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Singular Yamabe-type problems
with an asymptotically flat metric

Jiguang Bao, Yimei Li and Kun Wang

Abstract. In this paper, we study the asymptotic symmetry and local behavior of
positive solutions at infinity to the equation

�Lgu D jxj
� u

nC2C2�
n�2

outside a bounded set in Rn, where n � 3, �2 < � < 0, and Lg is the conformal
Laplacian with asymptotically flat Riemannian metric g. We prove that the solution,
at1, either converges to a fundamental solution of the Laplace operator on the Euc-
lidean space, or is asymptotically close to a Fowler-type solution defined on Rn n¹0º.

1. Introduction

In this paper, we shall first discuss the asymptotic behavior at infinity of solutions of the
equation

(1.1) �Lgu D jxj
� u

nC2C2�
n�2 in Rn n B1;

with parameter � 2 .�2; 0/, where B1 is the unit ball with center 0 in Rn, n � 3, and
where g is a smooth Riemannian metric defined on Rn n B1 that satisfies the asymptotic-
ally flat condition

(1.2)
nX

i;jD1

jr
m.gij .x/ � ıij /j � C0 jxj

�a�m in Rn n B1:

Here C0 is a positive constant,mD 0; 1; 2, and a � .n� 2/=2. The lower bound of a is the
minimal flatness order required to define ADM mass in general relativity, see Bartnik [2]
and Denisov–Solove [9]. The operator

Lgu D �gu �
n � 2

4.n � 1/
Rgu
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is the conformal Laplacian, where �g is the Laplace–Beltrami operator and Rg is the
scalar curvature associated with the metric g. More specifically, if g and g0 D u4=.n�2/g
are any two such metrics, with corresponding scalar curvature functions Rg and Rg 0 ,
respectively, then for any smooth function �,

Lg.u�/ D u
nC2
n�2 Lg 0�:

Notice that the problem with a singularity at infinity can be transformed into one with
an isolated singularity on the punctured unit ball by a Kelvin transform. In more detail,
for any x 2 Rn n B1, it follows that z D x=jxj2 2 B1n¹0º, and

u.x/4=.n�2/ gij dx
i dxj D

� 1

jzjn�2
u
� z

jzj2

��4=.n�2/
jzj4 gij

� z

jzj2

�
d
� zi
jzj2

�
d
� zj
jzj2

�
DW v.z/4=.n�2/ Ogkl dz

k dzl ;

where v.z/ D 1
jzjn�2

u.z=jzj2/ is the Kelvin transform, and

Ogkl .z/ dz
k dzl D

1

jzj4

nX
i;jD1

gij

� z

jzj2

� �
ıikjzj

2
� 2zizk

� �
ıjl jzj

2
� 2zj zl

�
dzk dzl :

Therefore, by the conformal invariance of Lg , we have

(1.3) �L Ogv D jzj
� v

nC2C2�
n�2 in B1n¹0º;

with L Ogv D � Ogv � c.n/R Ogv, and

nX
i;jD1

jr
m. Ogij .z/ � ıij /j � OC jzj

a�m in B1n¹0º:

Studying the behavior of the solution u of (1.1) as x ! 1 is equivalent to identifying
the asymptotic profile of the solution v of (1.3) as z ! 0. If the solution v of (1.3) can
be extended as a continuous function near the origin 0, we say that 0 is a removable
singularity. If 0 is a removable singularity of v, we also shall say that u has a removable
singularity at infinity. To avoid using too many variables, from now on we will rename
the z variable in B1n¹0º as x, and v.z/ as u.x/. Therefore, we shall study the positive
solutions u.x/ of

(1.4) �L Ogu D jxj
� u

nC2C2�
n�2 in B1n¹0º;

where for m D 0; 1; 2, the metric Og satisfies

(1.5)
nX

i;jD1

jr
m. Ogij .x/ � ıij /j � OC jxj

a�m in B1n¹0º:

By Han–Xiong–Zhang [14], we also have the following bound for the scalar curvature:

(1.6) jR Og j � C jxj
a�2 in B1n¹0º:
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The equation (1.4) is closely related to the well-known Yamabe problem. The res-
olution of the Yamabe problem is an outstanding achievement: it was the first time that
the existence problem of a nonlinear partial differential equation with critical exponent
was completely solved affirmatively; see Yamabe [38], Trudinger [35], Aubin [1] and
Schoen [30]. A great deal of work has been done on the equation (1.4).

Let us first look at the case � D 0. The existence of positive solutions for (1.4) is
related to the study of local solutions of the singular Yamabe problem, which has been
considered by Schoen [31], Mazzeo–Smale [28], Mazzeo–Pollack–Uhlenbeck [27], and
Mazzeo–Pacard [26]. If Og is flat and 0 is a non-removable singularity, using a rather com-
plicated version of the Alexandrov reflection, Caffarelli–Gidas–Spruck [3] proved that the
positive solutions satisfy

u.x/ D u0.jxj/.1C o.1// as x ! 0;

where u0 is a singular positive radial solution satisfying

��u0 D u
.nC2/=.n�2/
0 in Rn n ¹0º:

We refer to these radial singular solutions on Rnn¹0º as Fowler solutions. After that,
Korevaar–Mazzeo–Pacard–Schoen [16] presented a much simpler and more geometric
derivation of this fact, and improved the remainder term o.1/: for some ˛ > 0,

u.x/ D u0.jxj/.1CO.jxj
˛// as x ! 0:

See Han–Li–Li [12] for a higher order expansion of u. In a series of works [5,6,22,33,34],
the local singular positive solutions to the prescribed scalar curvature equation

��u D K.x/ u.nC2/=.n�2/ in B1n¹0º

have been studied for a positive function K.x/ with appropriate flatness near x D 0. For
more related papers about the isolated singularities problem for the Yamabe equation, see
[4, 7, 8, 15, 18–21, 32, 36] and the references therein.

If Og is not flat and 0 is a non-removable singularity, Marques [25] established the same
asymptotic behavior for 3 � n � 5. Xiong–Zhang [37] showed that this still holds for
nD 6. Recently, Han–Xiong–Zhang [14] obtained that for n � 24, the solution converges
to a Fowler solution defined on Rn n ¹0º. The same conclusion also holds when n > 24,
see again [14], under the additional condition that the solution grows no faster than the
fundamental solution of the flat metric Laplacian at the singularity.

Now consider the case � ¤ 0. If Og is flat, Caffarelli–Gidas–Spruck [3] pointed out
that equation (1.4) has no positive solution in any punctured ball for j� j � 2. Hence, we
always assume j� j < 2. Li [17] proved that for �2 < � < 0, the asymptotic behavior of
the positive solutions is

u.x/ D Nu.jxj/.1C o.1// as x ! 0;

where Nu.r/D
¬
@Br

udSr is the average of u on @Br , and Br is the ball in Rn with radius r
and center 0.
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It is a natural question to ask whether the theorems of Caffarelli–Gidas–Spruck [3]
and Korevaar–Mazzeo–Pacard–Schoen [16] on a punctured ball still hold when � ¤ 0

and the background metric Og is not flat. In this paper, we shall give some answers if Og
satisfies (1.5). Clearly, it suffices to consider

a D
n � 2

2
�

The main result of this article is the following.

Theorem 1.1. Let �2 < � < 0 and n� 3, and suppose that u2C 2.B1 n ¹0º/ is a positive
solution of (1.4) with Og satisfying (1.5). Then

(1) either 0 is a removable singularity, and there exists a positive constant A0 such that

(1.7) u.x/ D A0 CO.jxj/ as x ! 0;

(2) or there exist two positive constants C1 and C2, depending on n, � and OC , such that

(1.8) C1 jxj
�.n�2/=2

� u.x/ � C2 jxj
�.n�2/=2 as x ! 0:

Furthermore, there exists ˛ 2 .0; 1/ such that

(1.9) u.x/ D u� .jxj/.1CO.jxj
˛// as x ! 0;

with u� .jxj/ a Fowler-type solution, that is, a C 2 positive radial solution of

��u� D jxj
� u

nC2C2�
n�2

� in Rn n ¹0º:

Theorem 1.1 has two aspects of importance. On the one hand, the estimate (1.8) is
optimal even for flat metrics. In a sense, Theorem 1.1 extends corresponding earlier res-
ults; for instance,
(i) when the metric Og is flat and � D 0, Caffarelli–Gidas–Spruck [3] and Korevaar–

Mazzeo–Pacard–Schoen [16] investigated Theorem 1.1 for n � 3;
(ii) when the metric Og is flat and�2 < � < 0, Li [17] established Theorem 1.1 for n� 3;
(iii) when the metric Og is not flat and � D 0, Theorem 1.1 was obtained by Marques [25]

for 3 � n � 5, Xiong–Zhang [37] for n D 6 and Han–Xiong–Zhang [14] for n � 3.
On the other hand, for n > 24, in Han–Xiong–Zhang [14] it is required in addition that

the solution grows no faster than the fundamental solution of the flat metric Laplacian at
the singularity. However, in the process of blow up analysis, we get that the limit equation
for �2 < � < 0 is

��u D u
nC2C2�
n�2 in Rn;

which is a subcritical type equation, so by the Liouville theorem, our results still hold
when n > 24 without any additional condition, in contrast to [14].

