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Gaussian almost primes in almost all narrow sectors

Olli Järviniemi and Joni Teräväinen

Abstract. We show that almost all sectors of the disc ¹z 2 C W jzj2 � Xº of area
.logX/15:1 contain products of exactly two Gaussian primes, and that almost all
sectors of area .logX/1C" contain products of exactly three Gaussian primes. The
argument is based on mean value theorems, large value estimates and pointwise
bounds for Hecke character sums.

1. Introduction

Our aim in this paper is to establish results on the distribution of Gaussian almost primes
in very small sectors. The ring ZŒi � of Gaussian integers is a unique factorization domain,
so we have a unique representation for a Gaussian integer as a product of primes, up to
factors that are powers of i .

In what follows, for symmetry reasons we restrict our Gaussian integers to

ZŒi �� WD ¹n 2 ZŒi � n ¹0º W 0 � arg.n/ < �=2º;

that is, the set of Gaussian integers in the first quadrant. The primes in ZŒi �� are pre-
cisely 1C i , the rational primes � 3 .mod 4/, and elements aC bi with a; b > 0 whose
norm N.a C bi/ WD a2 C b2 is an odd prime. By a product of k Gaussian primes (or
loosely speaking, a Gaussian almost prime), we mean an element n 2 ZŒi �� of the form
n D up1 � � �pk , where pi 2 ZŒi �� are Gaussian primes and u 2 ¹˙1;˙iº is a unit.

We shall investigate the angular distribution of the Gaussian almost primes. Thus, we
consider the measure of � 2 Œ0; �=2/ for which a narrow sector

S� WD ¹n 2 ZŒi ��;N.n/ � X W � � arg.n/ < � C h=Xº

contains no Gaussian almost primes, with h as small as possible in terms of X . In this
setting, we say that a property P�;X holds for almost all � 2 Œ0; �=2/ if the Lebesgue
measure of those � for which P�;X fails is oX!1.1/.

For h < X1=2, it is easy to see that there exist sectors (in particular, S� for � close
enough to 0) which contain no Gaussian integers, let alone Gaussian almost primes. This is
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in contrast to the situation of primes in short intervals, where Cramér’s conjecture predicts
for hD .logX/2C" the existence of primes in ŒX;X C h� for anyX �X0."/. One can also
easily see (just by cardinality considerations) that if h D o..logX/=.log logX/k�1/, then
almost all sectors S� contain no products of k Gaussian primes. Our first main theorem
shows that this is essentially sharp; as soon as we have a sector of slightly larger width
.logX/.log logX/C =X , with C suitably large, it does almost always contain products of
three Gaussian primes.

Theorem 1.1. Let hD .logX/.log logX/19:2. Almost all sectors ¹n 2 ZŒi ��;N.n/ � X W
� � argn < � C h=Xº contain a product of exactly three Gaussian primes.

When it comes to products of two Gaussian primes, we are able to find them in almost
all narrow sectors of “logarithmic width” .logX/C =X for some explicit C > 1.

Theorem 1.2. Let hD .logX/15:1. Almost all sectors ¹n 2ZŒi ��;N.n/�X W � � argn <
� C h=Xº contain a product of exactly two Gaussian primes.

We in fact prove a quantitative bound for the number of p1p2 or p1p2p3 (with N.pi /
belonging to suitable intervals) in almost all narrow sectors; see Theorem 2.1.

1.1. Previous works

A central problem in the study of the distribution of Gaussian primes is to count primes
in sectors ¹n 2 ZŒi �� W N.n/ � X;˛ � argn < ˇº. An asymptotic formula for the number
of primes has been established by Ricci [18] for sectors of area X7=10C", and a positive
lower bound has been given by Harman and Lewis [9] for sectors of area X0:619.

The problem becomes easier if one only considers almost all sectors. Huang, Liu and
Rudnick show in [10] that almost all sectors of area X2=5C" contain the expected number
of primes. Under the generalized Riemann hypothesis, works of Rudnick–Waxman [19]
and Parzanchevski–Sarnak [16] show that almost all sectors of area .logX/2C" contain
Gaussian primes for any fixed " > 0.

Another problem of interest is counting Gaussian primes in small circles. This cor-
responds to imposing both angular and norm constraints on Gaussian primes. Harman,
Kumchev and Lewis [8] have shown that the distance to the nearest Gaussian prime from
any point z ¤ 0 is� jzj0:53. Lewis has improved this to jzj0:528 in his thesis [13]. Pre-
vious works in this area include Coleman’s papers [2, 4]. Asymptotic formulas for the
number of primes satisfying both angular and norm constraints are given by Stucky [22].

See also Chapter 11 of Harman’s book [7] for more on the topic, and Duke’s work [6]
for some related problems over general number fields.

1.2. Overview of the method

The overall strategy of our argument follows the approach of the second author [24] to
almost primes in almost all short intervals, which in turn borrows ideas from the work
of Matomäki and Radziwiłł [14] on multiplicative functions in short intervals. How-
ever, adapting these methods efficiently to the Gaussian primes requires several additional
ideas.
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By a simple Fourier argument (Lemma 2.2) and separation of variables, we reduce
the task of bounding the variance of products of exactly two Gaussian primes in narrow
sectors to mean square estimates of the shapeX

0<m�T

jP1.m/j
2
jP.m/j2 � .logX/�2�";(1.1)

where the Hecke polynomials1 P1.m/ and P.m/ are essentially of the form

P1.m/ D
X

P1<N.p/�2P1

�m.p/

N.p/
and P.m/ D

X
X=P1<N.p/�2X=P1

�m.p/

N.p/
;(1.2)

with P1 � h=.logX/ and T � X=h, and with �m.z/ D .z=jzj/4m the angular Hecke
characters. The Hecke polynomial P.m/ is decomposed with Heath-Brown’s identity as
a product of several “smooth” Hecke polynomials (partial sums of Hecke L-functions), as
well as some harmless very short Hecke polynomials, and one then splits the summation
over m into regions depending on the sizes of P1.m/ and the factors coming from Heath-
Brown’s identity, different regions being handled by different arguments.

We then attack the problem of bounding (1.1) by using various mean value theorems,
large value estimates and pointwise bounds for Hecke polynomials. However, some com-
plications arise when adapting such methods from the integers to the Gaussian integers.

The main source of complications is that less is known about the Hecke L-functions

L.1=2C i t; �m/ D
X

n2ZŒi�n¹0º

�m.n/N.n/�1=2�it

in the m-aspect than about the Riemann zeta function �.1=2C i t/ in the t -aspect. In par-
ticular, while for the Riemann zeta function one has estimates for twisted fourth moments
(such as Watt’s theorem [25], that was employed in [15, 24]), not even the fourth momentX

m�T

jL.1=2; �m/j4 � T 1Co.1/

(or any moment higher than the second) is currently known for the Hecke L-functions.
Furthermore, as remarked in e.g. [9], there is no good analogue of the Halász–Montgomery
inequality (that was used in [14,15,24]) for Hecke polynomials. This is ultimately because
the L-function L.s; �m/ is of degree two, so that the pointwise estimates for it are essen-
tially quadratic compared to the integer case (for instance, we have jL.0; m/j � m,
whereas j�.i t/j � jt j1=2, and we have jL.1=2; �m/j � m1=3Co.1/ by [21], whereas we
have j�.1=2C i t/j � jt j1=6�ıCo.1/ for ı D 1=84 by [1]).

To overcome these limitations, we provide three tools:
(1) An inequality of Halász–Montgomery type for Hecke polynomials that gives non-

trivial bounds even for short polynomials (Proposition 5.1).

1We use this term to emphasize the analogy with Dirichlet polynomials.
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(2) An improved mean value theorem for prime-supported Hecke polynomials, which
takes into account the sparsity of the Gaussian primes (Proposition 6.2).

(3) An improved large value theorem for short (of length .logX/a) prime-supported
Hecke polynomials (Corollary 5.3).

For (1), our first aim is to obtain a power-saving bound for the sumX
N.n/�N

�m.n/:

We do this via the theory of exponential pairs. Writing n D x C iy, the sum at hand is a
two-dimensional exponential sum with the phase function m arctan.y=x/=.�=2/. By the
triangle inequality, it then suffices to obtain bounds for one-dimensional sums, to which
the theory of exponential pairs may be applied. However, we encounter a technical compli-
cation: some of the higher order partial derivatives of arctan.y=x/ vanish on certain lines
y D kx. Hence, we must restrict our sums outside of the resulting problematic narrow
sectors. As a result, we obtain bounds of the formˇ̌̌̌

ˇ X
N.n/�N

argn 62I1[���[Ir

�m.n/

ˇ̌̌̌
ˇ� N 1�ı(1.3)

for certain (very short) intervals Ii , in the full rangeN Dm˛; 0 < ˛ < 1, with ıD ı.˛/ > 0
explicit (and reasonable); this is Proposition 4.6(i). (We note that we also employ another
approach based on Hecke L-functions and Perron’s formula, which gives us a certain
pointwise bound without any problematic sectors – see Proposition 4.6(ii).)

By the usual Halász–Montgomery method, we then obtain an inequality of the form

X
m2T

ˇ̌̌̌
ˇ X

N.n/�N
argn 62I1[���[Ir

an�
m.n/

ˇ̌̌̌
ˇ
2

� .N C jT jN 1�ı/.log.N C T //O.1/
X

N.n/�N

janj
2;

that we need for adapting the Matomäki–Radziwiłł method (here T � Œ�T; T � \ Z and
ı D ı.˛/ with ˛ D .logN/=.log T /), see Proposition 5.1. Our exponent of log logX or
logX in the main theorems naturally depends on the values of ı that we obtain in (1.3),
so we optimize the step where we apply exponent pairs. We consider the exponent pairs
obtained from the application of A- and B-processes to the exponent pair .0; 1/.

For (2), we provide a mean value theorem for Hecke polynomials (Lemma 3.3) that
takes into account the sparsity of the coefficient sequence as in Lemma 4 of [24]. The
mean value theorem itself is rather simple to derive, but to bound the resulting expression
in the case of prime-supported sequences, we need sharp upper bounds for sums over
Gaussian primes of the type X

p1;p2
N.p1/;N.p2/�X
j argp1�argp2j�h=X

1:
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In the integer case, the corresponding sum (with j arg p1 � arg p2j � h=X replaced
by jp1 � p2j � h) may be bounded quite directly with Selberg’s sieve, but our problem
here is more involved. Writing p1 D aC bi and p2 D c C di , the conditions in the sum
translate (more or less) to a2 C b2 and c2 C d2 being primes with a; b; c; d �

p
X and

jad � bcj � h. We wish to apply a sieve, and we thus consider, for various values of
jkj � h and T1; T2 � Xı , the sums

(1.4)
X

a;b; c;d�
p
X

ad�bcDk
T1 ja

2Cb2

T2 jc
2Cd2

1:

This is similar to the divisor correlationX
a;b; c;d2ZC

bc�X
ad�bcDk

1 D
X
n�X

�.n/ �.nC k/;

albeit with slightly different boundary conditions and additional congruence conditions on
the variables. We adapt (in Section 7) the work of Deshouillers and Iwaniec [5] on divisor
correlations to evaluate (1.4) with a power-saving error term for T1; T2 less than a small
power of X . For the sieve approach to work, it is crucial that there is indeed a good error
term and uniformity in all the parameters.

The application of this improved mean value theorem then importantly saves us a few
factors of logX in certain parts of the argument, and this significantly reduces the value
of the exponent that we obtain.

For (3), we prove a large value estimate for a prime-supported polynomial P.m/ DP
p�P ap �

m.p/, where P D .logX/a, by applying a large value theorem to a suitable
moment of P.m/. Such a method was used in Lemma 8 of [14], where a moment of length
� X was used, together with a simple large value theorem arising from the usual mean
value theorem. In contrast, we raise P to a moment of length X˛ for suitable 0 < ˛ < 1,
and apply a Huxley-type large value theorem (see Corollary 5.3). This gives improved
results for the number of large values m for which jP.m/j � P�o.1/ when a > 6.

Remark 1.3. We believe that there is no fundamental obstacle in also establishing an
analogue of the Matomäki–Radziwiłł theorem for cancellations of multiplicative functions
in almost all narrow sectors2 by using our lemmas on Hecke polynomials in place of the
Dirichlet polynomial lemmas in [14].

It is plausible that the methods used in this paper could be adapted to finding almost
primes in almost all very small circles, too. Indeed, finding Gaussian primes in circles
tends to be easier than for sectors (since we do have tools like the Halász–Montgomery

2Note that the problem reduces to the integer case if one considers Gaussian integers with their norm in a
short interval, i.e., sums of the form

P
x<N.n/�xCh f .n/, with f WZŒi �!C multiplicative. Indeed, if one writes

g.k/D
P
nWN.n/Dk f .n/, then g is multiplicative, divisor-bounded if f is, and one has

P
x<N.n/�xCh f .n/DP

x<k�xCh g.k/. The analogous remark holds for multiplicative functions defined on the ideals of any number
field.
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inequality and Watt’s bound for Hecke polynomials when averaging over both t and m).
For example, as mentioned in Section 1.1, one can find Gaussian primes of norm less
than X in circles of area X0:528, whereas for sectors the best result works for an area
of X0:619.

It should be possible to improve the exponent in Theorem 1.2 by incorporating Har-
man’s sieve into our argument; to avoid complicating the arguments further, we do not
pursue this improvement here.

1.3. Notation

Convention 1.4. Unless otherwise stated, summation variables n; ni , etc. are always
restricted to lie in ZŒi ��.

By y � X and y � X we mean X < y � 2X and X � y � X , respectively.
The norm a2 C b2 of n D aC bi 2 ZŒi � is denoted by N.n/. For Gaussian integers n

and m, we write n � m if n D um for some unit u. We denote by PZŒi� the set of all
Gaussian primes.

For n 2 ZŒi ��, we let argn take values .mod�=2/, so for example argn 2 Œc; d � if and
only if argn 2 Œc � �=2; d � �=2�, and the statement “j arg.1C 100i/j � 1=10” is true.

We define analogues of usual multiplicative functions for Gaussian integers as follows.
If nD up1 � � �pk , where pi 2ZŒi �� are Gaussian primes and u 2 ¹1; i;�1;�iº is a unit, we
let �.n/D 0 if pi D pj for some i ¤ j , and otherwise �.n/D .�1/k . If n is a unit times
the power of a Gaussian prime p, then we let ƒ.n/ D log N.p/ and otherwise ƒ.n/ D 0.
We let �.n/ denote the number of d 2 ZŒi �� for which there existsm 2 ZŒi � with nD dm.

If k ¤ 0 is an integer and p is a rational prime, we use vp.k/ to denote the largest
integer a such that pa j k.

The angular Hecke characters are given by

�m.n/ D
� n
jnj

�4m
;

with m 2 Z, and the corresponding Hecke L-function is given by

L.s; �m/ D
X

n2ZŒi��

�m.n/

N.n/s

for Re.s/ > 1. One can continue L.s; �m/ meromorphically to the whole complex plane,
and the resulting function is entire apart from a simple pole at s D 1 in the case m D 0.
We denote �.n/ D �1.n/.

We write, for t 2 R, e.t/ D e2�it , and thus

�m.n/ D e
� m

�=2
argn

�
:

The distance of t to the closest integer(s) is denoted by ktk.

1.4. Structure of the paper

In Section 2, we reduce Theorem 1.2 and Theorem 1.1 to mean square estimates for Hecke
polynomials using a standard Fourier expansion. We then derive some basic bounds for
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Hecke polynomials in Section 3. In Section 4, we establish pointwise bounds for smooth
Hecke polynomials, in particular using the theory of exponent pairs. In Section 5, we apply
the pointwise bounds from the previous section to obtain a Halász–Montgomery type
estimate for Hecke polynomials and, as its consequences, several large value estimates for
Hecke polynomials, including a large value estimate that works well for very short prime-
supported Hecke polynomials. In Section 6, we show how to factorize mean squares of
Hecke polynomials using the improved mean value theorem, and most importantly, how to
bound the error term in the case of Hecke polynomials supported on the primes or almost
primes. The bounding of the error term relies on Theorem 6.4, an additive divisor problem
in progressions with power-saving error term, whose proof we postpone to Section 7.
Our task in Sections 8 and 9 is then to put the above-mentioned tools together to prove
Theorems 1.2 and 1.1, respectively. Finally, in Appendix A, we give a proof of a slight
generalization of the theory of exponent pairs that was needed in Section 4, following
work of Ivić.

