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Estimates for some bilinear wave operators

Tomoya Kato, Akihiko Miyachi and Naohito Tomita

Abstract. We consider some bilinear Fourier multiplier operators and give a bilinear
version of Seeger, Sogge, and Stein’s result for Fourier integral operators. Our results
improve, for the case of Fourier multiplier operators, Rodriguez-Lépez, Rule, and
Staubach’s result for bilinear Fourier integral operators. The sharpness of the results
is also considered.

1. Introduction

The solution to the wave equation 3?u = Au with the initial data u(0, x) = f(x) and
u:(0, x) = g(x) is given by

u(t,x) =

ix-E 2 1 ix-£ sin(z|§]) .
[ erteostied Feras + oo [ et TS aey de,

where f denotes the Fourier transform of f (for the definition of Fourier transform, see
Notation 1.6 below). Several basic properties of the mapping (f, g) — u(¢, -) are derived
from the estimate of the operator

@2n)

(L.1) T = G [ e e 6 de.

@2n)
The purpose of this paper is to consider bilinear versions of this operator.
We begin with the definition of linear Fourier multiplier operators. For 6 € L (R"),
the operator (D) is defined by

0(D) f(x) = /R o) ) de, xe R,

@2m)"
for f in the Schwartz class §(R”). If X and Y are function spaces on R" equipped with
quasi-norms or seminorms || - ||x and | - ||y, respectively, and if there exists a constant A
such that

10(D) flly = Al fllx forall feX NS,
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then we say that 6 is a Fourier multiplier for X — Y and write 6 € M(X — Y). (Some-
times we write 8(§) € M(X — Y) tomean 6(-) € M(X — Y).) The minimum of A that
satisfies the above inequality is denoted by ||| 4¢(x —¥)-

Throughout this paper, H?,0 < p < oo, denotes the Hardy space, and BMO denotes
the space of bounded mean oscillation. We shall use the convention that H? = L? if
1 < p < o0. For H? and BMO, see, e.g., Chapters III and IV in [20].

We recall classical results about the operator (1.1) and its generalizations. We use the
following notation.

Definition 1.1. We write = #(R") to denote the set of all functions on R” that are
real-valued, homogeneous of degree 1, and C*° away from the origin.

The following theorem is due to Seeger, Sogge, and Stein [19].

Theorem A (Seeger—Sogge—Stein [19]). Let 1 < p <ocandm =—(n—1)|1/p —1/2|.
Assume ¢ € P (R"™). Then

M(H? — HP) when 1 < p < oo,

i0(® (1 2ym/2
¢ (1181 {M(BMO — BMO) when p = oc.

In fact, this theorem is not given in [19] in exactly the same form as above; the result
given in [19] is restricted to local estimates. However, Theorem A can be proved by a
slight modification of the argument of [19]. Or one can appeal to the general results given
by Ruzhansky and Sugimoto, see Theorems 1.2 and 2.2 in [18].

It is known that the number —(n — 1)|1/p — 1/2| given in Theorem A is optimal. In
fact, for the typical case ¢(§) = |&|, the following theorem holds.

Theorem B. If 1 < p < o0, and if

M(H?P — HP) whenl < p < o0,

6l (] 4 |£12)m/2 ¢
e £1%) {M(BMO — BMO) when p = oo,

thenm < —(n —1)|1/p —1/2|.

For a proof of Theorem B, see Theorem 1 in [10] or Section 6.13 in Chapter IX of [20].

The purpose of the present paper is to consider bilinear versions of Theorems A and B.

We recall the definition of bilinear Fourier multiplier operators. For a bounded meas-
urable function 0 = o (£, 1) on R” x R”, the bilinear operator T} is defined by

1 . ~
Ts(f e)(x) = Gy [fR o T EI o ) f(E)E() dEdy, xeR™,

for f,g € S(R™).If X, Y and Z are function spaces on R” equipped with quasi-norms or
seminorms || - ||x, || - ||y and || - ||z, respectively, and if there exists a constant A such that

ITo(f, )z < Alflxllglly forall fe XNSandallgeY NS,

then we say that o is a bilinear Fourier multiplier for X x Y to Z and we write o €
M(X xY — Z). (Sometimes we write 8(§,n) € M(X x Y — Z) to mean 0(-,-) €
M(X xY — Z).) The smallest constant A that satisfies the above inequality is denoted
by llollmxxy—2z)-
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We shall consider the bilinear Fourier multiplier of the form
e @1E+D) 5 (£ 1y with ¢y, ¢ € P(R") and o € S{"’O(RZ”),
where the class S77, (IR2") is defined as follows.

Definition 1.2. Form € R, the class S{", (R2") is defined to be the set of all C* functions
o = o (£, 1) on R?” that satisfy the estimate

08080 (€. )| < Co (1 + [8] + [~
for all multi-indices o and S.

In the theory of bilinear Fourier multipliers, a classical method is known that allows us
to write a multiplier 0 € ST R2™) as a sum of multipliers of the product form 61 (£) 6 (n).
Using this method, we can deduce the following result from Theorem A.

Theorem 1.3. Letn > 2, andlet 1 < p,q < oo be such that 1/p + 1/q = 1/r. Assume
¢1. 92 € P(R") and 0 € ST\ (R*") withm = —(n — 1) (|11/p —1/2] + [1/q — 1/2)).
Then ¢! @1 &+ 5 (& )y e M(HP x HY — L"), where L should be replaced by BMO
when r = oo.

In fact, Rodriguez-Lopez, Rule, and Staubach [17] considered more general operators,
bilinear Fourier integral operators, and proved a theorem that almost covers Theorem 1.3.
The statement of the theorem of [17] is, however, restricted to local estimate. We shall
give a full proof of Theorem 1.3 in Section 3.

The main purpose of the present paper is to show that the number

= wn (Y411

in Theorem 1.3 can be improved, and to show that the improved m is optimal at least for
certain (p, q).
The following is the first main theorem of this paper.

Theorem 1.4. Letn > 2, andlet 1 < p,q < oo be suchthat 1/p + 1/q = 1/r. Assume
$1,¢2 € P(R") and o € STy R2") with m = my(p, q), where

—n=D(l5 =3l +1g=3) Ffl=pg=2orif2<pq=oo
(___) (n—l)(%—é) if1§p§2§q§ooand%+$§1,
mi(p.g)=1--D(;-3)-(G-3) Flsp=2=q=coand ;+;=1,
a-D(E--(-d) Fisgs2<pscadirist
el izgs2zpsccma iz

Then ¢! @1 &+ 5 (& n)y e M(HP x HY — L"), where L should be replaced by BMO
when r = oo.

Compare the claims of Theorems 1.3 and 1.4. They are the same in the regions 1 <
p,q <2and 2 < p,q < oo, but are different outside of these regions. In the typical
case (p,q) = (1,00), Theorem 1.3 asserts that the multiplier e?@1®+92(1) 5 (& 1) belongs
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to M(H! x L® — L) ifo e S;(()"_l)(RZ"), whereas Theorem 1.4 asserts that the same

holdsif o € § 1_ g/ 2(RZ"). The latter is stronger if n > 3. To be precise, observe that

mi(p.q) > —(n=D(1/p=1/2| + 1/ = 1/2|)

ifn>3and 1 <p<2<g=<oocorl=<g<2<p <oo. Thus Theorem 1.4 is an
improvement of Theorem 1.3 for these n, p and gq.

In order to show that the number m(p, ¢) is in fact optimal for some (p, g), we
consider the special case ¢1(§) = ¢2(§) = |£]. We write

(1.2) .
BMO ifr = oc.

_ { L if0<r < oo,
.=
For p,q € [1, 0] given, weset 1/r = 1/p + 1/q and we consider a necessary condition
onm € R that allows the assertion

(1.3) S EFI (5 ) € M(HP x HY — X,) forallo e ST (R?").

The following is the second main theorem of this paper.

Theorem 1.5. Letn > 2.
(1) Let1 < p,q <2 or 2 < p,q <oo. Thenm € R satisfies (1.3) onlyif m < —(n—1)
x(11/p—=1/2+ [1/q —1/2)).
2) Letl<p<2<g<ooorl<qg<2<p<ooandassumel/p+1/q=1.Then
m € R satisfies (1.3) only if m < —n|1/p —1/2|.

This theorem implies that the number m;(p, g) of Theorem 1.4 is optimal for p
and ¢ in the range given in (1) and (2) of Theorem 1.5. The present authors do not know
whether m (p, q) is optimal for other p and g.

The contents of the rest of the paper are as follows. In Section 2, we collect some
propositions concerning flag paraproduct, which we will use in the proof of Theorem 1.3.
In order not to interrupt the stream of argument, we shall postpone rather long proofs of
those propositions to Section 6. In Sections 3, 4 and 5, we prove Theorems 1.3, 1.4 and 1.5,
respectively. The last section, Section 6, is devoted to the proofs of the propositions stated
in Section 2.

We end this section by introducing some notations used throughout this paper.

Notation 1.6. We define the Fourier transform and the inverse Fourier transform on R¢ by

Fo=[ iy md @@= [ @

(27)?
Sometimes we use rude expressions ( f(x))" or (g(£))Y to denote (f(-))" or (g(-)Y,
respectively.