As pointed out earlier in the article, the exterior formulation (1.1) is equivalent to prob-
lem (1.4) in the punctured unit ball, so by performing a Kelvin transform, we can establish
the asymptotic behavior of positive solutions to the equation (1.1) with g satisfying (1.2).
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Theorem 1.2. Let �2 < � < 0 and n� 3, and suppose that u2C 2.Rn nB1/ is a positive
solution of (1.1) with g satisfying (1.2). Then

(1) either1 is removable, and there exists a positive constant A0 such that

u.x/ D A0 jxj
2�n
CO.jxj1�n/ as x !1;

(2) or there exist two positive constants C1 and C2, depending on n, � and C0, such that

C1 jxj
�.n�2/=2

� u.x/ � C2 jxj
�.n�2/=2 as x !1;

and there exists ˛ 2 .0; 1/ such that

u.x/ D u� .jxj/.1CO.jxj
�˛// as x !1:

These results extend the work of Han–Xiong–Zhang [14] from � D 0 to �2 < � < 0.
This is also consistent with earlier results of Gidas–Spruck [10], who studied the isolated
singularity located at infinity when g is flat.

The proof of Theorem 1.1 is divided into several parts. In the second section, we
shall prove the upper bound in (1.8) near a singularity. The lower bound of (1.8) and the
removability of the singularity will be obtained in Section 3. In Section 4, some important
propositions and improved estimates will be established. In Section 5, we shall prove the
asymptotic radial symmetry. Finally, Theorem 1.2 will be deduced from Theorem 1.1 in
Section 6.

2. The upper bound near the singularity

This section is devoted to proving the upper bound in (1.8) near a singularity. Indeed,
the condition (1.5) is not necessary in this part. Via the blow up technique, we obtain the
following.

Theorem 2.1. Let �2 < � < 0, and suppose that u 2 C 2.B1 n ¹0º/ is a positive solution
of (1.4). Then there exists a positive constant C , depending on n, � and OC , such that

(2.1) u.x/ � C jxj�.n�2/=2 and jru.x/j � C jxj�n=2 as x ! 0:

To obtain the theorem, using blow up analysis, we get the limit equation

��u D u
nC2C2�
n�2 in Rn:

The classic Liouville theorem [10] tells us that u D 0 is the only nonnegative entire solu-
tion of

��u D up in Rn

with 1 < p < .n C 2/=.n � 2/. If � > 0, then nC2C2�
n�2

> nC2
n�2

, which implies that the
Liouville theorem becomes invalid. On the other hand, when Og is not conformally flat,
Han–Xiong–Zhang [14] have considered the case � D 0. Hence, we assume �2 < � < 0.

We recall now the doubling property (see Lemma 5.1 in [29]), which plays an import-
ant part in our proof. We denote by BR.x/ the ball in Rn with radius R and center x.
We write BR.0/ as BR for short. With C we denote a positive constant, which may differ
from line to line.
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Proposition 2.2. Suppose that ;¤D �†�Rn, that† is closed, and let � D† nD. Let
M WD ! .0;1/ be bounded on compact subsets of D. If for a fixed positive constant k,
there exists y 2 D satisfying

M.y/ dist.y; �/ > 2k;

then there exists x 2 D such that

M.x/ �M.y/; M.x/ dist.x; �/ > 2k;

and for all z 2 D \ BkM�1.x/.x/,

M.z/ � 2M.x/:

The following result is proved with the help of the doubling property.

Lemma 2.3. Let 1 < p < nC2
n�2

and 0 < ˛ � 1, and let c.x/2C 2;˛.B1/ satisfy

(2.2) kckC 2;˛.B1/� C1 and c.x/ � C2 in B1;

for some positive constants C1; C2. Suppose that u 2 C 2.B1/ is a nonnegative solution of

(2.3) �L Ogu D c.x/u
p in B1:

Then there exists a positive constant C , depending only on n, p, C1, C2 and OC , such that

ju.x/j.p�1/=2 C jru.x/j.p�1/=.pC1/ � C Œdist.x; @B1/��1 in B1:

Proof. Arguing by contradiction, for k D 1; 2; : : :, we assume that there exist nonnegative
functions uk satisfying (2.3) and points yk 2 B1 such that

(2.4) juk.yk/j
.p�1/=2

C jruk.yk/j
.p�1/=.pC1/ > 2k Œdist.yk ; @B1/��1:

Define
Mk.x/ WD juk.x/j

.p�1/=2
C jruk.x/j

.p�1/=.pC1/:

Via Proposition 2.2, for D D B1 and � D @B1, there exist xk2B1 such that

(2.5) Mk.xk/ �Mk.yk/; Mk.xk/ > 2kŒdist.xk ; @B1/��1 � 2k;

and for any z 2B1 and jz � xkj � kM�1k .xk/,

(2.6) Mk.z/ � 2Mk.xk/:

It follows from (2.5) that

(2.7) �k WDM
�1
k .xk/! 0 as k !1;

and

(2.8) dist.xk ; @B1/ > 2k�k ; for k D 1; 2; : : :

Consider
wk.y/ WD �

2=.p�1/

k
uk.xk C �ky/ in Bk :

Combining this with (2.8) gives that, for any y 2 Bk ,

jxk C �ky � xkj � �k jyj � �k k <
1

2
dist.xk ; @B1/;
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that is,
xk C �ky 2 B 1

2dist.xk ;@B1/.xk/ � B1:

Therefore, wk is well defined in Bk , and

jwk.y/j
.p�1/=2

D �kjuk.xk C �ky/j
.p�1/=2;

jrwk.y/j
.p�1/=.pC1/

D �kjruk.xk C �ky/j
.p�1/=.pC1/:

From (2.6), we find that for all y 2 Bk ,

juk.xk C �ky/j
p�1
2 C jruk.xk C �ky/j

p�1
pC1 � 2

�
juk.xk/j

p�1
2 C jruk.xk/j

p�1
pC1

�
;

that is,

(2.9) jwk.y/j
.p�1/=2

C jrwk.y/j
.p�1/=.pC1/

� 2�kMk.xk/ D 2:

Moreover, wk satisfies

(2.10) �L Ogkwk D ck.y/w
p

k
in Bk ;

where Ogk.y/ WD Og.xk C �ky/ and ck.y/ WD c.xk C �ky/. Moreover, it follows that

jwk.0/j
.p�1/=2

C jrwk.0/j
.p�1/=.pC1/

D 1:

Standard elliptic theory, see [11], then implies that, after passing to a subsequence, the
sequence ¹wkº converges to some nonnegative function w 2 C 2loc.R

n/,

wk ! w in C 2loc.R
n/:

On the other hand, we also obtain that ¹ckº is uniformly bounded in Rn by condition (2.2).
For each R > 0 and for all y, z 2 BR, we have

jDˇck.y/ �D
ˇck.z/j � C1�

jˇ j

k
j�k.y � z/j

˛
� C1jy � zj

˛; jˇj D 0; 1; 2;

for k large enough. Therefore, by the Arzelà–Ascoli theorem, there exists a function c 2
C 2.Rn/ such that, after extracting a subsequence, ck! c in C 2loc.R

n/. Moreover, by (2.7),
we obtain

(2.11) jck.y/ � ck.z/j ! 0 as k !1:

This implies that the function c is actually a constant A. By (2.2) again, ck � C2 > 0, and
we conclude that A is a positive constant.

Therefore, we deduce that w satisfies

(2.12) ��w D Awp in Rn

and
jw.0/j.p�1/=2 C jrw.0/j.p�1/=.pC1/ D 1:

Since p < .n C 2/=.n � 2/, this contradicts the Liouville type result [10] that the only
nonnegative entire solution of (2.12) is w D 0. This concludes the proof.
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Applying Lemma 2.3, now we can prove Theorem 2.1.

Proof of Theorem 2.1. For x0 2 B1=2n¹0º, we denote R WD 1
2
jx0j. Then for any y 2 B1,

we have 1
2
jx0j < jx0 CRyj <

3
2
jx0j, and deduce that x0 CRy 2 B1n¹0º. Define

w.y/ WD R.n�2/=2 u.x0 CRy/:

Therefore, we obtain that

�L Ngw D c.y/w
nC2C2�
n�2 in B1;

where Ng.y/ WD Og.x0 CRy/, and c.y/ WD jy C x0=Rj� . Notice that

1 <
ˇ̌̌
y C

x0

R

ˇ̌̌
< 3 in B1:

Moreover,
kckC 3.B1/ � C and c.y/ � 3�2 in B1:

Applying Lemma 2.3, we obtain that

jw.0/j.2C�/=.n�2/ C jrw.0/j.nC�/=.2C�/ � C;

that is,
.R.n�2/=2 u.x0//

.2C�/=.n�2/
C.R.n�2/=2C1 jru.x0/j/

.nC�/=.2C�/
� C:

Hence, we have

u.x0/ � CR
�.n�2/=2

� C jx0j
�.n�2/=2 and jru.x0/j � CR

�n=2
� C jx0j

�n=2:

Since x0 2 B1=2n¹0º is arbitrary, Theorem 2.1 is proved.

As a consequence of the upper bound, we get the following spherical Harnack inequal-
ity, which will be used later on.

Corollary 2.4. Let �2 < � < 0, and suppose that u 2 C 2.B1n¹0º/ is a positive solution
of (1.4) with Og satisfying (1.5). Then there exists a positive constant C , depending on n, �
and OC , such that

(2.13) max
r=2�jxj�2r

u.x/ � C min
r=2�jxj�2r

u.x/;

and
jru.x/j C jxj jr2u.x/j � C jxj�1u.x/

for every 0 < r < 1=4, where C is independent of r .

