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Almost complex structures, transverse complex
structures, and transverse Dolbeault cohomology

Michel Cahen, Jean Gutt and Simone Gutt

Abstract. We define a transverse Dolbeault cohomology associated to any almost
complex structure j on a smooth manifold M . This we do by extending the notion
of transverse complex structure and by introducing a natural j -stable involutive limit
distribution with such a transverse complex structure. We relate this transverse Dol-
beault cohomology to the generalized Dolbeault cohomology of .M; j / introduced
by Cirici and Wilson in 2001, showing that the .p; 0/ cohomology spaces coincide.
This study of transversality leads us to suggest a notion of minimally non-integrable
almost complex structure.

Introduction

Dolbeault cohomology is defined for a manifold endowed with an integrable almost com-
plex structure. There have been various ways to extend this cohomology to a manifold
endowed with a non-integrable almost complex structure. An almost complex structure j
is a smooth field of endomorphisms of the tangent bundle whose square is minus the
identity (j 2 D � Id). It induces a splitting of the complexified tangent bundle TMC D

T
1;0
j ˚ T

0;1
j into˙i eigenspaces for j , a corresponding dual splitting of the complexified

cotangent bundle, and a splitting of complex valued k-forms on M :

�k.M;C/ D
M

pCqDk

�
p;q
j :

The exterior differential d has the property that

d�
p;q
j � �

p�1;qC2
j ˚�

p;qC1
j ˚�

pC1;q
j ˚�

pC2;q�1
j ;

and splits accordingly as
d D N�j ˚ N@j ˚ @j ˚ �j :

An almost complex structure j is integrable if and only if d D N@j ˚ @j , i.e., N�j D �j D 0,
which is equivalent to the vanishing of the Nijenhuis tensor (also called torsion) N j of j .
The operator N@j (often the subscript j is omitted) defines then the Dolbeault cohomology
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of the complex manifold .M; j /. An important feature about this cohomology comes
from Hodge theory [9], which relates it to harmonic forms. This requires the choice of a
Riemannian metric g compatible with j . Many works are devoted to the study of prop-
erties of N@-harmonic .p; q/-forms or variations of those when j is not integrable; see for
instance [17, 18], the recent review [19] by Zhang of Hodge theory for almost complex
manifolds, and papers quoted there. In Hirzebruch’s 1954 problem list [8], a question
attributed to Kodaira and Spencer concerning these spaces asks whether the dimension of
the space of N@-harmonic .p; q/-forms depends on the choice of the Riemannian metric, or
only on the almost complex structure j . In 2020, Holt and Zhang gave in [10] examples
showing that the dimension may depend on the choice of the metric. This raises the interest
of a cohomology depending only on the almost complex structure j .

Li and Zhang introduced j -invariant and j -anti-invariant cohomologies in [12]; this
was studied on 4-dimensional manifolds in [6]. J. Cirici and S. Wilson gave in 2021
in [4] the definition of a generalized Dolbeault cohomology associated to an almost com-
plex structure j . It is defined as the cohomology of the operator induced by N@j on the
cohomology spaces for the operator N�j . Some of these cohomology spaces are infin-
ite dimensional in the non-integrable case [5]. Sillari and Tomassini compared the two
constructions in [14], and have recently defined Bott–Chern and Aeppli cohomologies
associated to an almost complex structure [15].

In the present paper, we suggest another Dolbeault cohomology defined only in terms
of the almost complex structure j , which we call transverse Dolbeault cohomology. It is
defined as the (usual) Dolbeault cohomology of a natural transverse complex structure
induced by the given almost complex structure.

We consider the involutive j stable (generalized) distribution defined by the real part
of the limit of the derived flag of distributions associated to the Ci eigenspace of j . It
is a natural involutive limit of a sequence of nested real distributions D1j D

S
k D

.k/
j

associated to j , which contains the image of the Nijenhuis tensor N j . We extend the
notion of transverse complex structure to that setting. The cohomology we define is the
cohomology of the N@j operator restricted to a subspace of forms which are clearly in the
kernel of N�j : the forms whose contraction and Lie derivative with respect to a vector field
in D1j vanish.

Equivalently, it is the cohomology of the operator N@j restricted to the largest sub-
space �D1j

.M/ of smooth complex forms on the manifold, which has the property that
it consists of forms vanishing whenever contracted with a vector field in the image of the
Nijenhuis tensor of j , which is stable under the differential d and which splits into .p; q/
components relatively to j (i.e., for ! a k-form in the subspace, ! ı jr is in the subspace
for any r � k, where ıjr indicates the precomposition with j acting on the r-th argument
of !).

If one of the derived distribution is involutive and has constant rank, and if the space of
leaves of its real part has a manifold structure making the canonical projection a submer-
sion, then j induces a complex structure on this quotient manifold and the cohomology
we define coincides with the Dolbeault cohomology of this space of leaves.

An almost complex structure is maximally non-integrable [2] when the image of the
Nijenhuis tensor at each point p spans the whole tangent space at p. For a maximally
non-integrable almost complex structure, all our transverse Dolbeault cohomology spaces
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vanish. The first geometrical non-integrable almost complex structure was given by Eells
and Salamon in [7]; it arises on a twistor space when flipping the sign of the vertical
part of the standard integrable almost complex structure on this space and it is maxim-
ally non-integrable; this property remains true for a similar construction on many twis-
tor spaces [3]. Maximally non-integrable almost complex structures are generic in high
dimension: R. Coelho, G. Placini, and J. Stelzig prove in [5] that in dimension 2n � 10
any almost complex structure on a 2n-dimensional manifold is homotopic to a maximally
non-integrable one.

A minimality condition for a non-integrable almost complex structure is given by
asking the involutivity of the first derived distribution of theCi eigenspace of j . This cor-
responds to the existence of a maximal transverse complex structure. Examples are given
by complex line bundles over complex manifolds with no holomorphic structure with
the j naturally defined when choosing a connection. Another example, coming from an
invariant situation, is given by the Kodaira–Thurston 4-dimensional compact symplectic
manifold with no Kähler structure, endowed with an almost complex structure which is
compatible and positive with respect to the symplectic structure, and which is induced by
an invariant one on the covering group. We compute the transverse Dolbeault cohomology
of this example.

In Section 1, we describe the derived flag of distributions associated to the Ci eigen-
space of an almost complex structure j and the involutive real limit distribution D1j .

In Section 2, we define D-transverse objects when D D�1.D/ is the space of smooth
sections of a real smooth involutive distributionD (not necessarily of constant rank), or an
involutive limit of an increasing sequence of spaces of sections such as D1j . The defini-
tions are chosen so that, in the case where D D �1.D/withD of constant dimension and
such that the space of leaves for D, denoted by M=D, has a manifold structure making
the canonical projection p WM ! M=D a submersion, D-transverse objects correspond
to objects on the space of leaves M=D. We define in the general context D-transverse
vector fields, D-transverse almost complex and complex structures, D-transverse forms
and D-transverse Dolbeault cohomology.

In Section 3, we define the transverse Dolbeault cohomology associated to an almost
complex structure j : it is the D-transverse Dolbeault cohomology in the sense of Sec-
tion 2 when D is the real limit distribution D1j defined in Section 1. We prove that
the .p; 0/-cohomology spaces for this transverse cohomology coincide with the .p; 0/-
cohomology spaces for the Dolbeault cohomology introduced by Cirici and Wilson.

In Section 4, we suggest a minimality condition for a non-integrable almost complex
structure, we write this condition in a homogeneous framework, and we study the example
of the Kodaira–Thurston 4-dimensional manifold.

