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Symmetrized non-commutative tori revisited

Sayan Chakraborty

Abstract. For the flip action of Z2 on an n-dimensional noncommutative torus A� , using an exact
sequence by Natsume, we compute the K-theory groups of A� Ì Z2. The novelty of our method is
that it also provides an explicit basis of K0.A� Ì Z2/, for any � . As an application, for a simple
n-dimensional torus A� , using classification techniques, we determine the isomorphism class of
A� Ì Z2 in terms of the isomorphism class of A� .

1. Introduction

For n � 2, let Tn denote the space of all n � n real skew-symmetric matrices. The n-
dimensional noncommutative torus A� is the universal C �-algebra generated by unitaries
U1; U2; U3; : : : ; Un subject to the relations

UjUk D e
2�i�jkUkUj ; (1.1)

for j;k D 1; 2; 3; : : : ; n, where � WD .�jk/ 2 Tn. For the two-dimensional noncommutative
tori, since � is determined by only one real number, �12, we will often denote the corre-
sponding two-dimensional noncommutative torus by A�12 . Recall that the action of Z2 on
any n-dimensional A�—often called the flip action—is defined by sending Ui to U�1i , for
all i . The study of the corresponding crossed product C �-algebra A� ÌZ2 for nD 2 goes
back to the work [3]. Quickly this became one of the accessible examples of a noncom-
mutative space. The algebra A� ÌZ2, for a general n, also appears in M(atrix) theory and
String theory; see [17, 18]. The Morita equivalence classes and the isomorphism classes
of A� ÌZ2 play an important role in [17,18]. The K-theory of A� ÌZ2 was computed by
Kumjian [19] for the two-dimensional cases. Kumjian used an exact sequence of Natsume
to compute such K-theory groups. Later, using the similar methods, Farsi and Watling, in
[12], have computed the K-theory of A� Ì Z2 for general n, and for a totally irrational
� (see Definition 3.4). However, in [8], a major gap was pointed out in the paper [12].
Recently this gap was rectified in [6] indirectly using a result of [1]. Using the tools devel-
oped by the authors in [8], we rectify the gap directly in this paper for general n. Note that
this direct method also gives us a basis of K0.A� Ì Z2/, whereas the indirect method in
[6] just computes the dimensions of K0.A� Ì Z2/. Note that K1.A� Ì Z2/ is trivial.
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The authors in [12] used the following exact sequence of Natsume [22] to compute the
K-theory of A� Ì Z2, for a totally irrational � . Since A� Ì Z2 can be written as A� 0 Ì�
.Z2 �Z2/, for some antisymmetric .n� 1/� .n� 1/matrix � 0 and some action �, in this
case Natsume’s exact sequence looks like

K0.A� 0/
i1��i2�
�����! K0.A� 0 Ì Z2/˚ K0.A� 0 Ì Z2/

j1�Cj2�
�����! K0.A� 0 Ì� Z2 � Z2/x?? ??ye1

K1.A� 0 Ì� Z2 � Z2/  �����
j1�Cj2�

K1.A� 0 Ì Z2/˚ K1 .A� 0 Ì Z2/  �����
i1��i2�

K1.A� 0/;

where i1; i2; j1; j2 are natural inclusions. In the proof of the main theorem [12, Theo-
rem 7], it was stated that the map

i1� � i2� W Z
2n�2
�! Z3:2

n�1

;

in the K0-level, is given by Diag.id; 0;�id; 0/. (Note that Diag.id; 0;�id; 0/ should be
replaced by .id; 0; �id; 0/t , as, for example, for n D 2, the map i1� � i2� should be
a 6 � 1 matrix and clearly the Diag.id; 0; �id; 0/ is not.) However, the reference [26,
Corollary 7.9], mentioned therein, does not clearly give the result. This was clarified in
[8, Corollary 7.2, see also Remark 7.5] for n D 3 using the description of the Chern
character map (from [29]), and using an explicit description of the K-theory classes of
A� Ì Z2, for two-dimensional A� . In [8, Corollary 7.2], the authors in fact show that
i1� � i2� W Z2

n�2
! Z3:2

n�1
is given by .id; 0;�id; 0/t , for n D 3.

Recently in a paper with Hua [7], the author of this paper has found a basis of K0.A� /
consisting of projections inside A� , for an n � n strongly totally irrational � (see Defini-
tion 3.15). Using this basis of K0.A� /, for a strongly totally irrational � , in this paper we
prove that

i1� � i2� W Z
2n�2
�! Z3:2

n�1

is given by .id; 0;�id; 0/t for general n. This computes the K-theory of A� Ì Z2, for
all strongly totally irrational � . We invoke Morita equivalence bi-modules for higher-
dimensional noncommutative tori and an explicit description of the boundary map e1 of
the above exact sequence to conclude that i1� � i2�D .id; 0;�id; 0/t . Our method gives an
explicit basis of K0.A� Ì Z2/ for all strongly totally irrational � , in terms of projections
inside A� Ì Z2. Let Pn be the set as in equation (4.6). Then results discussed above give
the following.

Theorem 1.1 (Theorem 4.9). Let � be a strongly irrational n � n matrix. Then

K0.A� Ì Z2/ Š Z3�2
n�1

;

and a generating set of K0.A� Ì Z2/ may be given by ¹Œ1�; ŒP � j P 2 Pnº.

For general � , using a continuous field argument from [10], and ideas from [4], we
construct an explicit basis of K0.A� Ì Z2/ in terms of projective modules over A� Ì Z2.
If Projn denotes the set as defined in Theorem 5.6, then we have the following result.
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Theorem 1.2 (Theorem 5.6, Corollary 4.10). Let � 2 Tn. Then K0.A� Ì Z2/ Š Z3�2
n�1

,
and a generating set of K0.A� Ì Z2/ is given by ¹Œ1�; ŒE� j E 2 Projnº.

It is known that � is non-degenerate (see Definition 6.1) iff A� is simple. When � 2 Tn
is non-degenerate, A� Ì Z2 is an AF algebra (see [10, Theorem 6.6], and also Corol-
lary 6.4). For non-degenerate �1; �2, our construction of explicit bases of K0.A�i Ì Z2/,
i D 1; 2, allows us to construct explicit isomorphisms between the Elliott invariants of
A�1 Ì Z2 and A�2 Ì Z2 out of an isomorphism between the Elliott invariants of A�1 and
A�2 , and the converse holds if, in addition, one of the �i is totally irrational. This results
in the following theorem.

Theorem 1.3 (Theorem 6.2). Let �1; �2 2 Tn be non-degenerate. Let Z2 act on A�1 and
A�2 by the flip actions. Then A�1 Ì Z2 is isomorphic to A�2 Ì Z2 if A�1 is isomorphic to
A�2 . Moreover, if any one of �1; �2 is totally irrational, the converse is true.

The above theorem is a generalization of [10, Theorem 6.4] for general n. It is worth
mentioning that the only canonical action (in the sense of [16]) of a finite cyclic group on
a 3-dimensional torus A� , when � is non-degenerate, is the flip action [16, Theorem 1.4].

It should be noted that, using a completely different approach, Davis and Lück [9]
computed the K-theory of A� Ì Z2 when � is the n � n zero matrix. However, from their
methods it is not clear how to extract a concrete basis for K0.A� Ì Z2/, and hence a
classification type result like Theorem 1.2.

This article is organized as follows. In Section 2, we define A� Ì Z2 through twisted
group C �-algebras and study some basic properties of the crossed product. The K-theory
of A� and a generating set of K0.A� /, for a strongly totally irrational � , are described in
Section 3. Section 4 deals with descriptions of the maps that appear in Natsume’s exact
sequence, and the proof of Theorem 1.1. In Section 5, we use the continuous field approach
of [10] to describe the explicit generators of K0.A� Ì Z2/ for general � , and prove
Theorem 1.2. The classification-type theorem, Theorem 1.3, is proved in Section 6. In
Appendix A, we revisit the construction of the two-dimensional Rieffel projection which
is used in the main construction of Sections 3 and 4, and in Appendix B, we give a class
of examples of strongly totally irrational matrices. Finally, in Appendix C, we explicitly
describe the continuous field which is used in Section 5.

Notation. e.x/ will always denote the number e2�ix , and idm (or without the “m” deco-
ration if the context is clear) will be the m �m unit matrix.

2. A� Ì Z2 – revisited

Let G be a discrete group. A map ! W G �G ! T is called a 2-cocycle if

!.x; y/!.xy; z/ D !.x; yz/!.y; z/ and !.x; 1/ D 1 D !.1; x/

for all x; y; z 2 G.
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The !-twisted left regular representation of the group G is given by the formula:�
L!.x/f

�
.y/ D !.x; x�1y/f .x�1y/;

for f 2 l2.G/. The reduced twisted groupC �-algebraC �.G;!/ is defined as the sub-C �-
algebra ofB.l2.G// generated by the !-twisted left regular representation of the groupG.
Since we do not talk about full group C �-algebras in this paper, we simply call C �.G;!/
the twisted groupC �-algebra ofG with respect to !. When !D 1,C �.G;!/DWC �.G/ is
the usual reduced group C �-algebra of G. We refer to [10, Section 1] for more on twisted
group C �-algebras and the details of the above construction.

Example 2.1. Let G be the group Zn. For each � 2 Tn, construct a 2-cocycle !� on
G by defining !� .x; y/ D e.h��x; yi=2/. The corresponding twisted group C �-algebra
C �.G; !� / is isomorphic to the n-dimensional noncommutative torus A� , which was
defined in the introduction. The isomorphism sends ıxi 2 C

�.Zn; !� / to Ui where xi D
.0; : : : ; 1; : : : ; 0/, with 1 at the i th position.

Example 2.2. Let Z2 act on Zn by sending x to �x. Let us also take a � 2 Tn. Then
we can define a 2-cocycle !0

�
on G WD Zn Ì Z2 by !0

�
..x; s/; .y; t// D !� .x; s � y/. By

[10, Lemma 2.1], we have

C �.Zn Ì Z2; !
0
� / D A� Ìˇ Z2;

where the action ˇ of Z2 on A� is given by sending Ui to U�1i which is the flip action.
For the crossed product with the flip action A� Ìˇ Z2, we shall often drop the decoration
ˇ from A� Ìˇ Z2, and denote it by A� Ì Z2.

Let � be as before and let � 0 be the upper left .n� 1/� .n� 1/ block of � . In this case,
A� can be written as a crossed product A� 0 Ì Z, where the action  of Z on A� 0 is deter-
mined on the positive generator of Z by mapping Ui to e.��in/Ui , for i D 1; : : : ; n � 1.
Now A� Ì Z2 D A� 0 Ì� .Z Ì Z2/ D A� 0 Ì� Z2 � Z2 since Z2 � Z2 is isomorphic to
Z Ì Z2 as groups (cf. [12, Proposition 6]). Note that one copy of Z2 acts on A� 0 by the
flip action ˇ, and the other by ˛ D  ı ˇ.

Lemma 2.3. A� 0 Ì Z2 Š A� 0 Ì˛ Z2.

Proof. A� 0 Ì˛ Z2 is generated by the unitaries U1; U2; : : : ; Un�1 andW 0 D UnW and we
have the relations

W 02 D 1; UjUk D e.�jk/UkUj ; W 0UiW
0
D e.�in/U

�1
i :

Upon setting zUi D e.�12�in/Ui for i D 1; 2; : : : ; n � 1, we have that

zUj zUk D e.�jk/ zUk zUj ; W 0 zUiW
0
D zU�1i :

So A� 0 Ì˛ Z2 is isomorphic to A� 0 Ì Z2.
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3. The construction of Rieffel-type projections and K0.A�/

For a formal definition of the pfaffian pf.A/ of an n � n skew-symmetric matrix A with
n D 2m even, we refer to [4, Definition 3.1]. If n D 2m for some integer m � 1, then for

A D

0BBBBBBBBBBB@

0 �12 � � � � � � �1n

��12
: : :

: : : �2n
:::

: : :

: : :
:::

��1.n�1/
: : :

: : : �.n�1/n
��1n � � � � � � ��.n�1/n 0

1CCCCCCCCCCCA
;

the pfaffian of A is given by
P
�.�1/

j�j…m
sD1��.2s�1/�.2s/, where the sum is taken over

all elements � of the permutation group Sn such that �.2s � 1/ < �.2s/ for all 1 � s � m
and �.1/ < �.3/ < � � � < �.2m � 1/.