Proof. For any Nx 2 B1=4n¹0º, let j Nxj D r and consider

vr .y/ WD r
.n�2/=2 u.ry/:

Then
�L Ngvr D jyj

� v
nC2C2�
n�2

r in B1=r n ¹0º;
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where Ng.y/ WD Og.ry/. Thanks to the upper bound (2.1), we have

vr � C in B4 n B1=4:

Now, applying standard elliptic theory and the Harnack inequality to vr in the annulus
B4 n B1=4, we have that there exists a positive constant C , not depending on r , such that

max
1=4�jyj�4

vr .y/ � C min
1=4�jyj�4

vr .y/ and jrvr .y/j C jr
2vr .y/j � Cvr .y/;

After scaling back to u, the corollary follows immediately.

3. The lower bound and removability of the singularity

In this section, the lower bound of (1.8) and the removability of the singularity will be
obtained. First of all, we define a Pohozaev-type integral for u as

(3.1) P.r;u/D
Z
@Br

�n � 2
2

u
@u

@r
�
1

2
r jruj2C r

ˇ̌̌@u
@r

ˇ̌̌2
C

n � 2

2.nC �/
r�C1u

2.nC�/
n�2

�
dSr ;

where dSr is the standard area measure on @Br . Inspired by the work of Caffarelli–Gidas–
Spruck [3], we prove a removable singularity result as follows.

Theorem 3.1. Let �2 < � < 0, and suppose that u 2 C 2.B1n¹0º/ is a positive solution
of (1.4) with Og satisfying (1.5). Then the limit

lim
r!0

P.r; u/ WD P.u/

exists and
P.u/ � 0:

Moreover, P.u/ D 0 if and only if 0 is a removable singularity. If P.u/ < 0, there exists
a positive constant C , depending on n, � and OC , such that

(3.2) u.x/ � C jxj�.n�2/=2 as x ! 0:

To prove Theorem 3.1, we will suppose that P.u/ � 0, and by analyzing the behavior
of solutions of an ordinary differential inequality (see (3.10)) satisfied by the spherical
average of the solution, we shall get that P.u/ � 0, and P.u/ D 0 if and only if 0 is a
removable singularity. This leads to the lower bound estimate in (1.8) by Theorem 3.1. We
point out that to overcome a non-trivial linear term in the differential inequality, we shall
prove a refined estimate in Lemma 4.1 through the comparison principle.

Theorem 3.1 will follow from Propositions 3.2–3.4.

Proposition 3.2. The limit
lim
r!0

P.r; u/ WD P.u/

exists. The number P.u/ is called the Pohozaev invariant of the solution u.
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Proof. A Pohozaev-type identity, see [24], asserts that for any 0 < s � r < 1, we have

P.r; u/ � P.s; u/ D �

Z
s�jxj�r

�
x � ruC

n � 2

2
u
�
.L Og ��/udx

C
n � 2

2.nC �/

Z
s�jxj�r

.x � r.jxj� // u
2.nC�/
n�2 dx

C

� n.n � 2/
2.nC �/

�
n � 2

2

� Z
s�jxj�r

jxj� u
2.nC�/
n�2 dx

D �

Z
s�jxj�r

�
x � ruC

n � 2

2
u
�
.L Og ��/udx

By Theorem 2.1, Corollary 2.4 and the flatness condition (1.5) on Og, we haveˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
� C jxj.n�2/=2�n;

for some positive constant C independent of x. This implies that for any 0 < s < r < 1,

jP.r; u/ � P.s; u/j � r .n�2/=2:

Hence the Pohozaev-type integral shows that the limit

lim
r!0

P.r; u/ WD P.u/

exists.

Proposition 3.3. Assume that P.u/ � 0. Then

lim inf
x!0

jxj.n�2/=2 u.x/ D 0:

Proof. Supposing the opposite, there exist two positive constants c1 and c2 such that for
any 0 < jxj < 1=2,

(3.3) c1 � jxj
.n�2/=2 u.x/ � c2:

Let ¹rkº be any sequence of positive numbers such that rk ! 0 as k !C1. Define

fk.x/ WD r
.n�2/=2

k
u.rkx/:

Therefore, we have

�L Ngfk D jxj
�f

nC2C2�
n�2

k
in B1=rk n¹0º;

where Ng.x/ WD Og.rkx/. By (3.3), we obtain that

c1 � jxj
.n�2/=2 fk.x/ � c2 in B1=.2rk/n¹0º:
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Thus, the sequence ¹fkº is locally uniformly bounded away from the origin. By standard
elliptic estimates, there exists a subsequence of ¹fkº (still denoted by ¹fkº) which con-
verges as k !C1 to a positive solution f in compact subsets of Rnn¹0º and satisfies

��f D jxj�f
nC2C2�
n�2 in Rnn¹0º

and
c1 jxj

�.n�2/=2
� f .x/ � c2 jxj

�.n�2/=2:

Consider P.r; f / defined as in (3.1). In this case, by the proof of Lemma 3.2, we can
deduce that P.r; f / is a constant independent of r . Next we shall show that it determines
a unique negative constant,

(3.4) P.f / < 0:

Indeed, we denote jxj D r , t D � log r , � D x=jxj, and define

 .t; �/ WD jxj.n�2/=2f .x/:

Then

 t t C�� �
.n � 2/2

4
 C  

nC2C2�
n�2 D 0 in R � Sn�1:

Let Nf .r/ D
¬
@Br

fdSr be the average of f on @Br , and let ˇ.t/ WD e�t .n�2/=2 Nf .r/.
By [17], we have

 .t; �/ D r .n�2/=2 Nf .r/.1CO.r// D ˇ.t/.1CO.e�t // as t !1:

Hence, for r=2 � jxj � 2r , we have

��.f � Nf / D r� .f
nC2C2�
n�2 � Nf

nC2C2�
n�2 / D r� Nf

nC2C2�
n�2 O.r/ as r ! 0:

Standard elliptic estimates [11] give that, as r ! 0,

jr.f � Nf /j � C
� sup jf � Nf j

r
C r sup r� Nf

nC2C2�
n�2 O.r/

�
� C sup

�
Nf Cr2r� Nf

nC2C2�
n�2

�
:

Since f satisfies �f C jxj�f
4C2�
n�2 f D 0, with jxj�f

4C2�
n�2 � C jxj�2, and from [10], f

also satisfies the Harnack inequality, and supf is comparable to f .x/ for r=2 � jxj � 2r ,
so as r ! 0,

jr.f � Nf /j � C
�
Nf C r2C� Nf

4C2�
n�2 Nf

�
� C Nf .r/:

In particular,

@

@r
.f � Nf / � C Nf .r/ and jr� .f � Nf /j � Cr Nf .r/:

Together with  .t; �/ � ˇ.t/ D r .n�2/=2.f � Nf /, we conclude that

@

@t
. .t; �/ � ˇ.t// D ˇO.e�t / as t !1;(3.5)

jr� . .t; �/ � ˇ.t//j D ˇO.e
�t / as t !1:(3.6)
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Since P.r; f / D P.t;  /, with

P.t;  / D
jSn�1j

2

Z
Sn�1

h
 2t .t; �/ � jr� .t; �/j

2
�
.n � 2/2

4
 2.t; �/

C
n � 2

nC �
 

2.nC�/
n�2 .t; �/

i
dS1;

and using (3.5) and (3.6), we convert P.t; f / � P.s; f / with t � s into

H.t/ � .ˇ2.t/C ˇ2t .t//O.e
�t / D H.s/ � .ˇ2.s/C ˇ2t .s//O.e

�s/;

where

H.t/ D ˇ2t .t/ �
.n � 2/2

4
ˇ2.t/C

n � 2

nC �
ˇ
2.nC�/
n�2 .t/:

It is clear that P.r; f / is a constant independent of r , so it determines a unique constant
H1 D limt!1H.t/. Hence, to prove (3.4), we just need to check that H1 < 0. By the
above argument, we can write

H.t/ D H1 C .ˇ
2.t/C ˇ2t .t//O.e

�t /;

that is,

(3.7) ˇ2t .t/ D
.n � 2/2

4
ˇ2.t/ �

n � 2

nC �
ˇ
2.nC�/
n�2 .t/CH1 C .ˇ

2.t/C ˇ2t .t//O.e
�t /;

which implies that the behavior of ˇ is completely determined by the roots of the right-
hand side of the above equality. Hence, for � > �2, we conclude that

0 � H1 � �
2C �

nC �

�n � 2
2

� 2.nC�/
2C�

:

We show now that f has a removable singularity in the case H1 D 0. By (3.7), ˇ
cannot have a local minimum and must ultimately decrease monotonically to zero, which
implies that

lim
t!1

ˇ.t/ D lim
t!1

ˇt .t/ D 0;

and that there exists T > 0 such that, for t > T ,

ˇt .t/ < 0:

From (3.7), we obtain that for any 0 < � < .n � 2/=2, and as t !C1,

ˇ2t �
�n � 2

2
� �

�2
ˇ2 D ..n � 2/� � �2/ˇ2 �

n � 2

nC �
ˇ
2.nC�/
n�2 .t/

C .ˇ2.t/C ˇ2t .t//O.e
�t /;

and we can choose T large enough such that for t > T ,

ˇ2t �
�n � 2

2
� �

�2
ˇ2;

which implies

ˇ2t
ˇ2
�

�n � 2
2
� �

�2
; that is,

�ˇt

ˇ
�
n � 2

2
� �:
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Integrating the differential inequality, we have that, for t > T ,

ˇ.t/ � ˇ.T / exp
��n � 2

2
� �

�
.T � t /

�
:

Hence, there exists r0.�/ > 0 small enough such that for x 2 Br0 ,

f .x/ � C.�/ jxj��

and since � can be chosen small enough, this implies that f 2 Lp.Br0/ for arbitrary
large p. Then elliptic theory tells us that the function f has to be smooth around the
origin. Therefore, 0 is a removable singularity.