1. Derived distributions associated to an almost complex structure

The Nijenhuis tensor, also called torsion, associated to a smooth field k of endomorphisms
of the tangent bundle is the tensor of type .1; 2/ defined by

(1.1) N k.X; Y / WD ŒkX; kY � � kŒkX; Y � � kŒX; kY �C k2ŒX; Y �; 8X; Y 2 X.M/;

where X.M/ is the Lie algebra of C1 vector fields on M .
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The Newlander–Nirenberg theorem asserts that an almost complex structure j on a
manifold M is integrable if and only if its Nijenhuis tensor N j vanishes identically.

Given an almost complex structure j on a manifold M , the image distribution on M ,
denoted ImN j , has for value at a point x 2 M the subspace .ImN j /x of the tangent
space TxM spanned by all values N j

x .X; Y /. Since N j
x .jX; Y / D �jN

j
x .X; Y /, this

distribution is stable by j . It is smooth (in the sense that in the neighborhood of any point,
there exists a finite number of smooth vector fields whose values at any point linearly
generate the distribution at that point) but the dimension of the distribution may not be
constant. C. Bozetti and C. Medori give in [1] a classification of 4-manifolds endowed with
a non-integrable almost complex structure such that ImN j is everywhere of dimension 2,
with a non-degeneracy condition, and assuming a condition of local homogeneity. The
rank of the Nijenhuis tensor is studied by L. Sillari and A. Tomassini in [16].

For any almost complex structure j , one has the splitting of the complexified tangent
bundle induced by j :

TMC
D T

1;0
j ˚ T

0;1
j

into ˙i eigenspaces for j . We shall denote by T
1;0
j and T

0;1
j the sections of the corres-

ponding distributions. We have the C1.M;R/-linear bijections

AC WX.M/! T
1;0
j WX 7! 1

2
.X � ijX/ and A� WX.M/! T

0;1
j WX 7! 1

2
.X C ijX/:

Observe that, for any X;W 2 X.M/ one has

X C iW D 1
2
..X C jW / � ij.X C jW //C 1

2
..X � jW /C ij.X � jW //

D AC.X C jW /C A�.X � jW /;

and

ŒX � i"jX; Y � i"0jY � D ŒX; Y � � ""0ŒjX; jY � � i."ŒjX; Y �C "0ŒX; jY �/

D AC
�
ŒX; Y � � ""0ŒjX; jY � � "j ŒjX; Y � � "0j ŒX; jY �

�
C A�

�
ŒX; Y � � ""0ŒjX; jY �C "j ŒjX; Y �C "0j ŒX; jY �

�
:

With " D "0 D 1, the above shows that the projection on T
0;1
j of ŒX � ijX; Y � ijY � is

given byA�.�N j .X;Y //. Hence the bracket of two sections in T
1;0
j is always an element

of T
1;0
j if and only if the Nijenhuis tensor is zero. A rephrasing of Newlander–Nirenberg’s

theorem is that j is integrable if and only if the distribution T
1;0
j (and hence T

0;1
j ) is

involutive.
When a distribution is not involutive, one extends it to make it involutive in the fol-

lowing way.

Definition 1.1. Given a smooth real (respectively, complex) distribution D whose sec-
tions are denoted D , one defines the derived flag of the distribution as the nested sequence
of distributions defined inductively by

D.0/
D D ; D.1/

D D C ŒD ;D �; D.iC1/
D D.i/

C ŒD.i/;D.i/�:
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The limit D1 WD
S
k D.k/ is called the involutive limit distribution; it is a C1.M;R/

submodule (respectively, C1.M;C/ submodule) of real (respectively, complex) vector
fields, and is “involutive” in the sense that it is a Lie subalgebra of vector fields (i.e.,
closed under bracket of vector fields).

The computation made above shows the following.

Proposition 1.2. The first derived distribution of T
1;0
j is given by�

T
1;0
j

�.1/
D T

1;0
j C ŒT

1;0
j ; T

1;0
j � D T

1;0
j ˚ A�.ImN j / D T

1;0
j C .ImN j /C;

where ImN j denotes the sections of ImN j .

An almost complex structure j is said to be maximally non-integrable if ImN j DTM .
This happens if and only if the first derived distribution of T

1;0
j consist of all complex

valued vector fields on M .

Proposition 1.3. The k-th derived distribution of T
1;0
j can be written as

.T
1;0
j /.k/ DW T

1;0
j ˚ A�.D

.k/
j / D T

1;0
j C .D

.k/
j /C;

where D
.1/
j D ImN j , and the real smooth distributions D

.k/
j are stable under j and

defined inductively by

D
.kC1/
j D D

.k/
j C

X
U2D

.k/
j

.ImLU j /C ŒD
.k/
j ;D

.k/
j �;

where ImLU j D ¹.LU j /X j X 2 X.M/º denotes the image of the smooth field of
endomorphisms of the tangent bundle given by the Lie derivative of the almost complex
structure j in the direction of the vector field U .

Proof. Using again that X C iW D AC.X C jW /C A�.X � jW /, we have

ŒX� ijX;U � D ŒX; U �� i ŒjX;U � D AC.ŒX; U � � j ŒjX;U �/C A�.ŒX; U �Cj ŒjX;U �/

D AC .ŒX; U � � j ŒjX;U �/C A� ..LU j /.jX// :

One proves inductively that the distributions D
.k/
j are stable by j , observing that j anti-

commutes with LU j since j 2 D � Id, and j ŒU; U 0� D ŒU; jU 0� � .LU j /.U
0/.

Proposition 1.4. The k-th derived distribution .T 1;0
j /.k/ DW T

1;0
j ˚ A�.D

.k/
j / is invol-

utive if and only if D
.k/
j is involutive and has the property that ImLU j � D

.k/
j for each

U 2 D
.k/
j .

The complex involutive limit distribution

.T
1;0
j /1 WD

[
k

.T
1;0
j /.k/ D T

1;0
j ˚ A�

�[
k

D
.k/
j

�
is involutive (in the sense that the bracket of two elements in .T 1;0

j /1 is again in .T 1;0
j /1/.
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The real limit distribution

(1.2) D1j WD
[
k

D
.k/
j

is a C1.M;R/ submodule of real vector fields; it is involutive, and has the property that

ImLU j � D1j ; 8U 2 D1j :

The first derived distribution of T
1;0
j , .T 1;0

j /.1/ D T
1;0
j C .ImN j /C , is involutive if and

only if

(1.3) ŒN; jX� � j ŒN;X� D .LN j /X 2 ImN j ; 8X 2 X.M/;8N 2 ImN j :

Proof. All statements except the last one are direct consequences of the former proposi-
tion. Equation (1.3) is necessary for .T 1;0

j /.1/ to be involutive; it will be sufficient if and
only if it implies that ImN j is involutive. This is true, because, for any N 2 ImN j and
any X; Y 2 X.M/,

