© 2024 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Estimates for some bilinear wave operators

Tomoya Kato, Akihiko Miyachi and Naohito Tomita

Abstract. We consider some bilinear Fourier multiplier operators and give a bilinear version of Seeger, Sogge, and Stein's result for Fourier integral operators. Our results improve, for the case of Fourier multiplier operators, Rodríguez-López, Rule, and Staubach's result for bilinear Fourier integral operators. The sharpness of the results is also considered.

1. Introduction

The solution to the wave equation $\partial_t^2 u = \Delta u$ with the initial data $u(0, x) = f(x)$ and $u_t(0, x) = g(x)$ is given by

$$
u(t,x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \cos(t|\xi|) \, \widehat{f}(\xi) \, d\xi + \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \, \frac{\sin(t|\xi|)}{|\xi|} \, \widehat{g}(\xi) \, d\xi,
$$

where \hat{f} denotes the Fourier transform of f (for the definition of Fourier transform, see Notation [1.6](#page-3-0) below). Several basic properties of the mapping $(f, g) \mapsto u(t, \cdot)$ are derived from the estimate of the operator

(1.1)
$$
Tf(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} e^{i|\xi|} (1 + |\xi|^2)^{m/2} \hat{f}(\xi) d\xi.
$$

The purpose of this paper is to consider bilinear versions of this operator.

We begin with the definition of linear Fourier multiplier operators. For $\theta \in L^{\infty}(\mathbb{R}^n)$, the operator $\theta(D)$ is defined by

$$
\theta(D)f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \theta(\xi) \hat{f}(\xi) d\xi, \quad x \in \mathbb{R}^n,
$$

for f in the Schwartz class $S(\mathbb{R}^n)$. If X and Y are function spaces on \mathbb{R}^n equipped with quasi-norms or seminorms $\|\cdot\|_X$ and $\|\cdot\|_Y$, respectively, and if there exists a constant A such that

$$
\|\theta(D)f\|_Y \le A \|f\|_X \quad \text{for all } f \in X \cap S,
$$

Mathematics Subject Classification 2020: 42B20 (primary); 42B15 (secondary). *Keywords:* flag paraproduct, bilinear Fourier multiplier, bilinear wave operator.

then we say that θ is a *Fourier multiplier* for $X \to Y$ and write $\theta \in \mathcal{M}(X \to Y)$. (Sometimes we write $\theta(\xi) \in \mathcal{M}(X \to Y)$ to mean $\theta(\cdot) \in \mathcal{M}(X \to Y)$.) The minimum of A that satisfies the above inequality is denoted by $\|\theta\|_{\mathcal{M}(X \to Y)}$.

Throughout this paper, H^p , $0 < p \leq \infty$, denotes the Hardy space, and BMO denotes the space of bounded mean oscillation. We shall use the convention that $H^p = L^p$ if $1 < p < \infty$. For H^p and BMO, see, e.g., Chapters III and IV in [\[20\]](#page-37-0).

We recall classical results about the operator (1.1) and its generalizations. We use the following notation.

Definition 1.1. We write $\mathcal{P} = \mathcal{P}(\mathbb{R}^n)$ to denote the set of all functions on \mathbb{R}^n that are real-valued, homogeneous of degree 1, and C^{∞} away from the origin.

The following theorem is due to Seeger, Sogge, and Stein [\[19\]](#page-37-1).

Theorem A (Seeger–Sogge–Stein [\[19\]](#page-37-1)). Let $1 \le p \le \infty$ and $m = -(n-1)|1/p - 1/2|$. $$

$$
e^{i\phi(\xi)}(1+|\xi|^2)^{m/2} \in \begin{cases} \mathcal{M}(H^p \to H^p) & \text{when } 1 \le p < \infty, \\ \mathcal{M}(\text{BMO} \to \text{BMO}) & \text{when } p = \infty. \end{cases}
$$

In fact, this theorem is not given in [\[19\]](#page-37-1) in exactly the same form as above; the result given in [\[19\]](#page-37-1) is restricted to local estimates. However, Theorem [A](#page-1-0) can be proved by a slight modification of the argument of [\[19\]](#page-37-1). Or one can appeal to the general results given by Ruzhansky and Sugimoto, see Theorems 1.2 and 2.2 in [\[18\]](#page-36-0).

It is known that the number $-(n - 1)|1/p - 1/2|$ given in Theorem [A](#page-1-0) is optimal. In fact, for the typical case $\phi(\xi) = |\xi|$, the following theorem holds.

Theorem B. *If* $1 \leq p \leq \infty$, and if

$$
e^{i|\xi|}(1+|\xi|^2)^{m/2} \in \begin{cases} \mathcal{M}(H^p \to H^p) & \text{when } 1 \le p < \infty, \\ \mathcal{M}(\text{BMO} \to \text{BMO}) & \text{when } p = \infty, \end{cases}
$$

then $m < -(n-1)$ [1/p - 1/2]*.*

For a proof of Theorem [B,](#page-1-1) see Theorem 1 in [\[10\]](#page-36-1) or Section 6.13 in Chapter IX of [\[20\]](#page-37-0).

The purpose of the present paper is to consider bilinear versions of Theorems [A](#page-1-0) and [B.](#page-1-1)

We recall the definition of bilinear Fourier multiplier operators. For a bounded measurable function $\sigma = \sigma(\xi, \eta)$ on $\mathbb{R}^n \times \mathbb{R}^n$, the bilinear operator T_{σ} is defined by

$$
T_{\sigma}(f,g)(x)=\frac{1}{(2\pi)^{2n}}\iint_{\mathbb{R}^n\times\mathbb{R}^n}e^{ix\cdot(\xi+\eta)}\,\sigma(\xi,\eta)\,\widehat{f}(\xi)\,\widehat{g}(\eta)\,d\xi\,d\eta,\quad x\in\mathbb{R}^n,
$$

for $f, g \in \mathcal{S}(\mathbb{R}^n)$. If X, Y and Z are function spaces on \mathbb{R}^n equipped with quasi-norms or seminorms $\|\cdot\|_X$, $\|\cdot\|_Y$ and $\|\cdot\|_Z$, respectively, and if there exists a constant A such that

$$
||T_{\sigma}(f,g)||_{Z} \le A||f||_{X} ||g||_{Y} \quad \text{for all } f \in X \cap S \text{ and all } g \in Y \cap S,
$$

then we say that σ is a *bilinear Fourier multiplier* for $X \times Y$ to Z and we write $\sigma \in$ $\mathcal{M}(X \times Y \to Z)$. (Sometimes we write $\theta(\xi, \eta) \in \mathcal{M}(X \times Y \to Z)$ to mean $\theta(\cdot, \cdot) \in$ $\mathcal{M}(X \times Y \to Z)$.) The smallest constant A that satisfies the above inequality is denoted by $\|\sigma\|_{\mathcal{M}(X\times Y\to Z)}$.

We shall consider the bilinear Fourier multiplier of the form

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi,\eta)
$$
 with $\phi_1,\phi_2 \in \mathcal{P}(\mathbb{R}^n)$ and $\sigma \in S_{1,0}^m(\mathbb{R}^{2n})$,

where the class $S_{1,0}^m(\mathbb{R}^{2n})$ is defined as follows.

Definition 1.2. For $m \in \mathbb{R}$, the class $S_{1,0}^m(\mathbb{R}^{2n})$ is defined to be the set of all C^∞ functions $\sigma = \sigma(\xi, \eta)$ on \mathbb{R}^{2n} that satisfy the estimate

$$
|\partial_{\xi}^{\alpha}\partial_{\eta}^{\beta}\sigma(\xi,\eta)|\leq C_{\alpha}(1+|\xi|+|\eta|)^{m-|\alpha|-|\beta|}
$$

for all multi-indices α and β .

In the theory of bilinear Fourier multipliers, a classical method is known that allows us to write a multiplier $\sigma \in S^m_{1,0}(\mathbb{R}^{2n})$ as a sum of multipliers of the product form $\theta_1(\xi)\theta_2(\eta)$. Using this method, we can deduce the following result from Theorem [A.](#page-1-0)

Theorem 1.3. *Let* $n \geq 2$, and let $1 \leq p, q \leq \infty$ be such that $1/p + 1/q = 1/r$. Assume $\phi_1, \phi_2 \in \mathcal{P}(\mathbb{R}^n)$ and $\sigma \in S_{1,0}^m(\mathbb{R}^{2n})$ with $m = -(n-1)(|1/p - 1/2| + |1/q - 1/2|)$. Then $e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi,\eta) \in \mathcal{M}(H^p\times H^q\to L^r)$, where L^r should be replaced by BMO *when* $r = \infty$ *.*

In fact, Rodríguez-López, Rule, and Staubach [\[17\]](#page-36-2) considered more general operators, bilinear Fourier integral operators, and proved a theorem that almost covers Theorem [1.3.](#page-2-0) The statement of the theorem of $[17]$ is, however, restricted to local estimate. We shall give a full proof of Theorem [1.3](#page-2-0) in Section [3.](#page-5-0)

The main purpose of the present paper is to show that the number

$$
m = -(n-1)\left(\left|\frac{1}{p} - \frac{1}{2}\right| + \left|\frac{1}{q} - \frac{1}{2}\right|\right)
$$

in Theorem [1.3](#page-2-0) can be improved, and to show that the improved m is optimal at least for certain (p, q) .

The following is the first main theorem of this paper.

Theorem 1.4. Let $n \geq 2$, and let $1 \leq p, q \leq \infty$ be such that $1/p + 1/q = 1/r$. Assume $\phi_1, \phi_2 \in \mathcal{P}(\mathbb{R}^n)$ and $\sigma \in S^m_{1,0}(\mathbb{R}^{2n})$ with $m = m_1(p,q)$, where

$$
m_1(p,q) = \begin{cases}\n-(n-1)\left(\left|\frac{1}{p} - \frac{1}{2}\right| + \left|\frac{1}{q} - \frac{1}{2}\right|\right) & \text{if } 1 \le p, q \le 2 \text{ or if } 2 \le p, q \le \infty, \\
-\left(\frac{1}{p} - \frac{1}{2}\right) - (n-1)\left(\frac{1}{2} - \frac{1}{q}\right) & \text{if } 1 \le p \le 2 \le q \le \infty \text{ and } \frac{1}{p} + \frac{1}{q} \le 1, \\
-(n-1)\left(\frac{1}{p} - \frac{1}{2}\right) - \left(\frac{1}{2} - \frac{1}{q}\right) & \text{if } 1 \le p \le 2 \le q \le \infty \text{ and } \frac{1}{p} + \frac{1}{q} \ge 1, \\
-(n-1)\left(\frac{1}{2} - \frac{1}{p}\right) - \left(\frac{1}{q} - \frac{1}{2}\right) & \text{if } 1 \le q \le 2 \le p \le \infty \text{ and } \frac{1}{p} + \frac{1}{q} \le 1, \\
-\left(\frac{1}{2} - \frac{1}{p}\right) - (n-1)\left(\frac{1}{q} - \frac{1}{2}\right) & \text{if } 1 \le q \le 2 \le p \le \infty \text{ and } \frac{1}{p} + \frac{1}{q} \ge 1.\n\end{cases}
$$

Then $e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi,\eta) \in \mathcal{M}(H^p\times H^q\to L^r)$, where L^r should be replaced by BMO *when* $r = \infty$ *.*

Compare the claims of Theorems [1.3](#page-2-0) and [1.4.](#page-2-1) They are the same in the regions $1 \le$ $p, q \le 2$ and $2 \le p, q \le \infty$, but are different outside of these regions. In the typical case $(p,q) = (1,\infty)$, Theorem [1.3](#page-2-0) asserts that the multiplier $e^{i(\phi_1(\xi) + \phi_2(\eta))} \sigma(\xi, \eta)$ belongs

to $\mathcal{M}(H^1 \times L^{\infty} \to L^1)$ if $\sigma \in S_{1,0}^{-(n-1)}(\mathbb{R}^{2n})$, whereas Theorem [1.4](#page-2-1) asserts that the same holds if $\sigma \in S_{1,0}^{-n/2}(\mathbb{R}^{2n})$. The latter is stronger if $n \geq 3$. To be precise, observe that

$$
m_1(p,q) > -(n-1)(|1/p - 1/2| + |1/q - 1/2|)
$$

if $n \geq 3$ and $1 \leq p < 2 < q \leq \infty$ or $1 \leq q < 2 < p \leq \infty$. Thus Theorem [1.4](#page-2-1) is an improvement of Theorem [1.3](#page-2-0) for these *n*, *p* and *q*.

In order to show that the number $m_1(p, q)$ is in fact optimal for some (p, q) , we consider the special case $\phi_1(\xi) = \phi_2(\xi) = |\xi|$. We write

(1.2)
$$
X_r = \begin{cases} L^r & \text{if } 0 < r < \infty, \\ \text{BMO} & \text{if } r = \infty. \end{cases}
$$

For $p, q \in [1, \infty]$ given, we set $1/r = 1/p + 1/q$ and we consider a necessary condition on $m \in \mathbb{R}$ that allows the assertion

(1.3)
$$
e^{i(|\xi|+|\eta|)}\,\sigma(\xi,\eta)\in\mathcal{M}(H^p\times H^q\to X_r)\quad\text{for all }\sigma\in S^m_{1,0}(\mathbb{R}^{2n}).
$$

The following is the second main theorem of this paper.

Theorem 1.5. *Let* $n > 2$.

- (1) Let $1 \le p, q \le 2$ or $2 \le p, q \le \infty$. Then $m \in \mathbb{R}$ *satisfies* [\(1.3\)](#page-3-1) only if $m \le -(n-1)$ $\times (|1/p-1/2|+|1/q-1/2|).$
- (2) Let $1 \le p \le 2 \le q \le \infty$ or $1 \le q \le 2 \le p \le \infty$, and assume $1/p + 1/q = 1$. Then $m \in \mathbb{R}$ *satisfies* [\(1.3\)](#page-3-1) *only if* $m \leq -n\frac{1}{p} - \frac{1}{2}$.

This theorem implies that the number $m_1(p, q)$ of Theorem [1.4](#page-2-1) is optimal for p and q in the range given in (1) and (2) of Theorem [1.5.](#page-3-2) The present authors do not know whether $m_1(p, q)$ is optimal for other p and q.

The contents of the rest of the paper are as follows. In Section [2,](#page-4-0) we collect some propositions concerning flag paraproduct, which we will use in the proof of Theorem [1.3.](#page-2-0) In order not to interrupt the stream of argument, we shall postpone rather long proofs of those propositions to Section [6.](#page-25-0) In Sections [3,](#page-5-0) [4](#page-7-0) and [5,](#page-17-0) we prove Theorems [1.3,](#page-2-0) [1.4](#page-2-1) and [1.5,](#page-3-2) respectively. The last section, Section [6,](#page-25-0) is devoted to the proofs of the propositions stated in Section [2.](#page-4-0)

We end this section by introducing some notations used throughout this paper.

Notation 1.6. We define the Fourier transform and the inverse Fourier transform on \mathbb{R}^d by

$$
\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} f(x) dx \quad \text{and} \quad (g)^{\vee}(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{i\xi \cdot x} g(\xi) d\xi.
$$

Sometimes we use rude expressions $(f(x))^\wedge$ or $(g(\xi))^\vee$ to denote $(f(\cdot))^\wedge$ or $(g(\cdot))^\vee$. respectively.

We shall repeatedly use dyadic partitions of unity, which are defined as follows. Take a function $\psi \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\psi \subset \{2^{-1} \leq |\xi| \leq 2\}$ and $\sum_{j=-\infty}^{\infty} \psi(2^{-j}\xi) = 1$ for $\xi \neq 0$. We define functions ζ and φ by $\zeta(\xi) = \sum_{j=1}^{\infty} \psi(2^{-j}\xi)$ and $\varphi(\xi) = 1 - \zeta(\xi)$.

We have

$$
\xi(\xi) = 0 \quad \text{if } |\xi| \le 1, \quad \zeta(\xi) = 1 \quad \text{if } |\xi| \ge 2,
$$

\n
$$
\varphi(\xi) = 1 \quad \text{if } |\xi| \le 1, \quad \varphi(\xi) = 0 \quad \text{if } |\xi| \ge 2,
$$

\n
$$
\sum_{j=-\infty}^{k} \psi(2^{-j}\xi) = \varphi(2^{-k}\xi) \quad \text{for } \xi \neq 0, k \in \mathbb{Z}.
$$

Notice, however, that we will also use the letters ψ , ζ and φ in a meaning different from the above.

For a smooth function θ on \mathbb{R}^d and for a nonnegative integer N, we write

$$
\|\theta\|_{C^N} = \max_{|\alpha| \le N} \sup_{\xi} |\partial_{\xi}^{\alpha} \theta(\xi)|.
$$

The letter n denotes the dimension of the Euclidean space that we consider. Unless further restrictions are explicitly made, n is an arbitrary positive integer.

2. Some results from bilinear flag paraproducts

In this section, we give some results for the bilinear Fourier multipliers of the form

 $a_0(\xi, \eta)a_1(\xi)a_2(\eta).$

This kind of multipliers, with a_0 , a_1 and a_2 being 0-th order multipliers (i.e., the ones that generalize homogeneous functions of degree 0), are considered by Muscalu $[14, 15]$ $[14, 15]$ $[14, 15]$ and Muscalu–Schlag [\[16\]](#page-36-5), Chapter 8, where their mapping properties between L^p spaces are given. In this section, we consider the case where a_0 , a_1 and a_2 are non-zero order multipliers, and give estimates including H^p and BMO. The results of this section will be used to prove Theorem [1.3.](#page-2-0)

Definition 2.1. For $m \in \mathbb{R}$ and $d \in \mathbb{N}$, the class $\dot{S}_{1,0}^m(\mathbb{R}^d)$ is defined to be the set of all C^{∞} functions θ on $\mathbb{R}^d \setminus \{0\}$ such that, for all multi-indices α ,

$$
|\partial_{\xi}^{\alpha}\theta(\xi)| \leq C_{\alpha} |\xi|^{m-|\alpha|}.
$$

First, we recall a classical result about the bilinear Fourier multipliers in the class $\dot{S}_{1,0}^0(\mathbb{R}^{2n})$. The following result was established in the works of Coifman–Meyer [\[2,](#page-36-6) [3,](#page-36-7) [9\]](#page-36-8), Kenig–Stein [\[8\]](#page-36-9), Grafakos–Torres [\[7\]](#page-36-10), and Grafakos–Kalton [\[5\]](#page-36-11).

Proposition 2.2. If $\sigma \in \dot{S}_{1,0}^{0}(\mathbb{R}^{2n})$, then $\sigma \in \mathcal{M}(H^p \times H^q \to L^r)$ for $0 < p, q \le \infty$ and $1/p + 1/q = 1/r > 0$, and also $\sigma \in \mathcal{M}(L^{\infty} \times L^{\infty} \to \text{BMO})$.

The proofs of the following two propositions will be given in Section [6.](#page-25-0)

Proposition 2.3. Let $m_1, m_2 \le 0$, $m = m_1 + m_2$, $a_0 \in \dot{S}_{1,0}^m(\mathbb{R}^{2n})$, $a_1 \in \dot{S}_{1,0}^{-m_1}(\mathbb{R}^n)$ and $a_2 \in \dot{S}_{1,0}^{-m_2}(\mathbb{R}^n)$. Let $\sigma(\xi, \eta) = a_0(\xi, \eta) a_1(\xi) a_2(\eta)$. Then the following hold.

(1) $\sigma \in \mathcal{M}(H^p \times H^q \to L^r)$ for $0 < p, q < \infty$ and $1/p + 1/q = 1/r$.

