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Estimates for some bilinear wave operators

Tomoya Kato, Akihiko Miyachi and Naohito Tomita

Abstract. We consider some bilinear Fourier multiplier operators and give a bilinear
version of Seeger, Sogge, and Stein’s result for Fourier integral operators. Our results
improve, for the case of Fourier multiplier operators, Rodríguez-López, Rule, and
Staubach’s result for bilinear Fourier integral operators. The sharpness of the results
is also considered.

1. Introduction

The solution to the wave equation @2t u D �u with the initial data u.0; x/ D f .x/ and
ut .0; x/ D g.x/ is given by

u.t; x/ D
1

.2�/n

Z
Rn

eix�� cos.t j�j/ yf .�/ d� C
1

.2�/n

Z
Rn

eix��
sin.t j�j/
j�j

yg.�/ d�;

where yf denotes the Fourier transform of f (for the definition of Fourier transform, see
Notation 1.6 below). Several basic properties of the mapping .f; g/ 7! u.t; �/ are derived
from the estimate of the operator

(1.1) Tf .x/ D
1

.2�/n

Z
Rn

eix�� ei j�j .1C j�j2/m=2 yf .�/ d�:

The purpose of this paper is to consider bilinear versions of this operator.
We begin with the definition of linear Fourier multiplier operators. For � 2 L1.Rn/,

the operator �.D/ is defined by

�.D/f .x/ D
1

.2�/n

Z
Rn

eix�� �.�/ yf .�/ d�; x2 Rn;

for f in the Schwartz class �.Rn/. If X and Y are function spaces on Rn equipped with
quasi-norms or seminorms k � kX and k � kY , respectively, and if there exists a constant A
such that

k�.D/f kY � Akf kX for all f 2 X \ � ;
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then we say that � is a Fourier multiplier for X ! Y and write � 2M.X ! Y /. (Some-
times we write �.�/ 2M.X ! Y / to mean �.�/ 2M.X ! Y /.) The minimum of A that
satisfies the above inequality is denoted by k�kM.X!Y /.

Throughout this paper, Hp , 0 < p � 1, denotes the Hardy space, and BMO denotes
the space of bounded mean oscillation. We shall use the convention that Hp D Lp if
1 < p � 1. For Hp and BMO, see, e.g., Chapters III and IV in [20].

We recall classical results about the operator (1.1) and its generalizations. We use the
following notation.

Definition 1.1. We write P D P .Rn/ to denote the set of all functions on Rn that are
real-valued, homogeneous of degree 1, and C1 away from the origin.

The following theorem is due to Seeger, Sogge, and Stein [19].

Theorem A (Seeger–Sogge–Stein [19]). Let 1 � p �1 andmD �.n� 1/j1=p � 1=2j.
Assume � 2 P .Rn/. Then

ei�.�/.1C j�j2/m=2 2

´
M.Hp ! Hp/ when 1 � p <1,
M.BMO! BMO/ when p D1.

In fact, this theorem is not given in [19] in exactly the same form as above; the result
given in [19] is restricted to local estimates. However, Theorem A can be proved by a
slight modification of the argument of [19]. Or one can appeal to the general results given
by Ruzhansky and Sugimoto, see Theorems 1.2 and 2.2 in [18].

It is known that the number �.n � 1/j1=p � 1=2j given in Theorem A is optimal. In
fact, for the typical case �.�/ D j�j, the following theorem holds.

Theorem B. If 1 � p � 1, and if

ei j�j .1C j�j2/m=2 2

´
M.Hp ! Hp/ when 1 � p <1,
M.BMO! BMO/ when p D1,

then m � �.n � 1/j1=p � 1=2j.

For a proof of Theorem B, see Theorem 1 in [10] or Section 6.13 in Chapter IX of [20].
The purpose of the present paper is to consider bilinear versions of Theorems A and B.
We recall the definition of bilinear Fourier multiplier operators. For a bounded meas-

urable function � D �.�; �/ on Rn �Rn, the bilinear operator T� is defined by

T� .f; g/.x/ D
1

.2�/2n

“
Rn�Rn

eix�.�C�/ �.�; �/ yf .�/ yg.�/ d� d�; x2 Rn;

for f; g 2 �.Rn/. If X;Y and Z are function spaces on Rn equipped with quasi-norms or
seminorms k � kX , k � kY and k � kZ , respectively, and if there exists a constant A such that

kT� .f; g/kZ � Akf kX kgkY for all f 2 X \ � and all g2 Y \ � ;

then we say that � is a bilinear Fourier multiplier for X � Y to Z and we write � 2
M.X � Y ! Z/. (Sometimes we write �.�; �/ 2 M.X � Y ! Z/ to mean �.�; �/ 2
M.X � Y ! Z/.) The smallest constant A that satisfies the above inequality is denoted
by k�kM.X�Y!Z/.
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We shall consider the bilinear Fourier multiplier of the form

ei.�1.�/C�2.�// �.�; �/ with �1; �2 2 P .Rn/ and � 2 Sm1;0.R
2n/;

where the class Sm1;0.R
2n/ is defined as follows.

Definition 1.2. Form 2R, the class Sm1;0.R
2n/ is defined to be the set of all C1 functions

� D �.�; �/ on R2n that satisfy the estimate

j@˛� @
ˇ
��.�; �/j � C˛ .1C j�j C j�j/

m�j˛j�jˇ j

for all multi-indices ˛ and ˇ.

In the theory of bilinear Fourier multipliers, a classical method is known that allows us
to write a multiplier �2 Sm1;0.R

2n/ as a sum of multipliers of the product form �1.�/�2.�/.
Using this method, we can deduce the following result from Theorem A.

Theorem 1.3. Let n � 2, and let 1 � p; q � 1 be such that 1=p C 1=q D 1=r . Assume
�1; �2 2 P .Rn/ and � 2 Sm1;0.R

2n/ with m D �.n � 1/.j1=p � 1=2j C j1=q � 1=2j/.
Then ei.�1.�/C�2.�//�.�;�/ 2M.Hp �H q!Lr /, whereLr should be replaced by BMO
when r D1.

In fact, Rodríguez-López, Rule, and Staubach [17] considered more general operators,
bilinear Fourier integral operators, and proved a theorem that almost covers Theorem 1.3.
The statement of the theorem of [17] is, however, restricted to local estimate. We shall
give a full proof of Theorem 1.3 in Section 3.

The main purpose of the present paper is to show that the number

m D �.n � 1/
�ˇ̌̌ 1
p
�
1

2

ˇ̌̌
C

ˇ̌̌1
q
�
1

2

ˇ̌̌�
in Theorem 1.3 can be improved, and to show that the improved m is optimal at least for
certain .p; q/.

The following is the first main theorem of this paper.

Theorem 1.4. Let n � 2, and let 1 � p; q � 1 be such that 1=p C 1=q D 1=r . Assume
�1; �2 2 P .Rn/ and � 2 Sm1;0.R

2n/ with m D m1.p; q/, where

m1.p; q/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�.n � 1/
�
j
1
p
�
1
2
j C j

1
q
�
1
2
j
�

if 1 � p; q � 2 or if 2 � p; q � 1,

�
�
1
p
�
1
2

�
� .n � 1/

�
1
2
�
1
q

�
if 1 � p � 2 � q � 1 and 1

p
C

1
q
� 1,

�.n � 1/
�
1
p
�
1
2

�
�
�
1
2
�
1
q

�
if 1 � p � 2 � q � 1 and 1

p
C

1
q
� 1,

�.n � 1/
�
1
2
�

1
p

�
�
�
1
q
�
1
2

�
if 1 � q � 2 � p � 1 and 1

p
C

1
q
� 1,

�
�
1
2
�

1
p

�
� .n � 1/

�
1
q
�
1
2

�
if 1 � q � 2 � p � 1 and 1

p
C

1
q
� 1.

Then ei.�1.�/C�2.�//�.�;�/ 2M.Hp �H q!Lr /, whereLr should be replaced by BMO
when r D1.

Compare the claims of Theorems 1.3 and 1.4. They are the same in the regions 1 �
p; q � 2 and 2 � p; q � 1, but are different outside of these regions. In the typical
case .p;q/D .1;1/, Theorem 1.3 asserts that the multiplier ei.�1.�/C�2.�//�.�;�/ belongs
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to M.H 1 �L1 ! L1/ if � 2 S�.n�1/1;0 .R2n/, whereas Theorem 1.4 asserts that the same

holds if � 2 S�n=21;0 .R2n/. The latter is stronger if n � 3. To be precise, observe that

m1.p; q/ > �.n � 1/.j1=p � 1=2j C j1=q � 1=2j/

if n � 3 and 1 � p < 2 < q � 1 or 1 � q < 2 < p � 1. Thus Theorem 1.4 is an
improvement of Theorem 1.3 for these n, p and q.

In order to show that the number m1.p; q/ is in fact optimal for some .p; q/, we
consider the special case �1.�/ D �2.�/ D j�j. We write

(1.2) Xr D

´
Lr if 0 < r <1,
BMO if r D1.

For p; q 2 Œ1;1� given, we set 1=r D 1=p C 1=q and we consider a necessary condition
on m 2 R that allows the assertion

(1.3) ei.j�jCj�j/ �.�; �/ 2M.Hp
�H q

! Xr / for all � 2 Sm1;0.R
2n/:

The following is the second main theorem of this paper.

Theorem 1.5. Let n � 2.

(1) Let 1 � p; q � 2 or 2 � p; q �1. Thenm 2 R satisfies (1.3) only if m � �.n� 1/
�.j1=p � 1=2j C j1=q � 1=2j/.

(2) Let 1 � p � 2 � q �1 or 1 � q � 2 � p �1, and assume 1=pC 1=q D 1. Then
m 2 R satisfies (1.3) only if m � �nj1=p � 1=2j.

This theorem implies that the number m1.p; q/ of Theorem 1.4 is optimal for p
and q in the range given in (1) and (2) of Theorem 1.5. The present authors do not know
whether m1.p; q/ is optimal for other p and q.

The contents of the rest of the paper are as follows. In Section 2, we collect some
propositions concerning flag paraproduct, which we will use in the proof of Theorem 1.3.
In order not to interrupt the stream of argument, we shall postpone rather long proofs of
those propositions to Section 6. In Sections 3, 4 and 5, we prove Theorems 1.3, 1.4 and 1.5,
respectively. The last section, Section 6, is devoted to the proofs of the propositions stated
in Section 2.

We end this section by introducing some notations used throughout this paper.

Notation 1.6. We define the Fourier transform and the inverse Fourier transform on Rd by

yf .�/ D

Z
Rd

e�i��xf .x/ dx and .g/_.x/ D
1

.2�/d

Z
Rd

ei��xg.�/ d�:

Sometimes we use rude expressions .f .x//^ or .g.�//_ to denote .f .�//^ or .g.�//_,
respectively.

We shall repeatedly use dyadic partitions of unity, which are defined as follows. Take
a function  2 C10 .R

n/ such that supp � ¹2�1 � j�j � 2º and
P1
jD�1  .2

�j �/ D 1

for � ¤ 0. We define functions � and ' by �.�/ D
P1
jD1 .2

�j �/ and '.�/ D 1� �.�/.
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We have

�.�/ D 0 if j�j � 1; �.�/ D 1 if j�j � 2;
'.�/ D 1 if j�j � 1; '.�/ D 0 if j�j � 2;Xk

jD�1
 .2�j �/ D '.2�k�/ for � ¤ 0; k 2 Z:

Notice, however, that we will also use the letters  , � and ' in a meaning different from
the above.

