is relevant since it is an open problem whether or not there are smooth nonneg-
ative functions A on the real line vanishing only at the origin, and to infinite order there,
such that they cannot be written as a finite sum A = Z,Ilvzl £.% of squares of smooth func-
tions f,. The existence of such examples are attributed to Paul Cohen in both [5] and [2],
but apparently no example has ever appeared in the literature, and the existence of such an
example is an open problem, see' Remark 5.1 in [23]. This extends moreover to matrices,
since if a matrix is a sum of squares (equivalently a sum of positive rank one matrices),
then each of its diagonal elements is as well. On the other hand, Kohn makes the addi-
tional assumption that A(x) vanishes only at the origin in R™, something not necessarily

ISee also https://mathoverflow.net/a/106072, visited on June 12, 2024.
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assumed in the other aforementioned works. More importantly, Kohn’s theorem applies
only to operators of Grushin type L(x, D) + A(x)L(y, D), where the degeneracy A(x)
factors out of the operator A(x)L(y, D), a restriction that this paper will in part remove.

Missing then is a treatment of more general smooth operators L = VA(x)V+ lower
order terms, whose matrix A(x) is comparable to an operator in diagonal form of the types
considered above —see Definition 1.1 below. Our purpose in this paper is to address this
more general case in the following setting of real-valued differential operators. Suppose
l<m<p<n.LetL =VA(x)V, where A(x) ~ D, (X), with X = (x1,...,Xp), X =
(x1....,Xn), and where Dy (%) has C? nonnegative diagonal entries A1 (%), ..., A,(X)
depending only on X and positive away from the origin in R™:

]Im 0m><(p—m—1) 0m><(n—p+1)
AX) ~ Da(X) = | 0p—m-1)xm D1 @ty @) Op-m—1xn—p+1)
O—p+1)xm  O—pt+Dx(p-m—1) Ap(X)In—pt1

We will refer to a diagonal matrix having this form for any m < p <n as a Grushin matrix
function of type m. Note that the comparability A(x) ~ D, (X) implies that ax (x) ~
Ak (X) for all the diagonal entries, so that Ay (X) ~ ai (X, 0) may be assumed smooth
without loss of generality. Moreover, A(x) ~ Agiag(X, 0) (see [20], after Definition 10).

All of our theorems will apply to operators L comparable to a Grushin matrix function
A(x) of type m as above, that is also positive definite for X 7 0. Moreover, we will require
in addition that the intermediate diagonal entries {ay ()E)},f;in 11 (there will not be any
such entries in the case p = m + 1) are smooth and strongly C+28 (see [19]) for some
8 > 0 (we show in [19] that such functions can be written as a sum of squares of C 2.8 func-
tions and, moreover, give a sharp w-monotonicity criterion for strongly C*42%), and that
the off diagonal entries of A(x) satisfy certain strongly subordinate inequalities (which are
shown to have a weak sharpness property in a certain case, see Theorem 43 in [20]). We
emphasize that no additional assumptions are made on the last n — p + 1 entries of D(X),
which are all equal to A, ().

Our approach is broadly divided into four separate steps, the first and second of which
are the subject of the first two papers in this series.

(1) First, a proof that a C3! function can be written as a finite sum of squares of
C 1 functions first appeared in Guan [12], who attributed the result to Fefferman. In [19],
we adapted treatments of this result from Tataru [27] and Bony [3] to establish condi-
tions under which a C*2% nonnegative function can be written as a finite sum of squares
of C2% functions for some 8,6« > 0. The methods of Tataru and Bony were in turn mod-
elled on a localized splitting of a nonnegative symbol a, due to Fefferman and Phong [9],
who used it to establish a strong form of Garding’s inequality, and is the main idea behind
the result of Fefferman appearing in [12]. That splitting used the implicit function theorem
to write a nonnegative symbol a as a sum of squares plus a symbol depending on fewer
variables, so that induction could be applied. This same scheme was used in [19] to write
certain C*2% functions as a sum of squares of C>%* functions, but taking care to arrange
assumptions so that the implicit function theorem applied.

(2) Second, in [20], we showed that under analogous conditions on the diagonal entries
of a matrix-valued function M, and strong subordinate-type inequalities on the off diag-
onal entries, M can then be written as a finite sum of squares of C 2.8 vector fields for
some § > 0.
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(3) Third, we here extend a theorem of Christ on hypoellipticity of sums of smooth
squares of vector fields to the setting of C2 vector fields, with the appropriate notion of
gain in a range of Sobolev spaces.

(4) Fourth, we here adapt arguments of Christ together with the above steps to obtain
hypoellipticity of linear operators L of the form

(1.1) L = V"A(x)V + D(x),

where the matrix A and the scalar D are smooth functions of x € R”, and with X =

(x1,...,Xm), we have
I, 0
Alx) ~ [ 0 DA()E):| *

where II,,, is the m x m identity matrix, and D _(X) is the (n — m) x (n — m) diagonal
matrix with the components of A(X) = (A4+1(X), ..., A,(X)) along the diagonal. The
component functions A, (X) satisfy certain natural conditions described explicitly below.

In the next section, we state our main results on hypoellipticity. Then, in the following
section, we use a result on calculus of rough symbols from the 1980’s, see [25], to derive
a rough version of Christ’s hypoellipticity theorem for sums of smooth vector fields in
the infinitely degenerate regime, where symbol splitting is inadequate. Finally, in the last
sections, we use a bootstrap argument that exploits the C > regularity of the vector fields,
to bring all of these results to bear on proving hypoellipticity for linear partial differential
operators L of the form (1.1).

But first we recall the main results from the second paper in this series [20] on sums
of squares of matrix functions that we will use here.

Definition 1.1. Let A and B be real symmetric positive semidefinite n x n matrices. We
define A < B if B — A is positive semidefinite. Let 8 < « be positive constants. A real
symmetric positive semidefinite n x n matrix A is said to be (8, ®)-comparable to a sym-
metric n X n matrix B, written A ~g o B,if BB < A<« B,ie,

BE'BE < E"AE < a£"BE forall £ € R".

We say A is comparable to B, written A ~ B,if A ~g , B forsome 0 < <« < 0.

Note that if A is comparable to B, then both A and B are positive semidefinite. Indeed,
both 0 < (e — B)E"BE and 0 < (1/8 — 1/a)E AE hold for all & € R”.

Definition 1.2. A matrix functlon A(x) is subordinate if |3A (x) - £]? < CETA(x)E for
all £ € R", equlvalently, (x)tr - (x) < CA(x).

Finally, recall the following seminorm from [3]:

[h]a,S(X) = limsup [D%h(y) _D8 h(z)| )
Y Z>x ly —z|

Here the sum of squares decomposition has a quasiconformal block of order (7 — p + 1) x
(n—p+1),where 1 < p <n. We say that a symmetric matrix function Q, (x) is quasicon-
formal if the eigenvalues A; (x) of Q,(x) are nonnegative and comparable.
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Theorem 1.3. Let 1 < p <n, 1/4<e<1,0<6§ =<4 <1/2, M > 1. Define 5,1
recursively by 8o = 8 and
Skt1 _ . Sk
2+ Srq1 148’

where n = z‘gﬂ, and finally let 5" satisfy

0<k<n-2,

On— 1

max{&,—n ! } <8 <=
1 —68,-1 2

Suppose that A(x) is a C*?% symmetric n x n matrix function of a variable x € RM,

which is comparable to a diagonal matrix function D(x), hence comparable to its associ-

ated diagonal matrix function A giae(x).

Moreover, assume ap p(X) ~ api1,p+1(X) ~ -+ X apn(x) and that the diagonal

entries ay,1(X), ..., ap—1,p—1(x) satisfy the following differential estimates up to fourth
order:
a2 ]IPrackl S a@t T L jul s dand 1<k < p - 1.

' [as sl 25 () < 1, ul = 4and1 <k < p—1.

Furthermore, assume the off diagonal entries ay j(x) satisfy the following differential
estimates up to fourth order:

|D"ay ;] 5 (|min ag )T g <4 1<k <j<p—1,
(L.3) lak,jlu2s S 1, ) ul=4,1<k<j<p-1,

|D*ay | < (1r<nsi£1kas’s)[l/2+(2_‘ul)8]++8’ 0<|p|<4, 1<k<p—1<j<n,

lak,jlu2s S 1, ul=4,1<k<p-1<j=n.

Then there is a positive integer I € N such that the matrix function A can be written
as a finite sum of squares of C 2801 yectors X, k,j» Plus a matrix function Ap,

p—1 I

AX) =Y Xei ()X ()" + Ap(x). x € RM,
k=1i=1

where the vectors Xy ;(x), 1 <k <p—1,1<i <1, are CZ’S"—I(RM),

0 0
AP('X) = |:0 Qp(x):| B

and Qp(x) € C*42(RM) is quasiconformal. Moreover, for 1 <k < p — 1, and for Zy =
Yiy Xii X, € CHERM),

n n
cagrer @ex < ZrZy + Z Ammem ey < C Z Am.mem @ e,
m=k+1 m=k

Qp (x) ~ ap,p(x)ﬂn—p+1-

Finally, if in addition A(x) is subordinate, then Qp(x) is also subordinate.

(1.4)
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Remark 1.4. If ax x(x) ~ 1 for 1 <k < m < p in Theorem 1.3, then conditions (1.2)
and (1.3) are vacuous for 1 < k < m, and moreover the proof shows that the vectors Xy ;
are actually in C*2 (RM) for 1 <k <m,1<i <1.

These remarks yield the following corollary, in which conditions (1.2) and (1.3) play
no role.

Corollary 1.5. Suppose A(x) is a C*%(RM) symmetric n x n matrix function that is
comparable to a diagonal matrix function. In addition, suppose that ay x(x) ~ 1 for 1 <
k <p—1landayi(x) =~ ap p(x)for p <k <n. Then

p—1
AX) =) Xe()Xe(0)" +Qp(x), x eRM,
k=1

where Xi,Qp € C*3(RM) and (1.4) holdsfor 1 <k < p — L.

Remark 1.6. If the diagonal entry a ;(x) is smooth and ws-monotone on R” for some
s > 1 — ¢, then the diagonal differential estimates (1.2) above hold for ay x(x) since
|DPag x(x)| < Cs,s/ak,k(x)sl for any s’ < s (see Theorem 18 in [20]).

Remark 1.7. If in Theorem 1.3, we drop the hypothesis (1.2) that the diagonal entries sat-
isfy the differential estimates, and even slightly weaken the off diagonal hypotheses (1.3),
then using the Fefferman—Phong theorem for sums of squares of scalar functions, the proof
of Theorem 1.3 shows that the operator L = VYAV can be written as L = Zszl X]t.rX P
where the vector fields X; are C L1 for j =1,2,..., N. However, unlike the situation
for scalar functions, the example in Theorem 38 of [20] shows that we cannot dispense
entirely with the off diagonal hypotheses (1.3). Moreover, the space C1*! seems not to be
sufficient for gaining a positive degree § of smoothness for solutions to a second order
operator, and so this result will neither be used nor proved here.

In this paper, we will apply the sums of squares representations for matrix functions
obtained in [20] to a rough generalization of a theorem of Christ, that then leads to our
main hypoellipticity theorem via a bootstrap argument.

2. Statement of main hypoellipticity theorems

We begin with the following general hypoellipticity theorem in the infinitely degenerate
regime as in Step (4) of the introduction. We emphasize that we make no assumptions
regarding the order of vanishing of the matrix function A(x) at the origin. Since we only
consider degeneracies at the origin, it is useful to make the following definition.

Definition 2.1. We say that a ¢ X ¢ matrix function f:R"” — RY” on R” is elliptical if
f(x) is positive definite for x # 0. A scalar function f corresponds to the case g = 1.