Definition 3.1. Let n � 2 be an integer, and let p be an integer such that 1 � p � n
2

.
A 2p-pfaffian minor (or just pfaffian minor) of a skew-symmetric n � n matrix A is the
pfaffian of a sub-matrix AI of A consisting of rows and columns indexed by i1; i2; : : : ; i2p
for some numbers 1� i1 < i2 < � � �< i2p � n, and I D .i1; i2; : : : ; i2p/. Define the length
of I , jI j WD 2p. We often use pfAI as the abbreviation of pf.AI / without special emphasis.

For p D 0, define I to be the empty sequence ;, and in this case, define pf.AI / D
pf.A;/ WD 1. The length of I D ; is defined to be zero.

The set of all such I ’s, for a fixed n and varying p;0� p � n
2

, is denoted by Minor.n/.
Of course, Minor.n/ � Minor.n C 1/, for all n. Note that the number of elements of
Minor.n/ is 2n�1.

Let Tr denote the canonical tracial state on A� satisfying Tr.1/ D 1,

Tr.Um11 U
m2
2 � � �U

mn
n / D 0

unless .m1;m2; : : : ;mn/ D 0 2 Zn. We recall the following fact due to Elliott which will
play a key role.

Theorem 3.2 (Elliott). Let � be a skew-symmetric real n � n matrix. Then there is an
isomorphism h W K0.A� /! ƒevenZn such that exp^.�/ ı h D Tr, where exp^.�/ is the
exterior exponential map

exp^.�/ W ƒ
evenZn ! R;

and such that h.Œ1�/ is the standard generator 1 2ƒ0.Zn/DZ. In particular, Tr.K0.A� //
is the range of the exterior exponential.

We refer to [11, Section 1.3, Theorems 2.2 and 3.1] for the definition of the exterior
exponential and the proof of the above theorem. The range of the exterior exponential is
well known and is given below as a corollary of the above theorem.
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Corollary 3.3. For � 2 Tn, Tr.K0.A� // is the subgroup of R generated by 1 and the
numbers X

�

.�1/j�j…
p
sD1�j�.2s�1/j�.2s/

for 1 � j1 < j2 < � � � < j2p � n, where the sum is taken over all elements � of the permu-
tation group S2p such that �.2s � 1/ < �.2s/ for all 1 � s � p and �.1/ < �.3/ < � � � <
�.2p � 1/.

Noting that
P
�.�1/

j�j…
p
sD1�j�.2s�1/j�.2s/ is exactly the pfaffian of �I , where I D

.i1; i2; : : : ; i2p/, we have

Tr
�

K0.A� /
�
D

X
I2Minor.n/

pf.�I /Z: (3.1)

Except for the case I D ;, it is not clear whether the numbers pf.�I / can be realized
as traces of projections (which we call Rieffel-type projections, if exist) inside A� or not.
For the case I D ;, of course we can take the projection 1 2 A� . In this section, we will
construct Rieffel-type projections for a large class of A� .

Definition 3.4 ([12, Definition 1]). We say that � 2 Tn is totally irrational if exp^.�/ is
an injective map from ƒevenZn to R (cf. [26, Sections 6 and 7]).

It is clear from Elliott’s work (Theorem 3.2) that Tr is injective if and only if � is
totally irrational. Now the range of exp^.�/ is given byX

I2Minor.n/

pf.�I /Z:

Thus � is totally irrational if and only if the numbers pf.�I /, I 2 Minor.n/, are rationally
independent. Note that if � is totally irrational, � is also nondegenerate in the sense of [23]
(see Definition 6.1), and A� is a simple C �-algebra by [23, Theorem 1.9].

For

� D

 
�1;1 �1;2

�2;1 �2;2

!
D

 
�1;1 �1;2

�� t1;2 �2;2

!
2 Tn; n D 2l for l > 1;

such that

�1;1 D

 
0 �12

�21 0

!
D

 
0 �12

��12 0

!
2 T2

is an invertible 2 � 2 matrix,

�2;2 D

0BBBB@
0 �34 � � � �3n

��34 0 � � � �4n
:::

:::
: : :

:::

��3n ��4n � � � 0

1CCCCA 2 Tn�2; �1;2 D

 
�13 �14 � � � �1n

�23 �24 � � � �2n

!
;
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and

�2;1 D

0BBB@
��13 ��23
��14 ��24
:::

:::

��1n ��2n

1CCCA I
we have

��11;1 D

 
0 �

1
�12

1
�12

0

!
2 T2;

and

�2;2 � �2;1�
�1
1;1�1;2

D

0BBBBB@
0 �34 �

��23�14C�13�24
�12

� � � �3n �
��23�1nC�13�2n

�12

��34 C
��23�14C�13�24

�12
0 � � � �4n �

��24�1nC�14�2n
�12

:::
:::

: : :
:::

��3n C
��23�1nC�13�2n

�12
��4n C

��24�1nC�14�2n
�12

� � � 0

1CCCCCA :
Hence we have

�2;2 � �2;1�
�1
1;1�1;2 D

0BBBBBBB@
0

pf�
.1;2;3;4/

�12
� � �

pf�
.1;2;3;n/

�12

�
pf�
.1;2;3;4/

�12
0 � � �

pf�
.1;2;4;n/

�12
:::

:::
: : :

:::

�
pf�
.1;2;3;n/

�12
�

pf�
.1;2;4;n/

�12
� � � 0

1CCCCCCCA :

We have the following lemma.

Lemma 3.5 ([7, Lemma 3.6]). For any integer n � 2, let

� D

�
�1;1 �1;2
�2;1 �2;2

�
D

�
�1;1 �1;2
�� t1;2 �2;2

�
2 Tn;

where �1;1 is invertible 2 � 2 matrix, and one has

pf.�1;1/ pf
�
.�2;2 � �2;1�

�1
1;1�1;2/I 0

�
D pf.�I /; (3.2)

where I 0 2 Minor.n � 2/ n ¹;º and I D .1; 2; i1 C 2; i2 C 2; : : : ; i2l C 2/ for I 0 D
.i1; i2; : : : ; i2l /. In particular, when n is an even number, taking I 0 D .1; 2; : : : ; n� 2/, we
have

pf.�/ D pf.�1;1/ pf.�2;2 � �2;1��11;1�1;2/: (3.3)

Proof. See [7, proof of Lemma 3.6].

In order to explain our symbols, we give the following definition.
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Definition 3.6. For

� D

�
�1;1 �1;2
�2;1 �2;2

�
2 Tn;

where �11 is an invertible 2 � 2 matrix, and n D 2l , l > 1, define

F.�/ D �2;2 � �2;1�
�1
1;1�1;2 2 Tn�2: (3.4)

Hence from (3.3), we have

pf.�/ D pf.�1;1/ pf
�
F.�/

�
: (3.5)

If m is an integer less than l , we denote by Fm the composition of F taken m times
(when this makes sense) and F 0.�/ WD � . Note that F is defined for a � such that �11 is
invertible, but still Fm may not make sense. The following lemma tells us when Fm.�/ is
well defined.

Lemma 3.7 ([7, Lemmas 3.8 and 3.10]). Let � 2 Tn with nD 2l for l > 1. If pf�.1;2;:::;2s/¤
0 for all s D 1; 2; : : : ; l � 1, then Fm.�/ is well defined for m D 1; 2; : : : ; l � 1 and is
given by

Fm.�/ D

0BBBBBBBBB@

0
pf�
.1;2;:::;n�p�1;n�p/

pf�
.1;2;:::;n�p�2/

� � �
pf�
.1;2;:::;n�p�1;n/

pf�
.1;2;:::;n�p�2/

�
pf�
.1;2;:::;n�p�1;n�p/

pf�
.1;2;:::;n�p�2/

0 � � �
pf�
.1;2;:::;n�p;n/

pf�
.1;2;:::;n�p�2/

:::
:::

: : :
:::

�
pf�
.1;2;:::;n�p�1;n/

pf�
.1;2;:::;n�p�2/

�
pf�
.1;2;:::;n�p;n/

pf�
.1;2;:::;n�p�2/

: : : 0

1CCCCCCCCCA
: (3.6)

In particular,

Fm.�/jk D
pf�.1;2;:::;s0;s0Cj;s0Ck/

pf�.1;2;:::;s0/
; p D n � 2m � 2; s0 D n � p � 2 D 2m:

Proof. The lemma is exactly the content of [7, Lemmas 3.8 and 3.10]. See the proof of
those.

Let us use the above lemma to say more aboutAFm.�/ when � 2 Tn is totally irrational
with n D 2l � 2. When � is totally irrational, the entries (above the diagonal) of Fm.�/
are all irrational and independent over Q form D 0; 1; : : : ; l � 1. This is because we have
pf�.1;2;:::;2s/ ¤ 0 for s D 1; 2; : : : ; l � 1, by total irrationality of � . By the above lemma,
we have that Fm.�/ is well defined and

Fm.�/jk D
pf�.1;2;:::;s0;s0Cj;s0Ck/

pf�.1;2;:::;s0/
; p D n � 2m � 2; s0 D n � p � 2 D 2m;
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for m D 1; : : : ; l � 1. Now since � is totally irrational, the numbers pf�.1;2;:::;n�p�2;j;k/,
n� p � 1� j < k � n along with pf�.1;2;:::;n�p�2/, are irrational and independent over Q.
This means that the numbers

pf�.1;2;:::;n�p�2;j;k/
pf�.1;2;:::;n�p�2/

are irrational numbers. Next, to show that these numbers are independent over Q, let us
write X

n�p�1�j<k�n

cj;k
pf�.1;2;:::;n�p�2;j;k/

pf�.1;2;:::;n�p�2/
D 0; cj;k 2 Q:

This implies X
n�p�1�j<k�n

cj;k pf�.1;2;:::;n�p�2;j;k/ D 0; cj;k 2 Q:

But since the numbers pf�.1;2;:::;n�p�2;j;k/, n�p � 1�j <k�n, are independent over Q,
cj;k’s are all zero. Hence the numbers

pf�.1;2;:::;n�p�2;j;k/
pf�.1;2;:::;n�p�2/

; n � p � 1 � j < k � n;

are rationally independent. So we have shown that the entries (above the diagonal) of
Fm.�/ are irrational and rationally independent. Now, using [23, Lemma 1.7], it is easy
to see that Fm.�/ is non-degenerate. Hence AFm.�/ is simple and has a unique tracial
state for m D 0; 1; : : : ; l � 1.

In the following we shall construct Rieffel-type projections for the higher-dimensional
noncommutative tori.

In [27], Rieffel and Schwarz defined (densely) an action of the group SO.n; njZ/
on Tn. Recall that SO.n;njZ/ is the subgroup of SL.2n;Z/, which consists of all matrices
g with the following block form:

g D

�
A B

C D

�
;

where A, B , C , and D are arbitrary n � n matrices over Z satisfying

AtC C C tA D 0; B tD CDtB D 0; and AtD C C tB D idn:

The action of SO.n; njZ/ on Tn is defined as

g� WD .A� C B/.C� CD/�1

whenever C� C D is invertible. The subset of Tn on which the action of every g 2
SO.n; njZ/ is defined is dense in Tn (see [27, p. 291]). We have the following theorem
due to Hanfeng Li.
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Theorem 3.8 ([20, Theorem 1.1]). For any � 2 Tn and g 2 SO.n; njZ/, if g� is defined,
then A� and Ag� are strongly Morita equivalent.