2. Reduction to Hecke polynomials

Let k 2 ¹2; 3º be fixed, let " > 0 be sufficiently small and fixed, and let

C D

´
15:1 if k D 2;
19:2 if k D 3:

Let also

h D

´
.logX/C if k D 2;
.logX/.log logX/C if k D 3:

(2.1)

and ´
P1 D .logX/C�1 if k D 2;
P1 D .log logX/C�1; P2 D .logX/"

�1
if k D 3:

(2.2)

For a Gaussian integer n, let

ˇn D

8̂<̂
:

1

N.n/
;

if n � p1 � � �pk with p1; : : : ; pk 2 ZŒi �� primes,
N.pj / 2 ŒP 1�"j ; Pj � 8j < k;

0; otherwise,
(2.3)

where we recall that a � b means that a D ub for some unit u. To prove Theorems 1.1
and 1.2, it suffices to prove the following.

Theorem 2.1. Let k 2 ¹2; 3º, and let " > 0 be small but fixed. Let h be as in (2.1), let Pi
be as in (2.2), and let ˇn be as in (2.3). Then

(2.4)
Z �=2

0

ˇ̌̌ X
X<N.n/�2X

ˇn1argn2Œ�;�Ch=X/�
h

�X=2

X
X<N.n/�2X

ˇn

ˇ̌̌2
d�Do

� h2

X2.logX/2

�
:
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In particular, for all � 2 Œ0;�=2/ outside an exceptional set of measure oX!1.1/, we have

(2.5)
X

X<N.p1���pk/�2X
P 1�"j �N.pj /�Pj 8j�k�1

pj 2ZŒi�� prime

1argn2Œ�;�Ch=X/ �
h

logX
�

Note that (2.5) follows from (2.4) by Chebyshev’s inequality and the prime ideal the-
orem. Therefore, our task is to prove (2.4).

2.1. Reduction to mean values of Hecke polynomials

The distribution of Gaussian integers in narrow sectors is governed by the angular Hecke
characters �m withm2Z, and more precisely, the Hecke polynomials

P
N.n/�X an�

m.n/.
Recall the definition of ˇn in (2.3). For m 2 Z, define

F.m/ WD
X

X<N.n/�2X

ˇn�
m.n/:

Lemma 2.2 (Reduction to Hecke polynomials). Let X be large, let h be as in (2.1), and
let F be as above. Assume that for some function K D K.X/ tending to infinity, we haveX

0<jmj�KX=h

jF.m/j2 D o
� 1

.logX/2

�
:(2.6)

ThenZ �=2

0

ˇ̌̌ X
X<N.n/�2X

ˇn 1argn2Œ�;�Ch=X/ �
h

�X=2

X
X<N.n/�2X

ˇn

ˇ̌̌2
d� D o

� h2

X2.logX/2

�
:

Proof. Let T DKX=h. By a truncated Fourier expansion (Lemma 2.1 in [7]) withLD T ,
ı D h

�X
, there exist constants cCm and c�m for 0 < jmj � T , with jcCm j; jc

�
mj � h=X , such

that for any � 2 Œ0; �=2/ we have

2h

�X
C S�.�/ �

1

T C 1
� 1argn2.�;�Ch=X/ �

2h

�X
C SC.�/C

1

T C 1
;

where

S� .�/ D
X

0<jmj�T

c�me
� m

�=2

�
argn �

�
� C

h

2X

���
for � 2 ¹�;Cº. Hence, as ˇn � 0 for any n, we haveˇ̌̌ X
X<N.n/�2X

ˇn

�
1argn2.�;�Ch=X/ �

h

�X=2

�ˇ̌̌
� max
�2¹C;�º

ˇ̌̌̌ X
X<N.n/�2X

ˇn

� �

T C 1
C

X
0<jmj�T

c�m e
� m

�=2

�
argn �

�
� C

h

2X

����ˇ̌̌̌
�

1

TC1

X
X<N.n/�2X

ˇn C max
�2¹C;�º

ˇ̌̌̌ X
0<jmj�T

c�m e
�
�m.�Ch=.2X//

�=2

� X
X<N.n/�2X

ˇn�
m.n/

ˇ̌̌̌
;
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and thus for some � 2 ¹C;�º we haveZ �=2

0

ˇ̌̌ X
X<N.n/�2X

ˇn1argn2Œ�;�Ch=X/ �
h

�X=2

X
X<N.n/�2X

ˇn

ˇ̌̌2
d�

�
1

T 2

� X
X<N.n/�2X

ˇn

�2
C

Z �=2

0

ˇ̌̌ X
0<jmj�T

c�m e
�
�m

�Ch=.2X/

�=2

� X
X<N.n/�2X

ˇn�
m.n/

ˇ̌̌2
d�:

After expanding out the square to obtain a double sum
P
m;m0 , the terms with m ¤ m0

vanish as the integral over � vanishes in this case. Thus, the previous expression is

1

T 2

� X
X<N.n/�2X

ˇn

�2
C

Z �=2

0

X
0<jmj�T

jc�mj
2
ˇ̌̌ X
X<N.n/�2X

ˇn�
m.n/

ˇ̌̌2
d�;

which we bound via the prime number theorem in ZŒi � and the bound jc�mj � h=X as

�
1

T 2.logX/2
C
h2

X2

X
0<jmj�T

jF.m/j2:

By the assumption (2.6) and the choice of T , this is small enough.

In the rest of this paper, our task is to prove (2.6).

2.2. Gaussian integers in narrow sectors

For later use, we give the following simple bound for the number of Gaussian integers in
a given sector.

Lemma 2.3. For any N; v > 0 and n 2 ZŒi � with N.n/ � N , we have

j¹m 2 ZŒi � W N.m/ � N; 0 < j argm � argnj < v=N ºj � v:

Proof. We may assume without loss of generality that 0 < arg.n/ � �=4, v � N=10 and
gcd.Re.n/; Im.n// D 1. Note that we have

jx � yj � j arctan.x/ � arctan.y/j

for jxj; jyj � 2. Hence if we denote nD aC bi;mD cC di with .a; b/D 1 and a; c > 0,
then 0 < j argm � argnj < v=N implies that

0 <
ˇ̌̌b
a
�
d

c

ˇ̌̌
�

v

N
�

Let M D N.n/. By 0 < arg.n/ � �=4 we have a �
p
M . We get

0 < jad � bcj �
v
p
M

p
N
;

using the fact that jcj �
p
N .
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Given 0 < jkj � v
p
M=
p
N with k 2 Z, any two distinct .c1; d1/; .c2; d2/ with

adi � bci D k satisfy c1 � c2 .mod a/ (since .a; b/ D 1). In particular, since Re.m/�p
N and a �

p
M , there are only O.d

p
N=
p
M e/ possibilities for Re.m/. Furthermore,

given k, the real part uniquely determines Im.m/. Hence the number ofmwith N.m/�N
and 0 < j argm � argnj < v=N is

�
v
p
M

p
N

lpN
p
M

m
� v;

as
p
M �

p
N .

3. Lemmas on Hecke polynomials

3.1. Bounds for Hecke polynomials

For the proofs of our main theorems, we shall need various estimates for Hecke polyno-
mials

P
N.n/�N an�

m.n/.

Remark 3.1. Recall our convention that sums over n are taken over ZŒi ��. Hence, if
F.m/ D

P
N.n1/�N1 an1�

m.n1/ and G.m/ D
P

N.n2/�N2 bn2�
m.n2/, then F.m/G.m/ DP

N.n/�N1N2 cn�
m.n/ with cn D

P
n�n1n2

an1bn2 ; where we recall that n � a means
n D ua for some unit u.

We begin with a simple mean value theorem for Hecke polynomials.

Lemma 3.2 (Mean value theorem for Hecke polynomials). Let N; T � 1 and F.m/ DP
N.n/�N an�

m.n/ with an 2 C. ThenX
jmj�T

jF.m/j2 � .N C T /
X

N.n/�N

0

ja0nj
2;

where

a0n WD
X

N.v/�N
argvDargn

av(3.1)

and
P0 signifies that the summation is only over primitive Gaussian integers, that is, those

aC bi 2 ZŒi �� with .a; b/ D 1. Moreover, we haveX
N.n/�N

0

ja0nj
2
� N

X
N.n/�N

janj
2 �.n/

N.n/
�(3.2)

Proof. See Lemmas 11.1 and 11.2 in [7].

The mean value theorem can be improved in the case of sparse coefficient sequences
as follows.
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Lemma 3.3 (Improved mean value theorem). LetN;T �1 andF.m/D
P

N.n/�N an�
m.n/

with an 2 C. ThenX
jmj�T

jF.m/j2 � T
X

N.n/�N

janj
2
C T

X
j argn1�argn2j�1=T

N.n2/;N.n2/�N
n1¤n2

jan1an2 j:

Recall from Section 1.3 that arg n is only defined up to multiples of �=2, and thus
j arg n1 � arg n2j � 1=T is satisfied if ik1n1 and ik2n2 lie in the same narrow sector for
some integers k1; k2.

Proof. Let g.x/ D max.1 � 10T kxk; 0/ for x 2 R, and

yg.m/ D

Z 1

0

g.x/ e.�mx/ dx

for m 2 Z. One has
yg.m/ D

10T

2�2m2

�
1 � cos

�2�m
10T

��
form¤ 0, and yg.0/D 1=.10T /. As g is continuous and the Fourier coefficients yg.m/ are
absolutely summable, it follows that g.x/ D

P
m2Z yg.m/e.mx/ for any x. Note further-

more that yg.m/ � 0 for all m and yg.m/� 1=T for jmj � T . Hence,X
jmj�T

jF.m/j2 � T
X
m2Z

yg.m/ jF.m/j2

D T
X

N.n1/;N.n2/�N

an1 an2

X
m2Z

yg.m/ �m.n1/ �m.n2/

� T
X

N.n1/;N.n2/�N

jan1 an2 j
ˇ̌̌ X
m2Z

yg.m/ e
�
m

argn1 � argn2
�=2

�ˇ̌̌
D T

X
N.n1/;N.n2/�N

jan1 an2 jg
�argn1 � argn2

�=2

�
� T

X
j argn1�argn2j�1=T

N.n1/;N.n2/�N

jan1 an2 j;

as desired.

Lemma 3.4 (A pointwise bound). Let 2�N �N 0 � 2N , and let k � 1 be a fixed integer.
Let

P.m/ D
X

N<N.n1���nk/�N 0

g1.n1/ � � �gk.nk/

N.n1/ � � �N.nk/
�m.n1 � � �nk/;(3.3)

where each gi is either the Möbius function (of ZŒi �/, the characteristic function of Gaus-
sian primes, the von Mangoldt function (of ZŒi �/, the constant function 1, or the log-norm
function n 7! log N.n/. We have

jP.m/j � exp.�.logN/1=10/

when 0 < jmj � exp..logN/10=9/.



O. Järviniemi and J. Teräväinen 1304

Proof. By writing the sum over N.n/ 2 .N;N 0� as the difference of a sum over N.n/ � N 0

and a sum over N.n/�N , we may assume that the summation in (3.3) is over N.n1 � � �nk/
� N . Moreover, we may assume without loss of generality that N � 1=2 is an integer.

Consider first the case k D 1, g1 D 1. Denote c D 1= logN . By the truncated Perron
formula Z cCT

c�iT

ys
ds
s
D 1y>1 CO

�yc
T

�
for y ¤ 1, and the simple bound L.1C 1= logN; �m/� L.1C 1= logN; 1/� logN ,
we see that

P.m/ D
X

N.n/�N

�m.n/

N.n/
D

1

2�i

X
n2ZŒi��

�m.n/

N.n/

Z cCiN

c�iN

N s

N.n/s
ds
s
CO

� logN
N

�
D

1

2�i

Z cCiN

c�iN

L.s C 1; �m/N s ds
s
CO

� logN
N

�
:

Move the integral to the line Re.s/ D �� D �.log.N C jmj//�3=4, noting that there is
no pole as m ¤ 0. Let C be the rectangle having the line segments Œc � iN; c C iN � and
Œ�� � iN;�� C iN � as two of its sides. By Theorems 1 and 6 in [3] (applied with f D 1
and V D O.m/), we have

jL.s C 1; �m/j � .log jmj/2=3

for s 2 C , so the error arising from moving the integral is O..log jmj/2=3=N/, and we
have ˇ̌̌ 1

2�i

Z ��CiN
���iN

L.s C 1; �m/N s ds
s

ˇ̌̌
� N��

Z ��CiN
���iN

.log jmj/2=3
jdsj
jsj

� N�� .log jmj/2=3.logN/:

Finally, note that this is� exp.�.logN/1=10/ as long as 0 < jmj � exp..logN/10=9/, by
our choice of � .

The cases with k D 1 and gi being equal to the Möbius function, the indicator function
of Gaussian primes or the log-norm function are handled similarly, noting that if C is as
above, for s 2 C we have

1

jL.s C 1; �m/j
; jL0.s C 1; �m/j;

jL0.s C 1; �m/j

jL.s C 1; �m/j
� .log jmj/O.1/

by an analogue of the Vinogradov–Korobov zero-free region for L.s; �m/, see Theorem 2
in [3].

Finally, the cases k � 2 follow from the case k D 1 by decomposing the sum to
dyadic intervals N.ni / 2 .Ni ; 2Ni �, for fixed N1; : : : ; Nk summing over the variable ni
for which Ni is largest using the case k D 1, and applying the triangle equality to the sum
over the other variables.
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3.2. Heath-Brown’s decomposition

Next, we give a suitable version of Heath-Brown’s identity for Hecke polynomials.

Definition 3.5 (Smooth Hecke polynomials). We say that a Hecke polynomial M.m/ DP
N.n/�M an�

m.n/=N.n/ is smooth if for some interval I � ŒM; 2M�, we have an D
1I .N.n// for all n, or an D 1I .N.n// log N.n/ for all n.

Lemma 3.6 (Heath-Brown’s decomposition). Let an integer k � 1 and a real number
B � 1 be fixed, and let T � 3. LetP.m/D

P
P<N.p/�P 0 �

m.p/=N.p/, withP �P 0 <2P .
Then, for some constant D D Dk;B � 1, we have the decomposition

jP.m/j � jG1.m/j C � � � C jGL.m/j CE.m/ for all 0 < jmj � T;

where

(1)
P
jmj�T jE.m/j

2 � .T=P C 1/.logP /�B .

(2) L � .logP /D .

(3) Each Gj .m/ is of the form

Gj .m/ D
Y
i�Jj

Mi .m/; Jj � 2k;

with Mi .m/ D
P
Mi�N.n/<2Mi

an;i�
m.n/=N.n/ being Hecke polynomials (which

depend on j /withMi � 1, jan;i j � 1 andP exp.�.logT /19=20/�M1 � � �MJj � 2P .
Additionally, jMi .m/j � exp.�.log.2Mi //

1=10/ for all 0 < jmj � T , and the Hecke
polynomial Mi .m/ is smooth if Mi > .2P /

1=k .

Proof. We may assume that P � exp..log T /19=20/, since otherwise the claim is trivial
with E.m/ � 0, L D 1, J1 D 1 and G1.m/ DM1.m/ � 1.