Since
c1jxj

�.n�2/=2
� f .x/ � c2jxj

�.n�2/=2;

we can conclude that in this case
P.f / < 0;

which implies that

0 > P.f / D lim
k!C1

P.r; fk/ D lim
k!1

P.rkr; u/ D lim
r!0

P.r; u/ � 0;

which is a contradiction. Thus, we obtain that lim infx!0 jxj.n�2/=2u.x/D 0. This finishes
the proof of Proposition 3.3.

Proposition 3.4. Assume lim infx!0 jxj.n�2/=2u.x/ D 0. Then

(3.8) lim
x!0
jxj.n�2/=2 u.x/ D 0:

Proof. We prove (3.8) by contradiction. Since lim infx!0 jxj.n�2/=2u.x/ D 0, if the con-
clusion of the proposition did not hold, we would have lim supx!0 jxj

.n�2/=2u.x/ > 0.
Let jxj D r , t D � ln r , and let Nu.r/ D

¬
@Br

udSr be the average of u on @Br . Define

w.t/ WD e�t.n�2/=2 Nu.r/:

Observe that the upper bound in Theorem 2.1 implies that w.t/ is bounded. A direct
computation gives that

Nur D �e
n
2 t
�n � 2

2
w C wt

�
;

and this implies that jwt .t/j is bounded. Furthermore,

Nurr D e
nC2
2 t

�n.n � 2/
4

w C .n � 1/wt C wt t

�
:

Therefore, we have

(3.9) Nurr C
n � 1

r
Nur D e

nC2
2 t

�
wt t �

.n � 2/2

4
w
�
:
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Choosing a fixed s < r and applying the divergence theorem, we get� Z
BrnBs

�u.x/
�
r
D

� Z
Br

�u.x/ �

Z
Bs

�u.x/
�
r
D

� Z
@Br

ur .x/
�
r

D

� Z
@B1

ur .rx/ r
n�1

�
r
D
n � 1

r

Z
@B1

ur .rx/ r
n�1
C

Z
@B1

urr .rx/ r
n�1

D
n � 1

r

Z
@Br

ur .x/C r
n�1
jSn�1j

� −
@Br

ur .x/
�
r
:

It follows that

Nurr D
� −

@Br

ur

�
r
D �

n � 1

r

r1�n

jSn�1j

Z
@Br

ur C
r1�n

jSn�1j

� Z
BrnBs

�u
�
r

D �
n � 1

r
Nur C

r1�n

jSn�1j

� Z
BrnBs

�u � L Ogu � jxj
� u

nC2C2�
n�2

�
r

D �
n � 1

r
Nur C

r1�n

jSn�1j

� Z
BrnBs

.� �� Og/uC c.n/R Ogu � jxj
� u

nC2C2�
n�2

�
r
:

Hence,

Nurr C
n � 1

r
Nur D

−
@Br

�
.� �� Og/uC c.n/R Ogu � jxj

� u
nC2C2�
n�2

�
:

Using (3.9), it follows that

wt t �
.n � 2/2

4
w D r .nC2/=2

−
@Br

�
.� �� Og/uC c.n/R Ogu � jxj

� u
nC2C2�
n�2

�
:

Applying the spherical Harnack inequality obtained in Lemma 2.4, we have that

c2 r
�
Nu
nC2C2�
n�2 �

−
@Br

jxj� u
nC2C2�
n�2 � c3 r

�
Nu
nC2C2�
n�2 ;

and together with (1.6) and (1.5), it follows thatˇ̌̌ −
@Br

.� �� Og/uC c.n/R Ogu
ˇ̌̌
� c1 jxj

.n�2/=2�2
Nu;

where c1, c2 and c3 are positive constants. With these estimates, we obtain

(3.10) �c3w
nC2C2�
n�2 � c1 e

� n�22 tw � wt t �
.n � 2/2

4
w � �c2w

nC2C2�
n�2 C c1 e

� n�22 tw:

On the other hand, as lim infx!0 jxj.n�2/=2u.x/D 0 and lim supx!0 jxj
.n�2/=2u.x/ > 0,

we deduce that
0 D lim inf

t!1
w.t/ < lim sup

t!1
w.t/ <1:
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Making use of (3.10), we can choose "0 > 0 sufficiently small so that we are able to
construct sequences

Nti < ti < t
�
i ; with lim

i!1
Nti D1;

such that

(3.11) w.Nti / D w.t
�
i / D "0;

and ti is the unique minimum point of w in .Nti ; t�i /,

wt .ti / D 0; with lim
i!C1

w.ti / D 0:

Hence, w is decreasing in .Nti ; ti / and increasing in .ti ; t�i /.
By (3.10), for Nti � t � ti , we have the estimates

(3.12)
2

n � 2
ln
w.t/

w.ti /
� c � ti � t �

� 2

n � 2
C ce�

n�2
2 ti

�
ln
w.t/

w.ti /
C c;

and for ti � t � t�i , we have the estimates

(3.13)
2

n � 2
ln
w.t/

w.ti /
� c � t � ti �

� 2

n � 2
C ce�

n�2
2 ti

�
ln
w.t/

w.ti /
C c:

We shall give a proof in the next section, which can be obtained by Lemma 4.1.
On the other hand, since there exists a diffeomorphism between the half cylinder and

the punctured ball, it will be more convenient work in cylindrical coordinates. More expli-
citly, the diffeomorphism

ˆ W .R � Sn�1; gcyl D dt
2
C d�2/! .Rnn¹0º; ı/

is given by ˆ.t; �/ D e�t� , with inverse ˆ�1.x/ D .� log jxj; xjxj�1/. One also verifies
that

ˆ�ı D e�2tgcyl:

We denote jxj D r , t D � log r , � D x=jxj, and define

v.t; �/ WD jxj.n�2/=2 u.x/ and zg WD e2tˆ� Og D .e
n�2
2 t /

4
n�2 ˆ� Og:

Then
�Lzgv D v

nC2C2�
n�2 in R � Sn�1;

where
Lzgv D �zgv �

n � 2

4.n � 1/
.Rzg � e

�2tRˆ� Og/

is the conformal Laplacian. It is also useful to recall that in cylindrical coordinates, we
have

Rzg � e
�2tRˆ� Og D .n � 2/.n � 1/C 2.n � 1/e

�t @r
p
j Ogj

j Ogj
ıˆ;

and
zg D dt2 C d�2 CO.e�2t /:



J. Bao, Y. Li and K. Wang 1366

Thus, P.r; u/ can be written as

P.t; v/ D
jSn�1j

2

Z
Sn�1

h
v2t .t; �/ � jr�v.t; �/j

2
�
.n � 2/2

4
v2.t; �/

C
n � 2

nC �
v
2.nC�/
n�2 .t; �/

i
dS1:

We denote
Nri D e

�Nti ; ri D e
�ti and r�i D e

�t�i :

Observe that Nri > ri > r�i . Using the Harnack inequality and the gradient estimates on
u.x/ of Corollary 2.4 we see that, in terms of v.t; �/, we have

jrv.t; �/j D O.1/w.t/ as t !1;

uniformly for � 2 Sn�1, so it follows that as i !1,Z
Sn�1

�
v2t .ti ; �/ � jr�v.ti ; �/j

2
�
d� ! 0;

and using that limi!1w.ti / D 0 in Proposition 3.2, we have

(3.14) P.u/ D lim
i!C1

P.ri ; u/ D 0:

Next we claim that, for jxj D ri and as i !1,

(3.15) u.x/ D Nu.ri /.1C o.1//;

and

(3.16) jru.x/j D � Nur .ri /.1C o.1//:

Indeed, let
hi .y/ WD r

.n�2/=2
i u.riy/:

By the choice of ri , Nhi .1/D w.ti /! 0 as i !1, using the Harnack inequality of Corol-
lary 2.4, and the fact that hi converges to 0 uniformly in subsets of Rnn¹0º. Taking

�i .y/ D
hi .y/

hi .e1/
;

where e1 D .1; 0; : : : ; 0/ 2 Rn, we have

�L Ng�i D .r
.n�2/=2
i u.rie1//

4C2�
n�2 jyj� �

nC2C2�
n�2

i in B1=ri n¹0º;

where Ng.y/ WD Og.riy/. Note that by the Harnack inequality in Corollary 2.4, �i is locally
uniformly bounded in Rnn¹0º. Hence, elliptic estimates tell us that there exists a sub-
sequence ¹�iº which converges to a nonnegative function � in C 2loc.R

nn¹0º/ satisfying

��� D 0 in Rnn¹0º;
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and �.e1/ D 1. By the Bocher theorem, we have