For any R 2 GL.n;Z/, let us denote by �.R/ the matrix
�
R 0
0 .R�1/t

�
2 SO.n; njZ/,

and for any N 2 Tn \Mn.Z/, we denote by �.N/ the matrix
� idn N
0 idn

�
2 SO.n; njZ/.

Notice that the noncommutative tori corresponding to the matrices �.R/� D R�Rt and
�.N/� D � CN are both isomorphic to A� . Also define

SO.n; njZ/ 3 �2p WD

0BBB@
0 0 id2p 0

0 idn�2p 0 0

id2p 0 0 0

0 0 0 idn�2p

1CCCA ; 1 6 p 6 n=2:

We recall the approach of Rieffel [26] to find the A�2p� �A� bimodule and follow the
presentation in [20]. Let us fix a number p with 1 � p � n=2 and let q � 0 be an integer
such that n D 2p C q. Let us write � 2 Tn as 

�1;1 �1;2

�2;1 �2;2

!
;

partitioned into four sub-matrices �1;1; �1;2; �2;1; �2;2, and assume �1;1 to be an invertible
2p � 2p matrix. Write �2p as � . Then

�.�/ D

 
��11;1 ���11;1�1;2

�2;1�
�1
1;1 �2;2 � �2;1�

�1
1;1�1;2

!
: (3.7)

Set A D A� and B D A�.�/. Let M be the group Rp � Zq , G DM � yM, and h�; �i
the natural pairing between M and its dual group yM (our notation does not distinguish
between the pairing of a group and its dual group, and the standard inner product on
a linear space). Also, denote the linear dual of Rk by .Rk/�. Consider the Schwartz
space E1 D S.M/ consisting of smooth and rapidly decreasing complex-valued func-
tions on M.

Denote by A1 D A1
�

and B1 D A1
�.�/

the dense sub-algebras of A and B , respec-
tively, consisting of formal series with rapidly decaying coefficients. Let us consider the
following .2p C 2q/ � .2p C q/ real-valued matrix:

T D

0B@T11 0

0 idq
T31 T32

1CA ;
where T11 is an invertible matrix such that T t11J0T11 D �1;1, J0 D

� 0 idp
�idp 0

�
, T31 D �2;1,

and T32 is any q � q matrix such that �2;2 D T32 � T t32. For our purposes, we take T32 D
�2;2=2.
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We also define the following .2p C 2q/ � .2p C q/ real-valued matrix:

S D

0B@J0.T
t
11/
�1 �J0.T

t
11/
�1T t31

0 idq
0 T t32

1CA :
Let

J D

0B@J0 0 0

0 0 idq
0 �idq 0

1CA
and J 0 the matrix obtained from J by replacing the negative entries of it by zeroes.
Note that T and S can be thought as maps from .Rn/� to Rp � .Rp/� � Rq � .Rq/�

(see the definition of an embedding map in [20, Definition 2.1]), and S.Zn/; T .Zn/ �
Rp � .Rp/� � Zq � .Rq/�. Then we can think of S.Zn/; T .Zn/ as in G via composing
S jZn ; T jZn with the natural covering map

Rp � .Rp/� � Zq � .Rq/� �! G:

Let P 0 and P 00 be the canonical projections of G to M and yM, respectively, and let

T 0 D P 0 ı T; T 00 D P 00 ı T; S 0 D P 0 ı S; S 00 D P 00 ı S:

Then the following set of formulas define a B1-A1 bimodule structure on E1:

.f U �l /.x/ D e
2�ih�T.l/;J 0T.l/=2i

˝
x; T 00.l/

˛
f
�
x � T 0.l/

�
; (3.8)

hf; giA1.l/ D e
2�ih�T.l/;J 0T.l/=2i

Z
G

˝
x;�T 00.l/

˛
g
�
x C T 0.l/

�
f .x/dx; (3.9)

.U
�.�/

l
f /.x/ D e2�ih�S.l/;J

0S.l/=2i
˝
x;�S 00.l/

˛
f
�
x C S 0.l/

�
; (3.10)

B1hf; gi.l/ D Ke
2�ihS.l/;J 0S.l/=2i

Z
G

˝
x; S 00.l/

˛
g
�
x C S 0.l/

�
f .x/dx; (3.11)

where U �
l
; U

�.�/

l
denote the canonical unitaries with respect to the group element l 2 Zn

in A1 and B1, respectively, and K is a positive constant. See [20, Proposition 2.2] for
the following well-known result.

Theorem 3.9. The smooth module E1, with above structures, is a B1 � A1 Morita
equivalence bi-module which can be completed to a strong B � A Morita equivalence
bi-module E .

The completion E of E1 of the above theorem becomes a finitely generated projective
module over A (see the argument before [10, Proposition 4.6]). The resulting class ŒE� 2
K0.A/ is called the Bott class. We will soon see that it will contribute to a generating set
of K0.A/.
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Remark 3.10. The trace of the module E , which was computed by Rieffel [26], is exactly
the absolute value of the pfaffian of the upper left 2p � 2p corner of the matrix � , which
is �1;1. Indeed, [26, Proposition 4.3, p. 289] says that trace of E is j det zT j, where

zT D

 
T11 0

0 idq

!
:

Thus the relation T t11J0T11 D �1;1 and the fact det.J0/ D 1 give the claim.

Let � 2 Tn. We will now see that for each non-zero pfaffian minor of � , we can
construct a projective module over A� such that the trace of this module is exactly the
pfaffian minor. Fix 1 � p � n

2
. Choose I WD .i1; i2; : : : ; i2p/ for i1 < i2 < � � � < i2p , and

assume the pfaffian minor pf.�I / is non-zero (so that �I is invertible). Choose a permu-
tation † 2 �n such that †.1/ D i1, †.2/ D i2; : : : ; †.2p/ D i2p . If U1; U2; : : : ; Un are
generators of A� , there exists an n � n skew-symmetric matrix, denoted by †.�/, such
that U†.1/;U†.2/; : : : ;U†.n/ are generators of A†.�/ and A†.�/ Š A� . Note that the upper
left 2p � 2p block †.�/ is exactly �I , which is invertible. Now consider the projective
module constructed as completion of S.Rp � Zn�2p/ over A†.�/ as in the previous sub-
section and denote it by E�I . The trace of this module is the pfaffian of �I by the remark
above, which is

P
�2….�1/

j�j
Qp
sD1 �i�.2s�1/i�.2s/ . Varying p, and assuming that all the

pfaffian minors are non-zero, we get 2n�1 � 1 projective modules. We call these 2n�1 � 1
elements the fundamental projective modules.

So for a non-zero pf.�I /, I D .i1; i2; : : : ; i2p/, we have constructed a projective module
E�I over A� , whose trace is pf.�I /. A quick thought shows that E�I is an equivalence
bimodule between A� and AgI;†� for some gI;† 2 SO.n; n j Z/. Indeed, let R†I be the
permutation matrix corresponding to the permutation†. Note that†.�/D �.R†I /� . Then
clearly gI;† D �2p�.R†I /. In Section 5, we will write down a basis of K0.A� / using these
fundamental modules.

Next, we will construct specific (Rieffel-type) projections which represent the fun-
damental projective modules. The following theorem is a modification (according to our
needs) of [7, Theorem 3.13]. From now on we shall often denote the canonical trace of
A� by Tr� .

Theorem 3.11. For any even number nD 2l � 2, let � 2 Tn be totally irrational satisfying
pf.F j .�/1;1/ 2 .12 ; 1/ for j D 0; 1; : : : ; l � 1. Then there exists a (Rieffel-type) projection
pm inside AFm.�/ such that

TrFm.�/.pm/ D pf
�
Fm.�/

�
for m D 0; 1; 2; : : : ; l � 1.

Proof. Since � is totally irrational, it follows from the discussion after Lemma 3.7 that
pf.Fm.�/1;1/ is irrational and AFm.�/ is a simple C �-algebra for m D 0; 1; : : : ; l � 1.
Now we do the proof using recursion onm. FormD l � 1, F l�1.�/ is a 2 � 2 matrix and
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pf.F l�1.�/1;1/D pf.F l�1.�// 2 .1
2
; 1/ is irrational, the construction of such projection is

well known (the projection is known as Rieffel projection), and the trace of this projection
is pf.F l�1.�// (see Appendix A.1). Now suppose that for some m 2 ¹1; 2; : : : ; l � 1º,
there is such a projection in AFm.�/ such that

TrFm.�/.pm/ D pf
�
Fm.�/

�
: (3.12)

Then we want to prove that there is a projection pm�1 in AFm�1.�/ with TrFm�1.�/.pm�1/
D pf.Fm�1.�//. We follow the method of pp. 198–199 in [1] to construct such a projec-
tion. Write

Fm�1.�/ D

�
Fm�1.�/1;1 Fm�1.�/1;2
Fm�1.�/2;1 Fm�1.�/2;2

�
2 Tn�2.m�1/;

where Fm�1.�/1;1 is a 2� 2 block. From the previous discussion of this section,AFm�1.�/
is strong Morita equivalent to A�.Fm�1.�//, where

�
�
Fm�1.�/

�
D

 
Fm�1.�/�11;1 �Fm�1.�/�11;1F

m�1.�/1;2

Fm�1.�/2;1F
m�1.�/�11;1 Fm�1.�/2;2 � F

m�1.�/2;1F
m�1.�/�11;1F

m�1.�/1;2

!

D

 
Fm�1.�/�11;1 �Fm�1.�/�11;1F

m�1.�/1;2

Fm�1.�/2;1F
m�1.�/�11;1 Fm.�/

!
:

Denote the Rieffel projection in AFm�1.�/11 , by e and

TrFm�1.�/.e/ D pf.Fm�1.�/1;1/

(see Appendix A.1 for the construction of such e; here we use the assumption that
pf.Fm�1.�/1;1/ is in .1

2
; 1/). It follows that A�.Fm�1.�// Š eAFm�1.�/e, and we denote

this isomorphism by  (see Appendix A.1 for the description of  ). By the induction
hypothesis and equation (3.12), there exists a projection e0 2 AFm.�/ � A�.Fm�1.�// with
TrFm.�/.e0/ D pf.Fm.�//.

Now for the tracial state TrFm�1.�/ on AFm�1.�/, since  .1A�.Fm�1.�/// D e and

TrFm�1.�/.e/ D pf.Fm�1.�/1;1/;

we have
1

pf
�
Fm�1.�/1;1

� TrFm�1.�/ ı 

is a tracial state on A�.Fm�1.�//. But this tracial state is Tr�.Fm�1.�// as A�.Fm�1.�// has
a unique tracial state (being Morita equivalent to AFm�1.�/, Fm�1.�/ is nondegenerate).
Note e0 2 AFm.�/ � A�.Fm�1.�//, so Tr�.Fm�1.�//.e0/ D TrFm.�/.e0/. Then we get

1

pf.Fm�1.�/1;1/
TrFm�1.�/ ı .e

0/

D Tr�.Fm�1.�//.e
0/ D TrFm.�/.e0/ D pf

�
Fm.�/

�
: (3.13)
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Let pm�1 WD  .e0/. From (3.13), we get

TrFm�1.�/.pm�1/ D TrFm�1.�/
�
 .e0/

�
D pf

�
Fm�1.�/1;1

�� 1

pf
�
Fm�1.�/1;1

� TrFm�1.�/ ı .e
0/

�
D pf

�
Fm�1.�/1;1

�
pf
�
Fm.�/

�
D pf

�
Fm�1.�/

�
;

using equations (3.2) and (3.3).