By splitting the sum P.m/ over .P; P 0� into subsums over intervals of the form
.Q;Q.1C .logP /�B

0

/�, with B 0 large enough (and one shorter interval), and applying
the triangle inequality, it suffices to prove the claim with P 0 � P.1C .logP /�B

0

/.
Now, we write

P.m/ D
1

logP
zP .m/CE1.m/;

where

zP .m/ D
X

P<N.n/�P 0

ƒ.n/
�m.n/

N.n/
; E.m/ D

X
P<N.n/�P 0

�
1n prime �

ƒ.n/

logP

� �m.n/
N.n/

�

By the mean value theorem (Lemma 3.2) and the prime number theorem for Gaussian
integers with classical error term, E1.m/ satisfies property (1). By writing zP .m/ as a
difference of sums over Œ1; P 0� and Œ1; P �, we see that it suffices to prove the claim for
sums of the form X

n2ZŒi�
N.n/�x

ƒ.n/f .n/;(3.4)

where P � x � 2P and f .n/ D �m.n/=N.n/.
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Let ı D .log P /�A, where A is large enough in terms of B; k. Fix an integer m 2
Œ�T; T � n ¹0º as in the lemma. By Heath-Brown’s identity in ZŒi � (which is derived pre-
cisely as in the case of Z) and the .1C ı/-adic decomposition, (3.4) may be written asX

M1;:::;M2k�x

MkC1;:::;M2k�.2P /
1=k

MiD.1Cı/
`i ; `i�0

cM1;:::;M2k

X
Mi�N.ni /<.1Cı/Mi ; 1�i�2k

N.n1���n2k/�x

.log N.n1//

�

2kY
jDkC1

�.nj / � f .n1 � � �n2k/;

where the constants cM1;:::;M2k
are bounded in magnitude by Ok.1/. By the triangle

inequality, (3.4) is thus bounded by

�

X
M1;:::;M2k�x

MkC1;:::;M2k�.2P /
1=k

MiD.1Cı/
`i ;`i�0

ˇ̌̌̌
ˇ X
Mi�N.ni /<.1Cı/Mi ;1�i�2k

N.n1���n2k/�x

.log N.n1//
2kY

jDkC1

�.nj / �f .n1 � � �n2k/

ˇ̌̌̌
ˇ:

Write

g1.n/ D log N.n/; gi .n/ D 1 for 2 � i � k, gi .n/ D �.ni / for k C 1 � i � 2k;

and let P0 2 ¹P; 2P º. Then, from the above we deduce thatˇ̌̌ X
N.n/�P0

ƒ.n/�m.n/

N.n/

ˇ̌̌
� †j .m/CE2;j .m/;

where

(3.5) †j .m/ D
X

MkC1;:::;M2k�.2P /
1=k

M1���M2k�P0

M1���M2k�ı
2kC10P

MiD.1Cı/
`i ; `i�0

2kY
iD1

ˇ̌̌ X
Mi�N.ni /<.1Cı/Mi

gi .ni / �
m.ni /

N.ni /

ˇ̌̌
;

and where the sum E2;j .m/ arises from removing the summation condition N.n1 � � �n2k/
� .1C ı/jP , and from inserting the condition M1 � � �M2k � ı

2kC10P . One easily sees
from the mean value theorem that E2;j .m/ satisfies condition (1). We can further esti-
mate the product in (3.5) by bounding trivially as � 1 all those terms for which Mi �

exp..logT /19=20=.4k//; the product of the remaining Mi is� P exp.�.logT /19=20/.
We have now arrived at the desired decomposition, since the Hecke polynomials

Mi .m/with coefficients gi .m/=N.n/ in the definition of†j .m/ satisfy the bound jMi .m/j

� exp.�.log.2Mi //
1=10/ by Lemma 3.4 since Mi � exp..log T /19=20=.4k//, and addi-

tionally if Mi > .2P /
1=k , then i � k, so Mi .m/ is smooth.
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4. Pointwise bounds

The goal of this section is to establish Proposition 4.6, a pointwise bound for smooth
Hecke polynomials. For stating the result, we need the notion of exponent pairs.

4.1. Exponent pairs

We define exponent pairs following Ivić ([11], Chapter 2.3), but impose slightly milder
conditions on the derivatives of the phase function, since the functions we apply the theory
to do not quite satisfy the original definition.

Definition 4.1. Let A; B;M � 1, and let R � 1 be an integer. Let I � ŒB; 2B� be an
interval. We define the set FI .A; B; M; R/ as the set of those functions f on I that
satisfy

(1) f 2 C1.I /.
(2) For all t 2 I and all integers 1 � r � R,

M�1AB1�r � jf .r/.t/j �MAB1�r :

Definition 4.2. We say that a pair of real numbers .�; �/ with 0 � � � 1=2 � � � 1 is an
exponent pair if the following holds for some integer R � 1. For any A; B;M � 1 and
any f 2 FI .A;B;M;R/ with I � ŒB; 2B� an interval, we haveˇ̌̌X

n2I

e.f .n//
ˇ̌̌
��;� M

O�;�.1/A�B�:

We call the least integer R with this property the degree of .�; �/.

The difference between our definition and [11] is that there only the case M D O.1/
is considered (and the derivative bound is assumed for all r).

Trivially, .0; 1/ is an exponent pair. We recall the A and B processes that allow us to
generate infinitely many exponent pairs from a given pair.

Lemma 4.3 (A and B processes). (A) If .�; �/ is an exponent pair, so is

A.�; �/ WD
� �

2� C 2
;
1

2
C

�

2� C 2

�
:

(B) If .�; �/ is an exponent pair with � C 2� � 3=2, then

B.�; �/ WD
�
� �

1

2
; � C

1

2

�
is also an exponent pair.

Proof. The claim is a slight generalization of Lemmas 2.8 and 2.9 in [11] (see also [17]),
since our conditions for exponent pairs allow M to be unbounded. The proof works simi-
larly in our case; see Appendix A for the details.

In our proofs, we will use the following exponent pairs.
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Lemma 4.4. The pairs

.�1; �1/ D .0:02381; 0:8929/ and .�2; �2/ D .0:05; 0:825/

are exponent pairs.

Proof. The first pair is obtained from the pair

AAABAAB.0; 1/ D .0:0238095 : : : ; 0:892857 : : :/

by rounding the entries up. The second pair is AABAAB.0; 1/.

4.2. Pointwise bounds

For the proof of Proposition 4.6 below, we will need to evaluate and estimate derivatives
of x 7! arctan.y=x/.

Lemma 4.5. Let n � 1 be an integer and let y > 0. We have

@n

@xn
arctan

�y
x

�
D .�1/n

.n � 1/Š

.x2 C y2/n
Im..x C iy/n/:

Proof. We have

@

@x
arctan

�y
x

�
D �

y

x2 C y2
;

which agrees with the claim for n D 1. Moreover, for n � 1, we have

@

@x

� 1

.x2 C y2/n
Im..x C iy/n/

�
D

@

@x
.Im..x � iy/�n// D Im

� @
@x
.x � iy/�n

�
D �n Im..x C iy/�n�1/ D �n

� 1

.x2 C y2/nC1
Im..x C iy/nC1/

�
:

The claim now follows by induction.

Proposition 4.6 (Pointwise bound for smooth Hecke sums). Let N; N 0 � 2 with N �
N 0 � 2N , and let m ¤ 0 be an integer.

(i) For any fixed exponent pair .�; �/ and any fixed " > 0 small enough in terms of
.�; �/, there exists an integer R such that the following holds. If I � Œ0; �=2� is an
interval such that all the real solutions of Im..1C i tan.t//k/D 0 with k D 1; : : : ;R
have distance � N�"

2
to I , then we haveˇ̌̌̌

ˇ X
N<N.n/�N 0

arg.n/2I

�m.n/

ˇ̌̌̌
ˇ� jmj�N .���C1/=2C"

CN 3=4Co.1/;(4.1)

and if either an D 1=N.n/ or an D .log N.n//=N.n/, thenˇ̌̌̌
ˇ X
N<N.n/�N 0

arg.n/2I

an�
m.n/

ˇ̌̌̌
ˇ� .logN/ jmj�N .����1/=2C"

CN�1=4Co.1/:
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(ii) We have ˇ̌̌ X
N<N.n/�N 0

�m.n/
ˇ̌̌
� .logN/5 jmj1=3N 1=2

CN 5=8Co.1/;(4.2)

and if either an D 1=N.n/ or an D .log N.n//=N.n/, thenˇ̌̌ X
N<N.n/�N 0

an�
m.n/

ˇ̌̌
� .logN/6 jmj1=3N�1=2 CN�3=8Co.1/:

Remark 4.7. One may at first wonder about the need in part (i) to excludes some small
sectors. The estimate should be true even without it, but our proof method does not work
without this condition. The exponential sum (4.1) is interpreted as a two-dimensional
exponential sum involving the phase function 1

�=2
m arctan.y=x/, and to apply the theory

of exponent pairs to this function we need to know that its derivatives do not vanish, so we
need to exclude certain narrow sectors of the .x; y/-plane inside of which the derivatives
of some bounded order do vanish. See also Remark 4.9.

Remark 4.8. Part (i) of the lemma gives us explicit power savings in the range jmj" �
N � jmj (using the exponent pair AkB.0; 1/D . 1

2kC2�2
; 1� kC1

2kC2�2
/ with k large enough

in terms of "). The most critical case for the proof of our main theorem is when N 2
Œjmj1=2; jmj2=3�; in this range, the estimate of part (ii) is trivial. However, when N �
jmj1�ı for somewhat small ı, part (ii) is stronger.

Proof. (ii) By partial summation, it suffices to prove the first claim in part (ii). By writing
the sum over N < N.n/ � N 0 as a difference of two sums, it suffices to prove (4.2) with
the summation condition N < N.n/ � N 0 changed to N.n/ � N .

We may assume jmj �N 3=2, since otherwise the claim is trivial. Let T D jmj CN 3=8.
By a truncated form of Perron’s formula (Corollary 2.4 in Section II.2 of [23] applied to
the sequence ak D

P
N.n/Dk �

m.n/), we haveX
N.n/�N

�m.n/ D
1

2�i

Z 1C1= logNCiT

1C1= logN�iT
L.s; �m/

N s

s
ds CO

�
N o.1/

C
N 1Co.1/

T

�
:

We shift the integration to the line Re.s/ D 1=2 and use the estimate

jL.� C i t; �m/j � .jmj C T /2.1��/=3 .log.jmj C T //4;(4.3)

which follows from [21] and the Phragmén–Lindelöf principle [11], Appendix A.8, to
bound the horizontal integrals. We obtainX

N.n/�N

�m.n/ D
1

2�i

Z 1=2CiT

1=2�iT

L.s; �m/
N s

s
ds CO

�
N o.1/

C
N 1Co.1/

T

�
:

Using (4.3) again to bound the integral, the claim follows.
(i) By partial summation, it suffices to prove the first claim in part (i). By writing the

sum over N < N.n/ � N 0 as a difference of two sums, it suffices to prove (4.1) with
the summation condition N < N.n/ � N 0 changed to N.n/ � N . Furthermore, we may
assume that jmj � N 3=4, since otherwise the claim follows directly from part (ii).
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Note that
�.x C iy/ D e

� 1

�=2
arctan.y=x/

�
if x ¤ 0. Note also that �.x C iy/D �.y C ix/. Lastly, observe that the contribution of n
of the form xC ix or xC 0i to the left-hand side of (4.1) is�N 1=2, which is admissible.
Hence, it suffices to prove (4.1) with the sum restricted to the region n D x C iy with
1 � y � x. Thus, our task is to bound

S D
X
x;y2Z
1�y�x

x2Cy2�N

arctan.y=x/2I

e
� m

�=2
arctan

�y
x

��
:

We can write the condition arctan.y=x/ 2 I in the form x 2 yJ , where J D ¹ 1tan t W t 2

I n ¹0ºº � .0;1/ is an interval and yJ WD ¹yt W t 2 J º.
By dyadic decomposition, we can bound

jS j �
X

1�X�
p
N

XD2k; k2N

jSX j;(4.4)

where

SX WD
X

1�y�min¹2X;
p
N º

y2Z

X
y�x�

p
N�y2

x�X
x2yJ\Z

e
� m

�=2
arctan

�y
x

��
:(4.5)

Now, for a given y � 1, consider the function

f .x/ D
m

�=2
arctan

�y
x

�
:

By Lemma 4.5, for any n � 1 we have

f .n/.x/ D .�1/n .n � 1/Š
2m

�

Im..x C iy/n/
.x2 C y2/n

�

Expanding out .x C iy/n and using the triangle inequality, for 1 � y � x we obtain

jf .n/.x/j �n

jmjy

xnC1
�

On the other hand, Im..xC iy/n/D yxn�1Pn.y=x/ for some polynomial Pn.t/ of degree
� n � 1 and constant coefficient n, and the zeros of Pn in the region Œ0; 1� are precisely
the zeros of Im..1C i t/n/ D 0. By the assumption on I , for any x 2 yJ and 1 � n � R,
the number y=x is distance � N�"

2
away from any solution to Im..1C i t/n/ D 0, so

we have jPn.y=x/j �n N
�n"2 when x 2 yJ (since if P.t/ is a monic polynomial of
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degree n and t0 is at least ı > 0 away from all of the roots ˛i of P , then jP.t0/j DQ
1�i�n jt0 � ˛i j � ı

n). Therefore, for 1 � n � R and x 2 yJ , we have

jf .n/.x/j �
jmjy

xnC1NR"2
�

We conclude that f 2 FyJ .A; B; O.N
R"2/; R/, where A D jmjy=X2 and B D X .

We have A � 1 if y � X2=jmj, and in the case y < X2=jmj we use the trivial estimate for
the inner sum in (4.5). Hence, by the definition of exponent pairs, if " > 0 is small enough
we have, using X � N 1=2 and jmj � N 3=4,

jSX j �
X

X2=jmj�y�min¹2X;
p
N º

y2Z

�
jmjy

X2

��
X�N "=2

C
X2

jmj
X � jmj�X���C1N "=2

CN 3=4:

Substituting this to (4.4), we see that

jS j � jmj� .
p
N /���C1C" CN 3=4Co.1/;

as desired.

Remark 4.9. Note that it was important in the proof of Proposition 4.6(i) that I contains
no solutions to Im..1C i tan.t//k/ D 0. Indeed, otherwise the inner sum over x in (4.5)
would contain zeros of the kth derivative of the phase function f , so the theory of expo-
nent pairs would not be applicable.

5. Large value estimates and a Halász–Montgomery type inequality

5.1. Halász–Montgomery type estimate

In this section, we employ Proposition 4.6 to establish large value theorems for Hecke
polynomials that will be key to our arguments in Section 8. These large value estimates
are based on the following estimate of Halász–Montgomery type.

Proposition 5.1 (Halász–Montgomery type inequality with exponent pairs). LetN; T �2,
and let F.m/ D

P
N.n/�N an�

m.n/ with an 2 C. Let T � Œ�T; T � \ Z.

(i) Let .�; �/ ¤ .0; 1=2/ be a fixed exponent pair, and let J be a large enough integer.
Let " > 0 be small but fixed, and suppose that an D 0 whenever arg.n/ is within
distance N�"

2
of some real solution to Im..1C i tan.t//k/ D 0 with k D 1; : : : ; J .

Then, we haveX
m2T

jF.m/j2 � .N C jT jT �N .���C1/=2C"/
X

N.n/�N

janj
2:

(ii) We haveX
m2T

jF.m/j2 � .N C jT jT 1=3N 1=2/.log.N C T //4
X

N.n/�N

janj
2:
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Proof. (i) We may assume that N � T 1C" for any fixed " > 0, since otherwise the claim
follows directly from the mean value theorem (Lemma 3.2).

Let J be an integer large enough in terms of .�; �/, and let � be the set of complex
numbers whose argument is at least N�"

2
away from any solution to Im..1C i tan.t//k/

D 0 with k D 1; : : : ; J . Let T D ¹mrºr�R with R D jT j. We may assume that R � T , as
otherwise the claim follows from Lemma 3.2. By the duality principle (see, e.g., Chapter 7
of [12]), the statement is equivalent to the claim that, for any complex numbers cr and
distinct integers mr 2 Œ�T; T �, we haveX

N.n/�N
n2�

ˇ̌̌ X
r�R

cr �
mr .n/

ˇ̌̌2
� .N CRT �N .���C1/=2C"/

X
r�R

jcr j
2:(5.1)

Opening the square and using jcr jjcsj � jcr j2C jcsj2, the left-hand side of (5.1) becomes

� N
X
r�R

jcr j
2
C

X
s�R

X
r�R
r¤s

jcr j
2

ˇ̌̌̌ X
N.n/�N
n2�

�mr�ms .n/

ˇ̌̌̌
:(5.2)

By Proposition 4.6(i) and the fact that � is a union of O.1/ intervals, for r ¤ s we haveˇ̌̌̌ X
N.n/�N
n2�

�mr�ms .n/

ˇ̌̌̌
� T �N .���C1/=2C"

CN 3=4Co.1/:(5.3)

Note that by definition 0 � � � 1=2 � � for any exponent pair .�; �/, and moreover we
assumed that � > 0 or � > 1=2. Since N � T 1C", we thus have

T �N .���C1/=2
� N .�C�C1/=2�O."/

� N 3=4C"

for " > 0 small enough. Hence, the second term on the right of (5.3) can be removed, and
the claim follows by substituting (5.3) into (5.2).

(ii) The proof of this part is identical, except that we use Proposition 4.6(ii) instead of
Proposition 4.6(i) and do not restrict to n 2 � .

5.2. Large value estimates

We now deduce from Proposition 5.1 a large value estimate, refined using Huxley’s sub-
division trick.

Lemma 5.2 (A large value estimate). LetN;T �2, V >0, andF.m/D
P

N.n/�N an�
m.n/

with an 2 C. Write G D
P

N.n/�N janj
2, and let T denote the set of m 2 Œ�T; T � \ Z

for which jF.m/j � V .

(i) Let .�; �/ ¤ .0; 1=2/ be a fixed exponent pair, and let J be a large enough integer.
Let " > 0 be small but fixed, and suppose that an D 0 whenever arg.n/ is within
distance N�"

2
of some real solution to Im..1C i tan.t//k/ D 0 with k D 1; : : : ; J .

