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Coregular submanifolds and Poisson submersions

Lilian Cordeiro Brambila, Pedro Frejlich and David Martínez Torres

Abstract. In this paper, we analyze submersions with Poisson fibres. These are sub-
mersions whose total space carries a Poisson structure, on which the ambient Poisson
structure pulls back, as a Dirac structure, to Poisson structures on each individual
fibre. Our “Poisson–Dirac viewpoint” is prompted by natural examples of Poisson
submersions with Poisson fibres – in toric geometry and in Poisson–Lie groups –
whose analysis was not possible using the existing tools in the Poisson literature.

The first part of the paper studies the Poisson–Dirac perspective of inducing Pois-
son structures on submanifolds. This is a rich landscape, in which subtle behaviours
abound, as illustrated by a surprising “jumping phenomenon” concerning the com-
plex relation between the induced and the ambient symplectic foliations, which we
discovered here. These pathologies, however, are absent from the well-behaved and
abundant class of coregular submanifolds, with which we are mostly concerned here.

The second part of the paper studies Poisson submersions with Poisson fibres – the
natural Poisson generalization of flat symplectic bundles. These Poisson submersions
have coregular Poisson–Dirac fibres, and behave functorially with respect to such
submanifolds. We discuss the subtle collective behavior of the Poisson fibres of such
Poisson fibrations, and explain their relation to pencils of Poisson structures.

The third and final part applies the theory developed to Poisson submersions with
Poisson fibres which arise in Lie theory. We also show that such submersions are a
convenient setting for the associated bundle construction, and we illustrate this by
producing new Poisson structures with a finite number of symplectic leaves.

Some of the points in the paper being fairly new, we illustrate the many fine issues
that appear with an abundance of (counter-)examples.

1. Introduction

The condition that a submanifold of a Poisson manifold “inherit” a Poisson structure is
somewhat subtle, since bivectors cannot be pulled back as such. However, we understand
since the work of Ted Courant on Dirac structures [10] that there is a canonical candidate
to an “induced Poisson structure”. Indeed, a Poisson structure �M onM may be regarded
as a Dirac structure via its graph:

Gr.�M / D ¹�
]
M .�/C � j � 2 T

�M º � TM ˚ T �M DWTM:
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It turns out that every submanifold X inherits a canonical (pullback) Lagrangian family
i ŠGr.�M / � TX (see Section 2 for more details), and at most one bivector �X 2 X2.X/
can exist on X for which

Gr.�X / D i Š Gr.�M /:

When that is the case, �X is automatically Poisson, and we say that .X; �X / is a Poisson–
Dirac submanifold of .M; �M /. This notion was first introduced in [11], Section 8.

This is the most general recipe to “induce” Poisson structures on submanifolds, but
it is rather difficult to check, in that the existence and smoothness of �X are assumed as
opposed to deduced from some more straightforwardly verifiable condition, and deciding
whether �X is smooth or not may be technically challenging in practice.

In the literature concerning submanifolds of a Poisson manifold, it was (mistakenly)
thought that the induced symplectic foliation on a Poisson–Dirac submanifold would
behave well with respect to the ambient symplectic foliation – in the sense that the leaves
of the Poisson–Dirac submanifold would arise as (clean) intersections of the submanifold
with the ambient leaves. For example, Poisson–Dirac submanifolds and their clean (or
split) counterparts are confused in:
• the foundational paper [11] (cf. Definition 4 and Corollary 10 in [11]);
• in [39] (cf. Definitions 5 and 6 in [39]);
• in [3] (see Lemma A.1 in [3]);
• in [2] (see Theorem 2.1 in [2]).

It turns out, however, that the symplectic foliation of the Poisson–Dirac submanifold
can be wildly different from that of the ambient manifold. In fact, the first contribution in
this note is the discovery of a

Jumping phenomenon: A leaf of a Poisson–Dirac submanifold need not lie
inside a leaf of the ambient manifold;

see Examples 2.7 and 2.8.
One example of a condition on a submanifold X of a Poisson manifold .M; �M /,

which turns out to be easy to check, and ensures thatX has the structure of clean Poisson–
Dirac submanifold, is to require thatX be split; that is, that there exists a splitting TM jX D
TX ˚ E with �M jX D �X modulo �.^2E/. This condition turns out to be equivalent to
demanding that Hamiltonian flows of .X; �X / be the restriction of Hamiltonian flows of
.M;�M / – otherwise said, split manifolds are those Poisson–Dirac submanifolds in which
the jumping phenomenon alluded to above is ruled out by fiat.

Coregular Poisson–Dirac submanifolds, first introduced by Courant (Theorem 3.2.1
in [10]), are a particular case of split submanifolds. A submanifold X is a coregular
Poisson–Dirac submanifold if TX and the image �]M .N

�X/ of the conormal bundle ofX
meet trivially, and their direct sum TX ˚ �

]
M .N

�X/ is a vector subbundle of TM jX .
Said otherwise, these are split Poisson–Dirac submanifolds, in which the projection to the
normal bundle of X

QX W N
�X �! NX; QX .�/ D �

]
M .�/C TX

has constant rank. Coregular submanifolds comprise, among others:
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• Poisson submanifolds: submanifolds X to which every Hamiltonian vector field of
.M; �M / is tangent, that is,

�
]
M .T

�M jX / � TX:

• Poisson transversals: submanifolds X which meet each leaf of .M;�M / transversally
and symplectically, that is,

TM jX D TX ˚ �
]
M .N

�X/:

• Any point in a Poisson manifold.
We devote Section 2 to a detailed description of this whole hierarchy of regularity

conditions, with a heavy emphasis on (counter-)examples. This complements (and in some
cases, corrects) the endeavours in [11,15,28,38], and to some extent those in [8,39] (which
discuss distinguished submanifolds of Poisson manifolds which do not necessarily inherit
Poisson structures).

Figure 1. Hierarchy of induced Poisson structures.

The main object of interest in the present paper are submersions

p W .†; �†/ �! .M; �M /

between Poisson manifolds. The natural “compatibility” condition one can impose is:
(a) that p be a Poisson map:

¹f ıp; g ıpº† D ¹f; gºM ı p; f; g 2 C1.M/:

This is the correct Poisson-theoretic notion to ensure that p intertwines Hamiltonian
flows of f and f ıp. Note, however, that this does not imply that p intertwines the
induced symplectic foliations on the total space and base – in the sense that the preimage
of leaves is saturated. For example, symplectic realizations exist for any Poisson mani-
fold [23, 37], and those only intertwine symplectic foliations in this sense if .M; �M / is
symplectic.

In light of the discussion on submanifolds, another natural “compatibility” condition
one can impose is:
(b) that fibres of p have an induced Poisson structure.
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Definition. A submersion pW .†;�†/!M from a Poisson manifold .†;�†/ has Poisson
fibres if each of its fibres is a Poisson–Dirac submanifold.

Submersions with Poisson fibres encompass previously studied classes (such as ver-
tical, coupling [4, 35, 36] and almost-coupling Poisson structures [4, 34]). All these cases
assume a good collective behaviour of the Poisson–Dirac fibres – local triviality or, at
the very least, the existence of a compatible Ehresmann connection. Our Poisson–Dirac
standpoint makes no such assumptions.

Of great importance to what follows is that Poisson submersions with Poisson fibres

p W .†; �†/ �! .M; �M /

have in fact coregular fibres, and behave functorially in the following sense.

Theorem. A Poisson submersion pW .†;�†/! .M;�M / has Poisson fibres exactly when
each vertical tangent space inherits a Poisson structure. In that case, its fibres are coreg-
ular.

Moreover, for a coregular Poisson–Dirac submanifold Y �M ,

(a) X W D p�1.Y / � † is a coregular Poisson–Dirac submanifold;
(b) pW .X; �X /! .Y; �Y / is a Poisson submersion with Poisson fibres.

Such good functorial behavior of Poisson submersion with Poisson fibres, as opposed
to general Poisson submersions, has implications regarding the symplectic foliations of
the total space and base.

Theorem. A Poisson submersion with Poisson fibres pW .†; �†/! .M; �M / pulls sym-
plectic leaves ofM back to Poisson submanifolds of †, over which p restricts to coupling
Poisson submersions.

These results convey a clear picture of a Poisson submersion with Poisson fibres

p W .†; �†/ �! .M; �M / I

it maps leaves of �† into leaves of �M , in which case the ensuing restrictions between
symplectic leaves

p W S†.x/ �! SM .p.x//

are flat symplectic bundles. So, very much like a Poisson structure on a manifold makes
precise the idea of a assembling symplectic manifolds, a Poisson submersion with Poisson
fibres makes precise the idea of assembling flat symplectic bundles.

In fact, the good behavior with respect to the symplectic foliations (or even with
respect to their distributions) characterizes Poisson submersion with Poisson fibres among
Poisson submersions.

Theorem. The following statements for a Poisson submersion pW .†; �†/ ! .M; �M /

are equivalent.

(a) It is a Poisson submersion with Poisson fibres.

(b) It maps symplectic leaves of .†; �†/ into symplectic leaves of .M; �M /.

(c) Its differential maps the characteristic distribution of .†;�†/ into the characteristic
distribution of .M; �M /.
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Poisson submersions with Poisson fibres have their own version of the jumping phe-
nomenon. A Poisson submersion with Poisson fibres over a symplectic manifold (that is,
a coupling) induces, under a mild completeness assumption, diffeomorphic Poisson struc-
tures on its fibres. However:

Jumping phenomenon: If the base manifold of Poisson submersions with
Poisson fibres is not symplectic, the Poisson diffeomorphism type of fibres
may very well change as we change symplectic leaves in the base. Remark-
ably, they need not even assemble into a vertical Poisson structure.

In fact, for a Poisson submersion with Poisson fibres pW .†;�†/! .M;�M /, we have
the following.

Theorem. The Poisson fibres assemble into a vertical Poisson structure �V 2 �.^2V /
exactly when a Poisson structure �H 2 X2.†/ exists, whose symplectic foliation arises
from Hamiltonian flows of functions on M . When that is the case, �V and �H commute
and split �† :

�† D �V C �H ; Œ�H ; �V � D 0:

We refer to such objects as orthogonal pencils, to highlight the somewhat surprising
fact that the Poisson structure on the total space arises from a pencil of Poisson structures.

Yet again, the landscape is fraught with subtleties (e.g., orthogonal pencils need not
be almost-coupling), and we devote the bulk of the Section 3 to lay out the foundational
aspects of the theory of Poisson submersions with Poisson fibres, striving to offer as many
examples as a clear picture requires. Just as for submanifolds, our analysis yields a whole
hierarchy of Poisson submersions.

Figure 2. Hierarchy of Poisson submersions.

The remainder of the paper is devoted to applications and examples of Poisson sub-
mersions with Poisson fibres coming from Lie theory. The pointwise-to-global feature of
coregular manifolds manifests itself in the following key result.

Lemma. Let a Poisson–Lie group .G; �G/ have a Poisson action on a Poisson manifold
.M; �M /. Then an orbit X of G ↷ M is a coregular Poisson–Dirac submanifold if and
only if TxX � .TxM;�M;x/ has an induced Poisson structure for some x 2 X .
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Applied to the action of a complex vector space A on a complex manifoldM by holo-
morphic transformations, there corresponds to each positive bivector �A 2 ^2A (that is,
one whose leaves are Kähler manifolds) an induced A-invariant Poisson structure �M
on M , such that every complex subspace of A acts on .M; �M / by Poisson diffeomorph-
isms, and has coregular Poisson–Dirac orbits (Lemma 4.5). One instance is the GIT
presentation of a toric manifold M�, a certain principal bundle pW†� !M� with struc-
ture group a complex torus, and total space †� an open set in Cd , constructed out of a
Delzant polytope �.

Proposition. Every positive bivector � 2^2Cd turns the GIT presentation pW†�!M�

of the toric variety M� into a Poisson submersion with Poisson fibres.

Following [6], we call those Poisson structures which arise from nondegenerate, pos-
itive bivectors (and which therefore have finitely many leaves) toric Poisson manifolds.

The second class of examples concerns the “standard” (or Lu–Weinstein) Poisson–Lie
group structure �G on a compact connected semisimple Lie group G associated with a
choice of maximal torus T (and root ordering). This structure (discovered in [27]) des-
cends to a “standard” Poisson structure �M on the manifold of full flags M D G=T , with
finitely many leaves, the Bruhat cells.

Proposition. The quotient map pW .G; �G/ ! .M; �M / is a Poisson submersion with
Poisson fibres, inducing the trivial Poisson structure on fibres.

We conclude the paper with a discussion of the associated bundle construction in the
context of Poisson submersions. Namely, a right principal G-bundle pWP !M equipped
with a G-invariant Poisson structure �P determines a Poisson submersion

p W .P; �P / �! .M; �M /:

If G acts on the left of .X; �X / by Poisson diffeomorphisms, the associated bundle †W D
P �G X has an induced Poisson structure �†, for which

p W .†; �†/ �! .M; �M /

is again a Poisson submersion. We will see that good behavior of the principal Poisson
submersion pW .P; �P /! .M; �M / is inherited by the associated bundle pW .†; �†/!
.M; �M / (Lemma 4.11), but also that conditions can be imposed on �P and the action
G↷ .X;�X / to ensure that the associated bundle behaves well even if the principal bundle
itself does not (Lemma 4.12).

In the study of such “Poisson associated bundles”, the need arises to impose some
condition akin to local triviality. When the base of the submersion is symplectic, local tri-
viality has a transparent, mandated meaning (see [14]), but its meaning for general Poisson
submersions with Poisson fibres is less clear. For our purposes, it suffices to consider three
notions, corresponding to the following local models of �†: the product of Poisson struc-
tures on the base and on the fibre (strongly locally trivial), its gauge-transform by a closed
two-form (locally trivial), and having the same singular foliation as those (locally trivial
foliation). The delicate issue will be that this hierarchy of local triviality notions will not
always pass from principal to associated bundles. However, we have the following.
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Proposition. The associated bundle has locally trivial foliation, provided the orbits of
G ↷ .X; �X / lie inside symplectic leaves, and
(a) either the Poisson structures on the fibres of pWP !M are all trivial,
(b) or the orbits of G↷X are isotropic submanifolds of the symplectic leaves of .X;�X/.

In fact, in that case the leaf spaces of .†; �†/ and .M; �M / � .X; �X / are homeo-
morphic. This leads to the last application of the paper: the construction of Poisson sub-
mersions with Poisson fibres with finitely many leaves, using as models for base/fibres
toric Poisson manifolds or manifolds of full flags.

Conventions. By a singular foliation � on a smooth manifold M we mean a partition
of M into initial, immersed submanifolds, in the sense of Stefan–Sussmann [32, 33]. We
note that all singular foliations in this paper will be the orbit partition of a Lie algebroid [1].