The above theorem tells us how to construct a higher-dimensional (Rieffel-type) pro-
jection with corresponding trace values from a low-dimensional projection under certain
conditions. By Lemma 3.7, we know that

pf
�
F j .�/1;1

�
D

pf�.1;2;:::;n�p�1;n�p/
pf�.1;2;:::;n�p�2/

; p D n � 2j � 2; j D 1; : : : ; l � 1:

Therefore, the conditions of the above theorem can also be described as

pf�.1;2;:::;n�p�1;n�p/
pf�.1;2;:::;n�p�2/

2

�
1

2
; 1

�
for p D n � 2j � 2; j D 1; : : : ; l � 1

and �ij 2 .12 ; 1/ for i < j . (The last condition is stronger though.) We record this fact as
a corollary below.

Corollary 3.12. Let � 2 Tn be totally irrational for n D 2l � 2. If � satisfies �ij 2 .12 ; 1/
for i < j , and

pf�.1;2;:::;n�p�1;n�p/
pf�.1;2;:::;n�p�2/

2

�
1

2
; 1

�
for p D n � 2j � 2; j D 1; : : : ; l � 1;

then there exists a (Rieffel-type) projection pm inside AFm.�/ such that

TrFm.�/.pm/ D pf
�
Fm.�/

�
for m D 0; 1; 2; : : : ; l � 1.

In particular, when m D 0, we have the following.

Corollary 3.13. Let � 2 Tn be totally irrational for n D 2l � 2. If � satisfies �ij 2 .12 ; 1/
for i < j , and

pf�.1;2;:::;n�p�1;n�p/
pf�.1;2;:::;n�p�2/

2

�
1

2
; 1

�
for p D n � 2j � 2; j D 1; : : : ; l � 1;

then there exists a (Rieffel-type) projection p D p0 inside A� such that Tr.p/ D pf.�/.
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Let us now show that under suitable conditions on � , the numbers coming in the right-
hand side of equation (3.1) may be realized as traces of the Rieffel-type projections in A� .

Theorem 3.14. Let � 2 Tn be totally irrational. If for some I 2 Minor.n/ with jI j D
2m � 2, pf.F j .�I /1;1/ 2 .12 ; 1/, for all j D 0; 1; : : : ;m� 1, then there exist (Rieffel-type)
projections PI , such that

Tr.PI / D pf.�I / (3.14)

where Tr is the canonical tracial state on A� .

Proof. We use �I instead of � in Corollary 3.13, noting that �I is totally irrational as well,
to get Tr.PI / D pf.�I /.

We will now see that the above projections form a generating set of K0.A� /, when �
is totally irrational, under the assumptions of the above theorem.

Definition 3.15. We say that � is strongly totally irrational if � D .�jk/ 2 Tn is a totally
irrational matrix such that

pf
�
F j .�I /1;1

�
2

�
1

2
; 1

�
(3.15)

for all I 2 Minor.n/ with jI j D 2m � 2, and for all j D 0; 1; : : : ; m � 1.

We refer to Appendix B for more on strongly totally irrational matrices and for the
construction of examples of such matrices.

Theorem 3.16. For any integer n� 2, let � 2 Tn be strongly totally irrational. Then there
exist (Rieffel-type) projections PI , for every I 2 Minor.n/ inside A� , such that Tr.PI / D
pf.�I /, where Tr is the canonical tracial state onA� . Moreover, a generating set of K0.A� /
is given by ¹ŒPI � j I 2 Minor.n/º.

Proof. For I ¤ ;, by Theorem 3.14 and from the definition of strong total irrationality,
we know that those projections ¹PI º exist. For I D ;, PI D 1 by definition. Now since �
is totally irrational, Tr is injective. So ¹ŒPI � j I 2Minor.n/º are the generators of K0.A� /
by equation (3.1).

3.1. Pimsner–Voiculescu exact sequence and the Rieffel-type projections

Recall that for crossed products like A Ì Z, the Pimsner–Voiculescu sequence looks like

K0.A/
id��1�
�����! K0.A/

i�
�����! K0.A Ì Z/x?? ??ye2

K1.A Ì Z/  �����
i�

K1.A/  �����
id��1�

K1.A/

where i is the inclusion.
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Let � 2 Tn and � 0 be the upper left .n� 1/� .n� 1/ block of � . Let  be the automor-
phism on A� 0 given by .Ui /D e.��in/Ui for i D 1; : : : ; .n� 1/, as in Section 2. For the
crossed product algebra A� 0 Ì Z Š A� , the Pimsner–Voiculescu sequence becomes

K0.A� 0/
id��1�
�����! K0.A� 0/

i�
�����! K0.A� /x?? ??ye2

K1.A� /  ����� K1.A� 0/  �����
id��1�

K1.A� 0/

Since  is homotopic to the identity map [23, Lemma 1.5], id � �1� is the zero map.
Hence we get the following exact sequences:

0 �! K0.A� 0/
i�
��! K0.A� /

e2
��! K1.A� 0/ �! 0; (3.16)

0 �! K1.A� 0/ �! K1.A� / �! K0.A� 0/ �! 0: (3.17)

From these two exact sequences (along with the fact K0.C.T // D K1.C.T // D Z), by
induction on n we get

K0.A� / Š Z2
n�1

Š K1.A� /:

Now we want to fit the Rieffel-type projections in equation (3.16). In order to achieve
that, we again assume � to be strongly totally irrational. Now we know from Theo-
rem 3.16 that for different I WD .i1; i2; : : : ; i2p/ such that I 2 Minor.n/, the K-theory
classes of the Rieffel-type projections P �I WD PI generate K0.A� /. Now we claim that for
I 2 Minor.n � 1/,

i�
�
ŒP �

0

I �
�
D ŒP �I �: (3.18)

This follows from the fact that they have the same trace in A� , which is pf.�I /. Now
if AMinor.n/ denotes the set of all I 2 Minor.n/ such that i2p D n, i.e., AMinor.n/ D
Minor.n/ nMinor.n � 1/, the collection ¹ŒP �I �ºI2eMinor.n/

maps via e2 to a generating set
of K1.A� 0/ which follows from the fact that equation (3.16) is exact. We record these
observations in the following proposition.

Proposition 3.17. For a strongly totally irrational �, i�.ŒP�
0

I �/DŒP
�
I �, forI2Minor.n�1/,

and ¹e2.ŒP �I �/ºI2eMinor.n/
form a generating set of K1.A� 0/.

4. K-theory of A� Ì Z2

Before computing the K-theory groups of A� Ì Z2 we will see how the Rieffel-type pro-
jections give rise to K0-classes of A� ÌZ2. We start with the following well known facts.

Proposition 4.1. Suppose F is a finite group acting on a C �-algebra A by the action ˛.
Also suppose that E is a finitely generated projective (right) A-module with a right action
T W F ! Aut.E/, written .�; g/� �Tg , such that �.Tg/a D .�˛g.a//Tg for all � 2 E ,
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a 2 A, and g 2 F . Then E becomes a finitely generated projective A Ì F module with
action defined by

� �

�X
g2F

agıg

�
D

X
g2F

.�ag/Tg :

Also, if we restrict the new module to A, we get the original A-module E , with the
action of F forgotten.

Proof. This is exactly the construction of the Green–Julg map, which is a map from
KF0 .A/, the F -equivariant K-theory of A, to K0.A Ì F /. See [10, Proposition 4.5].

For a general crossed product A Ì Z2, for an action ˇ of Z2 on A, the above Green–
Julg map is easy to describe for Z2-invariant projections in A. If P is a Z2-invariant
projection in A, the corresponding projection in A Ì Z2 is P

2
.1CW /, where W denotes

the canonical non-trivial unitary of Z2 in A Ì Z2. Also define the natural map (regular
representation) p which goes from A Ì Z2 to M2.A/ such that

p.aC bW / D

�
a b

ˇg.b/ ˇg.a/

�
; a; b 2 A; (4.1)

where g is the non-trivial element of Z2. This induces a map p� W K0.A ÌZ2/! K0.A/,
which is known to be the inverse of the Green–Julg map (see [14, p. 191]).

With the above facts in hand, we start with the projective modules overA� which were
described in the previous section. Recall that the projective module E is a completion of
the space S.Rp � Zq/, for some p; q 2 Z�0 such that n D 2p C q. For the flip action of
Z2 on A� , we define the following action, again called the flip action, of Z2 on the dense
subspace S.Rp � Zq/ of E by

Tg.f /.x; t/ WD f .�x;�t /; (4.2)

where g is the non-trivial element of Z2.
Using equations (3.8) and (3.9) it is quickly checked that Z2 defines an action on E

which is compatible with the flip action of Z2 on A� in the sense of Proposition 4.1 (cf.
[8, Section 7], [5, Section 3]). In particular, we have

hf Tg ; f
0TgiA1 D ˇg

�
hf; f 0iA1

�
; (4.3)

and
f .Tg/a D

�
fˇg.a/

�
Tg ; (4.4)

for f and f 0 2 S.Rp � Zq/, a 2 A� (see [5, Equation 3.9, Equation 3.11]). Similarly,
the same set of equations holds true for the left A�.�/-module E , where �.�/ is as in
equation (3.7). Hence E becomes a projective module over the crossed product A� Ì
Z2. We call this module zE . Let TrZ2

�
denote the canonical trace on A� Ì Z2 defined by

TrZ2
�
.a C bW / D Tr� .a/ for a; b 2 A� . From [5, Lemma 4.1] we can compute the trace
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of the K-theory class of zE as

TrZ2
�

�
Œ zE�
�
D

Tr�
�
ŒE�
�

2
: (4.5)

Our next step is to understand how the Rieffel-type projections P �I give various pro-
jections in A� Ì Z2. First let us introduce some notations. For I D .i1; i2; : : : ; i2p/ 2

Minor.n/ n ¹;º, define I c WD .i2p C 1; i2p C 2; : : : ; n/, and for I D ;, define I c WD
.1; 2; : : : ; n/. Also regarding I c as a finite sequence, by J � I c we mean a finite subse-
quence of I c , with the understanding that J can be the empty sequence too. Finally for
J D .j1; j2; : : : ; jq/ � I

c , define UJ WD Uj1Uj2 � � �Ujq 2 A� , and for J D ;, UJ WD 1.
The length jI c j of I c (or any sub-sequence of I c) is defined as the number of elements
in I c .

From Appendix A.2, we know that all the P �I ’s are Z2-invariant. (This follows from
the fact that in Theorem 3.11,  is Z2-equivariant and e is Z2-invariant.) Now let us
see how these give rise to different projections in A� Ì Z2. For each I 2 Minor.n/, fix
a J � I c as before. Let xJ denote .jq; jq�1; : : : ; j1/ for J D .j1; j2; : : : ; jq/. Let rJ
be the number such that UJ D e.�2rJ /U xJ . Of course, rJ is a number involving �jljm ,
1 � l < m � q. Now one quickly checks that e.rJ /UJW DW WJ is a self-adjoint unitary
in A� Ì Z2. If I D .i1; i2; : : : ; i2p/, then WJUikWJ D e.rJ;ik /U

�1
ik

, for some number
rJ;ik involving �ikjl , 1 � l � q. As in Lemma 2.3, set

zUik D e
�
�
rJ;ik
2

�
Uik ;

and we have WJ zUikWJ D zU
�1
ik

such that A�I is generated by ¹ zUik ºk , and A�I Ì Z2 sits
canonically inside A� Ì Z2. Here in the crossed product A�I Ì Z2, Z2 acts by the flip
action and the generator of Z2 is identified withWJ insideA� ÌZ2. Now we can construct
P �I;J WD

P �I
2
.1CWJ / 2 A�I Ì Z2 � A� Ì Z2, since P �I is flip invariant projection inside

A�I . For I D ;, P �I;J WD
1
2
.1CWJ /. Hence for each I 2Minor.n/, and each J � I c , we

have constructed projections inside A� Ì Z2. Varying I , and varying J , we get a family
of projections ¹P �I;J º in A� Ì Z2.