For a smooth function � on Rd and for a nonnegative integer N , we write

k�kCN D max
j˛j�N

sup
�

ˇ̌
@˛� �.�/

ˇ̌
:

The letter n denotes the dimension of the Euclidean space that we consider. Unless
further restrictions are explicitly made, n is an arbitrary positive integer.

2. Some results from bilinear flag paraproducts

In this section, we give some results for the bilinear Fourier multipliers of the form

a0.�; �/a1.�/a2.�/:

This kind of multipliers, with a0, a1 and a2 being 0-th order multipliers (i.e., the ones
that generalize homogeneous functions of degree 0), are considered by Muscalu [14, 15]
and Muscalu–Schlag [16], Chapter 8, where their mapping properties between Lp spaces
are given. In this section, we consider the case where a0, a1 and a2 are non-zero order
multipliers, and give estimates includingHp and BMO. The results of this section will be
used to prove Theorem 1.3.

Definition 2.1. Form2R and d 2N, the class PSm1;0.R
d / is defined to be the set of allC1

functions � on Rd n ¹0º such that, for all multi-indices ˛,

j@˛� �.�/j � C˛ j�j
m�j˛j:

First, we recall a classical result about the bilinear Fourier multipliers in the class
PS01;0.R

2n/. The following result was established in the works of Coifman–Meyer [2,3,9],
Kenig–Stein [8], Grafakos–Torres [7], and Grafakos–Kalton [5].

Proposition 2.2. If �2 PS01;0.R
2n/, then �2M.Hp �H q! Lr / for 0 < p;q �1 and

1=p C 1=q D 1=r > 0, and also � 2M.L1 � L1 ! BMO/.

The proofs of the following two propositions will be given in Section 6.

Proposition 2.3. Let m1; m2 � 0, m D m1 Cm2, a0 2 PSm1;0.R
2n/, a1 2 PS

�m1
1;0 .Rn/ and

a2 2 PS
�m2
1;0 .Rn/. Let �.�; �/ D a0.�; �/a1.�/a2.�/. Then the following hold.

(1) � 2M.Hp �H q ! Lr / for 0 < p; q <1 and 1=p C 1=q D 1=r .

(2) If m2 < 0, then � 2M.Hp � BMO! Lp/ for 0 < p <1.

(3) If m1 < 0, then � 2M.BMO �H q ! Lq/ for 0 < q <1.

(4) If m1; m2 < 0, then � 2M.BMO � BMO! BMO/.
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Proposition 2.4. Let m1 � 0, a0 2 PS
m1
1;0.R

2n/, a1 2 PS
�m1
1;0 .Rn/, and define �.�; �/ D

a0.�; �/a1.�/. Then the following hold.

(1) � 2M.Hp � L1 ! Lp/ for 0 < p <1.

(2) If m1 < 0, then � 2M.BMO � L1 ! BMO/.

3. Proof of Theorem 1.3

In order to prove Theorem 1.3, we use the following lemma.

Lemma 3.1. If � 2 P .Rn/ and if � 2 C10 .R
n/ satisfy supp� � ¹j�j � 2º, then.ei�.�/�.�//_

L1
� ck�kCnC1 ;

where c D c.n; �/.

Proof. Write

ei�.�/ �.�/ D �.�/C

1X
jD�1

.ei�.�/ � 1/ �.�/  .2�j �/;

where  is the function given in Notation 1.6. The inverse Fourier transform of �.�/
satisfies j.�/_.x/j. k�kCnC1.1C jxj/�n�1 and hence k.�/_kL1 . k�kCnC1 . The function
.ei�.�/ � 1/�.�/ .2�j �/ has support included in ¹2j�1 � j�j � 2jC1º, and satisfies the
estimate ˇ̌

@˛�
�
.ei�.�/ � 1/ �.�/  .2�j �/

�ˇ̌
. k�kCnC1 .2j /1�j˛j; j˛j � nC 1:

From this we obtainˇ̌
..ei�.�/ � 1/�.�/ .2�j �//_.x/

ˇ̌
. k�kCnC1 2j.nC1/ .1C 2j jxj/�n�1;

and hence
k..ei�.�/ � 1/ �.�/ �.2�j �//_kL1 . k�kCnC1 2j :

Taking sum over j � 1, we obtain k.ei�.�/ � 1/�.�//_kL1 . k�kCnC1 .

Proof of Theorem 1.3. We writem1 D�.n� 1/j1=p � 1=2j,m2 D�.n� 1/j1=q � 1=2j,
and 1=p C 1=q D 1=r . We also use the notation (1.2).

Using the functions � and ' of Notation 1.6, we decompose � as

�.�; �/ D �1.�; �/C �2.�; �/C �3.�; �/C �4.�; �/;

where

�1.�; �/ D e
i�1.�/ '.�/ ei�2.�/ '.�/ �.�; �/;

�2.�; �/ D e
i�1.�/ �.�/ ei�2.�/ '.�/ �.�; �/;

�3.�; �/ D e
i�1.�/ '.�/ ei�2.�/ �.�/ �.�; �/;

�4.�; �/ D e
i�1.�/ �.�/ ei�2.�/ �.�/ �.�; �/:

We shall prove that �i 2M.Hp �H q ! Xr / for i D 1; 2; 3; 4.
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Firstly, the multiplier �1 is easy to handle. By Lemma 3.1, the inverse Fourier trans-
form of ei�1.�/'.�/ is in L1.Rn/, and hence ei�1.�/'.�/ 2M.Hp ! Hp/, 1 � p � 1.
Similarly, ei�2.�/'.�/ 2M.H q ! H q/, 1 � q �1. Also � 2M.Hp �H q ! Xr /, by
Proposition 2.2. Combining these facts, we have that �1 2M.Hp �H q ! Xr /.

Next, consider �2. We write this as

�2.�; �/ D �.�; �/ z�.�/ j�j
�m1 � ei�1.�/ �.�/ j�jm1 � ei�2.�/ '.�/;

where z� is a C1 function on Rn such that z�.�/D 1 for j�j � 1 and z�.�/D 0 for j�j � 2�1.
As we have seen above, ei�2.�/'.�/ 2M.H q!H q/ for 1� q �1. Theorem A implies

ei�1.�/ �.�/ j�jm1 2

´
M.Hp ! Hp/ if 1 � p <1;
M.BMO! BMO/ if p D1:

Notice that � 2 Sm1;0.R
2n/ � PS

m1
1;0.R

2n/ and that z�.�/j�j�m1 2 PS�m11;0 .Rn/. Hence Propos-
itions 2.3 and 2.4 give

(3.1) �.�; �/ z�.�/ j�j�m12

8̂̂̂<̂
ˆ̂:

M.Hp �H q ! Lr / if 1 � p; q <1;
M.Hp � L1 ! Lp/ if 1 � p <1 and q D1;

M.BMO �H q ! Lq/ if p D1 and 1 � q <1;

M.BMO � L1 ! BMO/ if p D q D1

(notice thatm1 < 0 if n � 2 and p D1). Combining these results, we see that �2 belongs
to the same multiplier class as in (3.1), which a fortiori implies �2 2M.Hp �H q!Xr /.

By symmetry, we also have �3 2M.Hp �H q ! Xr /.
Finally, consider �4. We write this as

�4.�; �/ D �.�; �/ z�.�/ j�j
�m1 z�.�/ j�j�m2 � ei�1.�/ �.�/ j�jm1 � ei�2.�/ �.�/ j�jm2 ;

where z� is the same as above. Theorem A gives

ei�1.�/ �.�/ j�jm1 2

´
M.Hp ! Hp/ if 1 � p <1;
M.BMO! BMO/ if p D1;

ei�2.�/ �.�/ j�jm2 2

´
M.H q ! H q/ if 1 � q <1;
M.BMO! BMO/ if q D1:

Proposition 2.3 gives

(3.2)

�.�; �/ z�.�/ j�j�m1 z�.�/ j�j�m2

2

8̂̂̂<̂
ˆ̂:

M.Hp �Hp ! Lr / if 1 � p; q <1;
M.Hp � BMO! Lp/ if 1 � p <1 and q D1;

M.BMO �H q ! Lq/ if p D1 and 1 � q <1;

M.BMO � BMO! BMO/ if p D q D1

(notice thatm1 < 0 if n � 2 and p D1 and thatm2 < 0 if n � 2 and q D1). Now com-
bining these results, we see that �4 belongs to the same multiplier class as in (3.2), which a
fortiori implies �4 2M.Hp �H q ! Xr /. This completes the proof of Theorem 1.3.
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4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. For this, the key is to prove the assertion of The-
orem 1.4 in the special case p D 1 and q D 1, which we shall write here for the sake of
reference.

Theorem 4.1. If n� 2, �1; �2 2P .Rn/, and �2 S�n=21;0 .R2n/, then ei.�1.�/C�2.�//�.�;�/
2M.H 1 � L1 ! L1/.

Theorem 1.4 can be deduced from this theorem and from Theorem 1.3. In fact, notice
that, by obvious symmetry, we have ei.�1.�/C�2.�//�.�; �/ 2M.L1 �H 1 ! L1/ under
the same assumptions on n and � . Hence, if Theorem 4.1 is proved, then we can deduce the
claims of Theorem 1.4 from the claims of Theorems 1.3 and 4.1 with the aid of complex
interpolation. (For the interpolation argument, see, e.g., the proof of Theorem 2.2 in [1] or
the proof of the ‘if’ part of Theorem 1.1 in [12].) Thus it is sufficient to prove Theorem 4.1.

To that end, we use the following lemmas.

Lemma 4.2. Let �1; �2 2 P .Rn/ and let � 2 C10 .R
2n/. Then .ei.�1.�/C�2.�//�.�; �//_

2 L1.R2n/.

Proof. Take a function z� 2 C10 .R
n/ such that z�.�/ z�.�/ D 1 on supp� . Then

ei.�1.�/C�2.�// �.�; �/ D ei.�1.�/C�2.�// z�.�/ z�.�/�.�; �/:

Lemma 3.1 implies .ei.�1.�/C�2.�// z�.�/ z�.�//_ 2L1.R2n/. Clearly .�.�;�//_2L1.R2n/.
Hence the conclusion of the lemma follows.

Lemma 4.3. Let n � 2 and � 2 P .Rn/, and set R D sup¹jr�.�/j j j�j D 1º. Let  be
a C1 function on Rn satisfying supp � ¹2�1 � j�j � 2º. Then the following hold.