(2) If $m_2 < 0$, then $\sigma \in \mathcal{M}(H^p \times \text{BMO} \to L^p)$ for $0 < p < \infty$.

(3) If $m_1 < 0$, then $\sigma \in \mathcal{M}(\text{BMO} \times H^q \to L^q)$ for $0 < q < \infty$.

(4) If $m_1, m_2 < 0$, then $\sigma \in \mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO})$.

Proposition 2.4. Let $m_1 \le 0$, $a_0 \in \dot{S}_{1,0}^{m_1}(\mathbb{R}^{2n})$, $a_1 \in \dot{S}_{1,0}^{-m_1}(\mathbb{R}^{n})$, and define $\tau(\xi, \eta) =$ $a_0(\xi, \eta) a_1(\xi)$. Then the following hold. (1) $\tau \in \mathcal{M}(H^p \times L^{\infty} \to L^p)$ for $0 < p < \infty$. (2) If $m_1 < 0$, then $\tau \in \mathcal{M}(\text{BMO} \times L^{\infty} \to \text{BMO})$.

3. Proof of Theorem [1.3](#page-2-0)

In order to prove Theorem [1.3,](#page-2-0) we use the following lemma.

Lemma 3.1. *If* $\phi \in \mathcal{P}(\mathbb{R}^n)$ and if $\theta \in C_0^{\infty}(\mathbb{R}^n)$ satisfy supp $\theta \subset \{|\xi| \leq 2\}$, then

$$
\left\| (e^{i\phi(\xi)}\theta(\xi))^{\vee} \right\|_{L^1} \leq c \|\theta\|_{C^{n+1}},
$$

where $c = c(n, \phi)$ *.*

Proof. Write

$$
e^{i\phi(\xi)}\theta(\xi) = \theta(\xi) + \sum_{j=-\infty}^{1} (e^{i\phi(\xi)} - 1) \theta(\xi) \psi(2^{-j}\xi),
$$

where ψ is the function given in Notation [1.6.](#page-3-0) The inverse Fourier transform of $\theta(\xi)$ satisfies $|(\theta)^{\vee}(x)| \lesssim ||\theta||_{C^{n+1}} (1+|x|)^{-n-1}$ and hence $||(\theta)^{\vee}||_{L^1} \lesssim ||\theta||_{C^{n+1}}$. The function $(e^{i\phi(\xi)}-1)\theta(\xi)\psi(2^{-j}\xi)$ has support included in $\{2^{j-1}\leq |\xi|\leq 2^{j+1}\}\$, and satisfies the estimate

$$
\left|\partial_{\xi}^{\alpha}\left((e^{i\phi(\xi)}-1)\,\theta(\xi)\,\psi(2^{-j}\xi)\right)\right|\lesssim \|\theta\|_{C^{n+1}}\,(2^j)^{1-|\alpha|},\quad |\alpha|\leq n+1.
$$

From this we obtain

$$
\left| \left(\left(e^{i\phi(\xi)} - 1 \right) \theta(\xi) \psi(2^{-j} \xi) \right)^\vee(x) \right| \lesssim \| \theta \|_{C^{n+1}} \, 2^{j(n+1)} \, (1 + 2^j |x|)^{-n-1},
$$

and hence

$$
\|((e^{i\phi(\xi)}-1)\phi(\xi)\theta(2^{-j}\xi))^{\vee}\|_{L^1}\lesssim \|\theta\|_{C^{n+1}}2^j.
$$

Taking sum over $j \leq 1$, we obtain $\|(e^{i\phi(\xi)}-1)\phi(\xi)\)^\vee\|_{L^1} \lesssim \|\theta\|_{C^{n+1}}$.

Proof of Theorem [1.3](#page-2-0). We write $m_1 = -(n-1)\frac{1}{p} - \frac{1}{2}$, $m_2 = -(n-1)\frac{1}{q} - \frac{1}{2}$, and $1/p + 1/q = 1/r$. We also use the notation [\(1.2\)](#page-3-3).

Using the functions ζ and φ of Notation [1.6,](#page-3-0) we decompose τ as

$$
\tau(\xi,\eta)=\tau_1(\xi,\eta)+\tau_2(\xi,\eta)+\tau_3(\xi,\eta)+\tau_4(\xi,\eta),
$$

where

$$
\tau_1(\xi,\eta) = e^{i\phi_1(\xi)} \varphi(\xi) e^{i\phi_2(\eta)} \varphi(\eta) \sigma(\xi,\eta),
$$

\n
$$
\tau_2(\xi,\eta) = e^{i\phi_1(\xi)} \zeta(\xi) e^{i\phi_2(\eta)} \varphi(\eta) \sigma(\xi,\eta),
$$

\n
$$
\tau_3(\xi,\eta) = e^{i\phi_1(\xi)} \varphi(\xi) e^{i\phi_2(\eta)} \zeta(\eta) \sigma(\xi,\eta),
$$

\n
$$
\tau_4(\xi,\eta) = e^{i\phi_1(\xi)} \zeta(\xi) e^{i\phi_2(\eta)} \zeta(\eta) \sigma(\xi,\eta).
$$

We shall prove that $\tau_i \in \mathcal{M}(H^p \times H^q \to X_r)$ for $i = 1, 2, 3, 4$.

 \blacksquare

Firstly, the multiplier τ_1 is easy to handle. By Lemma [3.1,](#page-5-1) the inverse Fourier transform of $e^{i\phi_1(\xi)}\varphi(\xi)$ is in $L^1(\mathbb{R}^n)$, and hence $e^{i\phi_1(\xi)}\varphi(\xi) \in \mathcal{M}(H^p \to H^p)$, $1 \leq p \leq \infty$. Similarly, $e^{i\phi_2(\eta)}\varphi(\eta) \in \mathcal{M}(H^q \to H^q), 1 \le q \le \infty$. Also $\sigma \in \mathcal{M}(H^p \times H^q \to X_r)$, by Proposition [2.2.](#page-4-1) Combining these facts, we have that $\tau_1 \in \mathcal{M}(H^p \times H^q \to X_r)$.

Next, consider τ_2 . We write this as

$$
\tau_2(\xi,\eta) = \sigma(\xi,\eta) \, \tilde{\zeta}(\xi) \, |\xi|^{-m_1} \cdot e^{i\phi_1(\xi)} \, \zeta(\xi) \, |\xi|^{m_1} \cdot e^{i\phi_2(\eta)} \, \varphi(\eta),
$$

where $\tilde{\zeta}$ is a C^{∞} function on \mathbb{R}^n such that $\tilde{\zeta}(\xi) = 1$ for $|\xi| \ge 1$ and $\tilde{\zeta}(\xi) = 0$ for $|\xi| \le 2^{-1}$. [A](#page-1-0)s we have seen above, $e^{i\phi_2(\eta)}\varphi(\eta) \in \mathcal{M}(H^q \to H^q)$ for $1 \le q \le \infty$. Theorem A implies

$$
e^{i\phi_1(\xi)}\zeta(\xi)|\xi|^{m_1} \in \begin{cases} \mathcal{M}(H^p \to H^p) & \text{if } 1 \le p < \infty, \\ \mathcal{M}(\text{BMO} \to \text{BMO}) & \text{if } p = \infty. \end{cases}
$$

Notice that $\sigma \in S_{1,0}^m(\mathbb{R}^{2n}) \subset \dot{S}_{1,0}^{m_1}(\mathbb{R}^{2n})$ and that $\tilde{\zeta}(\xi)|\xi|^{-m_1} \in \dot{S}_{1,0}^{-m_1}(\mathbb{R}^n)$. Hence Propositions [2.3](#page-4-2) and [2.4](#page-5-2) give

(3.1)
$$
\sigma(\xi, \eta) \tilde{\zeta}(\xi) |\xi|^{-m_1} \in \begin{cases} \mathcal{M}(H^p \times H^q \to L^r) & \text{if } 1 \leq p, q < \infty, \\ \mathcal{M}(H^p \times L^{\infty} \to L^p) & \text{if } 1 \leq p < \infty \text{ and } q = \infty, \\ \mathcal{M}(\text{BMO} \times H^q \to L^q) & \text{if } p = \infty \text{ and } 1 \leq q < \infty, \\ \mathcal{M}(\text{BMO} \times L^{\infty} \to \text{BMO}) & \text{if } p = q = \infty \end{cases}
$$

(notice that $m_1 < 0$ if $n \ge 2$ and $p = \infty$). Combining these results, we see that τ_2 belongs to the same multiplier class as in [\(3.1\)](#page-6-0), which a fortiori implies $\tau_2 \in \mathcal{M}(H^p \times H^q \to X_r)$.

By symmetry, we also have $\tau_3 \in \mathcal{M}(H^p \times H^q \to X_r)$.

Finally, consider τ_4 . We write this as

$$
\tau_4(\xi,\eta) = \sigma(\xi,\eta) \, \widetilde{\zeta}(\xi) \, |\xi|^{-m_1} \, \widetilde{\zeta}(\eta) \, |\eta|^{-m_2} \cdot e^{i\phi_1(\xi)} \, \zeta(\xi) \, |\xi|^{m_1} \cdot e^{i\phi_2(\eta)} \, \zeta(\eta) \, |\eta|^{m_2},
$$

where $\tilde{\zeta}$ is the same as above. Theorem [A](#page-1-0) gives

$$
e^{i\phi_1(\xi)}\zeta(\xi)|\xi|^{m_1} \in \begin{cases} \mathcal{M}(H^p \to H^p) & \text{if } 1 \le p < \infty, \\ \mathcal{M}(\text{BMO} \to \text{BMO}) & \text{if } p = \infty, \end{cases}
$$

$$
e^{i\phi_2(\eta)}\zeta(\eta)|\eta|^{m_2} \in \begin{cases} \mathcal{M}(H^q \to H^q) & \text{if } 1 \le q < \infty, \\ \mathcal{M}(\text{BMO} \to \text{BMO}) & \text{if } q = \infty. \end{cases}
$$

Proposition [2.3](#page-4-2) gives

(3.2)
\n
$$
\sigma(\xi, \eta) \tilde{\zeta}(\xi) |\xi|^{-m_1} \tilde{\zeta}(\eta) |\eta|^{-m_2}
$$
\n
$$
\in \begin{cases}\n\mathcal{M}(H^p \times H^p \to L^r) & \text{if } 1 \le p, q < \infty, \\
\mathcal{M}(H^p \times \text{BMO} \to L^p) & \text{if } 1 \le p < \infty \text{ and } q = \infty, \\
\mathcal{M}(\text{BMO} \times H^q \to L^q) & \text{if } p = \infty \text{ and } 1 \le q < \infty, \\
\mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO}) & \text{if } p = q = \infty\n\end{cases}
$$

(notice that $m_1 < 0$ if $n \ge 2$ and $p = \infty$ and that $m_2 < 0$ if $n \ge 2$ and $q = \infty$). Now combining these results, we see that τ_4 belongs to the same multiplier class as in [\(3.2\)](#page-6-1), which a fortiori implies $\tau_4 \in \mathcal{M}(H^p \times H^q \to X_r)$. This completes the proof of Theorem [1.3.](#page-2-0)

4. Proof of Theorem [1.4](#page-2-1)

In this section, we prove Theorem [1.4.](#page-2-1) For this, the key is to prove the assertion of The-orem [1.4](#page-2-1) in the special case $p = 1$ and $q = \infty$, which we shall write here for the sake of reference.

Theorem 4.1. If $n \ge 2$, $\phi_1, \phi_2 \in \mathcal{P}(\mathbb{R}^n)$, and $\sigma \in S_{1,0}^{-n/2}(\mathbb{R}^{2n})$, then $e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi, \eta)$ $\in \mathcal{M}(H^1 \times L^{\infty} \to L^1).$

Theorem [1.4](#page-2-1) can be deduced from this theorem and from Theorem [1.3.](#page-2-0) In fact, notice that, by obvious symmetry, we have $e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi,\eta) \in \mathcal{M}(L^{\infty} \times H^1 \to L^1)$ under the same assumptions on n and σ . Hence, if Theorem [4.1](#page-6-2) is proved, then we can deduce the claims of Theorem [1.4](#page-2-1) from the claims of Theorems [1.3](#page-2-0) and [4.1](#page-6-2) with the aid of complex interpolation. (For the interpolation argument, see, e.g., the proof of Theorem 2.2 in [\[1\]](#page-36-12) or the proof of the 'if' part of Theorem 1.1 in $[12]$.) Thus it is sufficient to prove Theorem [4.1.](#page-6-2)

To that end, we use the following lemmas.

Lemma 4.2. Let $\phi_1, \phi_2 \in \mathcal{P}(\mathbb{R}^n)$ and let $\theta \in C_0^{\infty}(\mathbb{R}^{2n})$. Then $(e^{i(\phi_1(\xi)+\phi_2(\eta))}\theta(\xi, \eta))^{\vee}$ $\in L^1(\mathbb{R}^{2n}).$

Proof. Take a function $\widetilde{\theta} \in C_0^{\infty}(\mathbb{R}^n)$ such that $\widetilde{\theta}(\xi)\widetilde{\theta}(\eta) = 1$ on supp θ . Then

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\theta(\xi,\eta) = e^{i(\phi_1(\xi)+\phi_2(\eta))}\tilde{\theta}(\xi)\tilde{\theta}(\eta)\theta(\xi,\eta).
$$

Lemma [3.1](#page-5-1) implies $(e^{i(\phi_1(\xi)+\phi_2(\eta))}\tilde{\theta}(\xi)\tilde{\theta}(\eta))^{\vee} \in L^1(\mathbb{R}^{2n})$. Clearly $(\theta(\xi,\eta))^{\vee} \in L^1(\mathbb{R}^{2n})$. Hence the conclusion of the lemma follows.

Lemma 4.3. Let $n \geq 2$ and $\phi \in \mathcal{P}(\mathbb{R}^n)$, and set $R = \sup\{|\nabla \phi(\xi)| \mid |\xi| = 1\}$. Let ψ be *a* C^{∞} *function on* \mathbb{R}^n *satisfying* supp $\psi \subset \{2^{-1} \leq |\xi| \leq 2\}$. Then the following hold.

(1) *For each positive integer* N, there exists a constant c_N , depending only on n, ϕ *and* N*, such that*

$$
\left| \left(e^{-i\phi(\xi)} \psi(2^{-j}\xi) \right)^{\vee}(x) \right| \leq c_N \|\psi\|_{C^N} (2^j)^{n-N/2} |x|^{-N} \quad \text{for } |x| > 2R \text{ and } j \in \mathbb{N}.
$$

(2) *There exists a constant c, depending only on n and* ϕ *, such that*

$$
\left\|(e^{-i\phi(\xi)}\psi(2^{-j}\xi))^\vee(x)\right\|_{L^1}\leq c\|\psi\|_{C^{2n-1}}(2^j)^{(n-1)/2}\quad\text{for all }j\in\mathbb{N}.
$$

Proof. We write $f_j(x) = (e^{-i\phi(\xi)} \psi(2^{-j}\xi))^{\vee}(x)$.

To estimate $f_j(x)$, we follow the idea given by Seeger–Sogge–Stein [\[19\]](#page-37-1). Let S^{n-1} = $\{\xi \in \mathbb{R}^n \mid |\xi| = 1\}$. For each $j \in \mathbb{N}$, take a sequence of points $\{\xi_j^v\}_v$ such that

$$
\xi_j^{\nu} \in S^{n-1}, \quad \bigcup_{\nu} B(\xi_j^{\nu}, 2^{-j/2}) \cap S^{n-1} = S^{n-1},
$$

and
$$
\sum_{\nu} \mathbf{1}_{B(\xi_j^{\nu}, 2^{-j/2+1})}(\xi) \le c \quad \text{for all } \xi \in S^{n-1},
$$

where $B(x, r)$ denotes the ball with center x and radius r, and v runs on an index set of cardinality $\approx (2^{j/2})^{n-1}$.

Take functions $\{\chi_j^{\nu}\}_\nu$ such that

$$
\chi_j^{\nu}
$$
 is homogeneous of degree 0 and C^{∞} on $\mathbb{R}^n \setminus \{0\}$,
\n
$$
\{\xi \in S^{n-1} \mid \chi_j^{\nu}(\xi) \neq 0\} \subset \{\xi \in S^{n-1} \mid |\xi - \xi_j^{\nu}| < 2^{-j/2+1}\},
$$
\n
$$
|\partial_{\xi}^{\alpha} \chi_j^{\nu}(\xi)| \leq c_{\alpha} (2^{j/2})^{|\alpha|} \text{ for all } \xi \in S^{n-1},
$$
\n
$$
\sum_{\nu} \chi_j^{\nu}(\xi) = 1 \text{ for all } \xi \in \mathbb{R}^n \setminus \{0\}.
$$

Using this partition of unity, we decompose $f_i(x)$ as

$$
f_j(x) = \sum_{\nu} f_j^{\nu}(x),
$$

\n
$$
f_j^{\nu}(x) = (e^{-i\phi(\xi)} \psi(2^{-j}\xi) \chi_j^{\nu}(\xi))^{\vee}(x) = \frac{1}{(2\pi)^n} \int e^{i(\xi \cdot x - \phi(\xi))} \psi(2^{-j}\xi) \chi_j^{\nu}(\xi) d\xi.
$$

The key idea used below is that the oscillating factor $e^{-i\phi(\xi)}$ can be well approximated by $e^{-i\xi \cdot \nabla \phi(\xi_j^y)}$ on the support of $\psi(2^{-j}\xi) \chi_j^v(\xi)$. We write the phase function $\xi \cdot x - \phi(\xi)$ appearing in the last integral as

$$
\xi \cdot x - \phi(\xi) = \xi \cdot (x - \nabla \phi(\xi)) = \xi \cdot (x - \nabla \phi(\xi_j^{\nu})) + h_j^{\nu}(\xi),
$$

\n
$$
h_j^{\nu}(\xi) = \xi \cdot (\nabla \phi(\xi_j^{\nu}) - \nabla \phi(\xi)).
$$

Then

$$
f_j^{\nu}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\xi \cdot (x - \nabla \phi(\xi_j^{\nu}))} \psi(2^{-j}\xi) \chi_j^{\nu}(\xi) e^{ih_j^{\nu}(\xi)} d\xi.
$$

Notice that the support of $\psi(2^{-j}\xi)\chi_j^{\nu}(\xi)$ is included in the set

$$
E_{j,\nu} = \left\{ \xi \; \left| \; 2^{j-1} \leq |\xi| \leq 2^{j+1}, \; \; \left| \frac{\xi}{|\xi|} - \xi_j^{\nu} \right| \leq 2^{-j/2+1} \right\},\right.
$$

which has Lebesgue measure $|E_{j,v}| \approx (2^j)^{(n+1)/2}$. The functions appearing in the above integral satisfy the following estimates on $E_{i,\nu}$:

$$
|\partial_{\xi}^{\alpha} \psi(2^{-j}\xi)| \le c_{\alpha} \|\psi\|_{C^{|\alpha|}} (2^j)^{-|\alpha|},
$$

\n
$$
|\partial_{\xi}^{\alpha} \chi_j^{\nu}(\xi)| \le c_{\alpha} (2^{j/2})^{-|\alpha|},
$$

\n
$$
|(\xi_j^{\nu} \cdot \nabla_{\xi})^k \chi_j^{\nu}(\xi)| \le c_k (2^j)^{-k},
$$

\n
$$
|\partial_{\xi}^{\alpha} e^{ih_j^{\nu}(\xi)}| \le c_{\alpha} (2^{j/2})^{-|\alpha|},
$$