A foliation F , tout court, is a singular foliation by equidimensional leaves (that is,
an honest foliation in the usual sense). Submanifold is to be understood as an embedded
submanifold – but in Appendix A we consider the case of embedded submanifolds whose
connected components may have different dimensions.

For a Poisson manifold .M;�M /, we denote by Hf WD�
]
M .df / the Hamiltonian vector

field of a (possibly time-dependent) function f on M , and by �t;sHf its local flow.
The symplectic leaf through x2M (the orbit through Hamiltonian local flows) is

denoted by SM .x/, and �M stands for the ensuing singular foliation of M . In all cases
but one, the singular foliations considered in the paper will be of this kind (see, e.g., Sec-
tion 4.1 in [12]).

For references on the basics of Poisson geometry, with a viewpoint similar to the one
espoused here, we also recommend [29], [25] and [28]. For those on Dirac structures, see
e.g. [5] and [20], and for Lie group structure theory, see [24].

Terminology. The terminology concerning submanifolds of Poisson manifolds is quite
inconsistent, and we have adopted our own. One reason for this inconsistency was the
hitherto unknown jumping phenomenon we discuss in the paper. For instance,

• “Poisson–Dirac submanifolds” in our sense are those in Proposition 6 of [11], and in
Definition 6 of [39].

• What we call “clean Poisson–Dirac submanifolds” are also called “Poisson–Dirac sub-
manifolds” in the same works, see Definition 4 in [11] and Definition 5 in [39] – the
jumping phenomenon was missing from the picture, so both classes were mistakenly
conflated.

• What we call “split Poisson–Dirac submanifolds” were called “Poisson–Dirac sub-
manifolds with a Dirac splitting” in Proposition 7 of [11], but merely called “Poisson–
Dirac submanifolds” in [25] and in [28].

• What we call “coregular submanifold” appears without name in Theorem 3.2.1 of [10],
as “Poisson–Dirac submanifolds of constant rank” in [11], p. 119, and as “pre-Poisson
Poisson–Dirac submanifold” in [8]. Our terminology, however, agrees with that of [12]
and that of [19] in the case where the induced Dirac structure is in fact Poisson. Our
choice of names seeks to accurately reflect the properties which characterize each of
the classes in the hierarchy of Poisson–Dirac submanifolds.
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2. Submanifolds

Recall that the generalized tangent bundle TM W D TM ˚ T �M carries the canonical
symmetric pairing

(2.1) h � ; �i W TM �M TM; huC �; v C �iWD �v � C �u�;

and the Dorfman bracket on the space of sections:

(2.2) Œ � ; �� W �.TM/� �.TM/ �! �.TM/; ŒuC �; vC ��WD Œu; v�CLu�� �v d�:

A subspaceLM �TM is a Lagrangian family if it meets each fibre TxM in a Lagrangian
vector subspace. No continuity is assumed for the map x 7! LM;x ; see next example.

Example 2.1. The subspace

L � TR; Lt D

´
TtR; if t ¤ 0;
T �0 R; if t D 0;

is a discontinuous Lagrangian family on the real line.

We say that a Lagrangian family is smooth if LM is a (smooth) subbundle. For exam-
ple, given a two-form ! 2 �2.M/, a subbundle E � TM or a bivector � 2 X2.M/, the
Lagrangian families

Gr.!/D¹uC �u! ju2TM º; Gr.E/DE˚Eı and Gr.�/D¹�].�/C� j�2T �M º

are all smooth, and we refer to them as the graphs of !, E and � , respectively.
A Dirac structure is a smooth Lagrangian family whose space of sections �.L/ is

involutive with respect to the Dorfman bracket. Graphs corresponding to two-forms are
Dirac structures if and only if the two-form is closed; similarly, the graph of a subbundleE
is a Dirac structure if and only if E is the tangent bundle to a foliation, and the graph of a
bivector is a Dirac structure if and only if the bivector is Poisson – equivalently, L is the
graph of a bivector exactly when L meets the tangent bundle trivially:

L \ TM D 0:

IfM is equipped with a Dirac structureLM , and f WN !M is any smooth map, there
is an induced pullback Lagrangian family

f Š.LM / WD ¹uC f
�.�/ 2 TN j f�.u/C � 2 LM º:

Such a Lagrangian family may fail to be smooth:

Example 2.2. If LM is the Poisson structure �M D x1
@
@x1
^

@
@x2

on MDR2, and if
i WR!M is i.t/ D .t; 0/, then i Š.LM / is the discontinuous Lagrangian family discussed
in Example 2.1.

However, if the pullback Lagrangian family f Š.LN / happens to be smooth, then it is
automatically a Dirac structure (Proposition 5.6 in [5]), which we refer to as a pullback
Dirac structure.



Coregular submanifolds and Poisson submersions 1427

In light of the discussion above, there is a canonical candidate to an induced Dirac
structure on a submanifold X of a Dirac manifold .M;LM /:

A Dirac structure LM on M induces a Dirac structure LX on a submani-
fold i WX !M if the Lagrangian family i Š.LM / is smooth, in which case we
call i Š.LM / the induced Dirac structure on X .

Example 2.3. If F is a foliation onM , then Gr.F /WD TF ˚N �F is a Dirac structure
onM . In fact, a Dirac structure LM is of the form Gr.F / some foliation F onM exactly
when prT .LM / D prT �.LM /

ı as subsets of TM – from which it follows by lower semi-
continuity of rank prT .LM /, and upper semicontinuity of rank prT �.LM /

ı, that prT .LM /
is an (involutive) subbundle of TM . Moreover, if i WX !M is a submanifold, then

i Š Gr.F /x D i
�1
� .TxF /˚ i�.N �xF / D i�.N �xF /ı ˚ i�.N �xF /

for x2X shows that, if i ŠGr.F / is a Dirac structure on X , it must correspond to a foli-
ation FX on X . Note that FX is nothing but the intersection of the ambient foliation F
with X .

2.1. Poisson–Dirac submanifolds

Of special interest in this note is the case in which a Poisson structure induces, in the sense
above, a Poisson structure on a submanifold:

Definition 2.4. A Poisson–Dirac submanifold i WX !M of a Poisson manifold .M;�M /
is one in which i ŠGr.�M / is smooth (and hence Dirac), and i ŠGr.�M /meets TX trivially.

That is, a Poisson–Dirac submanifold is one which inherits a Dirac structure which is
Poisson.

Example 2.5. If A is a vector space, any constant bivector �A 2 ^2A is Poisson. A linear
subspace B �A inherits a (constant) Dirac structure i ŠGr.�A/ � B ˚ B�, and this is
Poisson exactly when

�
]
A.B

ı/ \ B D 0:(2.3)

In that case, for each � 2 B�, the element �]B.�/ is given by �]A.z�/, where z� 2 A� is any
element such that � D z�jB and �]A.z�/ 2 B .

Lemma 2.6. If .X; �X / is a Poisson–Dirac submanifold of .M; �M /, and

SX .x/ � X and SM .x/ �M;

denote, respectively, the symplectic leaves of .X; �X / and of .M; �M / passing through
x 2 X , then

(a) TxSX .x/ D TxX \ TxSM .x/;
(b) SX .x/ contains every Hamiltonian curve of .M; �M / which starts at x and stays

inside X .
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Proof. The tangent space TxSX .x/ is the image of �]X WT
�
x X! TxX , which, by definition

of �X , consists of those �]M .�/ which are tangent to X at x, and this proves (a). This in
turn implies that if f 2C1.I �M/ is a function whose Hamiltonian flow �t;0Hf is such that

�
t;0
Hf .x/ 2 X , then fX W D .id; i/�.f / 2 C1.I � X/ satisfies �t;0HfX

.x/ D �
t;0
Hf .x/, which

proves (b).

There is an important subtlety concerning Poisson–Dirac submanifolds. Namely: if X
inherits a Poisson structure �X from .M;�M /, there exist two induced partitions ofX , one
by the leaves SX .x/ of �X , and the other by the subsets X \ SM .x/. In general, however,
the latter partition can be wildly misbehaved, as the next example illustrates.

Example 2.7. An example of a Poisson–Dirac submanifold in which the partitionX \ SM
is not by smooth manifolds. Let i be the embedding

i W R2 �!
�
R4; � D @

@x1
^

@
@x2
C x3

@
@x3
^

@
@x4

�
; i.x; y/ D .x; y; f .x; y/2; f .x; y/2/;

where f 2 C1.R2/ is any smooth function. We claim that i ŠGr.�/ D Gr. @
@x
^

@
@y
/.

Indeed, let Z � R4 denote the subset where x3 D 0, and let F W D f �1.0/ � R2 its
preimage under i . Observe that, in the complement of Z, the given Poisson structure
is symplectic, corresponding to the closed two-form

! D dx2 ^ dx1 C dx4 ^
dx3
x3
2 �2.R4 nZ/:

However, the pullback (as a Dirac structure) of the graph of a closed two-form coincides
with the graph of the pullback form:

i ŠGr.!/ D Gr.i�.!// D Gr.dx2 ^ dx1/jR2nF D Gr.�/jR2nF ;

where � D @x1 ^ @x2 2 X2.R2/.
On the other hand, for .x; y/ 2 F , we have that

Gr.�/i.x;y/ D Gr.�/.x;y/ � T �.0;0/R
2;

whereas

i�;.x;y/ W T.x;y/R
2
�! T.x;y/R

2
� T.0;0/R

2; i�;.x;y/.u/ D .u; 0/;

i�.x;y/ W T
�
.x;y/R

2
� T �.0;0/R

2
�! T �.x;y/R

2; i�.x;y/.�; �/ D �;

reduce to the canonical injection and projection in the first factor. Therefore,

i ŠGr.�/.x;y/ D ¹uC i�.�; �/ j i�.u/C .�; �/ 2 Gr.�/i.x;y/º
D ¹uC � j .u; 0/C .�; �/ 2 Gr.�/i.x;y/º D ¹uC� j .u; 0/ D �i.x;y/.�; �/º

D ¹uC � j u D �
]

i.x;y/
.�/º D Gr.�/.x;y/:

There are three important takeaways from this example:
(a) Any closed subset F � R2 arises as the preimage of a suitable smooth function f ,

see Section 2 in Chapter 2 of [21]. Therefore, the intersection of the embedding with a
symplectic leaf can be very ill-behaved.
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(b) Illustrating our previous point, if we take for f the smooth function

f .x; y/ D

´
e�1=x

2 �
y � sin. 1

x
/
�
; x ¤ 0;

0 x D 0;

then F � R2 is a typical example of a connected topological space which fails to be path-
connected. (So, in particular, it is not a manifold!)

Nevertheless, that X meets symplectic foliation in a rather pathological way does not
prevent the existence of a Poisson–Dirac structure on X .

(c) Hamiltonian flows of the Poisson–Dirac structure need not lie in a single leaf of
the ambient manifold. Indeed, any non-zero function with non-trivial zero locus is in fact
a counterexample to the widely believed claim that the symplectic foliation of a Poisson–
Dirac submanifold arises as the intersection of the ambient symplectic foliation with the
submanifold. We call this a jumping phenomenon to highlight the counterintuitive but
important fact that the Hamiltonian flow

t 7! �
t;0
HfX
.x/

of a function fX 2 C1.X/may “jump” between different leaves of the ambient manifold.
In the concrete example (b) above, something more striking occurs: becauseXD i.R2/

is symplectic, any two points are connected by a Hamiltonian path; however, because the
set F (which i maps into a singular leaf) is connected but not path connected, there exist
p0; p1 2 F which cannot possibly be endpoints of a Hamiltonian path in the ambient
manifold R4 which lies in X .

Because a general Poisson–Dirac submanifold may intersect the ambient symplectic
foliation in a poorly behaved fashion, the following language is in order: given an arbitrary
subset Y of a smooth manifoldM , we shall say that two points y0; y1 in Y lie in the same
smooth path-connected component if there exists a smooth curve cW I !M such that, for
some " > 0,

cjŒ0;"� D y0; c.I / � Y and cjŒ1�";1� D y1:

This is an equivalence relation on Y , and we denote by hhY iiy the equivalence class of
y 2 Y . In this language, Lemma 2.6 asserts that the partition of X given by

S0X .x/W D hhX \ SM .x/iix(2.4)

refines the partition SX of X given by the symplectic leaves of the induced Poisson struc-
ture, because any smooth path inside an ambient symplectic leaf is in fact a Hamiltonian
path. Even when the partition S0X consists exclusively of smooth manifolds, it may still be
a strict refinement of SX :

Example 2.8. The embedding

i W R2 �! .R4; � D @
@x1
^

@
@x2
C x3

@
@x3
^

@
@x4
/; i.x; y/ D .x; y; x3; 0/;

meets the leaves in smooth submanifolds:

X \ SM .ae3 C be4/ D

8̂<̂
:

R˙ �R; for ˙ a > 0;
∅; for a D 0 ¤ b;
¹0º �R; for a D b D 0:
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In this example, the induced Lagrangian family i ŠGr.�M / is the (symplectic) Poisson
structure Gr. @

@x
^

@
@y
/. This can be argued in exactly the same fashion as in Example 2.7:

on the open set i�1.R4 n Z/, the family i ŠGr.�/ is merely the graph of the pullback of
the form which corresponds to � on R4 n Z. Along points of i�1.Z/, we again have
that i� and i� are respectively the inclusion and the projection in the first factor, and so
the computation along points of Z is ipsis litteris that of Example 2.7.

Therefore, the intersection of the Poisson–Dirac submanifold X with the symplectic
foliation is a strict refinement of the partition ofX by its own symplectic foliation – which
consists of a single leaf.

2.2. Clean Poisson–Dirac submanifolds

In light of the discussion above, a first “regularity” condition to be imposed on Poisson–
Dirac submanifolds is to require that there be no surprises when it comes to the induced
singular foliation.

Definition 2.9. A Poisson–Dirac submanifold X of a Poisson manifold .M;�M / is clean
if the partition SX by leaves of its induced Poisson structure �X coincides with the parti-
tion S0X induced by the partition SM of M by leaves of �M .

The adjective “clean” is justified by the following.

Lemma 2.10. For a Poisson–Dirac submanifold X of .M;�M /, the following conditions
are equivalent:

(i) X meets the leaves of .M; �M / cleanly, that is, X \ SM .x/ is an embedded sub-
manifold of SM .x/ and T .X \ SM .x// D TX \ T SM .x/;

(ii) X is a clean Poisson–Dirac submanifold.