At the end of this section, we will discuss the relationships between the following
theorem and earlier work on hypoellipticity. We emphasize again that our operators L are
not assumed to have diagonal or even block diagonal matrix A(x).
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Theorem 2.2. Suppose 1 <m < p < n. Let L be a second order real self-adjoint diver-
gence form partial differential operator in R" given by

2.1 L =V"A(x)V + E(x),

where the matrix A and the scalar E are smooth real functions of x € R", and A(x) is
subordinate near the origin, i.e., |£C—A;C(x)u|2 < Cu"A(x)u for 1 <k <n, all x in some
neighbourhood of the origin, and all unit vectors u € R".

Suppose further that with X = (x1,. . ., X;» ) we have the following Grushin assumption:
P 0
where 1, is the m X m identity matrix, and D) (X) is the (n — m) x (n — m) diagonal
matrix with the components of A(X) = (Am+1(X), ..., An(X)) along the diagonal, i.e.,
Am+1(X) 0 e 0
0 A X
piey=| O Al
: . " 0
0 0 Au(X)

(a) Moreover, we suppose that the component functions Ay are elliptical in R™, and that
Ap(X) ~ Apy1(X) ~ -+ & Ap(X).

(b) We also suppose that there are positive numbers 0 < §,8',8”,8,—1 <1/2and 1/4 <
& < 1 satisfying the conditions in Theorem 1.3, and such that for k < j <n and
1 <k < p—1, the entries ay, ;(x) of A(x) satisfy the differential size inequalities”
in (1.2) and (1.3) for all x € R™.

Then L is hypoelliptic if

@3 lim p(IF]maxtAr ) ) InmingA. ) = 0.

where

p(t, g) = max{g(z)(r —|z]) : 0 < |z| < 1}
Moreover, condition (2.3) is necessary for hypoellipticity if in addition A(x) is a diagonal
matrix with monotone entries.

Remark 2.3. Note that when m = 1, it suffices to assume only smoothness of the diagonal
entries A¢(X) in place of (1.2), in view of Bony’s sum of squares theorem, [3], Théoréme 1.

Remark 2.4. The assumption that A(x) is subordinate is redundant since this is already
implied by the Grushin assumption (2.2) together with the off diagonal strong subordinat-
icity assumptions (1.3)). Indeed, it suffices to show that [VA(x) - ¢;|*> < C e}r A(x)e; for
all 1 < j < n. However, from (2.2), we see that the diagonal entries a;; are nonnegat-
ive and smooth, and so |Va;;|* < aj; by the inequality of Malgrange, while from (1.3)
and the symmetry of A(x) we see that |[Vag;|*> < ajj forall 1 <k # j < n. Finally,
ajj < eTA(x)e; and so |[VA(x) -e;|> < efA(x)e;.

~

>The diagonal inequalities become more demanding the smaller ¢ is, while the off diagonal inequalities
become less demanding.
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The previous remark shows that Theorem 2.2 does not yield any hypoelliptic infinitely
degenerate operators L = VYA(x)V in which the matrix A(x) is nor subordinate. Here
is a variation, without any special hypotheses on the diagonal entries, that does yield
hypoellipticity without subordinaticity, and that will be used to prove Theorem 2.2 in
conjunction with the sum of squares decomposition in Theorem 1.3. However, the proof
of this next result will require a generalization of Christ’s sum of squares theorem to
include C 2% vector fields.

Theorem 2.5. Let L be a real second order divergence form partial differential operator
in R" satisfying (2.1). Let 1 <m < p <n + 1, and write

X = (X1, Xy Xmgls e o Xp—1, Xp, .., Xp) = (X, X, %) € R™ x RP7m=L y gr—PHL

where the middle factor RP~™= vanishes if p = m + 1, and the final factor vanishes if
p=n+1

Suppose that there exist C* vector fields Xj(x) e Op(€? 8S1 o) forl1 < j <N, and
an (n — p 4+ 1) x (n — p + 1) matrix function Qp (x) e CH2 that is elliptical, quasicon-
formal and subordinate, such that

N N N
L= (XX +VQu)V) + 3 A X, + D XIAj + 4o,
j=1 j=1 j=1
where V' = (Oz,.....0x,) and Aj. A; € Op(€'2S00), A9 € O 7 forall e > 0.
Suppose also that there are elliptical scalar functions Apm+1(%), ..., Ap(%) € C*(R"),
with 0 < A; <1 for all j, such that Qp(x) ~ Ap(X)1,—p41 and such that the following
inequalities hold for all Lipschitz functions v:

m p—1 N n
D 1P+ Y M@0 v S ) IX 0P+ Ap(E) D [0 v],

k= k= =1 k=
(2.4) 1 m+1 J )4

m p—1 n
X0 S [0 v+ D @0 v + Ap(%) D [0, 0]

=1 k=1 k=m+1 k=p

-

~

Finally, set

D 4
Aam® = D M(® and Apoaa® = [ A(®),
k=m+1 k=m+1

and define the Koike functional u(t, g) for any function g(X) by
p(r, g) = max{g(X)(r — [X]) : 0 < |X] <1}
Then the operator L is hypoelliptic if
(2.5) )}1_% H’(|X‘|7 Vv Agum ) In Aproduct()’z) = 0.

This is sharp in the sense that (2.5) holds if L is both hypoelliptic and diagonal with
monotone entries.
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Here is our rough version, in the setting of sums of squares of real vector fields, of
Christ’s hypoellipticity theorem as needed in Step (3) of the introduction. Note, in partic-
ular, that the vector fields X; appearing below are only assumed to be C 28 while the sum
of their squares ) ; X" X; is assumed to be smooth.

Theorem 2.6. Suppose 1 < p <nand N > 1. Let R C T*V, the cotangent bundle of an
open set V. C R", be any ray, and assume that the operator L has the form

N N N
(2.6) L= X'X;+> AjX;+ > XIA;+ R+ Ao+ V" Qp(x)V,
j=1 j=1 j=1

where the vector fields X;, j =1,2,..., N, are c28 (R™) differential operators, and
Qp(x)isa Cf’z‘s R™) (n— p+ 1) x (n — p + 1) matrix that is subordinate and quasicon-
formal, and V = (0x,, ..., dx,).

Assume further that Q, = Qp(x) ~ a(x)l,—py1, witha € C*25(R™) elliptical, L €

Op(S2y), X; € Op(€24 S} ) and A;. A; € Op(€'8Y), Ag € O 75, foralle >0,
in some conic neighbourhood V of R.

(a) Inaddition, assume R = ZZ:I Sk O o vV, where each Sk € CL8(R™*™) s subunit
with respect to Qp, and O = (O, . .., O,) is a multiplier of order zero.

(b) Suppose there exists w € C°, satisfying w(§) — oo as |£| — oo, such that

en [ w@IePdE = C Y IXulP + CIVaTul? + ¢ ul?
j

forallu € CL(V).

(¢) Finally, suppose that for each small conic neighbourhood T" of R there exist scalar
valued symbols ¥, p € S ?,0 such that  is everywhere nonnegative, v does not
depend on £ in T, v = 0 in some smaller conic neighbourhood of R, ¥ > 1 on
(T*V)\ T, p =0 in a conic neighbourhood of the closure of T, and such that for
each § > 0, there exists Cs < oo such that for any relatively compact open subset
U €V andforallu € C¢(U) and each index i,

IOp[log(&){y. o (Xi)}ul?
<8 I1Xul)? + 8l v/a Vul? + Cslul® + CsllOp(p)ulz,

(2.8) ’ .
Iv/Qp Opllog(&){v. &N ull?

<8 I1Xull? + 8l va Vull® + Cslul® + Csll0p(p)ulz:,
j

where § =(p..... 5.

Then there exists y > 0 such that for any u € L?

iocr We have

Lue H'(R) = u € H”(R).
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Remark 2.7. Note that the term R; arises from the conjugation of v- Q, (x)@ by As =
(1 4 £]?)%/2, needed in the bootstrap procedure. Indeed, denoting qij = (Qp)ij, we have

n
AV-Qp()VA; =V -Qp(0)V = Y [As.qij] A0, 0,
i,j=p

Using rough pseudodifferential calculus, we have

o([As, qij]A—50x,) = —i Z D%qg;; & il —i Zaxk qij Skbi mod O % 5.
2 P ©2 ’

Denoting

Ek%_l
G

we have that Ry = ZZ=1 SOy o ¥V has the desired properties since Q,, is subordinate,
and

Sk = akup and (0x(§)); =

AV Qu(x)VA_s =V -Qu(x)V + Ry mod 0 %s.5)-

Next, we outline the four steps taken in order to get to the point where we can apply
Theorems 1.3, 2.5 and 2.6 to obtain our hypoellipticity Theorem 2.2.

2.1. Summary of the steps

Consider the operator L = VA(X)V + E(x) with smooth coefficients.

(1) We first apply Theorem 1.3 to write VA(X)V = X"X plus a quasiconformal sub-
ordinate term V - Q, (x)V where the vector fields X belong to €2 § 11 o for some
§>0,and Q, € C*25.

(2) We then use the smooth pseudodifferential calculus to write
AsLA_y =L+ V-Qp(x)V + VX + X U + Ao(x.£) + Ry,

where the pseudodifferential operators VX, UXe€Op€!¥ S | and Ry eOp€!¥S] |
is subunit with respect to the quasiconformal term, and where Ao € €98 S 0

(3) We next show that the operator L = VA(x)V + E(x) is hypoelliptic if and only if
for every s € R, there is y = y([s]) > 0, depending only on the integer part [s] of s,
such that

ue Hand A;LA_su € H' = ue H’.

(4) Finally, we apply Theorem 2.6 and Theorem 2.5 to obtain hypoellipticity of L.

Remark 2.8. Note that if we apply symbol splitting as in [28] to the vector fields X
to obtain X = X! 4 X’, where X" € OpS/ . and Xb e ope2ds] ,," +9 then the sub-
unit property of the vector field X is not inherited by the smooth vector ﬁeld X", Indeed,
the definition of X" shows that it is obtained by applying a mollification of size 2777 to
a Littlewood—Paley projection onto frequencies of size 2/, and such mollifications are
not comparable when applied to infinitely degenerate fields, even suitably away from the
degeneracies.
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We end this section on statements of the main hypoellipticity theorems by comparing
Theorems 2.2 and 2.5 with previous work in [7, 15, 17, 18, 24]. Comparisons with other
work, e.g., [1,16,21,22], are similar and left to the reader.

2.2. Relationship with non-SOS methods

All of the smooth hypoellipticity results in Theorems 2.2 and 2.5 above, in Theorems 1
and 86 of [18], in Theorem 2.18 of [24], and in Theorem 1.3 of [17] assert smoothness of
certain rough solutions to an equation of the form

2.9 Lu(x) = V"A(x)Vu(x) + E(x),

where
* the matrix A(x) and the scalar E(x) are smooth real functions of x € R”;

¢ the matrix A(x) is subordinate near the origin, i.e., |§TA}C(x)u|2 < Cu"A(x)u for x
near the origin and all unit vectors u € R”;

e and A(x) is comparable in the sense of quadratic forms to the diagonal matrix

1 0 O 0 0 0 0 7
0o . 0 0 0 0 0
0o 0 1 0 0 0 0

Di(x) = 0 0 0 Apyi1(x) 0 0 ’

0 0 O 0 Am2(x)
0 0 0 : - .0

|0 0 O 0 .. 0 Ay(x)]

where A = (A;41, ..., An) is a vector of nonnegative smooth functions, and where the

. (100, . . . . .
matrix (8 P (1)) in the top left corner is the m x m identity matrix I, with 1 <m < n.
The theorems in [18], [24] and [17] also include first order derivatives, and apply to
certain quasilinear equations of this form that are “close” to being linear, and to certain
systems as well, but we will restrict our comparisons to the linear case as in (2.9).