\n
$$
|(\xi_j^{\nu} \cdot \nabla_{\xi})^k e^{ih_j^{\nu}(\xi)}| \le c_k (2^j)^{-k}.
$$

By using these estimates and by integration by parts, we obtain the following two estimates:

(4.1) $|f_j^{\nu}(x)| \leq c_N \|\psi\|_{C^N} (2^j)^{(n+1)/2} \left(1 + 2^{j/2} |x - \nabla \phi(\xi_j^{\nu})|\right)^{-N},$

$$
(4.2) \t |f_j^{\nu}(x)| \leq c_N \|\psi\|_{C^N} (2^j)^{(n+1)/2} \left(1 + 2^j |\xi_j^{\nu} \cdot (x - \nabla \phi(\xi_j^{\nu}))|\right)^{-N}.
$$

Proof of (1). Suppose $|x| > 2R$. Then $|x - \nabla \phi(\xi_j^{\nu})| \approx |x|$, and hence [\(4.1\)](#page-8-0) gives

$$
|f_j^{\nu}(x)| \lesssim \|\psi\|_{C^N} (2^j)^{(n+1)/2} (2^{j/2}|x|)^{-N}.
$$

Taking sum over v's of card $\approx (2^{j/2})^{n-1}$, we have

$$
|f_j(x)| \le \sum_{\nu} |f_j^{\nu}(x)| \lesssim \|\psi\|_{C^N} (2^j)^{(n+1)/2} (2^{j/2} |x|)^{-N} (2^{j/2})^{n-1}
$$

$$
= \|\psi\|_{C^N} (2^j)^{n-N/2} |x|^{-N}.
$$

Proof of (2). Combining [\(4.2\)](#page-8-1) and [\(4.1\)](#page-8-0), we have

$$
|f_j^{\nu}(x)|
$$

\n
$$
\le c_N \|\psi\|_{C^N} (2^j)^{(n+1)/2} (1+2^j |\xi_j^{\nu} \cdot (x-\nabla \phi(\xi_j^{\nu})))|^{-N/2} (1+2^{j/2}|x-\nabla \phi(\xi_j^{\nu})))^{-N/2}
$$

\n
$$
\le c_N \|\psi\|_{C^N} (2^j)^{(n+1)/2} (1+2^j |\xi_j^{\nu} \cdot (x-\nabla \phi(\xi_j^{\nu})))^{-N/2} (1+2^{j/2}|(x-\nabla \phi(\xi_j^{\nu})))^{-N/2},
$$

where $(x - \nabla \phi(\xi_j^v))'$ denotes the orthogonal projection of $x - \nabla \phi(\xi_j^v)$ to the orthogonal complement of the line $\mathbb{R}\xi_j^{\nu}$. Taking $N = 2n - 1$ and integrating the above inequality, we have

$$
||f_j^{\nu}||_{L^1} \lesssim ||\psi||_{C^{2n-1}} (2^j)^{(n+1)/2} \int_{\mathbb{R}^n} \left(1 + 2^j |\xi_j^{\nu} \cdot (x - \nabla \phi(\xi_j^{\nu}))|\right)^{-(2n-1)/2}
$$

$$
\times \left(1 + 2^{j/2} |(x - \nabla \phi(\xi_j^{\nu}))'|\right)^{-(2n-1)/2} dx
$$

$$
\approx ||\psi||_{C^{2n-1}}.
$$

Taking sum over v's of card $\approx (2^{j/2})^{n-1}$, we obtain the inequality as mentioned in (2). This completes the proof of Lemma [4.3.](#page-7-1)

Lemma 4.4. Let $n \geq 2$, $\phi \in \mathcal{P}(\mathbb{R}^n)$, and set $R = \sup\{|\nabla \phi(\xi)| \mid |\xi| = 1\}$. Let ζ be the *function given in Notation* [1.6](#page-3-0), and let $\theta \in C_0^{\infty}(\mathbb{R}^n)$ satisfy supp $\theta \subset \{|\xi| \leq 2\}$. Then the *following hold.*

(1) *For each positive integer* $N > 2n$ *, there exists a constant* c_N *, depending only on* n, ϕ *and* N*, such that*

$$
\left| \left(e^{i\phi(\xi)} \zeta(\xi) \theta(2^{-j}\xi) \right)^{\vee}(x) \right| \leq c_N \|\theta\|_{C^N} |x|^{-N} \quad \text{for } |x| > 2R \text{ and for all } j \in \mathbb{N}.
$$

(2) *There exists a constant c, depending only on n and* ϕ *, such that*

$$
\left\| \left(e^{i\phi(\xi)} \zeta(\xi) \theta(2^{-j}\xi) \right)^{\vee} \right\|_{L^1} \leq c \|\theta\|_{C^{2n-1}} 2^{j(n-1)/2}.
$$

Proof. From the definition of ζ and from the assumption on supp θ , we have

$$
e^{i\phi(\xi)}\zeta(\xi)\theta(2^{-j}\xi) = \sum_{k=1}^{j+1} e^{i\phi(\xi)}\psi(2^{-k}\xi)\theta(2^{-j}\xi).
$$

If $|x| > 2R$ and $1 \le k \le j + 1$, then Lemma [4.3\(](#page-7-1)1) gives

$$
\left| (e^{i\phi(\xi)} \psi(2^{-k}\xi) \theta(2^{-j}\xi))^{\vee}(x) \right| \lesssim (2^{k})^{n-N/2} |x|^{-N} \|\psi(\cdot) \theta(2^{k-j} \cdot) \|_{C^{N}} \leq (2^{k})^{n-N/2} |x|^{-N} \|\theta\|_{C^{N}}.
$$

If $N > 2n$, then taking sum over k, we obtain the inequality mentioned in (1).

For $1 \le k \le i + 1$, Lemma [4.3](#page-7-1)(2) gives

$$
\| (e^{i\phi(\xi)} \psi(2^{-k}\xi) \theta(2^{-j}\xi))^{\vee}(x) \|_{L^1} \lesssim \| \psi(\cdot) \theta(2^{k-j} \cdot) \|_{C^{2n-1}} (2^k)^{(n-1)/2}
$$

$$
\lesssim \| \theta \|_{C^{2n-1}} (2^k)^{(n-1)/2}.
$$

Taking sum over $k \leq j + 1$, we obtain the inequality mentioned in (2). Lemma [4.4](#page-9-0) is proved.

Proof of Theorem [4.1](#page-6-2). We write $m = -n/2$ and assume $\sigma \in S^{m}_{1,0}(\mathbb{R}^{2n})$.

We use a dyadic partition of unity to decompose $\sigma(\xi, \eta)$. Let ψ , φ and ζ be the func-tions given in Notation [1.6.](#page-3-0) For $j \in \mathbb{N} \cup \{0\}$, we define ψ_j by

$$
\psi_j(\xi) = \begin{cases} \varphi(\xi) & \text{if } j = 0, \\ \psi(2^{-j}\xi) & \text{if } j \ge 1. \end{cases}
$$

Notice that $\sum_{j=0}^{\infty} \psi_j(\xi) = 1$ and $\sum_{j=0}^{k} \psi_j(\xi) = \varphi(2^{-k}\xi)$ for $k \in \mathbb{N} \cup \{0\}$. We decompose σ as

$$
\sigma(\xi,\eta) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sigma(\xi,\eta) \psi_j(\xi) \psi_k(\eta) = \sum_{j>k} + \sum_{j=k}
$$

$$
= \sigma_{\text{I}}(\xi, \eta) + \sigma_{\text{II}}(\xi, \eta) + \sigma_{\text{III}}(\xi, \eta),
$$

where $\sum_{j>k}$, $\sum_{j=k}$, and $\sum_{j denote the sums of $\sigma(\xi, \eta)\psi_j(\xi)\psi_k(\eta)$ over $(j, k) \in$$ $(N \cup \{0\})^2$ that satisfy the designated restrictions.

 $j=k$

 $+\nabla$ j <k

Consider the multiplier $\sigma_{\rm I}$. This is written as

$$
\sigma_{I}(\xi,\eta) = \sum_{j=1}^{\infty} \sum_{k=0}^{j-1} \sigma(\xi,\eta) \psi_{j}(\xi) \psi_{k}(\eta) = \sum_{j=1}^{\infty} \sigma(\xi,\eta) \psi(2^{-j}\xi) \varphi(2^{-j+1}\eta).
$$

Take a function $\tilde{\psi} \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\tilde{\psi} \subset \{3^{-1} \leq |\xi| \leq 3\}$ and $\tilde{\psi}(\xi) = 1$ for $2^{-1} \leq |\xi| \leq 2$. Also take a function $\widetilde{\varphi} \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\widetilde{\varphi} \subset \{ |\xi| \leq 3 \}$ and $\widetilde{\varphi}(\xi) = 1$ for $|\xi| \leq 2$. Then

$$
\sigma_{I}(\xi,\eta) = \sum_{j=1}^{\infty} \sigma(\xi,\eta) \, \widetilde{\psi}(2^{-j}\xi) \, \widetilde{\varphi}(2^{-j+1}\eta) \, \psi(2^{-j}\xi) \, \varphi(2^{-j+1}\eta).
$$

The function $\sigma(2^j \xi, 2^{j-1}\eta) \widetilde{\psi}(\xi) \widetilde{\varphi}(\eta)$ is supported in $\{3^{-1} \leq |\xi| \leq 3\} \times {\{\eta\}} \leq 3$, and satisfies the estimate

$$
\left|\partial_\xi^\alpha\,\partial_\eta^\beta\{\sigma(2^j\xi,2^{j-1}\eta)\,\tilde{\psi}(\xi)\,\tilde{\varphi}(\eta)\}\right|\leq C_{\alpha,\beta}\,2^{jm},
$$

with $C_{\alpha,\beta}$ independent of $j \in \mathbb{N}$. Hence, by the Fourier series expansion, we can write

$$
\sigma(2^j\xi, 2^{j-1}\eta)\widetilde{\psi}(\xi)\widetilde{\varphi}(\eta) = \sum_{a,b\in\mathbb{Z}^n} c_{\mathrm{I},j}^{(a,b)} e^{ia\cdot\xi} e^{ib\cdot\eta} \quad \text{for } |\xi| < \pi, \ |\eta| < \pi,
$$

with the coefficient satisfying

(4.3)
$$
|c_{I,j}^{(a,b)}| \lesssim 2^{jm} (1+|a|)^{-L} (1+|b|)^{-L}
$$

for any $L > 0$. Changing variables $\xi \to 2^{-j} \xi$ and $\eta \to 2^{-j+1} \eta$, and multiplying by the function $\psi(2^{-j}\xi)\varphi(2^{-j+1}\eta)$, we obtain

$$
\sigma(\xi,\eta)\,\psi(2^{-j}\xi)\,\varphi(2^{-j+1}\eta) = \sum_{a,b\in\mathbb{Z}^n} c_{I,j}^{(a,b)}\,e^{ia\cdot 2^{-j}\xi}\,e^{ib\cdot 2^{-j+1}\eta}\,\psi(2^{-j}\xi)\,\varphi(2^{-j+1}\eta).
$$

Hence, σ_{I} is written as follows:

$$
\sigma_{I}(\xi,\eta) = \sum_{a,b \in \mathbb{Z}^{n}} \sum_{j=1}^{\infty} c_{I,j}^{(a,b)} e^{ia \cdot 2^{-j} \xi} e^{ib \cdot 2^{-j+1}\eta} \psi(2^{-j} \xi) \varphi(2^{-j+1}\eta)
$$

=
$$
\sum_{a,b \in \mathbb{Z}^{n}} \sum_{j=1}^{\infty} c_{I,j}^{(a,b)} \psi^{(a)}(2^{-j} \xi) \varphi^{(b)}(2^{-j+1}\eta),
$$

where

$$
\psi^{(\nu)}(\xi) = e^{i\nu \cdot \xi} \psi(\xi) \quad \text{and} \quad \varphi^{(\nu)}(\eta) = e^{i\nu \cdot \eta} \varphi(\eta) \quad \text{for } \nu \in \mathbb{Z}^n.
$$

By a similar argument, σ_{II} and σ_{III} can be written as follows:

$$
\sigma_{II}(\xi, \eta) = \sigma(\xi, \eta)\psi_0(\xi)\psi_0(\eta) + \sum_{a, b \in \mathbb{Z}^n} \sum_{j=1}^{\infty} c_{II,j}^{(a,b)} \psi^{(a)}(2^{-j}\xi)\psi^{(b)}(2^{-j}\eta),
$$

$$
\sigma_{III}(\xi, \eta) = \sum_{a, b \in \mathbb{Z}^n} \sum_{j=1}^{\infty} c_{III,j}^{(a,b)} \varphi^{(a)}(2^{-j+1}\xi)\psi^{(b)}(2^{-j}\eta),
$$

where the coefficients $c_{II,j}^{(a,b)}$ and $c_{III,j}^{(a,b)}$ satisfy the same estimates as [\(4.3\)](#page-11-0).

Hereafter, we shall consider a slightly general multiplier. We assume the multiplier $\tilde{\sigma}$ is given by

(4.4)
$$
\widetilde{\sigma}(\xi, \eta) = \sum_{j=1}^{\infty} c_j \,\theta_1(2^{-j}\xi) \,\theta_2(2^{-j}\eta),
$$

where $(c_i)_{i \in \mathbb{N}}$ is a sequence of complex numbers satisfying

$$
(4.5) \t\t\t |c_j| \le 2^{jm} A, \t j \in \mathbb{N},
$$

for some $A \in (0, \infty)$, and where θ_1 and θ_2 are functions in $C_0^{\infty}(\mathbb{R}^n)$ such that

(4.6)
$$
\mathrm{supp}\,\theta_1,\,\mathrm{supp}\,\theta_2\subset\{|\xi|\leq 2\}.
$$

For such $\tilde{\sigma}$, we shall prove the estimate

$$
(4.7) \t\t\t\t\|\te^{i(\phi_1(\xi)+\phi_2(\eta))}\tilde{\sigma}(\xi,\eta)\|_{\mathcal{M}(H^1\times L^\infty\to L^1)}\leq c\,A\|\theta_1\|_{C^N}\|\theta_2\|_{C^N},
$$

with $c = c(n) \in (0, \infty)$ and $N = N(n) \in \mathbb{N}$.

If this is proved, then by applying it to $c_j = c_{1,j}^{(a,b)}$, $\theta_1 = \psi^{(a)}$ and $\theta_2 = \varphi^{(b)}(2)$, we obtain

$$
\|e^{i(\phi_1(\xi)+\phi_2(\eta))}\sum_{j=1}^{\infty}c_{1,j}^{(a,b)}\psi^{(a)}(2^{-j}\xi)\varphi^{(b)}(2^{-j+1}\eta)\Big\|_{\mathcal{M}(H^1\times L^{\infty}\to L^1)}
$$

$$
\lesssim (1+|a|)^{-L}(1+|b|)^{-L}\|\psi^{(a)}\|_{C^N}\|\varphi^{(b)}(2\cdot)\|_{C^N}\lesssim (1+|a|)^{-L+N}(1+|b|)^{-L+N},
$$

and, thus, taking L sufficiently large and taking sum over $a, b \in \mathbb{Z}^n$, we obtain

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma_1(\xi,\eta)\in \mathcal{M}(H^1\times L^\infty\to L^1).
$$

In the same way, we obtain

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\big(\sigma_{\Pi}(\xi,\eta)-\sigma(\xi,\eta)\,\psi_0(\xi)\,\psi_0(\eta)\big)\in\mathcal{M}(H^1\times L^\infty\to L^1)
$$

and

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma_{\mathrm{III}}(\xi,\eta)\in \mathcal{M}(H^1\times L^\infty\to L^1).
$$

Since $e^{i(\phi_1(\xi)+\phi_2(\eta))}\sigma(\xi,\eta)\psi_0(\xi)\psi_0(\eta)$ is also a multiplier for $H^1\times L^\infty\to L^1$ by virtue of Lemma [4.2,](#page-7-2) we will obtain the conclusion of the theorem.

Thus the proof is reduced to showing [\(4.7\)](#page-12-0) for $\tilde{\sigma}$ given by [\(4.4\)](#page-11-1), [\(4.5\)](#page-11-2), and [\(4.6\)](#page-11-3).

We shall make a further reduction. As in the proof of Theorem [1.3,](#page-2-0) using the functions φ and ζ of Notation [1.6,](#page-3-0) we decompose the multiplier $e^{i(\phi_1(\xi)+\phi_2(\eta))}\tilde{\sigma}(\xi,\eta)$ into four parts:

$$
e^{i(\phi_1(\xi)+\phi_2(\eta))}\tilde{\sigma}(\xi,\eta)=\tau_1(\xi,\eta)+\tau_2(\xi,\eta)+\tau_3(\xi,\eta)+\tau_4(\xi,\eta),
$$

where

$$
\tau_1(\xi,\eta) = e^{i\phi_1(\xi)} \varphi(\xi) e^{i\phi_2(\eta)} \varphi(\eta) \widetilde{\sigma}(\xi,\eta),
$$

\n
$$
\tau_2(\xi,\eta) = e^{i\phi_1(\xi)} \zeta(\xi) e^{i\phi_2(\eta)} \varphi(\eta) \widetilde{\sigma}(\xi,\eta),
$$

\n
$$
\tau_3(\xi,\eta) = e^{i\phi_1(\xi)} \varphi(\xi) e^{i\phi_2(\eta)} \zeta(\eta) \widetilde{\sigma}(\xi,\eta),
$$

\n
$$
\tau_4(\xi,\eta) = e^{i\phi_1(\xi)} \zeta(\xi) e^{i\phi_2(\eta)} \zeta(\eta) \widetilde{\sigma}(\xi,\eta).
$$

The multipliers τ_1 , τ_2 , and τ_3 are easy to handle. For τ_1 , its inverse Fourier transform is given by

$$
(\tau_1(\xi,\eta))^{\vee}(x,y) = \sum_{j=1}^{\infty} c_j \big(e^{i\phi_1(\xi)}\varphi(\xi)\theta_1(2^{-j}\xi)\big)^{\vee}(x) \big(e^{i\phi_2(\eta)}\varphi(\eta)\theta_2(2^{-j}\eta)\big)^{\vee}(y).
$$

By Lemma [3.1,](#page-5-1) we have

(4.8)
$$
\|(e^{i\phi_1(\xi)}\varphi(\xi)\theta_1(2^{-j}\xi))^{\vee}\|_{L^1} \lesssim \|\theta_1\|_{C^{n+1}}
$$

and we get a similar estimate with θ_2 in place of θ_1 . Thus

$$
\begin{split} \|(\tau_{1})^{\vee}\|_{L^{1}(\mathbb{R}^{2n})} \\ &\leq \sum_{j=1}^{\infty} 2^{jm} A \|(e^{i\phi_{1}(\xi)}\varphi(2^{-j}\xi)\theta_{1}(2^{-j}\xi))^{\vee}\|_{L^{1}(\mathbb{R}^{n})} \|(e^{i\phi_{2}(\eta)}\varphi(\eta)\theta_{2}(2^{-j}\eta))^{\vee}\|_{L^{1}(\mathbb{R}^{n})} \\ &\lesssim \sum_{j=1}^{\infty} 2^{jm} A \|\theta_{1}\|_{C^{n+1}} \|\theta_{2}\|_{C^{n+1}} \approx A \|\theta_{1}\|_{C^{n+1}} \|\theta_{2}\|_{C^{n+1}}, \end{split}
$$

which implies

$$
\|\tau_1\|_{\mathcal{M}(H^1 \times L^{\infty} \to L^1)} \lesssim A \|\theta_1\|_{C^{n+1}} \|\theta_2\|_{C^{n+1}}.
$$