Proof. Recall that S0X refines SX , that is, each SX .x/ is a disjoint union

SX .x/ D
a

y2‡.x/

S0X .y/; ‡.x/ � SX .x/:

(i) implies (ii). IfX meets SM .x/ cleanly for every x 2X , then S0X .x/ (the smooth path
connected component of X \ SM .x/ through x) is by Lemma A.6 an initial submanifold
of SX .x/, with

TxS0X .x/ D TxX \ TxSM .x/ D TxSX .x/:

Therefore, S0X .x/ is an open submanifold of SX .x/. Since the latter is connected and
partitioned by S0X , we deduce that

S0X .x/ D SX .x/

for every x 2 X . Therefore X is a clean Poisson–Dirac submanifold.
(ii) implies (i). By hypothesis, the smooth path connected component S0X .x/ of X \

SM .x/ through x is the symplectic leaf SX .x/ of .X; �X / through x. This implies that
X \ SM .x/ is a disjoint union of initial submanifolds SX .x/, for which according to (a)
in Lemma 2.6 TySX .x/ D TyX \ TySM .x/ for all y 2 SX .x/. By Proposition A.7, this
implies that X and SM .x/ meet cleanly.
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Remark 2.11. The cleanness condition for Poisson–Dirac submanifolds is reminiscent of
the transversality condition for Poisson transversals. In the case of the latter, we demand
that a submanifold X of a Poisson manifold .M;�M / meet the leaves of M transversally,

TxM D TxX C TxSM .x/; x 2 X;

and that the intersections X \ SM .x/ be symplectic submanifolds. It then follows that
the connected components of X \ SM .x/ are the symplectic leaves of a smooth Poisson
structure on X .

The cleanness condition can be rightfully regarded as a relaxation of the transversality
condition above. However, in contrast to Poisson transversals, a submanifold which meets
the leaves of a Poisson structure cleanly and symplectically need not be Poisson–Dirac,
as the next two examples show.

Example 2.12. An example (see Example 3 in [11]) in which a submanifold which meets
leaves cleanly and symplectically need not inherit an induced singular foliation. On C3,
equipped with complex coordinates .z1; z2; z3/, we consider the Poisson structure of con-
stant rank corresponding to the foliation given by dz2 D 0 and dz3 � z2dz1 D 0, and the
pullback of the standard symplectic form i

2

P3
1 dzi ^ dzi to leaves. Then the locus X of

z3 D 0 meets leaves cleanly and symplectically:

S0X .z1; z2; 0/ D

´
C � ¹.0; 0/º if z2 D 0;
¹.z1; z2; 0/º if z2 ¤ 0:

This shows that the partition S0X cannot even arise from a singular foliation (for it is not
lower-semicontinuous).

Example 2.13. An example in which the singular foliation induced on a submanifold
which meets leaves cleanly and symplectically need not come from a Poisson structure.
Let X � R2 be the open unit disk, and let M W D X � X � R4 be endowed with the
Poisson structure

�M D .x
2
1 C x

2
2 C x1/

@

@x1
^

@

@x2
C .x23 C x

2
4 � x3/

@

@x3
^

@

@x4
�

This is the product of two dimensional Poisson structures which vanish in the circles of
radius 1=2 and center .�1=2; 0/ and .1=2; 0/, respectively.

The image of the origin under the diagonal embedding

i W X �!M; i.t; s/ D .t; s; t; s/;

is the leaf of �M which consists of the origin alone, so the intersection of X with M is
clean at that point. The image of a point .t; s/ which satisfies t2 C s2 ˙ t D 0 intersects
transversely a two-dimensional ambient symplectic leaf. The complement of the union of
the two circles X0 D X n ¹t2 C s2 ˙ t D 0º embeds in the four open symplectic leaves
of �M , and the induced Lagrangian family is

i ŠGr.�M /jX0 D Gr.�X0/; �X0 D
.t2 C s2/2 � t2

2t2 C 2s2
@

@t
^
@

@s
�
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Observe that the above formula extends to the intersection of the image of X with the
2-dimensional leaves of M . Therefore X intersects the symplectic leaves of M cleanly in
symplectic submanifolds, and these submanifolds fit into a foliation of X . However, the
leafwise symplectic forms do not come from a smooth Poisson tensor on X , because

lim
t!0

lim
s!0

Gr.�X0/ D h
@
@s
� 2dt; @

@t
C 2dsi ¤ hdt; dsi D lim

s!0
lim
t!0

Gr.�X0/

shows that �X0 does not even extend to a continuous bivector on X .

2.3. Split Poisson–Dirac submanifolds

Among all Poisson structures �X on a Poisson–Dirac submanifold X of a Poisson mani-
fold .M; �M /, the induced one is characterized by the property that Hamiltonian vectors
of X are also Hamiltonian vectors for M . That is, for each f 2 C1c .X/ and x 2 X , there
is an extension zf 2 C1c .M/ of f such that

Hf .x/ D H zf .x/:

This Poisson–Dirac submanifold is clean exactly when Hamiltonian curves in X are also
Hamiltonian curves inM . That is, for each f 2 C1c .X � I / and x 2 X , there is an exten-
sion zf 2 C1c .M � I / of f , such that

�
t;0
Hf .x/ D �

t;0
H zf
.x/:

This leads to the next step in our hierarchy of good behavior, in which we require that
every Hamiltonian flow of X be the restriction of a Hamiltonian flow ofM , as ensured by
the following definition.

Definition 2.14. A Poisson–Dirac submanifold X of a Poisson manifold .M;�M / is split
if its Hamiltonian vector fields are the restriction of Hamiltonian vector fields of M .

In contrast to the clean condition, there is a more convenient formulation of Defini-
tion 2.14 involving a splitting condition: we say that an orthogonal splitting of a Poisson
manifold .M; �M / along a submanifold X is a splitting TM jX D TX ˚E in which

�M jX D �X C �E ; �X 2 �.^
2TX/ and �E 2 �.^

2E/;

in which case it follows that i ŠGr.�M / D Gr.�X /, and so �X is the Poisson structure
induced on X by .M; �M /.1

Lemma 2.15. The submanifolds along which a Poisson manifold has an orthogonal split-
ting are exactly the split Poisson–Dirac submanifolds.

Proof. Let X be a submanifold of a Poisson manifold .M; �M /. If E � TM jX is an
orthogonal splitting along X , then E � I � T .M � I /jX�I is an orthogonal splitting

1These should not be confused with the Lie–Dirac submanifolds discussed in Section 8.3 of [11], and
introduced in [38] under the name of “Dirac submanifolds".
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for .�M ; 0/ 2 X2.M � I / along X � I . Let f 2 C1c .X � I / be a smooth function, and
consider ˛ 2 �.T �.M � I /jX�I / defined by

˛jT.X�I/ D df; ˛jE�I D 0:

Then ˛ D d zf jX�I for some function zf 2 C1c .M � I /, and the Hamiltonian flow of f is
by construction the restriction to X of the Hamiltonian flow of zf .

Conversely, supposeX is a split Poisson–Dirac submanifold. Then an orthogonal split-
ting along X may be constructed as EWD �.T �X/ı, where � WT �X ! T �M is any linear
map satisfying

�.�/jX D �; �
]
X .�/ D �

]
M�.�/;

for all � 2 T �X . Because these conditions are convex, it suffices to show that a such linear
map exists in an open neighborhood U �X of a point x 2X . But if x1; : : : ; xn 2 C1c .X/
define a coordinate chart on U , and zx1; : : : ; zxn 2 C1c .M/ are the extensions granted by
the split Poisson–Dirac condition, the linear map

T �U �! T �M jU ; dxi 7! dzxi ;

does the job.

Example 2.16. An example (see Example 6 in [11]) of a clean Poisson–Dirac submani-
fold which is not split. Consider the embedding i WR2 ! .M; �M /, where M D R4 and

�M D x
2
1

@

@x1
^

@

@x2
C x3

@

@x3
^

@

@x4
; i.t; s/ D .t2; 0; t; s/:

Then i ŠGr.�M /DGr.t @
@x1
^

@
@x2
/ shows that i maps leaves into leaves, and so its image is

a clean Poisson–Dirac submanifold. However, it is not split, since the Hamiltonian vector
field of s 2 C1.R2/ is not i -related to any Hamiltonian vector field of M :

Hs D �t
@

@t
� v D �2x1

@

@x1
� x3

@

@x3
D �2x1

@

@x1
C Hx4 :

Here v 2 X.M/ is not Hamiltonian, because no Hamiltonian vector field on .M; �M /
restricts to x1 @

@x1
on X .

Example 2.17. Poisson submanifoldsX of a Poisson manifold .M;�M / are exactly those
split Poisson–Dirac submanifolds for which any splitting TM jX D TX ˚ E along X is
orthogonal.

Example 2.18. Poisson transversals X in a Poisson manifold .M; �M / have a unique
orthogonal splitting TM jX D TX ˚ �

]
M .N

�M/ along X .

2.4. Coregular submanifolds

Among split Poisson–Dirac submanifolds, Poisson submanifolds and Poisson transversals
are distinguished further by the property that they are either saturated by, or transverse to
ambient symplectic leaves. That is, the symplectic directions transverse to the submanifold
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fit into a subbundle (the trivial one and a full normal bundle, respectively). This suggests
that we consider those Poisson–Dirac submanifolds X of .M; �M /, for which the image
of the map

QX WN
�X �! NX; QX .�/W D �

]
M .�/C TX;

is a vector bundle.

Definition 2.19. A split Poisson–Dirac submanifold of a Poisson manifold .M; �M / is a
coregular Poisson–Dirac submanifold if QX WN

�X ! NX has locally constant rank.

Thus, Poisson submanifolds are those Poisson–Dirac submanifolds for which QX van-
ishes, while Poisson transversals are those for which QX is surjective.

Lemma 2.20. For a submanifold X of a Poisson manifold .M; �M /, the following are
equivalent:

(i) X is a coregular Poisson–Dirac submanifold;

(ii) �]M .N
�X/ � TM jX is a vector subbundle which meets TX trivially.

Proof. If X is such that �]M .N
�X/˚ TX is a vector subbundle of TM jX , then any split-

ting TM jX D TX ˚ E in which �]M .N
�X/ � E is an orthogonal splitting along X ,

and the rank of QX is that of the vector bundle �]M .N
�X/. Hence (ii) implies (i). Con-

versely, a Poisson–Dirac submanifold X in a Poisson manifold .M; �M / in particular has
an induced Poisson structure, whence �]M .N

�X/\ TX D 0. Hence �]M .N
�X/˚ TX is

a vector subbundle of TM jX if QX WN
�X!NX has constant rank. So (i) implies (ii).

Example 2.21. Every point in a Poisson manifold is coregular.

Example 2.22. An example of a split Poisson–Dirac submanifold which is not coregular.
LetM D so.3/� be dual to the Lie algebra of the group of oriented isometries of Euclidean
3-space, equipped with its canonical linear Poisson structure

�M D x1
@

@x2
^

@

@x3
C x2

@

@x3
^

@

@x1
C x3

@

@x1
^

@

@x2

whose leaves are concentric spheres and the origin. Consider the embedding i WR! M

given by i.t/ D .t; 0; 0/. Then �M has an orthogonal splitting along the image X of i ,
namely

E D
D @
@x2

;
@

@x3

E
; �

]
M .E

ı/ D 0:

Hence X is a split Poisson–Dirac submanifold. Note however that

�
]
M .N

�X/ D

´
E if x1 ¤ 0;
0 if x1 D 0;

whence X is not coregular.

The hierarchy of submanifolds illustrated in Figure 1 is therefore strict, since there
exist:
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• Poisson–Dirac submanifolds which are not clean (e.g., the jumping phenomenon of
Example 2.8);

• clean Poisson–Dirac submanifolds which are not split (e.g., Example 2.16);
• split Poisson–Dirac manifolds which are not coregular (e.g., Example 2.22).

Nevertheless, for certain types of Poisson manifolds .M; �M /, certain classes in the
hierarchy illustrated in Figure 1 may coincide. One such instance is the following.

Example 2.23. A submanifold X in a Poisson manifold .M; �M / is called coisotropic if

�
]
M .N

�X/ � TX:

A coisotropic which is Poisson–Dirac is necessarily a Poisson submanifold.

Another useful example occurs when the ambient manifold has locally constant rank.

Proposition 2.24. A Poisson–Dirac submanifold of a Poisson manifold of locally constant
rank is necessarily coregular of locally constant rank.

Proof. If .M; �M / has locally constant rank, then

Gr.�M / D R!M Gr.F /W D ¹uC �u!M C � j uC � 2 Gr.F /º;

where TF D �
]
M .T

�M/ and !M is a two-form on M for which the endomorphism
�
]
M!

]
M restricts to the identity on TF . Then

i ŠGr.�M / D Ri�.!M / i
ŠGr.F /

shows that i ŠGr.�M / is Dirac exactly when i ŠGr.F / is Dirac, which according to Exam-
ple 2.3, means that i ŠGr.�M / must be a Poisson structure of locally constant rank if it is
smooth. Moreover,

TX \ TF jX smooth ” TX C TF jX smooth ” N �X \N �F smooth:

Because the leftmost space is TFX and the rightmost is ker QX , X is coregular.

3. Poisson submersions with Poisson fibres

We next turn to a “compatibility” condition for a surjective submersion between Poisson
manifolds

p W .†; �†/ �! .M; �M /:(3.1)

There are two natural conditions to impose:
(a) that p be a Poisson map;
(b) that fibres of p be Poisson–Dirac submanifolds.

Condition (a) appears naturally in Poisson geometry.
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Example 3.1. LetG⇒M be a Lie groupoid. A two-form!G 2�
2.G/ is multiplicative if

m�.!G/ D pr�1.!G/C pr�2.!G/;

where m, s and t denote respectively the multiplication, source, and target maps.
Then, if !G is symplectic, a unique Poisson structure �M exists on M , such that

sW .G; !G/! .M; �M / and tW .G; !G/! .M;��M /

are Poisson maps.

Conversely, given a Poisson manifold .M; �M /, there exists a submersion as in (3.1),
in which �† is symplectic and p is Poisson – this is what is called a symplectic realiz-
ation [9, 23]. A symplectic realization is said to be complete if, for every for a function
f 2 C1.M/, the Hamiltonian vector field on † corresponding to f ı p is complete if
that of f is. Complete symplectic realizations exist exactly when .M; �M / arises from a
symplectic groupoid .G; !G/ as in Example 3.1, see Theorem 8 in [11].

Condition (b), on the other hand, appears naturally in the context of this paper if one is
to interpret a submersion as a family p�1.x/ of submanifolds of †, parametrized by M .
The simplest condition to consider in this direction is the following.

Example 3.2 (Coupling Poisson structure). A submersion pW .†;�†/!M from a Pois-
son manifold is coupling if its fibres are Poisson transversals.

For example, every Poisson manifold is coupling around an embedded symplectic
leaf. More explicitly, if .SM .x/; !SM .x// is a closed symplectic leaf of .M; �M /, and
pWM � U ! SM .x/ is a tubular neighborhood of SM .x/, then (shrinking U if need be)
pW .U; �M /! SM .x/ is coupling.

A simple example in which both conditions (a) and (b) are met is given by the follow-
ing.

Example 3.3 (Vertical Poisson structures). Any vertical Poisson structure �† 2 �.^2V /,
VD kerp�, turns a surjective submersion pW†!M into a Poisson submersion pW.†;�†/
! .M; 0/ whose fibres are Poisson submanifolds.