(1) For each positive integer N , there exists a constant cN , depending only on n, �
and N , such thatˇ̌
.e�i�.�/ .2�j �//_.x/

ˇ̌
� cN k kCN .2

j /n�N=2 jxj�N for jxj > 2R and j 2N:

(2) There exists a constant c, depending only on n and �, such that.e�i�.�/ .2�j �//_.x/
L1
� ck kC 2n�1.2

j /.n�1/=2 for all j 2 N:

Proof. We write fj .x/ D .e�i�.�/ .2�j �//_.x/.
To estimate fj .x/, we follow the idea given by Seeger–Sogge–Stein [19]. Let Sn�1 D

¹� 2 Rn j j�j D 1º. For each j 2N, take a sequence of points ¹��j º� such that

��j 2 S
n�1;

[
�

B.��j ; 2
�j=2/ \ Sn�1 D Sn�1;

and
X
�

1B.��j ; 2�j=2C1/.�/ � c for all � 2 Sn�1;

where B.x; r/ denotes the ball with center x and radius r , and � runs on an index set of
cardinality� .2j=2/n�1.
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Take functions ¹��j º� such that

��j is homogeneous of degree 0 and C1 on Rn n ¹0º;

¹� 2 Sn�1 j ��j .�/ ¤ 0º � ¹� 2 S
n�1
j j� � ��j j < 2

�j=2C1
º;

j@˛� �
�
j .�/j � c˛.2

j=2/j˛j for all � 2 Sn�1;X
�

��j .�/ D 1 for all � 2 Rn n ¹0º:

Using this partition of unity, we decompose fj .x/ as

fj .x/ D
X
�

f �j .x/;

f �j .x/ D
�
e�i�.�/ .2�j �/��j .�/

�_
.x/ D

1

.2�/n

Z
ei.��x��.�// .2�j �/��j .�/ d�:

The key idea used below is that the oscillating factor e�i�.�/ can be well approximated
by e�i��r�.�

�
j / on the support of  .2�j �/��j .�/. We write the phase function � � x � �.�/

appearing in the last integral as

� � x � �.�/ D � � .x � r�.�// D � � .x � r�.��j //C h
�
j .�/;

h�j .�/ D � � .r�.�
�
j / � r�.�//:

Then
f �j .x/ D

1

.2�/n

Z
Rn

ei��.x�r�.�
�
j //  .2�j �/��j .�/ e

ih�j .�/ d�:

Notice that the support of  .2�j �/��j .�/ is included in the set

Ej;� D
°
�
ˇ̌̌
2j�1 � j�j � 2jC1;

ˇ̌̌ �
j�j
� ��j

ˇ̌̌
� 2�j=2C1

±
;

which has Lebesgue measure jEj;� j � .2j /.nC1/=2. The functions appearing in the above
integral satisfy the following estimates on Ej;� :

j@˛� .2
�j �/j � c˛ k kC j˛j .2

j /�j˛j;

j@˛� �
�
j .�/j � c˛ .2

j=2/�j˛j;

j.��j � r�/
k��j .�/j � ck .2

j /�k ;

j@˛� e
ih�j .�/j � c˛ .2

j=2/�j˛j;

j.��j � r�/
keih

�
j .�/j � ck .2

j /�k :

By using these estimates and by integration by parts, we obtain the following two estim-
ates:

jf �j .x/j � cN k kCN .2
j /.nC1/=2

�
1C 2j=2 jx � r�.��j /j

��N
;(4.1)

jf �j .x/j � cN k kCN .2
j /.nC1/=2

�
1C 2j j��j � .x � r�.�

�
j //j

��N
:(4.2)
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Proof of (1). Suppose jxj > 2R. Then jx � r�.��j /j � jxj, and hence (4.1) gives

jf �j .x/j . k kCN .2
j /.nC1/=2 .2j=2jxj/�N :

Taking sum over �’s of card� .2j=2/n�1, we have

jfj .x/j �
X
�

jf �j .x/j . k kCN .2
j /.nC1/=2 .2j=2 jxj/�N .2j=2/n�1

D k kCN .2
j /n�N=2 jxj�N :

Proof of (2). Combining (4.2) and (4.1), we have

jf �j .x/j

� cN k kCN .2
j /.nC1/=2

�
1C2j j��j � .x�r�.�

�
j //j

��N=2
.1C2j=2jx�r�.��j /j/

�N=2

� cN k kCN .2
j /.nC1/=2 .1C2j j��j �.x�r�.�

�
j //j/

�N=2.1C2j=2j.x�r�.��j //
0
j/�N=2;

where .x � r�.��j //
0 denotes the orthogonal projection of x � r�.��j / to the orthogonal

complement of the line R��j . Taking N D 2n� 1 and integrating the above inequality, we
have

kf �j kL1 . k kC 2n�1 .2j /.nC1/=2
Z

Rn

�
1C 2j j��j � .x � r�.�

�
j //j

��.2n�1/=2
�
�
1C 2j=2j.x � r�.��j //

0
j
��.2n�1/=2

dx

� k kC 2n�1 :

Taking sum over �’s of card � .2j=2/n�1, we obtain the inequality as mentioned in (2).
This completes the proof of Lemma 4.3.

Lemma 4.4. Let n � 2, � 2 P .Rn/, and set R D sup¹jr�.�/j j j�j D 1º. Let � be the
function given in Notation 1.6, and let � 2 C10 .R

n/ satisfy supp� � ¹j�j � 2º. Then the
following hold.

(1) For each positive integerN > 2n, there exists a constant cN , depending only on n;�
and N , such thatˇ̌
.ei�.�/ �.�/�.2�j �//_.x/

ˇ̌
� cN k�kCN jxj

�N for jxj > 2R and for all j 2 N:

(2) There exists a constant c, depending only on n and �, such that�ei�.�/�.�/�.2�j �/�_
L1
� ck�kC 2n�1 2

j.n�1/=2:

Proof. From the definition of � and from the assumption on supp� , we have

ei�.�/ �.�/�.2�j �/ D

jC1X
kD1

ei�.�/ .2�k�/�.2�j �/:
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If jxj > 2R and 1 � k � j C 1, then Lemma 4.3(1) givesˇ̌
.ei�.�/ .2�k�/�.2�j �//_.x/

ˇ̌
. .2k/n�N=2 jxj�N k .�/ �.2k�j �/kCN

. .2k/n�N=2 jxj�N k�kCN :

If N > 2n, then taking sum over k, we obtain the inequality mentioned in (1).
For 1 � k � j C 1, Lemma 4.3(2) gives.ei�.�/ .2�k�/�.2�j �//_.x/

L1
. k .�/�.2k�j �/kC 2n�1 .2k/.n�1/=2

. k�kC 2n�1 .2k/.n�1/=2:

Taking sum over k � j C 1, we obtain the inequality mentioned in (2). Lemma 4.4 is
proved.

Proof of Theorem 4.1. We write m D �n=2 and assume � 2 Sm1;0.R
2n/.

We use a dyadic partition of unity to decompose �.�; �/. Let  , ' and � be the func-
tions given in Notation 1.6. For j 2N [ ¹0º, we define  j by

 j .�/ D

´
'.�/ if j D 0;
 .2�j �/ if j � 1:

Notice that
P1
jD0  j .�/ D 1 and

Pk
jD0  j .�/ D '.2

�k�/ for k2N [ ¹0º.
We decompose � as

�.�; �/ D

1X
jD0

1X
kD0

�.�; �/ j .�/ k.�/ D
X
j>k

C

X
jDk

C

X
j<k

D �I.�; �/C �II.�; �/C �III.�; �/;

where
P
j>k ,

P
jDk , and

P
j<k denote the sums of �.�; �/ j .�/ k.�/ over .j; k/ 2

.N [ ¹0º/2 that satisfy the designated restrictions.
Consider the multiplier �I. This is written as

�I.�; �/ D

1X
jD1

j�1X
kD0

�.�; �/ j .�/  k.�/ D

1X
jD1

�.�; �/ .2�j �/ '.2�jC1�/:

Take a function z 2 C10 .R
n/ such that supp z � ¹3�1 � j�j � 3º and z .�/ D 1 for

2�1 � j�j � 2. Also take a function z' 2C10 .R
n/ such that supp z' � ¹j�j � 3º and z'.�/D 1

for j�j � 2. Then

�I.�; �/ D

1X
jD1

�.�; �/ z .2�j �/ z'.2�jC1�/ .2�j �/ '.2�jC1�/:

The function �.2j �; 2j�1�/ z .�/ z'.�/ is supported in ¹3�1 � j�j � 3º � ¹j�j � 3º, and
satisfies the estimate ˇ̌

@˛� @
ˇ
� ¹�.2

j �; 2j�1�/ z .�/ z'.�/º
ˇ̌
� C˛;ˇ 2

jm;
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with C˛;ˇ independent of j 2N. Hence, by the Fourier series expansion, we can write

�.2j �; 2j�1�/ z .�/ z'.�/ D
X

a;b2Zn

c
.a;b/
I;j eia�� eib�� for j�j < �; j�j < �;

with the coefficient satisfying

(4.3) jc
.a;b/
I;j j . 2jm .1C jaj/�L .1C jbj/�L

for any L > 0. Changing variables � ! 2�j � and �! 2�jC1�, and multiplying by the
function  .2�j �/'.2�jC1�/, we obtain

�.�; �/ .2�j �/ '.2�jC1�/ D
X

a;b2Zn

c
.a;b/
I;j eia�2

�j � eib�2
�jC1�  .2�j �/ '.2�jC1�/:

Hence, �I is written as follows:

�I.�; �/ D
X

a;b2Zn

1X
jD1

c
.a;b/
I;j eia�2

�j � eib�2
�jC1� .2�j �/ '.2�jC1�/

D

X
a;b2Zn

1X
jD1

c
.a;b/
I;j  .a/.2�j �/ '.b/.2�jC1�/;

where
 .�/.�/ D ei��� .�/ and '.�/.�/ D ei��� '.�/ for � 2 Zn:

By a similar argument, �II and �III can be written as follows:

�II.�; �/ D �.�; �/ 0.�/ 0.�/C
X

a;b2Zn

1X
jD1

c
.a;b/
II;j  .a/.2�j �/ .b/.2�j�/;

�III.�; �/ D
X

a;b2Zn

1X
jD1

c
.a;b/
III;j '

.a/ .2�jC1�/ .b/.2�j�/;

where the coefficients c.a;b/II;j and c.a;b/III;j satisfy the same estimates as (4.3).
Hereafter, we shall consider a slightly general multiplier. We assume the multiplier z�

is given by

(4.4) z�.�; �/ D

1X
jD1

cj �1.2
�j �/�2.2

�j�/;

where .cj /j 2N is a sequence of complex numbers satisfying

(4.5) jcj j � 2
jmA; j 2N;

for some A 2 .0;1/, and where �1 and �2 are functions in C10 .R
n/ such that

(4.6) supp�1; supp�2 � ¹j�j � 2º:
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For such z� , we shall prove the estimate

(4.7)
ei.�1.�/C�2.�// z�.�; �/

M.H1�L1!L1/
� cAk�1kCN k�2kCN ;

with c D c.n/ 2 .0;1/ and N D N.n/ 2 N.
If this is proved, then by applying it to cj D c

.a;b/
I;j , �1 D  .a/ and �2 D '.b/.2�/, we

obtainei.�1.�/C�2.�// 1X
jD1

c
.a;b/
I;j  .a/.2�j �/ '.b/.2�jC1�/


M.H1�L1!L1/

. .1C jaj/�L.1C jbj/�Lk .a/kCN k'
.b/.2�/kCN . .1C jaj/�LCN .1C jbj/�LCN ;

and, thus, taking L sufficiently large and taking sum over a; b 2 Zn, we obtain

ei.�1.�/C�2.�//�I.�; �/ 2M.H 1
� L1 ! L1/:

In the same way, we obtain

ei.�1.�/C�2.�//
�
�II.�; �/ � �.�; �/ 0.�/ 0.�/

�
2M.H 1

� L1 ! L1/

and
ei.�1.�/C�2.�//�III.�; �/ 2M.H 1

� L1 ! L1/:

Since ei.�1.�/C�2.�//�.�; �/ 0.�/ 0.�/ is also a multiplier forH 1 �L1! L1 by virtue
of Lemma 4.2, we will obtain the conclusion of the theorem.