For τ_2 , we use the estimate

$$
\left\| (e^{i\phi_1(\xi)} \zeta(\xi) \theta_1(2^{-j}\xi))^{\vee} \right\|_{L^1(\mathbb{R}^n)} \lesssim 2^{j(n-1)/2} \|\theta_1\|_{C^{2n-1}},
$$

which is given in Lemma $4.4(2)$ $4.4(2)$. Using this together with (4.8) , we obtain

$$
\|\tau_2\|_{\mathcal{M}(H^1 \times L^{\infty} \to L^1)} \le \|(\tau_2)^{\vee}\|_{L^1(\mathbb{R}^{2n})}
$$
\n
$$
= \Big\|\sum_{j=1}^{\infty} c_j \big(e^{i\phi_1(\xi)} \zeta(\xi) \theta_1(2^{-j}\xi)\big)^{\vee} (x) \big(e^{i\phi_2(\eta)} \varphi(\eta) \theta_2(2^{-j}\eta)\big)^{\vee} (y) \Big\|_{L^1_{x,y}(\mathbb{R}^{2n})}
$$
\n
$$
\lesssim \sum_{j=1}^{\infty} 2^{jm} A 2^{j(n-1)/2} \|\theta_1\|_{C^{2n-1}} \|\theta_2\|_{C^{n+1}} \approx A \|\theta_1\|_{C^{2n-1}} \|\theta_2\|_{C^{n+1}},
$$

where the last \approx holds because $m < -(n - 1)/2$. Similarly, we have

$$
\|\tau_3\|_{\mathcal{M}(H^1 \times L^{\infty} \to L^1)} \leq \|(\tau_3)^{\vee}\|_{L^1(\mathbb{R}^{2n})} \lesssim A \|\theta_1\|_{C^{n+1}} \|\theta_2\|_{C^{2n-1}}.
$$

Thus the rest of the proof is the estimate for τ_4 . Our purpose is to prove the estimate

$$
||T_{\tau_4}(f,g)||_{L^1} \lesssim A ||\theta_1||_{C^N} ||\theta_2||_{C^N} ||f||_{H^1} ||g||_{L^{\infty}}.
$$

To prove this, by virtue of the atomic decomposition of $H¹$, it is sufficient to prove the uniform estimate of $||T_{\tau_4}(f,g)||_{L^1}$ for H^1 -atoms f. By translation, we may assume that the $H¹$ -atoms are supported on balls centered at the origin. Thus we assume

$$
\operatorname{supp} f \subset \{|x| \le r\}, \quad \|f\|_{L^\infty} \le r^{-n} \quad \text{and} \quad \int f(x) \, dx = 0,
$$

and we shall prove

$$
||T_{\tau_4}(f,g)||_{L^1} \lesssim A ||\theta_1||_{C^N} ||\theta_2||_{C^N} ||g||_{L^{\infty}}.
$$

Recall that the bilinear operator T_{τ_4} is given by

$$
T_{\tau_4}(f,g)(x) = \sum_{j=1}^{\infty} c_j (e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j}D) f)(x) (e^{i\phi_2(D)} \zeta(D) \theta_2(2^{-j}D) g)(x).
$$

We set $R = 1 + \max_{i=1,2} \sup\{|\nabla \phi_i(\xi)| \mid |\xi| = 1\}.$

Firstly, consider the case $r > R$. In this case, we estimate the $L¹$ norm as

$$
\begin{aligned} \|T_{\tau_4}(f,g)\|_{L^1} &\leq \sum_{j=1}^{\infty} 2^{jm} A \|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f\|_{L^1} \|e^{i\phi_2(D)}\zeta(D)\theta_2(2^{-j}D)g\|_{L^{\infty}} \\ &=:(\star). \end{aligned}
$$

For the L^{∞} -norm involving g, we use Lemma [4.4\(](#page-9-0)2) to obtain

$$
(4.9) \t\t\t\|e^{i\phi_2(D)}\zeta(D)\theta_2(2^{-j}D)g\|_{L^{\infty}} \leq \|(e^{i\phi_2(\eta)}\zeta(\eta)\theta_2(2^{-j}\eta))^{\vee}\|_{L^1}\|g\|_{L^{\infty}}\lesssim 2^{j(n-1)/2}\|\theta_2\|_{C^{2n-1}}\|g\|_{L^{\infty}}.
$$

For the L^1 norm of $e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)$ on $|x|\leq 3r$, we use the Cauchy–Schwarz inequality to obtain

$$
\| (e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j} D) f)(x) \|_{L^1(|x| \le 3r)}
$$

$$
\lesssim r^{n/2} \| (e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j} D) f)(x) \|_{L^2(|x| \le 3r)} \lesssim r^{n/2} \| \theta_1 \|_{C^0} \| f \|_{L^2} \lesssim \| \theta_1 \|_{C^0}.
$$

If $|x| > 3r$ and $|y| \le r$, then $|x - y| > 2r > 2R$. Hence, for $|x| > 3r$, using Lemma [4.4\(](#page-9-0)1), we see that

$$
\left| e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j} D) f(x) \right| = \left| \int \left(e^{i\phi_1(\xi)} \zeta(\xi) \theta_1(2^{-j} \xi) \right)^{\vee} (x - y) f(y) dy \right|
$$

$$
\lesssim \int_{|y| \le r} \| \theta_1 \|_{C^N} |x - y|^{-N} |f(y)| dy \lesssim \| \theta_1 \|_{C^N} |x|^{-N},
$$

which implies

$$
\left\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)\right\|_{L^1(|x|>3r)} \lesssim \|\theta_1\|_{C^N}\int_{|x|>3r}|x|^{-N}dx \lesssim \|\theta_1\|_{C^N}.
$$

Combining the above estimates, we have

(4.10)
$$
\left\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)\right\|_{L^1}\lesssim \|\theta_1\|_{C^N}.
$$

Now from (4.9) and (4.10) , we obtain

$$
(\star) \lesssim \sum_{j=1}^{\infty} 2^{jm} A \|\theta_1\|_{C^N} 2^{j(n-1)/2} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}} \approx A \|\theta_1\|_{C^N} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}},
$$

where the last \approx holds because $m < -(n-1)/2$.

Secondly, we assume $r \leq R$ and estimate the L^1 norm of $T_{\tau_4}(f, g)(x)$ on $|x| > 3R$. We estimate this as

$$
T_{\tau_4}(f,g)(x)\|_{L^1(|x|>3R)} \le \sum_{j=1}^{\infty} 2^{jm} A \|e^{i\phi_1(D)} \zeta(D)\theta_1(2^{-j}D)f(x)\|_{L^1(|x|>3R)}
$$

$$
\times \|e^{i\phi_2(D)} \zeta(D)\theta_2(2^{-j}D)g(x)\|_{L^{\infty}(|x|>3R)}
$$

=: $(\star\star).$

For the L^{∞} norm involving g, we have [\(4.9\)](#page-14-0). If $|x| > 3R$ and $|y| \le r \le R$, then $|x - y| > 2R$. Hence, for $|x| > 3R$, Lemma [4.4](#page-9-0)(1) yields

$$
\left| e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j} D) f(x) \right| = \left| \int \left(e^{i\phi_1(\xi)} \zeta(\xi) \theta_1(2^{-j} \xi) \right)^{\vee} (x - y) f(y) dy \right|
$$

$$
\lesssim \int_{|y| \le r} \|\theta_1\|_{C^N} |x - y|^{-N} |f(y)| dy \lesssim \|\theta_1\|_{C^N} |x|^{-N}.
$$

This implies

$$
\left\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)\right\|_{L^1(|x|>3R)}\lesssim \|\theta_1\|_{C^N}.
$$

Thus we obtain

$$
(\star \star) \lesssim \sum_{j=1}^{\infty} 2^{jm} A \|\theta_1\|_{C^N} 2^{j(n-1)/2} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}} \approx A \|\theta_1\|_{C^N} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}},
$$

where we used $m < -(n - 1)/2$ again.

Thirdly, we assume $r \leq R$ and estimate the L^1 norm of $T_{\tau_4}(f, g)(x)$ on $|x| \leq 3R$. We set $B = \{x \in \mathbb{R}^n \mid |x| \le 5R\}$ and decompose g as $g = g\mathbf{1}_B + g\mathbf{1}_{B^c}$.

For the $L^1(|x| \leq 3R)$ norm of $T_{\tau_4}(f, g\mathbf{1}_{\mathbf{B}^c})(x)$, we have

$$
||T_{\tau_4}(f,g\mathbf{1}_{B^c})(x)||_{L^1(|x|\leq 3R)} \leq \sum_{j=1}^{\infty} 2^{jm} A ||e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)||_{L^1(|x|\leq 3R)}
$$

$$
\times ||e^{i\phi_2(D)}\zeta(D)\theta_2(2^{-j}D)(g\mathbf{1}_{B^c})(x)||_{L^{\infty}(|x|\leq 3R)}
$$

=: $(\star \star \star).$

Using Lemma $4.4(2)$ $4.4(2)$, we have

$$
\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)\|_{L^1(|x|\leq 3R)} \leq \|(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^\vee\|_{L^1}\|f\|_{L^1}
$$

$$
\lesssim 2^{j(n-1)/2}\|\theta_1\|_{C^N}.
$$

If $|x| \leq 3R$ and $|y| > 5R$, then $|x - y| > 2R$. Hence, for $|x| \leq 3R$, we use Lemma [4.4](#page-9-0)(1) to have

$$
\left| e^{i\phi_2(D)} \zeta(D) \theta_2(2^{-j} D)(g \mathbf{1}_{B^c})(x) \right| = \Big| \int_{|y| > 5R} (e^{i\phi_2(\eta)} \zeta(\eta) \theta_2(2^{-j} \eta))^{\vee} (x - y) g(y) dy \Big|
$$

$$
\lesssim \int_{|y| > 5R} \| \theta_2 \|_{C^N} |x - y|^{-N} \| g \|_{L^{\infty}} dy \approx \| \theta_2 \|_{C^N} \| g \|_{L^{\infty}}.
$$

Thus

$$
(\star \star \star) \lesssim \sum_{j=1}^{\infty} 2^{jm} A 2^{j(n-1)/2} \|\theta_1\|_{C^N} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}} \approx A \|\theta_1\|_{C^N} \|\theta_2\|_{C^N} \|g\|_{L^{\infty}},
$$

where we used $m < -(n - 1)/2$ again.

Finally, we estimate the L^1 norm of $T_{\tau_4}(f, g\mathbf{1}_B)(x)$ on $|x| \leq 3R$. For this, we use the Cauchy–Schwarz inequality to have

$$
\begin{aligned} &\|T_{\tau_4}(f,g\mathbf{1}_B)(x)\|_{L^1(|x|\leq 3R)}\\ &\leq \sum_{j=1}^{\infty} 2^{jm} A \big\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f\big\|_{L^2} \big\|e^{i\phi_2(D)}\zeta(D)\theta_2(2^{-j}D)(g\mathbf{1}_B)\big\|_{L^2}\\ &=:\left(\star\star\star\star\right). \end{aligned}
$$

For the L^2 norm involving $g1_B$, we have

$$
(4.11) \qquad \|e^{i\phi_2(D)}\zeta(D)\theta_2(2^{-j}D)(g\mathbf{1}_B)\|_{L^2} \lesssim \|\theta_2\|_{C^0} \|g\mathbf{1}_B\|_{L^2} \lesssim \|\theta_2\|_{C^0} \|g\|_{L^\infty}.
$$

We estimate the L^2 norm of $e^{i\phi_1(D)} \zeta(D) \theta_1(2^{-j}D) f$ in two ways. Firstly, we have

$$
(4.12) \t\t\t ||e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f||_{L^2} \lesssim ||\theta_1||_{C^0} ||f||_{L^2} \lesssim r^{-n/2} ||\theta_1||_{C^0}.
$$

On the other hand, using the moment condition of f , we can write

$$
e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f(x)
$$

=
$$
\int \{(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^{\vee}(x-y)-(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^{\vee}(x)\}f(y) dy
$$

=
$$
\iint_{\substack{0
$$

Hence

$$
\begin{aligned} \|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f\|_{L^2} &\lesssim \|\nabla(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^{\vee}\|_{L^2} \int_{|y|\leq r}|y|\,|f(y)|\,dy\\ &\lesssim r\,\|\nabla(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^{\vee}\|_{L^2}.\end{aligned}
$$

By Plancherel's theorem,

$$
\|\nabla(e^{i\phi_1(\xi)}\zeta(\xi)\theta_1(2^{-j}\xi))^{\vee}\|_{L^2}\approx \|\xi\zeta(\xi)\theta_1(2^{-j}\xi)\|_{L^2}\lesssim 2^{j(n/2+1)}\|\theta_1\|_{C^0}.
$$

Hence

(4.13)
$$
\left\|e^{i\phi_1(D)}\zeta(D)\theta_1(2^{-j}D)f\right\|_{L^2}\lesssim 2^{j(n/2+1)}r\,\|\theta_1\|_{C^0}.
$$

Combining (4.11) , (4.12) and (4.13) , we obtain

$$
(\star \star \star \star) \lesssim \sum_{j=1}^{\infty} 2^{jm} A \min\{r^{-n/2}, 2^{j(n/2+1)} r\} \|\theta_1\|_{C^0} \|\theta_2\|_{C^0} \|g\|_{L^{\infty}}
$$

= $A \|\theta_1\|_{C^0} \|\theta_2\|_{C^0} \|g\|_{L^{\infty}} \sum_{j=1}^{\infty} \min\{(2^j r)^{-n/2}, 2^j r\} \approx A \|\theta_1\|_{C^0} \|\theta_2\|_{C^0} \|g\|_{L^{\infty}},$

where we used $m = -n/2$. This completes the proof of Theorem [4.1.](#page-6-2)

П

5. Necessary conditions on m

In this section, we shall prove Theorem [1.5.](#page-3-2)

In fact, we shall prove a stronger theorem by considering a multiplier of a special form. Take a function $\theta \in C_0^{\infty}(\mathbb{R}^n)$ such that $\text{supp }\theta \subset \{3^{-1} \leq |\xi| \leq 3\}$ and $\theta(\xi) = 1$ for $2^{-1} \leq |\xi| \leq 2$. We consider the multiplier

$$
\sigma_j(\xi,\eta) = 2^{jm} \theta(2^{-j}\xi) \theta(2^{-j}\eta), \quad j \in \mathbb{N}.
$$

This multiplier satisfies the inequalities

$$
|\partial_{\xi}^{\alpha}\partial_{\eta}^{\beta}\sigma_{j}(\xi,\eta)|\leq C_{\alpha,\beta}(1+|\xi|+|\eta|)^{m-|\alpha|-|\beta|},
$$

with $C_{\alpha,\beta}$ independent of $j \in \mathbb{N}$. Thus if the assertion [\(1.3\)](#page-3-1) holds then, by the closed graph theorem, it follows that there exists a constant $A = A(n, m, p, q, \theta)$ such that

$$
(5.1) \t\t\t||2^{jm} e^{i(|\xi|+|\eta|)} \theta(2^{-j}\xi) \theta(2^{-j}\eta) \t\t||_{\mathcal{M}(H^p \times H^q \to X_r)} \le A \tfor all j \in \mathbb{N}.
$$

We shall prove that the conditions given in Theorem [1.5](#page-3-2) are already necessary for (5.1) . In fact, we prove the following theorem, which asserts that the claims of Theorem [1.5](#page-3-2) hold if we replace the condition (1.3) by the condition (5.1) .

Theorem 5.1. *Let* $n > 2$.

- (1) Let $0 < p, q \le 2$ or $2 \le p, q \le \infty$. Then $m \in \mathbb{R}$ satisfies [\(5.1\)](#page-17-1) only if $m \le -(n-1)$ $\times (|1/p-1/2|+|1/q-1/2|).$
- (2) Let $1 \leq p \leq 2 \leq q \leq \infty$ or $1 \leq q \leq 2 \leq p \leq \infty$ and assume $1/p + 1/q = 1$. Then $m \in \mathbb{R}$ *satisfies* [\(5.1\)](#page-17-1) *only if* $m \leq -n(1/p - 1/2)$.

To prove this theorem, we use the following lemma.

Lemma 5.2. Let ψ be a C^{∞} function on R such that

$$
\operatorname{supp}\psi\subset\{t\in\mathbb{R}\mid 2^{-1}\leq t\leq 2\},\quad\psi(t)\geq 0,\quad\psi(t)\not\equiv 0,
$$

and set

$$
h_j(x) = (e^{-i|\xi|} \psi(2^{-j}|\xi|))^{\vee}(x),
$$

which is the inverse Fourier transform of the radial function $e^{-i|\xi|} \psi(2^{-j}|\xi|)$ on \mathbb{R}^n . Then *the following hold.*

(1) *For each* $L > 0$ *, there exists a constant* c_L *, depending only on* n, ψ *, and* L *, such that*

$$
|h_j(x)| \le c_L 2^{j(n+1)/2} \left(1 + 2^j |1 - |x||\right)^{-L}
$$

for all $j \in \mathbb{N}$ *and all* $x \in \mathbb{R}^n$ *.*

(2) *There exist* δ , $c_0 \in (0, \infty)$ *and* $j_0 \in \mathbb{N}$ *, depending only on n and* ψ *, such that*

$$
\left| e^{i((n-2)\pi/4 + \pi/4)} \, 2^{-j(n+1)/2} \, h_j(x) - c_0 \, \right| \le \frac{c_0}{10}
$$

if $1 - \delta 2^{-j} < |x| < 1 + \delta 2^{-j}$ *and* $i > j_0$ *.*

(3) *For each* $0 < p < \infty$,

$$
||h_j||_{H^p} \approx ||h_j||_{L^p} \approx 2^{j((n+1)/2-1/p)}, \quad j \in \mathbb{N},
$$

where the implicit constants in \approx *depend only on n,* ψ *, and p.*

Proof. The assertion (3) follows from (1) and (2). In fact, the inequality $\|h_j\|_{H^p} \approx \|h_j\|_{L^p}$ holds because the support of the inverse Fourier transform of h_j is included in the annulus $\{2^{j-1} \leq |\xi| \leq 2^{j+1}\}\.$ The estimate of $||h_j||_{L^p} \lesssim 2^{j((n+1)/2-1/p)}$ follows from (1) and the converse estimate $||h_j||_{L^p} \gtrsim 2^{j((n+1)/2-1/p)}$ follows from (2). Thus we only need to prove (1) and (2) .

Since $h_j(x)$ is the inverse Fourier transform of a radial function, it is written in terms of Bessel function as

$$
h_j(x) = (2\pi)^{-n/2} \int_0^\infty J_{(n-2)/2}(|x|t) (|x|t)^{-(n-2)/2} \psi(2^{-j}t) e^{-it} t^{n-1} dt,
$$

where $J_{(n-2)/2}$ is the Bessel function (see, e.g., Theorem 3.3 on p. 155 of [\[21\]](#page-37-2); this formula holds for $n = 1$ as well, since $(2\pi)^{-1/2} J_{-1/2}(s) s^{1/2} = \pi^{-1} \cos s$.