Then, we have

jT j � N ".GNV �2 C TN 1C.���C1/=.2�/.GV �2/1C1=�/:
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(ii) We have

jT j � .log.N C T //O.1/ .GNV �2 C TN 5=2.GV �2/4/:

Proof. (i) We may assume that N and T are large enough, as otherwise the claim is
trivial. Let T0 > 0 be a parameter to be chosen. We combine the Halász–Montgomery type
estimate of Proposition 5.1(i) with Huxley’s subdivision. Thus, we split T into subsets
Tj D ŒjT0; .j C 1/T0/ \ T , with jj j � T=T0 C 1, and estimate

jT jV 2 �
X
j

X
m2Tj

jF.m/j2:(5.4)

By Proposition 5.1(i) (applied to the coefficient sequence an�jT0.n/), we may bound the
right-hand side as

� N "
�
.T=T0 C 1/NG C jT jT

a
0 N

bG
�
;(5.5)

where we wrote a D � and b D .� � � C 1/=2. Let

T0 D V
2=aN�b=a�2"=aG�1=a;

so that the second term in (5.5) contributes jT jV 2N�". We then have from (5.4),

jT j � N ".T=T0 C 1/V
�2NG � NO�;�."/.GNV �2 C TN 1Cb=a.GV �2/1C1=a/;

which is the desired bound (after adjusting ").
(ii) The proof is identical, except that we apply Proposition 4.6(ii) to get (5.5) also

with a D 1=3, b D 1=2, and with the N " factor replaced by .log.NCT //O.1/.

We then use Lemma 5.2(ii) to obtain a large value theorem for short, prime-supported
polynomials. When applied to a high moment of a prime-supported polynomial P.s/k

(with P D .log T /c and P k D T ˛�o.1/ for suitable ˛ > 0), this estimate outperforms
Lemma 6 in [24] or Lemma 8 in [14].

Corollary 5.3 (Large values of prime-supported Hecke polynomials). Let T � 2 and
� > 0, and let a > 2 be fixed. Let

P.m/ D
X

N.p/�P

ap
�m.p/

N.p/

with japj � 1 and P D .log T /aCo.1/. Then the number of m 2 Œ�T; T � \ Z such that
jP.m/j � P�� is

� T 1=.3a=2�3/C8�Co.1/:(5.6)

Note that this result gives the bound� T 1=.3a=2�3/Co.1/ when � D o.1/ and a > 2.
For a > 6, this improves on the bound� T 1=aCo.1/ that can be deduced from a Hecke
polynomial analogue of Lemma 6 in [24] (see Remark 5.4).
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Proof. Let k D d˛ logT= logP e, with 0 < ˛ < 1 to be chosen later. LetQ.m/ D P.m/k

andQD P k D T ˛Co.1/. Note that jQ.m/j � P�k� D T �.˛Co.1//� when jP.m/j � P�� ,
and if qn are the coefficients of Q.m/, then

G WD
X

Q<N.n/�2kQ

ˇ̌̌ qn
N.n/

ˇ̌̌2
�

X
Q<N.n/�2kQ

ˇ̌̌̌ X
p1���pk�n

P <N.pi /�2P

1

N.p1/ � � �N.pk/

ˇ̌̌̌2

�
1

P k

X
p1���pk�q1���qk

P<N.pi /;N.qj /�2P

1

N.p1/ � � �N.pk/
�

kŠ

P k

� X
P<N.p/�2P

1

N.p/

�k
;

and hence G � T �˛C˛=aCo.1/.
By Lemma 5.2(ii), we see that the number of large values in question is

� T o.1/ .GNP 2k� C TN 5=2G4P 8k� /

� T o.1/ .T ˛=aC2˛� C T 1C5˛=2C4.�˛C˛=a/C8�˛/:

We choose ˛ D a=.3a=2� 3/ so that ˛=a D 1C 5˛=2C 4.�˛C ˛=a/: This gives us the
bound

� T o.1/.T ˛=aC2˛� C T ˛=aC8�˛/� T o.1/C8�˛ T 1=.3a=2�3/;

as desired.

Remark 5.4. Applying the same argument, but using in place of Lemma 5.2 a large value
estimate following directly from the mean value theorem (Lemma 3.2), gives for the num-
ber of large values a bound of

� T 1=aC2�Co.1/

for a > 1.

5.3. Density bounds

We apply Lemma 5.2 to produce some “density bounds” (in the spirit of estimates towards
the density hypothesis) for the number of large values of Hecke polynomials. These
bounds will be employed in the proof of Theorem 1.2. In the integer setting, a differ-
ent density bound was used in Lemma 4.1 of [15] to study almost primes in almost all
short intervals.

Lemma 5.5 (A density bound). Let " > 0 be fixed and small enough. Let ˇ 2 Œ"; 1 � "�,
T � 2 and P D T ˇ . Let P.m/D

P
P�n�PT "

bn
N.n/�

m.n/, where bn are complex numbers

with
P
P�N.n/�PT " jbnj

2 � T "
2
. Then we have

j¹m 2 Œ�T; T � \ Z W jP.m/j � P��ºj � T .2�"/� ;

provided that one of the following holds.
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(i) We have ˇ � 2=5 and, for some exponent pair .�; �/,

"C�;� � � �

���C1
2�

ˇ � 1

.2C 2=�/ˇ � 2
� "C�;�(5.7)

for some large constant C�;�, and additionally, bn D 0 whenever arg.n/ is within
P�"

4
of any real solution to Im..1C i tan.t//k/ D 0, with k D 1; : : : ; J for some

integer J that is large in terms of .�; �/.

(ii) We have ˇ � 2=3 and

"C0 � � �

3
2
ˇ � 1

8ˇ � 2
� "C0(5.8)

for some large absolute constant C0.

Proof. (i) By Lemma 5.2(i), the number of large values in question is

� T O."
2/.P 2� C TP

����1
2� � P .2C2=�/� /:(5.9)

The first term in (5.9) is

� T O."
2/C.2�2"/�

� T .2�"/�

if � � C0 " for a large enough constant C0. The second term in (5.9) is

T 1C
����1
2� ˇC.2C2=�/ˇ�CO."2/;

and this is�T .2�"/� when the second inequality in (5.7) holds. (Note that the denominator
on the right-hand side of (5.7) is positive since ˇ � 2=5 and � � 1=2.)

(ii) By Lemma 5.2(ii), the number of large values in question is

� T "
2

.P 2� C TP�3=2C8� /:

The first term here is admissible as in part (i), and the second term is

T 1C.8��3=2/ˇC"
2

;

and this is�T .2�"/� when the second inequality in (5.8) holds. (Note that the denominator
in (5.8) is positive since ˇ > 1=4.)

Lemma 5.6 (A density bound using amplification). Let " > 0 be fixed and small enough,
and let A � 2 be fixed. Let ˇ 2 Œ2=5; 1 � "�, ı 2 Œ2"; 1 � ˇ � "�, A � 2, T � 2 and
P D T ˇ . LetP.m/D

P
P�N.n/�10P an�

m.n/=N.n/, where an are complex numbers with
janj � �.n/, and let F.m/D

P
F 1�"

2
�N.n/�F bn�

m.n/=N.n/, where F 2 ŒT "=2; T 2"� andP
N.n/�F jbnj

2 � F . Then we have

j¹m 2 Œ�T; T � \ Z W jP.m/j � P�� and jF.m/j � F �1=.2A/ºj � T .2�"/� ;(5.10)
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provided that

ı

A.2 � 2ˇ � "/
C C0 " � � �

3
2
.ˇ C ı/ � 1 � 4ı=A

8ˇ � 2
� C0 "(5.11)

for some large absolute constant C0.

Remark 5.7. In applications, we take F.m/ D Q.m/k=kŠ1=2, where

Q.m/ D
X

Q=2�N.p/�Q

�m.p/=N.p/;

with the sum ranging over Gaussian primes, and with Q D .logT /A and k chosen so that
Qk � T ".

Proof. Let

` D
j
ı

logT
logF

k
:

Then 1 � ` � 2"�1. Consider the Hecke polynomial

B.m/ D P.m/F.m/` D
X

B�N.n/�10T 2"3`B

cn�
m.n/;

where B D PF `T �2"
3` and cn are the coefficients of B.m/.

Now, for any m in the large value set in question, we have

jB.m/j � P��F �`=.2A/ � T �ˇ��ı=.2A/ � B��
0

for the choice

� 0 D
ˇ� C ı=.2A/

ˇ C ı
C 10"2:(5.12)

Note that by the divisor bound �`C1.n/� jnjo.1/ and Cauchy–Schwarz, we haveX
B�N.n/�10T 4"2B

jcnj
2
�

1

B2

X
B�N.n/�10T 4"2B

 X
n�n0n1���n`

P�N.n0/�10P

F 1�"
2
�N.n1/;:::;N.n`/�F

jan0 jjbn1 j � � � jbn` j

!2

�
T o.1/

B2

X
B�N.n/�10T 4"2B

X
n�n0n1���n`

P�N.n0/�10P
F 1�"

2
�N.n1/;:::;N.n`/�F

jbn1 j
2
� � � jbn` j

2
�

T o.1/

B2
PF `

�
T 4"

2Co.1/

B
�

Using this together with Lemma 5.2(ii) and recalling (5.12), we deduce that the num-
ber of large values in question is

� T O."
2/.B2�

0

CTB�3=2C8�
0

/� T O."
2/.T 2.ˇ�Cı=.2A//CT 1�.3=2/.ˇCı/C8.ˇ�Cı=.2A///:

Elementary manipulation shows that this is� T .2�"/� when (5.11) holds.
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6. Factorizing Hecke polynomials and bounding the error term

Our next lemma shows how to factorize certain Hecke polynomials arising in our argu-
ments.

Lemma 6.1. Let T;X � 2 and S � Œ�T; T � \ Z. Let

F.m/ D
X

N.kn/�X
K<N.k/�K0

ak bn

N.kn/
�m.kn/

for some K 0 > K � 2 and for some complex numbers ak ; bn. Let H � 1. Denote

Av;H .t/ D
X

ev=H<N.k/�e.vC1/=H

ak

N.k/
�m.k/; Bv;H .t/ D

X
N.`/�Xe�v=H

b`

N.`/
�m.`/

and
cn D

1

N.n/

X
n�k`

K<N.k/�K0

jak b`j:

Writing I D .H logK � 1;H logK 0�, we haveX
m2S

jF.m/j2 � jI j
X
v2I

X
m2S

jAv;H .t/Bv;H .t/j
2
C T

X
j argn1�argn2j�1=T

N.n1/;N.n2/2ŒXe�1=H ;Xe1=H � or
N.n1/;N.n2/2Œ2X;2Xe1=H �

cn1cn2 :

Proof. The proof is analogous to that of Lemma 2 in [24], using the improved mean value
theorem (Lemma 3.3) in place of its integer analogue (Lemma 4 in [24]).

We use the following result to handle the error term in Lemma 6.1. The proof requires
a substantial amount of work, occupying the remainder of this section and the next section.

Proposition 6.2. Let X; T � 2. Let r � 0 be a fixed integer, let " > 0 be small enough
in terms of r , and let I1; : : : ; Ir be pairwise disjoint intervals of form Ii D Œzi ; z

2
i � with

1 � zi � X
". Define

˛n D

´
1

N.n/ if p j n H) N.p/ 62 Œ2; 2X1=2� n .I1 [ � � � [ Ir /
0; otherwise.

For any � > 0 tending to zero sufficiently slowly and

4X1=2 < T � �2 exp.�.log �/2/X= logX;

we have

T
X

n1;n22ZŒi��

j arg.n1/�arg.n2/j�1=T
N.n1/;N.n2/2ŒX;.1C�/X�

˛n1˛n2 � �2
1

.logX/2
;(6.1)

where the implied constant does not depend on �.
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Remark 6.3. Our bound (6.1) is heuristically optimal up to a constant factor. The upper
bound T � �2 exp.�.log �/2/X= logX for T in Proposition 6.2 is used to guarantee
that the contribution of the diagonal case arg n1 D arg n2 to the left-hand side of (6.1)
is small enough. If one restricted the sum to argn1 ¤ argn2, one could relax the condition
to 4X1=2 < T .

The proof of the proposition uses the fundamental lemma of the sieve together with
the following estimate for a divisor correlation of a certain kind, where it is crucial that
the moduli are allowed to go up to a power of x. This estimate is based on the method of
Deshouillers and Iwaniec [5] for proving a power-saving estimate for

P
n�x �.n/�.nC 1/

(with error term O".x
2=3C"/).

Proposition 6.4 (A divisor problem in progressions with power-saving error term). Let
ı > 0 be a sufficiently small fixed constant. Let x � 2, and let T1; T2; k be integers satisfy-
ing 1� T1;T2; jkj � xı with T1;T2 square-free and .k;T1T2/D 1. LetM1;M2;M3;M4 2

Œx1�ı ; 100x� and let b1; b2; b3; b4 be non-negative smooth functions with bi supported in
ŒMi ; 2Mi � and satisfying the derivative bounds jb.h/i .t/j �h M

�h
i for all h 2 Z�0. ThenX

m1;m2;m3;m42Z
m1m2�m3m4Dk

T1 jm
2
1Cm

2
3

T2 jm
2
2Cm

2
4

b1.m1/ b2.m2/ b3.m3/ b4.m4/

D

Z � Z b1.s/b2.t=s/

s
ds
�� Z b3.s/b4.t=s/

s
ds
�

dt

�
6

T1T2�2

Y
p jkT1T2

fp.k; T1; T2/CO.x
2�ı/;

where fp.a; b; c/ is a certain function the values of which only depend on the largest
powers of p dividing a; b and c and which is symmetric in b and c. Explicitly, we have the
following formulas, where p is a prime and v � 0:

• For any prime p, we have

fp.p
v; 1; 1/ D

pvC1 � 1

pv.p � 1/
�

(In particular, fp.1; 1; 1/ D 1.)
• If p � 1 .mod 4/, then

fp.1; p; 1/ D f .1; p; p/ D
2p

p C 1
�

• If p � 3 .mod 4/, then

fp.1; p; 1/ D fp.1; p; p/ D 0:

Remark 6.5. The result holds even without the condition .k; T1T2/D 1 (with more com-
plicated formulas for fp.a; b; c/), and we only utilize this assumption at the end of the
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proof when computing the main term. Likely the result extends to non-square-free T1; T2
as well. We have presented the simplest result that fits our needs, as computing the main
terms in more general cases gets quickly rather laborious.

Below we show how Proposition 6.4 implies Proposition 6.2. Section 7 is then devoted
to the proof of Proposition 6.4.

6.1. Reduction of Proposition 6.2 to Proposition 6.4

Proof of Proposition 6.2 assuming Proposition 6.4. We first consider the contribution of
the terms with arg n1 D arg n2 to the left-hand side of (6.1). Given n1; n2 2 ZŒi ��, let
n 2 ZŒi ��; vi 2 ZC be such that ni D vin with n a primitive Gaussian integer. The terms
with argn1 D argn2 then contribute

T
X

argn1D argn2
N.n1/;N.n2/2ŒX;.1C�/X�

˛n1˛n2 �
T

X2

X
0<N.n/�.1C�/X

 X
v2ZC

v22ŒX=N.n/;.1C�/X=N.n/�
˛vn¤0

1

!2
:(6.2)

We now claim that for any y � X such that ��20 log logy � y, the number of v 2
Œy;
p
1C �y� such that all prime divisors of v lie in Œz1; z21 �[ � � � [ Œzr ; z

2
r �[ Œ2X

1=2;1/

isO.�y= logy/. Denote the number of such v by V D V.y; �/ and let zrC1 D 2X1=2. The
number of positive integers v � 2y which have �.v/ � 10 log log y with �.v/ the total
number of prime factors of v with multiplicities is, by Shiu’s bound (Theorem 1 in [20]),

� 2�10 log logy
X
v�2y

2�.v/ �
y

.logy/2
;

say, which is negligible. We then fix k < 10 log log y and write v D p1 � � �pk , assuming
p1 � � � � � pk and letting 0 D j0 � j1 � � � � � jrC1 D k denote the indices such that
pi 2 Œzt ; z

2
t � for jt < i � jtC1. There are O.kr�1/ possible values for .j1; : : : ; jr�1/.