� D a1jxj
2�n
C b1;

and a1 C b1 D 1. On the other hand, by the fact that

r .n�2/=2 N�i .r/ D r
.n�2/=2

−
@Br

�i .r/ D
1

u.rie1/
r .n�2/=2 Nu.rri /

D
1

u.rie1/
r
�.n�2/=2
i w.� ln.rri //;

and since ti is the unique minimum point of w in .Nti ; t�i /, which implies that

d

dr
.r .n�2/=2 N�i .r//

ˇ̌
rD1
D 0;

we conclude that d
dr
.r .n�2/=2�.r//jrD1 D 0, and it follows that a1 D b1 D 1=2. Hence,

we conclude that
� D

1

2
jyj2�n C

1

2
�

Note that if jyj D 1, then � D 1. This implies that for any jyj D 1,

u.riy/ D u.r1e/.1C o.1// as i !1;

which after averaging gives

Nu.ri / D u.rie/.1C o.1//:

On the other hand, for any jyj D 1, we also have

u.riy/ D u.r1e/.1C o.1// as i !1:

Hence, we conclude that for jxj D ri ,

u.ri / D Nu.r1e/.1C o.1// as i !1;

which implies that for jxj D ri ,

u.x/ D Nu.ri /.1C o.1// as i !1:

This establishes (3.15), and we obtain (3.16) analogously.
Making use of (3.15) and (3.16), we have as i !1,

jv.ti ; �/ � w.ti /j D o.1/w.ti /;

and
jr�v.ti ; �/j D o.1/w.ti /; jvt .ti ; �/j D o.1/w.ti /

uniformly for � 2 Sn�1. Then we conclude that, as i !1,

P.ti ; v/ D jS
n�1
j

h
�
1

2

.n � 2/2

4
w2.ti /.1C o.1//C

n � 2

nC �
w

2.nC�/
n�2 .ti /.1C o.1//

i
:
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Hence, using that P.ti ; v/ D P.ri ; u/, we have that, for i sufficiently large,

(3.17) w2.ti / � CnjP.ri ; u/j:

From the Pohozaev-type identity in Lemma 3.2, it follows that

jP.ri ; u/j �

Z
ri�jxj�r

�
i

ˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
dx

C

Z
jxj�r�i

ˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
dx:

On the other hand, Corollary 2.4, (1.5) and (2.1) give thatˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
� C jxj.n�2/=2�n:

Then,

I1 WD

Z
jxj�r�i

ˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
dx � Ce�

n�2
2 t�i :

By the first inequality in (3.13), we have for ti � t � t�i ,

w.t/ � Cw.ti / e
� n�22 ti e

n�2
2 t ;

which implies that for r�i � jxj � ri ,

(3.18) u.x/ � Cw.ti / e
� n�22 ti jxj2�n:

By Corollary 2.4 and (1.5), we also haveˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
� Cu2.x/ jxj.n�2/=2�2:

Hence, using (3.18), we have

I2 WD

Z
ri�jxj�r

�
i

ˇ̌̌�
x � ruC

n � 2

2
u
�
.L Og ��/u

ˇ̌̌
dx

� Cw2.ti / e
�.n�2/ti

Z
jxj�r�i

jxj2C.n�2/=2�2n dx � Cw2.ti / e
�.n�2/ti .r�i /

.nC2/=2�n:

On the other hand, combining (3.11), (3.12) and (3.13), we get that

t�i � ti �
� 2

n � 2
C Ce�

n�2
2 ti

�
ln

"0

w.ti /
C C;

and
2

n � 2
ln

"0

w.ti /
� ti � Nti C C:

Thus,

t�i � ti �
n � 2

2

� 2

n � 2
C Ce�

n�2
2 ti

�
.ti � Nti C C/C C:
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Moreover,
e�

n�2
2 ti .ti � Nti / � e

� n�22 ti ti � 1;

with bound independent of i , so we conclude that

(3.19) t�i � ti � ti � Nti C C1

for some constant C1 independent of i . Then, via (3.19), we can more precisely estim-
ate I2, as follows:

I2 � Cw
2.ti / e

�.n�2/ti .r�i /
2C.n�2/=2�n

D Cw2.ti / e
�.n�2/tiC

n�2
2 t�i

D Cw2.ti / e
n�2
2 .t�i �2ti / � Cw2.ti / e

� n�22
Nti :

Thus,
jP.ri ; u/j � I1 C I2 � Cw

2.ti / e
� n�22

Nti C Ce�
n�2
2
Nt�i :

Then, choosing i large enough, from (3.17) we obtain

w2.ti / � Ce
� n�22

Nt�i ;

and it follows that

(3.20) ln
1

w.ti /
�
n � 2

4
t�i �

1

2
lnC:

From the first inequality of (3.12) and the first inequality of (3.13), we have

ti � Nti �
2

n � 2
ln

"0

w.ti /
� C and t�i � ti �

2

n � 2
ln

"0

w.ti /
� C:

Summing them up, we have

t�i � Nti �
4

n � 2
ln

"0

w.ti /
� C D

4

n � 2
ln

1

w.ti /
C

4

n � 2
ln "0 � C:

Combining with (3.20), we have

t�i � Nti � t
�
i � C;

which implies Nti �C . This contradicts Nti !1. Notice that the positive constants C above
may differ from line to line. Hence, we finish the proof of Proposition 3.4.

With the help of the above propositions, we prove now Theorem 3.1.

Proof of Theorem 3.1. Applying Proposition 3.2, we have the existence of P.u/. On the
one hand, if 0 is a removable singularity of the solution u, it is obvious that P.u/ D 0. To
prove the theorem, we suppose that P.u/ � 0. With the help of Proposition 3.3 and Pro-
position 3.4, we get that limx!0 jxj

.n�2/=2u.x/ D 0, and in the following we shall show
that 0 is an removable singularity of the solution u and P.u/ D 0. Hence, we conclude
that P.u/ � 0.
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We start by showing that 0 is a removable singularity. Suppose that P.u/ � 0. Using
Proposition 3.4, we have

lim
x!0
jxj.n�2/=2 u.x/ D 0;

which implies that

(3.21) lim
t!1

w.t/ D 0:

Via the first inequality in (3.10), we conclude that there exist T1 > 0 sufficiently large
and "0 > 0 sufficiently small such that, for t > T1,

w � "0 and wt t � 0;

that is, w is convex. As a result, we also have for t > T1,

(3.22) wt .t/ < 0:

For any 0 < ı < n � 2, by (3.10) and (3.21), T1 can be chosen large enough so that for
t > T1,

(3.23) wt t �
�n � 2

2
� ı

�2
w � ..n � 2/ı � ı2 � c3w

4C2�
n�2 � c1 e

�at /w � 0:

Combining (3.22) and (3.23), we have

d

dt
w2t �

�n � 2
2
� ı

�2
w2 � 0;

which implies that w2t � ..n� 2/=2� ı/
2w2 is non-increasing. Since limt!1w.t/ D 0,

we conclude that
w2t �

�n � 2
2
� ı

�2
w2 � 0:

Integrating the differential inequality, we have for t > T1,

w.t/ � w.T1/ exp
��n � 2

2
� ı

�
.T1 � t /

�
:

Going back to the original u and applying the Harnack inequality obtained in Lemma 2.4,
we have that there exists r0.ı/ such that if jxj < r0.ı/,

u.x/ � c.ı/ jxj�ı

Since ı is arbitrarily small, we have that u 2 Lp.Br0/ for arbitrarily large p. Elliptic
theory then tells us that the function u has to be smooth around the origin. Therefore, 0 is
a removable singularity.

Thus, we conclude that P.u/� 0 and the equality holds if and only if 0 is a removable
singularity of the solution u. If P.u/ < 0, Proposition 3.3 gives that

lim inf
x!0

jxj.n�2/=2 u.x/ > 0:

This finishes the proof.
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Proof of the first part in Theorem 1.1. Combining Theorem 2.1 and Theorem 3.1, we con-
clude that if u 2 C 2.B1 n ¹0º/ is a positive solution of (1.4) with Og satisfying (1.5), then
either 0 is a removable singularity or there exist two positive constants C1 and C2, depend-
ing on n, � and OC , such that

C1 jxj
�.n�2/=2

� u.x/ � C2 jxj
�.n�2/=2 as x ! 0:

The proof of (1.7) will be given in Section 6.

4. Proof of the estimates (3.12) and (3.13)

For completeness, we give detailed proofs of the estimates (3.12) and (3.13), which were
used in the previous section. Indeed, the left-hand side inequalities in (3.12) and (3.13)
can be obtained by using Lemma 6.2 in [14]. With the following lemma, the right-hand
side inequalities in (3.12) and (3.13) will follow directly from (4.1) and (4.2).

Lemma 4.1. Suppose that a, b, c, t1 and t2 are positive numbers, and w is a C 2.Œt1; t2�/
positive function satisfying

wt t .t/ �
� .n � 2/2

4
� be�at

�
w.t/C

.nC �/.n � 2/c

.2C �/2
w.t/

nC2C2�
n�2 � 0

and
w.t/ � "0

for "0 small enough, which will be fixed later. Then there exist positive constants t�, C1,
C2, C3 and C4, depending only on a, b, c, t1 and t2, such that for t� � t1 � t2, we have
w.t/ � "0 on Œt1; t2�,

(i) If wt .t2/ � 0, then for t1 � t � t2, there holds

(4.1) t2 � t �
� 2

n � 2
C C1 e

�at1
�

ln
w.t/

w.t2/
C C2:

(ii) If wt .t1/ � 0, then for t1 � t � t2, there holds

(4.2) t1 � t �
� 2

n � 2
C C3 e

�at1
�

ln
w.t/

w.t2/
C C4:

Proof. We just prove (4.1); the inequality (4.2) follows with a similar argument. To that
end, we will use the following Claim, to be proved later.