One of the main differences in the type of smooth hypoellipticity obtained in these
papers, lies in the notion of rough solution that each paper assumes:

(1) the rough solutions in Theorem 2.18 of [24] are assumed to be continuous weak
solutions,

(2) the rough solutions in Theorems 1 and 85 of [18] are assumed to be just weak solu-
tions,

(3) the rough solutions in Theorems 2.2 and 2.5 above, and in Theorem 1.3 of [17], are
assumed to be merely distribution solutions.

Another difference lies in the fact that Theorems 2.2 and 2.5 above give a “near”
characterization in terms of Koike’s condition, while the other papers are restricted to
broader sufficient conditions.
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But perhaps the largest difference of all lies in the geometric assumptions these papers
make on the matrices A(x) and D) (x). In Theorem 2.18 of [24], 1 < m < n, and the
coefficients Ay of the diagonal matrix D (x) are assumed to satisfy:

(2.10) A (x) can vanish only on the kth coordinate axis, form + 1 < k < n,
while in Theorem 86 of [18], with X = (x1, X2,...,X;—1),
(2.11) m =n —1and A, (x) = A,(X) can vanish only when X = 0.

Theorem 1.3 in [17] applies to block diagonal matrices

Ln 0 0 0
_ 0 Bl(xl))tl(fl) 0 0
(2.12) A(x) = 0 0 0 ,
0 0 0 BnOxM)AnEY)

in which the infinite degeneracy Ax (%) is a function of variables not associated with
the kth block, and has been factored out of the corresponding subelliptic block By (x*),
which is a function of variables associated with the kth block. Finally, in Theorem 2.2
above, with X = (x1, x2,...,Xn),

(2.13) 1 <m < p <n,and Ax(x) = Ax(X) can vanish only when
X=0form+1<k<n and A,(X) =2Ap41(X) =+ = Ap(X),

and with additional assumptions on the coefficients a; (x) of the matrix A (x) as described
in part (b) of Theorem 2.2, which imply that A(x) can be written as a finite sum of squares
of €28 vector fields.

Now we note that if both (2.10) and (2.13) hold, then either m = n — 1 or L is elliptic.
Indeed, if m < n — 2, then at the point x = re,_;, we have A, (te,—1) > 0 by (2.10), and
An(ten—1) = A,(0) by (2.13), and hence A, (0) > 0. Similarly, if m + 1 < k < n, then at
the point x = e, _1, we have A (teg41) > 0 by (2.10), and Ag (tex+1) = Ax(0) by (2.13),
and hence A (0) > 0.

It is also easy to check that if both (2.12) and (2.13) hold, then A(x) is either elliptic
or essentially® has the form

(2.14) A(x) = |:I[(’)” on()?)i| . where Q,(X) is conformal,

by which we mean that there is C > 0 such that for each X, the eigenvalues A; (X) of O, (X)
satisfy
1 _ A _ C.
C ™)~
In order to compare (2.13) with the other forms, and ignoring those cases in which L
is elliptic, we see that

e (2.11) holds when both (2.10) and (2.13) hold, and that
¢ (2.14) holds when both (2.12) and (2.13) hold.

3We are assuming for simplicity here that the final block in (2.12) is elliptic rather than subelliptic.
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In these cases, all the papers imply that a rough solution u to the appropriate case
of (2.9) is actually smooth, but where in Theorem 2.18 of [24], it is required that u be a
continuous weak solution, in Theorem 85 of [18], it is required that u be a weak solution,
and in Theorem 1.3 in [17] and Theorem 2.2 above, it is required only that u be a dis-
tribution solution. However, in [17], the infinite part of the degeneracy is assumed to be
factored out, while this is not assumed in Theorem 2.2 above.

Here are some examples to illustrate these assertions and the scope of Theorems 2.2
and 2.5 in simple situations.

Example 2.9. Theorem 2.18 of [24] and Theorem 1.3 of [ 17] apply to (certain nonelliptic)
diagonal operators of the form

82 82 2
L= PP +A2(x1,x3) +/\3(x1,x2)
ax 0x3 ax3’
whereas Theorem 2.2 above does not. And Theorem 2.2 above applies to (certain nonel-
liptic) diagonal operators of the form

82 2 2

d
L= i 2 +)&2(X1) +A3( 1)
3

whereas Theorem 2.18 of [24] and Theorem 1.3 of [17] do not.

Next we note that in [20], the notions of hypoellipticity and sums of squares are shown
to be incomparable. For example, recall the following special case:

A(x)E[x}2 xx/22:|=(x}2)[1 x/2]+|:ﬁ(jc/2:| [0 v3x/2]

This is a finite sum of squares of smooth vector fields which is not subordinate, since
|A'(x)e2]|?> = 1/4 + 4x? and e§ A(x)e; = x?

On the other hand, A(x) = [0 f(x)] is subordinate and not a finite sum of squares
of smooth vector fields if f(x) is a nonnegative smooth function in R” that is not a finite
sum of squares of smooth functions. A quadratic polynomial example is given by the 4 x 4
matrix

1 0 0 0
Ay (x) = 0 x24+Ay2+42z2 —Xxy —xz :[1 or ]
10 —Xy y2+Az2+2x2 —yz 10 La(x,y,2)
0 —xz —yz 224 Ax242y?

that is subordinate when A > 0, since |4/, (¥)u|? < C|x|?> and ud; (x)u > cA|x|? for any
unit vector u in R*, and by the generalization of a theorem of Cho in Theorem 38 of [20],
neither A, nor L is a finite sum of squares of even C % vector fields if 0 < A < 2/81.

Example 2.10. For any smooth elliptical function f(x) on the real line, the matrix func-

tion . )
_ v/ (x
A(x)—[mx) f(x)z}
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is easily seen to be a sum of squares of smooth vector fields that is not subordinate, see,
e.g., [20] for a simple proof. On the other hand, Theorem 2.5 shows that L = VYA (x)V
is hypoelliptic since (2.4) follows immediately from

m N
J 2 d 2
2 _ 2 — vl?
PO =[50+ 7[5 _;:1;|X,v|,

while the Koike condition (2.5) is a consequence of Agyp(x) = f (x)2 = Aproduct(x). None
of the aforementioned results in [17, 18,24], apply to this simple operator L if f vanishes
to infinite order at the origin. Theorem 2.2 only applies if, in addition, the diagonal and
off-diagonal estimates (1.2) and (1.3) hold, which in this case means

|f/(x)| S f(x)3/2+8’//’ |f//(x)| 5 f(x)l_i_‘g///’
|f(3)(x)| 5 f(x)l/l-‘rS’”, |f(4)(x)| 5 f(x)g///,

for some 8" > 0, since in this case a1» = y /22, and the diagonal estimates follow from
the off-diagonal ones, which are weakest when ¢ = 1/4.

Finally, we recall from Section 4.3.2 in [20] a somewhat more complicated example
that demonstrates we can obtain hypoellipticity from Theorem 2.5 when L has a simple
block form, but where the infinite degeneracy cannot be factored out as in [15, 17]. More-
over, neither Theorem 2.2, nor any previous results, such as those in [1,7, 15,17, 18, 24]
apply. But to see this, we first need some preliminaries. As in [20], we let ¢, ¥: (0, 1) —
(0, 1) be strictly increasing elliptical flat smooth nearly monotone* functions on (0, 1),
and define the matrix function

Foyn,(W.1) = o) L(W) + (Y (1) + n(.r)) I3,

for (W,t) € Q = Bgr3(0,1) x (—1, 1), where L(W) = L, (W) for some 0 < A < 2/81,

I3 is the 3 x 3 identity matrix, r = |W| = /x2 + y2 + z2, and n(t,r) = @(r)ho(|t|/ 1),
where /1,: [0, 00) — [0, 1] is smooth and

1 if0<u <p,
0 ifl <u<oo.

hp(”) = {

Then Fy 1, is a diagonally elliptical flat smooth 3 x 3 matrix function on Bgs(0, 1) x
(=1,1). By Lemma 40 in [20], Fy 4 5,(W, 1) cannot be written as a finite sum of squares

of C1-8 vector fields if there is 0 < B < 1 such that

o, Y0
(2.15) () =olp(t)*) and  lim (2B ATB

Example 2.11. Now we can give the example of an operator L = V¥AV in R7, with a
smooth diagonally elliptic subordinate matrix A, that is hypoelliptic by Theorem 2.5, yet

4 f nearly monotone means that f is wg-monotone for all 0 < s < 1.



Sums of squares III: Hypoellipticity in the infinitely degenerate regime 1263

it is not a finite sum of squares of C L1 yector fields, and moreover cannot be written in the
forms required in either [15] or [17]. Indeed, define the 7 x 7 matrix function A4 in block
form by
I4 04x3
A(x,y,z,t,u,v,w) = |:03X4 Fw,,/,(x,y,z,t)]
where 4 is the 4 x 4 identity matrix, 0,,x, is the m X n zero matrix, and (2.15) holds.
As was shown in [20], F(p,],,,hp (x, y,z,t) is a smooth subordinate quasiconformal matrix
function, and hence Theorem 2.5 applies to show that L is hypoelliptic (recall that The-
orem 2.5 does not require any off diagonal estimates), yet A is not a finite sum of squares
of C1 vector fields.

We now claim that there is Fy .5, such that we cannot factor Fy y. p, as AB, where A
is smooth (even C*2%) and B is smooth (not even C31) and elliptic, thus showing that
neither [15] nor [17] apply to the operator L.

To see this, let W = (x, y, z), and then using L(W) ~ |W|?I3 as in Theorem 37
of [20], we conclude that

trace Fy y.p, (W, 1) = ¢(t) trace L(W) + 3(¥ (1) + n(z, 7))
~ WP+ (@) + 1t 1) = foyn,(W.1).
It is not hard to see that we can choose nearly monotone functions ¢ and ¥ satisfying

(2.15) such that the quantity S“’ w (Vo +8) = supg, cfs((yTtE;) in Remark 5.5 (2) of [19]
is finite for some 0 < s < 1.

Indeed, with 0 < B < 1in (2.15) fixed, and any 0 < s < B/3, we can take

2
o) =M,y = p=2 = PR
4 2 2

and then

Y(t) = e 51 = o(e VM%) = o(p(1)1*),
po o ekm

tl—IR) @(t)2/P 1418 - zgl(l)e T 14/B - tlgl(l) t4/8

A

v— N‘.—

90()’1)14 e—ypmﬁ = sup t*=1
0<t<1 ws(‘ﬂ(t)) 0<t<1 e_iﬁ o<t<l1

Then Theorem 5.4 (1) of [19] shows that f 4 5, is ws-monotone. If the factorization
Fy (W, t) = A(W,t)B(W, 1) held, then

Joun(W,t) ~ traceFy o (W, 1) = A(W, 1) trace B(W, 1) ~ A(W, 1),

hence A ~ fy,y, and so A(W, 1) is also ws-monotone,’ and hence A is a finite sum of
squares of C2:9n-1 functions by Theorem 4.8 in [19].

51t is an easy exercise to show that wg-monotonicity is preserved under comparability of functions when
0<s <l
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Moreover, the smooth elliptic matrix B(x, y, z,t) can be written as a sum of squares of
smooth vector fields using the 1-square decomposition® of B in the beginning of Section 3
in [20] together with Lemma 34 of [20] and induction. Altogether then, A(W, t)B(W, t)
can be written as a finite sum of squares of C 2-%-1 vector fields, contradicting the fact that
Fy 4 (W, 1) cannot be written as a finite sum of squares of even C LB vector fields if (2.15)
holds.