Thus the proof is reduced to showing (4.7) for z� given by (4.4), (4.5), and (4.6).
We shall make a further reduction. As in the proof of Theorem 1.3, using the func-

tions ' and � of Notation 1.6, we decompose the multiplier ei.�1.�/C�2.�// z�.�; �/ into
four parts:

ei.�1.�/C�2.�// z�.�; �/ D �1.�; �/C �2.�; �/C �3.�; �/C �4.�; �/;

where

�1.�; �/ D e
i�1.�/ '.�/ ei�2.�/ '.�/ z�.�; �/;

�2.�; �/ D e
i�1.�/ �.�/ ei�2.�/ '.�/ z�.�; �/;

�3.�; �/ D e
i�1.�/ '.�/ ei�2.�/ �.�/ z�.�; �/;

�4.�; �/ D e
i�1.�/ �.�/ ei�2.�/ �.�/ z�.�; �/:

The multipliers �1, �2, and �3 are easy to handle. For �1, its inverse Fourier transform
is given by

.�1.�; �//
_.x; y/ D

1X
jD1

cj
�
ei�1.�/'.�/�1.2

�j �/
�_
.x/
�
ei�2.�/'.�/�2.2

�j�/
�_
.y/:

By Lemma 3.1, we have

(4.8)
.ei�1.�/'.�/�1.2�j �//_L1 . k�1kCnC1
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and we get a similar estimate with �2 in place of �1. Thus

k.�1/
_
kL1.R2n/

�

1X
jD1

2jmA
.ei�1.�/'.2�j �/�1.2�j �//_L1.Rn/

.ei�2.�/'.�/�2.2�j�//_L1.Rn/

.
1X
jD1

2jmAk�1kCnC1k�2kCnC1 � Ak�1kCnC1k�2kCnC1 ;

which implies
k�1kM.H1�L1!L1/ . Ak�1kCnC1k�2kCnC1 :

For �2, we use the estimate.ei�1.�/ �.�/�1.2�j �//_L1.Rn/
. 2j.n�1/=2 k�1kC 2n�1 ;

which is given in Lemma 4.4(2). Using this together with (4.8), we obtain

k�2kM.H1�L1!L1/ � k.�2/
_
kL1.R2n/

D

 1X
jD1

cj
�
ei�1.�/ �.�/�1.2

�j �/
�_
.x/
�
ei�2.�/'.�/�2.2

�j�/
�_
.y/

L1x;y.R2n/

.
1X
jD1

2jmA2j.n�1/=2k�1kC 2n�1k�2kCnC1 � Ak�1kC 2n�1k�2kCnC1 ;

where the last� holds because m < �.n � 1/=2. Similarly, we have

k�3kM.H1�L1!L1/ � k.�3/
_
kL1.R2n/ . Ak�1kCnC1k�2kC 2n�1 :

Thus the rest of the proof is the estimate for �4. Our purpose is to prove the estimate

kT�4.f; g/kL1 . Ak�1kCN k�2kCN kf kH1kgkL1 :

To prove this, by virtue of the atomic decomposition of H 1, it is sufficient to prove the
uniform estimate of kT�4.f; g/kL1 for H 1-atoms f . By translation, we may assume that
the H 1-atoms are supported on balls centered at the origin. Thus we assume

suppf � ¹jxj � rº; kf kL1 � r�n and
Z
f .x/ dx D 0;

and we shall prove

kT�4.f; g/kL1 . Ak�1kCN k�2kCN kgkL1 :

Recall that the bilinear operator T�4 is given by

T�4.f; g/.x/ D

1X
jD1

cj .e
i�1.D/ �.D/�1.2

�jD/f /.x/ .ei�2.D/ �.D/�2.2
�jD/g/.x/:
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We set R D 1CmaxiD1;2 sup¹jr�i .�/j j j�j D 1º.
Firstly, consider the case r > R. In this case, we estimate the L1 norm as

kT�4.f; g/kL1 �

1X
jD1

2jmA
ei�1.D/ �.D/�1.2�jD/f L1ei�2.D/ �.D/�2.2�jD/gL1

DW .?/:

For the L1-norm involving g, we use Lemma 4.4(2) to obtain

(4.9)

ei�2.D/ �.D/�2.2�jD/gL1 � �ei�2.�/ �.�/�2.2�j�/�_L1 kgkL1
. 2j.n�1/=2 k�2kC 2n�1kgkL1 :

For theL1 norm of ei�1.D/�.D/�1.2�jD/f .x/ on jxj � 3r , we use the Cauchy–Schwarz
inequality to obtain.ei�1.D/ �.D/�1.2�jD/f /.x/L1.jxj�3r/

. rn=2
.ei�1.D/ �.D/�1.2�jD/f /.x/L2.jxj�3r/ . rn=2 k�1kC 0 kf kL2 . k�1kC 0 :

If jxj> 3r and jyj � r , then jx � yj> 2r > 2R. Hence, for jxj> 3r , using Lemma 4.4(1),
we see thatˇ̌
ei�1.D/ �.D/�1.2

�jD/f .x/
ˇ̌
D

ˇ̌̌ Z �
ei�1.�/ �.�/�1.2

�j �/
�_
.x � y/ f .y/ dy

ˇ̌̌
.
Z
jyj�r

k�1kCN jx � yj
�N
jf .y/j dy . k�1kCN jxj�N ;

which impliesei�1.D/ �.D/�1.2�jD/f .x/L1.jxj>3r/ . k�1kCN
Z
jxj>3r

jxj�N dx . k�1kCN :

Combining the above estimates, we have

(4.10)
ei�1.D/ �.D/�1.2�jD/f .x/L1 . k�1kCN :

Now from (4.9) and (4.10), we obtain

.?/ .
1X
jD1

2jmAk�1kCN 2
j.n�1/=2

k�2kCN kgkL1 � Ak�1kCN k�2kCN kgkL1 ;

where the last� holds because m < �.n � 1/=2.
Secondly, we assume r � R and estimate the L1 norm of T�4.f; g/.x/ on jxj > 3R.

We estimate this as

T�4.f; g/.x/kL1.jxj>3R/ �

1X
jD1

2jmA
ei�1.D/ �.D/�1.2�jD/f .x/L1.jxj>3R/

�
ei�2.D/ �.D/�2.2�jD/g.x/L1.jxj>3R/

DW .??/:



T. Kato, A. Miyachi and N. Tomita 1586

For the L1 norm involving g, we have (4.9). If jxj > 3R and jyj � r � R, then
jx � yj > 2R. Hence, for jxj > 3R, Lemma 4.4(1) yieldsˇ̌
ei�1.D/ �.D/�1.2

�jD/f .x/
ˇ̌
D

ˇ̌̌ Z �
ei�1.�/ �.�/�1.2

�j �/
�_
.x � y/ f .y/ dy

ˇ̌̌
.
Z
jyj�r

k�1kCN jx � yj
�N
jf .y/j dy . k�1kCN jxj�N :

This implies ei�1.D/ �.D/�1.2�jD/f .x/L1.jxj>3R/ . k�1kCN :

Thus we obtain

.??/ .
1X
jD1

2jmAk�1kCN 2
j.n�1/=2

k�2kCN kgkL1 � Ak�1kCN k�2kCN kgkL1 ;

where we used m < �.n � 1/=2 again.
Thirdly, we assume r � R and estimate the L1 norm of T�4.f; g/.x/ on jxj � 3R. We

set B D ¹x2 Rn j jxj � 5Rº and decompose g as g D g1B C g1Bc .
For the L1.jxj � 3R/ norm of T�4.f; g1Bc /.x/, we have

kT�4.f; g1Bc /.x/kL1.jxj�3R/ �
1X
jD1

2jmA
ei�1.D/ �.D/�1.2�jD/f .x/L1.jxj�3R/

�
ei�2.D/ �.D/�2.2�jD/.g1Bc /.x/


L1.jxj�3R/

DW .???/:

Using Lemma 4.4(2), we haveei�1.D/ �.D/�1.2�jD/f .x/L1.jxj�3R/ � .ei�1.�/ �.�/�1.2�j �//_L1kf kL1
. 2j.n�1/=2 k�1kCN :

If jxj � 3R and jyj > 5R, then jx � yj > 2R. Hence, for jxj � 3R, we use Lemma 4.4(1)
to haveˇ̌
ei�2.D/ �.D/�2.2

�jD/.g1Bc /.x/
ˇ̌
D

ˇ̌̌ Z
jyj>5R

.ei�2.�/ �.�/�2.2
�j�//_.x�y/g.y/dy

ˇ̌̌
.
Z
jyj>5R

k�2kCN jx�yj
�N
kgkL1 dy � k�2kCN kgkL1 :

Thus

.???/ .
1X
jD1

2jmA2j.n�1/=2 k�1kCN k�2kCN kgkL1 � Ak�1kCN k�2kCN kgkL1 ;

where we used m < �.n � 1/=2 again.
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Finally, we estimate the L1 norm of T�4.f; g1B/.x/ on jxj � 3R. For this, we use the
Cauchy–Schwarz inequality to have

kT�4.f; g1B/.x/kL1.jxj�3R/

�

1X
jD1

2jmA
ei�1.D/ �.D/�1.2�jD/f L2ei�2.D/ �.D/�2.2�jD/.g1B/


L2

DW .????/:

For the L2 norm involving g1B , we have

(4.11) kei�2.D/ �.D/�2.2
�jD/.g1B/kL2 . k�2kC 0 kg1BkL2 . k�2kC 0 kgkL1 :

We estimate the L2 norm of ei�1.D/ �.D/�1.2�jD/f in two ways. Firstly, we have

(4.12) kei�1.D/ �.D/�1.2
�jD/f kL2 . k�1kC 0 kf kL2 . r�n=2 k�1kC 0 :

On the other hand, using the moment condition of f , we can write

ei�1.D/ �.D/�1.2
�jD/f .x/

D

Z ®
.ei�1.�/ �.�/�1.2

�j �//_.x � y/ � .ei�1.�/ �.�/�1.2
�j �//_.x/

¯
f .y/ dy

D

“
0<t<1
jyj�r

r.ei�1.�/ �.�/�1.2
�j �//_.x � ty/ � .�y/ f .y/ dt dy:

Hence

kei�1.D/ �.D/�1.2
�jD/f kL2 .

r.ei�1.�/ �.�/�1.2�j �//_L2 Z
jyj�r

jyj jf .y/j dy

. r
r.ei�1.�/ �.�/�1.2�j �//_L2 :

By Plancherel’s theorem,r.ei�1.�/ �.�/�1.2�j �//_L2 � k� �.�/�1.2�j �/kL2 . 2j.n=2C1/ k�1kC 0 :

Hence

(4.13)
ei�1.D/ �.D/�1.2�jD/f L2 . 2j.n=2C1/ r k�1kC 0 :

Combining (4.11), (4.12) and (4.13), we obtain

.????/ .
1X
jD1

2jmA min¹r�n=2; 2j.n=2C1/ rºk�1kC 0 k�2kC 0 kgkL1

D Ak�1kC 0k�2kC 0kgkL1

1X
jD1

min¹.2j r/�n=2; 2j rº � Ak�1kC 0k�2kC 0kgkL1 ;

where we used m D �n=2. This completes the proof of Theorem 4.1.
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5. Necessary conditions on m

In this section, we shall prove Theorem 1.5.
In fact, we shall prove a stronger theorem by considering a multiplier of a special

form. Take a function � 2 C10 .R
n/ such that supp� � ¹3�1 � j�j � 3º and �.�/ D 1 for

2�1 � j�j � 2. We consider the multiplier

�j .�; �/ D 2
jm �.2�j �/�.2�j�/; j 2N:

This multiplier satisfies the inequalities

j@˛� @
ˇ
��j .�; �/j � C˛;ˇ .1C j�j C j�j/

m�j˛j�jˇ j;

with C˛;ˇ independent of j 2N. Thus if the assertion (1.3) holds then, by the closed graph
theorem, it follows that there exists a constant A D A.n;m; p; q; �/ such that

(5.1)
2jm ei.j�jCj�j/ �.2�j �/�.2�j�/

M.Hp�Hq!Xr /
� A for all j 2 N:

We shall prove that the conditions given in Theorem 1.5 are already necessary for (5.1). In
fact, we prove the following theorem, which asserts that the claims of Theorem 1.5 hold
if we replace the condition (1.3) by the condition (5.1).