Now we claim that we have exactly 3 � 2n�1 � 1 projections ¹P �I;J º if we restrict to
jJ j � 2; i.e., the set

Pn WD
[

I2Minor.n/

®
P �I;J j J � I

c ; jJ j � 2
¯

(4.6)

has 3 � 2n�1 � 1 many elements. This can be shown using a simple induction argument.
The statement holds for nD 2;3 simply by counting. Now assume jPnj D 3 � 2n�1 � 1, and
we need to show that jPnC1j D 3 � 2n � 1. If I 2Minor.n/, of course, I 2Minor.nC 1/,
and if J � I c , if we view I as an element of Minor.n/, then we also have J � I c if we
view I as an element of Minor.nC 1/. Hence we may regard Pn as a subset of PnC1.
Thus we only need to show that there are 3 � 2n � 3 � 2n�1 D 3 � 2n�1 D 2n C 2n�1 extra
elements in PnC1nPn. These extra elements are described below.
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• For I 2 Minor.n/, if we view I inside Minor.nC 1/, we have elements P �I;J , where
J D .nC 1/; and for I 2 AMinor.nC 1/, we have elements P �I;J , where J D ;. This
way we get 2n number of elements.

• For any I 2 AMinor.j / with 2 � j � n� 1, we have .n� j / number of elements P �I;J ,
where J D .j C 1; nC 1/; .j C 2; nC 1/; : : : ; .n; nC 1/. This way we get 2n�1 � n
number of elements.

• Finally for I D;, we have n number of elementsP �I;J , where J D .1;nC1/; .2;nC1/;
: : : ; .n; nC 1/.

Combining the above extra elements, we get our claim. Shortly we will see that the K-
theory classes of the projections in Pn (along with the element Œ1�) generate K0.A� ÌZ2/.

Let us recall the exact sequence due to Lance and Natsume. For A� Ì Z2 Š A� 0 Ì�
Z2 � Z2 (see Section 2), we have the following exact sequence [22]:

K0.A� 0/
i1��i2�
�����! K0.A� 0 Ì˛ Z2/˚ K0 .A� 0 Ì Z2/

j1�Cj2�
�����! K0.A� 0 Ì� Z2 � Z2/x?? ??ye1

K1.A� 0 Ì� Z2 � Z2/  �����
j1�Cj2�

K1.A� 0 Ì Z2/˚ K1.A� 0 Ì Z2/  �����
i1��i2�

K1.A� 0/

where i1; i2; j1; j2 are natural inclusions. Also A� 0Ì�Z2 �Z2 is isomorphic to .A� 0ÌZ/
Ì Z2, where Z2 acts on A� 0 by the flip action and on the group Z by x ! �x. Before
computing K0.A� 0 Ì� Z2 � Z2/, we will first explicitly describe the maps in the above
exact sequence.

The map e1. As an immediate corollary of [8, Theorem 7.1], we have the following.

Proposition 4.2. The diagram

K0.A� 0 Ì� Z2 � Z2/
e1 //

p�

((

K1.A� 0/

K0.A� 0 Ì Z/

e2

OO

is commutative, where p� is the map induced by the natural map (see equation (4.1))
p W A� 0 Ì� Z2 � Z2 Š .A� 0 Ì Z/ Ì Z2 ! M2.A� 0 Ì Z/.

Proof. Immediate from [8, Theorem 7.1].

Now from Proposition 3.17, ¹e2.ŒP �I �/ºI2eMinor.n/
form a generating set of K1.A� 0/,

for a strongly totally irrational � . But for I 2 AMinor.n/,

p�
�
ŒP �I;;�

�
D p�

��
P �I
2
.1CW /

��
D ŒP �I �;

since p� acts as the inverse of the Green–Julg map in Proposition 4.1. So we have the
following.
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Corollary 4.3. For a strongly totally irrational � , ¹e1.ŒP �I;;�/ºI2eMinor.n/
form a generating

set of K1.A� 0/.

Proof. Use Proposition 4.2.

The map j1� C j2�. Next we want to understand the map

j1� C j2� W K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/ �! K0.A� 0 Ì� Z2 � Z2/;

for the elements in Pn�1. Since both maps j1; j2 are inclusion maps, and A� 0 Ì˛ Z2 is
isomorphic to A� 0 ÌZ2 by Lemma 2.3, it is enough to work with j2�. Now j2� is induced
from the natural inclusion map

j2 W A� 0 Ì Z2 �! A� Ì Z2:

We now have the following proposition.

Proposition 4.4. For a strongly totally irrational � ,

j2�
�
ŒP �

0

I;J �
�
D ŒP �I;J �;

for I 2 Minor.n � 1/, J � I c .

Proof. This is clear from equation (3.18) as the map j2 respects the inclusion map of A� 0
to A� , and respects the unitaries coming from Z2.

The map i1� � i2�. We start with the following lemma.

Lemma 4.5. The map
i2� W K0.A� / �! K0.A� Ì Z2/

is injective when � is strongly totally irrational.

Proof. If TrZ2
�

denotes the canonical tracial state on A� ÌZ2, we have TrZ2
�
.i2�.ŒP

�
I �//D

pf.�I /. Recall that ¹ŒP �I � j I 2Minor.n/º, and generate K0.A� /. Now if i2�.ŒX�/D 0, writ-
ing ŒX� D

P
rI ŒP

�
I � for rI 2 Z, we have i2�.

P
rI ŒP

�
I �/ D 0. Since pf.�I / are rationally

independent, taking TrZ2
�

of the expression i2�.
P
rI ŒP

�
I �/ gives rI D 0.

Corollary 4.6. K1.A� Ì Z2/ D 0, when � is strongly totally irrational.

Proof. From the left side of the diagram

K0.A� 0/
i1��i2�
�����! K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/

j1�Cj2�
�����! K0.A� 0 Ì� Z2 � Z2/x?? ??ye1

K1.A� 0 Ì� Z2 � Z2/  �����
j1�Cj2�

K1.A� 0 Ì Z2/˚ K1.A� 0 Ì Z2/  �����
i1��i2�

K1.A� 0/

we compute K1.A� Ì Z2/ D K1.A� 0 Ì� Z2 � Z2/ by induction on n. Since i1� � i2� is
injective from Lemma 4.5, and we know K1.A� ÌZ2/D 0 for the low-dimensional cases,
the result follows.
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Next we want to understand the map

i1� � i2� W K0.A� 0/ �! K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/;

for a Rieffel-type projection PI , I 2Minor.n� 1/. Since both maps i1�; i2� are inclusion
maps, and A� 0 Ì˛ Z2 is isomorphic to A� 0 Ì Z2 by Lemma 2.3, it is enough to work
with i2�. Note that i2� is induced from the natural inclusion map

i2 W A� 0 �! A� 0 Ì Z2:

We now have the following proposition.

Proposition 4.7. Let � be an n�n strongly totally irrational matrix and let i2� WK0.A�/!
K0.A� ÌZ2/ be induced by the canonical inclusion map i2. Then for I 2Minor.n/ n ¹;º,

i2�
��
P �I
��
D 2

�
P �I;;

�
�
�
P �I 00;;

�
C
�
P �I 00;.i2p�1/

�
�
�
P �I 00;.i2p/

�
C
�
P �I 00;.i2p�1;i2p/

�
;

where I D .i1; i2; : : : ; i2p/ and I 00 is obtained from I by deleting the last two numbers.

We would like to prove the above proposition by induction on the length jI j of I .
Before we go to the proof, we explain the two-dimensional case in the lemma below.

Lemma 4.8 (cf. the proof of [8, Corollary 7.2]). Let �12 be an irrational number in .1
2
; 1/

and let i2� W K0.A�12/! K0.A�12 Ì Z2/ be induced by the canonical inclusion map i2.
Then

i2�
��
P
�12
.1;2/

��
D 2

�
P
�12
.1;2/;;

�
�
�
P
�12
;;;

�
C
�
P
�12
;;.1/

�
�
�
P
�12
;;.2/

�
C
�
P
�12
;;.1;2/

�
:

Proof. In both cases, the two K-theory elements in RHS and in LHS have the same vector
trace .� I 0; 0; 0; 0/ [29, p. 597]. Then the result follows from [29, Corollary 5.6].

Proof of Proposition 4.7. As we already mentioned, we will prove this by induction on
the length of I , jI j. For any I 2 Minor.n/ n ¹;º we first have the following commutative
diagram:

K0.A�I /
i2� //

i�

��

K0.A�I Ì Z2/

j2�

��

K0.A� /
i2� // K0.A� Ì Z2/

where all the maps are induced by inclusions. For jI j D 2, I D .i1; i2/, using Lemma 4.8
and using the above commutative diagram (along with Proposition 4.4), we indeed get

i2�
��
P �.i1;i2/

��
D 2

�
P �.i1;i2/;;

�
�
�
P �;;;

�
C
�
P �
;;.i1/

�
�
�
P �
;;.i2/

�
C
�
P �
;;.i1;i2/

�
:

Now for the induction step, assume that the statement is true for any I with jI j < 2p.
Then we will show that the statement is true for an I with jI j D 2p. Assume I D
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.i1; i2; : : : ; i2p/. Due to the commutative diagram, it is enough to prove the statement view-
ing i2� as a map from K0.A�I / to K0.A�I ÌZ2/. Hence we can assume I D .1;2; : : : ; 2p/,
and � D �I , and we want to show

i2�
�
ŒP �.1;2;:::;2p/�

�
D 2

�
P �I;;

�
�
�
P �I 00;;

�
C
�
P �I 00;.2p�1/

�
�
�
P �I 00;.2p/

�
C
�
P �I 00;.2p�1;2p/

�
:

From Appendix A.2, we have the following commutative diagrams:

A�.�/
i2 //

 

��

A�.�/ Ì Z2

 

��

eA�e
i2 //

i

��

eA�e Ì Z2

i

��

A�
i2 // A� Ì Z2

K0.A�.�//
i2� //

 �

��

K0.A�.�/ Ì Z2/

 �

��

K0.eA�e/
i2� //

i�

��

K0.eA�e Ì Z2/

i�

��

K0.A� /
i2� // K0.A� Ì Z2/

where

�.�/ WD

 
��11;1 ���11;1�1;2

�2;1�
�1
1;1 �2;2 � �2;1�

�1
1;1�1;2

!
for

� D

 
�1;1 �1;2

�2;1 �2;2

!
:

Here, as before �1;1 is a 2�2matrix and as in the proof of Theorem 3.11. Let V1;V2; : : : ;
V2p be the generators of A�.�/ as in Appendix A. As in the previous section, let F.�/ D
�2;2 � �2;1�

�1
1;1�1;2 2 Tn�2. Then the generators of AF.�/ � A�.�/ are V3; V4; : : : ; V2p .