ŒN j .X; Y /;N �

D ŒŒjX; jY �; N � � Œj ŒjX; Y �; N � � Œj ŒX; jY �; N � � ŒŒX; Y �; N �

D ŒŒjX;N �; jY �C ŒjX; ŒjY;N �� � j ŒŒjX; Y �; N �C .LN j /.ŒjX; Y �/

� j ŒŒX; jY �; N �C .LN j /.ŒX; jY �/ � ŒŒX;N �; Y � � ŒX; ŒY;N ��

D .LN j /.ŒjX; Y �/C .LN j /.ŒX; jY �/

C ŒŒjX;N �; jY �C ŒjX; ŒjY;N �� � j ŒŒjX;N �; Y � � j ŒjX; ŒY;N ��

� j ŒŒX;N �; jY � � j ŒX; ŒjY;N �� � ŒŒX;N �; Y � � ŒX; ŒY;N ��

D .LN j /.ŒjX; Y �/C .LN j /.ŒX; jY �/C Œj ŒX;N �; jY � � Œ.LN j /.X/; jY �

C ŒjX; j ŒY;N �� � ŒjX; .LN j /.Y /� � j Œj ŒX;N �; Y �C j Œ.LN j /.X/; Y �

� j ŒjX; ŒY;N �� � j ŒŒX;N �; jY � � j ŒX; j ŒY;N ��C j ŒX; .LN j /.Y /�

� ŒŒX;N �; Y � � ŒX; ŒY;N ��

D .LN j /.ŒjX; Y �/C .LN j /.ŒX; jY �/ � Œ.LN j /.X/; jY �C j Œ.LN j /.X/; Y �

� ŒjX; .LN j /.Y /�C j ŒX; .LN j /.Y /�CN
j .ŒX;N �; Y /CN j .X; ŒY;N �/

D .LN j /.ŒjX; Y �/C .LN j /.ŒX; jY �/ � .L.LN j /.X/j /.Y /C .L.LN j /.Y /j /.X/

CN j .ŒX;N �; Y /CN j .X; ŒY;N �/;

which obviously belongs to ImN j , when .LN j /.X/ 2 ImN j for any N 2 ImN j .

Remark 1.5. If the k-th derived distribution .T 1;0
j /.k/ DW T

1;0
j ˚A�.D

.k/
j / is involutive

and regular, then D1j D D
.k/
j defines a foliation.

In a homogeneous context, with a G-invariant almost complex structure j on a G-
homogeneous space M , each derived distribution is G-invariant and regular, so there is
always an integer k such that .T 1;0

j /.k/ is involutive. In that context, D1j D D
.k/
j is a

smooth real regular involutive distribution which defines a foliation on M .
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2. D-transverse structures

Let D D �1.D/ be the space of smooth sections of a real smooth involutive distribu-
tion D (not necessarily of constant rank) on a manifold M , or an involutive limit of an
increasing sequence of such spaces of sections D D

S
k D.k/, with D.k/ D �1.D.k//

and D.k/ C ŒD.k/;D.k/� � D.kC1/, as, for example, the space D1j defined in (1.2).
We are going to define D-transverse objects. We start with the particular ideal situ-

ation where D is the space of sections of a distributionD which is regular (i.e., of constant
dimension) and such that the space of leaves for D, denoted by M=D, has a manifold
structure making the canonical projection p WM ! M=D a submersion. In that case,
D-transverse objects translate, at the level of M , corresponding objects on the space of
leaves M=D. We then extend the definitions to our more general setting for D .

2.1. D-transverse vector fields

In the particular ideal situation described above, one can consider the pullback of the
tangent bundle T .M=D/, and clearly

p�T .M=D/ ' TM=D DW Q:

The bundleQ is called the normal bundle, and one denotes by…WTM !Q the canonical
projection. There is an action of D on sections of Q: for F 2 D and u 2 �1.M;Q/,

L
Q
F u WD ….ŒF; U �/

if U 2 X.M/ is a lift of u in the sense that … ı U D u. A vector field on M=D can be
viewed as a section u ofQ which is “constant” along the leaves in the sense thatLQF uD 0
for F 2 D .

In our general setting, we define a transverse vector field as follows.

Definition 2.1. A D-transverse vector field is an equivalence class ŒU � of a vector field
U 2 X.M/ which is D-foliated in the sense that

ŒF; U � 2 D for any F 2 D ;

the equivalence of foliated vector fields being defined byU �U 0 if and only ifU �U 02D .

2.2. D-Transverse almost complex structures

In the ideal situation, an almost complex structure yj onM=D gives a section Qj of End.Q/
which squares to � Id and which is “constant” along the leaves in the sense that

L
End.Q/
F

Qj D 0 for any F 2 D ; where L
End.Q/
F

Qj D L
Q
F ı
Qj � Qj ı L

Q
F :

A lift of Qj is a section k 2 End.TM/ such that Qj .….U // D ….kU /; notice that
• ….kF / D 0 for all F 2 D if and only if k.D/ � D ,
• Qj 2.….U //D�….U / if and only if….k2U/D�….U /, if and only if k2U CU 2D ,

for all U 2 X.M/;

• .L
Q
F ı
Qj � Qj ı L

Q
F /….U / D 0 D ….ŒF; kU � � kŒF; U �/, for all U 2 X.M/.
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In our general setting, we define a transverse almost complex structure as follows.

Definition 2.2. A D-transverse almost complex structure is the equivalence class Œk� of
a section k of End.TM/ such that k.D/ � D , k2U C U 2 D for all U 2 X.M/, and

.LF k/.U / D ŒF; kU � � kŒF; U � 2 D for all F 2 D ; U 2 X.M/;

the equivalence being defined by k � k0 if and only if Im.k � k0/ � D .

2.3. D-transverse complex structures

In the ideal situation, an almost complex structure yj on M=D is integrable if and only if
its Nijenhuis tensor vanishes. This will be true if and only if the torsionN Qj corresponding
to the section Qj of End.Q/,

N
Qj .u; v/ WD Œ Qju; Qj v� � Qj Œ Qju; v� � Qj Œu; Qj v� � Œu; v�;

vanishes for any u; v sections of Q corresponding to vector fields on M=D, i.e., such that
L
Q
F u D 0 and LQF v D 0 for F 2 D . Another way to formulate this condition is that a lift

k 2 End.TM/ of Qj must satisfy

….ŒkU; kV � � kŒkU; V � � kŒU; kV �C k2ŒU; V �/ D ….N k.U; V // D 0

for any U; V foliated vector fields. Since the torsion N k of k is a tensor, and since the
value at a point of foliated vector fields generate the whole tangent space to M at that
point in this ideal situation, it is equivalent to ask that N k takes its values in D .

In our general setting, we define a transverse complex structure as follows.

Definition 2.3. A D-transverse complex structure is a D-transverse almost complex
structure Œk� (i.e., k is a section of End.TM/, such that k.D/ � D , k2U C U 2 D , and
ŒF; kU � � kŒF; U � 2 D for all F 2 D and all U 2 X.M/) which has the property that

N k.U; V / D ŒkU; kV � � kŒkU; V � � kŒU; kV �C k2ŒU; V � 2 D for all U; V 2 X.M/:

2.4. D-transverse forms

Definition 2.4. A D-transverse – or basic – real or complex p-form is a p-form ! on M
such that

�.F /! D 0 and LF ! D 0; 8F 2 D :

If the section k of End.TM/ defines a D-transverse almost complex structure, a complex
D-transverse 1-form ! is of type .1; 0/ .respectively, .0; 1/) if and only if

!.U C ikU / D 0 (respectively, !.U � ikU / D 0/; 8U 2 X.M/:

Proposition 2.5. Given a D-transverse almost complex structure Œk�, there is a splitting
of complex D-transverse p-forms as a direct sum

�`D.M/ D
M

pCqD`

�
p;q

D;Œk�
:
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Proof. Observe that any complex D-transverse 1-form ! splits as

! D 1
2
.! � i ! ı k/C 1

2
.! C i ! ı k/;

and this decomposition does not depend on the element k 2 Œk�. The form ! ı k is
D-transverse since ! ı k.F / D 0 for F 2 D , because kF 2 D and

LF .! ı k/ D LF .!/ ı k C ! ıLF k D 0

since LF k.U / 2 D for any U 2 X.M/. Furthermore,

.! � i! ı k/.U ˙ ikU / D !.U C k2U/C i!.�kU ˙ kU / D 0; for all U 2 X.M/:

The same applies for complex D-transverse `-forms.