Theorem 5.1. Let n � 2.

(1) Let 0 < p; q � 2 or 2 � p; q �1. Thenm 2 R satisfies (5.1) only if m � �.n� 1/
�.j1=p � 1=2j C j1=q � 1=2j/.

(2) Let 1 � p � 2 � q �1 or 1 � q � 2 � p �1 and assume 1=p C 1=q D 1. Then
m 2 R satisfies (5.1) only if m � �nj1=p � 1=2j.

To prove this theorem, we use the following lemma.

Lemma 5.2. Let  be a C1 function on R such that

supp � ¹t 2 R j 2�1 � t � 2º;  .t/ � 0;  .t/ 6� 0;

and set
hj .x/ D .e

�i j�j .2�j j�j//_.x/;

which is the inverse Fourier transform of the radial function e�i j�j .2�j j�j/ on Rn. Then
the following hold.

(1) For each L > 0, there exists a constant cL, depending only on n; , and L, such that

jhj .x/j � cL 2
j.nC1/=2

�
1C 2j j1 � jxj j

��L
for all j 2N and all x 2 Rn.

(2) There exist ı; c0 2 .0;1/ and j0 2 N, depending only on n and  , such thatˇ̌
ei..n�2/�=4C�=4/ 2�j.nC1/=2 hj .x/ � c0

ˇ̌
�
c0

10

if 1 � ı 2�j < jxj < 1C ı 2�j and j > j0.
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(3) For each 0 < p � 1,

khj kHp � khj kLp � 2
j..nC1/=2�1=p/; j 2 N;

where the implicit constants in� depend only on n; , and p.

Proof. The assertion (3) follows from (1) and (2). In fact, the inequality khj kHp �khj kLp

holds because the support of the inverse Fourier transform of hj is included in the annulus
¹2j�1 � j�j � 2jC1º. The estimate of khj kLp . 2j..nC1/=2�1=p/ follows from (1) and
the converse estimate khj kLp & 2j..nC1/=2�1=p/ follows from (2). Thus we only need to
prove (1) and (2).

Since hj .x/ is the inverse Fourier transform of a radial function, it is written in terms
of Bessel function as

hj .x/ D .2�/
�n=2

Z 1
0

J.n�2/=2.jxj t / .jxj t /
�.n�2/=2  .2�j t / e�it tn�1 dt;

where J.n�2/=2 is the Bessel function (see, e.g., Theorem 3.3 on p. 155 of [21]; this for-
mula holds for n D 1 as well, since .2�/�1=2J�1=2.s/ s1=2 D ��1 cos s).

Proof of .1/. Firstly, we estimate of hj .x/ for 2j jxj � 1. For this, we use the power
series expansion

.2�/�n=2 J.n�2/=2.s/ s
�.n�2/=2

D

1X
mD0

am s
m;

whose radius of convergence is1. Integrating term by term, we have

hj .x/ D

Z 1
0

1X
mD0

am.jxj t /
m .2�j t /e�it tn�1 dt D

1X
mD0

am jxj
m. .2�j t / tmCn�1/^.1/

D

1X
mD0

am jxj
m .2j /mCn . .t/ tmCn�1/^.2j /:

The function arising in the last expression satisfies

supp. .t/ tmCn�1/ � ¹t 2 R j 2�1 � t � 2º;ˇ̌̌� d
dt

�`
. .t/ tmCn�1/

ˇ̌̌
� c` .1Cm/

` 2m:

Hence, for any L0 2 N, we have

j. .t/ tmCn�1/^.2j /j � cL0 .1Cm/
L0 2m .2j /�L

0

:

Thus, for 2j jxj � 1, we have

jhj .x/j �

1X
mD0

jamj jxj
m .2j /mCncL0 .1Cm/

L0 2m .2j /�L
0

� cL0.2
j /n�L

0

1X
mD0

jamj .1Cm/
L0 2m D zcL0 .2

j /n�L
0

:

Since L0 can be taken arbitrarily large, the above implies the desired estimate of hj .x/ for
2j jxj � 1.
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Next, we estimate hj .x/ for 2j jxj > 1. For this, we use the asymptotic expansion of
the Bessel function, which reads as

.2�/�n=2 J.n�2/=2.s/ s
�.n�2/=2

D bCeiss1=2�n=2 C b�e�iss1=2�n=2 C eisRC.s/C e�isR�.s/;

where
b˙ D .2�/�.nC1/=2 e�i..n�2/�=4C�=4/

and the remainder terms R˙.s/ satisfy

(5.2)
� d
ds

�`
R˙.s/ D O.s1=2�n=2�1�`/ as s !1; for ` D 0; 1; 2; : : :

Corresponding to the asymptotic expansion formula given above, we write

hj .x/ D b
C

Z 1
0

ei jxj t .jxj t /1=2�n=2  .2�j t / e�it tn�1 dt

C b�
Z 1
0

e�i jxj t .jxj t /1=2�n=2  .2�j t / e�it tn�1 dt

C

Z 1
0

ei jxj tRC.jxj t /  .2�j t / e�it tn�1 dt

C

Z 1
0

e�i jxj tR�.jxj t /  .2�j t / e�it tn�1 dt

D ICj .x/C I
�
j .x/CK

C

j .x/CK
�
j .x/:

We shall estimate each of ICj .x/, I
�
j .x/, K

C

j .x/, and K�j .x/ for 2j jxj > 1.

(a) Estimate of ICj .x/ for 2j jxj > 1. The term ICj .x/ is written as

(5.3)
ICj .x/ D b

C
®
.jxj t /1=2�n=2  .2�j t / tn�1

¯^
.1 � jxj/

D bC jxj1=2�n=2 .2j /1=2Cn=2 . .t/ t�1=2Cn=2/^.2j .1 � jxj//:

Since . .t/ t�1=2Cn=2/^ is a rapidly decreasing function, we have

jICj .x/j . jxj
1=2�n=2 .2j /1=2Cn=2

�
1C 2j j1 � jxjj

��L0
for any L0 > 0. Hence,

2�j < jxj � 2�1 ) jICj .x/j . .2�j /1=2�n=2 .2j /1=2Cn=2 .2j /�L
0

D .2j /n�L
0

;

jxj > 2�1 ) jICj .x/j . .2j /1=2Cn=2
�
1C 2j j1 � jxjj

��L0
:

For any given L > 0, the above estimates with a sufficiently large L0 imply that

(5.4) jICj .x/j . .2j /1=2Cn=2
�
1C 2j j1 � jxjj

��L
; 2j jxj > 1:
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(b) Estimate of I�j .x/ for 2j jxj > 1. The function I�j .x/ is written as

I�j .x/ D b
�
®
.jxj t /1=2�n=2  .2�j t / tn�1

¯^
.1C jxj/:

Hence, by the same reason as in the case of ICj .x/,

jI�j .x/j . jxj
1=2�n=2 .2j /1=2Cn=2 .2j j1C jxjj/�L

0

for any L0 > 0. Restricting to the region 2j jxj > 1, we have

(5.5) jI�j .x/j . .2j /n�L
0

.1C jxj/�L
0

; 2j jxj > 1:

(c) Estimate of KCj .x/ for 2j jxj > 1. The integral KCj .x/ is written as

KCj .x/ D
®
RC.jxj t /  .2�j t / tn�1

¯^
.1 � jxj/:

The function RC.jxj t / .2�j t / tn�1 is supported on ¹2j�1 � t � 2jC1º. If 2j jxj > 1,
then (5.2) impliesˇ̌

@`t
®
RC.jxj t /  .2�j t / tn�1

¯ˇ̌
. jxj1=2�n=2�1 .2j /1=2Cn=2�2�`; ` D 0; 1; 2; : : : ;

which, via Fourier transform, yieldsˇ̌®
RC.jxj t / .2�j t / tn�1

¯^
.1� jxj/

ˇ̌
. jxj1=2�n=2�1.2j /1=2Cn=2�1

�
1C 2j j1� jxjj

��L0
for any L0 > 0. Hence

2�j < jxj � 2�1 ) jKCj .x/j . .2�j /1=2�n=2�1 .2j /1=2Cn=2�1 .2j /�L
0

D .2j /n�L
0

;

jxj > 2�1 ) jKCj .x/j . .2j /1=2Cn=2�1
�
1C 2j j1 � jxjj

��L0
:

For any L > 0, the above estimates with L0 sufficiently large imply

(5.6)
ˇ̌
KCj .x/

ˇ̌
. .2j /1=2Cn=2�1

�
1C 2j j1 � jxjj

��L
; 2j jxj > 1:

(d) Estimate of K�j .x/ for 2j jxj > 1. The integral K�j .x/ is written as

K�j .x/ D
®
R�.jxj t /  .2�j t / tn�1

¯^
.1C jxj/:

If 2j jxj > 1, then by the same reasoning as above, we obtainˇ̌®
R�.jxj t /  .2�j t / tn�1

¯^
.1C jxj/

ˇ̌
. jxj1=2�n=2�1.2j /1=2Cn=2�1 .2j .1C jxj//�L0

for any L0 > 0. Hence

(5.7) jK�j .x/j . .2j /n�L
0

.1C jxj/�L
0

; 2j jxj > 1:

Now from (5.4), (5.5), (5.6), and (5.7), we obtain the estimate of hj .x/ for 2j jxj > 1
as claimed in the lemma. Thus the claim (1) is proved.
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Proof of .2/. The equality (5.3) and the equality

bC D .2�/�.nC1/=2 e�i..n�2/�=4C�=4/

give

(5.8)
ei..n�2/�=4C�=4/ .2j /�n=2�1=2 ICj .x/

D .2�/�.nC1/=2 jxj1=2�n=2 . .t/ t�1=2Cn=2/^.2j .1 � jxj//:

We set
c0 D .2�/

�.nC1/=2. .t/ t�1=2Cn=2/^.0/:

This is a positive number, since  is nonnegative and not identically equal to 0. Then,
from (5.8) and from continuity of the functions, it follows that there exists a number ı > 0
such that

1� 2�j ı < jxj < 1C 2�j ı H)
ˇ̌
ei..n�2/�=4C�=4/ .2j /�n=2�1=2 ICj .x/� c0

ˇ̌
�
c0

20
�

On the other hand, the estimates of (5.5), (5.6), and (5.7) imply that there exists a constant
c1 D c1.n;  / such that

1 � 2�j < jxj < 1C 2�j H) jI�j .x/j C jK
C

j .x/j C jK
�
j .x/j � c1 2

j.n=2C1=2�1/:

Hence, the estimate claimed in (2) of the lemma holds if we take j0 large enough so that
c12
�j0 � c0=20. This completes the proof of Lemma 5.2.