The last two examples, with coregular Poisson–Dirac fibres, motivate the following
definition.

Definition 3.4. A submersion pW .†;�†/!M has Poisson fibres if its fibres are Poisson–
Dirac submanifolds.

Example 3.5. Consider the submersion

p W † D R3 �! R2 DM; p.x1; x2; x3/ D .x1; x2/:

Then fibres of p are Poisson–Dirac submanifolds of † when equipped with the Poisson
structure

�† D x3
@

@x1
^

@

@x2
2 X2.†/;

all fibres inheriting the zero Poisson structure. Note however that none of the fibres is a
coregular Poisson–Dirac submanifold.
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It turns out that the fibres of a Poisson submersion with Poisson fibres are automatic-
ally coregular. In fact,

Theorem 3.6. A Poisson submersion pW .†;�†/! .M;�M / in which each tangent space
Txp

�1.px/ � .Tx†;�†;x/ inherits a Poisson structure (that is, �]†.V
ı/\ V D 0/ auto-

matically has coregular Poisson–Dirac submanifolds for fibres. Moreover, for a coregular
Poisson–Dirac submanifold Y �M ,

(a) X W D p�1.Y / � † is a coregular Poisson–Dirac submanifold;
(b) pW .X; �X /! .Y; �Y / is a Poisson submersion with Poisson fibres.

Proof. For a coregular Poisson–Dirac submanifold Y of .M; �M /, we have that

T Y ˚ �
]
M .N

�Y / � TM jY

is a vector subbundle. Taking the preimage under p�,

TX C p�1� .�
]
M .N

�Y // � T†jX

is a vector subbundle. Now, because p is Poisson,

TX C p�1� .�
]
M .N

�Y // D TX C �
]
†.N

�X/;

and because the fibres of p are Poisson–Dirac,

TX \ �
]
†.N

�X/ D V \ �
]
†.p

�.ker QY // � V \ �
]
†.V

ı/ D 0:

By Lemma 2.20, it follows that X is a coregular Poisson–Dirac submanifold, and special-
izing to the case where Y is a point, we deduce that pW .†; �†/! .M; �M / is a Poisson
submersion with coregular Poisson–Dirac submanifolds as fibres. Moreover, the diagram
of Poisson manifolds

.X; �X /

pjX

��

j
// .†; �†/

p

��

.Y; �Y /
i
// .M; �M /

satisfies the condition of Lemma 3 in [16], which implies that pjX W .X;�X /! .Y;�Y / is a
Poisson submersion. Explicitly: because i induces a Poisson structure, for any uY C �Y 2
Gr.�Y / there is �M 2 T �M such that �Y D i�.�M / and i�.uY /C �M 2 Gr.�M /. Because
pW .†;�†/! .M;�M / is Poisson, there exists u† 2 T† such that i�.uY /D p�.u†/ and
u† C p

�.�M / 2 Gr.�†/. Because TX ' T Y �TM T† and pj D ipjX , it follows that
.uY ; u†/C .pjX /

�.�Y / 2 Gr.�X /, and this implies that pjX is a Poisson submersion. It
has Poisson fibres because both

Vy � .Ty†;�†;y/ and TxX � .Tx†;�†;x/

inherit Poisson structures �V;y 2 ^2Vy and �X;x 2 ^2TxX , for all y 2 † and x 2 X , and
therefore Vx � .Tx†;�X;x/ inherits the Poisson structure �V;x .
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In the spirit of the comment leading up to Proposition 2.24, one could say that, for the
class of submanifolds which arise as fibres of Poisson submersions, the hierarchy of Fig-
ure 2 collapses. Other pertinent examples of this phenomenon can be found in Section 4.

Remark 3.7. A Poisson map pW .†; �†/! .M; �M / is automatically transverse to any
Poisson transversal Y �M , whose preimage X WD p�1.Y / � † is again a Poisson trans-
versal, and pjX WX ! Y becomes a Poisson map for the induced Poisson structures, see
Lemma 1 in [16]. Theorem 3.6 may be regarded as a possible analogue to this previous
statement in the context of coregular Poisson–Dirac submanifolds.

Let us point out in passing that – in contrast to Poisson transversals – Poisson maps
need not meet coregular Poisson–Dirac submanifolds cleanly, and even when they do (as
in the hypotheses of Theorem 3.6), their preimage need not be Poisson–Dirac, as the next
two examples illustrate.

Example 3.8. An example of a Poisson map which does not meet leaves cleanly. Consider
the surjective Poisson map

 W
�
R4; @

@x1
^

@
@x2
C

@
@x3
^

@
@x4

�
�!

�
R2; x1

@
@x1
^

@
@x2

�
;

 .x1; x2; x3; x4/ D .x2; x3x4 � x1x2/:

Then  does not meet cleanly the leaf consisting of the origin alone, since

 �1.0/ D ¹.x1; 0; x3; x4/ j x3x4 D 0º

is not a manifold.

Example 3.9. An example of a Poisson submersion whose fibres are not Poisson–Dirac.
Let the cotangent bundle T �M of a smooth manifold be equipped with its canonical sym-
plectic form !can 2 �

2.T �M/,

!canW D �d�can; �can 2 �
1.T �M/; �can.v/� W D h�; p�.v/i; v 2 T�T

�M:

If �can 2 X2.T �M/ denotes the Poisson structure corresponding to !can, the canonical
projection

pW .T �M;�can/ �! .M; 0/

defines a Poisson submersion, none of whose fibres is Poisson–Dirac. Observe that this
example shows that the hypothesis in Theorem 3.6 that tangent spaces inherit Poisson
structures cannot be removed.

3.1. Couplings over leaves

As discussed in the previous section, Poisson submersions with Poisson fibres are modeled
on both vertical Poisson structures and coupling Poisson submersions, in the same way
as coregular Poisson–Dirac submanifolds were modeled on Poisson submanifolds and
Poisson transversals.

In order to introduce our remaining dramatis personæ, we carry out a closer examin-
ation of the coupling condition to pave the way for the discussion to follow.



Coregular submanifolds and Poisson submersions 1439

A Poisson bivector �† 2 X2.†/ is coupling for a surjective submersion pW†! M

when the fibres of p are Poisson transversals. This is equivalent to Gr.�†/ being trans-
verse to the Dirac structure Gr.V /W D V ˚ V ı corresponding to the foliation by fibres
of p. This is in turn equivalent (see [4, 35]) to the existence of

(a) an Ehresmann connection H ,
(b) a bivector � 2 �.^2V /,
(c) a form ! 2 �.^2V ı/,

such that

Gr.�†/ D R!.H/˚R�.H
ı/W D ¹uC �].�/C !].u/C � j uC � 2 H ˚H ıº;

in which case

(a) � is Poisson; (b) Lh.u/� D 0I

(c) curv.u; v/ D �] d!.h.v/; h.u//; (d) d!.h.u/; h.v/; h.w// D 0I

for all u; v;w 2 X.M/. Here h denotes the horizontal lift ofH and curv.u; v/ WD h.Œu; v�/
�Œh.u/; h.v/� denotes its curvature. Finally, if the submersion

pW .†; �†/ �! .M; �M /

has connected fibres, then it is a Poisson map for some Poisson structure �M onM exactly
when ! is closed, in which case �M is symplectic, ! is the pullback of the closed form
on M corresponding to �M , and H is involutive (see Corollary 1 in [17]).

Example 3.10 (Symplectic base). For a Poisson submersion pW .†; �†/! .M;�M /, we
have that

Gr.�†/ \ Gr.V / D ¹�]†.p
��/C p�� j � 2 ker�]M º:

Therefore a Poisson submersion is automatically coupling if its base .M; �M / is sym-
plectic.

Theorem 3.11. A Poisson submersion with Poisson fibres pW .†; �†/! .M; �M / pulls
symplectic leaves of M back to Poisson submanifolds of †, and p restricts to coupling
Poisson submersions

pjS†.x/ W .S†.x/; !S†.x// �! .SM .px/; !SM .px//

for each x 2 †.

Proof. The symplectic leaf .SM .px/; !SM .px// of .M; �M / through px 2 M is in par-
ticular a coisotropic submanifold; hence so its preimage p�1.SM .px// � † under the
Poisson map p. However, because SM .px/ is a coregular Poisson–Dirac submanifold, it
follows from Theorem 3.6 that p�1SM .px/ is a coregular Poisson–Dirac submanifold,
and that

pjp�1SM .px/ W .p
�1SM .px/; �p�1SM .px// �! .SM .px/; !SM .px//

is a Poisson submersion with Poisson fibres.
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This implies, by Example 2.23, that p�1SM .px/ is a Poisson submanifold, and by
Example 3.10 that pW .p�1SM .px/;�p�1SM .px//! .SM ;�SM / is a coupling Poisson sub-
mersion. Hence, if S†.x/ denotes the symplectic leaf of † through x, then

pjS†.x/ W .S†.x/; !S†.x// �! .SM .px/; !SM .px//

is a Poisson map (because the inclusion of a symplectic leaf is Poisson), and because
SM .px/ is symplectic, pjS†.x/W S†.x/! SM .px/ must be a submersion, and again by
Example 3.10, it is automatically coupling.

Beware that such couplings over leaves need not be surjective, as illustrated by the
example below.

Example 3.12. An example of a Poisson submersion with Poisson fibres whose restriction
over a leaf is not surjective. Consider the surjective Poisson submersion

p W .†; �†/ D
�
R3; @

@x
^

@
@y
C .1C z2/ @

@z
^

@
@y

�
�!

�
R2; @

@x
^

@
@y

�
D .M; �M /;

p.x; y; z/ D .x; y/:

Note that
S†.0/ D ¹.arctan.z/; y; z/ j y; z 2 Rº;

and therefore the restriction pjS†.0/WS†.0/! SM .0/ DM is not surjective.

3.2. Pencils

By the description of a coupling Poisson submersion

pW .†; �†/ �! .M;!M /;

given above, the Poisson structure �† on the total space splits as a sum

�† D �V C �H ;

where �V is the vertical Poisson structure inducing the given Poisson structures on fibres,
and �H is a regular Poisson structure obtained by pulling !M back to a flat Ehresmann
connection on pW†!M . This trivially implies that �V ; �H commute.

This phenomenon holds true in the setting proposed in [34] to generalize the coupling
condition:

Example 3.13 (Almost-coupling). An almost-coupling Poisson submersion pW .†;�†/!
.M;�M / is a Poisson submersion such that there exists an Ehresmann connectionH�T†
for which �†.H ı; V ı/ D 0. A such connection splits �† as a sum �† D �V C �H ,
where �V and �H are the vertical and horizontal bivectors defined by

�
]
V .�/ D

´
0; � 2 V ı;

�
]
†.�/; � 2 H ı;

and �
]
H .�/ D

´
0; � 2 H ı;

�
]
†.�/; � 2 V ı:
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Moreover, because p is Poisson, it follows that the horizontal bivector �H is of the form
�H D h.�M /, where hWX�.M/!X�.†/ denotes the horizontal lift (of multivectors) asso-
ciated with H . This implies that in the induced bigrading Xp;q.†/ D �.^pV ˝ ^qH/,
we have

Œ�V ; �V � 2 X3;0.†/; Œ�V ; �H � 2 X2;1.†/ and Œ�H ; �H � 2 X1;2.†/˚ X0;3.†/:

Hence �†D�V C�H Poisson implies that �V and �H are commuting Poisson structures:

Œ�V ; �V � D 0; Œ�V ; �H � D 0 and Œ�H ; �H � D 0:

This motivates our next definition.

Definition 3.14. An orthogonal pencil is a Poisson submersion pW .†;�†/! .M;�M / in
which �† splits into commuting Poisson structures �† D �V C �H , where �V 2 �.^2V /
is a vertical bivector, and �]H .T

�†/ \ V D 0.

Note that an orthogonal pencil pW .†; �†/ ! .M; �M / is automatically a Poisson
submersion with Poisson fibres, and that the splitting �†D�V C�H is unique. Moreover,
an almost-coupling submersion pW .†; �†/! .M; �M / is tantamount to an orthogonal
pencil for which �H is tangent to an Ehresmann connection for p.

Example 3.15. An example of an orthogonal pencil which is not almost-coupling. Con-
sider on †W D C2, with coordinates

z0 D x0 C iy0 2 C and z1 D x1 C iy1 2 C;

and with Euler and rotational vector fields

Ei D xi
@

@xi
C yi

@

@yi
and Vi D xi

@

@yi
� yi

@

@xi
�

Then there is a surjective Poisson submersion

p W .†; �†/! .M; �M /; p.z0; z1/ D z0;

where M W D C and

�† D jz0j
2.E0 C E1/ ^ .V0 C V1/; �M D jz0j

2E0 ^ V0:

Note that

�
]
†.T

�†/ D

´
hE0 C E1;V0 C V1i if z0 ¤ 0;
0 if z0 D 0;

meets the vertical bundle of pW†! M trivially, and therefore pW .†; �†/! .M; �M /

is a Poisson submersion with Poisson fibres in which fibres all have the trivial Poisson
structure. This implies that this is in fact an orthogonal pencil. However, it is not almost-
coupling: an Ehresmann connection for which it is almost-coupling would coincide with
H D �

]
†.T

�†/ on the locus z0 ¤ 0, but

lim
x0!0

lim
x1!0

lim
y0!0

lim
y1!0

H D h @
@x0
; @
@y0
i ¤ h

@
@x1
; @
@y1
i D lim

x1!0
lim
x0!0

lim
y1!0

lim
y0!0

H

shows that H jz0¤0 cannot extend to a global Ehresmann connection.
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While general Poisson submersions with Poisson fibres need not admit orthogonal
splittings, they have in some sense a canonical candidate for the job.

Proposition 3.16. The equivalence relation on the total space of a Poisson submersion
with Poisson fibres pW .†;�†/! .M;�M / in which x0; x1 2 † are equivalent if and only
if there is f 2 C1c .M � I / such that

�
1;0
Hf ıp .x0/ D x1

defines a singular foliation �H , each of whose leaves carries a canonical symplectic form.

Proof. First observe that, because p is a Poisson map,

�
]
† ı p

�
W �1.M/ �! X.†/

defines a Lie algebra map, when �1.M/ is given the Koszul bracket

Œ�; ���M WD L
�
]
M .�/

� � �
�
]
M .�/

d�:

This implies that the pullback vector bundle A WD p�.T �M/ over † carries a structure of
Lie algebroid, with bracket and anchor determined by

Œp�.�/; p�.�/�A D p
�Œ�; ���M and �A.p

�.�// D �
]
† ı p

�.�/:

In the usual manner, A determines on † a singular foliation �H , whose tangent space is
�
]
†.V

ı/. Hence its leaves are the equivalence classes of the equivalence relation described
in the statement, and they are submanifolds of the symplectic leaves of†: �H .x/� S†.x/.
Therefore,

!�H .x/.Hf ıp;Hgıp/ D ¹f; gº ı p

is just the restriction of the symplectic form on S†.x/ to �H .x/.