We shall repeatedly use dyadic partitions of unity, which are defined as follows. Take
a function ¢ € C{°(R™) such that suppy C {27! < || <2} and Z}";_w v(2E) =1
for & # 0. We define functions ¢ and ¢ by ¢(§) = Z;‘;l Y (27/€) and @(§) = 1 — ().
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‘We have

¢ =0 iflf[=1, =1 if[§[=2,
p@ =1 if|§[ =1, ¢ =0 if|§[=2,

Zf:_oo Y@ IE) = p(27E) fork # 0.k € Z.

Notice, however, that we will also use the letters ¥, ¢ and ¢ in a meaning different from
the above.
For a smooth function # on R¢ and for a nonnegative integer N, we write

0 = max sup [9050(§)].
I9llcr = max sup 3206

The letter n denotes the dimension of the Euclidean space that we consider. Unless
further restrictions are explicitly made, #n is an arbitrary positive integer.

2. Some results from bilinear flag paraproducts

In this section, we give some results for the bilinear Fourier multipliers of the form

ao(§,n)ay(§)az(n).

This kind of multipliers, with ag, a; and a, being O-th order multipliers (i.e., the ones
that generalize homogeneous functions of degree 0), are considered by Muscalu [14, 15]
and Muscalu-Schlag [16], Chapter 8, where their mapping properties between L? spaces
are given. In this section, we consider the case where ag, a; and a, are non-zero order
multipliers, and give estimates including H# and BMO. The results of this section will be
used to prove Theorem 1.3.

Definition 2.1. Form € R and d € N, the class S‘f”’o (Rd) is defined to be the set of all C*°
functions 6 on R? \ {0} such that, for all multi-indices «,

1020(6)| < Cq £ 1.

_ First, we recall a classical result about the bilinear Fourier multipliers in the class
S ?,O(RZ"). The following result was established in the works of Coifman—-Meyer [2,3,9],
Kenig—Stein [8], Grafakos—Torres [7], and Grafakos—Kalton [5].

Proposition 2.2. If o € S'?,O(Rz”), theno e M(H? x H1 — L") for 0 < p,q < oo and
1/p+1/q=1/r >0, and also 0 € M(L*® x L*°® — BMO).

The proofs of the following two propositions will be given in Section 6.
Proposition 2.3. Let my.my <0, m = my + my, ag € S7,(R*"), a; € S{ ¢ (R") and
as € S’;g’z (R™). Let o (€, 1) = ao(&, n)ay(§)az(n). Then the following hold.
() ce M(H? x H1 - L") forO < p,g<ooand 1/p+ 1/q = 1/r.
(2) If my <0, theno € M(H? x BMO — LP) for 0 < p < oc.
(3) If m;y <0, thenoe M(BMO x H? — L) for 0 < g < oo.
4) If my,my <0, then 0 € M(BMO x BMO — BMO).



T. Kato, A. Miyachi and N. Tomita 1576

Proposition 2.4. Let m; <0, ag € S{”& (R?"), a; € S‘f’(')'”(R”), and define t(£,n) =
ao(&,n)ay1(§). Then the following hold.

(1) teM(H? x L*® — L?) for 0 < p < o0.
2) If my; <0, then t € M(BMO x L*° — BMO).

3. Proof of Theorem 1.3

In order to prove Theorem 1.3, we use the following lemma.
Lemma 3.1. If ¢ € P(R") and if 8 € C§°(R") satisfy supp0 C {|&| < 2}, then

| @)Y |, < cllbllcnr,

I =
where ¢ = c(n, ).

Proof. Write

1
O0E) =0 + Y (€O -1oE YvRTE),

Jj=—00

where v is the function given in Notation 1.6. The inverse Fourier transform of 6(§)
satisfies [(0)Y (x)| < [|0]l¢n+1(1 + |x])™" ! and hence [|(9)V]|z1 < [|0]|cn+1. The function
(€® — 1)0(£) ¥ (277 €) has support included in {2/~ < |&] < 2/+1}, and satisfies the
estimate

92 ("*® =D OE v 7)) S 10llcns @)L ol <n + 1.
From this we obtain

(@O —1DOE) Y27 )" (0] < 18llcar 27D (1427 1x ™,
and hence _ A .

[(?® = 1) p(€) 077 ) It < (10l 27
Taking sum over j < 1, we obtain ||(e’?® — )¢ (€)Y L1 < |10]lcn+1. [
Proof of Theorem 1.3. Wewritem; =—m—1)|1/p—1/2|,my=—m—1)|1/q—1/2|,
and 1/p + 1/q = 1/r. We also use the notation (1.2).
Using the functions ¢ and ¢ of Notation 1.6, we decompose t as

¢ =uén+nén+ién+én,

where

1€ ="' ® &) 2D o) o (£, 7).
n(E.n) = PO L) D o) o (€. 7).
u3(E.n) = "' ® ) M t() o (€. 7).
w(E.n) = PO L) D () o (£ 1).
We shall prove that 7; € M(H? x H? — X,) fori =1,2,3,4.



Estimates for some bilinear wave operators 1577

Firstly, the multiplier 7, is easy to handle. By Lemma 3.1, the inverse Fourier trans-
form of e?1® (&) is in L' (R"), and hence ¢?1©¢(&) € M(H? — HP),1 < p < oo.
Similarly, e!®2Mg(n) € M(H? — H?),1 < q < 0co. Alsoo € M(H? x H? — X,), by
Proposition 2.2. Combining these facts, we have that 1 € M(H? x H? — X,).

Next, consider 7,. We write this as

w(E, ) = o(E,n) LE) [EM 91O L (g) [5]™ - 12 (),

where  isa C® function on R" such that Z(€)=1for|&| > 1and £(§) = Ofor |£] <271
As we have seen above, e?>Mg(n) € M(HY — HY) for 1 < g < co. Theorem A implies

M(HP — HP) if 1 <p<oo,

ig1(8) mi
e §E)EI™ € {,M(BMO—>BMO) if p = o0.

Notice that o € S} (R>") C S{"& (R2") and that £ (£)|€]™™ € S’l_,g“ (R™). Hence Propos-
itions 2.3 and 2.4 give

M(H?P x HT — L") if 1<p,q< o0,

M(H? x L™ — LP) if 1 <p<oo and g = o0,
M(BMO x H? — L?) if p=oco0 and 1 <g¢q < o0,
M(BMO x L*® - BMO) if p=¢g =00

(3.1 oEmiE)E™e

(notice that m; < 0if n > 2 and p = co). Combining these results, we see that 7, belongs
to the same multiplier class as in (3.1), which a fortiori implies 7, € M(H? x H? — X).
By symmetry, we also have 13 € M(H? x H? — X,).
Finally, consider t4. We write this as

w(En = oG @ ET T 0T - MO 5 @) [ - 2D ey )™,
where Eis the same as above. Theorem A gives

M(HP — HP) if 1<p<oo,

NOL e {M(BMO > BMO) if p=oo

M(H? — H?) if 1 <¢g < o0,

i #2(0) m2 g
([l {M(BMO — BMO) if ¢ = co.

Proposition 2.3 gives

o(E. ) L@ ET™ L) [y

M(H? x HP — L") if 1<p,q< o0,
(3.2) c M(H? x BMO — L7?) if 1 <p<oo and g = o0,
M(BMO x H? — L9) if p=oco0 and 1 <g¢g < o0,

M(BMO x BMO — BMO) if p=¢g =00

(notice that m; < 0ifn > 2 and p = oo and that m, < 0if n > 2 and ¢ = 00). Now com-
bining these results, we see that t4 belongs to the same multiplier class as in (3.2), which a
fortiori implies t4 € M(H? x H? — X,). This completes the proof of Theorem 1.3. =



T. Kato, A. Miyachi and N. Tomita 1578

4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. For this, the key is to prove the assertion of The-
orem 1.4 in the special case p = 1 and ¢ = oo, which we shall write here for the sake of
reference.

Theoremd.1. If n > 2, ¢1.¢2 € P(R"), and o € S| 3/ *(R>"), then &! @1 O+62005 (£ )
e M(H' x L® — L).

Theorem 1.4 can be deduced from this theorem and from Theorem 1.3. In fact, notice
that, by obvious symmetry, we have ¢!@1 &+ g (& 1) € M(L® x H' — L') under
the same assumptions on # and o. Hence, if Theorem 4.1 is proved, then we can deduce the
claims of Theorem 1.4 from the claims of Theorems 1.3 and 4.1 with the aid of complex
interpolation. (For the interpolation argument, see, e.g., the proof of Theorem 2.2 in [1] or
the proof of the ‘if” part of Theorem 1.1 in [12].) Thus it is sufficient to prove Theorem 4.1.

To that end, we use the following lemmas.

Lemma 4.2. Let ¢y, ¢y € P(R™) and let § € CO(R?"). Then (¢! @ ©O+620g (& yy)v
e LY(R2"),

Proof. Take a function 0 e Cy°(R™) such that 6 &) 6 (n) = 1 on suppf. Then
et @1(E)+82(m) 0(¢,n) = el @1(E)+¢2(m) 5(5) 5(’7) 0(€, ).

Lemma 3.1 implies (¢! @1 ©+620) §(£)§(n))¥ € L1 (R?"). Clearly (6(£, 7)Y € L1 (R?").
Hence the conclusion of the lemma follows. [

Lemma 4.3. Letn > 2 and ¢ € P (R"), and set R = sup{|Vp(&)| | |&| = 1}. Let ¥ be
a C® function on R" satisfying suppyr C {271 < |§| < 2}. Then the following hold.