Proof of Theorem 5.1. We define the operator Sj by

Sjh D
�
ei j�j �.2�j �/ yh.�/

�_
:

We divide the proof into three cases.
Case 1: 0 < p; q � 2.
Assume (5.1) holds, or equivalently, that

(5.9) 2jm kSjf � SjgkXr � Akf kHpkgkHq for all j 2 N:

Take  as in Lemma 5.2 and set

fj .x/ D . .2
�j
j�j//_.x/ for j 2 N:

We shall test (5.9) to f D g D fj .
Since the support of the Fourier transform of the function fj is included in the annulus

¹2j�1 � j�j � 2jC1º, and since fj .x/ D 2jn. .j � j//_.2jx/, it follows that

kfj kHp � kfj kLp � 2
j.n�n=p/;

and a similar estimate holds for kfj kHq . On the other hand, by the choice of the func-
tions � and  , we have

Sjfj D .e
i j�j  .2�j j�j//_:
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Hence, by Lemma 5.2, there exist ı 2 .0;1/ and j0 2 N such that

jSjfj .x/j & 2j.nC1/=2 1¹2j j1�jxjj<ıº for j > j0:

Thus

k.Sjfj /
2
kLr & .2j.nC1/=2/2

� Z
1¹2j j1�jxjj<ıº dx

�1=r
� 2j.nC1�1=r/ for j > j0.

Hence, if (5.9) holds, then testing it to f D g D fj we have

2jm � 2j.nC1�1=r/ . 2j.n�n=p/ � 2j.n�n=q/ for j > j0,

which is possible only when m � �.n � 1/.1=p � 1=2C 1=q � 1=2/.
Case 2: 2 � p; q � 1.

Assume (5.9) holds. Using the function  of Lemma 5.2, we set

zfj D .e
�i j�j  .2�j j�j//_ for j 2N:

Then Lemma 5.2 gives the estimate

k zfj kHp � k zfj kLp � 2
j..nC1/=2�1=p/;

and a similar estimate holds for k zfj kHq . On the other hand,

Sj zfj .x/ D . .2
�j
j�j//_.x/ D 2jn . .j � j//_.2jx/;

and hence .Sj zfj /2Xr D 22jn. .j � j//_.2jx/2Xr � 2j.2n�n=r/:
Hence, if (5.9) holds, then by testing it to f D g D zfj we have

2jm � 2j.2n�n=r/ . 2j..nC1/=2�1=p/ � 2j..nC1/=2�1=q/;

which is possible only when m � �.n � 1/.1=2 � 1=p C 1=2 � 1=q/.
Case 3: 1 � p � 2 � q � 1 or 1 � q � 2 � p � 1 and 1=p C 1=q D 1.
By the symmetry of the situation, it suffices to consider the case 1 � p � 2 � q �1.

Thus we assume that 1 � p � 2 � q � 1 and 1=p C 1=q D 1=r D 1. We assume (5.1)
holds, or equivalently, that

(5.10) 2jm kSjf � SjgkL1 � Akf kHpkgkLq for all j 2 N;

and prove that this is possible only when m � �n=p C n=2.
We use the same function fj that was used in the proof of Case 1:

fj .x/ D . .2
�j
j�j//_.x/ for j 2 N;

where  is the function given in Lemma 5.2.
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As we have seen in Case 1,

(5.11) kfj kHp � 2j.n�n=p/:

On the other hand,

Sjfj .x/ D
�
ei j�j  .2�j j�j/

�_
.x/ D .e�i j�j  .2�j j�j//_.�x/

and, hence, Lemma 5.2 (2) gives that, for 1 � ı 2�j < jxj < 1C ı 2�j and j > j0,

(5.12)
ˇ̌
e�i..n�2/�=4C�=4/ 2�j.nC1/=2 Sjfj .x/ � c0

ˇ̌
�
c0

10
�

For a sequence of complex numbers ˛ D .˛`/`2Zn , we define gj;˛ by

gj;˛.x/ D
X
`2Zn

˛` fj .x � ı
0 2�j `/;

where ı0 is a sufficiently small positive number; for the succeeding argument, the choice
ı0Dı=.2

p
n/ will suffice.

We shall prove

(5.13) kgj;˛kLq . 2j.n�n=q/ k˛k`q :

In fact, since fj .x/ D 2jn. .j � j//_.2jx/ and since . .j � j//_ is a Schwartz function,
we have jfj .x/j . 2jn .1C 2j jxj/�L for any L > 0. Thus, if 2 � q <1, then Hölder’s
inequality yields

jgj;˛.x/j .
X
`2Zn

j˛`j 2
jn
�
1C 2j jx � ı0 2�j `j

��L
�

� X
`2Zn

j˛`j
q 2jnq

�
1C 2j jx � ı02�j `j

��L�1=q� X
`2Zn

�
1C 2j jx � ı0 2�j `j

��L�1�1=q
�

� X
`2Zn

j˛`j
q 2jnq

�
1C2j jx � ı02�j `j

��L�1=q
;

and hence,

kgj;˛kLq .
� Z X

`2Zn

j˛`j
q 2jnq .1C 2j jx � ı0 2�j `j/�L dx

�1=q
� k˛k`q 2

j.n�n=q/:

An obvious modification gives (5.13) for q D1 as well.
Since the operator Sj is linear and commutes with translation, we have

Sjgj;˛ D
X
`2Zn

˛`.Sjfj /.x � ı
02�j `/:

Now we test (5.10) to f D fj and g D gj;˛ . Then by (5.11) and (5.13) we have

2jm
Sjfj .x/ X

`2Zn

˛`Sjfj .x � ı
0 2�j `/


L1x

. 2jnk˛k`q
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(recall that 1=p C 1=q D 1). We take the dual form of this inequality, which reads as

(5.14) 2jm
 Z Sjfj .x/ Sjfj .x � ı

02�j `/ '.x/ dx

`
q0

`

. 2jn k'kL1 :

We define the cube Q� in Rn by

Q� D ı
02�j .� C .0; 1�n/; � 2 Zn:

Then eachQ� is a cube with side length ı02�j and all of them constitute a partition of Rn.
Let ."�/�2Zn be any sequence of˙1, and apply (5.14) to '.x/D

P
�2Zn "� 1Q� .x/. Then

we obtain

2jm
� X
`2Zn

ˇ̌̌ X
�2Zn

"�

Z
Q�

Sjfj .x/ Sjfj .x � ı
0 2�j `/ dx

ˇ̌̌q0�1=q0
. 2jn:

Notice that this inequality holds uniformly for all choices of "� D ˙1. We take the
q0-th power of the above inequality, take average over all choices of "� D ˙1, and use
Kintchine’s inequality; this yields

(5.15)
X
`2Zn

� X
�2Zn

ˇ̌̌ Z
Q�

Sjfj .x/ Sjfj .x � ı
0 2�j `/ dx

ˇ̌̌2 �q0=2
. 2j.n�m/q

0

:

We shall estimate the left-hand side of (5.15) from below. For v 2 Rn, we define

†.v/ D ¹x2 Rn j jxj D jx � vj D 1º:

If 0 < jvj < 2, then †.v/ is a n� 2 dimensional sphere of radius
p
1 � 4�1jvj2. Thus, in

particular, if 0 < jvj < 1 and � > 0 is sufficiently small, then the n-dimensional Lebesgue
measure of the �-neighborhood of †.v/ satisfies

(5.16) jthe �-neighborhood of †.v/j � �2:

Suppose ` 2 Zn satisfies

(5.17) 0 < jı0 2�j `j < 1

and consider � 2 Zn that satisfies

(5.18) dist
�
Q� ; †.ı

0 2�j `/
�
<
ı2�j

2
�

Then, for each x2 Q� , there exists an x0 2 †.ı02�j `/ such that

jx � x0j < diamQ� C
ı 2�j

2
D ı 2�j ;

and, since this x0 satisfies jx0j D jx0 � ı0 2�j `j D 1, we have

1 � ı 2�j < jxj < 1C ı 2�j and 1 � ı 2�j < jx � ı0 2�j `j < 1C ı 2�j :
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Hence, by (5.12), we see thatˇ̌
e�i..n�2/�=4C�=4/ 2�j.nC1/=2 Sjfj .x/ � c0

ˇ̌
�
c0

10
;ˇ̌

e�i..n�2/�=4C�=4/ 2�j.nC1/=2 Sjfj
�
x � ı0 2�j / � c0

ˇ̌
�
c0

10
;

for all x2 Q� and all j > j0, which implies that

(5.19)
ˇ̌̌ Z
Q�

Sjfj .x/Sjfj .x � ı
0 2�j `/ dx

ˇ̌̌
� 2j.nC1/=2 2j.nC1/2 2�jn D 2j for j>j0:

All the cubes Q� that satisfy (5.18) certainly cover the .1
2
ı 2�j /-neighborhood of

the set †.ı0 2�j `/. Conversely, since diamQ� D 2�1ı 2�j , all Q� that satisfy (5.18) are
included in the .ı 2�j /-neighborhood of †.ı02�j `/. Hence, by (5.16), we see that

(5.20) card
®
� 2 Zn j � satisfies (5.18)

¯
�
2�2j

2�jn
D 2j.n�2/

for each ` satisfying (5.17). Also we have obviously

(5.21) card¹` 2 Zn j ` satisfies (5.17)º � 2jn:

From (5.19), (5.20), and (5.21), we see that the left-hand side of (5.15) is

�

X
` W (5.17)

� X
� W (5.18)

ˇ̌̌ Z
Q�

Sjfj .x/Sjfj .x � ı
0 2�j `/ dx

ˇ̌̌2 �q0=2
�

X
` W (5.17)

�
.2j /2 � 2j.n�2/

�q0=2
� 2j.nq

0=2Cn/ for all j > j0.

Thus (5.15) implies 2j.nq
0=2Cn/ . 2j.n�m/q

0

for j > j0, which is possible only when
m � �n=2C n=q D n=2 � n=p. This completes the proof of Theorem 5.1.

6. Proofs of Propositions 2.3 and 2.4

6.1. Proof of Proposition 2.3

In order to prove Proposition 2.3, we use the following lemmas. The first two lemmas are
given in [13].

Lemma 6.1 (Lemma 2.5 in [13]). Let 0 < p; q �1 and 1=pC 1=q D 1=r > 0. Assume
that  and � are functions on Rn such that supp � ¹a�1 � j�j � aº and

j@˛x. /
_.x/j � A.1C jxj/�L for j˛j D 0; 1;

j@ˇx .�/
_.x/j � B .1C jxj/�L for jˇj � L0;

where a;A;B2.0;1/, andL;L0 are sufficiently large integers determined by p, q, and n.
Then �X

j2Z

ˇ̌
 .2�jD/f � '.2�jD/g

ˇ̌2�1=2
Lr
� cABkf kHpkgkHq ;
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where c D c.n; p; q; a/ is a positive constant. Moreover, if p D 1, then kf kHp can be
replaced by kf kBMO.

Lemma 6.2 (Lemma 2.7 in [13]). Let 0 < p; q �1 and 1=pC 1=q D 1=r > 0. Assume
that  1 and  2 are functions on Rn such that supp 1, supp 2 � ¹a�1 � j�j � aº and

j@˛x. 1/
_.x/j � A.1C jxj/�L for j˛j � L0;

j@ˇx . 2/
_.x/j � B.1C jxj/�L for jˇj � L0;

where a;A;B2.0;1/ and L;L0 are sufficiently large integers determined by p, q, and n.
Then X

j2Z

ˇ̌
 1.2

�jD/f �  2.2
�jD/g

ˇ̌
Lr
� cABkf kHpkgkHq ;

where c D c.n;p; q; a/ is a positive constant. Moreover, if p D1 (respectively, q D1/,
then kf kHp (respectively, kgkHq / can be replaced by kf kBMO (respectively, kgkBMO/.