Proof of (1). Firstly, we estimate of $h_j(x)$ for $2^j |x| \leq 1$. For this, we use the power series expansion

$$
(2\pi)^{-n/2} J_{(n-2)/2}(s) s^{-(n-2)/2} = \sum_{m=0}^{\infty} a_m s^m,
$$

whose radius of convergence is ∞ . Integrating term by term, we have

$$
h_j(x) = \int_0^\infty \sum_{m=0}^\infty a_m (|x|t)^m \psi(2^{-j}t) e^{-it} t^{n-1} dt = \sum_{m=0}^\infty a_m |x|^m (\psi(2^{-j}t) t^{m+n-1})^{\hat{ }} (1)
$$

=
$$
\sum_{m=0}^\infty a_m |x|^m (2^j)^{m+n} (\psi(t) t^{m+n-1})^{\hat{ }} (2^j).
$$

The function arising in the last expression satisfies

$$
\text{supp}(\psi(t) \, t^{m+n-1}) \subset \{t \in \mathbb{R} \mid 2^{-1} \le t \le 2\},
$$
\n
$$
\left| \left(\frac{d}{dt}\right)^{\ell} (\psi(t) \, t^{m+n-1}) \right| \le c_{\ell} \, (1+m)^{\ell} \, 2^m.
$$

Hence, for any $L' \in \mathbb{N}$, we have

$$
|(\psi(t) \, t^{m+n-1})^{\wedge}(2^j)| \leq c_{L'}(1+m)^{L'} \, 2^m \, (2^j)^{-L'}.
$$

Thus, for $2^{j} |x| \leq 1$, we have

$$
|h_j(x)| \le \sum_{m=0}^{\infty} |a_m| |x|^m (2^j)^{m+n} c_{L'} (1+m)^{L'} 2^m (2^j)^{-L'}
$$

$$
\le c_{L'} (2^j)^{n-L'} \sum_{m=0}^{\infty} |a_m| (1+m)^{L'} 2^m = \tilde{c}_{L'} (2^j)^{n-L'}
$$

:

Since L' can be taken arbitrarily large, the above implies the desired estimate of $h_j(x)$ for $2^{j} |x| \leq 1.$

Next, we estimate $h_j(x)$ for $2^j|x| > 1$. For this, we use the asymptotic expansion of the Bessel function, which reads as

$$
(2\pi)^{-n/2} J_{(n-2)/2}(s) s^{-(n-2)/2}
$$

= $b^+ e^{is} s^{1/2-n/2} + b^- e^{-is} s^{1/2-n/2} + e^{is} R^+(s) + e^{-is} R^-(s)$,

where

$$
b^{\pm} = (2\pi)^{-(n+1)/2} e^{\mp i((n-2)\pi/4 + \pi/4)}
$$

and the remainder terms $R^{\pm}(s)$ satisfy

(5.2)
$$
\left(\frac{d}{ds}\right)^{\ell} R^{\pm}(s) = O(s^{1/2 - n/2 - 1 - \ell}) \text{ as } s \to \infty, \text{ for } \ell = 0, 1, 2, ...
$$

Corresponding to the asymptotic expansion formula given above, we write

$$
h_j(x) = b^+ \int_0^\infty e^{i|x|t} (|x|t)^{1/2 - n/2} \psi(2^{-j}t) e^{-it} t^{n-1} dt
$$

+ $b^- \int_0^\infty e^{-i|x|t} (|x|t)^{1/2 - n/2} \psi(2^{-j}t) e^{-it} t^{n-1} dt$
+ $\int_0^\infty e^{i|x|t} R^+ (|x|t) \psi(2^{-j}t) e^{-it} t^{n-1} dt$
+ $\int_0^\infty e^{-i|x|t} R^- (|x|t) \psi(2^{-j}t) e^{-it} t^{n-1} dt$
= $I_j^+(x) + I_j^-(x) + K_j^+(x) + K_j^-(x)$.

We shall estimate each of I_i^+ $j^+(x)$, $I_j^$ $j^-(x)$, K_j^+ $K_j^+(x)$, and $K_j^-(x)$ for $2^j|x| > 1$.

(a) *Estimate of* I_i^+ $j^{+}(x)$ *for* $2^{j} |x| > 1$. The term I_j^{+} $j^+(x)$ is written as

(5.3)
$$
I_j^+(x) = b^+ \{ (|x|t)^{1/2 - n/2} \psi(2^{-j}t) t^{n-1} \}^{\wedge} (1 - |x|)
$$

$$
= b^+ |x|^{1/2 - n/2} (2^j)^{1/2 + n/2} (\psi(t) t^{-1/2 + n/2})^{\wedge} (2^j (1 - |x|)).
$$

Since $(\psi(t) t^{-1/2+n/2})^{\wedge}$ is a rapidly decreasing function, we have

$$
|I_j^+(x)| \lesssim |x|^{1/2 - n/2} (2^j)^{1/2 + n/2} (1 + 2^j |1 - |x||)^{-L'}
$$

for any $L' > 0$. Hence,

$$
2^{-j} < |x| \le 2^{-1} \implies |I_j^+(x)| \lesssim (2^{-j})^{1/2 - n/2} (2^j)^{1/2 + n/2} (2^j)^{-L'} = (2^j)^{n - L'},
$$
\n
$$
|x| > 2^{-1} \implies |I_j^+(x)| \lesssim (2^j)^{1/2 + n/2} \left(1 + 2^j |1 - |x||\right)^{-L'}.
$$

For any given $L > 0$, the above estimates with a sufficiently large L' imply that

(5.4)
$$
|I_j^+(x)| \lesssim (2^j)^{1/2+n/2} (1+2^j |1-|x||)^{-L}, \quad 2^j |x| > 1.
$$

(b) *Estimate of* $I_i^$ $j^-(x)$ *for* $2^j |x| > 1$. The function $I_j^$ $j^{-}(x)$ is written as

$$
I_j^-(x) = b^- \left\{ (|x|t)^{1/2 - n/2} \psi(2^{-j}t) t^{n-1} \right\}^{\wedge} (1 + |x|).
$$

Hence, by the same reason as in the case of I_i^+ $j^+(x)$,

$$
|I_j^{-}(x)| \lesssim |x|^{1/2 - n/2} (2^j)^{1/2 + n/2} (2^j |1 + |x||)^{-L'}
$$

for any $L' > 0$. Restricting to the region $2^{j} |x| > 1$, we have

(5.5)
$$
|I_j^-(x)| \lesssim (2^j)^{n-L'} (1+|x|)^{-L'}, \quad 2^j |x| > 1.
$$

(c) *Estimate of* K_i^+ $j^{+}(x)$ *for* $2^{j} |x| > 1$. The integral K_j^{+} $j^+(x)$ is written as

$$
K_j^+(x) = \left\{ R^+(x|t) \psi(2^{-j}t) t^{n-1} \right\}^{\wedge} (1-|x|).
$$

The function $R^+(|x|t) \psi(2^{-j}t) t^{n-1}$ is supported on $\{2^{j-1} \le t \le 2^{j+1}\}$. If $2^j |x| > 1$, then (5.2) implies

$$
\left|\partial_t^{\ell} \left\{ R^+(|x|t) \psi(2^{-j}t) t^{n-1} \right\} \right| \lesssim |x|^{1/2 - n/2 - 1} (2^j)^{1/2 + n/2 - 2 - \ell}, \quad \ell = 0, 1, 2, \ldots,
$$

which, via Fourier transform, yields

$$
\left| \left\{ R^+(|x|t) \psi(2^{-j}t) t^{n-1} \right\}^{\wedge} (1-|x|) \right| \lesssim |x|^{1/2-n/2-1} (2^j)^{1/2+n/2-1} \left(1 + 2^j |1-|x| | \right)^{-L'}
$$

for any $L' > 0$. Hence

$$
2^{-j} < |x| \le 2^{-1} \implies |K_j^+(x)| \lesssim (2^{-j})^{1/2 - n/2 - 1} (2^j)^{1/2 + n/2 - 1} (2^j)^{-L'} = (2^j)^{n - L'},
$$
\n
$$
|x| > 2^{-1} \implies |K_j^+(x)| \lesssim (2^j)^{1/2 + n/2 - 1} \left(1 + 2^j |1 - |x||\right)^{-L'}.
$$

For any $L > 0$, the above estimates with L' sufficiently large imply

$$
(5.6) \t\t |K_j^+(x)| \lesssim (2^j)^{1/2+n/2-1} \big(1+2^j|1-|x|\big)\big)^{-L}, \quad 2^j|x|>1.
$$

(d) *Estimate of* $K_j^-(x)$ *for* $2^j |x| > 1$. The integral $K_j^-(x)$ is written as

$$
K_j^-(x) = \left\{ R^-(|x|t) \psi(2^{-j}t) t^{n-1} \right\}^{\wedge} (1+|x|).
$$

If $2^{j} |x| > 1$, then by the same reasoning as above, we obtain

$$
\left| \left\{ R^{-}(|x|t) \psi(2^{-j}t) t^{n-1} \right\}^{\wedge} (1+|x|) \right| \lesssim |x|^{1/2-n/2-1} (2^j)^{1/2+n/2-1} (2^j (1+|x|))^{-L'}
$$

for any $L' > 0$. Hence

(5.7)
$$
|K_j^{-}(x)| \lesssim (2^j)^{n-L'} (1+|x|)^{-L'}, \quad 2^j |x| > 1.
$$

Now from [\(5.4\)](#page-19-1), [\(5.5\)](#page-20-0), [\(5.6\)](#page-20-1), and [\(5.7\)](#page-20-2), we obtain the estimate of $h_j(x)$ for $2^j |x| > 1$ as claimed in the lemma. Thus the claim (1) is proved.

Proof of (2). The equality [\(5.3\)](#page-19-2) and the equality

$$
b^{+} = (2\pi)^{-(n+1)/2} e^{-i((n-2)\pi/4 + \pi/4)}
$$

give

(5.8)
$$
e^{i((n-2)\pi/4 + \pi/4)} (2^j)^{-n/2 - 1/2} I_j^+(x) = (2\pi)^{-(n+1)/2} |x|^{1/2 - n/2} (\psi(t) t^{-1/2 + n/2})^{\wedge} (2^j (1 - |x|)).
$$

We set

$$
c_0 = (2\pi)^{-(n+1)/2} (\psi(t) t^{-1/2+n/2})^{\hat{ }}(0).
$$

This is a positive number, since ψ is nonnegative and not identically equal to 0. Then, from [\(5.8\)](#page-21-0) and from continuity of the functions, it follows that there exists a number $\delta > 0$ such that

$$
1 - 2^{-j}\delta < |x| < 1 + 2^{-j}\delta \quad \implies \quad \left| e^{i((n-2)\pi/4 + \pi/4)} (2^j)^{-n/2 - 1/2} I_j^+(x) - c_0 \right| \le \frac{c_0}{20}.
$$

On the other hand, the estimates of (5.5) , (5.6) , and (5.7) imply that there exists a constant $c_1 = c_1(n, \psi)$ such that

$$
1 - 2^{-j} < |x| < 1 + 2^{-j} \quad \implies \quad |I_j^-(x)| + |K_j^+(x)| + |K_j^-(x)| \le c_1 \, 2^{j(n/2 + 1/2 - 1)}.
$$

Hence, the estimate claimed in (2) of the lemma holds if we take j_0 large enough so that $c_1 2^{-j_0} \le c_0/20$. This completes the proof of Lemma [5.2.](#page-17-2)

Proof of Theorem [5.1](#page-17-3). We define the operator S_i by

$$
S_j h = (e^{i|\xi|} \theta(2^{-j} \xi) \hat{h}(\xi))^{\vee}.
$$

We divide the proof into three cases.

Case 1: $0 < p, q \le 2$. Assume [\(5.1\)](#page-17-1) holds, or equivalently, that

 (5.9) $2^{jm} \|S_i f \cdot S_i g\|_{X_r} \leq A \|f\|_{H^p} \|g\|_{H^q}$ for all $j \in \mathbb{N}$.

Take ψ as in Lemma [5.2](#page-17-2) and set

$$
f_j(x) = (\psi(2^{-j}|\xi|))^{\vee}(x) \text{ for } j \in \mathbb{N}.
$$

We shall test [\(5.9\)](#page-21-1) to $f = g = f_j$.

Since the support of the Fourier transform of the function f_j is included in the annulus $\{2^{j-1} \leq |\xi| \leq 2^{j+1}\},$ and since $f_j(x) = 2^{jn}(\psi(|\cdot|))^{\vee}(2^{j}x)$, it follows that

$$
||f_j||_{H^p} \approx ||f_j||_{L^p} \approx 2^{j(n-n/p)},
$$

and a similar estimate holds for $||f_j||_{H_q}$. On the other hand, by the choice of the functions θ and ψ , we have

$$
S_j f_j = (e^{i|\xi|} \psi(2^{-j}|\xi|))^{\vee}.
$$

Hence, by Lemma [5.2,](#page-17-2) there exist $\delta \in (0,\infty)$ and $j_0 \in \mathbb{N}$ such that

$$
|S_j f_j(x)| \gtrsim 2^{j(n+1)/2} \mathbf{1}_{\{2^j |1-|x|| < \delta\}} \quad \text{for } j > j_0.
$$

Thus

$$
\|(S_j f_j)^2\|_{L^r} \gtrsim (2^{j(n+1)/2})^2 \left(\int \mathbf{1}_{\{2^j |1-|x||<\delta\}} dx\right)^{1/r} \approx 2^{j(n+1-1/r)} \quad \text{for } j > j_0.
$$

Hence, if [\(5.9\)](#page-21-1) holds, then testing it to $f = g = f_j$ we have

$$
2^{jm} \cdot 2^{j(n+1-1/r)} \lesssim 2^{j(n-n/p)} \cdot 2^{j(n-n/q)} \text{ for } j > j_0,
$$

which is possible only when $m \le -(n-1)(1/p - 1/2 + 1/q - 1/2)$.

Case 2: $2 \leq p, q \leq \infty$.

Assume [\(5.9\)](#page-21-1) holds. Using the function ψ of Lemma [5.2,](#page-17-2) we set

$$
\widetilde{f}_j = (e^{-i|\xi|} \psi(2^{-j}|\xi|))^{\vee} \text{ for } j \in \mathbb{N}.
$$

Then Lemma [5.2](#page-17-2) gives the estimate

$$
\|\widetilde{f}_j\|_{H^p} \approx \|\widetilde{f}_j\|_{L^p} \approx 2^{j((n+1)/2-1/p)},
$$

and a similar estimate holds for $\|\widetilde{f}_j\|_{H_q}$. On the other hand,

$$
S_j \tilde{f}_j(x) = (\psi(2^{-j}|\xi|))^{\vee}(x) = 2^{jn} (\psi(|\cdot|))^{\vee}(2^{j} x),
$$

and hence

$$
\left\|(S_j \tilde{f}_j)^2\right\|_{X_r} = \left\|2^{2jn}(\psi(|\cdot|))^{\vee}(2^j x)^2\right\|_{X_r} \approx 2^{j(2n-n/r)}.
$$

Hence, if [\(5.9\)](#page-21-1) holds, then by testing it to $f = g = \tilde{f}_j$ we have

$$
2^{jm} \cdot 2^{j(2n-n/r)} \lesssim 2^{j((n+1)/2-1/p)} \cdot 2^{j((n+1)/2-1/q)},
$$

which is possible only when $m \le -(n-1)(1/2 - 1/p + 1/2 - 1/q)$.

Case 3: $1 \le p \le 2 \le q \le \infty$ *or* $1 \le q \le 2 \le p \le \infty$ and $1/p + 1/q = 1$.

By the symmetry of the situation, it suffices to consider the case $1 \le p \le 2 \le q \le \infty$. Thus we assume that $1 \le p \le 2 \le q \le \infty$ and $1/p + 1/q = 1/r = 1$. We assume [\(5.1\)](#page-17-1) holds, or equivalently, that

$$
(5.10) \t2^{jm} \|S_j f \cdot S_j g\|_{L^1} \le A \|f\|_{H^p} \|g\|_{L^q} \text{ for all } j \in \mathbb{N},
$$

and prove that this is possible only when $m \le -n/p + n/2$.

We use the same function f_j that was used in the proof of Case 1:

$$
f_j(x) = (\psi(2^{-j}|\xi|))^{\vee}(x) \text{ for } j \in \mathbb{N},
$$

where ψ is the function given in Lemma [5.2.](#page-17-2)

As we have seen in Case 1,

(5.11)
$$
\|f_j\|_{H^p} \approx 2^{j(n-n/p)}.
$$

On the other hand,

$$
S_j f_j(x) = (e^{i|\xi|} \psi(2^{-j}|\xi|))^{\vee}(x) = \overline{(e^{-i|\xi|} \psi(2^{-j}|\xi|))^{\vee}(-x)}
$$

and, hence, Lemma [5.2](#page-17-2) (2) gives that, for $1 - \delta 2^{-j} < |x| < 1 + \delta 2^{-j}$ and $j > j_0$,

(5.12)
$$
\left|e^{-i((n-2)\pi/4 + \pi/4)} 2^{-j(n+1)/2} S_j f_j(x) - c_0\right| \leq \frac{c_0}{10}.
$$

For a sequence of complex numbers $\alpha = (\alpha_\ell)_{\ell \in \mathbb{Z}^n}$, we define $g_{i,\alpha}$ by

$$
g_{j,\alpha}(x) = \sum_{\ell \in \mathbb{Z}^n} \alpha_{\ell} f_j(x - \delta' 2^{-j} \ell),
$$

where δ' is a sufficiently small positive number; for the succeeding argument, the choice where δ' is a sufficiently:
 $\delta' = \delta/(2\sqrt{n})$ will suffice.

We shall prove

(5.13)
$$
\|g_{j,\alpha}\|_{L^q} \lesssim 2^{j(n-n/q)} \|\alpha\|_{\ell^q}.
$$

In fact, since $f_j(x) = 2^{jn}(\psi(|\cdot|))^{\vee}(2^{j}x)$ and since $(\psi(|\cdot|))^{\vee}$ is a Schwartz function, we have $|f_j(x)| \lesssim 2^{jn} (1 + 2^j |x|)^{-L}$ for any $L > 0$. Thus, if $2 \le q < \infty$, then Hölder's inequality yields

$$
|g_{j,\alpha}(x)| \lesssim \sum_{\ell \in \mathbb{Z}^n} |\alpha_{\ell}| 2^{jn} (1 + 2^{j} |x - \delta' 2^{-j} \ell|)^{-L}
$$

\n
$$
\leq \Big(\sum_{\ell \in \mathbb{Z}^n} |\alpha_{\ell}|^q 2^{jnq} (1 + 2^{j} |x - \delta' 2^{-j} \ell|)^{-L} \Big)^{1/q} \Big(\sum_{\ell \in \mathbb{Z}^n} (1 + 2^{j} |x - \delta' 2^{-j} \ell|)^{-L} \Big)^{1 - 1/q}
$$

\n
$$
\approx \Big(\sum_{\ell \in \mathbb{Z}^n} |\alpha_{\ell}|^q 2^{jnq} (1 + 2^{j} |x - \delta' 2^{-j} \ell|)^{-L} \Big)^{1/q},
$$

and hence,

$$
\|g_{j,\alpha}\|_{L^q} \lesssim \Big(\int \sum_{\ell \in \mathbb{Z}^n} |\alpha_{\ell}|^q 2^{jnq} (1+2^j|x-\delta'2^{-j}\ell|)^{-L} dx\Big)^{1/q} \approx \|\alpha\|_{\ell^q} 2^{j(n-n/q)}.
$$

An obvious modification gives [\(5.13\)](#page-23-0) for $q = \infty$ as well.