3. A rough variant of Christ’s theorem

We now prove our extension of Christ’s hypoellipticity theorem, namely, Theorem 2.6, to
the case of a sum of squares of rough vector fields, whose sum of squares is nevertheless
smooth. We will assume the rough symbols are in the classes €23 §¢ 1.0» but we could just
as well formulate and prove a variant for the symbol classes €29 §¢ s ni which we leave for
the interested reader, as we will not use such a variant in our applications. The proof of
this rough theorem is accomplished by adapting the sum of squares argument of Christ [7]

in the smooth case. For this we begin with some preliminaries.

3.1. Preliminaries

Here we recall definitions and properties of symbols, Garding’s inequality, parametrices,
rough symbols, and wave front sets. We include some proofs for convenience of the reader.

3.1.1. Symbols. We begin by recalling in R”, the deﬁnltlon of symbols S7*, from Stein
(see [26], Chapter VI), the definition of symbols S o k and S m+ from Chrlst [7] and then
some results on rough versions of the symbol classes S ’” from [25] and [28]. See also
Tréves [29] for symbols defined in open sets 2 C R”.

Definition 3.1. Let a(x, &) be a smooth function on R” x R”,and let0 < n < p < 1 and
—00 < m < 0.

(1) Define a € S7*, , referred to as a symbol of type (p, n) and order m, if

psn >

(3.1) |a“aﬁa(x,g)| < Cyplg)ymrlBlinlel  x e R" £ € R", (a,f) € Z" x Z".

(2) Define a € ST5F if |8°‘3§a(x,§)| < Cy p(E)ym—PIBIHnel(Jog (£))kHal 1Bl
(3) Define
Sk = (\Sphe yee meR.
e>0

For a symbola € S, , the associated pseudodifferential operator A: § (R") — §(R"),
also denoted by A = Opa, is defined on the space of rapidly decreasing functions § (R")
on R” by

Au(x) = /ﬂ; e a(x,E)n(E)dE, x e R™.

1
@

SWhich only makes use of square roots and reciprocals of functions that are smooth and positive in this
case.
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It follows with some work (see, e.g., [26]) that Opa: S (R") — §(R") is continuous, and,
moreover, if a; converges pointwise to a on R”, and (3.1) holds for @ = a; uniformly in &,
then a € S}7, as well. By duality Opa: §’(R") — §'(R") is a continuous map from the
space of tempered distributions §’(IR™) to itself, and the asymptotic formulas for adjoints
and compositions holds without restriction, e.g., if a € Sy and b € Sp2, then we have
Opa o Opb = Op(a o b), where for all M € N,

Z Ifg' Via-Vib+ Ey. with Ey € Spytme=M=1,

It follows immediately from the definitions that the asymptotic formulas for adjoints and
compositions extend to the symbol classes S l’,”,f . For example, by uniqueness of the expan-
sions, we have

EM c Sm1+a+m2+s M—1 C Sm1+m2—M—1,28

o—em-te p—2e.mt2e for each ¢ > 0,

and so

M—-1,2
Ey € ﬂ SZ’“Z‘Z”:;iZE & _ Sm1+m2 —M— 1+

>0

Now S} "’+ csS ;” 7 » and it turns out that for our purposes, we apply the pseudodifferential

calculus to the symbol classes S ;”,f , as well as to the classes Si’,”,;k that arise naturally

from the hypotheses of the theorems. We will not necessarily make explicit mention of
this distinction in the sequel however.

3.1.2. Parametrices. Leta(x,§) € S7", be elliptic of order m, i.e., there are strictly pos-
itive continuous functions p(x) and c¢(x) in 2 such that the symbol a(x, £) satisfies

c)[E™ < la(x.§)]. §eR", with [§] = p(x), x € Q.

Proposition 3.2. Let a(x,§) € ST", (). If a(x,§) is elliptic of order m, then there is
b(x,§) € Sy such that a o b = 1. Conversely, if there is b(x,§) € S} such that
aob =1, then a(x, &) is elliptic of order m.

Proof. Determine recursively symbols b; from the relations

bo(x.8)a(x.§) =1,
32 1 .
G2 Vb e == Y —oale oD o (x5, =1,

I<la|<j
which make sense only for |&] > p(x). The first three such symbols are given by

1
a(x.§)’

29 19
bi(x,§) = —bo(x,§) ) 35, 4 7 g bo(x.©)
i=1 °! !

bo(x,§) =

1
= == bo(x.§) Vea(x, £) - Vabo(x. §),
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ba(x,€) = —bo(x, s)Z gc«x £~ —bl(x £)

—bo(x,§) Y aa‘g"a(x,é)fobo(x,é)

|a|=2
=—;bo(x,é)vsa(x»é)~be1(X»E) bo(x,§) 5 Vga(x £) - Vibo(x.£).

To deal with the requirement that |£| > p(x), we select a monotone increasing sequence of
continuous functions p;j41(x) > p; (x) > p(x) and a sequence of smooth cutoff functions
xi(x,§) € C*®(Q2 x R") satisfying

0 if[g] < py(x),
1fE] < 2 ().

One can easily prove by induction on j that x;b; € S~ /() and, moreover, that for
carefully chosen such y;, the series Zoil xjbj converges in ST () to a symbol b
satisfying a o b = 1. Indeed, if { K; }°ills a standard exhausting sequence of compact sets
for €2, and if the constants C fﬂ (K ) satisfy

Xj(x,€)={

0208 (b, < CUM(K:) §]™™ T forx € K;. £ € R"\ {0},

then we need only require in addition that p; (x) > 2Sup; ; |o+8|< Cofjg (K.
The converse is an easy exercise using only the consequence

a(x,£)b(x, &) —1e S7HQ),

which implies that for every compact set K C €2, there is a constant Cg such that

la(x.§)b(x.§) — 1] = Ck

1
. [
1+ [§]
Corollary 3.3. Let A belong to S{"y(2). Then A is elliptic of order m if and only if there
is B € S1¢'(2) with
AB = BA = I mod S™*°(Q),

where ST () = (\ner S1.0 ().
3.1.3. Rough symbols. The following definitions are taken from [28] and [25].

Definition 3.4. A symbol o: R” x R” — R belongs to the rough symbol class €M S s
(where M € Z 4 and 0 < p,§ < 1) if for all multiindices «,  with |a| < M, there are
constants Cy g such that

IDEDEo(x.§) < Cap(l + gy FORI=PBL - x e R" £ e R™.

IfO0<u<1,theno € €M+“SZ13 if in addition, for all x € R", £ € R”, we have

Dﬂo(x + h,§) — Z (h D’3 (x, 8] < CMﬂ|h|M+“(1 + |§|)m+8(M+u) rlBl
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Definition 3.5. A symbol o:R” x R"” — R belongs to the operator class @7 if its asso-
ciated operator

1 .
OpoN) = o [ ot pa@ ds. xR,
@m)" Jre
admits a bounded extension from H, t(f["np to H, . (respectively, A;tg”mp to Aj ) for

s € I (respectively, s € I N[0,00))andall 1 < p < oco.

The symbol o belongs to the operator class (5;" if in addition Opo is bounded from
A;tf)”mp to A? p.loc> Where 7 is the right endpoint of the interval /. Here the subscript comp
means compactly supported distributions in the space, while the subscript loc means dis-

tributions locally in the space.
The following result of Bourdaud is well known, see also Theorem 3 in [25].

Theorem 3.6 ([4]). Forall real m, and allv > 0 and 0 < § < 1, we have
EvS{"lg C (9{”7(178)1},1})'

3.1.4. Rough pseudodifferential calculus. While symbol smoothing is a very effective
and relatively simple tool for use in elliptic and finite type situations, it fails to sufficiently
preserve the subunit property of vector fields in the infinitely degenerate regime. For this
reason, we will instead use the pseudodifferential calculus from [25], to which we now
turn.

Ifo €SP and 7 € eM+utvgs have compact support in R” x R”, then the
composition Opa o Opt of the operators Opa and Opt equals the operator Op(o o 1),
where

@on = [ [ dOED ot gyemdyds,

and the double integral on the right-hand side is absolutely convergent under the compact
support assumption, thus justifying the claim. Given such symbols without the assumption
of compact support, we may then consider instead the symbols o, and 7., where a.(x,§) =
Y(ex, e&)a(x, £). Provided ¢ € C°(R” x R") is 1 on the unit ball, the symbols a, are
uniformly in the same symbol class as a, and hence the above formula persists in the
limit when the operators are restricted to acting on the space § of rapidly decreasing
functions. Of course it may happen that the resulting symbol o o 7 fails to belong to
any reasonable rough symbol class €M +“S;" see Section 5.3 in [25]. Nevertheless, we
have the following useful symbol expansion of ¢ o 7 valid up to an error operator in an
appropriate class O7".

Theorem 3.7 ([25, Theorem 4]). Suppose o € €VS{'s and t € €MLY ST ywhere M
is a nonnegative integer, 0 < j4,81,0, <1, v > OandM—i—y, >my>0. Let§= max{51,52}
Then

M
1 —

oot=) 7o it Vio Vit +E, E€ 0?1(411"52)1(;;““)(82 DX for every & > 0.

=0

There is an analogous expansion for the symbol of the adjoint operator (Opo)™.
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3.1.5. Smooth distributions and wave front sets. The following definitions are taken
from Treves [29].

Definition 3.8. A distribution u in an open set 2 C R” is said to be C*° in some neigh-
bourhood of a point (xq, £%) € 2 x (R" \ {0}) if there is a function g € C>°(R") equal
to 1 in a neighbourhood of x¢, and an open cone I'® C R” containing £° such that for
every M > 0, there is a positive constant Cys satisfying

[gu@)| < Cu(1+ 5D, EeT”

Definition 3.9. A distribution u in an open set 2 C R” is said to be C*° in a conic open
subset I' C Q2 x (R” \ {0}) if it is C*° in some neighbourhood of every point of I". The
wave front set WF (u) of u is the complement in 2 x (R” \ {0}) of the union of all conic
open sets in which u is C*°:

WF(@u) =Q x (R"\ {0})\ U{F conic open C  x (R” \ {0}) : uis C* in T}.

For y € R, the HY wave front set of u is defined analogously, where H? is the Sobolev
space of order y.

3.2. Proof of Theorem 2.6, the limited smoothness variant of Christ’s theorem

Now we begin our proof of the limited smoothness variant Theorem 2.6, in the setting of
real vector fields, of Christ’s theorem. Let u € D’(V) and 0 < y < § be given. Suppose that
the HY wave front set of Lu is disjoint from some open conic neighbourhood I'y of a point
(x9, &) € T* V. Without loss of generality, we may assume that u € &'(V). Fix an integer
K €7 (possibly quite large) such that u € H K. We will show that (xg, &) & W Fgv (1)
by first constructing a pseudodifferential operator A that is elliptic of order y in a smaller
compact conic neighbourhood T'; of (xg, &), and then showing that Au € H°(R?).

To do this, let ¥ be as in part (c) of Theorem 2.6. Recall the definitions of the symbol
classes S Sm,,k and S”‘,;" from Definition 3.1. Then, following Christ, we define a

0.
symbol of nonconstant order, depending on parameters y and Ny by

v o—NolloglEDw (x.6)  if
33) A ) = {|§| e if g = e,

C and nonvanishing if |£]| < e.

The nonnegativity of ¥ implies that A € S }' 0 Moreover, A € § }' o~ With y fixed, there
exists @ > 0 such that for each No, we have A € S| 9N°+
of I';. Now choose Ny so that —ONy < —K. Then w1th

A = Op(4),

on the closure of the complement

we have Au € H~X+%No « H° microlocally on the complement of T';.

Define cutoff functions 7y, 7, € C.(R?) such that 7, = 1 in a neighbourhood of the
support of u, n; = 1 in a neighbourhood of the support of 7,, and Suppn; C V.