Remark 3.17. The following asymmetry is noteworthy: while the singular horizontal foli-
ation �H is defined for all Poisson submersions with Poisson fibres, the partition into
leaves of the Poisson–Dirac structures on fibres need not in general define a singular foli-
ation, as Example 3.19 below illustrates.

In contrast to almost-coupling Poisson submersions, for a general Poisson submer-
sion with Poisson fibres pW .†; �†/! .M; �M /, the singular foliation �H , with leaves
canonically equipped with symplectic forms (described in Proposition 3.16), need not in
general arise from a Poisson structure, just as, for a general Poisson submersion with Pois-
son fibres, the induced Poisson structures �p�1.x/ on the fibres p�1.x/ � † need not vary
smoothly with x 2M . That is, there need not be any vertical bivector �V 2�.^2V /which
restricts on p�1.x/ to �p�1.x/. In fact, these conditions are simultaneously satisfied.

Theorem 3.18. For a Poisson submersion with Poisson fibres pW .†; �†/! .M; �M /,
the following assertions are equivalent:

(i) It admits an orthogonal pencil.

(ii) There is a Poisson structure �H 2 X2.†/ whose symplectic leaves are those of �H .

(iii) The Poisson structures on fibres assemble into a vertical Poisson structure �V 2
�.^2V /.
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(iv) The linear family
Gr.�†/ \ .V ˚ T �†/C V ı � T�†

is a vector bundle.

Proof. If �† splits into a pencil �† D �V C �H , where �V is a vertical bivector, and
�
]
H .T

�†/ \ V D 0, then

(3.2) �
]
H .�/ D �

]
†.�/; � 2 V ı;

which implies that the tangent space at x 2 † to the leaf �H .x/ of the singular foli-
ation �H of Proposition 3.16 coincides with the tangent space �]H .T

�
x †/ to the leaf of �H

through x, and the symplectic form on those spaces coincides as well, being the pullback
of that on the ambient space. Therefore (i) implies (ii).

On the other hand, if a Poisson structure �H on † exists whose singular symplectic
foliation coincides with that of �H , then �H is unique, and satisfies (3.2) – which is to say
that �V WD �† � �H 2 X2.†/ is a vertical bivector, which induces on the fibres of p the
same Poisson structure as �† does. Therefore (ii) implies (iii).

Next observe that if a vertical bivector �V 2 �.^2V / induces on the fibres of p the
same Poisson structure as �†, then

Gr.�V / D Gr.�†/ \ .V ˚ T �†/C V ı;

and therefore (iii) implies (iv). Finally, note that the pullback of the Lagrangian family

L† WD Gr.�†/ \ .V ˚ T �†/C V ı

under the inclusion i WX ! † of any fibre X of p coincides with that of Gr.�†/:

i Š.L†/ D i
ŠGr.�†/:

This implies that L† D Gr.�V / for a vertical Poisson bivector �V 2 �.^2V /. Because
on an open, dense subset U � † on which the rank of �]H WD �

]
† � �

]
V is locally con-

stant, there is an Ehresmann connection H � T U for p to which �H is tangent. Hence
pW .U; �†/! .pU; �M / is an almost-coupling Poisson submersion, and H induces the
splitting �†jU D �V jU C �H jU . By Example 3.13, �V jU and �H jU are commuting
Poisson structures, and because U is dense in †, this implies that �† D �V C �H is an
orthogonal pencil.

Example 3.19. An example of a Poisson submersion with Poisson fibres which is not
an orthogonal pencil. The quotient map of the action of scalar multiplication on † D
C2 n ¹0º,

C� �† �! †; w � .z0; z1/ WD .wz0; wz1/;

gives rise to a submersion

p W † �!M D CP 1; p.z0; z1/ WD Œz0 W z1�;
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whose vertical bundle is spanned by E0 C E1 and V0 C V1 (using the notation of Exam-
ple 3.15). The Poisson bivector

�† D
1
4
.E0 � E1/ ^ .V0 � V1/

is C�-invariant, and thus gives rise to a Poisson submersion pW .†; �†/ ! .M; �M /,
where �M D E ^ V , and where E ; V 2 X.CP 1/ are vector fields which restrict in a
standard affine chart restrict to the Euler and rotational vector fields (or their opposites)
of C. Note that the image of �† is spanned by E0 � E1 and V0 � V1; hence the induced
Poisson structure on the fibre†Œz0Wz1� over Œz0 W z1�2M is trivial if z0z1¤ 0, and it is sym-
plectic otherwise. Hence the Poisson structures on fibres do not even vary continuously,
and by Theorem 3.18, no orthogonal pencil exists, nor is �H the partition into leaves of a
Poisson structure on †.

4. Examples from Lie theory

4.1. Poisson–Lie groups

A splitting of a Lie algebra d into Lie subalgebras d D g˚ h is called a Manin triple if d
is equipped with an invariant, symmetric bilinear pairing h � ; �iW S2d! R for which the
subalgebras g and h are Lagrangian.

A G-invariant Manin triple .d; h � ; �i;g;h/ is a Manin triple equipped with a choice of
Lie group G with Lie algebra g, and an extension AdWG ↷ d of the adjoint action of G
on g which integrates the Lie bracket action adWg ↷ d and such that

Adg Œv; w� D ŒAdg.v/;Adg.w/�; hv;wi D hAdg.v/;Adg.w/i

for all g 2 G and v; w 2 d. In that case, the quotient representation AdWG ↷ d=g D g�

is the coadjoint action.
To a G-invariant Manin triple there corresponds a Poisson–Lie group structure �G

on G (see [13]; see also Section 5 in [29], whose perspective we espouse here) – that is, a
Poisson bivector �G 2 X2.G/, for which multiplication

m W .G; �G/ � .G; �G/ �! .G; �G/

is a Poisson map. Explicitly, this means that, for all g1; g2 2 G,

�G;g1g2 D lg1��G;g2 C rg2��G;g1 ;

where lg1.g/D g1g and rg2.g/D gg2 stand for left- and right-multiplication. Indeed, the
G-invariant Manin triple .d; h � ; �i; g; h/ defines an infinitesimal dressing action %W d!
�.TG/, uniquely determined by the condition that

(4.1) Adg.�%.v/�Lg / D prgAdg.v/; .g; v/ 2 G � d;

where �L 2 �1.GIg/ denotes the left-invariant Maurer–Cartan form of G. The infinites-
imal dressing action extends in fact to a linear map

(4.2) " W d �! �.TG/; ".v/ D %.v/C h�L; vi;
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which satisfies
hv;wi D h".v/; ".w/i; Œv; w� D Œ".v/; ".w/�;

and for the ensuing isomorphism "WG � d! TG, we have

TG D ".G � g/; Gr.�G/ D ".G � h/:

Note that, by definition of �G , Poisson submanifolds of .G; �G/ are unions of orbits of
the infinitesimal action �W h! X.G/; that is, h-invariant submanifolds of G.

4.2. Coregular Poisson–Dirac submanifolds from orbits

Let .G; �G/ be a Poisson–Lie group. An action ˛WG �M ! M of G on a Poisson
manifold .M; �M / is Poisson if

˛ W .G; �G/ � .M; �M / �! .M; �M /

is a Poisson map.

Remark 4.1. A Poisson action of .G; �G/ on .M; �M / need not act by Poisson diffeo-
morphisms of .M; �M /, unless G is equipped with the trivial Poisson structure �G D 0.

Lemma 4.2 (Orbits). For an orbit X of a Poisson action of a Poisson Lie group .G; �G/
on a Poisson manifold .M; �/, the following assertions are equivalent:

(i) it is a coregular Poisson–Dirac submanifold;
(ii) it is Poisson–Dirac;
(iii) TxX � .TxM;�M;x/ is Poisson–Dirac for some x 2 X .

Proof. We need only show that condition (iii) implies condition (i). Let g 2 G and let
� 2 N �gxX . Because ˛�1.X/ D G �X , we have that

˛�.�/ D .˛�x.�/; ˛
�
g.�// D .0; ˛

�
g.�// 2 N

�
.g;x/.G �X/ � T

�
g G � T

�
xM:

Because ˛ is a Poisson map,

�
]
M;gx.�/ D ˛�.�G ; �M /

]

.g;x/
˛�.�/ D ˛�.0; �

]
M;x˛

�
g.�// D ˛g��

]
M;x˛

�
g.�/ D 0;

In particular, this implies that

�
]
M;gx.N

�
gxX/ D ˛g��

]
M;x.N

�
xX/;

�
]
M;gx.N

�
gxX/ \ TgxX D ˛g�

�
�
]
M;x.N

�
xX/ \ TxX

�
;

where in the second equality we used condition (iii). Hence X is a coregular Poisson–
Dirac submanifold.

Example 4.3. If a vector space A acts on a smooth manifoldM , with action ˛WA�M !
M , and induced infinitesimal action

� W A �! X.M/; �.v/x WD
d
dt
˛.e�tv; x/jtD0;
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the induced map ^2� W^2g!X2.M/maps into A-invariant Poisson bivectors onM , and

˛ W .A; 0/ � .M; �M / �! .M; �M /; �M WD ^
2�.�A/;

is a Poisson action for any �A 2 ^2A. Because the tangent space at x 2 M to the orbit
A � x �M contains by construction �]M .T

�
xM/, they are all Poisson submanifolds.

Note in the setting of Example 4.3 that, for any subspace B � A, the restricted action

˛ W .B; 0/ � .M; �M / �! .M; �M /

is Poisson, but it need not be the case that its orbits B � x are coregular Poisson–Dirac
submanifolds. For example, if A D C acts by translations on M D C with its standard
symplectic structure, orbits of the subgroup B D R are not Poisson–Dirac.

Let us borrow from symplectic geometry a useful setting in which orbits are automat-
ically coregular Poisson–Dirac submanifolds.

Definition 4.4. Let a vector space A be equipped with a complex structure J 2 End.A/.
A bivector �A 2 ^2A is positive if J makes the symplectic leaves of �A into Kähler
manifolds.

Explicitly, �A is positive if S WD �]A.A
�/ is a complex subspace, J W .S;!S /! .S;!S /

is a symplectic automorphism, and

gS W S � S �! R; gS .u; v/ WD !S .u; J v/;

is symmetric and positive-definite. Note that if �A is positive and B � A is J -invariant,
then for � 2 Bı such that �]A.�/ 2 B ,

0 D h�; J�
]
A.�/i D �A.�; J

��/ D �!S .�
]
A.�/; �

]
A.J

��// D !S .�
]
A.�/; J�

]
A.�//

D gS .�
]
A.�/; �

]
A.�//

implies that the pertinent set �]A.B
ı/ \ B in (2.3) is trivial, and so B is a coregular

Poisson–Dirac submanifold in .A; �A/.

Lemma 4.5. Let A be a complex vector space equipped with a positive bivector �A 2
^2A. An action of A on a complex manifold M by holomorphic transformations induces
an A-invariant Poisson structure �M on M , with the property that, for all complex sub-
spaceB �A, the induced action .B;0/↷ .M;�M / is Poisson and has coregular Poisson–
Dirac submanifolds as orbits.

Proof. By Lemma 4.2,B � x �M is a coregular Poisson–Dirac submanifold if and only if

Tx.B � x/ � .TxM;�M;x/

has an induced Poisson structure, and this happens exactly when

Tx.B � x/ � .Tx.A � x/; �A�x;x/



Coregular submanifolds and Poisson submersions 1447

has an induced Poisson structure, where �A�x is the Poisson structure on the Poisson sub-
manifold A � x � .M; �M / (as in Example 4.3). Because Tx.B � x/ � Tx.A � x/ is a
complex subspace, it suffices to check that �A�x;x is positive. And that is the case because
the complex-linear infinitesimal action at x,

�x W .A; �A/ �! .Tx.A � x/; �A�x;x/

induces an identification

�x W .A=Ax ; �A=Ax /
�
�! .Tx.A � x/; Ax WD ker.�x/;

where �A=Ax is in turn identified with the restriction of �A to ^2Aıx – and is therefore
positive.

Example 4.6. On A D C, the bivector �A D @
@x
^

@
@y

is positive. Acting on M D C by

translations, there ensues �M D @
@x
^

@
@y

, while the action w � z D ewz produces �M D

.x2 C y2/ @
@x
^

@
@y

.

4.3. Poisson submersions with Poisson fibres from toric varieties

The previous results can be used to produce Poisson submersions with Poisson fibres
associated with the quotient presentation of a (smooth) projective toric variety. By a toric
variety we mean a variety with a Zariski open subset identified to an algebraic torus whose
action on itself by multiplication extends to an action on the variety. Toric varieties are
given by the combinatorial data encoded in a fan. Projective toric varieties can also be
described via suitable polytopes, a viewpoint which is useful to highlight the symplectic
geometry nature of toric varieties.

Example 4.7. We recall Delzant’s Hamiltonian quotient construction of symplectic toric
manifolds and the necessary modifications to induce the projective toric variety structure
via a GIT (for Geometric Invariant Theory) quotient. A symplectic manifold .M 2n; !M /

is toric if it comes equipped with an effective Hamiltonian action

T ↷ .M;!M /
�M
�! t�;

where T is an n-dimensional (compact) torus T ' Tn and t denotes its Lie algebra. A
polytope � � t� is a compact subset of the form

(4.3) � D

d\
iD1

¹� 2 t� j h�; ui i ⩾ ciº;

where ci 2R and u1; : : : ; ud 2 t, which are thought of as normal to the faces of�. Such a
polytope is called Delzant if u1; : : : ; ud can be rescaled to lie in the lattice� � t which is
the kernel of the exponential map exp W t! T , and at each vertex of� the vectors normal
to faces of � through the vertex form a Z-basis of �.

To a Delzant polytope � � t� as in (4.3) one associates the exact sequence of tori:

1 �! N
i
�! Td p

�! T �! 1
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where p is uniquely determined by the condition that p�.ei /D ui , where e1; : : : ; ed stands
for the standard basis of Rd D Lie.Td /. If !std 2�

2.Cd / denotes the standard symplectic
structure !std D

i
2

Pd
iD1 dzi ^ dzi , the standard action of Td on Cd by multiplication

gives rise to a Hamiltonian action

Td ↷ .Cd ; !std/
�
�! Lie.Td /�; �.z/ D

dX
iD1

�
jzi j

2

2
C ci

�
ei :

Then�N WD i��WCd!n� is a moment map for the action of the subtorusN↷.Cd ;!std/.
The map �N is proper, zero is a regular value, and the action of N on ��1N .0/ is free.
Consequently,M� WD �

�1
N .0/=N is a compact smooth manifold endowed with a residual

action of T D Td=N . This action is Hamiltonian for the symplectic form on M coming
from Hamiltonian reduction of !std and the image of the moment map is �.