2.5. D-transverse Dolbeault cohomology

Assume again that the section k of End.TM/ defines a D-transverse almost complex
structure. The differential of a D-transverse form is again D-transverse, and one has

d�
p;q

D;Œk�
� �

pC2;q�1

D;Œk�
˚�

pC1;q

D;Œk�
˚�

p;qC1

D;Œk�
˚�

p�1;qC2

D;Œk�
:

Indeed, for ! 2 �p;q
D;Œk�

and for complex vector fields Zi ,

d!.Z0; : : : ; Zp/ D
X
r

.�1/r Zr .!.Z0; : : : ; yZr ; : : : ; Zp//

C

X
r<s

.�1/rCs !.ŒZr ; Zs�; Z0; : : : ; yZr ; : : : ; yZs; : : : ; Zp/;

so that, for elements Zr D A˙k Yr WD Yr � ikYr , it vanishes if there are not at least p � 1
elements of the form Zr D A

C

k
Yr and q � 1 elements of the form Zr D A

�
k
Yr .

Assume now that the section k of End.TM/ defines a D-transverse complex structure.
Then the projections of d! on �pC2;q�1

D;Œk�
and �p�1;qC2

D;Œk�
vanish; indeed,

d!.AC
k
X1; : : : ; A

C

k
Xp�1; A

�
k Y1; : : : ; A

�
k YqC2/

D

X
˙!.ŒA�k Yr;A

�
k Ys�;A

C

k
X1; : : : ;A

C

k
Xp�1;A

�
k Y1; : : : ;

1A�k Yr; : : : ;1A�k Ys; : : : ;A�k YqC2/
D 0

because

ŒYr C ikYr ; Ys C ikYs� D ŒYr ; Ys� � ŒkYr ; kYs�C i ŒYr ; kYs�C i ŒkYr ; Ys�

D AC
k
.ŒYr ; Ys� � ŒkYr ; kYs�C kŒYr ; kYs�C kŒkYr ; Ys�/

C A�k .ŒYr ; Ys� � ŒkYr ; kYs� � kŒYr ; kYs� � kŒkYr ; Ys�/

C i.k2 C Id/.ŒYr ; kYs�C ŒkYr ; Ys�/

D AC
k
.�N k.Yr ; Ys//C A

�
k . : : : /C F; with F 2 DC;

and N k.Yr ; Ys/ is in D when k defines a complex transverse structure.
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Hence
d�

p;q

D;Œk�
� �

pC1;q

D;Œk�
˚�

p;qC1

D;Œk�
;

and we denote by @D;Œk� and N@D;Œk� the corresponding projections.

Definition 2.6. The D-transverse Dolbeault cohomology induced by Œk� is

H
p;q

D;Œk�;N@
.M/ D Ker N@D;Œk�j�

p;q
D;Œk�

= Im N@D;Œk�j�
p;q�1
D;Œk�

:

Remark 2.7. In the ideal situation where D is regular and there is a manifold structure
on the space of leaves M=D such that p WM ! M=D is a submersion, a D-transverse
complex structure Œk� corresponds to a complex structure yj on M=D, and the transverse
Dolbeault cohomology for Œk� onM is the usual Dolbeault cohomology for yj on the space
of leaves:

H
p;q

D;Œk�;N@
.M/ D Hp;q.M=D; N@yj /:

3. Transverse Dolbeault cohomology

3.1. Transverse complex structure induced by an almost complex structure

Let j be an almost complex structure on the manifold M and let D be a real generalized
involutive distribution, stable under j ; by this we mean that D can be the space of smooth
sections of a smooth involutive distribution D (not necessarily of constant rank), stable
under j , or – as before – can be the involutive limit of a sequence of nested spaces of
sections.

Following Definitions 2.2 and 2.3, this j yields a D-transverse almost complex struc-
ture if and only if

ŒF; jU � � j ŒF; U � 2 D ; 8F 2 D ;8U 2 X.M/;

and a complex D-transverse structure if and only if, furthermore, D contains the image
of N j .

Proposition 3.1. The structure j defines a complex D-transverse structure if and only if

T
1;0
j CD D T

1;0
j ˚ A�.D/ D T

1;0
j CDC is involutive.

Then D � D1j D
S
k D

.k/
j � ImN j .

Proof. This results directly from the computations made in the proof of Proposition 1.3.

In particular, j defines a complex structure transverse to D1j and a corresponding
D1j -transverse Dolbeault cohomology. The splitting of D1j -transverse forms corres-
ponds to the usual splitting of forms on M relatively to j , �k.M;C/ D

L
pCqDk �

p;q
j ,

restricted to D1j -transverse forms, and the operator N@D1j ;Œj �
j�

p;q

D1
j
;Œj �

is the restriction of N@j

to the forms in �p;qj which are D1j -transverse.

Remark 3.2. In 1986, O. Muskarov made the link [13] between the existence of holo-
morphic functions for an almost complex structure and the existence of an involutive
subbundle of the (real) tangent bundle which contains the image of the Nijenhuis tensor.
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3.2. Transverse Dolbeault cohomology and .p; 0/-spaces.

Definition 3.3. The j -transverse Dolbeault cohomology is the D1j -transverse Dolbeault
cohomology induced by j :

H
p;q
j -trans.M/ WD H

p;q

D1j ;Œj �;
N@
.M/ D Ker N@j j�p;q

D1
j
;Œj �
= Im N@j j�p;q�1

D1
j
;Œj �

I

the space of forms considered are

�
p;q

D1j ;Œj �
D ¹! 2 �

p;q
j j �.X/! D 0; LX! D 0; 8X 2 D

1
j º

and, as before, for ! in �p;q
D1j ;Œj �

, N@j is the projection of d! on �pC1;qj .

Remark 3.4. If D1j is regular, it defines a foliation with transverse complex structure
induced by j . If its space of leaves has a manifold structure making the canonical projec-
tion a submersion, then the j transverse Dolbeault cohomology is the Dolbeault cohomo-
logy of this space of leaves. Recall that for a G-invariant almost complex structure j on
a G-homogeneous space M , each derived distribution is G-invariant and regular, so D1j
always defines a foliation.

Proposition 3.5. Let D be any regular involutive j -stable distribution such that the space
of leaves M=D has a manifold structure with p WM ! M=D a submersion, and such
that j induces a complex structure on M=D. The D-transverse Dolbeault cohomology
induced by j coincides with the Dolbeault cohomology of the space of leaves, and maps
into the j -transverse Dolbeault cohomology.

Proof. The first part follows from the definition of the transverse Dolbeault cohomology.
The fact that the D-transverse Dolbeault cohomology induced by j maps into the j -trans-
verse Dolbeault cohomology follows from the fact that D � D1j by Proposition 3.1,
the space of D-transverse .p; q/-forms is thus contained in the space of D1j -transverse
.p; q/-forms, and the cohomologies are both induced by the restriction of N@j to those
spaces.

Proposition 3.6. The space �D1j
.M/ WD

L
p;q �

p;q

D1j ;Œj �
is the largest subspace of the

space �.M;C/ of smooth complex forms on the manifold such that

• each form ! in it vanishes whenever contracted with a vector field in the image of the
Nijenhuis tensor of j ,

�.X/! D 0; for all X 2 ImN j
I

• it is stable under the differential d ;
• it splits into .p; q/ components relatively to j , in the sense that for ! a k-form in the

subspace, ! ı jr is in the subspace for any r � k, where ıjr indicates the precompos-
ition with j acting on the r-th argument of !.