Recall that if @ € SJ", and b € S7 ., and p > 7, then Op(a) o Op(b) has a symbol
a ® b with an asymptotic expansion
(=)

o!

(3.4) a@b(x.§) ~ Y co0fa(x.£) 0%b(x.8), ¢y =
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The notation “~” means that for every N, the operator

Op(@) o Op(b) = Op( Y cu dalx.§) #2b(x.£))

a<N

is smoothing of order m + n — N(p — 1) in the scale of Sobolev spaces. The next lemma
is taken verbatim from [7], as it involves only symbols of type (1, 0).

Lemma 3.10 (Lemma 4.1 in [7]). There exists an operator A~ € S{"'J', for some m =

m(y) depending on y, such that A o A= — I is smoothing of infinite order. Moreover,
such an operator may be constructed with a symbol of the form

(+ At feSy?
Proof. Write f ~ Y 22, fx- Solve the equation
A0+ HA N ~1

using the asymptotic expansion (3.4) and the usual iterative procedure as given in (3.2).
One obtains f; € S —L2 and by induction, each f; € S1_, g *. Choose A to be an operator
whose full symbol has expansion Y g, fk, so that the error is smoothing of all orders in
the scale of Sobolev spaces. ]

To prove an analogue of Lemma 4.2 in [7], we will need an auxiliary lemma.

Lemma 3.11. Let P € Op(C“SKL(’)l , where m,l € N, and let A be the operator in (3.3),
where we recall that \ is everywhere nonnegative, vanishes identically in a small conic
neighbourhood of (xq, &), and it is strictly positive on the complement of T'y. Then

APA'=P + R+ R, +E,

where R € Op(C”_lS{"’(;l’lH), R € Op(C”_zS;'?(;z’Hz), and E € (9;':)%_8]‘0;" every

m < M < v andsome 0 < g < 1. Moreover, the operator Ry has the form
Ry = Op({logA,o(P)}).

Proof. Using Theorem 3.7, we see that the symbol of AP — PA divided by A equals

%{/\ Oa(P)—a(P)OA}

aFA 9%

- 7 g _ Ix2

= { Yr 3 }ca[ = o(P) — do(P) = ]+E

le|=1 2<|a|<M
o o o o . v—M om—2,1+2
= Z co[3f log A 350 (P) — 3o (P) 3% log A] + symbol in C*~¥ STy +E
la|=1
= {log A, o(P)} + symbol in C*~M §7"->1*2 L E,

where E € (92"__1),1‘;1)_8 for every M < v and some 0 < ¢ < 1; and {log A, o(P)} is the

Poisson bracket of log A and o (P), and is a symbol in f”_lSI'jo_l’lH. ]
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Define
(3.5) Li=) X'X;+ > A;X;+ Y XJA; + Ao.
J J J

sothat L = L, + Ry + v. Q, V. This next lemma is our first analogue of Lemma 4.5
in [7].

Lemma 3.12 (Lemma 4.5 in [7]). Let A be the operator with symbol A in (3.3). Suppose
that L takes the form (3.5). Define

b; = Op{logA,o(X")} and b; = Op{logi.a(X;)}.

Then there exists a pseudodifferential operator G of the form

(3.6) G=ZB,oXj+Zx;fo§,+Bo,
J J
such that
(L1 + G)niAna =mALny + R
where
a7) Bi =bj + ¢ and§j=5j+5j forevery j > 1,

By = Zj(bj o bj + A;b; + A;b;) mod Op(CO*S 1y,

where cj,Cj € Op(C%S—11Y and A;, /T] eC!? S?,o are the coefficients of the differen-
tial operator L in (3.5), and R € (9(__85 5)

Proof. In constructing the symbol of G we will work formally, ignoring the cutoff func-
tions 1y and 7. This is permissible by pseudolocality, since 117, = 1,. The desired
equation (L1 + G)A = AL + R is then equivalent to
G=ALA'—L;+RA™!
=Y [AXJX;AT = XX;] 4+ RA™!
J
+ Y A X+ XFA 4+ A AT =) (A X + XA + A)
J J
= Glop + AGlowerA_1 — Giower:

where

Gip = Y _[AXIX;A7" = XI'X;] + RA™!
J
=Y [AXFAT)(AX;A™Y) — XX;] + RA™!
J

and 5
Glower = Z(A]X] + X}rAj + A())
J
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We first consider Gyop. Using Lemma 3.11, with P = X;, m = 1, = 0, we have

AXjA_ X; + Op({log 4, o(X )}) + symbol in CO‘gS10 mod (9( 88)
where b; = Op({logA,0(X;)}) € CL 85?0 and ¢, hasasymbol in C%%$7*. Since both

{logA,0(X;)} and {log A, o(X")} belong to C1» 851 o inserting these equatlons into the
identity derived for Gy in the precedmg paragraph shows that

Giop = ZBj oX; + ZX}rOEj + Bo,
J J
where the operators B;, Ej e Op(C's S{),’(}) and By € Op(C%? S{)ﬁ) satisfy (3.7).
Now consider Giower. We can write
AGiowerA™" =Y A4 X; + X[ A; + Ag) A
J
= (AAATAXAT + AXTAT AL AT + AdpAT).
J
Applying Lemma 3.11 to A; and X, we have
AAjA~" = A; 4 symbol in Op(C*? S;(l)’l) mod (9(_—18_,88)’
AX;A™" = X; 4+ Op({log A.o(X;)}) + symbol in C**S73* mod O 5.
Using Theorem 3.7, this gives
AAATAX;ATY = 4;X; 4 ¢ X; + symbolin C®P ST mod O % 4.

with ¢; € CO9S; (1) ! and where the symbol in C*: sSo ! has the form Aj b + symbol in
co ‘SS{) o With b = {logA,0(X;)}. Analyzing the other terms in AGjower A ! in the same
way, we obtain

AGiower A™" = B; X; + X{'Bj + By mod O 5.
where Bj, l?,- asin (3.7), and By € Op(CO"S S?”(}) and has the structure as in (3.7). Com-

bining with the estimate for G, we obtain the result. [

Lemma 3.13 (Lemma 4.6 in [7]). Suppose that L, p satisfy the hypotheses of The-
orem 2.6. Then, for any N > 0, and for any fixed relatively compact subset U C V, any
8§ > 0 and any f € C?*3 supported in U, the operator G constructed in Lemma 3.12
satisfies

38)  NGL NI <8Y N1X fI1>+8IVaV I+ Csll fI* + Csl10p(p) f 11371
j

Proof. We first note

o(bj) = {log/\,o(X;r)} = —Nplog |S|{1/f,0(X}r)} + symbol in CI’SSRO,
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and similarly for 5j. Using this together with (3.7) and hypothesis (2.8) with § = 8y, we
therefore obtain

(B o X; £.1)] = by +¢) 0 X; £, )| < el X; 1P + Cellby I + Cell £
< el X; f11? + Cell log [El{y. o (XD} £11? + Cell £1I
< el X; f1I? + Cell £11P

+ Co(80 YN XjuI? +80l1Va ¥ £12+ CoylL 12+ s OD(2) £ 1.
J

Choosing 69 = ¢/ Ce, this gives
(Bj o X f. )l <& Y [ Xull® + el VaV £+ Cell £ + CelOp(p) f 171
J

The rest of the terms in (3.6) are handled in the same way, giving (3.8). ]

To handle the Grushin type term v- Q, (x)@ in (2.6), we will need the following two
lemmas.

Lemma 3.14. There holds
(V-Qy Vi1 +E)An, = mAV-Q, Vi, +R,

where R € (9(_—88,8)’ and with g? = (&, ...,&n), the matrix operator E takes the form
(39 E= HoQ,,ﬁJr@( 3 D"‘Qp)oHo—i—Ho( 3 D“Qp)oHO
lo|=1 lee]=1

+H30Q,V + HoQuH + Ho O 5.
where H = Opl{logA,£}€0p(S}y), Ho€Op(SY,), HoeOp(C*4S?,), H3€O0p(Sy ™).

Proof. In constructing the symbol of E, we will work formally, ignoring the cutoff func-
tions 7, and 1. This is permissible by pseudolocality since 71172 =712.LetL, =V -Q, V.
The desired equation (L, + E)A = AL; + R is then equivalent to

E=ALA"' —L,+RAT'=AV.Q,VA 1 —=V.Q,V +RA™!

= (AVA™YH - (AQ,VA™) =V .Q,V+RAL.
Next, using Lemma 3.11, we have

AVA™' =V + {log/\,g} + symbol in Sl_,(l)’1 =V + H + Hs,
where H = {logA, g?} € Op(Sﬁ’é) and H3 € Op(S;(l)’l). To estimate AQ) VA, we will
need a refinement of Lemma 3.11, namely, the estimate obtained in the proof
agA

A

%A
%{A ©0(P)—a(P)OA) = { D }ca [ET 320(P) — 8o (P)

la|l=1 |a|=2

= {logA,o(P)} + Z ca[0F logA 3%0(P) — 050 (P) 05 logA] + S,

loe|=2

|+
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where S € 0(_1;5) forsome 0 <& < 1land0 <v < §.Now, o(P) =0(Q, ﬁ) =Q, g?, SO

Y caldf loghd%0(P) — 020 (P) 9% logA] = Y cadf logA 0%Q,é.

loe|=2 |oe|=2

which is a symbol in €%% Sy, (1)’0 since 1 does not depend on & in I', and therefore no
logarithmic terms arise from differentiation of log A with respect to £. Altogether, we thus
have

AQ,VA™! = Q,V + Op({log A, Qy &}) + symbol in €4 5700

=Q, v+ Z (D“Qp)ng logA + Qp-{logA, £} + symbol in €% S;(l,’o

lae|=1

=Q v + Z (D*Q,) - symbol in S{),O + Q, - H +symbol in \60’851_’(1)’0,

la|=1

where all the equalities hold mod (9(_—18_86)' We note that SA‘Dg logA € S {)’0 for each o with
|| = 1 since ¥ does not depend on &, and therefore no logarithmic terms arise from
differentiation of log A with respect to &. This gives

(AVATY) - (AQ, VAT
- @.Qp§+Hon@+H3leﬁ+§( > Dan) o Hy

la|=1

—|—H0< > D“Qp)°Ho+H0QpH+Ho mod O’ 5 "

la|=1

Lemma 3.15. Let E be a pseudodifferential operator of the form (3.9). Then, for any fixed
relatively compact subset U C V, any § > 0 and any f € CX° supported in U, we have

3.10)  [EL ) <8 1X; fIP+8IVaVfI* + Csll £17 + Cs10p(p) f 1771
j

Proof. Here is where we will need to use that the matrix Q,, is subordinate —in the case
p = n, Q, is simply a scalar and the subordinate inequality is that of Malgrange. We will
use (3.9) and the notation Q;, = Z|a|=l D¥Q,. We have

(Ef. ) =—~(VQ H"£.VQpV [) = (Ho . Q,V f) + (Ho f.Q, H" f)
+ (HY £.QpV' ) + (VQuHS. /Qo H" f) + (Ho f. ).

Now we use the crucial fact that Q,, is subordinate, i.e., |Q;, |2 < CQp, and together with
Cauchy—Schwarz, this gives

(EL £ < 8IVQp VA I? + Csl Qo H £11* + Cs 1/ Qp HS > + Csll £ 1%

Finally, using the definition of A, we obtain

o(H) = {log A, ) = —No log |¢|{¥, £},
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which together with the fact that Q, ~ al,_,41 shows

(Ef. £ < 8IvaV £II? + Csllv/a Op(log(&){w. &N f 1> + Cs £ 1> -
Combining with estimate (2.8), as in the proof of Lemma 3.13, we conclude (3.10). ]
Finally, we obtain an estimate on the subunit term R;.