Claim. There exists a C 2.Œt1; t2�/ positive function � that satisfies

(4.3) �t t .t/ �
� .n � 2/2

4
� be�at

�
�.t/C

.nC �/.n � 2/c

.2C �/2
�.t/

nC2C2�
n�2 � 0;

with �.t2/ D w.t2/. Moreover, for t1 � t � t2, we have that �t .t/ � 0 and

(4.4) t2 � t �
� 2

n � 2
C C1 e

�at1
�

ln
�.t/

�.t2/
C C2:
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With the help of this Claim, we can give a proof of (4.1). Indeed, let

z.t/ WD w.t/ � �.t/:

It follows that

zt t .t/ �
� .n � 2/2

4
� be�at

�
z.t/C

.nC �/.nC 2C 2�/c

.2C �/2
�.t/

4C2�
n�2 z.t/ � 0;

with
z.t2/ D 0; zt .t2/ � 0;

and

.nC 2C 2�/ �.t/
4C2�
n�2 D

8̂̂<̂
:̂
.n � 2/ w.t/

nC2C2�
n�2 ��.t/

nC2C2�
n�2

w.t/��.t/
; if w.t/ ¤ �.t/;

.nC 2C 2�/w.t/
4C2�
n�2 ; if w.t/ D �.t/:

Note that �.t/, w.t/ � "0 for t1 � t � t2, so by taking "0 sufficiently small, and t� suffi-
ciently large, we then have

.n � 2/2

4
� be�at �

.nC �/.nC 2C 2�/c

.2C �/2
�.t/

4C2�
n�2 � 0:

It follows from Lemma 6.1 in [14] that for t1 � t � t2, we have

(4.5) w.t/ � �.t/ � 0:

Together with (4.4) and w.t2/ D �.t2/, we have, for t1 � t � t2,

t2 � t �
� 2

n � 2
C Ce�at1

�
ln
�.t/

w.t2/
C C:

From (4.5), we conclude that for t1 � t � t2,

t2 � t �
� 2

n � 2
C Ce�at1

�
ln
w.t/

w.t2/
C C;

that is (4.1). With a similar argument, (4.2) follows. Hence, the upper bounds in (3.12)
and (3.13) follow.

We prove now the Claim.

Proof of the Claim. Consider

�.t/ WD B cosh
2�n
2C� .˛.t � Nt //;

where ˛ > 0 will be fixed later, cB
.4C2�/
n�2 D 1, and Nt � t2 is such that �.t2/ D w.t2/, and

cosh�2.˛.t � Nt // � "0 for "0 > 0 small. A direct calculation yields

(4.6) �t .t/ D
B˛.2 � n/

2C �
cosh

���n
2C� .˛.t � Nt // sinh.˛.t � Nt //;
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and

�t t .t/ D
B.2 � n/2

.2C �/2
˛2 cosh

2�n
2C� .˛.t � Nt //C

B.2 � n/.nC �/

.2C �/2
˛2 cosh

�2�n�2�
2C� .˛.t � Nt //:

Hence, we have

�t t .t/�
� .n � 2/2

4
� be�at

�
�.t/C

.nC �/.n � 2/c

.2C �/2
�
nC2C2�
n�2 .t/

D
.n � 2/2B

4

h
�4.nC �/

.2C �/2.n � 2/

˛2 � 1

cosh2.˛.t � Nt //

i
cosh

2�n
2C� .˛.t � Nt //

C
.n � 2/2B

4

h 4

.2C �/2
˛2 � 1C

4

.n � 2/2
be�at

i
cosh

2�n
2C� .˛.t � Nt //

�
.n � 2/2B

4

h 4.nC �/

.2C �/2.n � 2/
.1 � ˛2/"0

i
cosh

2�n
2C� .˛.t � Nt //

C
.n � 2/2B

4

h 4

.2C �/2
˛2 � 1C

4

.n � 2/2
be�at

i
cosh

2�n
2C� .˛.t � Nt //:

By a direct calculation, we get that

4.nC �/

.2C �/2.n � 2/
.1 � ˛2/"0 C

4

.2C �/2
˛2 � 1C

4

.n � 2/2
be�at

�
12

.2C �/2
.1 � ˛2/"0 C

4

.2C �/2
˛2 � 1C

4

.n � 2/2
be�at :

Let ˛ D
p
be�at . Then, for t� sufficiently large and "0 > 0 sufficiently small, it follows

that
12

.2C �/2
.1 � ˛2/"0 C

4

.2C �/2
˛2 � 1C

4

.n � 2/2
be�at � 0

holds for t� � t1 � t � t2. Hence,

(4.7) �t t .t/ �
� .n � 2/2

4
� be�at

�
�.t/C

.nC �/.n � 2/c

.nC �/2
�.t/

nC2C2�
n�2 � 0;

that is (4.3).
Next, we shall prove that � satisfies (4.4). Indeed, by (4.6) and for t1 � t � t2 � Nt ,

(4.8) �t .t/ � 0:

Combining this with (4.7), we get that

�t t .t/ �
� .n � 2/2

4
� be�at2

�
�.t/C

.nC �/.n � 2/c

.nC �/2
�.t/

nC2C2�
n�2 � 0:

Using (4.8), it is easy to see that

�t t .t/ �t .t/ �
� .n � 2/2

4
� be�at2

�
�.t/�t .t/C

.nC �/.n � 2/c

.2C �/2
�.t/

nC2C2�
n�2 �t .t/ � 0;
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which implies that

d

dt

h
�2t .t/ �

� .n � 2/2
4

� be�at2
�
zeta2.t/C

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2

i
� 0:

Hence, we conclude that the function

�2t .t/ �
� .n � 2/2

4
� be�at2

�
�2.t/C

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2

is nonincreasing for t1 � t � t2. Then

�2t .t/ �
� .n � 2/2

4
� be�at2

�
�2.t/C

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2

� �2t .t2/ �
� .n � 2/2

4
� be�at2

�
�2.t2/C

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2

� �

� .n � 2/2
4

� be�at2
�
�2.t2/C

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2 :

By (4.8), we conclude that

�
1

�t .t/
�

1p
g.�.t// � g.�.t2//

;

with

g.�.t// D
� .n � 2/2

4
� be�at2

�
�.t/2 �

.n � 2/2c

.2C �/2
�.t/

2.nC�/
n�2 :

Integrating the inequality above,

(4.9) t2 � t �

Z �.t/

�.t2/

d�p
g.�.t// � g.�.t2//

�

By scaling, � D �.t/=�.t2/,Z �.t/

�.t2/

d�p
g.�.t// � g.�.t2//

D

Z �.t/=�.t2/

1

p
�2 � 1p
Ng.�/ � Ng.1/

d�p
�2 � 1

;

with

Ng.�/ D
� .n � 2/2

4
� be�at2

�
�2 �

.n � 2/2c

.2C �/2
�
4C2�
n�2 .t2/ �

2.nC�/
n�2 .t/:

Since

1 � � �
�.t/

�.t2/
�

1

�.t2/
B"

.n�2/
2.2C�/

0 ;

we have
�
4C2�
n�2 .t2/ .�

2.nC�/
n�2 .t/ � 1/

�2.t/ � 1
� C1 �.t2/

4C2�
n�2 �

4C2�
n�2 .t/ � C"0:
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Then, for t� sufficiently large and "0 > 0 sufficiently small, we havep
�2 � 1p
Ng.�/ � Ng.1/

�
2

n � 2
C C1 e

�at2 C C"0 �
2

n � 2
C C1 e

�at1 C C"0:

Finally, since Z �.t/=�.t2/

1

d�p
�2 � 1

� C C ln
�.t/

�.t2/
;

we have Z �.t/

�.t2/

d�p
g.�.t// � g.�.t2//

�

� 2

n � 2
C Ce�at1

�
ln
�.t/

�.t2/
C C:

Together with (4.9), we obtain (4.4).

5. The asymptotic radial symmetry

The asymptotically radial symmetric expression (1.9) will be proved in this section. In
detail, using the result in Theorem 1.1 that there exist two positive constants C1 and C2,
depending on n, � and OC , such that

(5.1) C1 jxj
�.n�2/=2

� u.x/ � C2 jxj
�.n�2/=2; jru.x/j � C jxj�n=2 as x ! 0;

we are able to show that

�jxj�� u�
nC2C2�
n�2 �u D 1CO.jxja/ as x ! 0:

Then, motivated by the ideas of Han–Li–Teixeira [13] and Taliaferro–Zhang [34], and
using a remarkable change of variables due to Mazzeo–Pollack–Uhlenbeck [27], we can
get a differential inequality whose zero order term has a negative coefficient. Hence the
maximum principle can be used. Then we are able to show that the solution of (1.4) is
asymptotically radially symmetric.