Since the operator S_j is linear and commutes with translation, we have

$$
S_j g_{j,\alpha} = \sum_{\ell \in \mathbb{Z}^n} \alpha_\ell (S_j f_j)(x - \delta' 2^{-j} \ell).
$$

Now we test [\(5.10\)](#page-22-0) to $f = f_i$ and $g = g_{i,\alpha}$. Then by [\(5.11\)](#page-23-1) and [\(5.13\)](#page-23-0) we have

$$
2^{jm} \| S_j f_j(x) \sum_{\ell \in \mathbb{Z}^n} \alpha_\ell S_j f_j(x - \delta' 2^{-j} \ell) \|_{L^1_x} \lesssim 2^{jn} \| \alpha \|_{\ell^q}
$$

(recall that $1/p + 1/q = 1$). We take the dual form of this inequality, which reads as

$$
(5.14) \t2^{jm} \| \int S_j f_j(x) S_j f_j(x - \delta' 2^{-j} \ell) \varphi(x) dx \|_{\ell_l^{q'}} \lesssim 2^{jn} \| \varphi \|_{L^{\infty}}.
$$

We define the cube Q_v in \mathbb{R}^n by

$$
Q_{\nu} = \delta' 2^{-j} (\nu + (0, 1]^n), \quad \nu \in \mathbb{Z}^n.
$$

Then each Q_{ν} is a cube with side length $\delta' 2^{-j}$ and all of them constitute a partition of \mathbb{R}^{n} . Let $(\varepsilon_\nu)_{\nu \in \mathbb{Z}^n}$ be any sequence of ± 1 , and apply [\(5.14\)](#page-24-0) to $\varphi(x) = \sum_{\nu \in \mathbb{Z}^n} \varepsilon_\nu \mathbf{1}_{Q_\nu}(x)$. Then we obtain

$$
2^{jm}\Big(\sum_{\ell\in\mathbb{Z}^n}\Big|\sum_{v\in\mathbb{Z}^n}\varepsilon_v\int_{Q_v}S_j\,f_j(x)\,S_j\,f_j(x-\delta'2^{-j}\ell)\,dx\,\Big|^{q'}\Big)^{1/q'}\lesssim 2^{jn}.
$$

Notice that this inequality holds uniformly for all choices of $\varepsilon_v = \pm 1$. We take the q'-th power of the above inequality, take average over all choices of $\varepsilon_v = \pm 1$, and use Kintchine's inequality; this yields

$$
(5.15) \qquad \sum_{\ell \in \mathbb{Z}^n} \Big(\sum_{v \in \mathbb{Z}^n} \Big| \int_{Q_v} S_j f_j(x) \, S_j f_j(x - \delta' 2^{-j} \ell) \, dx \, \Big|^2 \Big)^{q'/2} \lesssim 2^{j(n-m)q'}
$$

We shall estimate the left-hand side of [\(5.15\)](#page-24-1) from below. For $v \in \mathbb{R}^n$, we define

$$
\Sigma(v) = \{ x \in \mathbb{R}^n \mid |x| = |x - v| = 1 \}.
$$

If $0 < |v| < 2$, then $\Sigma(v)$ is a $n-2$ dimensional sphere of radius $\sqrt{1-4^{-1}|v|^2}$. Thus, in particular, if $0 < |v| < 1$ and $\eta > 0$ is sufficiently small, then the *n*-dimensional Lebesgue measure of the η -neighborhood of $\Sigma(v)$ satisfies

(5.16) |the
$$
\eta
$$
-neighborhood of $\Sigma(v) \approx \eta^2$.

Suppose $\ell \in \mathbb{Z}^n$ satisfies

$$
(5.17) \t\t 0 < |\delta' 2^{-j}\ell| < 1
$$

and consider $v \in \mathbb{Z}^n$ that satisfies

(5.18)
$$
\operatorname{dist}(Q_{\nu}, \Sigma(\delta' 2^{-j}\ell)) < \frac{\delta 2^{-j}}{2}.
$$

Then, for each $x \in Q_\nu$, there exists an $x' \in \Sigma(\delta' 2^{-j} \ell)$ such that

$$
|x - x'| < \text{diam } Q_{\nu} + \frac{\delta 2^{-j}}{2} = \delta 2^{-j},
$$

and, since this x' satisfies $|x'| = |x' - \delta' 2^{-j} \ell| = 1$, we have

$$
1-\delta \, 2^{-j} \, < |x| \, < \, 1+\delta \, 2^{-j} \quad \text{ and } \quad 1-\delta \, 2^{-j} \, < |x-\delta' \, 2^{-j} \, \ell| \, < \, 1+\delta \, 2^{-j} \, .
$$

:

Hence, by (5.12) , we see that

$$
\left| e^{-i((n-2)\pi/4 + \pi/4)} 2^{-j(n+1)/2} S_j f_j(x) - c_0 \right| \le \frac{c_0}{10},
$$

$$
\left| e^{-i((n-2)\pi/4 + \pi/4)} 2^{-j(n+1)/2} S_j f_j(x - \delta' 2^{-j}) - c_0 \right| \le \frac{c_0}{10}
$$

for all $x \in Q_{\nu}$ and all $j > j_0$, which implies that

$$
(5.19)\ \left|\int_{Q_v} S_j\, f_j(x) S_j\, f_j(x-\delta'2^{-j}\ell)\, dx\right| \approx 2^{j(n+1)/2} \, 2^{j(n+1)/2} \, 2^{-jn} = 2^j \quad \text{for } j > j_0.
$$

All the cubes Q_{ν} that satisfy [\(5.18\)](#page-24-2) certainly cover the $(\frac{1}{2}\delta 2^{-j})$ -neighborhood of the set $\Sigma(\delta' 2^{-j} \ell)$. Conversely, since diam $Q_{\nu} = 2^{-1} \delta 2^{-j}$, all Q_{ν} that satisfy [\(5.18\)](#page-24-2) are included in the $(\delta 2^{-j})$ -neighborhood of $\Sigma(\delta' 2^{-j} \ell)$. Hence, by [\(5.16\)](#page-24-3), we see that

(5.20)
$$
\operatorname{card} \{ \nu \in \mathbb{Z}^n \mid \nu \text{ satisfies (5.18)} \} \approx \frac{2^{-2j}}{2^{-jn}} = 2^{j(n-2)}
$$

for each ℓ satisfying [\(5.17\)](#page-24-4). Also we have obviously

(5.21) card $\{\ell \in \mathbb{Z}^n \mid \ell \text{ satisfies } (5.17)\} \approx 2^{jn}$ $\{\ell \in \mathbb{Z}^n \mid \ell \text{ satisfies } (5.17)\} \approx 2^{jn}$ $\{\ell \in \mathbb{Z}^n \mid \ell \text{ satisfies } (5.17)\} \approx 2^{jn}$.

From (5.19) , (5.20) , and (5.21) , we see that the left-hand side of (5.15) is

$$
\geq \sum_{\ell: (5.17)} \Big(\sum_{\nu: (5.18)} \Big| \int_{Q_{\nu}} S_j f_j(x) S_j f_j(x - \delta' 2^{-j} \ell) dx \Big|^2 \Big)^{q'/2} \approx \sum_{\ell: (5.17)} \big((2^j)^2 \cdot 2^{j(n-2)} \big)^{q'/2} \approx 2^{j(nq'/2+n)} \quad \text{for all } j > j_0.
$$

Thus [\(5.15\)](#page-24-1) implies $2^{j(nq'/2+n)} \lesssim 2^{j(n-m)q'}$ for $j > j_0$, which is possible only when $m \leq -n/2 + n/q = n/2 - n/p$. This completes the proof of Theorem [5.1.](#page-17-3)

6. Proofs of Propositions [2.3](#page-4-2) and [2.4](#page-5-2)

6.1. Proof of Proposition [2.3](#page-4-2)

In order to prove Proposition [2.3,](#page-4-2) we use the following lemmas. The first two lemmas are given in [\[13\]](#page-36-14).

Lemma 6.1 (Lemma 2.5 in [\[13\]](#page-36-14)). Let $0 < p, q \le \infty$ and $1/p + 1/q = 1/r > 0$. Assume *that* ψ and ϕ are functions on \mathbb{R}^n such that $\text{supp}\,\psi \subset \{a^{-1} \leq |\xi| \leq a\}$ and

$$
\begin{aligned} |\partial_x^{\alpha}(\psi)^{\vee}(x)| &\le A \left(1+|x|\right)^{-L} \quad \text{for } |\alpha| = 0, 1, \\ |\partial_x^{\beta}(\phi)^{\vee}(x)| &\le B \left(1+|x|\right)^{-L} \quad \text{for } |\beta| \le L', \end{aligned}
$$

where $a, A, B \in (0, \infty)$, and L, L' are sufficiently large integers determined by p, q, and n. *Then*

$$
\left\| \left(\sum_{j \in \mathbb{Z}} \left| \psi(2^{-j} D) f \cdot \varphi(2^{-j} D) g \right|^2 \right)^{1/2} \right\|_{L^r} \le c A B \| f \|_{H^p} \| g \|_{H^q},
$$

;

where $c = c(n, p, q, a)$ *is a positive constant. Moreover, if* $p = \infty$ *, then* $|| f ||_{H^p}$ *can be replaced by* $\| f \|_{BMO}$.

Lemma 6.2 (Lemma 2.7 in [\[13\]](#page-36-14)). *Let* $0 < p, q < \infty$ and $1/p + 1/q = 1/r > 0$. Assume *that* ψ_1 *and* ψ_2 *are functions on* \mathbb{R}^n *such that* $\text{supp}\,\psi_1$, $\text{supp}\,\psi_2 \subset \{a^{-1} \leq |\xi| \leq a\}$ *and*

$$
\begin{aligned} |\partial_x^{\alpha}(\psi_1)^{\vee}(x)| &\le A(1+|x|)^{-L} \quad \text{for } |\alpha| \le L',\\ |\partial_x^{\beta}(\psi_2)^{\vee}(x)| &\le B(1+|x|)^{-L} \quad \text{for } |\beta| \le L', \end{aligned}
$$

where $a, A, B \in (0, \infty)$ *and* L, L' *are sufficiently large integers determined by* p, q, *and* n. *Then*

$$
\Big\|\sum_{j\in\mathbb{Z}}\big|\psi_1(2^{-j}D)f\cdot\psi_2(2^{-j}D)g\big|\Big\|_{L^r}\leq cAB\|f\|_{H^p}\|g\|_{H^q},
$$

where $c = c(n, p, q, a)$ *is a positive constant. Moreover, if* $p = \infty$ (*respectively,* $q = \infty$)*, then* $|| f ||_{H^p}$ (*respectively,* $||g||_{H^q}$) *can be replaced by* $|| f ||_{BMO}$ (*respectively,* $||g||_{BMO}$ *).*

Lemma 6.3. Let $m_2 < 0$, and suppose the multiplier τ is given by

$$
\tau(\xi, \eta) = \sum_{j-k \ge 3} c_{j,k} \,\psi_1(2^{-j}\xi) \,\psi_2(2^{-k}\eta),
$$

where $(c_{j,k})$ a sequence of complex numbers satisfying $|c_{j,k}| \leq 2^{(j-k)m_2}$, and ψ_1 and ψ_2 *are functions in* $\hat{C}_0^{\infty}(\mathbb{R}^n)$ *such that* supp ψ_1 , supp $\psi_2 \subset \{2^{-1} \leq |\xi| \leq 2\}$. Then τ belongs *to the following multiplier classes*:

$$
\mathcal{M}(H^p \times H^q \to L^r), \quad 0 < p, q < \infty, \quad 1/p + 1/q = 1/r,
$$
\n
$$
\mathcal{M}(H^p \times \text{BMO} \to L^p), \quad 0 < p < \infty,
$$
\n
$$
\mathcal{M}(\text{BMO} \times H^q \to L^q), \quad 0 < q < \infty,
$$
\n
$$
\mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO}).
$$

Moreover, in each case, the multiplier norm of τ *is bounded by* $c \|\psi_1\|_{C^N} \|\psi_2\|_{C^N}$, with $c = c(n, m_2, p, q)$ and $N = N(n, p, q)$ *.*

Proof. We divide the proof into several cases.

Case 1. $H^p \times H^q \to L^r$, $0 < p, q < \infty$, $1/p + 1/q = 1/r$.

From the assumption $|c_{j,k}| \le 2^{(j-k)m_2}$ with $m_2 < 0$, we can use Schur's lemma (see, e.g., Appendix A in [\[4\]](#page-36-15)) as follows:

$$
|T_{\tau}(f,g)(x)| = \Big| \sum_{j-k \ge 3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x) \Big|
$$

$$
\le \sum_{j-k \ge 3} 2^{(j-k)m_2} |\psi_1(2^{-j} D) f(x)| |\psi_2(2^{-k} D) g(x)|
$$

$$
\lesssim ||\psi_1(2^{-j} D) f(x)||_{\ell_j^2} ||\psi_2(2^{-k} D) g(x)||_{\ell_k^2}.
$$

The above inequality, together with Hölder's inequality and the Littlewood–Paley inequalities, gives

$$
\begin{aligned} \|T_{\tau}(f,g)\|_{L^{r}} &\lesssim \|\|\psi_1(2^{-j}D)f(x)\|_{\ell_j^2}\|_{L_x^p} \|\|\psi_2(2^{-k}D)g(x)\|_{\ell_k^2}\|_{L_x^q} \\ &\lesssim \|\psi_1\|_{C^N} \|f\|_{H^p} \|\psi_2\|_{C^N} \|g\|_{H^q}, \end{aligned}
$$

which is the desired estimate.

Case 2. $H^p \times BMO \rightarrow L^p, 0 < p < \infty$.

Observe that, if $j - k \geq 3$, then the support of the Fourier transform of the function $\psi_1(2^{-j}D)f \cdot \psi_2(2^{-k}D)g$ is included in the annulus $\{2^{j-2} \leq |\zeta| \leq 2^{j+2}\}\)$. Hence, the Littlewood–Paley theory for H^p gives

$$
\Big\| \sum_{j-k \ge 3} c_{j,k} \psi_1(2^{-j} D) f \cdot \psi_2(2^{-k} D) g \Big\|_{L^p} \lesssim \Big\| \sum_{j-k \ge 3} c_{j,k} \psi_1(2^{-j} D) f \cdot \psi_2(2^{-k} D) g \Big\|_{H^p}
$$

$$
\lesssim \Big\| \Big\| \sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x) \Big\|_{\ell_j^2} \Big\|_{L^p_x} =: (\star).
$$

Since

$$
\|\psi_2(2^{-k}D)g\|_{L^\infty} \lesssim \|\psi_2\|_{C^N} \|g\|_{\text{BMO}}
$$

(see, e.g., Section 4.3.3 in Chapter IV of [\[20\]](#page-37-0)), and since

$$
\sum_{k=-\infty}^{j-3} |c_{j,k}| \leq \sum_{k=-\infty}^{j-3} 2^{(j-k)m_2} \approx 1,
$$

we obtain

$$
(\star) \lesssim \|\psi_2\|_{C^N} \|g\|_{\text{BMO}} \|\|\psi_1(2^{-j}D)f(x)\|_{\ell_j^2} \|_{L^p_x} \lesssim \|\psi_2\|_{C^N} \|g\|_{\text{BMO}} \|\psi_1\|_{C^N} \|f\|_{H^p},
$$

which is the desired estimate.

Case 3. BMO \times $H^q \rightarrow L^q$, $1 < q < \infty$.

By the same reason as in Case 2, the Littlewood–Paley theory for L^q , $1 < q < \infty$, yields

$$
\Big\| \sum_{j-k \ge 3} c_{j,k} \psi_1(2^{-j} D) f \cdot \psi_2(2^{-k} D) g \Big\|_{L^q}
$$

\$\lesssim \Big\| \Big\| \sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x) \Big\|_{\ell_j^2} \Big\|_{L^q_x} =: (*\star).

Take a function $\theta \in C_0^{\infty}(\mathbb{R}^n)$ such that $\theta(\eta) = 1$ for $|\eta| \le 2$. Then, for $j - k \ge 3$, we have

$$
\psi_2(2^{-k}D)g(x) = \theta(2^{-j}D)\psi_2(2^{-k}D)g(x) = \int 2^{jn}(\theta)^{\vee}(2^{j}(x-y))\psi_2(2^{-k}D)g(y)dy.
$$

Combining this formula with the inequality

$$
|\psi_2(2^{-k}D)g(y)| \lesssim ||\psi_2||_{C^N} Mg(y),
$$

where M is the Hardy–Littlewood maximal operator, and with the inequality

$$
|(\theta)^{\vee}(z)| \lesssim (1+|z|^2)^{-L/2}
$$

;

we have

$$
|\psi_2(2^{-k}D)g(x)| \lesssim ||\psi_2||_{C^N} S_j(Mg)(x),
$$

where S_i is defined by

$$
S_j h(x) = \int 2^{jn} (1 + |2^j (x - y)|^2)^{-L/2} h(y) dy,
$$

with $L > 0$ sufficiently large. Hence

$$
(\star \star) \lesssim \| \| \sum_{k=-\infty}^{j-3} 2^{(j-k)m_2} |\psi_1(2^{-j} D) f(x)| \, \|\psi_2\|_{C^N} S_j(Mg)(x) \|_{\ell_j^2} \|_{L_x^q}
$$

\n
$$
\approx \| \psi_2 \|_{C^N} \| \| |\psi_1(2^{-j} D) f(x)| S_j(Mg)(x) \|_{\ell_j^2} \|_{L_x^q}
$$

\n
$$
\lesssim \| \psi_2 \|_{C^N} \| \psi_1 \|_{C^N} \| f \|_{\text{BMO}} \| Mg \|_{L^q} \approx \| \psi_2 \|_{C^N} \| \psi_1 \|_{C^N} \| f \|_{\text{BMO}} \| g \|_{L^q},
$$

where the second \leq follows from Lemma [6.1](#page-25-4) and the last \approx holds because $q > 1$.

Case 4. **BMO** \times $H^q \rightarrow L^q$, $0 < q \leq 1$.