Given p1; : : : ; pk�1, we bound the number of possible values of

pk 2
h y

p1 � � �pk�1
;

p
1C �y

p1 � � �pk�1

i
by the bounds p1 � � �pk�1 � .2y/.k�1/=k , k < 10 log log y and ��20 log logy � y, and the
Brun–Titchmarsh inequality, as

�
�y=.p1 � � �pk�1/

log.�y=.p1 � � �pk�1//
� k

�y

p1 � � �pk�1 logy
�

Our claim follows by summing over p1; : : : ; pk�1: the number V is bounded by

V �
y

.logy/2
C

X
k<10 log logy

kr�1 � k
X

p12I1;:::;pk�12Ik�1

�y

p1 � � �pk�1 logy

for some intervals Ii D Ii .k/ of the form Œzj ; z
2
j �; 1 � j � r , and this is bounded, for any

" > 0, by
�"

y

.logy/2
C

X
k2N

�y

logy
kr .log 2C "/k �

�y

logy
�
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Denote by C� the supremum of values of y with ��20 log logy � y. One can check that
C� � exp..log �/2=2/.

We thus have, for given n and C� � z � 2X , that the number of v 2 Œz;
p
.1C �/z�

with ˛vn ¤ 0 isO.�z= log z/. For z � C� , we use the trivial boundO.C�/ for the number
of such v. Hence, the right-hand side of (6.2) is bounded by

�
T

X2

X
0<N.n/�.1C�/X

� �2X=N.n/
.log 3X=N.n//2

C C 2�

�
1˛n¤0:

As above, the number of n;N.n/ � y with ˛n ¤ 0 is O.y= logy/. Thus, the contribution

of the C� term is bounded by
TC 2�

X.logX/ , which suffices, as T � �2 exp.�.log�/2/X= logX .
The contribution of the rest is bounded by

�
T �2

X

X
0<N.n/�.1C�/X

1

N.n/.log 3X=N.n//2
1˛n¤0;

to which we apply a dyadic decomposition. The contribution of N.n/2 Œy;2y� to the above
sum is bounded by� .logy/�1.log.X=y//�2, and thus we obtain an upper bound of

� T
�2

X=.logX/
�

This suffices, as T � �2X=.logX/.
Hence, we may restrict to argn1 ¤ argn2. We then note that for n1; n2 counted on the

left-hand side of (6.1) we have jargn1n2j � 1=T and N.n1n2/� 4X2, which in particular
implies that

jIm.n1n2/j D jn1n2j j sin.argn1n2/j �
2X

T
�

Writing n1 D aC bi; n2 D c C di with 0 � a; b; c; d �
p
2X , we thus have jad � bcj �

2X=T .
Let ı be chosen as in Proposition 6.4. Next, we discard the contribution of the case

min.a;b; c;d/�X1=2�ı=10. This corresponds to min.jargn1j; jargn2j/�X�ı=10, where
we recall our convention on arg n being defined modulo �=2. We handle the case 0 �
arg n1 � X�ı=10, the other case is similar. There are O.X1�ı=10/ Gaussian integers n1
with N.n1/ � 2X in the sector 0 � arg n1 � X�ı=10, and given n1, the number of n2
with N.n2/ � 2X , 0 < j arg n2 � arg n1j � 1=T is by Lemma 2.3 bounded by O.X=T /.
Hence, the contribution of this case to the left-hand side of (6.1) is

�
T

X2
X1�ı=10

X

T
� X�ı=10;

which is small enough.
Hence, we have reduced matters to bounding

T
X

X1=2�ı=10<a;b; c;d�
p
2X

0<jad�bcj�2X=T

a2Cb2; c2Cd22ŒX;.1C�/X�

˛aCbi ˛cCdi :
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Note that ˛aCbi ¤ 0 in particular implies that N.a C bi/ D a2 C b2 has no prime
factors which lie in Œ2; X1=4� n .Œ

p
z1; z

2
1 � [ � � � [ Œ

p
zr ; z

2
r �/. Let the set of such integers

be Q. Hence, the previous sum is at most

�
T

X2

X
X1=2�ı=10<a;b; c;d�

p
2X

0<jad�bcj�2X=T

a2Cb2; c2Cd22ŒX;.1C�/X�

1a2Cb22Q 1c2Cd22Q:(6.3)

To treat the conditions a2 C b2; c2 C d2 2 ŒX; .1C �/X�, we perform a smoother-
than-dyadic decomposition over a, b, c and d . Let Ji be intervals of form Œ.1 C �/i ;

.1C �/iC1�. Consider the set J of 4-tuples .Ji1 ; Ji2 ; Ji3 ; Ji4/ for which the contribution
of a 2 J1, b 2 J2, c 2 J3, d 2 J4 to (6.3) is nonzero.

For a fixed tuple .Ji1 ;Ji2 ;Ji3 ;Ji4/, let bi1 ; bi2 ; bi3 ; bi4 be nonnegative smooth functions
with the following properties for all 1 � k � 4:

• bik satisfies the bound bik .t/ � 2� for all t and bik .t/ � � for t 2 Jik ,
• bik is supported in Jik�1 [ Jik [ JikC1,

• bik satisfies the bounds jb.h/ik .t/j �h;ı .1C �/
�ikh for all h 2 ZC, where b.h/ik is the

hth derivative of bik .
With these choices, we have

T

X2

X
X1=2�ı=10<a;b; c;d�

p
2X

0<jad�bcj�2X=T

a2Cb2; c2Cd22ŒX;.1C�/X�

1a2Cb22Q 1c2Cd22Q

�
T

�4X2

X
0<jkj�2X=T

X
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

(6.4)

�

X
a;b;c;d2ZC
ad�bcDk

bi1.a/ bi2.b/ bi3.c/ bi4.d/ 1.a2Cb2/.c2Cd2/2Q:

By the fundamental lemma of sieve theory (see Fundamental Lemma 6.3 in [12]),
there exists a sequence �D 2 Œ�1; 1� of real numbers with the following properties:
(1) For 1 � m � 4X2, we have

1m2Q �

X
D jm

�DI(6.5)

(2) .�D/D is supported in

¹1 � D � Xı=10; D j …º; with … D
Y

p�Xı=10

p�1 .mod 4/
p 62Œz1;z

2
1 �[���[Œzr ;z

2
r �

p;

where ı is as in Proposition 6.4;
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(3) For any multiplicative function gWN ! Œ0; 1� with 0 � g.p/ < 1 for all p j … and
with g satisfying the dimension conditionY

w�p<z

.1 � g.p//�1 �
� log z

logw

�10�
1C

K

logw

�
(6.6)

for 2 � w � z � Xı=10, we haveX
D

�Dg.D/ �K

Y
p j…

.1 � g.p//:(6.7)

Note that we may insert the condition .D;k/D 1 to the sums in (6.5) and (6.7): if (6.5)
holds without the condition .D; k/ D 1 for given .�D/, it also holds with the condition
present, as for any m we have

1m2Q � 1m=.m;k1/2Q �

X
D jm=.m;k1/

�D D
X
D jm

.D;k/D1

�D;

where by m=.m; k1/ we denote the largest divisor of m coprime with k. If (6.7) holds
without the condition .D; k/ D 1 for all g as in (6.6), in order to recover (6.7) one may
then replace g.D/ by g.D/ � 1.D;k/D1.

Hence, we may upper bound (6.4) by

T

�4X2

X
0<jkj�2X=T

X
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

X
D�Xı=10

.D;k/D1

�D
X

a;b;c;d

ad�bcDk
D j .a2Cb2/.c2Cd2/

bi1.a/ bi2.b/ bi3.c/ bi4.d/:

(6.8)

By Möbius inversion,X
a;b; c;d

ad�bcDk
D j.a2Cb2/.c2Cd2/

bi1.a/ b2.b/ b3.c/ b4.d/ D
X

m1;m2 jD

D jm1m2

X
a;b; c;d

ad�bcDk
.a2Cb2;D/Dm1

.c2Cd2;D/Dm2

bi1.a/ bi2.b/ bi3.c/ bi4.d/

D

X
m1;m2;n1;n2
m1n1 jD

m2n2 jD

D jm1m2

�.n1/ �.n2/
X

a;b; c;d

ad�bcDk
m1n1 ja

2Cb2

m2n2 jc
2Cd2

bi1.a/ bi2.b/ bi3.c/ bi4.d/:

Noting that supp.bij / � ŒX
1=2�ı=10;

p
2X�, we may apply Proposition 6.4 to evaluate the

previous expression asX
m1;m2;n1;n2
m1n1 jD

m2n2 jD

D jm1m2

Z � Z bi1.s/ bi4.t=s/

s
ds
� � Z bi2.s/ bi3.t=s/

s
ds
�

dt

� �.n1/ �.n2/
6

m1n1m2n2�2

Y
p

fp.k;m1n1; m2n2/CO.X
1�ı=2/:
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Denote the value of the integral by I D Ii1; i2; i3; i4 . By multiplicativity, we may write the
above as

6I

�2

Y
p jkD

gp.k;D/CO".X
1�ı=2C"/(6.9)

for

gp.k;D/ D
X

m1;m2;n1;n2
m1n1 j .D;p/

m2n2 j .D;p/

.D;p/jm1m2

�.n1/ �.n2/
1

m1n1m2n2
fp.k;m1n1; m2n2/:(6.10)

(Recall that D is square-free.) Note that the value of gp.k;D/ depends only on the expo-
nents vp.k/ and vp.D/ of p in k and D and that gp.k; 1/ D fp.k; 1; 1/. In particular,
gp.1; 1/ D 1.

Plugging (6.9) into (6.8), we obtain

T

�4X2

X
0<jkj�2X=T

X
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

X
D�Xı=10

.D;k/D1

�D

� 6I
�2

Y
p jkD

gp.k;D/CO.X
1�ı=3/

�

D
6T

�2�4X2

� X
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

I
X

0<jkj�2X=T

�Y
p jk

fp.k; 1; 1/
�

(6.11)

�

X
D�Xı=10

.D;k/D1

�D
Y
p jD

gp.1;D/

�
CO.X�ı=5/:

The error term is negligible when compared to the right-hand side of (6.1).
To evaluate the sum over D we apply the fundamental lemma. To do so, we have

to check the dimension condition (6.6). Fix k and let g.p/ D gp.1; p/ for primes p,
extending g multiplicatively to all integers dividing …. We compute, using (6.10) and the
formulas for fp in Proposition 6.4, that for p j D, p � 1 .mod 4/ we have

g.p/ D gp.1; p/ D
X

m1;m2;n1;n2
m1n1 jp

m2n2 jp

p jm1m2

�.n1/ �.n2/
1

m1n1m2n2
fp.1;m1n1; m2n2/

D 2
1

p
fp.1; p; 1/ �

1

p2
fp.1; p; p/ D

2

p

2p

p C 1
�
1

p2
2p

p C 1
D

4p � 2

p.p C 1/
�

One easily checks that g.p/ <min.10=p;1/, say. Hence, by Mertens’s theorem, g satisfies
the dimension condition (6.6) (for some K D O.1/) and we have, by (6.7),X
D�Xı=10

.D;k/D1

�D
Y
p jD

p ∤k

gp.1;D/�
Y
p j…

p�1 .mod 4/
p ∤k

.1 � g.p// D
Y
p j…

p�1 .mod 4/
p ∤k

�
1 �

4p � 2

p.p C 1/

�
:
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We bound this in a routine way using the prime number theorem in arithmetic progressions
and the fact that

Q
z�p�z2.1C 4=p/� 1 for any z � 1, obtaining the bound

�
1

.logX/2
Y
p jk

p�1 .mod 4/

�
1C

4

p

�
:

Plugging the obtained bound to (6.11), we can upper bound the main term there by

T

�4X2.logX/2

� X
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

I
X

0<jkj�2X=T

�Y
p jk

fp.k; 1; 1/
� Y

p jk

p�1 .mod 4/

�
1C

4

p

��
:

(6.12)

The sum over k is bounded by routine methods. Note that fp.k; 1; 1/ � p=.p � 1/ �
1 C 2=p. Hence, if !.m/ denotes the number of distinct prime factors of m 2 ZC, we
haveY

p jk

fp.k; 1; 1/
Y
p jk

p�1 .mod 4/

�
1C

4

p

�
�

Y
p jk

�
1C

6

p

�
�

X
mjk

6!.m/

m
�

X
mjk

�.m/3

m
�

HenceX
0<jkj�2X=T

�Y
p jk

fp.k; 1; 1/
� Y

p jk

p�1 .mod 4/

�
1C

4

p

�
�

X
1�m�2X=T

�.m/3

m

X
0<jkj�2X=T

mjk

1

�

X
1�m�2X=T

1

m1�"
X=T

m
�

X

T
�

Thus, (6.12) is bounded by

1

X.logX/2
X

.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

I

�4
�

We are left with estimating the sum of integrals. Recall that

I D Ii1; i2; i3; i4 D

Z � Z bi1.s/ bi4.t=s/

s
ds
�� Z bi2.s/ bi3.t=s/

s
ds
�

dt;

and that jbi .t/j � 2� for any i and t . Let A; B; C; D be powers of 1 C � such that
supp.bi1/ � ŒA; .1C �/

3A�; : : : ; supp.bi4/ � ŒD; .1C �/
3D�. We have

I

�4
�

Z � Z 1s2ŒA;.1C�/3A� 1t=s2ŒD;.1C�/3D�

s
ds
�

�

� Z 1s2ŒB;.1C�/3B� 1t=s2ŒC;.1C�/3C�

s
ds
�

dt:
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The integral over t is supported in those values for which AD � t � AD.1 C �/6 and
BC� t�BC.1C�/6. In particular, in order for I to be nonzero, we must haveBC.1C�/�6

�AD�BC.1C�/6. The inner integrals are bounded by log..1C �/3/, resulting in the
bound

I

�4
�

Z
AD�t�AD.1C�/6

log..1C �/3/2 dt � AD�3:

By symmetry, we also have the bound I � BC�3, and thus

I

�4
�
p
ABCD �3:(6.13)

Furthermore, as we consider only .Ji1 ; : : : ; Ji4/ 2 J, we must haveA2CB2�X.1C�/
and A2.1 C �/6 C B2.1 C �/6 � X . Therefore, in particular, the set ŒA; A.1 C �/3� �
ŒB; B.1C �/3� � R2 is a subset of the annulus

A D ¹x 2 R2 W jxj2 2 ŒX=.1C �/6; X.1C �/7�º:

The analogous result holds for C and D.
Finally, note that the bound (6.13) may be written as I=�4 � �

p
AB�2

p
CD�2, the

terms AB�2 and CD�2 corresponding to the areas of the rectangles ŒA; A.1 C �/3� �
ŒB; B.1C �/3� and ŒC; C.1C �/3� � ŒD;D.1C �/3�.

All in all, we haveX
.Ji1 ;Ji2 ;Ji3 ;Ji4 /2J

I

�4
�

X
A;B;C;D

log.A/= log.1C�/;:::;log.D/= log.1C�/2Z

ŒA;A.1C�/3��ŒB;B.1C�/3��A

ŒC;C.1C�/3��ŒD;D.1C�/3��A

BC.1C�/�6�AD�BC.1C�/6

�
p
AB�2

p
CD�2

�

X
r

log.r/= log.1C�/2Z

X
�6�`�6

�

 X
A;B

log.A/= log.1C�/2Z
log.B/= log.1C�/2Z

ŒA;A.1C�/3��ŒB;B.1C�/3��A

A=BDr

p
AB�2

!

�

 X
C;D

log.C/= log.1C�/2Z
log.D/= log.1C�/2Z

ŒC;C.1C�/3��ŒD;D.1C�/3��A

C=DDr.1C�/`

p
CD�2

!
:

Noting that in the inner sums A, B , C and D run over O.1/ values, we obtain

�

X
r

log.r/= log.1C�/2Z

�
ˇ̌
A \ ¹.x; y/ 2 R2 W x=y 2 Œr=.1C �/9; r.1C �/9�º

ˇ̌
� �jAj � �2X;

as desired.
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7. An additive divisor problem – proof of Proposition 6.4

In this section, we prove Proposition 6.4. As our argument closely follows the proof in [5],
we are at times brief with the exposition, referring the reader to [5] for details.

7.1. Rephrasing

We first note a parametrization for the solutions of x2 C y2 � 0 .mod T / for square-
free T . For a given x, let g D .x; T /. Then one has .y; T / D g as well, and one may
take the common factor g out. For invertible x0 and y0, the solutions of x02 C y02 � 0

.mod T 0/ are given by a set of lines of form y0 � tx0 .mod T 0/, where t varies over
the solutions of t2 ��1 .mod T 0/. (Indeed, if y0 � tx0 .mod T 0/ for such t , then clearly
x02C y02 � 0 .mod T 0/, and if x02C y02 � 0 .mod T 0/, then .y0=x0/2 ��1 .mod T 0/
and hence we can write y0 � tx0 .mod T 0/ with t � y0=x0 .mod T 0/.)