Proof. All conditions are clearly satisfied by

�D1j
.M/ D

M
p;q

®
! 2 �

p;q
j j �.X/! D 0; LX! D 0; 8X 2 D

1
j

¯
:
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Reciprocally, one proceeds by induction, showing that a space of forms satisfying all three
conditions is included, for all k, in®

! 2 �
p;q
j j �.X/! D 0; LX! D 0; 8X 2 D

.k/
j

¯
:

For a given k, let us consider a subspace of forms such that �.X/! D 0 for all X 2 D
.k/
j ,

recalling that D.1/
j D ImN j .

The second condition implies that �.X/d! D LX! D 0 for all X 2 D
.k/
j . Thus, one

also has that �.Y /!D 0 for any Y 2D
.k/
j C ŒD

.k/
j ;D

.k/
j � (using the fact that �.ŒX;X 0�/!D

.�.X/ ıLX 0 �LX 0 ı �.X//!).
The third condition implies then that ! ıLXjr D 0, which in turns implies that �.Y /!

D 0 for all Y 2 ImLXj when X 2 D
.k/
j .

This shows that �.Y /! D 0 for all Y 2 D
.kC1/
j , and one proceeds inductively.

Proposition 3.7. The j -transverse Dolbeault cohomology is given in degree .p; 0/ by

H
p;0
j -trans.M/ WD

®
! 2 �p.M;C/ j �.Z/! D 0; LZ! D 0;

8Z2 .T
0;1
j /1 D T

0;1
j ˚ A�.D1j /

¯
:

Proof.

H
p;0
j -trans.M/ D H

p;0

D1j ;Œj �;
N@
.M/ D

®
! 2 �

p;0

D1j ;Œj �
j N@D1j ;Œj �

! D 0
¯

D
®
! 2 �p.M;C/ j �.F /! D 0; LF ! D 08F 2 D1j ;

�.U C ijU /! D 08U 2 X.M/; N@D1j ;Œj �
! D 0

¯
D
®
! 2 �p.M;C/ j �.Z/! D 0; 8Z2 T

0;1
j CD1j ; LF ! D 0; 8F 2 D1j ;

d!.U C ijU; V1 � ijV1; : : : ; Vp�1 � ijVp�1/ D 0
¯

D

°
! 2 �p.M;C/ j �.Z/! D 0; 8Z2 T

0;1
j CD1j ; LF ! D 0; 8F 2 D1j ;

.A�U/.!.ACV1; : : : ; A
CVp�1//

�

X
k

.!.ACV1; : : : ; ŒA
�U;ACVk �; : : : ; A

CVp�1// D 0
±

D
®
! 2 �p.M;C/ j �.Z/! D 0; LZ! D 0; 8Z2 .T

0;1
j /1 D T

0;1
j CD1j

¯
:

3.3. Comparison with the generalized Dolbeault cohomology of an almost complex
structure

J. Cirici and S Wilson introduced in [4] a generalized Dolbeault cohomology associated
to an almost complex structure j on a manifold M in the following way.

One decomposes as before the complexified tangent bundle TMC D T
1;0
j ˚ T

0;1
j

into ˙i eigenspaces for j , and the dual decomposition of the complexified cotangent
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bundle T �MC D .T �j /
1;0 ˚ .T �j /

0;1 leads to the usual decomposition of the space of
complex valued k-forms on M into

�k.M;C/ D
M

pCqDk

�
p;q
j :

Then
d�

p;q
j � �

p�1;qC2
j ˚�

p;qC1
j ˚�

pC1;q
j ˚�

pC2;q�1
j ;

and the differential splits accordingly as

d D N�j ˚ N@j ˚ @j ˚ �j :

The fact that d2 D 0 is equivalent to

N�2j D 0;(3.1)

N�j ı N@j C N@j ı N�j D 0;(3.2)

N�j ı @j C @j ı N�j C N@
2
j D 0;(3.3)

�j ı N�j C N�j ı �j C @j ı N@j C N@j ı @j D 0;

�j ı N@j C N@j ı �j C @
2
j D 0;

�j ı @j C @j ı �j D 0;

�2j D 0:

Equation (3.1) shows that one can define the N�j cohomology spaces:

(3.4) H
.p;q/
N�j
D Ker N�j j�p;qj = Im N�j j�pC1;q�2j

:

Equation (3.2) shows that N@j induces a map eN@j on those N�j cohomology spaces

(3.5) eN@j W H .p;q/
N�j
! H

.p;qC1/
N�j

W ! C Im N�j 7! N@j! C Im N�j ;

and equation (3.3) shows that .eN@j /2D 0, so one can look at the corresponding cohomology
spaces

(3.6) H
.p;q/
Dol .M/ D KereN@j jH .p;q/

N�j

= ImeN@j jH .p;q�1/
N�j

Those are the spaces of the generalized Dolbeault cohomology.

Proposition 3.8. The generalized Dolbeault and the transverse Dolbeault cohomology
spaces coincide in degrees .p; 0/:

H
.p;0/
Dol .M/ D H

p;0
j -trans.M/:
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Proof. We know that Hp;0
j -trans.M/ D H

p;0

D1j ;Œj �;
N@
.M/ and, by Proposition 3.7, we have

H
p;0
j -trans.M/

WD
®
! 2 �p.M;C/ j �.Z/! D 0; LZ! D 0; 8Z2 .T

0;1
j /1 D T

0;1
j ˚ A�.D1j /

¯
:

On the other hand,

H
.p;0/
Dol .M/ D

®
! 2 �

p;0
j j N�j! D 0; N@j! D 0

¯
:

Now, for ! 2 �p;0j , one has

N�j! D 0 ” d!.A�.Y /; A�.Z/; AC.X1/; : : : ; A
C.Xp�1// D 0

” !.ŒY C ijY;Z C ijZ�; X1 � ijX1; : : : ; Xp�1 � ijXp�1/ D 0

” �.N j .Y;Z//! D 0:

So
H
.p;0/
N�j
D
®
! 2 �p.M;C/ j �.W /! D 0; 8W 2 .T 0;1

j /.1/
¯
:

We have, for ! 2 H .p;0/
N�j
� �

p;0
j ,

N@j! D 0 ” d!.Y C ijY; AC.X1/; : : : ; A
C.Xp// D 0

” .Y C ijY /!.AC.X1/; : : : ; A
C.Xp//

�

X
i

!.AC.X1/; : : : ; ŒY C ijY; A
C.Xi /�; : : : ; A

C.Xp// D 0

” LZ! D 0; 8Z2 T
0;1
j :

Using the fact that ŒLZ ;LZ0 � D LŒZ;Z0� and Œ�.W /;LZ � D �.ŒW;Z�/, we get

H
.p;0/
Dol .M/

D
®
! 2 �p.M;C/ j �.W /! D 0 and LZ! D 0; 8Z2 T

0;1
j ;8W 2 .T

0;1
j /.1/

¯
D
®
! 2 �p.M;C/ j �.Z/! D 0 and LZ! D 0; 8Z2.T

0;1
j /1 D

S
k.T

0;1
j /.k/

¯
D H

p;0
j -trans.M/:

Remark 3.9. Since any element in

�D1j
.M/ D

M
p;q

�
p;q

D1j ;Œj �
.M/

is in the kernel of N�j , there is always a map from �D1j
.M/ to H .p;q/

N�j
mapping an ele-

ment ! to Œ!�, and this induces a map in cohomology

H
p;q
j -trans.M/! H

.p;q/
Dol .M/

mapping the class inHp;q
j -trans.M/ of a N@j -closed .p; q/-form ! in�D1j

.M/ to the class in

H
.p;q/
Dol .M/ of theeN@j -closed element Œ!� in H .p;q/

N�j
.
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4. A notion of minimal non-integrability

Definition 4.1. We say that a non-integrable almost complex structure j on a manifoldM
is minimally non-integrable if the first derived distribution of T

1;0
j , .T 1;0

j /.1/ D T
1;0
j C

.ImN j /C , is involutive. By Proposition 1.4, this will be true if and only if

ŒN; jX� � j ŒN;X� D .LN j /X 2 ImN j ; 8X 2 X.M/;8N 2 ImN j :

In that case, D1j D ImN j and the transverse Dolbeault cohomology is defined using the
operator N@j restricted to

�
p;q

D1j ;Œj �
D ¹! 2 �

p;q
j j �.X/! D 0; LX! D 0; 8X 2 ImN j

º:

We could ask furthermore that dim ImN j D 2 everywhere. Then we have a foliation,
with two-dimensional leaves carrying a complex structure, and with a transverse complex
structure.