Take J D .1; 2; : : : ; 2p � 2/. Then by the induction step, we have

i2�
��
P
F.�/
J

��
D 2

�
P
F.�/
J;;

�
�
�
P
F.�/
J 00;;

�
C
�
P
F.�/

J 00;.2p�3/

�
�
�
P
F.�/

J 00;.2p�2/

�
C
�
P
F.�/

J 00;.2p�3;2p�2/

�
:

From the proof of Theorem 3.11, we know that  .P F.�/J / D P �I . It is clear that

 
�
P
F.�/
J;;

�
D P �I;;:

Now we want to show that  �.ŒP
F.�/

J 00;.2p�3/
�/ D ŒP �

I 00;.2p�1/
�. By definition,

P
F.�/

J 00;.2p�3/
D
P
F.�/
J 00

2
.1C V2p�1W /:

Now .P F.�/J 00 /DP �I 00 2eA�e. .P F.�/
J 00;.2p�3/

/D
P �
I 00

2
.eC .V2p�1/W /. But with the com-

putation of 1
2
.e C  .V2p�1/W / in Appendix A.2, along with the arguments at the end of
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Appendix A.2, it is shown that
P �
I 00

2
.eC .V2p�1/W / is homotopic toP �I 00 �

e
2
.1CU2p�1W /

in A� Ì Z2. Since P �I 00 2 eA�e, we indeed have

 �
��
P
F.�/

J 00;.2p�3/

��
D
�
P �I 00;.2p�1/

�
:

A similar argument shows that  �.ŒP
F.�/

J 00;.2p�2/
�/ D ŒP �

I 00;.2p/
�. Now

 
�
P
F.�/

J 00;.2p�3;2p�2/

�
D  

�
P
F.�/
J 00

2

�
1C e

�
�

pf�.1;2;2p�1;2p/
2�12

�
V2p�1V2pW

��
:

Like before, this element is homotopic to

P �I 00 �
e

2

�
1C e

�
�
�12�2p�12p

2�12

�
U2p�1U2pW

�
D P �I 00 �

e

2

�
1C e

�
�
1

2
�2p�12p

�
U2p�1U2pW

�
:

Hence  �.ŒP
F.�/

J 00;.2p�3;2p�2/
�/ D ŒP �

I 00;.2p�1;2p/
�. Now the above commutative diagram

(involving the K-theory) gives the result.

The computation of K0.A� Ì Z2/. With the above results in hand, we now come to
the computation of K0.A� Ì Z2/. Let us first see some lower-dimensional cases, i.e., the
cases n D 2; 3.

Assume �12 2 .12 ; 1/ is an irrational number. We will compute the K-theory K0.A�12 Ì
Z2/ and write down an explicit basis. Note that A�12 Ì Z2 is generated by the unitaries
U1, U2 and W such that W 2 D 1, U1U2 D e.�12/U2U1, WUW D U �, W VW D V �.

We now have

K0
�
C.T /

� i1��i2�
�����! K0

�
C.T / Ì˛ Z2

�
˚ K0

�
C.T / Ì Z2

� j1�Cj2�
�����! K0.A�12 Ì Z2/x?? ??ye1

0  ����� 0  ����� K1
�
C.T /

�
In this case i1�� i2�.Œ1�/D.Œ1�;�Œ1�/, and since we have already described the map e1

(Corollary 4.3), we get a basis of K0.A�12 Ì Z2/ which is given by the K-theory classes
of the following elements:

• 1;

• P
�12
;;; D

1
2
.1CW /;

• P
�12
;;.1/
D

1
2
.1C U1W /;

• P
�12
;;.2/
D

1
2
.1C U2W /;

• P
�12
;;.12/

D
1
2
.1C e.�1

2
�12/U1U2W /;

• P
�12
I;; D

P
�12
I

2
.1CW /, for I D .1; 2/.
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Hence a generating set of K0.A�12 Ì Z2/ is given by ¹Œ1�; ŒP � j P 2 P2º, using the nota-
tions introduced just after Corollary 4.3.

Let us now look at the case n D 3. Let

� D

0B@ 0 �12 �13

��12 0 �23

��13 ��23 0

1CA
be a strongly irrational 3 � 3 matrix as in Definition 3.15. In this case it means that
�12; �13; �23 2 .

1
2
; 1/, and they are rationally independent. We have the following exact

sequence in this case:

K0.A�12/
i1��i2�
�����! K0.A�12 Ì˛ Z2/˚ K0 .A�12 Ì Z2/

j1�Cj2�
�����! K0.A� Ì Z2/x?? ??ye1

0  ����� 0  ����� K1.A�12/

Using the above two-dimensional computations, we first write down a basis for A�12 Ì˛
Z2 and A�12 Ì Z2. A basis of K0.A�12 Ì Z2/ is given by the K-theory classes of the
following elements.

• 1;

• P
�12
;;; D

1
2
.1CW /;

• P
�12
;;.1/
D

1
2
.1C U1W /;

• P
�12
;;.2/
D

1
2
.1C U2W /;

• P
�12
;;.12/

D
1
2
.1C e.�1

2
�12/U1U2W /;

• P
�12
I;; D

P
�12
I

2
.1CW /, for I D .1; 2/.

NowA�12 Ì˛ Z2 is generated by the unitariesU1,U2, andW 0DU3W and we have the
relationsW 02D1,U1U2D e.�12/U2U1,W 0U1W 0D e.�13/U�11 ,W 0U2W 0D e.�23/U�12 .
Using Lemma 2.3 and the above two-dimensional computation to get a basis ¹Œ1�; Œ zP � j
P 2 Pnº of K0.A�12 Ì˛ Z2/ by writing zP we indicate that the class of P is taken inside
A�12 Ì˛ Z2. This is explicitly given by the K-theory classes of the following elements:

• 1;

• zP
�12
;;; D

1
2
.1C U3W /;

• zP
�12
;;.1/
D

1
2
.1C e.�1

2
�13/U1U3W /;

• zP
�12
;;.2/
D

1
2
.1C e.�1

2
�23/U2U3W /;

• zP
�12
;;.12/

D
1
2
.1C e.�1

2
.�12 C �13 C �23//U1U2U3W /;

• zP
�12
I;; D

P
�12
I

2
.1C U3W /, for I D .1; 2/.
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Now in the above exact sequence,

i1� � i2�
�
Œ1�
�
D
�
Œ1�;�Œ1�

�
;

and by Proposition 4.7 (or by Lemma 4.8), we have

i2�
��
P
�12
.1;2/

��
D 2

�
P
�12
.1;2/;;

�
�
�
P
�12
;;;

�
C
�
P
�12
;;.1/

�
�
�
P
�12
;;.2/

�
C
�
P
�12
;;.1;2/

�
:

Similarly,

i1�
��
P
�12
.1;2/

��
D 2

�
zP
�12
.1;2/;;

�
�
�
zP
�12
;;;

�
C
�
zP
�12
;;.1/

�
�
�
zP
�12
;;.2/

�
C
�
zP
�12
;;.1;2/

�
:

Since Œ1� and ŒP �12
.1;2/

� generate K0.A�12/, looking at the above formulas of i1� � i2� for
Œ1� and ŒP �12

.1;2/
�, we can choose a basis of K0.A�12 Ì˛ Z2/˚ K0.A�12 ÌZ2/ such that the

map i1� � i2� is exactly .id; 0;�id; 0/t . Now we want to get the basis of K0.A� Ì Z2/.
For this let us consider a basis of K0.A�12 Ì˛ Z2/˚ K0.A�12 Ì Z2/ given by®

Œ1�˚ Œ0�; Œ0�˚ Œ1�; Œ0�˚ ŒP �; Œ zP �˚ Œ0� j P 2 P2
¯
:

We can replace Œ1�˚ Œ0� by i1� � i2�.Œ1�/, and Œ zP �12
;;.1;2/

�˚ Œ0� by i1� � i2�.ŒP
�12
.1;2/

�/ to get
a new basis of K0.A�12 Ì˛ Z2/˚K0.A�12 ÌZ2/. Using this basis in the above sequence,
with Corollary 4.3 and Proposition 4.4 in hand, we get the following basis of K0.A� ÌZ2/:

• 1;

• P �
;;; D

1
2
.1CW /;

• P �
;;.1/
D

1
2
.1C U1W /;

• P �
;;.2/
D

1
2
.1C U2W /;

• P �
;;.1;2/

D
1
2
.1C e.�1

2
�12/U1U2W /;

• P �I;;; I D .1; 2/;

• P �
;;.3/
D

1
2
.1C U3W /;

• P �
;;.13/

D
1
2
.1C e.�1

2
�13/U1U3W /;

• P �
;;.23/

D
1
2
.1C e.�1

2
�23/U2U3W /;

• P �
I;.3/
D

P �I
2
.1C U3W /; I D .1; 2/;

• P �I;; D
P �I
2
.1CW /; I D .1; 3/;

• P �I;; D
P �I
2
.1CW /; I D .2; 3/.

So we have proved that K0.A� Ì Z2/ Š Z12 and a basis of K0.A� Ì Z2/ may be given
by ¹Œ1�; ŒP � j P 2 P3º.

We now have our main theorem

Theorem 4.9. Let � be a strongly irrational n � n matrix. Then K0.A� ÌZ2/ Š Z3�2
n�1

,
and a generating set of K0.A� Ì Z2/ can be given by ¹Œ1�; ŒP � j P 2 Pnº.
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Proof. We prove the theorem by induction on n. For n D 2; 3 we have already shown
the result to be true. Assume that it holds for a number n. Then we must show that the
result is true for nC 1. The proof is similar to the proof in the case for n D 3. Let � be a
strongly irrational .nC 1/ � .nC 1/ matrix. Let � 0 be its upper left n � n corner. Then,
by Natsume’s theorem [22] we get the following six-term exact sequence:

K0.A� 0/
i1��i2�
�����! K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/

j1�Cj2�
�����! K0.A� 0 Ì� Z2 � Z2/x?? ??ye1

0  ����� 0  ����� K1.A� 0/

By induction hypothesis assume that a generating set of K0.A� 0ÌZ2/ is given by ¹Œ1�; ŒP � j
P 2 Pnº and for K0.A� 0 Ì˛ Z2/, the set is given by ¹Œ1�; Œ zP � j P 2 Pnº (as in the 3-
dimensional case.)

Now i1� � i2�.Œ1�/ D .Œ1�;�Œ1�/. For each I 2 Minor.n/ n ¹;º, we have from Propo-
sition 4.7

i2�
��
P �

0

I

��
D 2

�
P �

0

I;;

�
�
�
P �

0

I 00;;

�
C
�
P �

0

I 00;.i2p�1/

�
�
�
P �

0

I 00;.i2p/

�
C
�
P �

0

I 00;.i2p�1;i2p/

�
;

where I D .i1; i2; : : : ; i2p/ and I 00 is obtained from I by deleting the last two numbers.
Similarly

i2�
��
P �

0

I

��
D 2

�
zP �
0

I;;

�
�
�
zP �
0

I 00;;

�
C
�
zP �
0

I 00;.i2p�1/

�
�
�
zP �
0

I 00;.i2p/

�
C
�
zP �
0

I 00;.i2p�1;i2p/

�
:

Since Œ1� and ¹ŒP �
0

I � for I 2 Minor.n/ n ¹;ºº generate K0.A� 0/, looking at the above
formulas of i1� � i2� for Œ1� and ŒP �

0

I �, we can choose a basis of K0.A� 0 Ì˛ Z2/ ˚
K0.A� 0 Ì Z2/ such that the map i1� � i2� is exactly .id; 0;�id; 0/t . This immediately
gives that K0.A� Ì Z2/ Š Z3�2

n
. To find a basis of K0.A� Ì Z2/, note that a basis of

K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/ is given by®
Œ1�˚ Œ0�; Œ0�˚ Œ1�; Œ0�˚ ŒP �; Œ zP �˚ Œ0� j P 2 Pn

¯
:

But as in the 3-dimensional case, we can also replace Œ1� ˚ Œ0� by i1� � i2�.Œ1�/, and
Œ zP �

0

I 00;.i2p�1;i2p�2/
�˚ Œ0� by i1� � i2�.ŒP �

0

I �/, for each I 2Minor.n/ n ¹;º, to get a new basis
of K0.A� 0 Ì˛ Z2/˚ K0.A� 0 Ì Z2/. Using this basis in the above exact sequence along
with Corollary 4.3 and Proposition 4.4, we get our desired basis of K0.A� Ì Z2/.