Note that m1m2 � m3m4 D k, .k; T1T2/ D 1 and T1 j m21 C m
2
3 imply .m1; T1/ D

.m3;T1/D 1. Similarly, .m2;T2/D .m4;T2/D 1. Hence, our task is to estimate for each ti

.mod Ti / with t2i � �1 .mod Ti /, the sumX
m1;m2;m3;m4
mi 2 supp.bi /

m1m2�m3m4Dk

m3�t1m1 .mod T1/
m2�t2m4 .mod T2/

b1.m1/ b2.m2/ b3.m3/ b4.m4/:(7.1)

7.2. Eliminating m2

We start by eliminating the variable m2 in our sum. Note that by the mean value theorem
and the bound jb02.t/j � 1=M2, we have, for mi as in (7.1),

b2.m2/ � b2

�m3m4
m1

�
D b2

�m3m4 C k
m1

�
� b2

�m3m4
m1

�
�

k

M1M2

�

From this and the divisor bound, we deduce thatX
m1;m2;m3;m4
m1m2�m3m4Dk

m3�t1m1 .mod T1/
m2�t2m4 .mod T2/

b1.m1/ b2.m2/ b3.m3/ b4.m4/

D

X
m1;m2;m3;m4
m1m2�m3m4Dk

m3�t1m1 .mod T1/
m2�t2m4 .mod T2/

b1.m1/ b2

�m3m4
m1

�
b3.m3/ b4.m4/CO.kx

"/

for any " > 0. The error is negligible.
By elementary number theory,

m2 D
m3m4 C k

m1
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has a solution m2 2 Z satisfying m2 � t2m4 .mod T2/ if and only if m3m4 C k �
t2m4m1 .mod T2m1/, i.e.,

m4.t2m1 �m3/ � k .mod T2m1/:

This equation is solvable in m4 2 Z if and only if g WD .t2m1 �m3; T2m1/ divides k. In
this case, the solution set is

m4 � k=g � .t2m1 �m3/=g .mod T2m1=g/;

where .t2m1 �m3/=g is the inverse of .t2m1 �m3/=g modulo T2m1=g. For brevity, we
denote this congruence by m4 � Rm1;m3 .mod Tm1;m3/.

Hence,X
m1;m2;m3;m4
m1m2�m3m4Dk

m3�t1m1 .mod T1/
m2�t2m4 .mod T2/

b1.m1/ b2

�m3m4
m1

�
b3.m3/ b4.m4/

D

X
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b3.m3/
X

m4�Rm1;m3 .mod Tm1;m3 /

b2.m3m4=m1/ b4.m4/:

7.3. Eliminating m4

The argument is similar to that of Section 3 in [5], so we keep our exposition brief. By the
Poisson summation formula, one is able to treat sums of formX

n�x
n�a .mod q/

f .n/

for C 1 functions f . This leads toX
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b3.m3/
X

m4�Rm1;m3 .mod Tm1;m3 /

b2.m3m4=m1/ b4.m4/

D

X
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b3.m3/

Tm1;m3

Z
supp.b4/

b2.tm3=m1/ b4.t/ dt CE;(7.2)

where

E D
X
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b3.m3/
X
h2Z
h¤0

1

2�ih
e
�
�Rm1;m3h

Tm1;m3

�

�

�
�

Z
supp.b4/

.b2.tm3=m1/ b4.t//
0 e
� ht

Tm1;m3

�
dt
�
:

(7.3)
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The first term in (7.2) corresponds to a main term, while the E term where the sum ranges
over h ¤ 0 corresponds to an error term.

Let us write in (7.3)

E D E�H CE>H ;

where E�H corresponds to the summation condition 0 < jhj �H , and E>H corresponds
to the summation condition jhj > H .

We show that the sum over h is small enough, first taking care of the tails jhj > H WD
x10ı (say), after which we consider small values of h.

7.4. Estimation of the tails

Write g.t/ D b2.tm3=m1/b4.t/. Then the integral in (7.3) may be written asZ
supp.g/

g0.t/ e
� ht

Tm1;m3

�
dt;

which, after partial integration and the triangle inequality, is bounded by

�K

�Tm1;m3
h

�K Z
supp.g/

jg.KC1/.t/j dt

for any K > 0. One computes jg.K/.t/j �K x
K.�1C2ı/. Since jhj > x10ı and Tm1;m3 �

x1Cı , by taking K to be a large enough constant we obtain an upper bound of h�2x�10

(say) to the above. Plugging this into (7.3) gives us

E>H �
X

1�m1;m3�x1C"

X
jhj>H

h�2x�10 � x�1

(say), which is sufficient.

7.5. Estimation of contribution of small h

We are interested in bounding

(7.4)

E�H D �
X
m1

b1.m1/
X

0<jhj�H

1

2�ih

�

Z X
m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

.b2.tm3=m1/ b4.t//
0 b3.m3/ e

�h.t �Rm1;m3/
Tm1;m3

�
dt:

By the triangle inequality, for fixed m1, h and t , we reduce to boundingˇ̌̌̌
ˇ X

r .mod L/
r�t1m1 .mod T1/
.t2m1�r;T2m1/ jk

X
m3�r .mod L/

.b2.tm3=m1/ b4.t//
0 b3.m3/ e

�h.t �Rm1;m3/
Tm1;m3

�ˇ̌̌̌ˇ;(7.5)

where L D lcm.T1; T2m1/. Note thatm3 � r .mod L/ implies that Tm1;m3 D Tm1;r and
Rm1;m3 D Rm1; r .
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Similarly as when eliminating m4, we apply the Poisson summation formula to the
sum over m3. We bound (7.5) byˇ̌̌̌
ˇ 1L X

r .mod L/
r�t1m1 .mod T1/
.t2m1�r;T2m1/ jk

e
�h.t �Rm1; r /

Tm1;r

�X
`2Z

e
�
�
r`

L

� Z
.b2.ts=m1/ b4.t//

0 b3.s/ e
�`s
L

�
ds

ˇ̌̌̌
ˇ

�
1

L

X
`2Z

ˇ̌̌ Z
.b2.ts=m1/ b4.t//

0 b3.s/e
�`s
L

�
ds
ˇ̌̌

(7.6)

�

ˇ̌̌ X
r .mod L/

r�t1m1 .mod T1/
.t2m1�r;T2m1/ jk

e
�
�
r`

L

�
e
�h.t �Rm1; r /

Tm1;r

�ˇ̌̌
;

where the integral is over the support of b3. We consider the contribution of j`j > x10ı

and j`j � x10ı separately.
For large j`j > x10ı , the idea is to bound the sum over r trivially as L and estimate

the integral by integrating by parts K times for a large constant K. Write

b.s/ D
@

@t
.b2.ts=m1/ b4.t// b3.s/ D

� s

m1
b02.ts=m1/ b4.t/C b2.ts=m1/ b

0
4.t/

�
b3.s/:

One sees that if f1 and f2 both are compactly supported functions satisfying the derivative
bound jf .k/i .s/j �k Cis

�k in their domain for all k 2 Z�0 and some constants Ci inde-
pendent of k, then f1 C f2 and f1f2 satisfy such bounds as well with the corresponding
factors C1CC2 and C1C2. Since s 7! s=m1, s 7! b02.ts=m1/, s! b4.s/, s 7! b2.ts=m1/,
s ! b04.s/ and s 7! b3.s/ are such functions with C D max.M1=M3;M3=M1/� xı , it
follows that

jb.K/.s/j �K x
4Kıs�K :

Hence, by integrating by parts K times the integral over s in (7.6) and estimating the sum
over r trivially as L, we bound the contribution of j`j > x10ı by

1

L

X
j`j>x10ı

ˇ̌̌ Z
b.K/.s/

�L
`

�K
e
�`s
L

�
ds
ˇ̌̌
� L�

X
`>x10ı

1

`100
� x�100ı

for K a large enough constant.
We then consider the contribution of small j`j � x10ı . In this case, we estimate the

integral in (7.6) trivially as O.x2ı/, and our task is to obtain a non-trivial bound for

Sm1;h WD

ˇ̌̌̌
ˇ X

r .mod L/
r�t1m1 .mod T1/
.t2m1�r;T2m1/ jk

e
�
�
r`

L

�
e
�h.t �Rm1; r /

Tm1;r

�ˇ̌̌̌ˇ:(7.7)

The idea is that the sum in (7.7) is essentially a Kloosterman sum for which we have
power-saving bounds. However, the details require some attention.
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We begin by writing Sm1;h as

Sm1;h D

ˇ̌̌̌
ˇ X

r .mod L/
r�t1m1 .mod T1/
.t2m1�r;T2m1/ jk

e
�
�Rm1; rh

Tm1;r

�
e
� th

Tm1;r

�
e
�
�
r`

L

�ˇ̌̌̌ˇ
�

X
g j .k;T2m1/

ˇ̌̌̌
ˇ X

r .mod L/
r�t1m1 .mod T1/
.t2m1�r;T2m1/Dg

e
�k=g � .t2m1 � r/=gh

T2m1=g

�
e
�r`
L

�ˇ̌̌̌ˇ;(7.8)

where a denotes the inverse of a modulo T2m1=g. We separate the condition r � t1m1
.mod T1/ by writing

1r�t1m1 .mod T1/ D
1

T1

X
v .mod T1/

e
�vr � vt1m1

T1

�
;

so that (7.8) turns into

Sm1;h

�
1

T1

X
g j.k;T2m1/

ˇ̌̌̌ X
v .mod T1/

X
r .mod L/

.t2m1�r;T2m1/Dg

e
�k=g � .t2m1�r/=gh

T2m1=g

�
e
�r`
L
C
vr�vt1m1

T1

�ˇ̌̌̌

�
1

T1

X
g j.k;T2m1/

X
v .mod T1/

ˇ̌̌̌ X
r .mod L/

.t2m1�r;T2m1/Dg

e
�k=g � .t2m1 � r/=gh

T2m1=g

�
e
�r`
L

�
e
�vr
T1

�ˇ̌̌̌
:

We perform the substitution t2m1 � r ! r 0 in the inner sum above, obtaining

1

T1

X
gj.k;m1/

X
v .mod T1/

ˇ̌̌̌ X
r 0 .mod L/
.r 0;T2m1/Dg

e
�k=g � r 0=gh
T2m1=g

�
e
� .�r 0Ct2m1/`

L

�
e
�v.�r 0Ct2m1/

T1

�ˇ̌̌̌
:

(7.9)

Note that the translations by t2m1 do not affect the absolute value of the sum. We then let
r 0 D gs in (7.9) to get

Sm1;h �
1

T1

X
g j .k;m1/

X
v .mod T1/

ˇ̌̌̌ X
s .mod L=g/
.s;T2m1=g/D1

e
� skh=g
T2m1=g

�
e
�
�s`

L=g

�
e
�
�svg

T1

�ˇ̌̌̌
:

LetL1 denote the largest divisor ofL=g coprime with T2m1=g and letL2DL=.L1g/.
Any s .mod L=g/may be written uniquely as L2aC b, where b is an integer modulo L2
and a is an integer moduloL1. Note thatL2� 0 .mod T2m1=g/ and that .s; T2m1=g/D1



Gaussian almost primes in almost all narrow sectors 1331

if and only if b is invertible modulo L2. Hence, the above may be written as

1

T1

X
g jk

X
v .mod T1/

ˇ̌̌̌ X
0�a<L1

X
0�b<L2
.b;L2/D1

e
� bkh=g
T2m1=g

�
e
�
�.L2aC b/`

L=g

�
e
�
�.L2aC b/vg

T1

�ˇ̌̌̌
:

(7.10)

By Bezout’s lemma, we may write 1=.L=g/ as c=L1 C d=L2 for some c; d 2 Z. This
gives 1=T1 D c0=L1 C d

0=L2 for c0 D cL=.T1g/ and d 0 D dL=.T1g/. Plugging these
in (7.10) gives

Sm1;h �
1

T1

X
g jk

X
v .mod T1/

ˇ̌̌̌ X
0�b<L2
.b;L2/D1

e
� bkh=g
T2m1=g

�
e
�
�db`

L2

�
e
�
�d 0bvg

L2

�

�

X
0�a<L1

e
�
�.L2aC b/c`

L1

�
e
�
�.L2aC b/c

0vg

L1

�ˇ̌̌̌
:

The value of the a-sum is independent of b by the coprimality of L1 and L2, and it is
bounded by L1 in absolute value, so we obtain an upper bound

Sm1;h �
1

T1

X
g jk

L1
X

v .mod T1/

ˇ̌̌̌ X
0�b<L2
.b;L2/D1

e
� bkh=g
T2m1=g

�
e
�
�b.d`C d 0vg/

L2

�ˇ̌̌̌

D
1

T1

X
g jk

L1
X

v .mod T1/

ˇ̌̌̌ X
0�b<L2
.b;L2/D1

e
�bkh=g � L2=.T2m1=g/

L2

�
e
�
�b.d`Cd 0vg/

L2

�ˇ̌̌̌
:

This inner sum is finally a Kloosterman sum, to which we apply Weil’s upper bound
(Corollary 11.12 in [12]) to get, for any " > 0,

Sm1;h �
1

T1

X
g jk

L1
X

v .mod T1/

gcd.L2; khL2=.T2m1/; d`C d 0vg/1=2L
1=2C"
2

�
1

T1

X
g jk

L1
X

v .mod T1/

s
khL2

T2m1
L
1=2C"
2 �

X
g jk

L1C"

s
kh

T2m1
� x10ı

p
h m

1=2C"
1 ;

where in the last step we used L � T1T2m1 � x2ım1
Plugging this upper bound to (7.6), we bound E�H in (7.4) byX
m1

b1.m1/
X

0<jhj�H

1

2�h

Z 2M3

M3

1

L
Sm1;h � x

2ı dt

�

X
m1

b1.m1/
X

0<jhj�H

1

2�h

Z 2M3

M3

1

L

X
j`j<x10ı

x10ı
p
hm

1=2C"
1 � x2ı dt

� x30ıM
1=2C"
1 M3;

which is� x1:6, say, for ı > 0 small enough.
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7.6. Calculating the main terms

We finally evaluate the main termX
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b3.m3/

Tm1;m3

Z
b2.tm3=m1/ b4.t/ dt(7.11)

in (7.2). Recall from Section 7.2 that Tm1;m3 D T2m1=g D T2m1=.t2m1 �m3; T2m1/.
We write (7.11) asZ X

m1;m3
m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b2.t=m1/ b3.m3/ b4.t=m3/

m1m3T2=.t2m1 �m3; T2m1/
dt:(7.12)

We compute the sum inside the integral. First, by Möbius inversion,X
m1;m3

m3�t1m1 .mod T1/
.t2m1�m3;T2m1/ jk

b1.m1/ b2.t=m1/ b3.m3/ b4.t=m3/

m1m3T2=.t2m1 �m3; T2m1/

D
1

T2

X
g jk

g
X
e2N

�.e/
X
m1;m3

m3�t1m1 .mod T1/
ge jt2m1�m3
ge jT2m1

b1.m1/ b2.t=m1/ b3.m3/ b4.t=m3/

m1m3

D
1

T2

X
g jk

g
X
e2N

�.e/
X
m1

ge jT2m1

b1.m1/ b2.t=m1/

m1

X
m3�t1m1 .mod T1/
ge j t2m1�m3

b3.m3/ b4.t=m3/

m3
�(7.13)

Note that if b is a smooth, compactly supported function, then by partial summation, for
any a; q 2 N we haveˇ̌̌ X

n�a .mod q/

b.n/ �
1

q

Z
b.t/ dt

ˇ̌̌
�

Z
jb0.t/j dt:(7.14)

HenceX
m3�t1m1 .mod T1/
ge j t2m3�m3

b3.m3/ b4.t=m3/

m3
D
1.ge;T1/ j .t2�t1/m1

lcm.T1; ge/

Z
b3.s/ b4.t=s/

s
ds CO

� 1

M3

�
:

Plugging this into (7.13), summing the error over g; e and m1 (noting that we may
restrict to e � x1Cı ), and integrating over t in (7.12) gives a total error � x1CO.ı/,
which is acceptable. The main term in (7.13) then becomes