Lemma 3.16. Let Ry = > j_, SpOg o ¥V, where each Sk € CUVS(R™*™Y s subunit with
respect 10 Qp, and O = (Op, ..., O,) is a multiplier of order zero. Then

(Rym + J)An2 = niARn2 + R,
where J € Op(€%? SR’(}), R e (9(_—18_88)’ and

Gl WA= NIX FI?+8IvaV £I? + Csll £1I* + Csllop(p) £ 131
J

forany § > 0and any f € C2°.

Proof. Proceeding as in the proof of Lemma 3.14, we have

ASk® o VA™! = S, 0V + )~ (D*S0)E 0 (§) Df log A + Sellog 4. €6 ())

la|=1
+ symbol in €4 5 ¢
= SO o v+ symbol in C(”‘gS{’,0 + Sx Hy + symbol in CO”SSI_’(I)’O
= 50 o % + Ji,
where all the equalities hold mod (9(_—18_,(?) and Hy € Op(S ﬁ’;). Defining J =Yy _; Jx and

using the fact that S is subunit together with Q, ~ al,_, 1 and (2.8), we obtain (3.11),
and the proof is complete. ]

We are now ready to prove a generalization of Lemma 4.4 in [7], which is the main
estimate we need.

Lemma 3.17 ([7, Lemma 4.4]). Let L take the form (2.6) and satisfy (2.7) and (2.8). Let
0 < y < 6 be fixed. If Ny is chosen sufficiently large in the definition of A, then for any
fixed relatively compact U € V and any u € C*%(U),

(3.12) [mAull2@ny < CllmALul 2@y + Cllullgown-
Proof. Recall that
L=)"X'X;+ Y A;X;+ Y X'Aj+ Ao+ R +V-Q,V
J J J
=L+ L, + Ry,

where we used the notation L, = V - Qp V. If we set

v =nAu € C*(R"),
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we have
(L1 + G)v,v) = (L1v,v) + (Gv,v)
= an vlZ, + Z (Aj o Xju.v) + Y (X[ 0 Ajv.v) + (Aov.v) + (Gv.v)
J

= ZHX v||L2 +Z (Xjv, A‘r Z(A}U,va) + (Agv,v) + (Gv,v)

J

=Y 13 + 0 [DI%vI2 vlize + 0I3:) + (Gv,v),
J J

since the operators A; and /Tl have order 0. Similarly,
((L, + E)v,v) =(V’-Qp§v,v)+ Ev,v) /|\/vav| (Ev,v),

((R1 + Jo)v, v) =<ZS® Vv, v> (Jv,v) <8/a|Vv|2+C5|| ||L2 (Jov, v).

i=1

We also have, from Lemmas 3.13, 3.14 and 3.16, that

(L1 +G)v=(L1+G)mAnu =nALinu + Ru=nALiu + Ru,
(L2 + E)v = (L2 + E)ymAnau = mALzanau + Ru = niALu + Ru,
(R + Jo)v = (Ry + J)niAnau = ARy nou + Ru = ny ARu + Ru,

since npu = u, and hence, adding together,

(L + G+ E+ J)v,v)| < [(mALnu,v)| + [(Ru, v)|

IA

1 1
E”UIALMEZ(Rn) + EI'R”||i2(Rn) + ||v||i2(Rn)'
Thus, from (3.8), (3.10), (3.11) and the above, we conclude that

S Ixvl2: + 1V/Qp Vol
J
= (L1 + G)v.v) — (Gv.v) + € (LG ol + 12)
4+ ((L2 + E)v,v) — (Ev,v) + {((Ry + J)v,v) — (Jov, v) <ZSOVU v>

1 1 ~
< SImALulfz + SIRulZ + Csllvlza +6 Y 11X, flI72 + 481Va Vol Z,
j

+ G0Vl + C (/3 IXvI2a vl + 02 ).
J
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Combining this with the inequality

D Ixl2a0vle <8 1X]2 + Csllvll2,
J J

and the condition Q, ~ al,—,41, we obtain, choosing § smaller if necessary,
~ 1 1
D IXjvll7. + I1Va Vol* < EIImALulliz + EllRulliz + Csllvll72 + Cs10p(p)vl1 31
J

+8> 1X;v)22 + 8l vVa Vol 2..
J

Absorbing the terms § } ;|| X jv||z2 and §||/a @v”iz into the left-hand side, and then
using that the order of the error term R is —e, we obtain

G13) YUKl + 1@ Vol2s < I ALulagn + Cllvl2s + Clluly—,
J

where the term involving the H! norm of Op(p)Au may be absorbed into ||u||%{,s,
since A may be made to be regularizing of arbitrary high order in a conic neighbourhood
of the symbol p, by choosing N to be sufficiently large.

Next we write

vl =[ |5(5)|2d§+/ [0(§)1>dg
{ERM[E|<N) {EeRM:[E1>N)

< N / )2 D) P ds +
{E€R™:|E|<N}

2 ~ Zd
wz(N) {SER”:|§">N}w ((E))|U(f)| E

1 ~
< N |lullfo + mllw((é))v(é)lliz

C ~
= Nl + — = (D 1X5012, + 1Va VoliZ + o]Z2).
w?(N) F
where for the last inequality we used (2.7). Let § = C/w?(N) and note that § can be

made arbitrarily small by choosing N sufficiently large. We combine the above equality
with (3.13) to obtain

10122 < Calulo +8( - 1X50132 + Iva Vola + ul2.)
J
2 2 2 2
< Csllullggo + 8CImALull7>gny + Clvlizz + Cllullg-).
Choosing § sufficiently small to absorb the norm ||v ||1242 to the left-hand side, we conclude

I A2 gy = (0122 my < CllmALulZ2gay + Cy o ggny-

for a constant C), depending on y. ]
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3.2.1. Removal of the smoothness assumption. It remains to remove the smoothness
assumptionu € C 2.8(U) in Lemma 3.17, and to convert the above a priori estimate (3.12)
to the desired conclusion Au € H® of Theorem 2.6. For this we fix a strictly positive
smooth function r € C°°(R") such that

-1 for|g| > 2,
o= |8 HE
1 for [§] < 1.,
and we fix a large exponent g. For ¢ > 0 small, define a mollified symbol
Ae(x.§) =rs(§) - A(x,§) = r(e§)? - A(x.§). wherere(§) = r(e§)?,

with A(x, &) = |§]7 e~ NoUoglEDP(8) for |£] > ¢ as in (3.3). Let A, = OpA,. The symbols
re(§) satisfy

|97

(3.14) < CyqlE[™®  uniformly in & > 0 and £ € R”.

&

If g is chosen sufficiently large relative to the order of the distribution u, then A u €
C? for all £ > 0, and since A; is elliptic of order y in a conic neighbourhood of (xg, &),
it suffices to show that the L2 norm of n;A;u remains uniformly bounded as & \ 0.
However, Lemma 3.17 fails to apply since we do not know that the distribution u is a
function in C2-%(U), and we now work to circumvent this difficulty.

The parameter Np in (3.3) can be chosen sufficiently large so that nyALu € L?
because ¢ is strictly positive in a conic neighbourhood of the H? wave front set of u, and
hence A is regularizing there of order at least y — o Ny for some constant ¢ > 0. The L2
norm of 1, A¢ Lu is bounded uniformly in & > 0 and tends to the L2 norm of 1y A Lu.

As in the proof of Lemma 3.17, we have, for each ¢ > 0, an operator G, and the
identities

(L1 + Ge)mAgu = niAgLiu + Rou,
(L2 + Eg)mAeu = mAegLou + Reu,
(R + Jeo)mAsu = mAeRiu + Reu,
with both sides of the equation in C?2 for each & > 0. Moreover, the differential inequal-

ities (3.14) ensure that the proof of Lemma 3.17 carries through for each ¢ > 0 with A
replaced by A, so that G, takes the form (3.6), i.e.,

GE = ZB]"S o Xj + ZX;I o Ej,a + BO,Sv
J J
By € Op(‘(?o"gSf”g) and Bj,, Ej,s € Op(‘el’BSﬁ’,;),
where the pseudodifferential operator coefficients By, Bj,, and Ej,s lie uniformly in the
indicated operator classes. A similar argument holds for £, and J.. All functions have

sufficient differentiability for the proof of Lemma 3.17 to apply, and this proof, together
with the above identity, yield

IniAcullz2ry < ClimAeLu|r2r) + Cllullgory uniformly in e > 0.

We conclude, as desired, that the L2 norm of N1 A ¢ u remains bounded as & \ 0.
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Thus, we have proved that for any distribution u € D’(V), and any 0 < y < §, there
is a symbol A as in (3.3) that is elliptic of order y on the conical set I", and satisfies

IniAullpzry < ClimiALulr2(ry + Cllull gocry-

The proof of Theorem 2.6 is now complete.
Combined with the bootstrapping argument above, this shows that u € H;} (R) for all

s € R. Indeed, n,u € H~M (R) for some M sufficiently large, and thus we can begin the
bootstrapping argument at s = —M..

4. Proof of Theorem 2.5

We now prove Theorem 2.5. The first step is to use a bootstrapping argument to reduce
matters to the level of L2(R"). Consider the general second order divergence form oper-
ator

Lu(x) = VFA(x)Vu(x) + D(x)u(x),

where A and D are real and smooth, and where A(x) satisfies appropriate form compar-
ability conditions. In order to conclude hypoellipticity of L, it is enough to show that there
is y > 0 such that for every s € R, we have the bootstrapping argument

ueH’

loc

(R")and Lu € HY'(R") = u € HSV(R") foralls € R.

oc oc

Now, with Ks(g) = (1 + |£[*)*/2, and y > 0 fixed, it suffices to show

0
u € H,

(R")and A;LA_su € H! (R") = u € H!,

loc

(R") foralls € R.

The second step is to use the sum of squares assumption in the second paragraph of
Theorem 2.5 to show that it is sufficient to establish the conditions of Theorem 2.6. So
define

4.1) G =[As,L]A_y = A(LA_s— L,

and suppose for the moment that the operator L has the simple form

4.2) L=Y XIX;,
j

where L € S 12’0 is smooth and X; € C 2.8 We first establish the properties of G we need
using the rough version of asymptotic expansion from [25] given in Theorem 3.7 above,
which we repeat here for the reader’s convenience.

Suppose o € €"SY’; and T € ‘€M+”+”SKL§2, where M is a nonnegative integer, and
0<pu,é1,8<l,v>0and M + p > my > 0. Let § = max{1,5>}. Then

M
1
_ 0 ot +ma+(M+)B2—1)+
oot = E B Vgo -Vit+E, Ec¢ (92':1(11"52),,,,,) 102 ¢ for every ¢ > 0.
£=0 ’
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Lemma 4.1. Let L and G be as in (4.2) and (4.1). Then

G=ZB,-0X,-+ZX}TOB,+BO,
J J

where By € (9(__88//224:;/2) forevery e > 0and B;, Ej € Op(C? S?,0)~

Proof. First, we note that

[As, L1 =Y [As, X[1X; + XA, X1,

J

and so we investigate operators [Aj, X]‘-r] and [Ag, X;]. The analysis is similar, so we only
give details for [Ag, X;]. Using Theorem (3.7) withm =s,my =1, M =1, u=1+§/2,
v =4/2and §; = 6, = 0, we have

o([As. Xj]) = CVe(1 + [E)*/? - Voo (X)) + E. where E € 0%, G10/2%e,
Composing with A_ and using Op(Ve (1 + |E[2)*/2) = R~' o Ay, where R™! € Sié, we
obtain 5
X}’[AS,X]-]A_S = Xj‘.r oBj + R,

with B; € 1989 and R e 074 .