As we have seen in Proposition 3.1, minimal non-integrability for j means that it has
the largest possible transverse complex structure.

4.1. Minimally non-integrable invariant almost complex structure on a Lie group.

Let j be a left invariant almost complex structure on a Lie group G. Denoting by g the
Lie algebra of Gm and by J the endomorphism of g given by the value of j at the neutral
element e 2 G, the Nijenhuis tensor N j is left invariant and its value at e is given by

N J .X; Y / WD ŒJX; J Y � � J ŒJX; Y � � J ŒX; J Y � � ŒX; Y �; for all X; Y 2 g:

ImN j is a smooth left invariant regular distribution whose value at e is the J -invariant
subspace ImN J of g.

Proposition 4.2. Consider a left invariant almost complex structure j on a Lie group G
such that ImN J satisfies

(4.1) ŒN; JX� � J ŒN;X� 2 ImN J ; 8X 2 g; 8N 2 ImN J :

Then ImN j defines a foliation, the leaves carry an induced almost complex structure,
and j induces a transverse complex structure.

If the subgroup H corresponding to the subalgebra ImN J is closed, one has a prin-
cipal fiber bundle p WG!G=H , whose base manifold (which is the leaf space) is complex,
the fibers (leaves) are almost complex, and the projection is pseudo-holomorphic. The
fibers are complex if, furthermore, N J .N;N 0/ D 0 for all N;N 0 2 ImN J ; this is always
true if dim ImN J D 2.

Remark that condition (4.1) implies that ImN J is a subalgebra of g and is automatic-
ally satisfied if ImN J is an ideal in g.
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4.2. Minimally non-integrable invariant almost complex structure on a
homogeneous space

Let G �M ! M W .g; x/ 7! g � x DW �.g/x denote the action of a Lie group G on a
manifold M . Assume this action is transitive. Choosing a base point x0, its stabilizer
will be denoted by H , so H D ¹g 2 G j g � x0 D x0º is a closed subgroup of G and the
manifoldM is diffeomorphic toG=H . We denote by � WG!M Wg 7! g � x0 the canonical
projection. Thus Tx0M identifies with g=h. For any element h 2H , the action �.h/�x0 on
Tx0M identifies with the action induced by Ad.h/ and denoted AAd.h/ on the quotient g=h.
We denote by A� the fundamental vector field on M defined by an element A 2 g (i.e.,
A�x D

d
dt

exp�tA � xjtD0); clearly A�x0 D ���eA.
Assume that there exists an almost complex structure j on M which is G-invariant,

i.e., �.g/�x ı jx D jg �x ı �.g/�x for all g 2 G. Invariance implies

LA�j D 0; i.e., ŒA�; jX� D j ŒA�; X�; 8X 2 X.M/; 8A 2 g:

The Nijenhuis tensor N j is invariant under the action of G. Its value at the base point is
obtained as follows

Proposition 4.3 (Theorem 6.4 on p. 217 of [11]). Let M be a G-homogeneous manifold
endowed with a G-invariant almost complex structure j . We choose a base point x0 2M
and a linear map J Wg! g such that jx0A

� D .JA/�x0 for all A 2 g. Then

N j
x0
.A�; B�/ D .�N J .A;B//�x0 ;

where N J is defined in terms of the Lie bracket in g by

N J .A;B/ WD ŒJA; JB� � J ŒJA;B� � J ŒA; JB� � ŒA; B�; 8A;B 2 g:

Proof. Using the invariance of j , we have, for all A;B 2 g,

N j.A�;B�/D ŒjA�;jB��Cj ŒB�;jA���j ŒA�;jB��� ŒA�;B��D ŒjA�;jB��C ŒA�;B��:

We introduce an auxiliary torsion-free linear connexion r on the manifoldM . At the base
point x0, one has

ŒjA�; jB��x0 D .rjA�jB
�
� rjB�jA

�/x0 D .r.JA/�jB
�
� r.JB/�jA

�/x0

D
�
Œ.JA/�; jB��CrjB�.JA/

�
� Œ.JB/�; jA�� � rjA�.JB/

�
�
x0

D
�
j Œ.JA/�; B��Cr.JB/�.JA/

�
� j Œ.JB/�; A�� � r.JA/�.JB/

�
�
x0

D
�
j ŒJA;B�� C Œ.JB/�; .JA/�� � j ŒJB;A��

�
x0

D .J ŒJA;B�C ŒJB; JA� � J ŒJB;A�/�x0 :

Hence,

N j.A�; B�/x0 D .�ŒJA; JB�CJ ŒJA;B�CJ ŒA; JB�C ŒA; B�
�/�x0 D �N

J.A;B/�x0 :
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Proposition 4.4. Let M be a G-homogeneous manifold endowed with a G-invariant
almost complex structure j . We choose a base point x0 2M and a linear map J W g! g
such that jx0A

� D .JA/�x0 for all A 2 g. The distribution ImN j is involutive and gives a
foliation with transverse complex structure if and only if

(4.2) ŒJA;N J .B; C /� � J ŒA;N J .B; C /� 2 ImN J
C h; 8A;B;C 2 g;

with N J defined as above: N J .A;B/ D ŒJA; JB� � J ŒJA;B� � J ŒA; JB� � ŒA; B�.

Proof. Since j in G-invariant, the tensor N j is G-invariant, hence, for all A 2 g,

LA�N
j
D 0;

i.e.,

ŒA�; N j .X; Y /� D N j .ŒA�; X�; Y /CN j .X; ŒA�; Y �/; 8X; Y 2 X.M/:

The condition ŒjX;N �� j ŒX;N � 2 ImN j for all X 2 X.M/ and for allN 2 ImN j will
be satisfied at every point if it is satisfied at the base point. Since ŒjX; N � � j ŒX; N � is
tensorial in X , it is enough to verify it for X in the space of fundamental vector fields;
since it remains true if one multiplies N 2 ImN j by a function, the condition will be
satisfied if and only if

(4.3)
�
ŒjA�; N j .B�; C �/� � j ŒA�; N j .B�; C �/�

�
x0
2 ImN j

x0
; 8A;B;C 2 g:

Introducing again an auxiliary torsion-free linear connexion r on the manifold M , we
have�
ŒjA�; N j .B�; C �/�

�
x0
D
�
Œ.JA/�; N j .B�; C �/� � rN j .B�;C�/.jA

�
� .JA/�/

�
x0

D
�
Œ.JA/�; N j .B�; C �/�Cr.N J .B;C//�.jA

�
� .JA/�/

�
x0

D Œ.JA/�; N j .B�; C �/�x0 C ŒN
J .B; C /�; jA� � .JA/��x0

D
�
Œ.JA/�; N j .B�; C �/�C j ŒN J .B; C /�; A�� � ŒN J .B; C /; JA��

�
x0

D .N j .ŒJA;B��; C �/CN j .B�; ŒJA;C ��//x0C.J ŒN
J .B; C /; A�� ŒN J .B; C /; JA�/�x0

D
�
�N J .ŒJA;B�; C / �N J .B; ŒJA;C �/ CJ ŒN J .B; C /; A� � ŒN J .B; C /; JA�

��
x0
:

On the other hand, we have�
j ŒA�; N j .B�; C �/�

�
x0
D
�
jN j .ŒA;B��; C �/C jN j .B�; ŒA; C ��/

�
x0

D
�
�JN J .ŒA;B�; C / � JN J .B; ŒA; C �/

��
x0
:

Hence�
ŒjA�; N j .B�; C �/� � j ŒA�; N j .B�; C �/�

�
x0

D
�
�N J .ŒJA;B�; C / �N J .B; ŒJA;C �/ C J ŒN J .B; C /; A� � ŒN J .B; C /; JA�

CJN J .ŒA;B�; C /C JN J .B; ŒA; C �/
��
x0
;

and this is in ImN
j
x0 D .ImN J /�x0 if and only if

ŒJA;N J .B; C /� � J ŒA;N J .B; C /� 2 ImN J
C h:
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4.3. The example of Kodaira–Thurston 4-dimensional manifold

Thurston gave in 1976 a first example of a 4-dimensional compact symplectic manifold
with no Kähler structure. It is a compact nilmanifold, i.e., the quotientM D � nG of a nil-
potent Lie groupG by a lattice � (i.e., a discrete subgroup acting on the left cocompactly);
the group G is the 4-dimensional nilpotent group which is the direct product of R and the
3-dimensional Heisenberg group G D R4 D R �H3, with multiplication defined by

.a1; a2; a3; a4/ � .x1; x2; y1; y2/ D .a1 C x1; a2 C x2 C a3y2; a3 C y1; a4 C y2/;

and the lattice is � D Z4.
A basis of left invariant vector fields on G is given by ¹@x1 ; @x2 ; @y1 ; @y2 C y1@x2º

and the dual basis of left-invariant 1-forms on G is ¹dx1; dx2 � y1dy2; dy1; dy2º.
The manifold M can be seen as a fibration in tori over the torus T2 D R2=Z2 with

the projection p WM ! T2 mapping the left coset Z4.x1; x2; y1; y2/ on .x1; y1/C Z2.
The fibration appears as

M DZ4 n .R�H3/'R2 �Z2;˛ T2; Z4.x1; x2; y1; y2/' Œ.x1; y1/; .x2; y2/CZ2�˛;

where R2 �Z2;˛ T2 is the set of equivalence classes in R2 � T2 for the equivalence
relation ..x1; y1/; z/ �˛ ..n1 C x1; n3 C y1/; ˛.n1; n3/z/ for each .n1; n3/ 2 Z2 (with
z 2 T2) defined by the homomorphism ˛WZ2! Diff.T2/ into the group of diffeomorph-
isms of the torus given by

˛.n1; n3/..x2; y2/C Z2/ WD ..x2 C n3y2; y2/C Z2/:

The group G is endowed with the left invariant symplectic structure

Q! D dx1 ^ dy1 C dx2 ^ dy2;

and the symplectic structure on M D � nG is the one lifting to Q! on G:

��! D Q!

with � WG!M the natural projection. AnyG-invariant almost complex structure Qj onG
induces an almost complex structure j on M via

j ı �� D �� ı Qj ;

and the Nijenhuis tensor of j , N j , is induced by the Nijenhuis tensor of Qj , N Qj , via

N j .��X;��Y / D ��.N
Qj .X; Y //:

We take a G-invariant almost complex structure on G which is compatible with Q! and
positive. It yields an almost complex structure j onM which is compatible with the sym-
plectic structure ! and positive, hence non-integrable by Thurston’s result. The Nijenhuis
tensor of Qj is invariant by G and does not vanish; its value at the neutral element e 2 G is
given by

N
QJ .X; Y / WD Œ QJX; QJY � � QJ Œ QJX; Y � � QJ ŒX; QJY � � ŒX; Y �; 8X; Y 2 g;

where g is the Lie algebra of G and QJ Wg! g is the value of Qj at the neutral element.
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The Lie algebra g D R˚ H3 D R4 has brackets given by

Œ.A1; A2; B1; B2/; .X1; X2; Y 1; Y 2/� D .0; B1Y 2 � B2Y 1; 0; 0/:

Since the derived ideal is 1-dimensional, the image of N QJ is spanned by e2 WD .0; 1; 0; 0/
and QJ .e2/. The image of N QJ is an abelian ideal in g. Thus the invariant almost complex
structure Qj on the groupG is minimally non-integrable, ImN Qj defines a foliation ofG, the
leaf through g 2G is the coset gH whereH DRe2˚R QJ .e2/'R2 is an abelian normal
subgroup of G; each leaf carries an induced almost complex structure, and Qj induces a
transverse complex structure on G=H ' R2. Projecting on M gives the following:

The almost complex structure j on the manifold M , induced by a G-invariant almost
complex structure Qj on G which is compatible with Q! and positive, is minimally non-
integrable; the distribution D1j is the distribution defined by ImN j ; the leaf of ImN j

through �.g/ is the projection of the leaf of ImN
Qj through g; it is given by �.gH/ D

�.Hg/ and its structure depends on the intersection of H with �; the set of leaves is in
bijection with the double coset space � nG=H which may not have a manifold structure.

The so-called standard almost complex structure j0 onM corresponds to the construc-
tion with

QJ0.A
1; A2; B1; B2/ D .�B1;�B2; A1; A2/;

and hence QJ0.e2/ D e4 WD .0; 0; 0; 1/. For this standard structure j0, and more gen-
erally, for any positive compatible j defined via a QJ such that QJ .e2/ is in the plane
spanned by e2 and e4, the leaf of ImN j through �.x1; x2; y1; y2/ is given by the torus
�..x1; x2; y1; y2/.0;R; 0;R//. Each leaf contains exactly one element in �.x1; 0; y1; 0/,
the space of leaves is diffeomorphic to the torus T2 and the projection on the space of
leaves is given by the projection of the fibration defined above

p WM ! T2
W Z4.x1; x2; y1; y2/ 7! .x1; y1/C Z2:

The structure j induces a complex structure Nj on the space of leaves such that p is pseudo-
holomorphic; thus the transverse Dolbeault cohomology for .M; j / is the usual Dolbeault
cohomology for .T2; Nj /.

The transverse Dolbeault cohomology for the standard almost complex structure on
Kodaira–Thurston manifold M D Z4 n .R �H3/ is the usual Dolbeault cohomology of
the torus T2 D C=.ZC iZ/.

We shall now study the transverse Dolbeault cohomology for any almost complex
structure j induced by aG-invariant almost complex structure Qj onG which is compatible
with Q! and positive.