1

T2

� Z b3.s/ b4.t=s/

s
ds
�X
g jk

g
X
e2N

�.e/

lcm.T1; ge/

X
m1

ge jT2m1
.ge;T1/j .t2�t1/m1

b1.m1/ b2.t=m1/

m1
�
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By another application of (7.14), the inner sum here may be written asX
m1

ge jT2m1
.ge;T1/ j .t2�t1/m1

b1.m1/ b2.t=m1/

m1

D
1

lcm.ge=.ge; T2/; .ge; T1/=.ge; T1; t2 � t1//

Z
b1.s/ b2.t=s/

s
ds CO

� 1

M1

�
;

and again the error is found to be negligible.
Thus, the main term (7.12) is (up to admissible errors) equal toZ � Z b1.s/ b2.t=s/

s
ds
�� Z b3.s/b4.t=s/

s
ds
�

dt

�
1

T2

X
g jk

g
X
e2N

�.e/

lcm.T1; ge/
�

1

lcm.ge=.ge; T2/; .ge; T1/=.ge; T1; t2 � t1//
�(7.15)

The integral over t , which agrees with the one given in Proposition 6.4, is a normalization
factor depending only on the chosen functions bi . We are left with computing the sum

St1;t2 WD
1

T2

X
g jk

g
X
e2N

�.e/

lcm.T1; ge/
�

1

lcm.ge=.ge; T2/; .ge; T1/=.ge; T1; t2� t1//
�(7.16)

and summing it over t2i � �1 .mod Ti /.
Some manipulation yields

St1; t2 D
1

T2

X
g jk

g
X
e2N

�.e/

lcm.T1; ge/ lcm.ge=.ge; T2/; .ge; T1/=.ge; T1; t2 � t1//

D
1

T2

X
g jk

g
X
e2N

�.e/.T1; ge/.ge=.ge; T2/; .ge; T1/=.ge; T1; t2 � t1//

T1g2e2.ge; T1/=..ge; T2/.ge; T1; t2 � t1//

D
1

T1T2

X
g jk

1

g

X
e2N

�.e/ .ge.ge; T1; t2 � t1/; .ge; T1/.ge; T2//

e2
�

At this point, we invoke the assumption .k; T1T2/ D 1, from which it follows that
.g; T1T2/ D 1. The sum simplifies to

St1; t2 D
1

T1T2

�X
g jk

1

g

� �X
e2N

�.e/ .e.e; T1; t2 � t1/; .e; T1/.e; T2//

e2

�
:

The sum over e is multiplicative, and thus by Euler products,

St1; t2 D
1

T1T2

�X
g jk

1

g

� Y
p prime

�
1 �

.p.p; T1; t2 � t1/; .p; T1/.p; T2//

p2

�
:

Recalling that T1 and T2 are square-free, for e D p a prime, the numerator equals pv for
some v 2 ¹0; 1; 2º. The case v D 2 occurs if and only if p j T1; T2; t1 � t2, and v D 1
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occurs if p divides T1T2 but not .T1; T2; t2 � t1/. Note that if v D 2 occurs for some p,
then St1; t2 vanishes.

Hence we may write

St1; t2 D
1.T1;T2; t1� t2/D1

T1T2

�X
g jk

1

g

� Y
p jT1T2

p � 1

p

Y
p ∤T1T2

p2 � 1

p2

D
6 � 1.T1;T2; t1� t2/D1

T1T2 �2

�X
g jk

1

g

� Y
p jT1T2

p

p C 1
;

using Y
p

.1 � p�2/ D
1

�.2/
D

6

�2
�

We now sum St1;t2 over all t1 .mod T1/ and t2 .mod T2/ satisfying t2i ��1 .mod Ti /.
We have X

t1 .mod T1/; t2 .mod T2/
t2i ��1 .mod Ti /

St1; t2

D
6

T1T2 �2

Y
p jT1T2

p

p C 1

�X
g jk

1

g

� X
t1 .mod T1/; t2 .mod T2/

t2i ��1 .mod Ti /

1.T1;T2; t1�t2/D1:

(7.17)

One computes that the inner sum satisfiesX
t1 .mod T1/; t2 .mod T2/

t2i ��1 .mod Ti /

1.T1;T2; t1�t2/D1 D
Y

p jT1T2

gp..p; T1/; .p; T2//;(7.18)

where

gp.1; p/ D gp.p; 1/ D
X

t .mod p/
t2��1 .mod p/

1 D

8̂<̂
:
1; if p D 2;
2; if p � 1 .mod 4/;
0; if p � 3 .mod 4/;

and

gp.p; p/ D
X

t1 .mod p/; t2 .mod p/
t2i ��1 .mod p/
t1 6� t2 .mod p/

1 D

´
0; if p 6� 1 .mod 4/;
2; if p � 1 .mod 4/

(and gp.1; 1/ D 1). Combining (7.15), (7.17) and (7.18), we conclude the proof of Propo-
sition 6.4.
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8. Proof of Theorem 1.2

In view of Lemma 2.2, Theorem 2.1 for k D 2 (and thus Theorem 1.2) follows from the
following proposition.

Proposition 8.1. Let ">0 be small enough and letCD15:1. LetX�3,P1D.logX/C�1,
and let

ˇn D

´
1; n � p1p; with P 1�"1 � N.p1/ � P1;
0; otherwise;

and
F.m/ D

X
X<N.n/�2X

ˇn �
m.n/:

Then X
0<jmj�X=.logX/C�"

jF.m/j2 D o
� 1

.logX/2

�
:

For the proof of this proposition (as well as for Proposition 9.1 below), we need the
following mean square estimate of prime Hecke polynomials; the strength of the expo-
nents in this result determines our exponent C .

Proposition 8.2 (Sparse mean squares of Hecke polynomials over primes). Let " > 0 be
small but fixed. Let X � X 0 � X=2 � 2, and let

P.m/ D
X

X 0�N.p/�X

�m.p/

N.p/
�

Let T � Œ�X;X� \ Z satisfy

jT j � X20=363C";(8.1)

and suppose that for some F 2 ŒX"=2; X2"� and some Hecke polynomial

F.m/ D
X

F 1�"
2
�N.n/�F

an�
m.n/=N.n/

with
P
n janj

2 � F , we have

T � ¹m 2 Z W jF.m/j � F �5=141�10"
2

º:

Then, for any A � 1, we haveX
m2T

jP.m/j2 �A .logX/�A:

Let us first see how Proposition 8.2 implies Proposition 8.1.
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Proof of Proposition 8.1 assuming Proposition 8.2. Let ">0 be small enough. Write T D
X=.log X/C�", and let � be a parameter tending to 0 slowly in terms of X . Apply-
ing Lemma 6.1 with H D 1= log.1 C �/, we obtain, with I D ..1 � "/.logP1/H � 1;
.logP1/H�,X

0<jmj�T

jF.m/j2

� jI j
X
v2I

X
0<jmj�T

jAv;H .m/Bv;H .m/j
2
C T

X
j argn1�argn2j�1=T

N.n1/;N.n2/2ŒX=.1C�/;X.1C�/� or
N.n1/;N.n2/2Œ2X;2X.1C�/�

cn1 cn2 ;(8.2)

where
cn D

1

N.n/

X
n�p1p

P 1�"1 �N.p1/�P1

1

and

Av;H .m/ D
X

ev=H<N.p1/�e.vC1/=H

�m.p1/

N.p1/
; Bv;H .m/ D

X
N.p/�Xe�v=H

�m.p/

N.p/
�

The second sum on the right of (8.2) is � �2=.logX/2 D o.1=.logX/2/, by Proposi-
tion 6.2. For the first sum on the right of (8.2), we take the maximum over v. Let the
maximum be attained by v D v0, and denote P 01.m/D Av0;H .m/ and P.m/D Bv0;H .m/,
so that

P 01.m/ D
X

P 01�N.p1/<.1C�/P 01

�m.p1/

N.p1/
and P.m/ D

X
N.p/�X=P 01

�m.p/

N.p/

for some P 01 2 ŒP
1�"
1 =2; 2P1�D Œ.logX/.1�"/.C�1/=2; 2.logX/C�1�. Our goal is to show

that X
0<jmj�T

jP 01.m/P.m/j
2
D o

� �2

.logX/2 .logP1/2

�
:(8.3)

We shall in fact prove a bound of� .logX/�2�"
2
. Note that P 01 D .logX/C�1CO."/.

Let

T1 D ¹0 < jmj � T W jP
0
1.m/j � .P

0
1/
�"2
º and T D .Œ�T; T � \ Z/ n .¹0º [ T1/:

The contribution of T1 to the sum in (8.3) is bounded via the pointwise bound jP1.m/j �
P�"

2

1 and the improved mean value theorem (Lemma 3.3), yielding

X
m2T1

jP 01.m/P.m/j
2
� .P 01/

�2"2

 
T

X
N.n/�N

janj
2
C T

X
j argn1�argn2j�1=T

n1¤n2
N.n1/;N.n2/�N

jan1 an2 j

!
;
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where N D X=P 01 2 ŒX=P1; 2X=P
1�"
1 �, and an D 1=N.n/ if n is a Gaussian prime and

an D 0 otherwise. We estimate this sum using Proposition 6.2 and see that the previous
expression is

� .P 01/
�2"2

� T

.X=P 01/.logX/
C

1

.logX/2

�
� .logX/�2�"

2

;

since T D X=.logX/C�" and P 01 > logX .
We are left with the contribution of T . Since jP 01.m/j � 1, to prove (8.3) it suffices to

show that X
m2T

jP.m/j2 �A .logX/�A(8.4)

for any fixedA>0. In order to deduce (8.4) from Proposition 8.2, we need some properties
of the set T .

Firstly, by Corollary 5.3 we have

jT j � X1=.
3
2 .C�1/�3/CO."

2/
� X20=363C";(8.5)

for C D 15:1 if " > 0 is small enough.
Secondly, note that if

F.m/ WD
P 01.m/

k

kŠ1=2
; F D .2P 01/

k ; k D
j
"

logT
log.2P 01/

k
;

and if bn are the coefficients of F.m/, then bn are supported in F 1�"
2
� N.n/ � F andX

N.n/�F

jbnj
2
�

X
N.n/�F

X
n�p1���pk

N.p1/�P 01;:::;N.pk/�P
0
1

1 � P k1 � F:

Finally, note that, since F D T "Co.1/, for m 2 T we have

jF.m/j � .P 01/
�2"2k=e.k=2/ logk

� F �2"
2�o.1/�1=.2.C�1//�o.1/

� F �1=.2.C�1//�3"
2

� F �5=141�3"
2

for C D 15:1.
In view of these properties of T , we may apply Proposition 8.2 to deduce (8.4).

We then turn to the proof of Proposition 8.2.

Proof of Proposition 8.2. Step 1. Applying Heath-Brown’s decomposition.
We apply Heath-Brown’s decomposition (Lemma 3.6) with parameters k D 100 and

B � 1 large to getX
m2T

jP.m/j2 �B .logX/D
X
m2T

jM1.m/ � � �MJ .m/j
2
C .logX/�B(8.6)
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for some constant D D DB > 0 and some Hecke polynomials

Mj .m/ D
X

N.n/�Mj

an;j �
m.n/;

with 1 � j � J � 200, Mj � 1 and X= exp.2.log.2X//19=20/ � M1 � � �MJ � X . Here
jan;j j � 1, and

jMj .m/j � exp.�.log.2Mj //1=10/

for m 2 Œ1; T �\Z and Mj .m/ is smooth (in the sense of Definition 3.5) if Mj � X1=100.
In what follows, let " > 0 be a small enough constant. We bound any Mj shorter than

exp..logX/99=100/ appearing on the right-hand side of (8.6) trivially by jMj .m/j � 1.
Hence, on redefining J and relabeling the Mj , we may assume all of M1; : : : ; MJ are
long enough so that by Lemma 3.4,

(8.7) jMj .m/j � exp.�.logX/1=20/;

and that we have
X1�o.1/ �M1 � � �MJ � X:

We may also assume thatMj �X1=100 for all 1� j � J , since otherwise by applying (8.7)
to Mj and Proposition 5.1(ii) with F.m/ D

Q
i¤j Mi .m/, we would haveX

m2T

jM1.m/ � � �MJ .m/j
2
�A .logX/�2ACO.1/.1C jT jX5=6�99=100Co.1//

� .logX/�A

for small enough " > 0, since by (8.1) we have jT j � X20=363C". We may also assume
that J � 2, as otherwise by Proposition 4.6(ii) we would haveX

m2T

jM1.m/j
2
� jT j.T 1=3X�1=2C" CX�3=8C"/;

which again is sufficient by jT j � X20=363C".
In order to make Proposition 4.6(i) and Lemma 5.5(i) applicable, we write

Mj .m/ D zMj .m/CEj .m/;

where

zMj .m/ D
X

N.n/�Mj
arg.n/ 62I1[���[Ir

an;j �
m.n/ and Ej .m/ D

X
N.n/�Mj

arg.n/2I1[���[Ir

an;j �
m.n/

with

(8.8)
Ii D Œ˛i �X

�"4 ; ˛i CX
�"4 � for i D 1; : : : ; r;

where ¹˛1; : : : ; ˛rº D
®
t 2 Œ0; �=2� W 9 k 2 ¹1; : : : ; Rº such that

Im..1C i tan.t//k/ � Im..1C i tan.2t//k/ D 0
¯
;
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withR a large enough constant. Then by the mean value theorem (Lemma 3.2), the divisor
bound, and the fact that jan;j j � log N.n/, we haveX

m2T

jE1.m/j
2
j zM2.m/j

2
� � � j zMJ .m/j

2

� .logX/O.1/
T CX

.M1 � � �MJ /2

X
M1���MJ�N.n/�2JM1���MJ

 X
n�n1���nJ

N.nj /�Mj 8j�J
arg.n1/2I1[���[Ir

1

!2

� Xo.1/
T CX

.M1 � � �MJ /2

X
M1���MJ�N.n/�2JM1���MJ

X
n�n1���nJ

N.nj /�Mj 8j�J
arg.n1/2I1[���[Ir

1� X�"
4=2;

by Lemma 2.3 if " > 0 is small enough. Arguing similarly, we see that for all 1 � k � J ,
we have X

m2T

kY
jD1

jEj .m/j
2

JY
jDkC1

j zMj .m/j
2
� X�"

4=2:

Hence, it suffices to show thatX
m2T

j zM1.m/j
2
� � � j zMJ .m/j

2
�A .logX/�A:

For any interval J � Œ0; �=2�; let zMj;J.n/ be the same sum as zMj , but with the additional
summation condition arg.n/ 2 J. By the pigeonhole principle, there exist some intervals
J1; : : : ;JJ of length� X�2"

4
such thatX

m2T

j zM1.m/j
2
� � � j zMJ .m/j

2
� X4J"

4
X
m2T

j zM1;J1.m/j
2
� � � j zMJ;JJ .m/j

2:

Now, by permuting the indices if necessary, it suffices to show thatX
m2T 0

j zM1;J1.m/j
2
� � � j zMJ;JJ .m/j

2
� X�"

3

;

say, where

T 0 D ¹m 2 Œ�T; T � \ Z W j zM1;J1.m/j � j
zM2;J2.m/j � � � � � j

zMJ;JJ .m/jº:

Let us write

N1.m/ D zM1;J1.m/; N2.m/ D zM2;J2.m/ � � �
zMJ;JJ .m/;

N1 DM1; N2 DM2 � � �MJ :

With this notation, it suffices to show thatX
m2T 0

jN1.m/j
2
jN2.m/j

2
� X�"

3

:(8.9)
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We have now decomposed our Hecke polynomial in the desired manner. We recall here
for convenience that by the above analysis, we have the constraints

X1=100 � N1 � X
99=100 and X1�o.1/ � N1N2 � X:

Moreover, for later use we note the following important properties of N1.m/:
(a) The coefficients of N1.m/ are supported in arg.n/ 2 I, where I is some interval that

is�X�"
4

away from all the solutions to Im..1C i tan.t//k/D 0 with k D 1; : : : ;R
(this follows directly from the construction of I1; : : : ; Ir in (8.8)).

(b) The coefficients of N1.m/2 are supported in arg.n/ 2 I0, where I0 is some interval
that is � X�"

4
away from all the solutions to Im..1 C i tan.t//k/ D 0 with k D

1; : : : ; R (this is because if J1 D Œ˛ � ı; ˛ C ı�, the coefficients of N1.m/2 are
supported in arg.n/ 2 Œ2˛ � 2ı; 2˛ C 2ı�, and by the construction of I1; : : : ; Ir
in (8.8) the interval Œ2˛ � 2ı; 2˛ C 2ı� is � X�"

4
away from all the solutions to

Im..1C i tan.t//k/ D 0 with k D 1; : : : ; R.).