Now we start with an operator L € S, of the more general form

(4.3) L= X'X;+ Ao+ V" Qp(x)V,
J

where X; € C?% and Ay € Sll’o. Using Lemma 4.1 for any operator L in the form (4.3)
and Remark 2.7, we can show that the operator AyL A _; has the form

AsLA—s =Y X'X;+ Y BjX;+ Y X[ Bj+ Bo+ Ri + V"Qy(x)V.
J J J

where X;, B;, l§j, and By are asin Lemma 4.1 and R; is as in Theorem 2.6. Thus, to show
hypoellipticity of the operator (4.3), it is sufficient to show that it satisfies the hypotheses
of Theorem 2.6, which completes the second step of the proof.

We prepare for the final step of the proof with an auxiliary lemma (see Lemma 5.1
in [7]), and its corollary to be used later for showing condition (2.7).

Lemma 4.2. Let ¢ € CZ(R"), f € C>®(R") simply positive, and s > 0. Then for any
[ € {1,...,n}, there exists a constant C; independent of s such that

@ el =G +57) (10wl + [ 2102002 dx).

Tz[min\xlzs f(x0)]?

where the minimum is taken over all x € supp ¢ such that |x| > s.
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Proof. Fix s > 0. For any x € R”, we have

1+s/|x;] 9

Xq

o(x) = <p<x +s—) —/ —(p(xl,...,xl_l,txl,le,...,xn)dt,
|xz] 1 ot

9 (x) < <p2(x +s ﬂ)
|2

1+s/|x;| 2
+ (/ V(p(xl,...,xl_l,txl,xl+1,...,xn)~(O,...,x1,0,...,0)dt> ,
1
and thus

[ cwars [ p(crsit)an
[x7]<s |x;]1<s |xl|

1+s/|x;] 1+s/|x]
+/ (/ |81g0(x1,...,xl,l,txl,xlﬂ,...,x,,)t3/4x1|2dt/ t_3/2dt) dx
lx/l<s *J1

1
</ 2(x)d
pS @ (x)dx
s<|x;|<2s
1+s/]x7] 34
+/ / [070(X1,y ey Xp—1, EX], X s+ o> X)) / xi|“dtdx.
[x]<s J1

Switching the order of integration in the last term on the right-hand side and making a
change of variables y = (x1,...,X/—1, X7, X[ 41, ..., Xn), We obtain

1+s/|x;] 34
/ / [07@ (X1, ey Xpm1 s EX], X5+ o> X)) / xi|“dtdx
lxrl<s J1

oo _ dy
< / / eyl 2 s < 2 f 1002 dy.
1 Jiyl<2s t

which combining with the above gives
| swars [ pwares [ewria
|x71<s s<|x|<2s

Finally,
2 fP gy = ] min f0 [ g

lx7|=s |x7 =5

and thus altogether
1
[ eeax < 212 g dx +5? [ gl d.

Tz[min\xﬂzs f(x)]z [x|=>s

which implies (4.4). ]

Lemma 4.3. Let ¢ and f as in Lemma 4.2. There exists a strictly positive continuous
Sfunction w, satisfying w(t) — o0 as T — 00, such that for everyl € {1,...,n} and some
constant C; > 0,

/ W) o) dx < C; / (1910(OP + 72 £(x)* o(x)?) dx.
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Proof. Forall s > 0, define

Jo(s) = _ min f(x),

X Esupp @:|x|>s
and note that fo(0) = 0, fo(s) > 0 for s # 0, and fy is nondecreasing on [0, c0). Let

r = r(t) > 0 be the unique point satisfying

1
4.5) - = 1fo(r).

Define the function w by

w() = inf (% + Tfos)).

§ <00

since 1/s is nonincreasing and fo(s) is nondecreasing in s, we have w(z) ~ 1/r, where r
is given by (4.5). Therefore, w(t) — oo as T — oo and using (4.4) with s = r, we obtain

[0 = € (s + %) [ (00 + 7 g dv

<q / (810CO) + 72 £ () p(x)?) dx. .

4.1. Sufficiency

We can now proceed to complete the sufficiency part of Theorem 2.5. We note that,
without loss of generality, we may assume that the diagonal entries A (X) are smooth.
Indeed, from A(x) ~ Dy (x), we obtain A(x) ~ Agiae(x) and hence

(4.6) Ak (X) = ag gk (x) ~ ark(%,0,0),
where the functions a x (X, 0, 0) are smooth for 1 < k < n by assumption.

Proof of sufficiency in Theorem 2.5. Let (§1,...,&mn, Dm+1, - - - » n) denote the dual vari-
ables, and denote £ = (§1,....&m), 1 = (Wm+1s---5Mn), X = (X1,..., Xm). Define

R={(x,6,n7):x=0,§ =0, nm+1,...,0n > O}

The principal symbol of L vanishes on the manifold X = & = 0, so it suffices to prove
that Lu € H*(N(R)) = u € HS(N(R)) for some conical neighbourhood Jt(R) of the
ray R. We start with verifying condition (2.7). Let & () (X, n) be the partial Fourier trans-
form of u in n — m variables 7. Then, from Lemma 4.3 with x = X and ¢(X) = ¥ (u)(X, ),
we have, fork =m+1,...,p—1,

/ W) F ) (E. )?dF < C / (Vs F ()G )P+ 1 M) F @) (E. 1)) d,

and, fork = p,...,n,

/ W) F (W) (F. )P dx < C / (V5 F () E )P+ 12 Ap (D) F () (E. 1)) d 5.
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where w(s) — oo as s — oco. Adding the inequalities together gives

/ w(ln)>F () (% )2 d 3

p—1 n
s¢ [(r@EnP+[ ¥ #am + Y a0 |7 n?) ds.
k=m+1 k=p

where w(|n]) — oo as || — oco. Combining with the first line in (2.4), we obtain
/Rn w(D>F () (& dxdn = C 3 I XjulP + ClIVAp VullP,
j
which gives, upon using the first condition in (2.4) again,
/min{l(i ml wE mDy>aE n?dédn
<[ wblaenPdsan+ [
[E1=<Inl

|17 A€, )| dE dn
El=|nl
<C Y 1Xul® + ClVA, Vul?.

J

We proceed to verify (2.8) with p = 0 and ¥ constructed below. Since the principal
symbol of the operator vanishes on R"~ x R”~" namely, when X = § = 0, we need to
localize matters with a cutoff function i that enjoys favorable commutation relations with
the symbol o (X;) of the vector field X;. So,let p = Oandlet p > 0. Let y € C*°(T*V)
be homogeneous of degree 0 with respect to (£, ) and satisfy

v =1 it |(x, &/[nD| = 3p,
v =0 if |(x,&/InD| < p,
V =vYXmt1,...,x) i [(X.&/[n])] < 2p.

For example, the reader can easily check that for p sufficiently small, we can take

pe(x.0) if[(x. )] < 4p,

V(x,€n) = {}(x,é‘), where 1;()6,5) = { 1 if |(x,0)] > 4p

for any 0 < ¢ < p/2, where

@e(x. ) = ¢e ¥ Ipam\g, (. 0),  (x.0) € R" xR™,

and
|(x, )]

&

1 ifo<r<1/2,
0 ifl <t < oo,

belx.0) = (T2, with ¢(1) = {

and where
Ke ={(x,0) : [(x,0)] < p+eand |(x,0)] <2p + &}

is the intersection of a cylinder of radius p + ¢ and a ball of radius 2p + ¢.
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Thus, fﬁ is 1 outside a ball of radius 3p, vanishes inside a ball of radius p, and within
the cylinder, it makes the transition from O to 1 while depending only on the variables X,
which will give rise to favourable estimates on commutators below. On the other hand,
outside both the region where |(§, 7)| < 1 (the operator L is infinitely smoothing when
[(€,7)| < 1) and the cylinder, the symbol of L is bounded away from 0, hence elliptic.’

The main step of Christ’s application of his theorem occurs now. We begin by letting
X; =Y, aé (X) dx, foreach j =1,..., N. We now restrict attention to the cylinder

|(X,&/In)| < 2p. Then, since ¥ is independent of X in this cylinder, we have

n

WoXph=i Y aj(® gy

{=m+1
with
la](®) S VA®. €=m+1....p—1,
laj ()| < VAp(E), €=p,....n,
using conditions (2.4), and .
{y.n} =iVy.
Using that |£| < 2p|n| in the cylinder, we have, foreach j = 1,..., N,

1Op[log((€. M){v. o (X;)}]ul®

p—1
< > 10p[VAe(®) log{m]ul|* + [Op[v/A, (%) log(n
{=m+1

_ / Asam () log (0)2F (u) (%, m)? d 7
and

I v/Qp Opllog((&, M){w, m}ull?® < [IV/A, Opllog(n)]u|?

< / A () log ()25 (u) (5. 1) d %y,

upon using the definition of A, (X). To show (2.8) it is therefore sufficient to establish
the first inequality in the following display (since the second follows directly from (2.4)):

@) [ log (1) A s (B)F () (. 1) d 7

< 8[|V537(u)(5€, n,7)|*dxdndt

(mu]?

p 1
v [[ X naco+ Z 14 (O)|F () (5. ) ddn + Cslul?

k=m+1 =p

N
S8Y IXul® + 8IVA, Vull® + Csllu>.

Jj=1

7We identify regions in (x, {) with the corresponding regions in (x, £, ) under the map ¢ = (£, n).
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Using the definitions of Agm(X) and Aprodquct (X), we conclude that it is sufficient to show

(4.3) (log T)ZH vV Asum ‘p”z = 3(f)||Vx<P||2 + 8(7)72” v Aproduct ‘p”z

for all ¢ € CJ(R™), where §(r) — 0 as T — oco. Indeed, (4.8) together with the bound
0 <A, <1 implies

[ 100 Aamp(02 5 < BUDIT 12 + 801 0]y Ry 91
= S(DIVzgl>+8(()] Z k2 1v/ A 017 + Z|nk| I35 01+ Csllel®.
k=m+1

This implies (4.7) by splitting the region of integration into |n| sufficiently large so that
8({n)) < 4, and the region where || is bounded, and thus the left-hand side of (4.7) is
bounded by C ||u]|?.

To establish (4.8), we first recall for convenience the Koike condition:

4.9) )%I_IH) ;,L(|)'€|’ v Aqm) In Aproduct(;c) = 0.

Now let ¢ € Cg (B(0,r)). Then, with ¢5(p) = ¢(pF), we have

22
[ AR5 = [ A= 131° )

I%|<r (r —|%])?

< pu(r, vV Agum 2/ Lfc)fdfc

ix<r (r —|X])?