(1) For each positive integer N, there exists a constant cy, depending only on n, ¢
and N, such that

Oy @)Y )] < enllvllen @) M2 1x|™ for|x| > 2R and j €N.
(2) There exists a constant c, depending only on n and ¢, such that

e Oy )V ()| < cll¥lcan1 )V forall j e N.
Proof. We write f;(x) = (e 7@y (277£))V (x).

To estimate f; (x), we follow the idea given by Seeger-Sogge-Stein [19]. Let S"~! =
{§ € R" | |§] = 1}. For each j €N, take a sequence of points {§} }, such that

ges |JBE.27P)ns T =57
v
and ) Ay o) <c forall§ € S"7,
v

where B(x,r) denotes the ball with center x and radius r, and v runs on an index set of
cardinality ~ (2//2)"—1,
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Take functions {x}}, such that

)(; is homogeneous of degree 0 and C* on R” \ {0},
(EeS" | i) #0) C{Ees | |E—g <27//7H),
10g X} ()] < ca 2 forall £ € S,
> () =1 forall§ € R" \ {0}.

v

Using this partition of unity, we decompose f;(x) as

[ =" £,

—j —7 v \% 1 i(E-x— —Jj v
£ = (7O g2 e) 2 ©) (x) = G / e EPE (27T ) 40 (§) dE.

The key idea used below is that the oscillating factor e #¢® can be well approximated
by e EVED on the support of V(277 §) X; (&). We write the phase function & - x — ¢ (§)

appearing in the last integral as
E-x—9p@E)=§6-(x=Vp(§) =& (x = V(&) +hj ),
hi() =&- (Vo)) —Vo(£)).
Then

1 e T (£ P -
e /R ECIOED 0T ) v () MO g

Notice that the support of ¥ (277 §) )(}’ (&) is included in the set

£ =

Ejy = {s ] V< g <2, \é—| — &

< 2—_;‘/2+1},

which has Lebesgue measure |E;, | &~ (2/)®+1/2, The functions appearing in the above
integral satisfy the following estimates on Ej ,:

02y 277 8)| < call¥ ol 297,
102 22 (E)] < cq (272710,
€ - Vo ®)] < e 2)7F,
|8g€ih}’(§)| <y (2j/2)—|a|’
&) - Ve)¥e™ @) < @) 7.

By using these estimates and by integration by parts, we obtain the following two estim-
ates:

@) Ol <en Wley @2 (14272 x - vgEn)) ™,
4.2) 1P < en W lley @)D (1427 162 (x = Vo) .
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Proof of (1). Suppose |x| > 2R. Then |x — V¢ (§}')| ~ |x|, and hence (4.1) gives
@IS 1 llen @)D @721~
Taking sum over v’s of card &~ (2//2)"~!, we have
1D IO S W llew @HEHD2 @72 x )N 2772y
v
= [¥llew @) N2 x|,
Proof of (2). Combining (4.2) and (4.1), we have
|fi" ()]

< enl¥llen @DV (1427 (€2 - (= Vo ENN) P (1 +272x = V(1)) N/
< enll¥llen @HPTV2 (1427187 (x = VoENN D V21 +272|(x = Vo (£])) )N/,

where (x — V¢ (SI.”))’ denotes the orthogonal projection of x — V@ (§}) to the orthogonal
complement of the line R§ j‘.’. Taking N = 2n — 1 and integrating the above inequality, we

have
v i\(n ) v —(2n-1)/2
1 Ner 5 Wl GOV [ (1421 - = V()™

X (14272](x = Vg E)Y1) V" dx

~ ¥l can-r.

Taking sum over v’s of card ~ (2//2)"~1, we obtain the inequality as mentioned in (2).
This completes the proof of Lemma 4.3. ]

Lemma 4.4. Letn > 2, ¢ € P(R"), and set R = sup{|Vp(&)| | || = 1}. Let  be the
function given in Notation 1.6, and let 0 € C§°(R") satisfy supp8 C {|&| < 2}. Then the
following hold.
(1) For each positive integer N > 2n, there exists a constant ¢y, depending only onn, ¢
and N, such that

[(®tE)00277 €)Y (x)| < enllflen IxI7N  for |x| > 2R and for all j € N.
(2) There exists a constant ¢, depending only on n and ¢, such that
“ (ei¢(g)§(§)9(2_j§))v“y < |10l can 2j(n=1)/2.
Proof. From the definition of ¢ and from the assumption on supp 6, we have

j+1
O LE) 0 =) Oy F e

k=1
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If|[x| >2Rand 1 <k < j + 1, then Lemma 4.3(1) gives
(O y 2760277 )Y (x)| < @2 XV [y () 025 [l ew

< @Y NN 6 e
If N > 2n, then taking sum over k, we obtain the inequality mentioned in (1).
For1 <k < j + I, Lemma 4.3(2) gives
[y @6 0@ )" @)1 S WO ) cznmr 250D/
< 10llcanr 267D/,

Taking sum over k < j + 1, we obtain the inequality mentioned in (2). Lemma 4.4 is
proved. ]

Proof of Theorem 4.1. We write m = —n /2 and assume 0 € S{", (R2™),
We use a dyadic partition of unity to decompose o (£, n). Let ¥, ¢ and ¢ be the func-
tions given in Notation 1.6. For j e N U {0}, we define y; by

@(§) if j =0,

vi®= {wz—fs) it =1

Notice that Y2520 v; (§) = 1 and Y5_o v, (£) = ¢(27¢) for k €N U {0).
We decompose o as '

o= D oEmyEVM =Y +D +y

j=0k=0 j>k j=k j<k
= UI(E? 77) + O-H(Ev 77) + O'HI(%‘v 77)7

where » oy, D . and ;. denote the sums of o (&, )y, (§) Yi(n) over (j, k) €
(N U {0})? that satisfy the designated restrictions.

Consider the multiplier o7. This is written as

oo j—1 00
oiE.m =) Y oGy v =Y oEmy@ e ).
J=1k=0 j=1

Take a function ¥ € Cy°(R™) such that supp{/; c {37! <|&] <3} and ¥(§) = 1 for
271 <|&| <2. Also take a function ¢ € C$°(R") such that supp@ C {|§| <3} and §(§) =1
for |&| < 2. Then

o

o) =Y o TQIOHFQTH YT e ).

j=1

The function o(27 €, 2/~1n) ¥ () F(1) is supported in {37! < |&| < 3} x {|n| < 3}, and
satisfies the estimate

|98 810 (276,277 ) Y (§) §m)| < Cayp 2™,
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with C,, g independent of j € N. Hence, by the Fourier series expansion, we can write
s ETITE P = Y 4P e for ] < 7, |yl < .
a,bez’

with the coefficient satisfying
4.3) 4P < 2m (1 + |a)™E (1 + b)) E

for any L > 0. Changing variables § — 277¢ and n — 27/*1y, and multiplying by the
function ¥ (277 §) (277 T1p), we obtain

G(E’n)l/f(z_jg)¢(2_j+l Z c(ab) ia27/E ’b'z_jﬂ’i w(2—15)¢(2—j+1n)'

a,bez”

Hence, o7 is written as follows:

o= ) Zc(‘”’) 2 b2y (07T 27 )
a,beZ" j
[e9)

SN @Dy @aig) o® @y,

a,beZ" j=1

where ' '
YO (E) =" yE) and oM () ="M (y) forv e Z".

By a similar argument, oy and oy can be written as follows:

onE.n) =oE Voo + Y. > Py @ y® ey,

a,bezZ" j=1
) » -
omEM =Y ZCﬁ“,)w‘“)(Z Ity y® 2y,
a,beZ" j

where the coefficients ¢ jb) and LI(I‘I’ jb) satisfy the same estimates as (4.3).

Hereafter, we shall consider a slightly general multiplier. We assume the multiplier &
is given by

(e}
4.4) FEM =Y ;0127802 7).
j=1
where (¢j);j en is a sequence of complex numbers satistying
(4.5) lejl <2/™A, jeN,
for some A € (0, 00), and where 6, and 6, are functions in C§°(IR") such that

4.6) supp i, suppb, C {|&| <2}.
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For such &, we shall prove the estimate

4.7 | @O GE )| ymixrooiy < cAlbilen102llcn,

with ¢ = c(n) € (0,00) and N = N(n) € N.
If this is proved, then by applying it to ¢; = cI(flj’b), 6; = ¥ @ and 6, = @ (2), we
obtain

|

o0
: b . .
@O0 Y @)y (@ (3= ) 4@ (2 HI")H
j=1

SU+1aDEA+ BDENIv Dl enlle® @) lev < A+ lal)EN (1 + b,

M(HIXL®—L1)

and, thus, taking L sufficiently large and taking sum over a, b € Z", we obtain
ei(¢‘(§)+¢2(n))01(§, n) € M(Hl x L® _s Ll).
In the same way, we obtain

e/ P E+R) (61 1) — 6(8, 1) Yo(E) Yo(n) € M(H' x L® — L)

and
ei(¢1($)+¢2(’7))o-ul(%-’ 7’]) c M(Hl x L — Ll)

Since e! @1 E+02() i (£, ) Yo (§) Yo (n) is also a multiplier for H' x L™ — L by virtue
of Lemma 4.2, we will obtain the conclusion of the theorem.

Thus the proof is reduced to showing (4.7) for & given by (4.4), (4.5), and (4.6).