Lemma 6.3. Let m2 < 0, and suppose the multiplier � is given by

�.�; �/ D
X

j�k�3

cj;k 1.2
�j �/  2.2

�k�/;

where .cj;k/ a sequence of complex numbers satisfying jcj;kj � 2.j�k/m2 , and  1 and  2
are functions in C10 .R

n/ such that supp 1; supp 2 � ¹2�1 � j�j � 2º. Then � belongs
to the following multiplier classes:

M.Hp
�H q

! Lr /; 0 < p; q <1; 1=p C 1=q D 1=r;

M.Hp
� BMO! Lp/; 0 < p <1;

M.BMO �H q
! Lq/; 0 < q <1;

M.BMO � BMO! BMO/:

Moreover, in each case, the multiplier norm of � is bounded by ck 1kCN k 2kCN , with
c D c.n;m2; p; q/ and N D N.n; p; q/.

Proof. We divide the proof into several cases.
Case 1. Hp �H q ! Lr , 0 < p; q <1, 1=p C 1=q D 1=r .
From the assumption jcj;kj � 2.j�k/m2 with m2 < 0, we can use Schur’s lemma (see,

e.g., Appendix A in [4]) as follows:

jT� .f; g/.x/j D
ˇ̌̌ X
j�k�3

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/
ˇ̌̌

�

X
j�k�3

2.j�k/m2 j 1.2
�jD/f .x/j j 2.2

�kD/g.x/j

. k 1.2�jD/f .x/k`2j k 2.2
�kD/g.x/k`2

k
:
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The above inequality, together with Hölder’s inequality and the Littlewood–Paley inequal-
ities, gives

kT� .f; g/kLr .
k 1.2�jD/f .x/k`2j Lpx k 2.2�kD/g.x/k`2kLqx

. k 1kCN kf kHpk 2kCN kgkHq ;

which is the desired estimate.
Case 2. Hp � BMO! Lp , 0 < p <1.
Observe that, if j � k � 3, then the support of the Fourier transform of the function

 1.2
�jD/f �  2.2

�kD/g is included in the annulus ¹2j�2 � j�j � 2jC2º. Hence, the
Littlewood–Paley theory for Hp gives X
j�k�3

cj;k 1.2
�jD/f �  2.2

�kD/g

Lp

.
 X
j�k�3

cj;k 1.2
�jD/f �  2.2

�kD/g

Hp

.
 j�3X

kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


L
p
x

DW .?/:

Since
k 2.2

�kD/gkL1 . k 2kCN kgkBMO

(see, e.g., Section 4.3.3 in Chapter IV of [20]), and since

j�3X
kD�1

jcj;kj �

j�3X
kD�1

2.j�k/m2 � 1;

we obtain

.?/ . k 2kCN kgkBMO
k 1.2�jD/f .x/k`2j Lpx . k 2kCN kgkBMOk 1kCN kf kHp ;

which is the desired estimate.
Case 3. BMO �H q ! Lq , 1 < q <1.
By the same reason as in Case 2, the Littlewood–Paley theory for Lq , 1 < q < 1,

yields  X
j�k�3

cj;k 1.2
�jD/f �  2.2

�kD/g

Lq

.
 j�3X

kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


L
q
x

DW .??/:

Take a function � 2 C10 .R
n/ such that �.�/ D 1 for j�j � 2. Then, for j � k � 3, we

have

 2.2
�kD/g.x/D �.2�jD/ 2.2

�kD/g.x/D

Z
2jn.�/_.2j .x � y// 2.2

�kD/g.y/dy:



Estimates for some bilinear wave operators 1599

Combining this formula with the inequality

j 2.2
�kD/g.y/j . k 2kCNMg.y/;

where M is the Hardy–Littlewood maximal operator, and with the inequality

j.�/_.z/j . .1C jzj2/�L=2;

we have
j 2.2

�kD/g.x/j . k 2kCN Sj .Mg/.x/;
where Sj is defined by

Sjh.x/ D

Z
2jn .1C j2j .x � y/j2/�L=2 h.y/ dy;

with L > 0 sufficiently large. Hence

.??/ .
 j�3X

kD�1

2.j�k/m2 j 1.2
�jD/f .x/j k 2kCN Sj .Mg/.x/


`2j


L
q
x

� k 2kCN
j 1.2�jD/f .x/jSj .Mg/.x/`2j Lqx

. k 2kCN k 1kCN kf kBMO kMgkLq � k 2kCN k 1kCN kf kBMO kgkLq ;

where the second . follows from Lemma 6.1 and the last� holds because q > 1.

Case 4. BMO �H q ! Lq , 0 < q � 1.
By virtue of the atomic decomposition for H q , it is sufficient to show the uniform

estimate of kT� .f; g/kLq for allH q-atoms g. By translation, it is sufficient to consider the
H q-atoms supported on balls centered at the origin. Thus we assume

suppg � ¹jxj � rº; kgkL1 � r�n=q;
Z
g.x/x˛ dx D 0 for j˛j � Œn=q � n�;

and we shall prove

kT� .f; g/kLq . k 1kCN k 2kCN kf kBMO:

By the same reason as in Case 2, the Littlewood–Paley theory for H q reduces the
proof to the estimate of j�3X

kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


L
q
x

:

We first estimate the Lq norm on jxj � 2r . Using Hölder’s inequality and using the
result proved in Case 3 (with q D 2), we have j�3X

kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


Lq.jxj�2r/

. rn=q�n=2
 j�3X

kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


L2.jxj�2r/

. rn=q�n=2 k 1kCN k 2kCN kf kBMOkgkL2 . k 1kCN k 2kCN kf kBMO:
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Next, we estimate the Lq norm on jxj > 2r . Using the inequality

k 1.2
�jD/f .x/kL1 . k 1kCN kf kBMO;

we have j�3X
kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


Lq.jxj>2r/

. k 1kCN kf kBMO

 j�3X
kD�1

2.j�k/m2 j 2.2
�kD/g.x/j


`2j


Lq.jxj>2r/

� k 1kCN kf kBMO

 1X
kD�1

k2.j�k/m2k`2.j�kC3/ j 2.2
�kD/g.x/j


Lq.jxj>2r/

� k 1kCN kf kBMO

 1X
kD�1

j 2.2
�kD/g.x/j


Lq.jxj>2r/

� k 1kCN kf kBMO
k 2.2�kD/g.x/kLq.jxj>2r/`q

k

:(6.1)

To estimate the Lq-norm of the functions  2.2�kD/g.x/ on jxj > 2r , we write

 2.2
�kD/g.x/ D

Z
jyj�r

2kn. 2/
_.2k.x � y// g.y/ dy:

Then, using the size estimate of g and the moment condition on g, we have

j 2.2
�kD/g.x/j . k 2kCN 2kn .1C 2kjxj/�L r�n=qCn min

®
1; .2kr

�Œn=q�n�C1¯
for jxj > 2r (see inequalities (2.7) and (2.8) in [13]). Hence

k 2.2
�kD/g.x/kLq.jxj>2r/

. k 2kCN r�n=qCn min
®
1; .2kr/Œn=q�n�C1

¯2kn.1C 2kjxj/�L
Lq.jxj>2r/

� k 2kCN min
®
.2kr/�LCn; .2kr/n�n=qCŒn=q�n�C1

¯
:(6.2)

From (6.1) and (6.2), we obtain

 j�3X
kD�1

cj;k 1.2
�jD/f .x/ 2.2

�kD/g.x/

`2j


Lq.jxj>2r/

. k 1kCN kf kBMO k 2kCN
min

®
.2kr/�LCn; .2kr/n�n=qCŒn=q�n�C1

¯
`
q
k

. k 1kCN kf kBMO k 2kCN :
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Case 5. BMO � BMO! BMO.
By the duality between BMO andH 1, it is sufficient to show the following inequality:

(6.3)

ˇ̌̌ Z X
j�k�3

cj;k 1.2
�jD/f .x/  2.2

�kD/g.x/ h.x/ dx
ˇ̌̌

. k 1kCN kf kBMO k 2kCN kgkBMO khkH1 :

Notice that if j � k � 3, then the support of the Fourier transform of the function
 1.2

�jD/f �  2.2
�kD/g is included in the annulus ¹2j�2 � j�j � 2jC2º. Thus, if we

take a function z 2 C10 .R
n/ such that supp z � ¹2�3 � j�j � 23º and z .�/ D 1 on

2�2 � j�j � 22, then the integral in (6.3) can be written asZ X
j�k�3

cj;k 1.2
�jD/f .x/  2.2

�kD/g.x/ h.x/ dx

D

Z X
j�k�3

cj;k 1.2
�jD/f .x/  2.2

�kD/g.x/ z .2�jD/h.x/ dx:

Hence, using the estimate

k 2.2
�kD/gkL1 . k 2kCN kgkBMO

and the assumption jcj;kj � 2.j�k/m2 , m2 < 0, we have that the left-hand side of (6.3) is

.
Z X
j�k�3

2.j�k/m2 j 1.2
�jD/f .x/j j 2.2

�kD/g.x/j j z .2�jD/h.x/j dx

. k 2kCN kgkBMO

Z 1X
jD�1

j 1.2
�jD/f .x/j j z .2�jD/h.x/j dx

. k 2kCN kgkBMO k 1kCN kf kBMO khkH1 ;

where the last . follows from Lemma 6.2. This completes the proof of Lemma 6.3.

Lemma 6.4. Suppose the multiplier � is defined by

�.�; �/ D

1X
jD�1

cj  1.2
�j �/ �.2�jC3�/

with a sequence of complex numbers .cj / satisfying jcj j � 1 and with  1; � 2 C10 .R
n/

such that supp 1 � ¹2�1 � j�j � 2º and supp� � ¹j�j � 2º. Then � belongs to the fol-
lowing multiplier classes:

M.Hp
�H q

! Lr /; 0 < p; q <1; 1=p C 1=q D 1=r;

M.Hp
� L1 ! Lp/; 0 < p <1;

M.BMO �H q
! Lq/; 0 < q <1;

M.BMO � L1 ! BMO/:

Moreover, in each case, the multiplier norm of � is bounded by ck 1kCN k�kCN with
c D c.n; p; q/ and N D N.n; p; q/.
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Proof. From the assumptions on the supports of  1 and �, it follows that the support of
the Fourier transform of  1.2�jD/f � �.2�jC3D/g is included in the annulus ¹2j�2 �
j�j � 2jC2º. Hence, for 0 < r <1, the Littlewood–Paley theory implies 1X
jD�1

cj  1.2
�jD/f � �.2�jC3D/g


Lr

.
 1X
jD�1

cj  1.2
�jD/f � �.2�jC3D/g


H r

.
cj 1.2�jD/f � �.2�jC3D/g`2j Lrx DW .?/:

By Lemma 6.1, we have that

.?/ . k 1kCN k�kCN

8̂<̂
:
kf kHpkgkHq ; if 0 < p; q <1 and 1=p C 1=q D 1=r;
kf kHpkgkL1 ; if 0 < p <1 and p D r;
kf kBMOkgkHq ; if 0 < q <1 and q D r:

These prove the claims for the first three multiplier classes.
We shall prove � 2M.BMO�L1!BMO/. By the same argument as given in Case 5

of the proof of Lemma 6.3, it is sufficient to show the inequality

(6.4)

ˇ̌̌ Z 1X
jD�1

cj  1.2
�jD/f .x/ �.2�jC3D/g.x/ z .2�jD/h.x/ dx

ˇ̌̌
. k�kCN kgkL1k 1kCN kf kBMO khkH1 ;

where z is the same function as given there. In the present case, using the assumption
jcj j � 1 and the inequality

k�.2�jC3D/gkL1 . k�kCN kgkL1 ;

we see that the left-hand side of (6.4) is

. k�kCN kgkL1
Z 1X
jD�1

j 1.2
�jD/f .x/j j z .2�jD/h.x/j dx:

Now (6.4) follows from Lemma 6.2. This completes the proof of Lemma 6.4.