Theorem 5.1. Let �2 < � < 0, and suppose that u 2 C 2.B1n¹0º/ is a positive solution
of (1.4) with Og satisfying (1.5), and that 0 is a non-removable singularity. Then there exists
˛ 2 .0; 1/ such that

(5.2) u.x/ D u� .jxj/.1CO.jxj
˛// as x ! 0;

where u� .jxj/ is a Fowler-type solution.

First of all, we denote jxj D r , t D � log r , � D x=jxj, and define

v.t; �/ WD jxj.n�2/=2 u.x/ and K.t; �/ WD �jxj�� u�
nC2C2�
n�2 �u:

Then

(5.3) vt t C��v �
.n � 2/2

4
v CK.t; �/ v

nC2C2�
n�2 D 0 in .0;1/ � Sn�1;
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where �� is the Laplace–Beltrami operator on Sn�1. This, with (5.1), gives that

(5.4) 0 < lim inf
t!1

v.t; �/ � lim sup
t!1

v.t; �/ <1:

When x ! 0, using (5.1) and (1.5), we get that

K.t; �/ D �jxj�� u�
nC2C2�
n�2 L Ogu � jxj

�� u�
nC2C2�
n�2 .� � L Og/u

D 1CO.jxj.nC2/=2 � jxj.n�2/=2�2�.n�2/=2/ D 1CO.jxj.n�2/=2/:

Thus, we have for t !1,

(5.5) max
�2Sn�1

jK.t; �/ � 1j D O.e�
n�2
2 t /:

Multiplying (5.3) by vt .t; �/ and then integrating over Sn�1, we get for t > 0,

d

dt
Q.t; v/ D �

Z
Sn�1

.K.t; �/ � 1/ v
nC2C2�
n�2 vt ;

where

Q.t; v/ D
1

2

Z
Sn�1

h
v2t .t; �/ � jr�v.t; �/j

2
�
.n � 2/2

4
v2.t; �/C

n � 2

nC �
v
2.nC�/
n�2 .t; �/

i
:

It follows from (5.3), (5.4) and (5.5) that v and its first order partial derivatives are bounded
for t large. Thus, we conclude that

Q.v/ D lim
t!1

Q.t; v/

exists, and that for t !1,

(5.6) Q.t; v/ D Q.v/CO.e�
n�2
2 t /:

We prove now some lemmas which will be used in the proof of Theorem 5.1.

Lemma 5.2.
Q.v/ < 0:

Proof. Let vj .t; �/ WD v.t C tj ; �/, with tj !1. Then (5.3) gives that

(5.7) .vj /t t C��vj �
.n � 2/2

4
vj CK.t C tj ; �/ v

nC2C2�
n�2

j D 0 in .�tj ;1/ � Sn�1:

Therefore, it follows from (5.3), (5.4) and (5.5) that some subsequence of vj , which we
denote again by vj , converges to v� in C 2loc.R � Sn�1/, where v� is bounded between two
positive constants, and satisfies

(5.8) .v� /t t C��v� �
.n � 2/2

4
v� C v

nC2C2�
n�2

� D 0 in R � Sn�1:
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Thus by the results of [3] and [23], v� .t; �/ D v� .t/ independent of � , and so we have
that, as t !1,

Q.t; vj /!
jSn�1j

2

h
.v0� /

2.t/ �
.n � 2/2

4
v2� .t/C

n � 2

nC �
v
2.nC�/
n�2

� .t/
i
:

On the other hand, as t !1,

Q.t; vj / D Q.t C tj ; v/! Q.v/:

Hence, the uniqueness of the limit gives that

Q.v/ D
jSn�1j

2

h
.v0� /

2.t/ �
.n � 2/2

4
v2� .t/C

n � 2

nC �
v
2.nC�/
n�2

� .t/
i
:

Arguing as for (3.4), we deduce that Q.v/ < 0.

Lemma 5.3. As t !1,

max
�2Sn�1

jv.t; �/ � Nv.t/j ! 0;(5.9)

max
�2Sn�1

jvt .t; �/ � Nv
0.t/j ! 0;(5.10)

max
�2Sn�1

jr�v.t; �/j ! 0;(5.11)

where Nv.t/ D
¬
@Br

v.t; �/ dSr is the average of v.t; �/ on @Br .

Proof. Suppose that (5.9) does not hold. Then there exist " > 0 and tj !1 such that the
function vj .t; �/ D v.t C tj ; �/ satisfies

(5.12) max
�2Sn�1

vj .t; �/ � min
�2Sn�1

vj .t; �/ � ";

and

.vj /t t C��vj �
.n � 2/2

4
vj CK.t C tj ; �/ v

nC2C2�
n�2

j D 0 in .�tj ;1/ � Sn�1:

From (5.3), (5.4) and (5.5), it follows that some subsequence of vj converges to v� in
C 2loc.R � Sn�1/, where v� satisfies (5.8), independently of � , and is bounded between
positive constants. This is a contradiction with (5.12). Hence, we obtain (5.9). The proofs
of (5.10) and (5.11) are similar.

Lemma 5.4. As t !1, we have

(5.13) Nvt t �
.n � 2/2

4
Nv C Nv

nC2C2�
n�2 D o.1/;

and

(5.14)
jSn�1j

2

h
. Nv0/2.t/ �

.n � 2/2

4
Nv2.t/C

n � 2

nC �
Nv
2.nC�/
n�2 .t/

i
D Q.v/C o.1/:
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Proof. Averaging (5.3), we have

(5.15) Nvt t C��v �
.n � 2/2

4
Nv CK.t; �/ v

nC2C2�
n�2 D 0 in .0;1/ � Sn�1:

Using the divergence theorem, we have as t !1,

Nvt t �
.n � 2/2

4
Nv C Nv

nC2C2�
n�2

D Nvt t �
.n � 2/2

4
Nv C Nv

nC2C2�
n�2 �

�
vt t C��v �

.n � 2/2

4
v CK.t; �/ v

nC2C2�
n�2

�
D Nv

nC2C2�
n�2 �K.t; �/ v

nC2C2�
n�2 D Nv

nC2C2�
n�2 � v

nC2C2�
n�2 � .K.t; �/ � 1/ v

nC2C2�
n�2 D o.1/;

where (5.5) and (5.9) were used in the last step; this is (5.13).
Since

Q.t; Nv/ D
1

2

Z
Sn�1

h
. Nv0/2.t/ �

.n � 2/2

4
Nv2.t/C

n � 2

nC �
Nv
2.nC�/
n�2 .t/

i
dS1

D
jSn�1j

2

h
. Nv0/2.t/ �

.n � 2/2

4
Nv2.t/C

n � 2

nC �
Nv
2.nC�/
n�2 .t/

i
;

together with (5.6) and Lemma 5.3, we have as t !1,

Q.t; Nv/ D .Q.t; Nv/ �Q.t; v//CQ.t; v/ D o.1/CQ.v/:

This finishes the proof of this lemma.

Proof of Theorem 5.1. It suffices to prove that there exists a C 2 positive solution v� .t/
satisfying

(5.16) v00� �
.n � 2/2

4
v� C v

nC2C2�
n�2

� D 0 in R;

such that, as t !C1 and for some ˛ 2 .0; 1/,

(5.17) max
�2Sn�1

jv.t; �/ � v� .t/j D O.e
�˛t /:

Arguing as in the proof of Lemma 5.2, we deduce the existence of v� satisfying (5.16).
Next, we shall show that t !1,

(5.18) v.t; �/ D Nv.t/CO.e�˛t /;

and

(5.19) Nv.t/ D v� .t/CO.e
�˛t /;

which imply that (5.17) follows.
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For this purpose, subtracting (5.15) from (5.3), we find that V D v � Nv satisfies

(5.20) Vt t C��V �
.n � 2/2

4
V C yV D 0 in .0;1/ � Sn�1;

where
yV D K.t; �/ v

nC2C2�
n�2 �K.t; �/ v

nC2C2�
n�2 :

Multiplying (5.20) by V and integrating over Sn�1, we get for t 2 .0;C1/,

(5.21)
Z

Sn�1

�
V Vt t C V��V �

.n � 2/2

4
V 2 C V yV

�
D 0:

Define

!.t/ WD
� Z

Sn�1
V 2.t; �/

�1=2
Then !.t/ is nonnegative, continuous for t > 0, and it is C 2 on those intervals where !.t/
is positive. If V D v � Nv � 0, then (5.18) follows. If not, then !.t/ is positive. This means
that

j!.t/!0.t/j D
ˇ̌̌ Z

Sn�1
V Vt

ˇ̌̌
�

� Z
Sn�1

V 2t

�1=2
!.t/;

which implies that

j!0.t/j �
� Z

Sn�1
V 2t

�1=2
;

and

!.t/!00.t/C !0.t/2 D

Z
Sn�1

V 2t C

Z
Sn�1

V Vt t � !
0.t/2 C

Z
Sn�1

V Vt t :

That is,

(5.22) !.t/!00.t/ �

Z
Sn�1

V Vt t :

Recall that the eigenvalues of ��� on Sn�1 can be arranged as an increasing se-
quence ¹�kº:

�0 D 0; �1 D � � � D �n D n � 1; �nC1 D 2n; : : :

with �k !1 as k!1. Using the fact that the smallest nonzero eigenvalue is n� 1, we
conclude that for t > 0,

(5.23) �.n � 1/

Z
Sn�1

V 2 �

Z
Sn�1

V ��V:

Since
R

Sn�1 VdS1 D 0, we haveZ
Sn�1

V yV D

Z
Sn�1

VKv
nC2C2�
n�2 �Kv

nC2C2�
n�2

Z
Sn�1

V

D

Z
Sn�1

VKv
nC2C2�
n�2 � v

nC2C2�
n�2

Z
Sn�1

V D

Z
Sn�1

V
�
Kv

nC2C2�
n�2 � Nv

nC2C2�
n�2

�
D

Z
Sn�1

V
�
v
nC2C2�
n�2 � Nv

nC2C2�
n�2

�
C

Z
Sn�1

V v
nC2C2�
n�2 .K � 1/:
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On the other hand, the mean value theorem gives thatZ
Sn�1

V
�
v
nC2C2�
n�2 � Nv

nC2C2�
n�2

�
D
nC 2C 2�

n � 2
�
4C2�
n�2

Z
Sn�1

V.v � Nv/;

where � D �.t; �/ is between v and Nv, and as t !1, � D Nv.1C o.1//. It follows thatZ
Sn�1

V
�
v
nC2C2�
n�2 � Nv

nC2C2�
n�2

�
D
nC 2C 2�

n � 2
�
4C2�
n�2 .1C o.1//!2:

Using the Hölder inequality, we have as t !1,Z
Sn�1

V v
nC2C2�
n�2 .K � 1/ � !.t/

� Z
Sn�1

. Nv
nC2C2�
n�2 .K � 1//2

�1=2
D !.t/O.e�at /;

where (5.4) and (5.5) are used in the last inequality. Thus we have as t !1,

(5.24)
Z

Sn�1
V yV �

nC 2C 2�

n � 2
�
4C2�
n�2 .1C o.1//!2 C !.t/O.e�at /:

Applying (5.22), (5.23) and (5.24) to (5.21), we conclude that as t !1,

!!00 �
.n�2/2

4
!2 � .n�1/!2 C

nC 2C 2�

n � 2
�
4C2�
n�2 .1Co.1//!2 C !.t/O.e�at / � 0:

Hence, for t large and !.t/ > 0, there exists a positive constant C1 such that as t !1,

(5.25) !00 �
n2

4
! C

nC 2C 2�

n � 2
Nv
4C2�
n�2 .1C o.1//! � �C1 e

�at :

Let
h.t/ WD Nv

�n��
n�2 .t/!.t/:

From (5.4) and (5.9), we obtain that

lim
t!1

h.t/ D 0;

and with the help of (5.13) and (5.14), applied to (5.25), we obtain that as t !1,

(5.26) Lh WD h00 C a1.t/h
0
� a2.t/h > �C1 e

�at ;

where

a1.t/ D
2.nC �/

n � 2

Nvt

Nv
;

and as t !1,

a2.t/ D
.2C �/.nC �/

.n � 2/2
1

Nv2

�
�2

jSn�1j
Q.v/C o.1/

�
:

By Lemma 5.2 and Lemma 5.3, we can choose positive constants a0, b0 and t0 such
that for t � t0, we have �b0 < a1 < b0 and a2.t/ > a0. Choose ˛ 2 .0; 1/ such that
�˛2 � ˛b0 C a0 > 0. Let t0 large enough such that for t � t0,

�˛2 � ˛b0 C a0 > C1 e
.˛�a/t :
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Define
yh.t/ WDMe�˛t :

There exists some positive constant M > 1 such that

yh.t0/ > h.t0/:

A direct calculation shows that, as t � t0,

(5.27)
Lyh DMe�˛t .˛2 � ˛a1 � a2/ < Me

�˛t .˛2 C ˛b0 � a0/

< �Me�˛tC1 e
.˛�a/t < �C1 e

�at :

Hence, together with (5.26) and (5.27), we have, for t � t0,

L.h � yh/ > 0;

and
.h � yh/.t0/ < 0 and lim

t!C1
.h � yh/.t/ D 0:

Notice that the zero order term for the differential operator L has a negative coeffi-
cient �a2. Hence, by the maximum principle, we conclude that for t � t0,

.h � yh/.t/ < 0:

It follows that h.t/ D O.e�˛t / as t !1. Together with (5.4), this implies that !.t/ D
O.e�˛t / as t !1. Hence, we conclude that, as t !1,

kV kL2..t�1;tC1/�Sn�1/ D O.e
�˛t /:

Since
v
nC2C2�
n�2 � Nv

nC2C2�
n�2 D

nC 2C 2�

n � 2
�
4C2�
n�2 .v � Nv/;

where � D �.t; �/ is between v and Nv, and bounded, it follows that for t !C1,v nC2C2�n�2 � Nv
nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

� CkV kL2..t�1; tC1/�Sn�1/;

where C is a positive constant. Hence, by Jensens’s inequality we have, for t !1,

k yV kL2..t�1; tC1/�Sn�1/ D
K.t; �/v nC2C2�n�2 �K.t; �/v

nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

�
K.t; �/ v nC2C2�n�2 � v

nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

C
K.t; �/ v nC2C2�n�2 � v

nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

� 2
K.t; �/ v nC2C2�n�2 � v

nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

� 2
.K.t; �/ � 1/ v nC2C2�n�2


L2..t�1; tC1/�Sn�1/

C 2
v nC2C2�n�2 � v

nC2C2�
n�2


L2..t�1; tC1/�Sn�1/

� C
�
e�

n�2
2 t
C kV kL2..t�1; tC1/�Sn�1/

�
:
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After a finite number of iterations of standard elliptic theory applied to (5.20), we conclude
that, as t !1,

(5.28) kv � NvkC 1..t�1; tC1/�Sn�1/ D kV kC 1..t�1; tC1/�Sn�1/ D O.e
�˛t /:

This establishes (5.18).
On the other hand, since

Q.t; Nv/ D
jSn�1j

2

h
. Nv0.t//2 �

.n � 2/2

4
Nv2.t/C

n � 2

nC �
Nv
2.nC�/
n�2 .t/

i
D Q.t; Nv/ �Q.t; v/CQ.t; v/;

using (5.28), (5.11) and the argument in Lemma 5.2, we conclude that, as t !1,

Q.t; Nv/ D O.e�˛t /CQ.v/ D O.e�˛t /CQ.v� /;

where v� .t/ is some solution of (5.16), and

Q.v� / D
jSn�1j

2

h
.v0� .t//

2
�
.n � 2/2

4
v2� .t/C

n � 2

nC �
v
2.nC�/
n�2

� .t/
i
:

Hence, as t !1,

. Nv0.t//2 D
.n � 2/2

4
. Nv.t//2 �

n � 2

nC �
Nv
2.nC�/
n�2 .t/C

2

jSn�1j
Q.v� /CO.e

�˛t /;

and we obtain that the behavior of Nv is completely determined by the roots of the right-
hand side of the above equality. From Lemma 5.2, we know that Q.v� / < 0, so we
conclude that as t !1,

(5.29) Nv.t/ D v0.t/CO.e
�˛t /:

Therefore, combining (5.28) with (5.29), we conclude that as t !1,

max
�2Sn�1

jv.t; �/ � v� .t/j D O.e
�˛t /;

that is (5.17). Hence, we complete the proof of Theorem 5.1.

Proof of the second part in Theorem 1.1. Using Theorem 5.1, we conclude that if 0 is a
non-removable singularity, the asymptotic radial symmetry can be deduced directly.

6. Proof of Theorem 1.2

Proof of Theorem 1.2. Let u 2 C 2.Rn n B1/ be a positive solution of (1.1) with g satis-
fying (1.2). Using the Kelvin transform v.z/ D 1

jzjn�2
u .z=jzj2/, we have

�L Ogv D jzj
� v

nC2C2�
n�2 in B1n¹0º;

with L Ogv D � Ogv � c.n/R Ogv, and for m D 0; 1; 2, we have
nX

i;jD1

jr
m. Ogij .z/ � ıij /j � OC jzj

a�m in B1n¹0º:
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If 0 is a removable singularity for v, the limit

A0 WD lim
z!0

v.z/ D v.0/ > 0

exists, and rescaling back to u, we conclude that1 is a removable singularity, and

u.x/! A0jxj
2�n as x !1:

Moreover, Theorem 1.2 gives that for v, there exists a positive constant C , depending
on n, � and OC , such that

v.z/ � C jzj�.n�2/=2 and jrv.z/j � C jzj�n=2 as z ! 0;

which implies
u.x/ D A0jxj

2�n
CO.jxj1�n/ as x !1:

Rescaling back to v, we also have

v.z/ D A0 CO.jzj/ as z ! 0;

that is (1.7).
If 0 is a non-removable singularity for v, Theorem 1.1 gives that there exist two posit-

ive constants C1 and C2 depending on n, � and OC such that

C1 jzj
�.n�2/=2

� v.z/ � C2 jzj
�.n�2/=2 as z ! 0:

Furthermore, there exists ˛ 2 .0; 1/ such that

v.z/ D v� .jzj/.1CO.jzj
˛// as z ! 0;

with v� .jzj/ is a Fowler-type solution. Rescaling back to u, we conclude that1 is a non-
removable singularity for u, and we have

C1jxj
�.n�2/=2

� u.x/ � C2jxj
�.n�2/=2 as x !1;

and
u.x/ D u� .jxj/.1CO.jxj

�˛// as x !1;

with u� .jxj/ is a Fowler-type solution, which is a C 2 positive radial solution of

��u� D jxj
� u

nC2C2�
n�2

� in Rn n ¹0º:
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