We shall make a further reduction. As in the proof of Theorem 1.3, using the func-
tions ¢ and ¢ of Notation 1.6, we decompose the multiplier e!@1©+2(0) 7 (£ ) into
four parts:

OO F (& p) = 11(5, ) + (5, ) + 135, ) + (&),

where

r1(E.n) =" ® (&) P () (£ 7).
n(E.n) = PO L) M o) 5 (€. 7).
u3(E.n) = "' ® (&) M L () 5 (E. ).
wu(E.n) = PO L) Mt () F (& ).

The multipliers 71, 72, and t3 are easy to handle. For 71, its inverse Fourier transform
is given by

oo

@E MY (@) =Y (e ® o) 6:2778) () (P o 62277 1) ().

J=1

By Lemma 3.1, we have

(4.8) [ ® &) 0:2776) |1 < 161l cn
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and we get a similar estimate with 8, in place of 8;. Thus
1Tl L1 ran)

<> 2"Al( @O E) 027 ENY || 11 gy € P o) 6227 )Y | 1 ey
j=1

(o)
S Y 2" A0y || eni 182l cner & Al [|ener 162]] cner
j=1

which implies
Ittt xrosrty S AllO1llener |02l cntr.

For 1,, we use the estimate

[ @) 61277 )Y | 1 gny S 27V 61l conr,

which is given in Lemma 4.4 (2). Using this together with (4.8), we obtain
o2l maixree—srty < 1(2)" L1 w2n)

= | X e @@ a7 9) P om 027 m) 1)
j=1

L}y (R2)

o0
<Y 2 AV TIR6y | cana B2l onr & Al6r | c2nr [1Ballon
j=1

where the last &~ holds because m < —(n — 1)/2. Similarly, we have
leallmearixroo—rty < 1) 1@emy < AllO1llentrl|02]lc2n-1
Thus the rest of the proof is the estimate for 4. Our purpose is to prove the estimate

172, (£ &)t < AllOillen 102l [f |z llgllzee-

To prove this, by virtue of the atomic decomposition of H!, it is sufficient to prove the
uniform estimate of || Ty, (f, g)|lz1 for H!-atoms f. By translation, we may assume that
the H '-atoms are supported on balls centered at the origin. Thus we assume

supp f C{lx| =7}, [[flleee =r™" and /f(X) dx =0,
and we shall prove

1T, (f. )l < AlOilen l1020cnliglizee.

Recall that the bilinear operator 7%, is given by

T, (f8)(x) =Y ¢ P ¢(D)6,(277 D) f)(x) (%P ¢(D) 6,(27/ D)g)(x).

Jj=1
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We set R = 1 + max;=1,2 sup{|Vei (§)| | [§] = 1}.
Firstly, consider the case r > R. In this case, we estimate the L! norm as

1T (f @)l <2/ APV e(D)Y 6,277 D) £ 11| P ¢(D) 6227/ D)g |
j=1

=: (%).
For the L°°-norm involving g, we use Lemma 4.4 (2) to obtain
|2 ¢(D) 6,27 D)g||, 00 < [ (' () 227 0)) || .1 lgloe

(4.9) )
< 20D 6s ]| conr || g oo

For the L' norm of ¢#1®)¢ (D)6, (277 D) f(x) on |x| < 3r, we use the Cauchy—Schwarz
inequality to obtain

[P £(D) 61277 D) () | 11 12123y
P E@ P D) 0@ DY) pagaizan < " 10 lco 1 f Iz < 101 lo-

If x| > 3r and |y| < r, then |x — y| > 2r > 2R. Hence, for |x| > 3r, using Lemma 4.4 (1),
we see that

[P ¢(D) 61277 D) /()] = | / (O 0©0:279) (x =) f()dy
< /| _ Bllex e =™ 1f0)ldy S lorlew 17
yisr
which implies
|1 P £(D)6: 27 D) f () L1 xoary S 161llcn /|x|>3r I dx 5 ol
Combining the above estimates, we have
(4.10) [P (D) 6127 D) f(x) | 11 S lI6rllew -
Now from (4.9) and (4.10), we obtain

oo
() S Y 2" A6l w27V 6l gl ~ AllBille 162l lIgllLe.
j=1

where the last &~ holds because m < —(n — 1) /2.
Secondly, we assume r < R and estimate the L! norm of T, (f, g)(x) on |x| > 3R.
We estimate this as

T (£ L imar < 327 AP (D)6 D) £ | 1oy
j=1
x € 9P (D) 6227 DYg() | v e o3y
= (**).
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For the L°° norm involving g, we have (4.9). If |x| > 3R and |y| < r < R, then
|x — y| > 2R. Hence, for |x| > 3R, Lemma 4.4 (1) yields

e #1 P (D) 6,277 D) f(x)| = ] / (O ¢©)0,2778))  (x — y) f(y) dy
5/ 101llew [x = yI™N 1 £ ) dy < [161llen 1xI7Y.
lyl<r

This implies ' )
[P E(D) 6127 D) £ ()| i3y S 161l

Thus we obtain
Oo . .
(%) S Y2/ A)01[len 27V 0x en 1gllLoe & AllOillen [162llen 1gllLe.
j=1

where we used m < —(n — 1)/2 again.

Thirdly, we assume r < R and estimate the L' norm of 77, ( f, g)(x) on |x| < 3R. We
set B ={xe R" | |x| <5R} and decompose g as g = glp + glp-.

For the L1(|x| < 3R) norm of T, ( f, g1p<)(x), we have

17 g1 L1 riary < 327" A] 9P (D)6, (277 D) £ 1 v <3
j=1

x 2P £(D) 6,27 D)(g15) () | oo ia<3m)

=: (k% *).
Using Lemma 4.4 (2), we have

|91 (D) 6127 D) £ ()| 11 uy<3my = €@ LE 6277 [ 111 f I
207026y on.

If |x|] <3R and |y| > 5R, then |[x — y| > 2R. Hence, for |x| < 3R, we use Lemma 4.4 (1)
to have

€= (D) 62277 D) (1) )] = | / L P BT ) (k=) g () dy
y|>
<[ 1w lx=y™ gl dy ~ e ligles.
lyI>5R

Thus

o0
(xx%) £ 32" AVED2 gy on 6ol llglle ~ Al llen 62l gz,
j=1

where we used m < —(n — 1)/2 again.
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Finally, we estimate the L! norm of Ty, (f, g1p)(x) on |x| < 3R. For this, we use the
Cauchy—-Schwarz inequality to have

T2, (f: g18) () ||l L1(1x|<3R)
<Y 2mA|e P (D)6, 27 D) f | 12| P £(D) 6227 D) (g1p) | 1
=1

J
=: (k% **).
For the L? norm involving g1z, we have
@11 (e P1e(D) 0,27 D)(g1p) |2 < [162llco 815122 < 162llco lglzos-
We estimate the L2 norm of ¢!91(®) (D) #;(27/ D) f in two ways. Firstly, we have
(4.12) le'?1 P ¢(D)6127/ D) fllz2 < l6rllcoll fllze < 77" 61 llco.
On the other hand, using the moment condition of f, we can write
P E(D)61(27/ D) f(x)

= [ O @0 79) ()~ @O L6) 6276 (0} S () dy
— [, VO8I ) ¢ - 1) (-3) f) dedy.

lyl=r
Hence

€91 ¢ (D)6, (277 D) f |12 < ||V(€i"’1(5)§(§)91(2_j§))v||L2/

vl
<r|VEn O 6277 6)Y | .

_ [/ dy

By Plancherel’s theorem,

[V @) 0:277)| 12 % 1ELE) 61277 E) L2 <272V j61 o
Hence
(4.13) |9 P e(D) 6127 D) f |12 S 27D k161 ] co.
Combining (4.11), (4.12) and (4.13), we obtain

o0
(x %% %) S 32774 min{r /2, 270240 1416, [ o |62 co g e
j=1

o0
= A|l61collO2llco IIgIILmein{(2’ 12,271y &~ A6l collBall collg | Loe.
j=1

where we used m = —n /2. This completes the proof of Theorem 4.1. ]
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5. Necessary conditions on m

In this section, we shall prove Theorem 1.5.

In fact, we shall prove a stronger theorem by considering a multiplier of a special
form. Take a function § € C§°(R") such that supp# C {37! < || <3} and 6(§) = 1 for
271 < || < 2. We consider the multiplier

oj(E.m) =2""0Q277E)0(2 7 n). jeN.
This multiplier satisfies the inequalities
198070 (5. )| < Cap (1 + [E] + )" 7*7AL,

with Cy g independent of j € N. Thus if the assertion (1.3) holds then, by the closed graph
theorem, it follows that there exists a constant A = A(n,m, p, ¢, 8) such that

(5.1) |27m ! WEIFID g (2~ £y 9 (277 <A forall jeN.

) ”M(HPXH'I—)X,)

We shall prove that the conditions given in Theorem 1.5 are already necessary for (5.1). In
fact, we prove the following theorem, which asserts that the claims of Theorem 1.5 hold
if we replace the condition (1.3) by the condition (5.1).

Theorem 5.1. Letn > 2.
(1) Let 0 < p,q <20r2 < p,q <oo. Then m € R satisfies (5.1) onlyif m < —(n—1)
x(11/p—=1/2]+ [1/q —1/2)).
2) Let1 < p<2<g<ooorl<q<2<p<ooandassumel/p+1/q = 1. Then
m € R satisfies (5.1) only if m < —n|1/p —1/2|.

To prove this theorem, we use the following lemma.

Lemma 5.2. Let  be a C* function on R such that

suppy C{teR |27 <1 <2}, y(r)>0, y()#0,

and set ' _
hj(x) = (e Ely 277 &)Y (x).

which is the inverse Fourier transform of the radial function e "1y (277 |&|) on R". Then
the following hold.