Write QJ .e2/D .a;b;c;1/`, with `> 0 by positivity. The leaf through �.x1;x2;y1;y2/
is the image under the projection � of ¹.x1C at; x2C s; y1C ct; y2C t / j s; t 2Rº. The
transverse Dolbeault cohomology is computed using the operator N@j restricted to forms in

�
p;q

D1j ;Œj �
D ¹! 2 �

p;q
j j �.X/! D 0; LX! D 0; 8X 2 ImN j

º:

A form ˛ 2 �
p;q

D1j ;Œj �
lifts to a-form z̨ D ��˛ 2 �p;q

Qj
.R4/ which is invariant by � and

such that i. QX/z̨ D 0 and L QX z̨ D 0 for all vector fields QX with values in the ImN
Qj ; since

Qj .@x2/ D `.a@x1 C c@y1 C @y2/C `.b C y
1/@x2 ;
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this is equivalent to

i.@x2/ z̨ D 0; L.@x2/ z̨ D 0; i.a@x1Cc@y1C@y2/ z̨ D 0; L.a@x1Cc@y1C@y2/ z̨ D 0:

Smooth functions lift to �-invariant smooth functions on R4 which are constant along the
leaves; since those functions do not depend on the second variable x2, they can be seen
as Z4-invariant functions on R4 for the usual action of Z4 on R4 given by translations,
hence as pullbacks of functions on the torus T4 D R4=Z4 and constant on the leaves.

Computation of H
0;0

j -trans.M/

A function f satisfying N@jf D 0 lifts to a function Qf such that N@ Qj Qf D 0. It also satisfies
N@j 0 Qf D 0, where j 0 is the R4-invariant complex structure on R4 (R4 acting by translations)
whose value at 0 is J . Indeed, on the one hand, since d Qf .@x2/ D 0, we have that

d Qf .@x2 � i Qj @x2/ D 0

” d Qf .@x2 � i`.a@x1 C b@x2 C c@y1 C @y2/ D d
Qf .@x2 � ij

0@x2/ D 0:

On the other hand, the�-orthogonal to ImN j is J -stable, spanned by ¹e1�ce2; e3Cae2º
and the corresponding G-invariant vector fields coincide with the vector fields invariant
by translations, hence

.@x1 � c@x2/ � i Qj .@x1 � c@x2/ D .@x1 � c@x2/ � ij
0.@x1 � c@x2/:

The lift of a function f satisfying N@jf D 0 is thus holomorphic for j 0 and Z4-periodic,
which implies that it is constant. Hence H 0;0

j -trans.M/ D C.

Computation of H
1;0

j -trans.M/

The two 1-forms on R4 defined by dx1 � ady2 and dy1 � cdy2 form a basis of G-
invariant forms which vanish on ImN

Qj ; there is thus a complex number � such that

dx1 � ady2 C �.dy1 � cdy2/

is a G-invariant .1; 0/-form for Qj . Hence a .1; 0/-form on M lifts as

Qf .x1; x2; y1; y2/.dx1 � ady2 C �.dy1 � cdy2//;

with Qf .x1; x2; y1; y2/D Qf .x1 C at; x2; y1 C ct; y2 C t / for all t 2 R, @x2 Qf D 0 and Qf
Z4 -periodic. Such a form is N@ Qj -closed if and only if N@ Qj Qf D 0, if and only if, as above, f
is constant. Hence H 1;0

j -trans.M/ D C.

Computation of H
0;1

j -trans.M/

A .0; 1/-form lifts as

Qf .x1; x2; y1; y2/.dx1 � ady2 C N�.dy1 � cdy2//;
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with Qf constant along the leaves and Z4 -periodic; it is always N@j closed. It is N@j exact if
and only if its lift is N@ Qj -exact and the boundary of a �-invariant function which is constant
along the leaves. A function Qf is constant along the leaves if and only if, seen as a function
of the 4-variables .x01 WD x1 � ay2; x02 WD x2; y01 WD y1 � cy2; y02 WD y2/, it does not
depend of x02 and y02. We distinguish cases to study the �-invariance.

Case 1. If a; c and c=a are in R nQ, a function which is constant along the leaves and
Z4-periodic is necessarily constant, because the projection of the line ¹.x1 C at; y1 C
ct; y2 C t / j t 2 Rº on the torus R3=Z3 has a dense image. Hence H 0;1

j -trans.M/ D C.
Case 2. If two of the three numbers a; c and c=a are in R nQ and one of them, say

c=a D p=q, is in Q, then a function Qf which is constant along the leaves and Z4-periodic
is just a function of one variable Qf .x1; x2; y1; y2/ D g.x1 � q=p y1/ which is periodic
of period 1=p. Observe that

.dx1 � ady2 C N�.dy1 � cdy2// D �0d.x1 � q=p y1/ � i d.x1 � q=p y1/ ı Qj /

for some �0 2 C, so that

Qf .x1; x2; y1; y2/.dx1 � ady2 C N�.dy1 � cdy2//

D �0g.x1 � q=p y1/.d.x1 � q=p y1/ � id.x1 � q=p y1/ ı Qj /

is the lift of a N@j exact .0; 1/-form if and only if g.x0/dx0 is the differential of a periodic
function of period 1=p; this is true if and only if the integral over a period of g vanishes,
hence H 0;1

j -trans.M/ D C.

Case 3. If a and c are in Q, write a D p=m and c D q=m with p; q; m in Z, m > 0

minimum. The leaf through �.x1; x2; y1; y2/ is the projection of ¹.x1C pt;x2C s;y1C
qt; y2 Cmt/ j s; t 2 Rº and is isomorphic to S1 � S1; the projection

R �H3 ! R2=Z2 W .x1; x2; y1; y2/ 7! .x1 � y2p=m; y1 � y2q=m/C Z2

induces a diffeomorphism between the leaf space and Zm nT2, with the action of Zm D
Z=mZ on T2 defined by

.k CmZ/ � ..x1; y1/C Z2/ WD .x1 C kp=m; y1 C kq=m/C Z2:

The almost complex structure j induces a complex structure Oj on this quotient Zm nT2;
this lifts to the invariant complex structure Oj 0 on the torus R2=Z2 induced by Qj . The
transverse cohomology for the almost complex structure j on M is the usual Dolbeault
cohomology of .Zm nT2; Oj /. The group Zm being a finite group acting holomorphically
on T2, and each cohomology class in the Dolbeault cohomology of .T2; Oj 0/ containing a
form which is invariant by Zm, the Dolbeault cohomology of .Zm nT2; Oj / coincides with
the Dolbeault cohomology of .T2; Oj 0/.

Computation of H
1;1

j -trans.M/

A .1; 1/-form lifts as

Qf .x1; x2; y1; y2/.dx1 � ady2/ ^ .dy1 � cdy2//;

with Qf constant along the leaves and Z4 -periodic. We continue as above.
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If a; c and c=a are in R nQ, a function which is constant along the leaves and Z4-
periodic is necessarily constant, so H 1;1

j -trans.M/ D C.
If two of the three numbers a; c and c=a are in R nQ and one of them, say c=aD p=q,

is in Q, a function Qf which is constant along the leaves and Z4-periodic is just a function
of one variable Qf .x1; x2; y1; y2/ D g.x1 � q=p y1/ which is periodic of period 1=p; we
can write

Qf .x1; x2; y1; y2/.dx1 � ady2/ ^ .dy1 � cdy2//

D �00g.x1 � q=p y1/.d.x1 � q=p y1/ ^ d.x1 � q=p y1/ ı Qj

for some �00 2 =C . The .1; 1/-form is N@j exact if and only if g.x0/dx0 is the differential of
a periodic function of period 1=p; this is true if and only if the integral over a period of g
vanishes, hence H 1;1

j -trans.M/ D C.

Theorem 4.5. On the Kodaira–Thurston manifold M D Z4 n .R � H3/, the only non-
vanishing transverse cohomology spaces for any almost complex structure j induced by
a left invariant almost complex structure Qj on G D R �H3 which is compatible with the
invariant symplectic structure Q! and positive, are

H
0;0
j -trans.M/ D C; H

1;0
j -trans.M/ D C; H

0;1
j -trans.M/ D C; H

1;1
j -trans.M/ D C:
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