To obtain the algebro-geometric quotient construction ��1N .0/ is enlarged to an open
dense subset †� � Cd which can be described in several equivalent ways: it is the sat-
uration of ��1N .0/ by the action of the complexification NC of N , it is the subset of Cd

where NC acts freely and with closed orbits, and it is the collection of orbits the standard
action .C�/d ↷ Cd which intersect ��1N .0/. More explicitly, the orbits of .C�/d ↷ Cd

are parametrized by subsets I of ¹1; 2; : : : ; dº:

Cd
I WD ¹z 2 Cd

j zi D 0 , i 2 I º:

Each subset F.�/I � �,

F.�/I WD ¹� 2 � j h�; ui i D ci , i 2 I º;

is a face of � if nonempty, and

†� D
[

F.�/I¤∅

Cd
I

These equivalent descriptions give a canonical identification of the compact quotient M�

with the GIT quotient †�=NC . The outcome is a complex (projective) structure on M�

together with a complex action of .C�/d=NC with an open dense orbit.

Proposition 4.8. Let pW†� ! M� be the GIT quotient construction of the toric vari-
ety M�. Then every positive bivector � 2 ^2 Cd induces Poisson structures �† on †�
and �M on M�, for which the quotient map pW .†�; �†/! .M�; �M / is a Poisson sub-
mersion with Poisson fibres.

Proof. The complex vector space A WD Cd acts on Cd by the holomorphic transform-
ation .w1; : : : ; wd / � .z1; : : : ; zd / WD .ew1z1; : : : ; e

wd zd /. By Lemma 4.5, there is an
inducedA-invariant Poisson structure… on Cd , with the property that .nC; 0/↷ .Cd ;…/

is a Poisson action with coregular Poisson–Dirac submanifolds as orbits, where nC D

Lie.NC/. Because †� � Cd is a union of A-orbits, it is a Poisson submanifold, with
induced Poisson structure �† WD …j†� . Because �† is NC-invariant, the quotient map
pW†� ! M� pushes �† to a Poisson structure �M on M� (cf. [6]), whose fibres are
coregular Poisson–Dirac submanifolds of .†�; �†/.
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When the positive bivector � 2 ^2Cd is nondegenerate, the leaves of .M�; �M /

are the orbits of the complex torus action, and so are finite in number. We refer to such
manifolds as toric Poisson manifolds (cf. [6]). If complex conjugation is an anti-Poisson
automorphism of .Cd ; �/, we say that � is totally real.

4.4. Poisson submersions with Poisson fibres from varieties of full flags

A closed subgroup K of a Poisson–Lie group .G; �G/ is a Poisson–Lie subgroup if it is
a Poisson submanifold of .G; �G/; otherwise said, if �G is tangent to K, �G jK D �K 2
X2.K/, in which case .K; �K/ becomes a Poisson–Lie group in its own right.

In the following proposition, we look at different ways in which a closed subgroup
interacts with the ambient Poisson–Lie group structure (cf. Section 4 in [27] and Proposi-
tion 2 in [31]).

Proposition 4.9. Let a Poisson–Lie group .G; �G/ correspond to the G-invariant Manin
triple .d; h � ; �i;g;h/, and for a connected, closed subgroupK �G with Lie algebra k � g,
denote by pWG !M WD G=K the quotient map under the action

K ↷ G; ˛.k; g/ D gk�1:

(a) �G is K-invariant” Œk; h� � h, in which case �G vanishes along K.

(b) K is a Poisson submanifold” kı � h is an ideal” Œk; kı� � h.

(c) A Poisson structure �M on M exists, for which the quotient map pW .G; �G/ !
.M; �M / is a Poisson submersion” kı � h is a subalgebra.

(d) If K is a Poisson submanifold, then fibres of p WG ! M are Poisson–Dirac sub-
manifolds if and only if

AdG.h/ \ .k ˚ kı/ � kı:

In that case, the Poisson structures on fibres are all trivial exactly when

AdG.h/ \ .k ˚ h/ � h:

Proof. First note that the infinitesimal action k ! X.G/ is given by the map % of (4.1),
since

d

dt
g exp.�tv/�1 D

d

dt
lg.exp.tv// D .lg/�.v/ D vLg D %.v/g :

If we let V � TG stand for the vertical bundle of pWG !M , then

V D ¹%.v/g j .g; v/ 2 G � kº; V ı D ¹h�Lg ; wi j w 2 kıº

Indeed, V is spanned by left-translates of k, and

V ıg D ¹h�
L
g ; wi j �%.v/g h�

L
g ; wi D h�%.v/g�

L
g ; wi D hAdg�1 prg Adg.v/; wi D 0; v 2 kº

D ¹h�Lg ; wi j hv;wi D 0; v 2 kº D ¹h�Lg ; wi j w 2 k?º

D ¹h�Lg ; wi j w 2 kıº;
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where we used the fact that k? D g˚ kı, and that h�L; gi D 0. Because the map "Wd!
�.TG/ of (4.2) is an algebra map, we have

"Œv; w� D Œ".v/; ".w/� D Œ%.v/; %.w/C h�L; wi� D Œ%.v/; �
]
Gh�

L; wi C h�L; wi�

for all v 2 k and w 2 h, and therefore,

Œk; h� � h ” Œ%.k/; �.Gr �G/� � �.Gr �G/;

which is the same as saying that the infinitesimal action %W k ! X.G/ is by Poisson auto-
morphisms of .G; �G/. Because K is assumed to be connected, this is in turn equivalent
to demanding that �G 2 X2.G/ be K-invariant. By multiplicativity of �G ,

�G;gk�1 D .lg/�.�G;k�1/C .rk�1/�.�G;k/ D .rk�1/�.�G;k/; .k; g/ 2 K �G:

This implies that �G vanishes along K, and hence that .K; 0/ ↷ .G; �G/ is a Poisson
action, whose orbits are the fibres of pWG !M . This proves (a). Observe next that K is
a Poisson submanifold if and only if

�
]
G.N

�K/ D ¹%.w/k j .k; w/ 2 K � kıº

is trivial, which is tantamount to saying that AdK.kı/� h, or, equivalently, that Œk; kı�� h
– which by invariance of h � ; �i is yet equivalent to Œkı;h� � kı. This proves (b). Moreover,
because

".G � kı/ D ¹�.w/g C h�
L
g ; wi j .g; w/ 2 G � kıº D R�G .V

ı/;

it follows that
".G � Gr.k// D R�GGr.V /:

Again by invariance of h � ; �i, we have that

Gr.k/ is a subalgebra ” kı is a subalgebra ” Œk; kı� � Gr.k/;

and therefore kı is a subalgebra exactly when R�GGr.V / is a Dirac structure on G.
Because R�GGr.V / contains the vertical bundle, it is a basic Dirac structure according
to Proposition 1 in [17], that is, it is the pullback of a Dirac structure LM on M ,

R�GGr.V / D pŠ.LM /;

in which case
LM D pŠR�GGr.V / D pŠGr.�G/:

Because LM arises from pushing forward a Dirac structure, it must itself be the graph of
a Poisson structure �M on M , for which pW .G; �G/! .M; �M / is a Poisson map. This
proves (c).

Observe next that, if .K; �K/ is a Poisson–Lie subgroup of .G; �G/, then

˛ W .K;��K/ � .G; �G/ �! .G; �G/

is a Poisson action, whose orbits are the fibres of pWG ! M . Invoking Lemma 4.2, we
deduce that the fibres of p have an induced Poisson structure exactly when the intersection

�
]
G.V

ı/ \ V D
®
%.v/g j 9 w 2 kı; %.v/g D %.w/g

¯
D
®
%.v/g j v 2 prg ker.%g jk˚kı/

¯
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is trivial. This is equivalent to the condition that

.g; v; w/ 2 G � k � kı; Adg.v C w/ 2 h H) v D 0;

that is, that AdG.h/ \ .k ˚ kı/ � kı. Arguing in exactly the same manner, we conclude
that

�
]
G.T

�G/ \ V D ¹%.v/g j 9 w 2 h; %.v/g D %.w/gº

is trivial (that is, that the induced structures on fibres are trivial) exactly when AdG.h/ \
.k ˚ h/ � h.

On a compact connected semisimple Lie group a choice of maximal torus and root
order gives rise to a “standard” Poisson–Lie group structure which descends to the mani-
folds of full flags [27].

Proposition 4.10. Let a connected compact Lie groupG be equipped with its “standard”
Poisson structure �G , and let .M; �M / be the manifold of full flags. Then pW .G; �G/!
.M;�M / is a Poisson submersion with Poisson fibres, and the Poisson structures on fibres
are all trivial.

Proof. Let us fix a maximal torus T � G, with Lie algebra t. Then tC is a Cartan subal-
gebra for the complex semisimple Lie algebra d WD gC; hence there is a splitting of vector
spaces

d D tC ˚
M
˛2�

d˛;

where � is the set of all roots ˛ 2 t�C n ¹0º.
The Killing form Bd 2 S

2d� of d is an invariant, nondegenerate, symmetric bilinear
pairing. It is nondegenerate on tC � tC and on d˛ � d�˛ , and it vanishes on d˛ � dˇ if
˛ C ˇ ¤ 0. Moreover, there is a splitting of real vector spaces

tC D t˚ a; a WD ¹v 2 tC j ˛ 2 � ) ˛.v/ 2 Rº;

and Bdjt�t is negative-definite and Bdja�a is positive-definite. Let us now fix a set of
positive roots �C � �, and write � D �C

`
��, where �� WD ��C. Define

n˙ WD
M
˛2�˙

d˛; b˙ WD tC ˚ b˙:

Then n˙ are nilpotent Lie algebras, and b˙ are solvable Lie algebras; in fact, Œb˙;b˙� D
n˙. Moreover, the splittings b˙ D t˚ a˚ n˙ can be described in terms of the spectrum
of the adjoint map ad.v/Wd! d, in the sense that, for v 2 b˙,

(S1) v 2 t˚ n˙ ” Spec.ad.v// � iR;
(S2) v 2 a˚ n˙ ” Spec.ad.v// � R;
(S3) v 2 n˙ ” Spec.ad.v// D ¹0º.

Define further
h WD a˚ nC and hv;wi WD =Bd.v; w/:
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Then .d; h � ; �i; g; h/ is a Manin triple, and because G is connected, there are no choices
in the representation Ad W G ↷ d, so we may regard .d; h � ; �i;g;h/ as G-invariant Manin
triple. The Poisson structure �G 2 X2.G/ that corresponds to it is the “standard” or Lu–
Weinstein Poisson structure on G. By item (a) in Proposition 4.9, the fact that

Œt; h� D nC � h

implies that pWG ! G=T pushes �G to a Poisson structure �M on M D G=T . On the
other hand, suppose .g; x; y; z; w/ 2 G � a � n˙ � t � n˙ is such that

Adg.x C y/ D z C w:

By (S1), Spec.ad.z C w// � iR, and by (S2),

Spec.adAdg.x C y// D Spec.ad.x C y// � R:

Thus (S3) implies that x D 0 and z D 0. That is,

AdG.h/ \ .t˚ nC/ � nC;

which implies by item (d) in Proposition 4.9 that the fibres of pWG ! M are Poisson–
Dirac submanifolds. In fact, by the same argument one deduces that

AdG.h/ \ .t˚ h/ � h;

which is to say that all Poisson structures on fibres are trivial.

4.5. Poisson structures on associated bundles

Recall that if pWP ! M is a right principal G-bundle, and G acts on the left on a mani-
fold X , we refer to the quotient of the free left action

G ↷ P �X; g � .y; x/ WD .yg�1; gx/;

as the associated bundle

p W † WD P �G X �!M; pŒy; x� D p.y/:

The first observation is that, when P is equipped with aG-invariant Poisson structure,
the associated bundle † has an induced Poisson structure – and certain good properties of
the principal bundle are inherited by its associated bundle:

Lemma 4.11. Let a right principal G-bundle pWP !M be endowed with a G-invariant
Poisson structure �P , and let G act on the left of a Poisson manifold .X; �X / by Poisson
diffeomorphisms. Then there exist Poisson structures �M onM and �† on† WD P �G X ,
for which

.P; �P / � .X; �X /
q
//

pr1
��

.†; �†/

p

��

.P; �P / p
// .M; �M /

are all Poisson submersions. If pW .P; �P / ! .M; �M / is a Poisson submersion with
Poisson fibres, or an orthogonal pencil, then so is pW .†; �†/! .M; �M /.
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Proof. Because �P 2 X2.P / isG-invariant, there exists a unique Poisson structure �M 2
X2.M/ such that pW .P; �P /! .M; �M / is a Poisson submersion. Likewise, the Poisson
structure .�P ; �X / on P �X is invariant under the diagonal action

G ↷ P �X; g.y; x/ D .yg�1; gx/;

and a unique Poisson structure �† exists on†, for which q W .P;�P /� .X;�X /! .†;�†/

is a Poisson submersion. In fact, .�P ; 0/ and .0;�X / are bothG-invariant, and if we denote
by �H ; �V 2 X2.†/ the respective Poisson bivectors which correspond to them, we have
a splitting into commuting Poisson structures

�† D �H C �V ;

in which �V is tangent to the fibres of pW†!M .
Suppose on the one hand that pW .P; �P /! .M; �M / is a Poisson submersion with

Poisson fibres. Then

�
]
†.V

ı
†/ D q�.�

]
P ; �

]
X / q

�.V ı†/ D q�.�
]
P ; �

]
X /.V

ı
P �X/ D q�.�

]
P .V

ı
P / �X/

is a vector bundle, which meets V† trivially because q�.�
]
P .�/; 0/ 2 V† implies that

�
]
P .�/ 2 VP . Hence pW .†;�†/! .M;�M / would be a Poisson submersion with Poisson

fibres as well. Suppose on the other hand that pW .P; �P /! .M; �M / is an orthogonal
pencil. By Theorem 3.18, this is equivalent to the vertical Poisson structures on fibres
assembling into a smooth, vertical Poisson structure z�V 2 �.^2V†/ – in which case
�V WD q�z�V C�X 2�.^

2V†/ is a smooth, vertical Poisson structure on†, which induces
on fibres the same Poisson structure as �†. Hence pW .†;�†/! .M;�M / is an orthogonal
pencil.

Even when the principal bundle itself fails to be sufficiently well-behaved, one may
sometimes impose conditions on the Poisson structure �P and the action G ↷ .X;�X / to
require better behavior of its associated bundle, as in the following result.

Lemma 4.12. Let a right principal G-bundle pWP !M be endowed with a G-invariant
Poisson structure �P , and let G act on the left of a Poisson manifold .X; �X / by Pois-
son diffeomorphisms. Let WG � VP � TX denote the vertical bundle to qWP � X ! †,
and VP the vertical bundle to pWP ! M . If �]P WW

ı
G ! TP � X meets VP � X in a

vector bundle, then pW .†; �†/! .M; �M / is an orthogonal pencil.