(1) Foreach L > 0, there exists a constant cy,, depending only on n, ¥, and L, such that
Iy (0] < e 2702 (1427 |1 — |x]|)F

forall j eN and all x € R".
(2) There exist §,co € (0,00) and jo € N, depending only on n and v, such that
|ei((n—2)n'/4+7r/4) 27D/ () — ¢y | < %
if1—=8277 <|x| <1482 and j > jo.
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(3) Foreach0 < p < oo,
Ihjllzze ~ NlhjllLe ~ 27@FDRZP) e N,
where the implicit constants in ~ depend only on n, ¥, and p.

Proof. The assertion (3) follows from (1) and (2). In fact, the inequality ||} ||g» = |4 || L»
holds because the support of the inverse Fourier transform of /; is included in the annulus
{2771 < |g| < 2/*1}. The estimate of ||h; L, < 2/(*+1D/2=1/P) follows from (1) and
the converse estimate ||/2||.» 2 2/(*+1)/2=1/P) follows from (2). Thus we only need to
prove (1) and (2).

Since /; (x) is the inverse Fourier transform of a radial function, it is written in terms
of Bessel function as

o0
hj(x) = (27'[)7"/2/ Jn—2)/2(|x|1) (|x|l‘)*("*2)/2 v t) e~ =l gy,
0

where J;,_5)/» is the Bessel function (see, e.g., Theorem 3.3 on p. 155 of [21]; this for-
mula holds for n = 1 as well, since (277)~1/2J_y5(s) s'/2 = 71 cos s).

Proof of (1). Firstly, we estimate of ;(x) for 2/|x| < 1. For this, we use the power
series expansion

o0
Q)2 Jeaya(8) 5T =N " 5™,
m=0

whose radius of convergence is co. Integrating term by term, we have

hj(x) = /0 3 am (0" Y@ e T A = a x| (@@ YD)
m=0

m=0

= Y am x| @) () M HNR).

m=0

The function arising in the last expression satisfies
supp(Y (1) 1" cfreR |27 <1 <2},
d\¢
(5) @] = cet +my2m.
Hence, for any L’ € N, we have
@@ "M@ < e (1 +m)E 2" (207,

Thus, for 2/ |x| < 1, we have

i O < 3 lam] 1x™ 7Y™ ep (1 + m)F 2m (27) 7V

m=0
o0
< @)Y Y laml (1 +mF 2" =7 @YY
m=0

Since L’ can be taken arbitrarily large, the above implies the desired estimate of /; (x) for
2/)x| < 1.
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Next, we estimate /2 (x) for 2/ |x| > 1. For this, we use the asymptotic expansion of
the Bessel function, which reads as

Q@)™ Jaoaya(s) s/
— b+eissl/2—n/2 +b—e—issl/2—n/2 + eisR+(s) + e_isR_(S),

where
pt = (zn)*(nJrl)/z e Tiln=2)m/4+7/4)

and the remainder terms R*(s) satisfy
d\¢ s 1/2-n/2—1—¢
(5.2) (d_) R*(s) = O(s f2—n[2-1— ) ass — oo, ford =0,1,2,...
s
Corresponding to the asymptotic expansion formula given above, we write
hj(x) — b+/ ezlxlt(|x|t)l/2—n/2 lﬂ(z_]l) e i1 gy
0
oo . . .
+ b_/ e—l\x|t(|x|l)l/2—n/2 w(z—jt) e—lt tn_l dt
0
o . . .
+/ IR (x| w (@ 1) e i dr
0
S . . .
+/ e PR (x| w @ 1) e " dr
0
= Ij+(x) +1;7(x) + Kj+(x) + K (x).

We shall estimate each of Ij+ (x), I7(x), Kj+ (x), and K (x) for 27|x| > 1.

(a) Estimate of Ij+ (x) for 27|x| > 1. The term Ij+ (x) is written as

53 IF @) = b+ (x| >y @70 (1 = |x)
— b+ |x|l/27n/2 (2j)1/2+n/2 (w(t) t71/2+n/2)/\(2j(1 _ |X|))
Since (y(¢) t~1/2"/2)" is a rapidly decreasing function, we have
17 (Ol < |27 @) 2002 (1 21— )
for any L’ > 0. Hence,
27J <« x| < 21 o |I]-+(X)| < (2—j)1/2—n/2 (2j)1/2+n/2 (zj)—L’ _ (zj)n—L/,
| > 270 = @) S @)Y (1427 1= )

For any given L > 0, the above estimates with a sufficiently large L’ imply that

(5.4) L)l S @)V (1427 11— Jxf)) 5, 27)x] > L.
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(b) Estimate of 1 (x) for 2/|x| > 1. The function / ~(x) is written as
I (x) = b~ {(x|)/> "2y 27 ) "1 (1 + |x)).
Hence, by the same reason as in the case of / j+ (x),
|17 (0] < x| @) V22 @014 x|~

for any L’ > 0. Restricting to the region 2/ |x| > 1, we have
(5.5) 7@l s @)y H A+ xp7, 2 x> 1

() Estimate of K" (x) for2/|x| > 1. The integral K (x) is written as

K (x) = {RT (x| @0 e" (1 = |x)).

The function R (|x|¢)¥(277¢)¢"~! is supported on {2771 < < 2/+1} If 2/|x| > 1,
then (5.2) implies

[0{RT (Ix| )y @ 0y 1" | < |x|V/EeT @)l = 0,12,
which, via Fourier transform, yields
{RT (e 9 @770 "N = (x| < /27271 @0) V240271 (14 27 1 — e )7
for any L’ > 0. Hence
2 < |xl 227" = K (o) s @)V )R o) = iy
x> 27" = K@) S @)V (14 21— x])
For any L > 0, the above estimates with L’ sufficiently large imply
(5.6) |Kj+(x)| < (2]')1/2+n/271(1 +2i|1— |x||)*L’ 27 x| > 1.

(d) Estimate of K (x) for 27|x| > 1. The integral K; (x) is written as

Ki () = {R™(x[)y @ )" ) (1 + x)).
If 27 |x| > 1, then by the same reasoning as above, we obtain
HR™(x[0)y @7 0" (U + x| < x|V /271 @) V22 @7 (1 4 ()™
for any L’ > 0. Hence
(57) K@l s @)+ )7, 2 x| > 1

Now from (5.4), (5.5), (5.6), and (5.7), we obtain the estimate of /1 (x) for 271x| > 1
as claimed in the lemma. Thus the claim (1) is proved.
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Proof of (2). The equality (5.3) and the equality

b+ — (Zn)—(n+1)/2 e—i((n—2)7r/4+n/4)

give
i(n—2)m/d4+m/4) 2J —n/2—1/2 I+
(5-8) ’ ) —(n+1)]/2(X)1/2—n/2 —1/24n/2\A (~j
= (2n) x| (W)t ) (27 (1 = |x])).
We set

co = (zﬂ)—(n+1)/2(,¢/.(t) t_1/2+n/2)/\(0).

This is a positive number, since v is nonnegative and not identically equal to 0. Then,
from (5.8) and from continuity of the functions, it follows that there exists a number § > 0
such that

Co
o

On the other hand, the estimates of (5.5), (5.6), and (5.7) imply that there exists a constant
¢1 = c1(n, ¥) such that

1-2778<|x| <1428 = }ei((”_z)”/4+”/4) (2/) /27112 Ij+(x) —co| <

=27 < x| <1427 = |[7@)|+|Kf @] +]K7 ()] < e 27227,

Hencg, the estimate claimed in (2) of the lemma holds if we take jo large enough so that
€127/ < ¢0/20. This completes the proof of Lemma 5.2. ]

Proof of Theorem 5.1. We define the operator S; by
Sih = (e'¥102778) h(9))".

We divide the proof into three cases.
Case1: 0 < p,q < 2.
Assume (5.1) holds, or equivalently, that

(5.9) 27" (1S f - Sjglx, < Allflmeligllae forall j e N.
Take v as in Lemma 5.2 and set
fi(x) = W)Y (x) forjeN.

We shall test (5.9)to f = g = f;.
Since the support of the Fourier transform of the function f; is included in the annulus
{2771 < |g| < 271}, and since f;(x) = 27" (¥ (] - |))¥ (27 x), it follows that

I fillze ~ 1 Sl ~ 270710,

and a similar estimate holds for || f;||g«. On the other hand, by the choice of the func-
tions 6 and v, we have

Sif; = (*Ely @7 gD)Y.
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Hence, by Lemma 5.2, there exist § € (0, 00) and jo € N such that
1S; f5 ()| 2 27002100 i<sy for j > Jjo.

Thus
, 1/r . _ . .
1Sy /)2 lr 2 7D/ ( / Lo dx) -~ 270170 for j > o,

Hence, if (5.9) holds, then testing it to /' = g = f; we have
pim  oj+1=1/r) < »j(=n/p)  j(n-n/q) for j > jo,

which is possible only whenm < —(n — 1)(1/p —1/2 4+ 1/qg — 1/2).
Case2:2 < p,q < oo.
Assume (5.9) holds. Using the function ¥ of Lemma 5.2, we set

fi = @y @jED)" for jeN.
Then Lemma 5.2 gives the estimate
| il ~ 11 llLr 27 FD270P),

and a similar estimate holds for || ﬁ || z74. On the other hand,
i fi(x) = (W Q@EN)Y (x) = 2" (¥ (|- )Y (27 x),
and hence
” (ij]')ZHXr _ ”22jn(w(| . |))V(2jx)2||Xr ~ 2](2n—n/r).
Hence, if (5.9) holds, then by testingitto f = g = f; we have
pim . 9j@n=n/r) < 9j((n+1)/2=1/p)  2j((n+1)/2=1/q)
which is possible only whenm < —(n — 1)(1/2—-1/p +1/2—1/q).