By virtue of the atomic decomposition for H^q , it is sufficient to show the uniform estimate of $||T_{\tau}(f,g)||_{L^q}$ for all H^q -atoms g. By translation, it is sufficient to consider the H^q -atoms supported on balls centered at the origin. Thus we assume

$$
\text{supp}\,g \subset \{|x| \le r\}, \quad \|g\|_{L^\infty} \le r^{-n/q}, \quad \int g(x)x^\alpha \,dx = 0 \quad \text{for } |\alpha| \le [n/q - n],
$$

and we shall prove

$$
||T_{\tau}(f,g)||_{L^{q}} \lesssim ||\psi_{1}||_{C^{N}} ||\psi_{2}||_{C^{N}} ||f||_{BMO}.
$$

By the same reason as in Case 2, the Littlewood–Paley theory for H^q reduces the proof to the estimate of

$$
\Big\| \Big\| \sum_{k=-\infty}^{j-3} c_{j,k} \, \psi_1(2^{-j}D) \, f(x) \, \psi_2(2^{-k}D) g(x) \Big\|_{\ell_j^2} \Big\|_{L^q_x}.
$$

We first estimate the L^q norm on $|x| \leq 2r$. Using Hölder's inequality and using the result proved in Case 3 (with $q = 2$), we have

$$
\|\sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x)\|_{\ell_j^2} \|_{L^q(|x| \le 2r)}
$$

$$
\lesssim r^{n/q-n/2} \|\sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x)\|_{\ell_j^2} \|_{L^2(|x| \le 2r)}
$$

$$
\lesssim r^{n/q-n/2} \|\psi_1\|_{C^N} \|\psi_2\|_{C^N} \|f\|_{\text{BMO}} \|g\|_{L^2} \lesssim \|\psi_1\|_{C^N} \|\psi_2\|_{C^N} \|f\|_{\text{BMO}}.
$$

Next, we estimate the L^q norm on $|x| > 2r$. Using the inequality

$$
\|\psi_1(2^{-j}D)f(x)\|_{L^\infty} \lesssim \|\psi_1\|_{C^N} \|f\|_{\text{BMO}},
$$

we have

$$
\|\sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j}D) f(x) \psi_2(2^{-k}D) g(x)\|_{\ell_j^2} \|_{L^q(|x|>2r)}
$$

\n
$$
\lesssim \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\sum_{k=-\infty}^{j-3} 2^{(j-k)m_2} |\psi_2(2^{-k}D) g(x)| \|_{\ell_j^2} \|_{L^q(|x|>2r)}
$$

\n
$$
\leq \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\sum_{k=-\infty}^{\infty} \|2^{(j-k)m_2} \|_{\ell^2(j\ge k+3)} |\psi_2(2^{-k}D) g(x)| \|_{L^q(|x|>2r)}
$$

\n
$$
\approx \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\sum_{k=-\infty}^{\infty} |\psi_2(2^{-k}D) g(x)| \|_{L^q(|x|>2r)}
$$

\n(6.1)
$$
\leq \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\|\psi_2(2^{-k}D) g(x)\|_{L^q(|x|>2r)} \|_{\ell_q^q}.
$$

To estimate the L^q -norm of the functions $\psi_2(2^{-k}D)g(x)$ on $|x| > 2r$, we write

$$
\psi_2(2^{-k}D)g(x) = \int_{|y| \le r} 2^{kn} (\psi_2)^{\vee} (2^k (x - y)) g(y) dy.
$$

Then, using the size estimate of g and the moment condition on g , we have

$$
|\psi_2(2^{-k}D)g(x)| \lesssim ||\psi_2||_{C^N} 2^{kn} (1+2^k|x|)^{-L} r^{-n/q+n} \min\left\{1, (2^k r)^{[n/q-n]+1}\right\}
$$

for $|x| > 2r$ (see inequalities (2.7) and (2.8) in [\[13\]](#page-36-14)). Hence

$$
\|\psi_2(2^{-k}D)g(x)\|_{L^q(|x|>2r)}
$$

\n
$$
\lesssim \|\psi_2\|_{C^N} r^{-n/q+n} \min\left\{1, (2^k r)^{[n/q-n]+1}\right\} \|2^{kn} (1+2^k |x|)^{-L} \|_{L^q(|x|>2r)}
$$

\n(6.2)
$$
\approx \|\psi_2\|_{C^N} \min\left\{(2^k r)^{-L+n}, (2^k r)^{n-n/q+[n/q-n]+1}\right\}.
$$

From (6.1) and (6.2) , we obtain

$$
\|\sum_{k=-\infty}^{j-3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x)\|_{\ell_j^2} \|_{L^q(|x|>2r)}
$$

\$\lesssim \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\psi_2\|_{C^N} \|\min \{(2^k r)^{-L+n}, (2^k r)^{n-n/q+[n/q-n]+1}\}\|_{\ell_k^q}\$
\$\lesssim \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|\psi_2\|_{C^N}.

 $Case 5. BMO \times BMO \rightarrow BMO.$

By the duality between BMO and H^1 , it is sufficient to show the following inequality:

(6.3)
$$
\left| \int \sum_{j-k \ge 3} c_{j,k} \psi_1(2^{-j} D) f(x) \psi_2(2^{-k} D) g(x) h(x) dx \right|
$$

$$
\lesssim ||\psi_1||_{C^N} ||f||_{\text{BMO}} ||\psi_2||_{C^N} ||g||_{\text{BMO}} ||h||_{H^1}.
$$

Notice that if $j - k > 3$, then the support of the Fourier transform of the function $\psi_1(2^{-j}D)f \cdot \psi_2(2^{-k}D)g$ is included in the annulus $\{2^{j-2} \le |\zeta| \le 2^{j+2}\}$. Thus, if we take a function $\widetilde{\psi} \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\widetilde{\psi} \subset \{2^{-3} \leq |\xi| \leq 2^3\}$ and $\widetilde{\psi}(\xi) = 1$ on $2^{-2} \le |\zeta| \le 2^2$, then the integral in [\(6.3\)](#page-30-0) can be written as

$$
\int \sum_{j-k\geq 3} c_{j,k} \psi_1(2^{-j}D) f(x) \psi_2(2^{-k}D) g(x) h(x) dx
$$

=
$$
\int \sum_{j-k\geq 3} c_{j,k} \psi_1(2^{-j}D) f(x) \psi_2(2^{-k}D) g(x) \tilde{\psi}(2^{-j}D) h(x) dx.
$$

Hence, using the estimate

$$
\|\psi_2(2^{-k}D)g\|_{L^\infty} \lesssim \|\psi_2\|_{C^N} \|g\|_{\text{BMO}}
$$

and the assumption $|c_{j,k}| \leq 2^{(j-k)m_2}$, $m_2 < 0$, we have that the left-hand side of [\(6.3\)](#page-30-0) is

$$
\lesssim \int \sum_{j-k \ge 3} 2^{(j-k)m_2} |\psi_1(2^{-j} D) f(x)| |\psi_2(2^{-k} D) g(x)| |\widetilde{\psi}(2^{-j} D) h(x)| dx
$$

$$
\lesssim ||\psi_2||_{C^N} ||g||_{BMO} \int \sum_{j=-\infty}^{\infty} |\psi_1(2^{-j} D) f(x)| |\widetilde{\psi}(2^{-j} D) h(x)| dx
$$

$$
\lesssim ||\psi_2||_{C^N} ||g||_{BMO} ||\psi_1||_{C^N} ||f||_{BMO} ||h||_{H^1},
$$

where the last \leq follows from Lemma [6.2.](#page-25-5) This completes the proof of Lemma [6.3.](#page-26-0)

Lemma 6.4. Suppose the multiplier τ is defined by

$$
\tau(\xi, \eta) = \sum_{j=-\infty}^{\infty} c_j \psi_1(2^{-j}\xi) \phi(2^{-j+3}\eta)
$$

with a sequence of complex numbers (c_j) satisfying $|c_j| \leq 1$ and with $\psi_1, \phi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\text{supp}\,\psi_1 \subset \{2^{-1} \leq |\xi| \leq 2\}$ and $\text{supp}\,\phi \subset \{|\eta| \leq 2\}$. Then τ belongs to the fol*lowing multiplier classes*:

$$
\mathcal{M}(H^p \times H^q \to L^r), \quad 0 < p, q < \infty, \quad 1/p + 1/q = 1/r,
$$
\n
$$
\mathcal{M}(H^p \times L^\infty \to L^p), \quad 0 < p < \infty,
$$
\n
$$
\mathcal{M}(\text{BMO} \times H^q \to L^q), \quad 0 < q < \infty,
$$
\n
$$
\mathcal{M}(\text{BMO} \times L^\infty \to \text{BMO}).
$$

Moreover, in each case, the multiplier norm of τ *is bounded by* $c \|\psi_1\|_{C^N} \|\phi\|_{C^N}$ with $c = c(n, p, q)$ and $N = N(n, p, q)$ *.*

Proof. From the assumptions on the supports of ψ_1 and ϕ , it follows that the support of the Fourier transform of $\psi_1(2^{-j}D)f \cdot \phi(2^{-j+3}D)g$ is included in the annulus $\{2^{j-2} \leq$ $|\zeta| \leq 2^{j+2}$. Hence, for $0 < r < \infty$, the Littlewood–Paley theory implies

$$
\Big\| \sum_{j=-\infty}^{\infty} c_j \, \psi_1(2^{-j}D) f \cdot \phi(2^{-j+3}D)g \Big\|_{L^r} \lesssim \Big\| \sum_{j=-\infty}^{\infty} c_j \, \psi_1(2^{-j}D) f \cdot \phi(2^{-j+3}D)g \Big\|_{H^r}
$$

$$
\lesssim \|\|c_j \psi_1(2^{-j}D) f \cdot \phi(2^{-j+3}D)g \Big\|_{\ell_j^2} \Big\|_{L^r_x} =: (\star).
$$

By Lemma [6.1,](#page-25-4) we have that

$$
(\star) \lesssim \|\psi_1\|_{C^N} \|\phi\|_{C^N} \begin{cases} \|f\|_{H^p} \|g\|_{H^q}, & \text{if } 0 < p, q < \infty \text{ and } 1/p + 1/q = 1/r, \\ \|f\|_{H^p} \|g\|_{L^\infty}, & \text{if } 0 < p < \infty \text{ and } p = r, \\ \|f\|_{\text{BMO}} \|g\|_{H^q}, & \text{if } 0 < q < \infty \text{ and } q = r. \end{cases}
$$

These prove the claims for the first three multiplier classes.

We shall prove $\tau \in \mathcal{M}(\text{BMO} \times L^{\infty} \to \text{BMO})$. By the same argument as given in Case 5 of the proof of Lemma [6.3,](#page-26-0) it is sufficient to show the inequality

(6.4)
$$
\left| \int \sum_{j=-\infty}^{\infty} c_j \psi_1(2^{-j}D) f(x) \phi(2^{-j+3}D) g(x) \tilde{\psi}(2^{-j}D) h(x) dx \right|
$$

$$
\lesssim \|\phi\|_{C^N} \|g\|_{L^{\infty}} \|\psi_1\|_{C^N} \|f\|_{\text{BMO}} \|h\|_{H^1},
$$

where $\tilde{\psi}$ is the same function as given there. In the present case, using the assumption $|c_i| \leq 1$ and the inequality

$$
\|\phi(2^{-j+3}D)g\|_{L^{\infty}} \lesssim \|\phi\|_{C^N} \|g\|_{L^{\infty}},
$$

we see that the left-hand side of (6.4) is

$$
\lesssim \|\phi\|_{C^N} \|g\|_{L^\infty} \int \sum_{j=-\infty}^\infty |\psi_1(2^{-j}D)f(x)| \, |\widetilde{\psi}(2^{-j}D)h(x)| \, dx.
$$

Now (6.4) follows from Lemma [6.2.](#page-25-5) This completes the proof of Lemma [6.4.](#page-30-1)

Proof of Proposition [2.3](#page-4-2)*.* We use several well-known methods developed in the theory of bilinear Fourier multiplier operators. We first decompose $\sigma(\xi, \eta)$ by using the usual dyadic partition of unity. Let ψ , ζ , and φ be the functions as given in Notation [1.6.](#page-3-0)

We decompose σ into three parts:

$$
\sigma(\xi, \eta) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \sigma(\xi, \eta) \psi(2^{-j}\xi) \psi(2^{-k}\eta) = \sum_{j-k \ge 3} + \sum_{|j-k| \le 2} + \sum_{j-k \le -3} = \sigma_1(\xi, \eta) + \sigma_{\text{II}}(\xi, \eta) + \sigma_{\text{III}}(\xi, \eta),
$$

where $\sum_{j-k\geq 3}$, $\sum_{|j-k|\leq 2}$, and $\sum_{j-k\leq -3}$ denote the sums of $\sigma(\xi, \eta)\psi(2^{-j}\xi)\psi(2^{-k}\eta)$ over $j, k \in \mathbb{Z}$ that satisfy the designated restrictions. We shall consider each of σ_I , σ_{II} , and σ_{III} .

Case 1. For the multiplier σ_{II} , we shall prove the following:

$$
\sigma_{II} \in \mathcal{M}(H^p \times H^q \to L^r), \quad 0 < p, q < \infty, \quad 1/p + 1/q = 1/r,
$$
\n
$$
\sigma_{II} \in \mathcal{M}(H^p \times \text{BMO} \to L^p), \quad 0 < p < \infty,
$$
\n
$$
\sigma_{II} \in \mathcal{M}(\text{BMO} \times H^q \to L^q), \quad 0 < q < \infty,
$$
\n
$$
\sigma_{II} \in \mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO}).
$$

To prove this, observe that $|\xi| \approx |\eta| \approx 2^j$ on the support of $\psi(2^{-j}\xi)\psi(2^{-k}\eta)$ with $|j - k| \le 2$. From this we see that $\sigma_{\text{II}} \in \dot{S}_{1,0}^{0}(\mathbb{R}^{2n})$. Hence Proposition [2.2](#page-4-1) implies that σ_{II} is a bilinear Fourier multiplier for the following spaces:

$$
H^{p} \times H^{q} \to L^{r}, \quad 0 < p, q < \infty, \quad 1/p + 1/q = 1/r,
$$
\n
$$
H^{p} \times L^{\infty} \to L^{p}, \quad 0 < p < \infty,
$$
\n
$$
L^{\infty} \times H^{q} \to L^{q}, \quad 0 < q < \infty,
$$
\n
$$
L^{\infty} \times L^{\infty} \to \text{BMO}.
$$

We shall prove that the space L^{∞} in the above can be replaced by BMO.

We use the Fefferman–Stein decomposition of BMO, which asserts that every $g \in$ BMO \cap L^2 can be written as

$$
g = g_0 + \sum_{\ell=1}^n R_\ell g_\ell, \quad \text{with} \quad \sum_{\ell=0}^n \|g_\ell\|_{L^\infty} \approx \|g\|_{\text{BMO}},
$$

where $R_{\ell}h = (-i|\xi|^{-1}\xi_{\ell}\hat{h}(\xi))^{\vee}$ is the Riesz transform. (If $g \in BMO \cap L^2$, then we can take $g_{\ell} \in L^{\infty} \cap L^{2}$, and the equality $g = g_0 + \sum_{\ell=1}^{n} R_{\ell} g_{\ell}$ holds without modulo constants; see $[11]$.) Thus

$$
T_{\sigma_{II}}(f,g) = T_{\sigma_{II}}(f,g_0) + \sum_{\ell=1}^n T_{\sigma_{II}}(f,R_{\ell}g_{\ell}) = T_{\sigma_{II}}(f,g_0) + \sum_{\ell=1}^n T_{\sigma_{\ell,II}}(f,g_{\ell}),
$$

where

$$
\sigma_{\ell}(\xi,\eta) = \sigma(\xi,\eta)(-i|\eta|^{-1}\eta_{\ell}) = a_0(\xi,\eta) a_1(\xi) a_2(\eta)(-i|\eta|^{-1}\eta_{\ell})
$$

and $\sigma_{\ell,\Pi}$ is defined in the same way as $\sigma \mapsto \sigma_{\Pi}$. Since the multiplier $a_2(\eta)(-i|\eta|^{-1}\eta_{\ell})$ belongs to $\dot{S}_{1,0}^{-m_2}(\mathbb{R}^n)$, we can apply the result $\sigma_{II} \in \mathcal{M}(H^p \times L^{\infty} \to L^p)$ to $\sigma_{\ell,II}$ to see that

$$
||T_{\sigma_{\Pi}}(f,g)||_{L^p} \lesssim ||f||_{H^p} \sum_{\ell=0}^n ||g_{\ell}||_{L^{\infty}} \approx ||f||_{H^p} ||g||_{\text{BMO}}.
$$

Thus $\sigma_{II} \in \mathcal{M}(H^p \times \text{BMO} \to L^p)$. The claims $\sigma_{II} \in \mathcal{M}(\text{BMO} \times H^q \to L^q)$ and $\sigma_{II} \in L^q$ $M(BMO \times BMO \rightarrow BMO)$ are proved in the same way.

Case 2. For the multiplier σ_I , we shall prove the following:

(6.5)
$$
\sigma_{I} \in \mathcal{M}(H^{p} \times H^{q} \to L^{r})
$$
 if $0 < p, q < \infty$, $1/p + 1/q = 1/r$,

(6.6)
$$
\sigma_{I} \in \mathcal{M}(H^{p} \times \text{BMO} \to L^{p}) \text{ if } m_{2} < 0 \text{ and } 0 < p < \infty,
$$

(6.7)
$$
\sigma_{I} \in \mathcal{M}(\text{BMO} \times H^{q} \to L^{q}) \quad \text{if } 0 < q < \infty,
$$

(6.8) $\sigma_{\rm I} \in \mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO})$ if $m_2 < 0$.

Proof of [\(6.5\)](#page-32-0) *in the case* $m_2 = 0$. We write $\sigma_1(\xi, \eta) = b(\xi, \eta) a_2(\eta)$, with

(6.9)

$$
b(\xi, \eta) = \sum_{j-k \ge 3} a_0(\xi, \eta) a_1(\xi) \psi(2^{-j} \xi) \psi(2^{-k} \eta)
$$

$$
= \sum_{j=-\infty}^{\infty} a_0(\xi, \eta) a_1(\xi) \psi(2^{-j} \xi) \varphi(2^{-j+3} \eta).
$$

Since $m_2 = 0$ and $m = m_1$ in the present case, we see that $b \in \dot{S}_{1,0}^0(\mathbb{R}^{2n})$. Thus, Propos-ition [2.2](#page-4-1) implies that $b \in \mathcal{M}(H^p \times H^q \to L^r)$. Also since $a_2 \in \widetilde{S}_{1,0}^0(\mathbb{R}^n)$ in the present case, the classical multiplier theorem for linear operators implies $a_2 \in \mathcal{M}(H^q \to H^q)$. Hence $\sigma_{I} \in \mathcal{M}(H^p \times H^q \to L^r)$.

Proof of [\(6.5\)](#page-32-0) *in the case* $m_2 < 0$. Notice that σ_I is supported in $|\xi| \geq 2|\eta|$ and satisfies

$$
|\partial_{\xi}^{\alpha}\partial_{\eta}^{\beta}\sigma_{I}(\xi,\eta)|\leq C_{\alpha,\beta}\Big(\frac{|\xi|}{|\eta|}\Big)^{m_2}|\xi|^{-|\alpha|}\,|\eta|^{-|\beta|}.
$$

Since m_2 < 0, a result of Grafakos and Kalton (see Theorem 7.4 in [\[6\]](#page-36-17)) implies that $\sigma_{\rm I} \in \mathcal{M}(H^p \times H^q \to L^r).$

Another proof of [\(6.5\)](#page-32-0) *in the case* $m₂ < 0$. Here we shall give a direct proof of (6.5) for the case $m_2 < 0$, which uses only a classical method.