Proof. Observe that by the characterization of Theorem 3.18, pW .†; �H / ! .M; �M /

is an orthogonal pencil if and only if Gr.�H / \ .V† ˚ T �†/ C V ı† is a vector bundle.
Because q is a Poisson submersion, this is the case exactly when

qŠGr.�H / \
�
.VP � TX/˚ .T

�P � T �X/
�
C V ıP �X

is a vector bundle, and since qŠGr.�H / DR�HGr.WQ/, that is implied by the hypothesis
that

.�
]
P ; 0/

�1.VP �X/ � W
ı
Q

is a vector bundle.
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Let us (tentatively) say that a Poisson submersion with Poisson fibres pW .†; �†/!
.M; �M / is strongly locally trivial if every point x 2M lies in an open set U �M , over
which there exists a diffeomorphism �WU �X

�
�! p�1.U / such that

Gr.�M /jU � Gr.�X / D �ŠGr.�†/:

Any two fibres of a strongly locally trivial Poisson submersion are Poisson diffeomorphic.
It is also worthwhile to consider the case of Poisson submersions in which nearby fibres
are gauge-equivalent: we call a Poisson submersion with Poisson fibres locally trivial if

(4.4) R!.Gr.�M /jU � Gr.�X // D �ŠGr.�†/

for a closed two-form ! 2 �2.U �X/ for which

idC.0; �X /]! W U � TX �! U � TX

is an isomorphism.
Note that the latter condition is tantamount to requiring that pW .†; �†/! .M; �M /

has Poisson fibres.

Remark 4.13. Strongly locally trivial Poisson submersions are locally trivial. In favor-
able circumstances, one may employ the Moser trick, see Lemma 4 in [15], to attempt
to promote a local trivialization into a strong one. This strategy (or any strategy, for that
matter) may fail, however: below we present an example which is locally trivial, but not
strongly locally trivial for completeness reasons:

Example 4.14. An example of a locally trivial Poisson submersion with Poisson fibres
which is not strongly locally trivial. Let M D RC have coordinate t , and let

X � R2; X D ¹.x1; x2/ j x
2
1 C x

2
2 < 1º:

Consider on M the trivial Poisson structure �M D 0, and on X the standard Poisson
structure �X D @

@x1
^

@
@x2

. Consider the closed two-form

! WD �d.t˛/; ˛ WD 1
2
.x1dx2 � x2dx1/;

on † WDM �X , equipped with the Poisson structure

Gr.�†/ WD R!.Gr.�M / � Gr.�X // D Gr
�
1
1Ct

�X
�
:

Then the canonical projection

p W .†; �†/ �! .M; 0/

is a Poisson submersion with Poisson fibres, which is locally trivial by construction.
However, no strong local trivialization can exist. For example, suppose a strong local

trivialization would exist around, say t D 1. Then for some open set 1 2 U � M , there
would exist a smooth embedding ',

' W U �X
�
�! †;
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such that p' D p, and

' W .U; �U / � .X; �X / �!
�
†; 1

1Ct
�X
�

is a Poisson map. A such map would induce, for all t 2 U , Poisson diffeomorphisms

't W .X; �X /
�
�!

�
X; 1

1Ct
�X
�
;

which is impossible since the symplectic areas change.

Example 4.15. A Poisson submersion pW .†;�†/! .M;�M / is complete if the Hamilto-
nian vector field of a function f ı p 2 C1.†/ is complete if that of f 2 C1.M/ is
complete. It follows from Theorem 3.11 that a complete Poisson submersion with Poisson
fibres pW .†; �†/! .M; �M / restricts over each leaf SM .x/ of .M; �M / to a strongly
locally trivial Poisson submersion

p W .p�1SM .x/; �p�1SM .x//! .SM .x/; �SM .x//:

Indeed, recall that a Poisson submersion is coupling exactly when its horizontal foliation
is an Ehreshmann connection. In such a situation there is a mandatory strategy to attempt
to produce a strong local trivialization around any given fibre: to integrate the flows of
Hamiltonian vector fields of (appropriate) functions pulled back from the base. The suc-
cess of the construction for every fibre is equivalent to the completeness of the (coupling)
Poisson submersion.

Lemma 4.16. A locally trivial Poisson submersion is an orthogonal pencil. A strongly
locally trivial Poisson submersion is almost-coupling.

Proof. Let pW .†;�†/! .M;�M / be a locally trivial Poisson submersion. As we already
observed, p has Poisson fibres, so in order to show that it is an orthogonal pencil, it suffices
by Theorem 3.18 to check that the Poisson–Dirac structures on fibres vary smoothly. This
is a local matter in M , which we need only check over a trivialization

ˆ WD ��R! W .U; �M / � .X; �X /
�
�! .p�1.U /; �†/:

But

R!.Gr.�M /jU � Gr.�X // D �ŠGr.�†/; idC.0; �X /]! W U � TX
�
�! U � TX;

exhibits the fibres of p as gauge-transformations of �X by the restriction of the smooth
form ! to fibres, which is clearly smooth. Thus a locally trivial Poisson submersion is an
orthogonal pencil.

When the submersion is strongly locally trivial (so that ! may be chosen to van-
ish identically), then Ehresmann connections on prWU � X ! U which make it into an
almost-coupling submersion form a non-empty convex set, and so a global Ehresmann
connection can be built out of a partition of unity subordinated to a trivializing cover,
which turns pW .†; �†/! .M; �M / into an almost-coupling submersion.
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Let �P be an invariant Poisson structure on the total space of the right principal G-
bundle pWP !M . Then p pushes �P to a Poisson structure �M onM , i.e., pW .P;�P /!
.M; �M / is a Poisson submersion. Such a “Poisson principal bundle” pW .P; �P / !
.M;�M / is equivariantly locally trivial if around each x 2M there is an open set U �M ,
over which there exists a principal bundle trivialization �WU � X ��! p�1.U / and a G-
invariant closed two-form ! 2 �2.U �G/G for which

R!.Gr.�M /jU � Gr.�G// D �ŠGr.�P /

and
idC.0; �G/]! W U � TG

�
�! U � TG

is an isomorphism.

Remark 4.17. A symplectic principal bundle with symplectic fibres is always equivari-
antly locally trivial: the symplectic orthogonal to fibres defines a complete principal (sym-
plectic) connection, see Proposition 6.6 in [7].

There are Poisson principal bundles which are locally trivial but not equivariantly so,
as the example below illustrates.

Example 4.18. Consider the trivial principal G-bundle pW .G � R; �P /! R endowed
with a G-invariant vertical Poisson structure. That �P be strongly locally trivial is equi-
valent to �p�1.x/ having nearby Poisson diffeomorphic fibres (by means of a smooth 1-pa-
rameter family of Poisson diffeomorphism). Equivariant strong local triviality amounts to
realizing such diffeomorphisms by Lie group automorphisms.

Let G WD Aff.R/ � Aff.R/, where Aff.R/ is the group of affine motions of the line.
Consider the the 1-parameter family of linear 2-forms on the Lie algebra of G

e�1 ^ e
�
2 C xe

�
1 ^ e

�
3 C e

�
3 ^ e

�
4 2 ^

2g�; x 2 R;

where

e1 D

�
0 0

0 1

�
; e2 D

�
0 0

1 0

�
2 aff.R/

and e3 D e1, e4 D e2 belong to a second copy of aff.R/. Let �P be the Poisson structure
corresponding to the 1-parameter family of right-invariant symplectic forms which integ-
rates the previous family of linear 2-forms. For different positive values of x, the right-
invariant symplectic forms induced on G cannot be related by a Lie group automorphism,
see Proposition 2.4 in [30]. However, the Moser trick in logarithmic coordinates produces
a symplectic trivialization.

Lemma 4.19. Bundles associated to strongly, equivariantly locally trivial principal
bundles are strongly locally trivial.

Proof. Let �P be an invariant Poisson structure on the total space of the right principal
G-bundle pWP !M which makes it into a Poisson submersion with Poisson fibres. If �P
is equivariantly strongly locally trivial, around each point x 2 M there is a local bundle
trivialization �W U � G ! P and a G-invariant Poisson structure �G on G, such that
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.�M jU ; �G/D �
��P . Then .�; idX /WU �G �X ! P �X induces a local trivialization

�WU �X ! † of the associated bundle † D P �G X , making

(4.5) U �G �X

.idM ;˛/
��

.�; idX / // P �X

q

��

U �X
�

// †

commute, where ˛WG � X ! X is the action map. Now, �G being invariant under the
right action of G on itself means that �G;g D .rg/�.�G;e/ for all g 2 G. Observe that

˛�.v
L
g ; u/ D ��.v/C .˛g/�.u/; v 2 g; u 2 TX;

where vL 2 X.G/ denotes the left-invariant vector field corresponding to v, and �.v/ 2
X.X/ denotes the infinitesimal action of v. This implies that

(4.6) ˛ W .G; �G/ � .X; �X / �! .X; z�X /; z�X WD ^
2�.�G;e/C �X ;

is a Poisson map, and therefore

� W .U; �M / � .X; z�X /
�
�! .†; �†/

is a Poisson diffeomorphism, whence �† is strongly locally trivial.

In yet another tentative flavor of local triviality of a Poisson submersion with Poisson
fibres pW .†; �†/! .M; �M /, one could require that it have a locally trivial foliation;
namely, that around each point in M there exist a trivialization �WU � X ��! p�1.U /

with the property that

Gr.�M /jU � Gr.�X / and �ŠGr.�†/ induce the same singular foliation on U �X:

Clearly, locally trivial Poisson submersions have locally trivial foliation.

Example 4.20. An example of a Poisson submersion with Poisson fibres which has locally
trivial foliation, and yet is not locally trivial. Consider the submersion

p W † D C2
n ¹0º �! CP 1 DM

of Example 3.19, but now equipped with the Poisson structure

�† D
1
2
.E0 ^ V0 C E1 ^ V1/:

This bivector is invariant under the C�-action, and hence p pushes �† to a Poisson struc-
ture �M on M . Consider the diagram of open embeddings

C�C�
�0 //

pr1
��

†

p

��

C�C�
�1oo

pr1
��

C // M C;oo

.z0; z1/ //

��

.z1; z0z1/

��

z0 // Œ1 W z0�;

.z0z1; z1/

��

.z0; z1/oo

��
Œz0 W 1� z0:oo
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Then both �i are Poisson embeddings for the Poisson structure

�i W .C �C�;…/ �! .†; �†/; … D .E0 �
1
2
E1/ ^ .V0 �

1
2
V1/C

1
4
.E1 ^ V1/:

From this, we read off that pr1W .C � C�; …/! .C; E0 ^ V0/ is a Poisson submersion
with Poisson fibres .C�; 1

4
E1 ^ V1/, and that

(4.7) Gr.…/ and Gr.E0 ^ V0/ � Gr.1
4
E1 ^ V1/

have the same singular foliation. From this, it follows that pW .†; �†/ ! .M; �M / is
a Poisson submersion with Poisson fibres with locally trivial foliation. Note that both
.M; �M / and .†; �†/ have exactly three symplectic leaves. We claim that this Poisson
submersion with Poisson fibres is not locally trivial around the fibres of p over the singular
points of .M; �M / – that is, around the two singular leaves of .†; �†/. Indeed, suppose
by contradiction that there exist

• an open neighborhood U � C of 0,
• a closed two-form ! 2 �2.U �C�/,
• a diffeomorphism ' W U �C� ��! U �C� of the form

'.x0; y0; x1; y1/ D .x0; y0; u1; v1/; .x0; y0/ 2 U; .x1; y1/ 2 C�;

with the property that

(4.8) R!Gr.E0 ^ V0 C
1
4
E1 ^ V1/ D '

ŠGr.…/:

Because

Gr.…/jUn¹0º�C� D Gr.�1/ and Gr.E0 ^ V0 C
1
4
E1 ^ V1/jUn¹0º�C� D Gr.�2/

for symplectic forms �1; �2 2 �2.U n ¹0º/, condition (4.8) then reads

! D '��1 � �2:

Note that

(4.9)
D
!;

@

@x0
^

@

@y0

E
D

2

.x20 C y
2
0/.u

2
1 C v

2
1/
.f /;

where

f D� x0
�
v1
�
@v1
@x0
C

@u1
@y0

�
C u1

�
@v1
@y0
C

@u1
@x0

��
C y0

�
u1
�
@v1
@x0
C

@u1
@y0

�
� v1

�
@v1
@y0
C

@u1
@x0

��
� 2.x20 C y

2
0/
�
@u1
@x0

@v1
@y0
�
@u1
@y0

@v1
@x0

�
�
1
2
.u21 C v

2
1/:

We thus see that
lim

.x0;y0;x1;y1/!.0;0;1;0/
f D �

1

2

implies that

lim
.x0;y0;x1;y1/!.0;0;1;0/

h!; @
@x0
^

@
@y0
i D lim

.x0;y0;x1;y1/!.0;0;1;0/

2

.x20Cy
2
0 /.u

2
1Cv

2
1/
f D �1:
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This shows that (4.9) cannot extend to a smooth function on the whole U � C�, and
therefore no such ! can exist (on the whole U �C�). Therefore, the Poisson submersion
with Poisson fibres pW .†;�†/! .M;�M / is not locally trivial, in spite of having a locally
trivial foliation.

Example 4.21. An example of a bundle associated to locally trivial principal bundle
whose foliation is not locally trivial. The translation action

GDR2↷P D¹.y1;y2;y3/2R3 j y3>0º; .a;b/ � .y1;y2;y3/D .aC y1;bC y2;y3/;

turns
p W P �!M D RC; p.y1; y2; y3/ D y3;

into a principal G-bundle. The Poisson structure

�P D �y3
@

@y1
^

@

@y2

on P isG-invariant, and pW .P;�P /! .M;0/ is a locally trivial Poisson submersion with
Poisson fibres. Let G act on the Poisson manifold

X D R2; �X D
@

@x1
^

@

@x2
;

by .a; b/ � .x1; x2/ D .aC x1; b C x2/. The submanifold

† � P �X; † D ¹.0; 0/º �RC �R2;

is a full slice to the action ofG, and is therefore identified with the quotient†D P �G X .
The associated Poisson structure is

�† D .1 � y3/
@

@x1
^

@

@x2
;

which does not have locally trivial foliation around y3 D 1.

Next, we observe the following.

Proposition 4.22. Let a right principal G-bundle pWP ! M be endowed with a G-in-
variant Poisson structure �P , which makes it into a Poisson submersion with Poisson
fibres. If G acts by Poisson diffeomorphisms on a Poisson manifold .X; �X /, with orbits
contained in the symplectic leaves of .X; �X /, and

(a) either the Poisson structures on the fibres of pWP !M are all trivial,
(b) or the orbits of G↷X are isotropic submanifolds of the symplectic leaves of .X;�X /,

then the induced Poisson structure �† on the associated bundle † D P �G X !M has
locally trivial foliation, and its leaf space is homeomorphic to that of Gr.�M / � Gr.�X /.