Case3:1<p<2<g<ocorl<g<2<p<ocandl/p+1/g=1.

By the symmetry of the situation, it suffices to consider thecase 1 < p <2 < g < .
Thus we assume that 1 < p <2 <g <ocand 1/p+1/qg =1/r = 1. We assume (5.1)
holds, or equivalently, that

(5.10) 2/ |IS; f - Siglip < Al fllmrllglLa forall j € N,

and prove that this is possible only whenm < —n/p + n/2.
We use the same function f; that was used in the proof of Case 1:

fi(x) = W)Y (x) forjeN,

where v is the function given in Lemma 5.2.
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As we have seen in Case 1,
(5.11) I fillar ~ 2Jjn—n/p)
On the other hand,
Si fi(x) = (€Ely @77 [8D) " (x) = (e Ely 27 [£])¥ (—x)

and, hence, Lemma 5.2 (2) gives that, for | —§27/ < |x| < 14827/ and j > jo,

512 —i((1=2)/4+7/4) p=j+D/2 g £ () — ¢o | < 0.
( ) |e i (%) CO‘ =10
For a sequence of complex numbers o = (og)¢ez», we define g; o by
gal¥) = Y oy filx =827,
Lezn

where §’ is a sufficiently small positive number; for the succeeding argument, the choice
8'=3§/(2+/n) will suffice.
We shall prove

(5.13) lgjellLe < 2707MD || a.

In fact, since f;(x) = 2j"(1/f(| -1))V(2/ x) and since (¥ (| -]))V is a Schwartz function,
we have | fj(x)| <2/ (1 + 2/ |x[)~% for any L > 0. Thus, if 2 < ¢ < oo, then Holder’s
inequality yields

8] < D Jore 27(1 + 27w — 8277 ) ™"

Lezr
. . . _N\Va . . _JN\1-1/q
< ( 3 el 27 (1 427 |x — 8277 ¢]) L) ( (142 x—8277e) L)
LezZr Lezn
. . . _IN\1/a
~ (3 Jelt 20 (1427 x - 52 ) )
LezZn
and hence,

, . . 1/q .
lgjalle < (/ Z g9 279 (1 + 27 |x = 8277 ¢|)~ L dx) ~ o] ga 27D
Lezn

An obvious modification gives (5.13) for g = oo as well.
Since the operator §; is linear and commutes with translation, we have

Sigia =Y au(S;f;)(x—82770).
Lezn
Now we test (5.10) to f = fj and g = gj«. Then by (5.11) and (5.13) we have

2 £ () ZEZW o S; fi(x — 8277 0) HL; S 2" lerlles
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(recall that 1/p + 1/q = 1). We take the dual form of this inequality, which reads as

sy 27| [ 55005 568270 pdx ], £ 27 ol

¢
We define the cube Q,, in R” by
Q,=8270+0.1]"), veZ"

Then each Q,, is a cube with side length § 27/ and all of them constitute a partition of R”.
Let (ev)vez» be any sequence of 1, and apply (5.14) to ¢(x) = Y czn €v 19, (x). Then
we obtain

' 1/q’

q) /q 52].”'

2m ( 3 ( 3 ev/Q S; £1(x)S; £ (x — 8277 ) dx

Lezn vez"

Notice that this inequality holds uniformly for all choices of ¢, = *1. We take the
q’'-th power of the above inequality, take average over all choices of &, = %1, and use
Kintchine’s inequality; this yields

i 2\4q'/2 . ,
1 Y (X ‘/ S 008 fi (v =820 dx| ) 5 270
leZr veZr (2%
We shall estimate the left-hand side of (5.15) from below. For v € R", we define
Sw)={xeR"||x|=|x—v| =1}

If 0 < |v| < 2, then X (v) is a n — 2 dimensional sphere of radius /1 — 4=1|v|2. Thus, in
particular, if 0 < |v| < 1 and n > 0 is sufficiently small, then the n-dimensional Lebesgue
measure of the n-neighborhood of X (v) satisfies

(5.16) |the n-neighborhood of = (v)| &~ n°.
Suppose £ € Z" satisfies

(5.17) 0< 82774 <1

and consider v € Z" that satisfies

. . §2-J
(5.18) dlst(Qv,E(8’2 fﬁ)) <

Then, for each x € Q,, there exists an x’ € X (8’277 ¢) such that

§2—J .
|x — x| < diamQ, + 3 =§277,

and, since this x’ satisfies |x’| = |x’ — 8’27/ 4| = 1, we have

1—-6277 <|x|<146827 and 1-8277 <|x—=8277¢ <14+8277.
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Hence, by (5.12), we see that

—i((n=2)7/4+7/4) 9= (1 +1)/2 ¢ £,y _ e | < €0
e j @) —co| < 32

|€—i((n—2)7r/4+n/4) 9—i(n+1)/2 S; fi(x — §277) — o | < f_g’
forall xe Q, and all j > jo, which implies that

(519) ’/ ij}(X)S]]{](X _ 8/2—]6) dx‘ ~ Zj(n+1)/2 2j(n+l)2 2-/" — 21 forj>j0‘
Oy

All the cubes Q, that satisfy (5.18) certainly cover the (%8 277)-neighborhood of
the set £ (8'27/¢). Conversely, since diam Q,, = 271627/, all Q,, that satisfy (5.18) are
included in the (§27/)-neighborhood of X (8’277 £). Hence, by (5.16), we see that

. 272 i(n—2
(5.20) card {v € Z" | v satisfies (5.18)} ~ = 2/(n=2)
for each £ satisfying (5.17). Also we have obviously
(5.21) card{€ € Z" | € satisfies (5.17)} ~ 27",

From (5.19), (5.20), and (5.21), we see that the left-hand side of (5.15) is
. 2
= Z ( Z ‘/ ijj(X)ijj(X—S/Z‘fz)dx) )
0:5.17) viGag) Y Qv

~ Z ((21‘)2-2"("_2))[1//2 ~ 27 24m forall j > jo.
€:5.17)

q'/2

Thus (5.15) implies 2/(4'/2+m) < 2j(r=m)a’ for ; > o which is possible only when
m<-n/2+n/q =n/2—n/p. This completes the proof of Theorem 5.1. |

6. Proofs of Propositions 2.3 and 2.4

6.1. Proof of Proposition 2.3

In order to prove Proposition 2.3, we use the following lemmas. The first two lemmas are
given in [13].
Lemma 6.1 (Lemma 2.5in [13]). Let0 < p,q <ooand 1/p + 1/q = 1/r > 0. Assume
that  and ¢ are functions on R™ such that suppyr C {a~! < |§| < a} and

05 () = A+ [xD7F for ] = 0.1,

92@)Y ()] < BA+1x)~" for |Bl < L',
wherea, A, B €(0,00), and L, L’ are sufficiently large integers determined by p, q, and n.
Then
< cAB| fllarlglaa.

Lr

[(Zlvepyr-eepif)”|

JEZ
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where ¢ = c¢(n, p,q,a) is a positive constant. Moreover, if p = 0o, then || f |gr can be
replaced by || f || smo-

Lemma 6.2 (Lemma 2.7 in [13]). Let0 < p,g <ococand 1/p +1/q = 1/r > 0. Assume
that Vi and v are functions on R™ such that supp {1, suppy, C {a~! < |§| < a} and

10%(y)Y ()| < AL+ |x)F for |a| < L',
108 (Y)Y (x)| < B(1+ |x)7E for |l < L',

where a, A, B€(0,00) and L, L' are sufficiently large integers determined by p, q, and n.
Then

| 1@ D) f v Dyg|| |, = cABIflurliglas,
JEZ

where ¢ = c¢(n, p,q,a) is a positive constant. Moreover, if p = oo (respectively, ¢ = 00),
then || f |gr (respectively, ||g||ga) can be replaced by || f ||smo (respectively, ||gllBmo)-

Lemma 6.3. Let my < 0, and suppose the multiplier T is given by

tEn) = Y. av177E) V27,

j—k>3

where (cj i) a sequence of complex numbers satisfying |c; x| < 20—z and ry and yr,
are functions in C§°(R™) such that suppyry, suppy, C {27! < || < 2}. Then t belongs
to the following multiplier classes:

MHAP xH? - L"), 0<p,g<oo, 1/p+1/q=1/r,
M(H? x BMO — L?), 0< p < oo,
M(BMO x H? — L9), 0<g < o0,

M(BMO x BMO — BMO).

Moreover, in each case, the multiplier norm of t is bounded by c||V1||cn |V2llcwn, with
¢c=c(,my,p,q)and N = N, p,q).
Proof. We divide the proof into several cases.

Case . HP x H? - L",0< p,q <oo,1/p+1/q =1/r.