We immediately get the following result, which was also obtained in [10] (see the
proof of Theorem 6.6 there).

Corollary 4.10. For any � 2 Tn,

K0.A� Ì Z2/ Š Z3�2
n�1

; K1.A� Ì Z2/ D 0:

Proof. From the proof of Theorem 6.6 in [10], it is enough to prove the statement for one
� 2 Tn. Since Corollary B.6 of Appendix B gives a large class of examples of strongly
totally irrational matrices, use Theorem 4.9.
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5. Generators of K0.A� Ì Z2/ for a general �

Using ideas from [10], in this section we construct a continuous field of projective mod-
ules, which will play the major role to compute the generators of K0.A� Ì Z2/ for a
general � . A similar idea was used in [4] for A� to compute the generators of K0.A� / for
a general � ; however there was a gap in the arguments therein. We fix the arguments and
show that indeed such a construction of a field is possible for A� . We then extend these
ideas to A� Ì Z2.

Let G be a discrete group and let � be a C.Œ0; 1�; T /-valued 2-cocycle on G (as
in [10, Section 1]). One can then define the reduced twisted crossed product C �-algebra
C.Œ0;1�/Ì�G just like the twisted groupC �-algebras, whereG acts trivially onC.Œ0;1�/.
Here the underlying convolution algebra is the algebra of `1 functions on G with values
in C.Œ0; 1�/. Given any t 2 Œ0; 1�, the function

!t WD �.�; �/.t/

is a T -valued 2-cocycle on G. There is a canonical map (called the evaluation map)

evt W C
�
Œ0; 1�

�
Ì� G ! C �.G; !t /

such that for each function f 2 `1.G;C.Œ0; 1�// and each x 2 G we have .evt .f //.x/ D
.f .x//.t/.

Theorem 5.1 ([10, Corollary 1.11]). IfG satisfies the Baum–Connes conjecture with coef-
ficients, then the evaluation map evt induces an isomorphism on K-theory.

Let � be a C.Œ0; 1�;T /-valued 2-cocycle on Zn such that

�.�; �/.t/ D !�t ; �t 2 Tn;

is a 2-cocycle on Zn as in Example 2.1 for all t . Also let z� be the C.Œ0; 1�;T /-valued 2-
cocycle on Zn ÌZ2 so that z�.�; �/.t/D !0

�t
(as in Example 2.2). Since the groups Zn and

Zn ÌZ2 satisfy the Baum–Connes conjecture with coefficients (see [15]), by Theorem 5.1
both evaluation maps

evt W C
�
Œ0; 1�

�
Ì� Zn �! C �.Zn; !�t /;

evt W C
�
Œ0; 1�

�
Ìz� .Z

n Ì Z2/ �! C �.Zn Ì Z2; !
0
�t
/

induce isomorphisms at the level of K0 and K1. As in the case of twisted group C �-
algebras, there is an identification

C
�
Œ0; 1�

�
Ìz� .Z

n Ì Z2/
Š
��!

�
C
�
Œ0; 1�

�
Ì� Zn

�
Ì Z2

that respects the evaluation maps (see [10, Remark 2.3]).
As a result of the above discussions, using Theorem 5.1, we have (see also [10, Re-

mark 2.3]) the following theorems.
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Theorem 5.2. Let Œp1�; Œp2�; : : : ; Œpm� 2 K0.C.Œ0; 1�/ Ì� Zn/. Then the following are
equivalent:

(1) Œp1�; Œp2�; : : : ; Œpm� form a basis of K0.C.Œ0; 1�/ Ì� Zn/.

(2) For some t 2 Œ0; 1�, the evaluated classes Œevt .p1/�; Œevt .p2/�; : : : ; Œevt .pm/� form
a basis of K0.C �.Zn; !�t //.

(3) For every t 2 Œ0; 1�, the evaluated classes Œevt .p1/�; Œevt .p2/�; : : : ; Œevt .pm/� form
a basis of K0.C �.Zn; !�t //.

Theorem 5.3. Let Œp1�; Œp2�; : : : ; Œpm� 2 K0..C.Œ0; 1�/Ì� Zn/ÌZ2/. Then the following
are equivalent:

(1) Œp1�; Œp2�; : : : ; Œpm� form a basis of K0..C.Œ0; 1�/ Ì� Zn/ Ì Z2/.

(2) For some t 2 Œ0; 1�, the evaluated classes Œevt .p1/�; Œevt .p2/�; : : : ; Œevt .pm/� form
a basis of K0.C �.Zn; !�t / Ì Z2/.

(3) For every t 2 Œ0; 1�, the evaluated classes Œevt .p1/�; Œevt .p2/�; : : : ; Œevt .pm/� form
a basis of K0.C �.Zn; !�t / Ì Z2/.

Since Zn Ì Z2 is a discrete group, there is a canonical map from Zn Ì Z2 into the
group of unitaries of C.Œ0; 1�/ Ìz� .Z

n Ì Z2/. Let Ui 2 C.Œ0; 1�/ Ìz� .Z
n Ì Z2/ be the

images of the generators xi 2 Zn � Zn Ì F (here xi is as in Example 2.1) and W the
image of the generator of Z2 � Zn ÌZ2 under the canonical map. Also, we denote by Ui

the image of xi 2 Zn in C.Œ0; 1�/ Ì� Zn.
Next we will construct our required �. Consider the matrix Z 2 Tn whose entries

above the diagonal are all 1:

Z D

0BBBBBBBBBBB@

0 1 � � � � � � 1

�1
: : :

: : :
:::

:::
: : :

: : :
:::

:::
: : :

: : : 1

�1 � � � � � � �1 0

1CCCCCCCCCCCA
: (5.1)

If � 2Tn, then by a translate of � we understand any element � tr2Tn such that � � � tr 2

Mn.Z/. We then have A� D A� tr since both matrices induce the same commutation rela-
tion on the generating unitaries (or, alternatively, since the corresponding circle-valued
2-cocycles !� and !� tr coincide). In particular, this holds for � tr D � C nZ for every
n 2 Z. Now, for any � 2 Tn there exists some n 2 Z such that all pfaffian minors of
� tr D � C nZ are positive (see [4, Proposition 4.6]). Thus, replacing � by � tr if necessary,
we may assume without loss of generality that all the pfaffian minors of � are positive.

Let us also fix a strongly totally irrational matrix  2 Tn as in Appendix B. Then,
by definition (see Definition 3.15), all pfaffian minors of  are positive as well. Passing,
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again, to suitable translates � tr and  tr of � and  , if necessary, we may apply Propo-
sition C.1 to obtain continuous paths Œ0; 1

2
� 3 t 7! �.t/ WD .1 � 2t/� C 2tZ 2 Tn and

Œ1
2
; 1� 3 t 7!  .t/ WD .2t � 1/ C .2 � 2t/Z 2 Tn such that all pfaffian minors of �.t/

and  .t/, t 2 Œ0; 1�, are positive. Gluing both paths at �.1
2
/ D Z D  .1

2
/ we obtain a

continuous path Œ0; 1� 3 t ! �.t/ 2 Tn connecting � with  such that all pfaffian minors
of �.t/, t 2 Œ0; 1�, are positive. As a consequence, we can now formulate the following.

Proposition 5.4. For each matrix � 2 Tn there exists a strongly totally irrational matrix
 2 Tn and a continuous path Œ0; 1� 3 t 7! �.t/ 2 Tn with the following properties:

(a) All pfaffian minors of �.t/; t 2 Œ0; 1�, are positive.

(b) The endpoints �.0/ D � tr and �.1/ D  tr are translates of � and  , respectively.

The path in the above proposition now determines C.Œ0; 1�;T /-valued 2-cocycles ��
on Zn, and z�� on Zn Ì Z2 by defining

��.�; �/.t/ D !�.t/.�; �/ and z��.�; �/.t/ D !
0
�.t/.�; �/; t 2 Œ0; 1�:

In the following, we will construct a class of projective modules over�
C
�
Œ0; 1�

�
Ì�� Zn

�
Ì Z2

such that the class restricted to each point t of Œ0;1� gives a basis of K0.C�.Zn; !�.t//ÌZ2/.
Now using [4, Theorem 3.3], for each I 2 Minor.n/ n ¹;º, we can construct a pro-

jective module E
Œ0;1�
I over C.Œ0; 1�/ Ì�� Zn such that E

Œ0;1�
I restricted to t 2 Œ0; 1� is the

module E
�.t/
I . The idea of such a construction is as follows: using the notations of Sec-

tion 3, for I 2 Minor.n/ n ¹;º; jI j D 2p, consider the algebra C.Œ0; 1�/ Ì�.R†I /�� Zn,

�.R†I /��.�; �/.t/ WD !�.R†I /�.t/
;

where �.R†I / is as in the discussion which comes after Remark 3.10. Note that as in
before, C.Œ0; 1�/ Ì�.R†I /�� Zn is also canonically isomorphic to C.Œ0; 1�/ Ì�� Zn. Also
defineC.Œ0;1�/ÌgI;†.��/ Zn, gI;†.��/.�; �/.t/ WD!gI;†�.t/. ForM DRp �Zn�2p , define
the space S.M; Œ0; 1�/ consisting of all complex functions onM � Œ0; 1� which are smooth
and rapidly decreasing in the first variable and continuous in the second variable in each
derivative of the first variable. Then using equations (3.8), (3.9), (3.10), (3.11) fibre-
wise, a suitable of completion of S.M; Œ0; 1�/, E

Œ0;1�
I , becomes a C.Œ0; 1�/ ÌgI;†.��/ Zn �

C.Œ0; 1�/ Ì�� Zn strong Morita equivalence bi-module. Here in this construction we use
the fact that pf..�.t//I / is positive. Since C.Œ0; 1�/ Ì�� Zn is unital, E

Œ0;1�
I is also a pro-

jective module over C.Œ0; 1�/ Ì�� Zn. The detailed proof of this construction can easily
be deduced from the proof [4, Theorem 3.3] (see also the remark below).

Remark 5.5. In [4], in the construction of C.Œ0; 1�/ Ì�� Zn (C �.Zn � I; �/ in the
notations of [4]), �� was dependent on I ; therefore, the proof of [4, Theorem 4.7] was
incomplete. But we fix the proof in this paper by making �� independent of I and this
results in Theorem 5.7.
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Using Proposition 4.1, with the fibre-wise flip actions as in (4.2), it is easily checked
that E

Œ0;1�
I becomes a projective module over the crossed product .C.Œ0;1�/Ì�� Zn/ÌZ2.