Observe that condition (b) is satisfied for example when G is abelian and the action
of G on X admits an (infinitesimal) moment map.

Proof. First observe that, because orbits of G ↷ X are tangent to the symplectic leaves
of .X; �X /, there is a canonical singular foliation �† on † induced by the singular foli-
ations �M on M and �X on X , determined by the Poisson structures �M and �X : if
gij WUi \Uj !G is a cocycle representingP !M , its composition with the action homo-
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morphism  WG ! Diff.X/ is a cocycle representing †! M , and the product singular
foliations .Ui ; �M / � .X; �X / descend under the identifications

�ij W Ui \ Uj �X
'
�! Ui \ Uj �X; �ij .y; x/ D .y;  .gij .y//x/;

to a singular foliation �† on†, which is locally trivial by its very construction, and which
is independent of the choice of cocycle. Observe moreover that the hypothesis that the
action ofG is tangent to leaves of �X implies that the cocycle .Ui ;�ij / induces the identity
map

Ui \ Uj �X=�X
'
�! Ui \ Uj �X=�X ;

where X=�X is the leaf space of �X – that is, the topological space obtained from X

by identifying points which lie in the same leaf, equipped with the quotient topology.
Therefore

†=�† 'M=�M �X=�X :

We claim that, under either of the hypotheses (a) or (b) above, the singular foliation on †
corresponding to the Poisson structure �† coincides with the locally trivial singular foli-
ation constructed in the preceding paragraph. The key observation is that it suffices to
check this claim for coupling submersions:

The preimage under †! M of a leaf of �M is saturated for both �† and �†. For
each y 2 P , the preimage P jSM .py/ D p�1SM .py/ of the symplectic leaf of .M; �M /
through py is a Poisson submanifold of .P; �P /, and

(4.10) p W .P jSM .py/; �P jSM .py/
/ �! .SM .py/; !SM .py//

is a coupling Poisson submersion. It is also a principal G-bundle equipped with a G-in-
variant Poisson structure, and its associated bundle

(4.11) p W .†jSM .py/;�†jSM .py/
/�! .SM .py/;!SM .py//; †jSM .py/ DP jSM .py/ �G X;

is the preimage of SM .py/ under pW†!M , which (again by Theorem 3.11) is a Poisson
submanifold of .†; �†/.

As a consequence, in order the prove the proposition, it suffices to verify the following.
If �M is symplectic, then �† induces �†. For in that case pW .P; �P /! .M; �M / is

a coupling Poisson submersion, which, being G-invariant, is strongly locally trivial (as in
Example 4.15). By Remark (4.17), a local trivialization

� W .U; �M / � .G; �G/ �! .P; �P /

of (4.11) induces a local trivialization

� W .U; �M / � .X; z�X / �! .†; �†/;

where z�X WD ^2�.�G;e/ C �X in the notation of (4.6). The proof concludes with the
observation that, under either assumption (a) or (b) in the statement, z�X and �X induce
the same singular foliation �X on X . For (a), this is straightforward, whereas for (b) one
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still needs to argue that �.g/ � z�]X .T
�X/. But for any v 2 g and any x 2 X , since the

orbit G � x is isotropic, we have

�.v/x D �
]
X .�x/; �x 2 N

�
x .G � x/;

which gives z�]X .�x/ D �
]
X .�x/, since ^2�.�G;e/ vanishes on N �x .G � x/. Therefore

.Ui ; �M / � .X; z�X / defines ���† D �M jUi � �X :

Hence �† is the singular foliation induced by �†.

4.6. Poisson structures with finitely many leaves.

As a final application of our methods, we construct associated bundles in which the Pois-
son structure on the total space has a finite number of symplectic leaves. The building
blocks of our construction are two classes of Poisson manifolds with finitely many leaves:

(i) toric Poisson manifolds (coming from a non-degenerate positive bivector as described
in Proposition 4.8), whose symplectic leaves are orbits of the action of a complex
torus;

(ii) manifolds of full flags (as described in Proposition 4.10), whose symplectic leaves
are Bruhat cells [27].

Proposition 4.23. Let .G; �G/ be a compact, connected semisimple Lie group with its
“standard” Poisson structure corresponding to the maximal torus T � G. Let .X;�X / be

• either a manifold of full flags G0=T 0, again with its “standard” Poisson structure,

• or a toric Poisson manifold T 0C ↷M�.

Then any group homomorphism T!T 0 determines on the associated bundle†DG�T X
a Poisson structure �† with a finite number of symplectic leaves.

Proof. By Proposition 4.10, the Poisson submersion .G;�G/! .G=T;�G=T / has Poisson
fibres with the trivial Poisson structure. We argue that the orbits of the torus action on both
manifolds of full flags and toric varieties lie inside symplectic leaves – and thus fall within
the hypotheses of Proposition 4.22. This in particular implies that the leaf space of the
induced Poisson structure �† on the ensuing associated bundle† is homeomorphic to the
product of the leaf space of .M; �X / and that of .X; �X /.

For a manifold of full flags G0=T 0, the left action of T 0 on .G0; � 0G/ is by Poisson
diffeomorphisms (since inversion onG is an anti-Poisson map), and since .G0=T 0;�G0=T 0/
has finitely many leaves, the orbits of T 0 ↷ G0=T 0 lie inside symplectic leaves.

For a toric Poisson manifold T 0 ↷M�, the action of T 0C on M� is by Poisson diffeo-
morphism, and its orbits are exactly the symplectic leaves of the Poisson structure.

Example 4.24. Consider the Poisson–Lie group .SU2; �SU2/ corresponding to SO2 and
the toric Poisson manifold .CP 1; �CP 1/ arising from C2 n ¹0º. Then a degree k 2 Z
homomorphism z 7! zk determines Poisson submersions with Poisson fibres

SU2 �SO2 .SU2=SO2/! SU2=SO2; SU2 �SO2 CP 1 ! SU2=SO2

which have locally trivial foliation (and have respectively four and six leaves).
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Proposition 4.25. Let pW .P�; �P /! .M�; �M / be the .NC-principal) GIT presentation
of the Poisson toric manifold M�, and let .X; �X / be

• either a manifold of full flags G0=T 0,

• or a toric Poisson manifold T 0C ↷M 0� whose Poisson structure is induced by a totally
real bivector.

Then, a group homomorphismN!T 0 determines on the associated bundle†DP��N X
a Poisson structure �† with a finite number of symplectic leaves.

Proof. To apply Proposition 4.22, it suffices to show that the orbits of T 0 ↷ .X; �X / are
isotropic. (Note that the fibres of pW .P�; �P /! .M�; �M / are symplectic).

For manifolds of full flags this is a consequence of the (global symplectic) charts
in [26] for the Bruhat cells: the symplectic form splits as a product of area forms and the
torus action is induced from a Cartesian product of rotations in the plane.

For toric Poisson manifolds, this is a consequence of the fact that the positive, nonde-
generate bivector of which it is a quotient is totally real, and therefore the fixed-point set
of complex conjugation (that is, the Lie algebra of T 0) is Lagrangian.

Example 4.26. Consider the Poisson–Lie group .SU2; �SU2/ corresponding to SO2 and
a totally real toric Poisson manifold .CP 1; �CP 1/ arising from C2 n ¹0º. Then a degree
k 2 Z homomorphism z 7! zk determines Poisson submersions with Poisson fibres

.C2
n ¹0º/ �SO2 .SU2=SO2/! CP 1; .C2

n ¹0º/ �SO2 CP 1 ! CP 1;

which have locally trivial foliation (and have respectively six and nine leaves). The dif-
feomorphism type of these associated bundles (and those in Example 4.24) is determined
by the parity of k, and it would be interesting to understand in which cases the Poisson
structures with the same number of symplectic leaves are Poisson diffeomorphic.

A. Appendix

Symplectic leaves of a Poisson manifold .M; �/ are not in general embedded submani-
folds. However, because of the Weinstein splitting, the following is true: for each x 2M ,
there exists a diffeomorphism

' W U
�
�! V �W;

where U is an open, connected neighborhood U of x in M , V is an open, connected
neighborhood of x in SM .x/, and x 2 W � M is a connected submanifold transverse
to V , with the property that

'jV D idV ; 'jW D idW ;

and, for each leaf SM .y/ of � ,

'.U \ SM .y// D V �ƒ.y/; ƒ.y/ � W;

with ƒ.x/ being at most countable. This suggests the notion of a leaf-like submanifold
(see Appendix B in [18]), which includes as examples leaves of singular foliations or Lie
algebroids.



Coregular submanifolds and Poisson submersions 1463

Definition A.1. A subset S of a smooth manifold M is a leaf-like submanifold if around
each point x 2 S , there is an open neighborhood U of x in M , together with a diffeo-
morphism

� W U
�
�! V �W

from U into the product of connected manifolds V and W , such that

�.U \ S/ D V �ƒ

for a subset ƒ � W which is at most countable.

The submanifolds SUw WD �
�1.V �¹wº/�U \S , as w ranges in the set ƒ, are called

the plaques of S over U . Each plaque is an embedded submanifold, and plaques parti-
tion U \ S :

U \ S D
a
w2ƒ

SUw :

As explained in Appendix B of [18], leaf-like manifolds are initial submanifolds; that
is, they are abstract manifolds equipped with an injective immersion j WS !M , with the
property that, if f WN ! M is a smooth map whose image lies in S , then the unique
set-theoretic map zf WN ! S through which f factors is smooth. This implies that the
differentiable structure on S in uniquely determined by that of M .

Definition A.2. Let X �M be an embedded submanifold, and let S �M be a leaf-like
submanifold. We say that X and S intersect cleanly if
(a) X \ S is an embedded submanifold of S ,
(b) T .X \ S/ D TX \ TS .

Remark A.3. Condition (a) in Definition A.2 should be clarified. Because manifolds are
supposed to be second-countable, they can have at most countably many connected com-
ponents. Hence, when we say X \ S is a submanifold, it is implied that X \ S is the
disjoint union of countably many connected (second-countable) submanifolds. However,
we do allow connected components to have different dimensions (as in Example A.5).

This definition recovers the notion of clean intersection of manifolds, see Appendix C
in [22], when S is also embedded.

Remark A.4. In Definition A.2, the notions of embedded- and leaf-like submanifolds
play asymmetric roles, in that we do not require that the intersection X \ S be a leaf-like
submanifold of X . As the example below shows, that need not always be the case.

Example A.5. Let M be the 3-torus endowed with a Kronecker-type foliation, meaning
that every one-dimensional leaf is dense. Select a leaf S and fix a foliated chart ' WU !R3

so that the vertical axis corresponds to a plaque Si belonging to S . Define X � U to be
the preimage by ' of the helicoid in R3 with axis the vertical axis:

R2 ! R3; .t; s/ 7! .t cos.s/; t sin.s/; s/:

Then the intersection of X and S is clean and consists of Si and a countable collection of
points which accumulate in Si . Therefore X \ S is not a leaf-like submanifold.
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In contrast, under Definition A.2, a clean intersection of an embedded submanifold
with a leaf-like submanifold is always an initial submanifold of the former.

Lemma A.6. If an embedded submanifold X � M intersects a leaf-like submanifold
S �M cleanly, then X \ S is an initial submanifold of X .

Proof. By hypothesis, X \ S is an embedded submanifold of S . Denote by

i W X �!M; j W S �!M; i 0 W X \ S �! S and j 0 W X \ S �! X

the implied immersions. Because S is leaf-like, j is initial, and because X is embedded, i
and i 0 are initial. Consider a smooth map f WN ! X , whose image lies inside X \ S .
Then the image of the composition i ı f WN ! M with the inclusion i WX ! M lies
inside the image of the inclusion j WS ! M , and the latter, being an initial submanifold,
has a smooth lift zf WN ! S such that

i ı f D j ı zf :

The image of zf is contained in the embedded submanifold X \ S , which is also initial,
and therefore zf has a smooth lift yf WN ! X \ S , with

zf D i 0 ı yf :

Hence the lift F WD j 0 ı yf of f is smooth:

X \ S

j 0

��

i 0 // S

j

��

N

f
{{

zf

==
yf

cc

X
i

// M;

and this shows that j 0 is initial as well.

Proposition A.7. Let X be an embedded submanifold, and let S be a leaf-like submani-
fold of a smooth manifold M . Then the following assertions are equivalent:
(i) X and S intersect cleanly.

(ii) X \ S is a disjoint union of (a priori uncountably many) initial submanifolds Z,
for which

TzZ D TzX \ TzS for each z 2 Z.

(iii) Every z 2 X \ S is the center of a coordinate chart 'WM � U ! Rm which is
adapted to X and to the plaque of S over U which passes through z.

Proof. (i) implies (ii). By definition of clean intersection, if X and S meet cleanly, then

X \ S D
a

Zi



Coregular submanifolds and Poisson submersions 1465

is a disjoint union of at most countably many embedded, connected submanifoldsZi � S ,
with

TzZi D TzX \ TzS; z 2 Zi :

Hence (i) (trivially) implies (ii).
(ii) implies (iii). Assume now that

X \ S D
a

Zi

is a disjoint union of possibly uncountably many connected, initial submanifoldsZi �M ,
with

TzZi D TzX \ TzS; z 2 Zi :

Because S is leaf-like, we can find an open neighborhood U of any z 2 Zi , for which

U \ S D
a

Sa;

is a disjoint union of at most countably many plaques. WriteU \Zi as a countable disjoint
union of its connected components:

U \Zi D
a
A.i/

Wˇ :

Then U \ X \ Sa is a union of such connected components. Let S0 denote the plaque
of S over U which passes through z, and W0 the connected component of U \ X \ S0
through z. Then TzW0 D TzX \ TzS0 ensures that one can build as in Proposition C.3.1
of [22] a coordinate chart .U; '/ of M which is centered at z and is adapted to both X
and S0. So (ii) implies (iii).

(iii) implies (i). If around each z 2X \ S one can find a chart 'WM � U !Rm which
is centered at z, and

'.U \X/ D '.U / \WX ; '.U \ S0/ D '.U / \WS ;

where S0 denotes the plaque of S over U through z, and WX and WS denote vector
subspaces of Rm, then

'.U \X \ S0/ D '.U / \WX \WS

shows that
'jU\S0 W U \ S0 �! WS

is a coordinate chart of S adapted to U \X \ S0. This shows that X \ S is an embedded
submanifold of S , and moreover, that

z 2 X \ S H) Tz.X \ S/ D TzX \ TzS:

Therefore, (iii) implies (i).
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Remark A.8. The following subtlety in the formulation of Proposition A.7 is worth
mentioning: we raised in item (ii) the a priori possibility that X \ S be the disjoint
union of uncountably many submanifolds – and therefore not itself a submanifold, see
Remark A.3 – only to rule out that possibility by concluding that X \ S must in fact be
an embedded submanifold of S .
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