Proof of Proposition 2.3. We use several well-known methods developed in the theory of
bilinear Fourier multiplier operators. We first decompose �.�;�/ by using the usual dyadic
partition of unity. Let  , �, and ' be the functions as given in Notation 1.6.

We decompose � into three parts:

�.�; �/ D
X
j2Z

X
k2Z

�.�; �/ .2�j �/  .2�k�/ D
X

j�k�3

C

X
jj�kj�2

C

X
j�k��3

D �I.�; �/C �II.�; �/C �III.�; �/;

where
P
j�k�3,

P
jj�kj�2, and

P
j�k��3 denote the sums of �.�; �/ .2�j �/ .2�k�/

over j; k 2 Z that satisfy the designated restrictions. We shall consider each of �I, �II,
and �III.
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Case 1. For the multiplier �II, we shall prove the following:

�II 2M.Hp
�H q

! Lr /; 0 < p; q <1; 1=p C 1=q D 1=r;

�II 2M.Hp
� BMO! Lp/; 0 < p <1;

�II 2M.BMO �H q
! Lq/; 0 < q <1;

�II 2M.BMO � BMO! BMO/:

To prove this, observe that j�j � j�j � 2j on the support of  .2�j �/ .2�k�/ with
jj � kj � 2. From this we see that �II 2 PS

0
1;0.R

2n/. Hence Proposition 2.2 implies that �II
is a bilinear Fourier multiplier for the following spaces:

Hp
�H q

! Lr ; 0 < p; q <1; 1=p C 1=q D 1=r;

Hp
� L1 ! Lp; 0 < p <1;

L1 �H q
! Lq; 0 < q <1;

L1 � L1 ! BMO:

We shall prove that the space L1 in the above can be replaced by BMO.
We use the Fefferman–Stein decomposition of BMO, which asserts that every g 2

BMO \ L2 can be written as

g D g0 C

nX
`D1

R`g`; with
nX
`D0

kg`kL1 � kgkBMO;

where R`h D .�i j�j�1 �` yh.�//_ is the Riesz transform. (If g 2 BMO \ L2, then we can
take g` 2 L1 \ L2, and the equality g D g0 C

Pn
`D1 R`g` holds without modulo con-

stants; see [11].) Thus

T�II.f; g/ D T�II.f; g0/C

nX
`D1

T�II.f;R`g`/ D T�II.f; g0/C

nX
`D1

T�`;II.f; g`/;

where
�`.�; �/ D �.�; �/.�i j�j

�1�`/ D a0.�; �/ a1.�/ a2.�/.�i j�j
�1�`/

and �`;II is defined in the same way as � 7! �II. Since the multiplier a2.�/.�i j�j�1�`/
belongs to PS�m21;0 .Rn/, we can apply the result �II 2M.Hp � L1 ! Lp/ to �`;II to see
that

kT�II.f; g/kLp . kf kHp

nX
`D0

kg`kL1 � kf kHpkgkBMO:

Thus �II 2 M.Hp � BMO! Lp/. The claims �II 2 M.BMO �H q ! Lq/ and �II 2

M.BMO � BMO! BMO/ are proved in the same way.
Case 2. For the multiplier �I, we shall prove the following:

�I 2M.Hp
�H q

! Lr / if 0 < p; q <1; 1=p C 1=q D 1=r;(6.5)
�I 2M.Hp

� BMO! Lp/ if m2 < 0 and 0 < p <1;(6.6)
�I 2M.BMO �H q

! Lq/ if 0 < q <1;(6.7)
�I 2M.BMO � BMO! BMO/ if m2 < 0:(6.8)
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Proof of (6.5) in the case m2 D 0. We write �I.�; �/ D b.�; �/a2.�/, with

(6.9)

b.�; �/ D
X

j�k�3

a0.�; �/ a1.�/  .2
�j �/  .2�k�/

D

1X
jD�1

a0.�; �/ a1.�/  .2
�j �/ '.2�jC3�/:

Since m2 D 0 and m D m1 in the present case, we see that b 2 PS01;0.R
2n/. Thus, Propos-

ition 2.2 implies that b 2M.Hp �H q ! Lr /. Also since a2 2 PS01;0.R
n/ in the present

case, the classical multiplier theorem for linear operators implies a2 2 M.H q ! H q/.
Hence �I 2M.Hp �H q ! Lr /.

Proof of (6.5) in the casem2 < 0. Notice that �I is supported in j�j � 2j�j and satisfies

j@˛� @
ˇ
��I.�; �/j � C˛;ˇ

�
j�j

j�j

�m2
j�j�j˛j j�j�jˇ j:

Since m2 < 0, a result of Grafakos and Kalton (see Theorem 7.4 in [6]) implies that
�I 2M.Hp �H q ! Lr /.

Another proof of (6.5) in the case m2 < 0. Here we shall give a direct proof of (6.5)
for the case m2 < 0, which uses only a classical method.

Take a function z 2 C10 .R
n/ such that supp z � ¹3�1 � j�j � 3º and z .�/ D 1 for

2�1 � j�j � 2. Then

�I.�; �/ D
X

j�k�3

�.�; �/ z .2�j �/ z .2�k�/ .2�j �/ .2�k�/:

Consider the function

�.2j �; 2k�/ z .�/ z .�/ D a0.2
j �; 2k�/ a1.2

j �/ a2.2
k�/ z .�/ z .�/

with j � k � 3. This function is supported in ¹3�1 � j�j � 3º � ¹3�1 � j�j � 3º and
satisfies the estimate

j@˛� @
ˇ
� ¹�.2

j �; 2k�/ z .�/ z .�/ºj � C˛;ˇ 2
.j�k/m2

with C˛;ˇ independent of j;k 2Z. Hence using the Fourier series expansion, we can write

�.2j �; 2k�/ z .�/ z .�/ D
X

a;b2Zn

c
.a;b/

j;k
eia�� eib�� for j�j < �; j�j < �;

with the coefficient satisfying

(6.10) jc
.a;b/

j;k
j . 2.j�k/m2 .1C jaj/�L .1C jbj/�L

for any L > 0. Changing variables � ! 2�j � and � ! 2�k� and multiplying by the
function  .2�j �/ .2�k�/, we obtain

�.�; �/ .2�j �/ .2�k�/ D
X

a;b2Zn

c
.a;b/

j;k
eia�2

�j � eib�2
�k�  .2�j �/ .2�k�/:
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Thus �I is written as

(6.11) �I.�; �/ D
X

a;b2Zn

X
j�k�3

c
.a;b/

j;k
 .a/.2�j �/  .b/.2�k�/;

with

(6.12)  .a/.�/ D eia�� .�/ and  .b/.�/ D eib�� .�/:

Now, applying Lemma 6.3 to  1 D  .a/ and  2 D  .b/, we obtain X
j�k�3

c
.a;b/

j;k
 .a/.2�j �/  .b/.2�j�/


M.Hp�Hq!Lr /

. .1C jaj/�L .1C jbj/�L k .a/kCN k 
.b/
kCN . .1C jaj/�LCN .1C jbj/�LCN :

Taking L sufficiently large and taking sum over a; b 2 Zn, we obtain (6.5).
Proof of (6.6). Using (6.11), (6.12), and (6.10), we can derive (6.6) from Lemma 6.3.
Proof of (6.7). If m2 < 0, then by using (6.11), (6.12), and (6.10), we can derive (6.7)

from Lemma 6.3.
Assume m2 D 0. Then we write �I as �I.�; �/ D b.�; �/a2.�/, with b given by (6.9).

Since a2 2 PS01;0.R
n/ in the present case (m2 D 0), the linear multiplier theorem implies

a2 2M.H q !H q/. Hence (6.7) will follow if we prove b 2M.BMO�H q ! Lq/. By
the same argument given in the proof of (6.5), we can write b as

b.�; �/ D
X

a;b2Zn

1X
jD�1

c
.a;b/
j  .a/.2�j �/ '.b/.2�jC3�/;

where

jc
.a;b/
j j . .1C jaj/�L .1C jbj/�L;(6.13)

 .a/.�/ D eia�� .�/; '.b/.�/ D eib�� '.�/:(6.14)

Now we apply Lemma 6.4 to  1 D  .a/ and � D '.b/ to obtain X
j�k�3

c
.a;b/

j;k
 .a/.2�j �/ '.b/.2�jC3�/


M.BMO�Hq!Lq/

. .1C jaj/�L .1C jbj/�L k .a/kCN k 
.b/
kCN . .1C jaj/�LCN .1C jbj/�LCN :

Taking L sufficiently large and taking sum over a; b 2 Zn, we obtain that b 2M.BMO �
H q ! Lq/.

Proof of (6.8). This is also derived from Lemma 6.3 by using (6.11), (6.12), and (6.10).
Case 3. For the multiplier �III, the following hold:

�III 2M.Hp
�H q

! Lr / if 0 < p; q <1; 1=p C 1=q D 1=r;
�III 2M.Hp

� BMO! Lp/ if 0 < p <1;
�III 2M.BMO �H q

! Lq/ if m1 < 0 and 0 < q <1;

�III 2M.BMO � BMO! BMO/ if m1 < 0:

In fact, these follow from the results for �I by the obvious symmetry.
This completes the proof of Proposition 2.3.
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6.2. Proof of Proposition 2.4

Let  and ' be the functions as given in Notation 1.6. In the same way as in the proof of
Proposition 2.3, we decompose � into three parts:

�.�; �/ D �I.�; �/C �II.�; �/C �III.�; �/;

where

�I.�; �/ D
X

j�k�3

a0.�; �/ a1.�/  .2
�j �/  .2�k�/;

�II.�; �/ D
X
jj�kj�2

a0.�; �/ a1.�/  .2
�j �/  .2�k�/;

�III.�; �/ D
X

j�k��3

a0.�; �/ a1.�/  .2
�j �/  .2�k�/:

We shall prove that each of �I, �II, and �III belongs to the multiplier class as mentioned in
the proposition.

(1) Let 0 < p <1. The multipliers �II and �III belong to M.Hp � BMO! Lp/. In
fact, these are proved in Cases 1 and 3 of the proof of Proposition 2.3.

We shall prove that �I 2M.Hp � L1 ! Lp/. By the same argument as in the proof
of Proposition 2.3 (see the proof of (6.7)), we can write �I as

(6.15) �I.�; �/ D
X

a;b2Zn

1X
jD�1

c
.a;b/
j  .a/.2�j �/ '.b/.2�jC3�/;

with c.a;b/j satisfying (6.13) and  .a/ and '.b/ defined by (6.14). Then Lemma 6.4 gives

 1X
jD�1

c
.a;b/
j  .a/.2�j �/ '.b/.2�jC3�/


M.Hp�L1!Lp/

. .1C jaj/�L .1C jbj/�Lk .a/kCN k'
.b/
kCN . .1C jaj/�LCN .1C jbj/�LCN :

Taking L sufficiently large and taking sum over a; b 2 Zn, we obtain �I 2M.Hp � L1

! Lp/. Thus the part (1) is proved.
(2) Here we assumem1 < 0. By the results proved in Cases 1 and 3 in the proof of Pro-

position 2.3, the multipliers �II and �III belong to M.BMO � BMO! BMO/. Recall that
the multiplier �I is written as (6.15), with c.a;b/j satisfying (6.13) and .a/ and '.b/ defined
by (6.14). Hence we can prove that �I 2M.BMO � L1 ! BMO/ by using Lemma 6.4.
Thus the part (2) of Proposition 2.4 is proved. This completes the proof of Proposition 2.4.
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