From the assumption |cj’k| < 20U =k)m2 with my < 0, we can use Schur’s lemma (see,
e.g., Appendix A in [4]) as follows:

T(£ W =] 3 uvaC@7 D) /() ¥227* D)g(x)

j—k>3

< > 2UTRmy, 277 D) f(x)] [Y2(27F D)g ()|

j—k>3
S ||w1(2‘jD)f(x)llz;. ||¢2(2_kD)g(x)||ei-
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The above inequality, together with Holder’s inequality and the Littlewood—Paley inequal-
ities, gives
IT:(f )l < 19177 D) f @)l [ p |12 D)g)llgz [ 0
S Wallev I A lme V2llen gl ma,
which is the desired estimate.
Case?2. HP x BMO — L?,0 < p < o0.
Observe that, if j — k > 3, then the support of the Fourier transform of the function

V1277 D) f - y2(27¥D)g is included in the annulus {2/72 < |¢| < 27+2}. Hence, the
Littlewood—Paley theory for H? gives

| > cuve Dy v oy < | X cxn@ D) v D)
j—k=>3 j—k>3

J—Kk=

<

<] S @ D) D)
k=—00

=:(x).
el =@

Since

ly227*D)gllLe < [V2llenllglsmo
(see, e.g., Section 4.3.3 in Chapter IV of [20]), and since

J—3 Jj—3
S feul= 30 20 o,
k=—00 k=—00

we obtain

() S v2llew lglemol ||W1(2_jD)f(X)|Iejz. ||L§ S vz2llenliglsmoll¥illen |l fllae.
which is the desired estimate.

Case 3.BMO x H?1 — L9,1 < g < oo0.

By the same reason as in Case 2, the Littlewood-Paley theory for L9, 1 < g < oo,
yields

| 3 cwvieD)s v D))

j—k=>3

<l S a2 D) 1) v Dyeto)
k=—o00

=: (k*).
2]2. L

Take a function 6 € C§°(R") such that 6(n) = 1 for |n| < 2. Then, for j —k > 3, we
have

V2 (2*D)g(x) = 02 D)y (2 D)g(x) = / 207(0)" (2 (x — ) Y22 D)g (v) dy.
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Combining this formula with the inequality

V227 D)g()| £ 1¥allew Mg (y),
where M is the Hardy—Littlewood maximal operator, and with the inequality
)Y (@) £ (1 + 272,
we have
Y227 D)g ()] < [Y2llen S;(Mg)(x),
where S; is defined by
;) = [ 217 (1 4+ 12— P2 b d.

with L > O sufficiently large. Hence

j—3
@5 || D 2070 a7 D) Fl IWallen S (Mg) )
k=—oc0

e} Le

~ allen [[191@77 D) (0l S; (M) () |2 g

S W2lienl¥iliew L f Ismo IMgliLe = IV2llen IV illen ILf Mo l1glLa
where the second < follows from Lemma 6.1 and the last ~ holds because g > 1.

Case 4. BMO x H? — 19,0 < gq < 1.

By virtue of the atomic decomposition for HY, it is sufficient to show the uniform
estimate of || 7% (f. )|z« for all H?-atoms g. By translation, it is sufficient to consider the
H ?-atoms supported on balls centered at the origin. Thus we assume

suppg C (x| <1}, gl < 4, f g)x¥dx =0 forla| < [n/q —nl.
and we shall prove

ITe(f. @) lLe < [¥1lien [¥2llen (1 smo-

By the same reason as in Case 2, the Littlewood—Paley theory for H9 reduces the
proof to the estimate of

H H Ji kY127 D) f(x) Y2(27* D)g(x)
k=—00

z]? L

We first estimate the L9 norm on |x| < 2r. Using Holder’s inequality and using the
result proved in Case 3 (with ¢ = 2), we have

H H 12_3 ik Y127 D) f(x) Y2(27* D)g(x)
k=—o0

e llLaqxi<2r)

j—3
<2 | 3 e @7 D)) @ D)z | L
k=—o00 )

2
&

—n/2
< 2y llew I1allen 1 Iemoliglize < ¥ llen 1¥2llen 1 lIsuo-
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Next, we estimate the L norm on |x| > 2r. Using the inequality

1127 D) f()llzee < 1¥1llen Lf IBmo,

we have

=3
| X cxnerormnetose|,],,.,

j—3
< 2 (j—k)mz 27k p
< lllen I/ lowo| | 32 V27 DI o | o
P J
o0
- pG—kmay 27%D
< illev I flsmo| > | legzkes V2@ D)g@I
k=—00
o0
~ 27%D
l¥illen | f lBmo kZ [¥2( )8 (x)] La(x[>2r)
=—00

©.1) < [Villew £ llemo [I1¥2Q27* D)g(¥) Laqxl>2r) HZZ‘

To estimate the L2-norm of the functions ¥, (27X D)g(x) on |x| > 2r, we write

22 D)g(x) = / 24 (92 (2% (x — ) g(v) d.

lyl<r

Then, using the size estimate of g and the moment condition on g, we have
V227 D)g(0)] S [Wallen 257 (1 + 2% |x)~E /a4 min {1, @Fr)"/a7" T
for |x| > 2r (see inequalities (2.7) and (2.8) in [13]). Hence

[¥2(27% D)g ()|l La(x|>2r)

S IWallew r= 4 min {1, @) 2604 266D T g 412
(6.2) ~ ||¥2 ]| ¢~ min {(Zkr)_L+”, (2kr)n—n/q+[n/q—n]+1}_

From (6.1) and (6.2), we obtain

Z]z La(|x|>2r)

H H Ji ¢k V1277 D) f(x) Y227 D)g (x)
k=—00

S Ivillew Lf levo 12llew || min {25 r)=EFn, @k pyn—niatin/a=nltiy)

k
S alien L f lsmo ¥2llew-
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Case 5. BMO x BMO — BMO.
By the duality between BMO and H !, it is sufficient to show the following inequality:

[ X cun@ D)fe) va@ Digo) )
(6.3) j—k=3

S aliex L smo V2l ew lIgllBymo 17l

Notice that if j — k > 3, then the support of the Fourier transform of the function
Vi(27'D)f - V2 (27 kD)g is included in the annulus {2/72 < |¢| < 2/+2} Thus, if we
take a function ¥ € C§°(R™) such that suppy C {273 < [¢| <23} and ¥(¢) = 1 on
272 < |¢| < 22, then the integral in (6.3) can be written as

[ ¥ cun@ D)1 v Dig o) dx

j—k>3
f S a7 D) () va (2K D)g(x) T2 DYh(x) dx.
Jj—k>3

Hence, using the estimate

I¥227* D)gllz= < [¥2llenllgllamo

and the assumption |cj x| < 20 —k)mz m, < 0, we have that the left-hand side of (6.3) is

< / > 2UTOm 1y 277 D) f()| [W227F D) g (x)| [ (27 DY h(x)| dx

Jj—k>3

< IIWzllchlgllsmo/ Y. W@ D) @9 @7 DYh(x)| dx

j=—00
S W2lienliglemo I¥illen 1L lsmo Al a1

where the last < follows from Lemma 6.2. This completes the proof of Lemma 6.3. ]

Lemma 6.4. Suppose the multiplier t is defined by

(o]

=Y @ 7EeQ

j=—00

with a sequence of complex numbers (c;) satisfying |c;j| < 1 and with Y1, ¢ € C§°(R")
such that supp vy C {271 < |&| < 2} and supp¢ C {|n| < 2}. Then t belongs to the fol-
lowing multiplier classes:

MHAP xH? - L"), 0<p,g<oo, l/p+1/q=1/r,

M(H? x L® — LP), 0< p < oo,

M(BMO x H? — L), 0<g < oo,

M(BMO x L*° — BMO).

Moreover, in each case, the multiplier norm of v is bounded by c|| V1|~ ||@llcn with
c=cn,p,q)and N = N(n, p,q).
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Proof. From the assumptions on the supports of ¥ and ¢, it follows that the support of
the Fourier transform of 41 (27/ D) f - ¢(27/ *3D)g is included in the annulus {2772 <
|¢| < 2/72}. Hence, for 0 < r < oo, the Littlewood—Paley theory implies

| S qwnerpyr-ser+ o < i ¢ V127 D)f - ¢ Dyg|

Jj=—00 J=—00

S llejvr@7 D) f - 97 D)g |l o]

= ().
By Lemma 6.1, we have that

| fllzrllglge, ifO0O<p,g<ocandl/p+1/q=1/r,
() < Iallenligllen § I fIarliglliLe, if0O< p <ooand p =r,
Il fllemollgllme, if0<g<ocandg =r.

These prove the claims for the first three multiplier classes.
We shall prove 7 € M(BMO x L*° — BMO). By the same argument as given in Case 5
of the proof of Lemma 6.3, it is sufficient to show the inequality

| f 3 9@ D) f(x)$ (27 D)g(x) (27 D) h(x) dx

j=-00

(6.4)
Sldlienlighoel¥ilien | f IBmo 12l g1

where 1; is the same function as given there. In the present case, using the assumption
lc;| < 1 and the inequality

l¢Q™/ "> D)gllLe < Ipllenllglze,

we see that the left-hand side of (6.4) is

< ||¢||CN||8||L°°/ Y W@ D) f@)1¥ 27 D) h(x)| dx.

Jj=—00
Now (6.4) follows from Lemma 6.2. This completes the proof of Lemma 6.4. ]

Proof of Proposition 2.3. We use several well-known methods developed in the theory of
bilinear Fourier multiplier operators. We first decompose o (£, 17) by using the usual dyadic
partition of unity. Let ¥, ¢, and ¢ be the functions as given in Notation 1.6.