Step 2. Splitting of the summation range and conclusion.
Define

T� D ¹m 2 T 0 W jN1.m/j � N
��
1 º:

The definition of T 0 tells us that for m 2 T� , we also have

jN2.m/j � N
��
2 :(8.10)

By property (a), Proposition 4.6(i) and Remark 4.8, the polynomial N1.m/ admits a
power-saving bound, and thus the set T� is empty unless

(8.11) � � ı0

for some small absolute constant ı0. By dyadic decomposition, it suffices to show thatX
m2T�

jN1.m/N2.m/j
2
� X�2"

3

;

say. Recalling (8.10), this bound follows if we show that

jT� j � N 2�
1 N 2�

2 X�2"
3

;(8.12)

Observe for later use that, since N1N2 � X1�o.1/ and " > 0 is small, by (8.11) we
have (8.12) if

jT� j � T 2.1�"
2/� ;(8.13)

say.
Note that by (8.5) we have (8.13) unless

� �
20=363

2
CO."/:(8.14)

We split the proof of (8.12) into cases depending on the size of N1.
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Case 1. N1 2 ŒX1=100; X1=3�"� [ ŒX3=8; X1=2�"� [ ŒX3=4; X99=100�.
Write N1 D Xˇ . Let 1 � ` � 100 be an integer such that ˇ` 2 Œ3=4 � "; 1 � "�. By

Lemma 5.5(ii) applied to N1.m/`, we have (8.13), provided that

C0 " � � �
1

32
�O."/

for some absolute constant C0. The first inequality above holds for " > 0 small enough
since � � ı0 by (8.11), and the second inequality holds by (8.14) since for " > 0 small
enough we have

1

32
>
20=363

2
CO."/:(8.15)

Hence, (8.13) holds in this case.
Case 2. N1 2 .X1=2�"; X3=4/.
By property (a), the Hecke polynomial N1.m/ is the restriction of a smooth Hecke

polynomial to a region where Proposition 4.6(i) is applicable. By Proposition 4.6(i) with
the exponent pair .�; �/ D .0:02381; 0:8929/ as in Lemma 4.4, we see that T� is empty
unless

� �
1 � 3� � �

2
CO."/ � 0:0178:(8.16)

Write

(8.17) N1 D X
ˇ ; with

1

2
� " � ˇ �

3

4
�

By Lemma 5.6 with ı D 0:7509 � ˇ and A D .5=141/�1=2 D 14:1, we have (8.13) if

0:7509 � ˇ

14:1.2 � 2ˇ/
CO."/ � � �

0:12635 � 3:0036�4ˇ
14:1

8ˇ � 2
�O."/:(8.18)

In the range of ˇ in (8.17), the left-hand side of (8.18) is maximized at ˇ D 1=2 � ",
and the right-hand side of (8.18) is minimized also at ˇ D 1=2� ". Hence, (8.13) holds if

0:2509

14:1
CO."/ � � � 0:063175 �

0:5018

14:1
�O."/:(8.19)

Combining this with (8.16) and (8.14) and taking " > 0 small, it now suffices to note that

(8.20)
0:2509

14:1
< 0:0178 and 0:063175 �

0:5018

14:1
>
20=363

2
�

Hence (8.20) holds, so (8.13) follows.
Case 3. N 2 .X1=3�"; X3=8/.
Now

(8.21) N1 D X
ˇ with

1

3
� " � ˇ �

3

8
�
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Applying Lemma 5.6 to N1.m/2 as in Case 2, we have (8.13) if (8.19) holds. Hence, we
may assume that

� <
0:2509

C � 1
�O."/:

Now we apply Lemma 5.5(i) toN1.m/2 with the exponent pair .�; �/D .0:05; 0:825/
as in Lemma 4.4 (noting that by property (b) the coefficients of N1.m/2 are supported
in the set required for the application of Lemma 5.5(i)). We deduce that (8.13) holds
provided that

� �
2ˇ ���C1

2�
� 1

2ˇ.2C 2=�/ � 2
�O."/:

In the range of ˇ in (8.21), the right-hand side is minimized at ˇ D 1=3� ", in which case
the previous inequality implies

� � 0:01923:

Now note that

0:01923 >
0:2509

C � 1
CO."/(8.22)

since C > 14:1. Hence, we must have (8.13).
Combining all the above cases, (8.13) follows, and this was enough to complete the

proof of Proposition 8.1.

9. Proof of Theorem 1.1

By Lemma 2.2, Theorem 2.1 for k D 3 (and thus Theorem 1.1) will follow from the
following proposition.

Proposition 9.1. Let ">0 be small enough andCD19:2. LetX�3,P1D.log logX/C�1,
P2 D .logX/"

�1
; and let

ˇn D

´
1

N.n/ ; if n � p1p2p; P 1�"i � N.pi / � Pi ;
0; otherwise,

and
F.m/ D

X
X<N.n/�2X

ˇn �
m.n/:

Then X
0<jmj�X.log logX/"�C =.logX/

jF.m/j2 D o
� 1

.logX/2

�
:
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Proof. Write
T D X.log logX/"�C =.logX/:

Similarly as in the proof of Proposition 8.1, we apply Lemma 6.1 to obtainX
0<jmj�T

F.m/

� jI j2
X

0<jmj�T

jAv0;H .m/Bv0;H .m/j
2
C T

X
j argn1�argn2j�1=T

N.n1/;N.n2/2ŒX=.1C�/;X.1C�/� or
N.n1/;N.n2/2Œ2X;2X.1C�/�

cn1cn2 ;(9.1)

with
I D Œ.1 � "/ logP1= log.1C �/ � 1; logP1= log.1C �//;

and where v0 2 I , �! 0 slowly in terms of X ,

cn D
1

N.n/

X
nDp1p2p

P 1�"i �N.pi /�Pi

1;

and

Av0;H .m/ D
X

ev0=H�N.p1/<e.v0C1/=H

�m.p1/

N.p1/
; Bv;H .m/ D

X
nDp2p

N.n/�Xe�v0=H

P 1�"2 �N.p2/�P2

�m.n/

N.n/
�

As before, the second term in (9.1) is o.1=.logX/2// by Proposition 6.2. We again denote

P 01.m/ D Av0;H .m/ D
X

P 01�N.p1/�.1C�/P 01

�m.p1/

N.p1/
;

where P 01 2 ŒP
1�"
1 ; P1�, and so we wish to showX
0<jmj�T

jP 01.m/Bv0;H .m/j
2
D o

� �2

.logX/2.logP1/2

�
:

Let ˛1 D " and let

T1 D ¹0 < jmj � T W jP
0
1.m/j � .P

0
1/
�˛1º

and
T D .Œ�T; T � \ Z/ n .¹0º [ T1/:

For bounding the contribution of T1, we use the improved mean value theorem from
Lemma 3.3 and Proposition 6.2, as in the proof of Proposition 8.1, to getX
m2T1

jP 01.m/Bv0;H .m/j
2
� .P 01/

�2˛1
� T

.X=P 01/.logX/
C

1

.logX/2

�
�.logX/�2.P 01/

�";

which is sufficient.
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For bounding the contribution of T , we further factorize the polynomial Bv0;H . Again
via Lemma 6.1 and Proposition 6.2, we reduce to showingX

m2T

jP 01.m/P
0
2.m/P.m/j

2
D o

� �4

.logX/2.logP1/2.logP2/2

�
;(9.2)

where

P 0i .m/ D
X

P 0i �N.pi /�.1C�/P 0i

�m.pi /

N.pi /
and P.m/ D

X
N.p/�X=.P 01P

0
2/

�m.p/

N.p/

for some P 0i 2 ŒP
1�"
i ; Pi �. We will in fact obtain an upper bound of � .logX/�2�"

for (9.2).
Write

˛2 D
1

2.C � 1/
C 2";

and let

T2 D ¹m 2 T W jP 02.m/j � .P
0
2/
�˛2º;

T3 D T n T2:

Let ` D dlogP 02= logP 01e and note that for any m 2 T2 we have

jP 02.m/j
2
� P

�2˛2
2 .P

˛1
1 jP1.m/j/

2`;

so X
m2T2

jP 01.m/P
0
2.m/P.m/j

2
�

X
m2T2

jP 02.m/P.m/j
2(9.3)

� .P 02/
�2˛2 .P 01/

2`˛1
X
m2T2

jP1.m/j
2`
jP.m/j2

� P
�2˛2
2 .P 01/

2`˛1 `
X
m2T2

jA.m/j2;

where
A.m/ D

X
N.n/�Y

An

N.n/
�m.n/;

for some

.P 01/
` X

P 01P
0
2

� Y � 2` .P 01/
` X

P 01P
0
2

�(9.4)

Here the coefficients satisfy An are bounded by

jAnj �
X

n�p1���p`p

N.pi /2ŒP 01;.1C�/P
0
1�

N.p/�X=.P 01P
0
2/

1;

and, in particular, by unique factorization we then have jAnj � .`C 1/Š.
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By the mean value theorem (with the remark (3.2)), we may bound (9.3) by

.P 02/
�2˛2 .P 01/

2`˛1 `Y
X

N.n/�Y

jAnj
2 �.n/

N.n/3
�

Here

Y
X

N.n/�Y

jAnj
2

N.n/3
�.n/� Y

.`C 1/Š 2`

Y 2

X
N.n/�Y

jAnj

N.n/

�
.`Š/1Co.1/

Y

X
p1;:::;p`;p

N.pi /2ŒP 01;.1C�/P
0
1�

N.p/�X=.P 01P
0
2/

1

N.p1/ � � �N.p`/N.p/
�

.`Š/1Co.1/

Y logY
�

Thus, (9.3) is bounded by

� .P 02/
�2˛2 .P 01/

2`˛1 .`Š/1Co.1/
T C Y

Y logY
�

By (9.4), we have Y D X.logX/o.1/, and in particular, T � Y . Hence, the previous
expression is

� .logX/"
�1.2˛1�2.1�"/˛2/C"

�1=.C�1/�1Co.1/:

By our choice of ˛1 and ˛2, we have

2˛1 � 2˛2 D �
1

C � 1
� 2";

and hence the above is bounded by .logX/�2�", which is sufficient.
For bounding the contribution of T3, note that by Remark 5.4 applied to P2.m/ we

obtain
jT3j � X2˛2C2"Co.1/ � X1=.C�1/CO."/:

Bounding trivially jP 01.m/j; jP
0
2.m/j � 1, it suffices to show thatX

m2T3

jP.m/j2 �A .logX/�A

for any fixed A > 0.
Denoting

F.m/ WD
P 02.m/

k

kŠ1=2
; F D .P 02/

k ; k D
j
"

logT
logP 02

k
;

we see as in the proof of Proposition 8.1 that the coefficients bn of F.m/ are supported in
F 1�"

2
� N.n/ � F and satisfy X

N.n/�F

jbnj
2
� F:
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Moreover, since F D T "Co.1/, for m 2 T3 we have

jF.m/j �
.P 02/

�˛2k

e.k=2/ log k
� F �˛2�o.1/ F �"�o.1/ � F �1=.2.C�1//�2":

In view of these properties of T3, we may apply Proposition 8.2 to deduce that (8.4)
holds since

1

C � 1
CO."/ < 20=363

for C D 19:2 and " > 0 small enough. This completes the proof.

A. Appendix: Exponent pairs

In this appendix, we prove Lemma 4.3, following closely Ivić’s argument from Chapter 2
of [11].

Proof of Lemma 4.3. (A) We claim that if .�; �/ is an exponent pair of degree R � 1, then
A.�; �/ D .�1; �1/ is an exponent pair of degree � R C 1. We clearly have 0 � �1 �
1=2 � �1 � 1.

We first note that .1=2; 1=2/ is an exponent pair of degree � 2, since by applying
Lemma 2.4 in [11] (a truncated Poisson formula) and using Lemma 2.2 in [11] (the second
derivative test) to estimate the exponential integrals appearing in it, for f 2FI .A;B;M;2/

we have ˇ̌̌X
n2I

e.f .n//
ˇ̌̌
�M 3=2 .AB/1=2:(A.1)

Then let f 2 FI .A;B;M;RC 1/. If A < B1=2, we apply (A.1) to obtainˇ̌̌X
n2I

e.f .n//
ˇ̌̌
�M 3=2 .AB/1=2 DM 3=2A1=2B1=2C�=.2�C2/B��=.2�C2/

�M 3=2A.1C��2�/=.2�C2/B1=2C�=.2�C2/ �M 3=2A�1B�1 :

Suppose then that B1=2 � A. By Lemma 2.5 in [11] (which is a Weyl-differencing
inequality), for any H > 0 we haveˇ̌̌X

n2I

e.f .n//
ˇ̌̌2
� B2H�1 CH 2

C BH�1
X

1�j�H

ˇ̌̌ X
n2I\.I�j /

e.gj .n//
ˇ̌̌
;

where
gj .t/ WD f .t C j / � f .t/:

By the mean value theorem, for t 2 I we have

g
.r/
j .t/ D j f .rC1/.t C �/;
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where � 2 Œ0; j � depends on j , r and t . Hence, for t 2 I \ .I � j / and 0 � r � R we
have

jM�1AB�r � jg
.r/
j .t/j � jMAB�r :

Now, by applying the existing exponent pair .�; �/, for B=.2AM/ < j � H we have

(A.2)
ˇ̌̌ X
n2I\.I�j /

e.gj .n//
ˇ̌̌
�MC�;�.jAB�1/�B� �MC�;�.HAB�1/�B�

for some constant C�;�.
To obtain an estimate that works in the remaining range j � B=.2AM/, note that in

this range jg0j .t/j � 1=2 and jg00j .t/j � jM
�1AB�2, so by Lemmas 1.2 and 2.2 in [11]

(partial summation and the second derivative test), we have

BH�1
X

1�j�B=.2AM/

ˇ̌̌ X
n2I\.I�j /

e.gj .n//
ˇ̌̌
� BH�1 �M 1=2A�1=2B

X
1�j�B=.2AM/

j�1=2

� B5=2A�1H�1 � B2H�1;(A.3)

since B1=2 � A.
Combining (A.2) and (A.3), we obtainˇ̌̌X

n2I

e.f .n//
ˇ̌̌2
� B2H�1 CH 2

CMC�;�B.HAB�1/�B�:

Choosing
H D B.1C���/=.�C1/A��=.�C1/

and performing some elementary manipulation (cf. Lemma 2.8 in [11]), we can see that
.�1; �1/ is an exponent pair of degree � RC 1.

(B) We claim that if .�; �/ is an exponent pair of degree R with � C 2� � 3=2, then
B.�;�/ is an exponent pair of degree�max¹RC 1; 4º. Note first that .�2; �2/ WD B.�;�/
satisfies 0 � �2 � 1=2 � �2 � 1.

Let f 2FI .A;B;M;max¹RC 1; 4º/. We may assume thatM � 2, and by symmetry
we may assume that f 00.a/ < 0. It suffices to prove the claim for intervals of the form
I D ŒB; B C h� with h � B=.2M 2/, since any interval I � ŒB; 2B� is a union of�M 2

such intervals. Now apply Lemma 2.7 in [11] (van der Corput’s B-transformation) with
a D B , b D B C h,m2 D jf 00.a/j,m3 D .m2m4/1=2 andm4 DM 3AB�3. Note that this
is an admissible choice, since by the mean value theorem for y 2 Œ0; h�, we have

jf 00.aC y/ � f 00.a/j D yjf .3/.aC �/j �
1

2
M�1AB�1 �

1

2
jf 00.a/j

for some � 2 Œa; aC y�, and since

MAB�2 � .jf 00.a/jM 3AB�3/1=2 D m3:
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We obtain from Lemma 2.7 in [11] the estimateX
n2I

e.f .n// D e
�1
8

� X
f 0.b/<��f 0.a/

�2Z

jf 00.x�/j
�1=2 e.g.�//CO.M 1=2A�1=2B1=2/

CO.log..AC 2/M///CO.M.AB/1=3/;

where
g.�/ WD f .x�/ � �x�

and x� is defined by f 0.x�/D �. By using Leibniz’s rule for the r th derivative of a product
as in the proof of Lemma 2.9 in [11], we see that for t 2 Œf 0.b/; f 0.a/� we have

jg.r/.t/j �MOr .1/BA1�r

for all 0 � r � R, and

jg.r/.t/j �M�Or .1/BA1�r

for 0 � r � 3.
By partial summation and the fact that .�; �/ is an exponent pair of degree R, we then

have ˇ̌̌̌ X
f 0.b/<��f 0.a/

�2Z

jf 00.x�/j
�1=2 e.g.�//

ˇ̌̌̌
�MO�;�.1/.A=B/�1=2B�A�;

and therefore, ˇ̌̌X
n2I

e.f .n//
ˇ̌̌
�MO�;�.1/.A�2B�2 C .AB/1=3/:

As in the proof of Lemma 2.9 in [11], elementary manipulation and the condition
� C 2� � 3=2 imply

.AB/1=3 � A�2B�2 ;

so the claim follows.
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