= u(r, M)z /;ml{/(;r<r
< VR [ (4 [ o0rem ) ay
(4.10) < 4p(r. v/ Aum)? / V2 b ().

where in the last line we have applied Hardy’s inequality.
Fix ¢ € Cy (R™) asin (4.8). Let y € Cy (R!) satisfy y(r) = 1 for |f| < 1 and y(t) = 0
for |¢| > 2, and define the function

(41 l) l)()?) = X(TAproduct(i))s

and the set

dx

) o dp)d

I(T) = {5é € supp ¢ - tAproduct()z) > 1}

We can write
@.12) f A (@) @(F)2dE < 2 / Asam@) v(E)? (3 d 7
+2 [ Aam (@)1 = v(3)? 9(@)?di.
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To estimate the second integral, we notice that it vanishes outside the set /(7) and thus

(4.13) (Ing)z/Asum ()1 =v())? 9(¥)*dx < (log f)2/ Aproduc (%) () d X
1

()

= 8(1)7? / Aproduet (¥) p(X)* d X,

where §(t) = (log7)?7! — 0as T — oco.
To estimate the first integral on the right-hand side of (4.12), we define
l’(‘L’) = Sup{|j}| . y~ € suppy : TAproduct(.);) = 2}

Since supp ¢ is compact, the supremum above is attained at some point Z € supp ¢, and
moreover we have both

2

5l=r and 7= -—" .
Aproduct(z)

Thus, In7 ~ In 1/ Aproquce (Z) and so

p(r (), v Aam) Inr(0) ~ p(Z], vV Agm) In —0

product(Z)
The Koike condition (4.9) now implies
@14)  lim p(r (@) Am) 07 (@) = lim u(13]. v Agm) I e = 0.
Aproduct(x)

since r(7) — 0 as T — oco. We now need to combine this result with (4.10) to obtain the
desired estimate. Let ¢(X) = v(X)@(X). Then, using the definition of v(X) in (4.11), we
obtain

/IV;¢>()?)|2di <cC /|v;v<fc)|2<o(@2dfc e / V() Vs p(D)Pd
< Cr? / 1V Aprotoet () 9(£)2d 5 + C / Vi@ di
I(z)
=0 [ A 0@ i+ C [ Vip(0 a5,
I(7)

where in the last inequality we used the Malgrange inequality, see, e.g., Lemme Iin [11],
applied to Aproduct(X) = ]_[,fzm +1 Ak (X), where the functions Ay are smooth by (4.6).
Finally, from the definition of r and (4.11), it follows that

2 BO.r@),

supp¢ C suppv C {y~ T <
Aproducl()))

since if |X| > r(7), then TA proquei(7) > 2 by the definition of r (7).
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Combining the above estimate with (4.14) and (4.10), we conclude that
(10g 07 [ AuanG0 (0 99245 = (001 [ A (D) (025
= 307 [ Apsaa (0 002 a5+ [ V5 90

with
8(t) = Cuu(r, v/ Agum)* (log7)> = 0 as T — oo.
Together with (4.13), this gives (4.8). ]

4.2. Sharpness

We now turn to the sharpness portion of Theorem 2.5. If the Koike condition (4.9) fails,
then

0 < limsup (| X], v Asym) In ————

X—0 Aproduct(x)
=li1}15upu(|)~c|, Z Ak(x))ln ]_[ T (x)
x>0 k=m+1 k=m+1

<hmsupu(|x| Z \/Ak(x)
=0 k=m+1 j=m+1
P
< Z lim sup w(|X], v/ Ax (%) )ln
k,j=m+1 x—0 )

shows that p > m + 1 (since lim supz_,o #(|X|, y/Ap (X)) In1/A,(X) = 0) and that there

is a pair of distinct indices k, j € {m + 1,..., p} such that
lim sup p(|X], v/ Ax (X) )1n
xX—0

Our sharpness assertion in Theorem 2.5 now follows immediately from Proposition 4.5
and Theorem 4.6 below.

To prove these results, we will need the following lemma (see Lemma 2.7 in [14]),
whose short proof we include here for the reader’s convenience.

Lemma 4.4 ([14]). Let L be a hypoelliptic operator on R". For any multiindex B and any
subsets Q and Q' of R" such that Q' € Q, there exist N € N and C > 0 such that

15)  IDPulZagy = C( Y2 1D Lulag, + [ul3aqy) forallu € CX(@),
la|<N

Proof. Fix Q" € Q and consider the set

S ={ueL*Q): D*Lu € L*(Q') for all multiindices o).
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The family of seminorms ||u|z2(qn), [|D%Lu||z2(). @] € N, makes it a Fréchet space.
Since L is hypoelliptic, we have S C C°(R’), and in particular S C CM (Q') for any
M > 0. Now consider the inclusion map

T:8— CM(Q);
we claim T is closed. Indeed, suppose {u,} C S satisfies u, — u in S and u, — v in
CM(Q'), in particular, u,, — u in L?(Q’) and u,, — v in L°°(Q’). Then, for any n € N,
lu —vllz2@y < v —unllL2@) + llun — vil2@@r)

< |l — unllL2(@r) + llun — vllzoc@r 1212,

and the right-hand side converges to 0 as n — oo. This implies u = v, i.e., T is closed. By
the closed graph theorem, 7" is continuous, and therefore there exists N € N and C > 0

such that
lullemay = C( D2 ID“Lulgy + lulaqn )
la|l<N
Since the choice of M was arbitrary, this implies (4.15). ]

Proposition 4.5. Fix distinct indices k, j € {m + 1,..., p}, where p > m + 1. Define

92 92 2 2
Li=—+-- A R Aj(X1, ...y —,
1S g T g T )82+ G x)ax}
82 2 Z Z 82
LZE_2+ 2 + A()Cl,..., + A ('xl’"" )_
dx L R i=p+1 8xi

If L, is not hypoelliptic in R™Y2, then L, is not hypoelliptic in R”.

Proof. Suppose L is not hypoelliptic in R™*2 i.e., there exists a non-smooth function
u =u(xy,...,Xm, Xk, x;) such that Liu € C®(R™*2). If we define the function v by

V(X1, .o Xp) = U(XD, o, X, Xk X)),
then v is not smooth since u is not smooth. However,
Lov(xy,...,xp) = Liu(X1, ..., Xm, Xk, Xj),
and therefore smooth in R”. ]
Theorem 4.6. Suppose that h, f € C°°(R™) are strongly monotone, i.e.,
f(2) < f(x) and h(z) <h(x) forallz € B(0,|x]),
and satisfy h(x), f(x) > 0 and h(0) = f(0) = 0 for all x € R™. Define

p(t. h) = max{h(z)(t —|z]) : 0 < |z| <1}
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and suppose in addition that
(4.16) 1imi(r)1fu(|x|, h)In f(x) # 0.
x—

Then the operator
2 92 2 92
cfEAx-l-f (X)W—i_h (X)al_z
fails to be C*®-hypoelliptic in R™+2.
Proof. For a,n > 0 consider the second order operator L, = —Ay + f2(x)n? and the
eigenvalue problem

Lyv(x,n) = Ah2(x)v(x,n), x € B(0,a), v(x) =0, x € 9dB(0,a).
The least eigenvalue is given by the Rayleigh quotient formula:

(Lyo,9)12
m —
o(0)eC(B) (h2 @, ¢)12
. [5IVel(x)?>dx + [, fz(x)nzw(x)de_
0(#0)eC°(B) S h(x)?@(x)2dx

(4.17) Aola.n) =

Next, from (4.16), it follows that there exists ¢ > 0 and sequences {a,}, {b,} C R™ such
that |a,| < |bn| <1, b, — 0, and

4.18) (an)(|bn| — lan))|In f(by)| > & foralln e N.
Let
_ 1
LT

By the strong monotonicity of f and &, we have
M f(x) <1, h(x)>h(a,) forallx € R, ={x € R" : |a,| < |x| < |bn]|}.

This implies, using (4.17),

(LTI ‘Py@)LZ
Ao(|1by inf _—
o([Dnl, nn) = o0 k) (2 0) 0
< h(ap)™? Vol?
Sha)™ it (961 + el el

< h(an)~ 2(C(|bn| —lan))” s 1) <Clln f(bn)|2 = C(In 77n)27

where we used (4.18) and the definition of 7, for the last two inequalities. It also follows,
from (4.17) and the fact that |b,| < 1, that

(4.19) Ao(1,7m) < Ao(|bul, 1n) < C1(Inny)>.

Now let vo(x, 17,,) be an eigenfunction on the ball B = B(0, 1) associated with A¢(1, 1),
i.e.,

—Avo(x, na) = [Ao(1, m) K2 (x) — f2(x)n2] vo(x,n),
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and normalized so that
lvo(-, ma)ll2By = 1.
‘We first claim that
(4.20) lvo(-, mw)llL2(1/2)8) = 1 asn — oo.

Indeed, we have

inf 20002 / oo Cr. )P dx < / F2) 02 [vo e ) P dx
1/2<|x|<1 B

1/2<|x|<1

< [B Vo(x. )2 dx + /B £200) 12 o e 1) 2 dx

— (1, nn>/Bh2(x) o e ) 2dx < Co(1, 1),

Dividing both sides by inf}/2<|x|<1 f*(x) 72 and using (4.19), we obtain that

/ lvo(x, mn)|*dx — 0 asn — oo,
1/2<|x|<1

which implies (4.20). Define a sequence of functions

Un(x, y, 1) = P TV Lat 0 .

Then
Lun = (Avo(x,1n) — 02 £2(x) Vo (X, Nn) + Ao(1, 0a) Vo (x, 1)) @XM TV AT —

Now, let V = B(0,1) x [-7, 7] x [-6,8] and V' = B(0,1/2) x[—n /2,7 /2] x[-8/2,5/2]
for some § > 0. We have, using (4.20),

||aly€“n||1242(v/)—Unk||”n||L2(V/)>7”7n // B/ VAL |y, (x, 1) [2dt dx > Ck,
2

where the constant C is independent of k and n. On the other hand, using (4.19),

””n”[}(y) < Ce2Vrollm)d = anrﬁ

Since 1, — co as n — o0, these two inequalities contradict (4.15) for k > /C;§, and
thus, by Lemma 4.4, the operator £ is not hypoelliptic. ]

5. Proof of Theorem 2.2

Finally, we prove Theorem 2.2 by showing that the requirements of Theorem 2.5 are
satisfied. Let L be as in (2.1). We apply Theorem 1.3 to obtain A = ZN Y; Ytr + Ap,
and write the second order term in L as
N N
VIAV = ) V'Y YV =Y XIX; +V"Q,V. where X; = Y'V.
j=1 j=1
and then note that condition (2.5) is satisfied by the assumption (2.3) of Theorem 2.2.
Moreover, condition (2.4) follows from (1.4).
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6. Open problems

6.1. First problem

In Theorem 2.2, we have shown that the Koike condition is sufficient for the hypoellipticity
of an operator L with n x n matrix A(x) satisfying certain conditions on both its diagonal
and nondiagonal entries. However, in the converse direction we only showed that failure
of the Koike condition implies failure of hypoellipticity if in addition L is diagonal with
strongly monotone entries. In fact, the proof shows that we need only to assume in addition
that A(x) has the block form

[ari(x) - an1(x) ]
: . : 0m><1 0m><1 0m><1
ain(x) - amm(x)
A(X) = 01xm am+1,m+1(x) 0 0 s
01xm 0 Am+2,m+2(x) 0
L 01xm 0 0 “r app(x)

where just d;41,m+1(x) and a, ,(x) are assumed to be strongly monotone and sat-
isfy (4.16).

Problem 6.1. Is the Koike condition actually necessary and sufficient for hypoellipticity
under the assumptions of Theorem 2.2, without assuming the above block form for A(x)?

6.2. Second problem

Recall that the main theorem in [17] extends Kohn’s theorem in [15] to apply with finitely
many blocks instead of the two blocks used in [15]. These operators are restricted by being
of a certain block form, but they are more general in that the elliptic blocks are multiplied
by smooth functions that are positive outside the origin, and have more variables than in
our theorems, and furthermore that need not be finite sums of squares of regular functions.

Problem 6.2. Can Theorem 2.5 be extended to more general operators that include the
operators appearing in [17]?

6.3. Third problem

What sort of smooth lower order terms of the form B(x)V and V"C(x) can we add to
the operator L in the main Theorem 2.27 The natural hypothesis to make on the vector
fields B(x)V and C(x)V is that they are subunit with respect to V*A(x)V. However, if
we use Theorem 2.5 in the proof, we require more, namely, that B(x)V and C(x)V are
linear combinations, with C 2.8 coefficients, of the C 2.8 yector fields X (x) arising in the
sum of squares Theorem 1.3, something which seems difficult to arrange more generally.

Problem 6.3. Can Theorem 2.2 be extended to operators that include first order terms
that are subunit with respect to V' A(x)V?
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