We decompose o into three parts:

oEmM =) Y oE.mYQIOVCF = Y+ D+ )

JEZ keZ j—k=3 |j—k|<2 j—k=<-3
= o015, n) +ou(é n) +om, ),

where 3 i g3, D j_k|<2» @nd Y ;g5 denote the sums of o (€, My 277 E) w27 k)
over j,k € Z that satisfy the designated restrictions. We shall consider each of o1, oy,
and o7
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Case 1. For the multiplier oy, we shall prove the following:

on € M(H? x H1 - L"), 0<p,gq<oo, 1/p+1/q=1/r,
on € M(H? x BMO — L?), 0< p < oo,

on € M(BMO x H? — L), 0< g < oo,

oy € M(BMO x BMO — BMO).

To prove this, observe that |§| ~ |n| ~ 2/ on the support of ¥ (277 €)y (2% 1) with
|/ — k| < 2.From this we see that oy € 51070(R2"). Hence Proposition 2.2 implies that oy
is a bilinear Fourier multiplier for the following spaces:

H? xH? - L", 0<p,g<oo, I/p+1/q=1/r,
H? xL® - L?, 0<p<oo,

L®xH? — L1, 0<gq < oo,

L% x L*® — BMO.

We shall prove that the space L* in the above can be replaced by BMO.
We use the Fefferman—Stein decomposition of BMO, which asserts that every g €
BMO N L2 can be written as

n n
g=go+ Y Rege. with Y |gellie ~ [lglBmo-
=1 £=0

where Rgh = (—i|&|71 & i?(ég'))v is the Riesz transform. (If g € BMO N L2, then we can
take gy € L°° N L2, and the equality g = go + Y =1 Rege holds without modulo con-
stants; see [11].) Thus

Tan(f, g) = Tan(fv go) + Z Tan(fv Rege) = Tan(fv go) + Z TO’[’H(]{’ ge),

=1 (=1
where
ou(€.n) = o(E.m)(—iIn|""ne) = ao(E.n) ar(€) az(n)(—i|n|""ne)

and oy is defined in the same way as o > oy Since the multiplier a () (—i 7™ ne)
belongs to S;g’z (R™), we can apply the result oy € M(H? x L™ — L?) to oy to see
that

n
1Tow (£, e S 1S N Y llgellzo = ||f e ligllsvo-
=0

Thus oy € M(H? x BMO — LP). The claims oy € M(BMO x H? — L%) and oy €
M(BMO x BMO — BMO) are proved in the same way.

Case 2. For the multiplier o1, we shall prove the following:
(6.5) o€ M(HP xH? - L") if 0<p,g<oo, I/p+1/q=1/r,
(6.6) o1 € M(H? x BMO — L?) if my <0 and 0 < p < o0,
6.7) o1 € M(BMO x H? — L9) if 0 < g < oo,
(6.8) o1 € M(BMO x BMO — BMO) if m, < 0.
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Proof of (6.5) in the case my = 0. We write a1(§, 1) = b(&, n)ax(n), with

b= > aoE.mar® Qe YR
(6.9) 1_553 _ .
= Y aEmar@ YR TE e ).

J=—00

Since m, = 0 and m = m in the present case, we see that b € S {’,O(RZ"). Thus, Propos-
ition 2.2 implies that b € M(H? x H? — L"). Also since a, € S'?,O(]R") in the present
case, the classical multiplier theorem for linear operators implies a, € M(H? — HY).
Hence o € M(H? x H? — L7).

Proof of (6.5) in the case m, < 0. Notice that oy is supported in || > 2|n| and satisfies

oy [E1\™2 ¢ —tal 181
9001 < Cap () IE17 1l

Since m, < 0, a result of Grafakos and Kalton (see Theorem 7.4 in [6]) implies that
o€ M(HP x H? — L").

Another proof of (6.5) in the case m, < 0. Here we shall give a direct proof of (6.5)
for the case m, < 0, which uses only a classical method.

Take a function ¢ € C°(R™) such that suppy C {37! < |&] <3} and ¥ () = 1 for
271 < |§| < 2. Then

aEm =Y, oEnvQIHYCF YT Y.
Jj—k=>3
Consider the function
o278 2% ¥ (&) ¥ (n) = ao(27£,2%0) a1 (27 ) a2 (2Fn) ¥ (8) ¥ ()

with j — k > 3. This function is supported in {37! < |§] < 3} x {37! < |5| < 3} and
satisfies the estimate

0808{0 (276,250 Y (&) U (M} < Cop 20 70m

with C, g independent of j, k € Z. Hence using the Fourier series expansion, we can write

. . B ek i
e YE T = Y &P T for g < mIn < 7.
a,beZ”

with the coefficient satisfying
(6.10) |G 1 < 2070m (1 4 Ja)™H (1 + b))

for any L > 0. Changing variables § — 277¢ and n — 27%n and multiplying by the
function ¥ (277 &) ¥ (27% 1), we obtain

CEMYCTIHYEF Y = Y 4P e IE 020y i)y (k).

a,bezn
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Thus oy is written as
b —j _
(6.11) o= Y. Y OGPy @aigy® ey,
a,beZ" j—k>3
with
(6.12) vOE =y and YO =y
Now, applying Lemma 6.3 to ¥; = ¥ @ and v, = v ®, we obtain
b . .
| X sPv@eToyey)|
j—k>3
A+ la)™H A+ DY @len Iy Plier £ A+ lah) ™ @+ jp) Y.
Taking L sufficiently large and taking sum over a, b € Z", we obtain (6.5).

Proof of (6.6). Using (6.11), (6.12), and (6.10), we can derive (6.6) from Lemma 6.3.

Proof of (6.7). If mp < 0, then by using (6.11), (6.12), and (6.10), we can derive (6.7)
from Lemma 6.3.

Assume m, = 0. Then we write oy as o1(§, 1) = b(&, n)az(n), with b given by (6.9).
Since a, € S {”O(R") in the present case (1, = 0), the linear multiplier theorem implies
a € M(H? — HY). Hence (6.7) will follow if we prove b € M(BMO x H? — L?). By
the same argument given in the proof of (6.5), we can write b as

b n) = Z Z C]('a’b)W(a)(z_jé)go(b)(Z_/“n),

a,beZn j=—o0

M(HPxHI—LT)

where
(6.13) Pl (1 + lah) ™ (1 + b7,
(6.14) Y@ E) =y ), @) =P p().

Now we apply Lemma 6.4 to ¥, = ¢ and ¢ = ¢® to obtain
b . .
H Z cj(‘}( )y @ (=i ) p® (277 +3 ) H

s M(BMOXHI—L41)

S A+ la)™H @+ B @llen I Plley 5 4+ la) TN 1+ )TN
Taking L sufficiently large and taking sum over a, b € Z", we obtain that b € M(BMO x
H? — L9).

Proof of (6.8). This is also derived from Lemma 6.3 by using (6.11), (6.12), and (6.10).
Case 3. For the multiplier oy, the following hold:

om € M(H? x HT — L") if 0< p,g<oo, I/p+1/q=1/r,

om € M(H? x BMO — L?) if 0 < p < oo,

om € M(BMO x H? — LY9) if m; <0 and 0 < ¢ < oo,

om € M(BMO x BMO — BMO) if mp; < 0.

In fact, these follow from the results for oy by the obvious symmetry.
This completes the proof of Proposition 2.3. ]
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6.2. Proof of Proposition 2.4

Let v and ¢ be the functions as given in Notation 1.6. In the same way as in the proof of
Proposition 2.3, we decompose t into three parts:

t(6.n) = u(€. n) + w(E. n + . ).

where

aE.n) =Y aoE.nar®yQ7EH YR n),

j—k>3

wmEn = Y. aEna@yQ/Hye .
lj—k|<2

mEn) = Y. aEnaEveIHYE .
Jj—k=<-3

We shall prove that each of 7y, 71, and ty; belongs to the multiplier class as mentioned in
the proposition.

(1) Let 0 < p < oo. The multipliers t; and jy belong to M(H? x BMO — L?). In
fact, these are proved in Cases 1 and 3 of the proof of Proposition 2.3.

We shall prove that t; € M(H? x L — L7?). By the same argument as in the proof
of Proposition 2.3 (see the proof of (6.7)), we can write 7 as

o0
b —j —j
@19 aEn = > Y "yOeTeve .
a,beZ" j=—o0
with c}a’b) satisfying (6.13) and (@ and ¢® defined by (6.14). Then Lemma 6.4 gives

H i C](_a,b)w(a)(z—jg)w(b)(z—j+3n)ﬂ

J=—00

SU+1aDEA+BDEI D enlePlen < A+ lal) =N (1 + p)TEN.

M(HPXL®—LP)

Taking L sufficiently large and taking sum over a,b € Z", we obtain 1y € M(H? x L™
— LP). Thus the part (1) is proved.

(2) Here we assume m; < 0. By the results proved in Cases 1 and 3 in the proof of Pro-
position 2.3, the multipliers tyy and tjy belong to M(BMO x BMO — BMO). Recall that
the multiplier 7; is written as (6.15), with cj(.a’b) satisfying (6.13) and w(") and go(b) defined
by (6.14). Hence we can prove that t; € M(BMO x L°° — BMO) by using Lemma 6.4.
Thus the part (2) of Proposition 2.4 is proved. This completes the proof of Proposition 2.4.

Funding. This work was supported by JSPS KAKENHI, grant no. 20K14339 (T. Kato),
20HO1815 (A. Miyachi), and 20K03700 (N. Tomita).
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