Take a function $\widetilde{\psi} \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\widetilde{\psi} \subset \{3^{-1} \leq |\xi| \leq 3\}$ and $\widetilde{\psi}(\xi) = 1$ for $2^{-1} \le |\xi| \le 2$. Then

$$
\sigma_1(\xi, \eta) = \sum_{j-k \ge 3} \sigma(\xi, \eta) \, \widetilde{\psi}(2^{-j} \xi) \, \widetilde{\psi}(2^{-k} \eta) \, \psi(2^{-j} \xi) \psi(2^{-k} \eta).
$$

Consider the function

$$
\sigma(2^j\xi, 2^k\eta)\,\widetilde{\psi}(\xi)\,\widetilde{\psi}(\eta) = a_0(2^j\xi, 2^k\eta)\,a_1(2^j\xi)\,a_2(2^k\eta)\,\widetilde{\psi}(\xi)\,\widetilde{\psi}(\eta)
$$

with $j - k \ge 3$. This function is supported in $\{3^{-1} \le |\xi| \le 3\} \times \{3^{-1} \le |\eta| \le 3\}$ and satisfies the estimate

$$
|\partial^{\alpha}_{\xi}\partial^{\beta}_{\eta}\{\sigma(2^{j}\xi,2^{k}\eta)\,\widetilde{\psi}(\xi)\,\widetilde{\psi}(\eta)\}|\leq C_{\alpha,\beta}\,2^{(j-k)m_2}
$$

with $C_{\alpha,\beta}$ independent of $j, k \in \mathbb{Z}$. Hence using the Fourier series expansion, we can write

$$
\sigma(2^j\xi, 2^k\eta)\,\widetilde{\psi}(\xi)\,\widetilde{\psi}(\eta) = \sum_{a,b\in\mathbb{Z}^n}c_{j,k}^{(a,b)}e^{ia\cdot\xi}\,e^{ib\cdot\eta} \quad \text{for } |\xi| < \pi, |\eta| < \pi,
$$

with the coefficient satisfying

(6.10)
$$
|c_{j,k}^{(a,b)}| \lesssim 2^{(j-k)m_2} (1+|a|)^{-L} (1+|b|)^{-L}
$$

for any $L > 0$. Changing variables $\xi \to 2^{-j}\xi$ and $\eta \to 2^{-k}\eta$ and multiplying by the function $\psi(2^{-j}\xi)\psi(2^{-k}\eta)$, we obtain

$$
\sigma(\xi,\eta)\,\psi(2^{-j}\xi)\,\psi(2^{-k}\eta) = \sum_{a,b\in\mathbb{Z}^n}c_{j,k}^{(a,b)}e^{ia\cdot2^{-j}\xi}\,e^{ib\cdot2^{-k}\eta}\,\psi(2^{-j}\xi)\,\psi(2^{-k}\eta).
$$

Thus $\sigma_{\rm I}$ is written as

(6.11)
$$
\sigma_{I}(\xi, \eta) = \sum_{a,b \in \mathbb{Z}^n} \sum_{j-k \geq 3} c_{j,k}^{(a,b)} \psi^{(a)}(2^{-j}\xi) \psi^{(b)}(2^{-k}\eta),
$$

with

(6.12)
$$
\psi^{(a)}(\xi) = e^{ia\cdot\xi} \psi(\xi) \text{ and } \psi^{(b)}(\eta) = e^{ib\cdot\eta} \psi(\eta).
$$

Now, applying Lemma [6.3](#page-26-0) to $\psi_1 = \psi^{(a)}$ and $\psi_2 = \psi^{(b)}$, we obtain

$$
\left\| \sum_{j-k \ge 3} c_{j,k}^{(a,b)} \psi^{(a)}(2^{-j}\xi) \psi^{(b)}(2^{-j}\eta) \right\|_{\mathcal{M}(H^p \times H^q \to L^r)}
$$

$$
\lesssim (1+|a|)^{-L} (1+|b|)^{-L} \|\psi^{(a)}\|_{C^N} \|\psi^{(b)}\|_{C^N} \lesssim (1+|a|)^{-L+N} (1+|b|)^{-L+N}.
$$

Taking L sufficiently large and taking sum over $a, b \in \mathbb{Z}^n$, we obtain [\(6.5\)](#page-32-0).

Proof of [\(6.6\)](#page-32-1)*.* Using [\(6.11\)](#page-34-0), [\(6.12\)](#page-34-1), and [\(6.10\)](#page-33-0), we can derive (6.6) from Lemma [6.3.](#page-26-0) *Proof of* [\(6.7\)](#page-32-2). If $m_2 < 0$, then by using [\(6.11\)](#page-34-0), [\(6.12\)](#page-34-1), and [\(6.10\)](#page-33-0), we can derive (6.7) from Lemma [6.3.](#page-26-0)

Assume $m_2 = 0$. Then we write σ_1 as $\sigma_1(\xi, \eta) = b(\xi, \eta) a_2(\eta)$, with b given by [\(6.9\)](#page-33-1). Since $a_2 \in \dot{S}_{1,0}^0(\mathbb{R}^n)$ in the present case $(m_2 = 0)$, the linear multiplier theorem implies $a_2 \in \mathcal{M}(H^q \to H^q)$. Hence [\(6.7\)](#page-32-2) will follow if we prove $b \in \mathcal{M}(BMO \times H^q \to L^q)$. By the same argument given in the proof of (6.5) , we can write b as

$$
b(\xi, \eta) = \sum_{a, b \in \mathbb{Z}^n} \sum_{j=-\infty}^{\infty} c_j^{(a, b)} \psi^{(a)}(2^{-j}\xi) \varphi^{(b)}(2^{-j+3}\eta),
$$

where

(6.13)
$$
|c_j^{(a,b)}| \lesssim (1+|a|)^{-L} (1+|b|)^{-L},
$$

(6.14)
$$
\psi^{(a)}(\xi) = e^{ia\cdot\xi} \psi(\xi), \quad \varphi^{(b)}(\eta) = e^{ib\cdot\eta} \varphi(\eta).
$$

Now we apply Lemma [6.4](#page-30-1) to $\psi_1 = \psi^{(a)}$ and $\phi = \varphi^{(b)}$ to obtain

$$
\|\sum_{j-k\geq 3}c_{j,k}^{(a,b)}\psi^{(a)}(2^{-j}\xi)\varphi^{(b)}(2^{-j+3}\eta)\|_{\mathcal{M}(\text{BMO}\times H^q\to L^q)} \lesssim (1+|a|)^{-L}(1+|b|)^{-L}\|\psi^{(a)}\|_{C^N}\|\psi^{(b)}\|_{C^N}\lesssim (1+|a|)^{-L+N}(1+|b|)^{-L+N}.
$$

Taking L sufficiently large and taking sum over $a, b \in \mathbb{Z}^n$, we obtain that $b \in \mathcal{M}(\text{BMO} \times \mathbb{Z})$ $H^q \rightarrow L^q$).

Proof of [\(6.8\)](#page-32-3)*.* This is also derived from Lemma [6.3](#page-26-0) by using [\(6.11\)](#page-34-0), [\(6.12\)](#page-34-1), and [\(6.10\)](#page-33-0)*. Case* 3. For the multiplier σ_{III} , the following hold:

$$
\sigma_{III} \in \mathcal{M}(H^p \times H^q \to L^r) \quad \text{if } 0 < p, q < \infty, \ \frac{1}{p} + \frac{1}{q} = \frac{1}{r},
$$
\n
$$
\sigma_{III} \in \mathcal{M}(H^p \times \text{BMO} \to L^p) \quad \text{if } 0 < p < \infty,
$$
\n
$$
\sigma_{III} \in \mathcal{M}(\text{BMO} \times H^q \to L^q) \quad \text{if } m_1 < 0 \text{ and } 0 < q < \infty,
$$
\n
$$
\sigma_{III} \in \mathcal{M}(\text{BMO} \times \text{BMO} \to \text{BMO}) \quad \text{if } m_1 < 0.
$$

In fact, these follow from the results for σ_I by the obvious symmetry.

This completes the proof of Proposition [2.3.](#page-4-2)

 \blacksquare

6.2. Proof of Proposition [2.4](#page-5-2)

Let ψ and φ be the functions as given in Notation [1.6.](#page-3-0) In the same way as in the proof of Proposition [2.3,](#page-4-2) we decompose τ into three parts:

$$
\tau(\xi,\eta)=\tau_{\mathrm{I}}(\xi,\eta)+\tau_{\mathrm{II}}(\xi,\eta)+\tau_{\mathrm{III}}(\xi,\eta),
$$

where

$$
\tau_{\mathrm{I}}(\xi,\eta) = \sum_{j-k\geq 3} a_0(\xi,\eta) a_1(\xi) \psi(2^{-j}\xi) \psi(2^{-k}\eta),
$$

$$
\tau_{\mathrm{II}}(\xi,\eta) = \sum_{|j-k|\leq 2} a_0(\xi,\eta) a_1(\xi) \psi(2^{-j}\xi) \psi(2^{-k}\eta),
$$

$$
\tau_{\mathrm{III}}(\xi,\eta) = \sum_{j-k\leq -3} a_0(\xi,\eta) a_1(\xi) \psi(2^{-j}\xi) \psi(2^{-k}\eta).
$$

We shall prove that each of τ_I , τ_{II} , and τ_{III} belongs to the multiplier class as mentioned in the proposition.

(1) Let $0 < p < \infty$. The multipliers τ_{II} and τ_{III} belong to $\mathcal{M}(H^p \times \text{BMO} \to L^p)$. In fact, these are proved in Cases 1 and 3 of the proof of Proposition [2.3.](#page-4-2)

We shall prove that $\tau_1 \in \mathcal{M}(H^p \times L^{\infty} \to L^p)$. By the same argument as in the proof of Proposition [2.3](#page-4-2) (see the proof of (6.7)), we can write τ_1 as

(6.15)
$$
\tau_{I}(\xi,\eta) = \sum_{a,b \in \mathbb{Z}^n} \sum_{j=-\infty}^{\infty} c_j^{(a,b)} \psi^{(a)}(2^{-j}\xi) \varphi^{(b)}(2^{-j+3}\eta),
$$

with $c_i^{(a,b)}$ $j_j^{(a,b)}$ satisfying [\(6.13\)](#page-34-2) and $\psi^{(a)}$ and $\varphi^{(b)}$ defined by [\(6.14\)](#page-34-3). Then Lemma [6.4](#page-30-1) gives

$$
\|\sum_{j=-\infty}^{\infty} c_j^{(a,b)} \psi^{(a)}(2^{-j}\xi) \varphi^{(b)}(2^{-j+3}\eta) \|_{\mathcal{M}(H^p \times L^{\infty} \to L^p)}
$$

\$\lesssim (1+|a|)^{-L} (1+|b|)^{-L} \|\psi^{(a)}\|_{C^N} \|\varphi^{(b)}\|_{C^N} \lesssim (1+|a|)^{-L+N} (1+|b|)^{-L+N}\$.

Taking L sufficiently large and taking sum over $a, b \in \mathbb{Z}^n$, we obtain $\tau_1 \in \mathcal{M}(H^p \times L^{\infty})$ \rightarrow L^p). Thus the part (1) is proved.

(2) Here we assume $m_1 < 0$. By the results proved in Cases 1 and 3 in the proof of Pro-position [2.3,](#page-4-2) the multipliers τ_{II} and τ_{III} belong to $\mathcal{M}(BMO \times BMO \rightarrow BMO)$. Recall that the multiplier τ_I is written as [\(6.15\)](#page-35-0), with $c_i^{(a,b)}$ $\psi_j^{(a,b)}$ satisfying [\(6.13\)](#page-34-2) and $\psi^{(a)}$ and $\varphi^{(b)}$ defined by [\(6.14\)](#page-34-3). Hence we can prove that $\tau_I \in \mathcal{M}(BMO \times L^{\infty} \to BMO)$ by using Lemma [6.4.](#page-30-1) Thus the part (2) of Proposition [2.4](#page-5-2) is proved. This completes the proof of Proposition [2.4.](#page-5-2)

Funding. This work was supported by JSPS KAKENHI, grant no. 20K14339 (T. Kato), 20H01815 (A. Miyachi), and 20K03700 (N. Tomita).

References

- [1] Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V. and Torres, R. H.: [On the Hörmander classes](https://doi.org/10.1512/iumj.2013.62.5168) [of bilinear pseudodifferential operators II.](https://doi.org/10.1512/iumj.2013.62.5168) *Indiana Univ. Math. J.* 62 (2013), no. 6, 1733–1764. Zbl [1297.35300](https://zbmath.org/?q=an:1297.35300) MR [3205530](https://mathscinet.ams.org/mathscinet-getitem?mr=3205530)
- [2] Coifman, R. R. and Meyer, Y.: *Au delà des opérateurs pseudo-différentiels*. Astérisque 57, Société Mathématique de France, Paris, 1978. Zbl [0483.35082](https://zbmath.org/?q=an:0483.35082) MR [0518170](https://mathscinet.ams.org/mathscinet-getitem?mr=0518170)
- [3] Coifman, R.R. and Meyer, Y.: [Nonlinear harmonic analysis, operator theory and P.D.E.](https://doi.org/10.1515/9781400882090-002) In *Beijing lectures in harmonic analysis (Beijing, 1984)*, pp. 3–45. Ann. of Math. Stud. 112, Princeton University Press, Princeton, NJ, 1986. Zbl [0623.47052](https://zbmath.org/?q=an:0623.47052) MR [0864370](https://mathscinet.ams.org/mathscinet-getitem?mr=0864370)
- [4] Grafakos, L.: *[Modern Fourier analysis](https://doi.org/10.1007/978-1-4939-1230-8)*. Third edition. Graduate Texts in Mathematics 250, Springer, New York, 2014. Zbl [1304.42002](https://zbmath.org/?q=an:1304.42002) MR [3243741](https://mathscinet.ams.org/mathscinet-getitem?mr=3243741)
- [5] Grafakos, L. and Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. *Collect. Math.* 52 (2001), no. 2, 169–179. Zbl [0986.42008](https://zbmath.org/?q=an:0986.42008) MR [1852036](https://mathscinet.ams.org/mathscinet-getitem?mr=1852036)
- [6] Grafakos, L. and Kalton, N. J.: [The Marcinkiewicz multiplier condition for bilinear operators.](https://doi.org/10.4064/sm146-2-2) *Studia Math.* 146 (2001), no. 2, 115–156. Zbl [0981.42008](https://zbmath.org/?q=an:0981.42008) MR [1853518](https://mathscinet.ams.org/mathscinet-getitem?mr=1853518)
- [7] Grafakos, L. and Torres, R. H.: [Multilinear Calderón–Zygmund theory.](https://doi.org/10.1006/aima.2001.2028) *Adv. Math.* 165 (2002), no. 1, 124–164. Zbl [1032.42020](https://zbmath.org/?q=an:1032.42020) MR [1880324](https://mathscinet.ams.org/mathscinet-getitem?mr=1880324)
- [8] Kenig, C. E. and Stein, E. M.: [Multilinear estimates and fractional integration.](https://doi.org/10.4310/MRL.1999.v6.n1.a1) *Math. Res. Lett.* 6 (1999), no. 1, 1–15. Zbl [0952.42005](https://zbmath.org/?q=an:0952.42005) MR [1682725](https://mathscinet.ams.org/mathscinet-getitem?mr=1682725)
- [9] Meyer, Y. and Coifman, R.: *[Wavelets. Calderón–Zygmund and multilinear operators](https://doi.org/10.1112/s0024609397283955)*. Cambridge Stud. Adv. Math. 48, Cambridge University Press, Cambridge, 1997. Zbl [0916.42023](https://zbmath.org/?q=an:0916.42023) MR [1456993](https://mathscinet.ams.org/mathscinet-getitem?mr=1456993)
- [10] Miyachi, A.: On some estimates for the wave equation in L^p and H^p . *J. Fac. Sci. Univ. Tokyo Sect. IA Math.* 27 (1980), no. 2, 331–354. Zbl [0437.35042](https://zbmath.org/?q=an:0437.35042) MR [0586454](https://mathscinet.ams.org/mathscinet-getitem?mr=0586454)
- [11] Miyachi, A.: [Some Littlewood–Paley type inequalities and their application to the Fefferman–](https://doi.org/10.1512/iumj.1990.39.39031) [Stein decomposition of BMO.](https://doi.org/10.1512/iumj.1990.39.39031) *Indiana Univ. Math. J.* 39 (1990), no. 3, 563–583. Zbl [0696.42015](https://zbmath.org/?q=an:0696.42015) MR [1078731](https://mathscinet.ams.org/mathscinet-getitem?mr=1078731)
- [12] Miyachi, A. and Tomita, N.: [Calderón–Vaillancourt-type theorem for bilinear operators.](https://doi.org/10.1512/iumj.2013.62.5059) *Indiana Univ. Math. J.* 62 (2013), no. 4, 1165–1201. Zbl [1429.42018](https://zbmath.org/?q=an:1429.42018) MR [3179688](https://mathscinet.ams.org/mathscinet-getitem?mr=3179688)
- [13] Miyachi, A. and Tomita, N.: [Estimates for trilinear flag paraproducts on](https://doi.org/10.1007/s00209-015-1554-0) L^{∞} and Hardy spaces. *Math. Z.* 282 (2016), no. 1-2, 577–613. Zbl [1333.42014](https://zbmath.org/?q=an:1333.42014) MR [3448396](https://mathscinet.ams.org/mathscinet-getitem?mr=3448396)
- [14] Muscalu, C.: [Paraproducts with flag singularities. I. A case study.](https://doi.org/10.4171/RMI/510) *Rev. Mat. Iberoam.* 23 (2007), no. 2, 705–742. Zbl [1213.42071](https://zbmath.org/?q=an:1213.42071) MR [2371442](https://mathscinet.ams.org/mathscinet-getitem?mr=2371442)
- [15] Muscalu, C.: [Flag paraproducts.](https://doi.org/10.1090/conm/505/09920) In *Harmonic analysis and partial differential equations*, pp. 131–151. Contemp. Math. 505, American Mathematical Society, Providence, RI, 2010. Zbl [1204.42025](https://zbmath.org/?q=an:1204.42025) MR [2664565](https://mathscinet.ams.org/mathscinet-getitem?mr=2664565)
- [16] Muscalu, C. and Schlag, W.: *[Classical and multilinear harmonic analysis. Vol. II](https://doi.org/10.1017/CBO9781139410397)*. Cambridge Stud. Adv. Math. 138, Cambridge University Press, Cambridge, 2013. Zbl [1281.42002](https://zbmath.org/?q=an:1281.42002) MR [3052499](https://mathscinet.ams.org/mathscinet-getitem?mr=3052499)
- [17] Rodríguez-López, S., Rule, D. and Staubach, W.: [A Seeger–Sogge–Stein theorem for bilinear](https://doi.org/10.1016/j.aim.2014.07.009) [Fourier integral operators.](https://doi.org/10.1016/j.aim.2014.07.009) *Adv. Math.* 264 (2014), 1–54. Zbl [1296.35227](https://zbmath.org/?q=an:1296.35227) MR [3250279](https://mathscinet.ams.org/mathscinet-getitem?mr=3250279)
- [18] Ruzhansky, M. and Sugimoto, M.: [A local-to-global boundedness argument and Fourier integ](https://doi.org/10.1016/j.jmaa.2018.12.074)[ral operators.](https://doi.org/10.1016/j.jmaa.2018.12.074) *J. Math. Anal. Appl.* 473 (2019), no. 2, 892–904. Zbl [1486.47084](https://zbmath.org/?q=an:1486.47084) MR [3912857](https://mathscinet.ams.org/mathscinet-getitem?mr=3912857)
- [19] Seeger, A., Sogge, C. D. and Stein, E. M.: [Regularity properties of Fourier integral operators.](https://doi.org/10.2307/2944346) *Ann. of Math. (2)* 134 (1991), no. 2, 231–251. Zbl [0754.58037](https://zbmath.org/?q=an:0754.58037) MR [1127475](https://mathscinet.ams.org/mathscinet-getitem?mr=1127475)
- [20] Stein, E. M.: *[Harmonic analysis: real-variable methods, orthogonality, and oscillatory integ](https://doi.org/10.1515/9781400883929)[rals](https://doi.org/10.1515/9781400883929)*. Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993. Zbl [0821.42001](https://zbmath.org/?q=an:0821.42001) MR [1232192](https://mathscinet.ams.org/mathscinet-getitem?mr=1232192)
- [21] Stein, E. M. and Weiss, G.: *[Introduction to Fourier analysis on Euclidean spaces](https://doi.org/10.1515/9781400883899)*. Princeton Math. Ser. 32, Princeton University Press, Princeton, NJ, 1971. Zbl [0232.42007](https://zbmath.org/?q=an:0232.42007) MR [0304972](https://mathscinet.ams.org/mathscinet-getitem?mr=0304972)

Received May 28, 2023.

Tomoya Kato

Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University Kiryu, Gunma 376-8515, Japan; t.katou@gunma-u.ac.jp

Akihiko Miyachi

Department of Mathematics, Tokyo Woman's Christian University Zempukuji, Suginami-ku, Tokyo 167-8585, Japan; miyachi@lab.twcu.ac.jp

Naohito Tomita

Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan; tomita@math.sci.osaka-u.ac.jp