We now construct a generating set of K0..C.Œ0; 1�/ Ì�� Zn/ Ì Z2/ using the pro-
jective modules over .C.Œ0; 1�/ Ì�� Zn/ Ì Z2 constructed above. Using the notations
of Section 4, for each I 2 Minor.n/, fix a J � I c . For J D .j1; j2; : : : ; jq/, define
UJ WD Uj1Uj2 � � �Ujq 2 C.Œ0; 1�/ Ì�� Zn, and for J D ;, UJ WD 1 2 C.Œ0; 1�/ Ì��
Zn. For a real function f 2 C.Œ0; 1�;R/, define exp.f / 2 C.Œ0; 1�;T / by exp.f /.t/ D
e.f .t//. Let r Œ0;1�J 2 C.Œ0; 1�;R/ be the real function such that UJ D exp.�2r Œ0;1�J /U xJ .
Now exp.rJ /UJW DW WJ is a self-adjoint unitary in .C.Œ0; 1�/ Ì�� Zn/ Ì Z2. One
quickly checks that WJUiWJ D exp.rJ;i /U�1i , for some function rJ;i 2 C.Œ0; 1�;R/.
A modified version of Lemma 2.3 shows that if we set zUi D exp.� rJ;i

2
/Ui (so that

we have WJ
zUiWJ D

zU�1i ), we have an isomorphism from .C.Œ0; 1�/ Ì�� Zn/ Ì Z2
to .C.Œ0; 1�/ Ì�� Zn/ Ì Z2 sending Ui to zUi and W to WJ . Here in the last crossed
product .C.Œ0; 1�/Ì�� /Zn ÌZ2, the canonical unitary of Z2 is identified with WJ . Using
this identification, for each I 2 Minor.n/ n ¹;º, J � I c . E

Œ0;1�
I becomes a module over

.C.Œ0; 1�/Ì�� /Zn Ì Z2. We call this module E
Œ0;1�
I;J . For I D ;, and J � I c , E

Œ0;1�
I;J WD

1
2
.1CWJ /. We consider the following family of elements in K0..C.Œ0; 1�/Ì�� /ZnÌZ2/:[

I2Minor.n/

®
E
Œ0;1�
I;J j J � I

c ; jJ j � 2
¯
:

Our next step is to show that if we consider the K-theory classes ŒE Œ0;1�I;J � in the above

family inside .C.Œ0; 1�/Ì�� /Zn Ì Z2, then the K-theory classes Œev1.E
Œ0;1�
I;J /�, along with

Œ1�, provide a basis of K0.A�.1/ÌZ2/DK0.A tr Ì Z2/DK0.A ÌZ2/. Let us write E
 tr

I;J

for ev1.E
Œ0;1�
I;J /. Since is totally irrational, the translate of , tr, is also totally irrational.

From the pfaffian summation formula (as in equation (C.1)) if we compute the pfaffian of
 tr
I , for a fixed I 2 Min.n/, we see that this is exactly Tr.P I /C

P
jI 0j<jI j cI 0 Tr.P I 0 /,

cI 0 2 Z. This also coincides with the trace of�
E
 tr

I

�
D
�

ev1
�
E
Œ0;1�
I

��
considering E

Œ0;1�
I as a projective module over C.Œ0; 1�/ Ì�� Zn. Hence

ŒP
 
I �C

X
jI 0j<jI j

cI 0 ŒP
 
I 0 � D ŒE

 tr

I �

as the trace map is injective forA tr . Now for J�I c, ŒE 
tr

I;J� and ŒP I;J �C
P
jI 0j<jI j cI 0 ŒP

 
I 0;J �

coincide inside K0.A tr Ì Z2/ as they are extended from the same element in K0.A tr/

using the same method, i.e., the Green–Julg map. Now using Theorem 4.9, we know that
the elements of the set[

I2Minor.n/

®�
P
 
I;J

�
C

X
jI 0j<jI j

cI 0
�
P
 
I 0;J

�
j J � I c ; jJ j � 2

¯
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along with Œ1� form a basis of K0.A ÌZ2/D K0.A tr ÌZ2/. Considering ŒE Œ0;1�I;J � inside

.C.Œ0; 1�/Ì�� /Zn Ì Z2, let us denote ev0.E
Œ0;1�
I;J / by E�

tr

I;J . Let

Projn D
®
E�

tr

I;J W I 2 Minor.n/; J � I c ; jJ j � 2
¯
: (5.2)

Now if we apply Theorem 5.3 to the cocycle�� constructed just after Proposition 5.4,
as a result of the above discussion we immediately get the following theorem.

Theorem 5.6. Let � 2 Tn. Then there exists a suitable translate � tr 2 Tn for � such that
the set of classes ¹Œ1�; ŒE� j E 2 Projnº, where Projn is as in equation (5.2), generate
K0.A� Ì Z2/.

Using a similar idea as in the proof of the above theorem along with Theorem 5.2, we
also get the following theorem.

Theorem 5.7 (cf. [4, Theorem 4.7]). Let � 2 Tn. Then there exists a suitable translate
� tr 2 Tn for � such that the set of classes[

I2Minor.n/n¹;º

®
Œ1�;

�
E�

tr

I

�¯
generate K0.A� /.

From equation (4.5) it is clear that TrZ2
� tr .ŒE

� tr

I;J �/ D
pf.� tr

I /

2
. It follows that

TrZ2
� tr

�
K0.A� tr Ì Z2/

�
D

Tr� tr
�

K0.A� tr/
�

2
; (5.3)

which in turn gives that TrZ2
�
.K0.A� ÌZ2//D

Tr� .K0.A� //
2

, from the computation of pf.� tr
I /

using the pfaffian summation formula (equation (C.1)). This result was already obtained
in [5, Example 4.5].

6. Isomorphism classes of A� Ì Z2

In this section we give an application of the explicit K-theory computations from the
previous section. We start with the following definition.

Definition 6.1. A skew symmetric real n � n matrix � is called non-degenerate if when-
ever x 2 Zn satisfies e.hx; �yi/ D 1 for all y 2 Zn, then x D 0.

The theorem which we want to prove in this section is the following.

Theorem 6.2. Let �1; �2 2 Tn be non-degenerate. Let Z2 act on A�1 and A�2 by the flip
actions. Then A�1 ÌZ2 is isomorphic to A�2 ÌZ2 if A�1 is isomorphic to A�2 . Moreover,
if any one of �1; �2 is totally irrational, the converse is true.

We need some preparation before proving the above theorem.
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Proposition 6.3 ([23, Proposition 3.7]). Let A be a simple infinite dimensional separable
unital nuclear C �-algebra with tracial rank zero and which satisfies the Universal Coef-
ficient Theorem. Then A is a simple AH algebra with real rank zero and no dimension
growth. If K�.A/ is torsion-free, A is an AT algebra. If, in addition, K1.A/ D 0, then A is
an AF algebra.

Let � 2 Tn be non-degenerate. Then the following are known.

• A� is a simple C �-algebra (even the converse is true: the simplicity of A� implies �
must be non-degenerate) with a unique tracial state [23, Theorem 1.9].

• A� is tracially AF [23, Theorem 3.6].

• If ˇ is an action of a finite group onA� which has the tracial Rokhlin property (see [10,
Section 5]), A�ÌˇF is a simple C �-algebra with tracial rank zero [24, Corollary 1.6,
Theorem 2.6]. Also, A� Ìˇ F has a unique tracial state [10, Proposition 5.7].

• The flip action of Z2 on A� has the tracial Rokhlin property [10, Lemma 5.10 and
Theorem 5.5].

• A� ÌZ2 satisfies the Universal Coefficient Theorem (see [10, proof of Theorem 6.6]).

With the above list of results along with Proposition 6.3 and Theorem 4.10, we readily
have the following corollary.

Corollary 6.4. Let � 2 Tn be non-degenerate. Then A� Ì Z2 is an AF algebra.

The above corollary was first obtained in [10, Theorem 6.6]. We are now ready to
prove Theorem 6.2.

Proof of Theorem 6.2. Since taking a translate of �i , i D 1; 2, does not change the iso-
morphism classes of A�i or A�i ÌZ2, for this proof we may replace the �i by any of their
translates.

To prove the last part, WLOG assume that �2 is totally irrational. Let there be a �-
isomorphism f fromA�1 ÌZ2 toA�2 ÌZ2. Then TrZ2

�1
and TrZ2

�2
have the same range, and

hence using equation (5.3), Tr�1 and Tr�2 also have the same range. Now to show that A�1
and A�2 are �-isomorphic, it is enough to find an isomorphism g W K0.A�1/! K0.A�2/
such that Tr�2 ıg D Tr�1 and g.Œ1�/ D Œ1�. Indeed, g is then an order isomorphism by
[2, Proposition 3.7], and using classification of tracially AF algebras by Lin [21, Theo-
rem 5.2], we conclude that A�1 and A�2 are �-isomorphic. Let us now see the existence of
the isomorphism g. Denote the ranges of Tr�1 and Tr�2 by R1 and R2, respectively. Since
R1 and R2 are finitely generated subgroups of R, they are free. Also R1 D R2 implies
that they have the same rank. Now we have the following exact sequences:

0 �! ker.Tr�1/ �! K0.A�1/
Tr�1
��! R1 �! 0;

0 �! ker.Tr�2/ �! K0.A�2/ ��!Tr�2
R2 �! 0:

Note that the above sequences split since the K-groups are torsion-free. Now ker.Tr�1/
and ker.Tr�2/ are finitely generated abelian groups of the same rank. So there exists an
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isomorphism  between them. Now g is defined as  ˚ �, where � is the map between
R1 and R2 given by multiplication with 1. Clearly Tr�2 ıg D Tr�1 , since the following
diagram commutes:

K0.A�1/ R1

K0.A�2/ R2

Tr�1

g �

Tr�2

Now g.Œ1�/ D Œ1� follows from Tr�2 ıg D Tr�1 , and total irrationality of �2. Indeed, using
Theorem 5.7, let us write g.Œ1�/ as a linear combination of the basis elements. As we have
Tr�2.g.Œ1�// D 1, then the total irrationality of �2 forces g.Œ1�/ to be Œ1�.

Now assume there is a �-isomorphism f from A�1 to A�2 . This gives Tr�2 ıf D Tr�1 ,
since A�1 has a unique trace and f .1/ D 1. So we have an order isomorphism, which
we call by f again, from K0.A�1/ to K0.A�2/. Choosing the basis ¹Œ1�; ŒE�1I 0 � j I

0 2

Minor.n/ n ;º of K0.A�1/ using Theorem 5.7, we have

f
�
ŒE�1I 0 �

�
D

X
I 002Minor.n/

C I
0

I 00 ŒE
�2
I 00 �; for I 0 2 Minor.n/;

where C I
0

I 00 2 Z. We have that A�1 Ì Z2 and A�2 Ì Z2 are both AF algebras. Now to
show that A�1 Ì Z2 and A�2 Ì Z2 are isomorphic, it is enough (just like before) to find
an isomorphism f 0 W K0.A�1 Ì Z2/ ! K0.A�2 Ì Z2/ such that TrZ2

�2
ıf 0 D TrZ2

�1
and

f 0.Œ1�/ D Œ1�. Now it is enough to define the map on a set of generators of K0.A�1 Ì Z2/
which is given by ¹Œ1�; ŒE�; E 2 Projnº, where

Projn D
[

I 02Minor.n/

®
E�1I 0;J j J � .I

0/c ; jJ j � 2
¯

using Theorem 5.6. We define the map f 0 as follows: f 0.Œ1�/ D Œ1�, for I 0 ¤ ;,

f 0
��

E�1I 0;J
��

D

� X
I 002Minor.n/n¹I 0;;º

C I
0

I 00

�
E�2I 00;;

��
C
�
E�2I 0;J

�
C .C I

0

I 0 � 1/ŒE
�2
I 0;;�C C

I 0

; Œ1� � C
I 0

;

�
E�2
;;;

�
;

where C I
0

I 00 is as before, and for I 0 D ;,

f 0
��

E�1
;;J

��
D
�
E�2
;;J

�
:

Using Tr�2 ıf D Tr�1 , we get the required tracial property of f 0. Indeed,

TrZ2
�2
ıf 0

�
Œ1�
�
D 1 D TrZ2

�1

�
Œ1�
�
;

and for I 0 D ;,

TrZ2
�2
ıf 0

��
E�1
;;J

��
D
1

2
D TrZ2

�1

��
E�1
;;J

��
;
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and finally for I 0 ¤ ;,

TrZ2
�2
ıf 0

��
E�1I 0;J

��
D

Tr�2
�P

I 002Minor.n/ C
I 0

I 00

�
E�2I 00

��
2

D
Tr�2 ıf

��
E�1I 0

��
2

D
Tr�1

��
E�1I 0

��
2

D TrZ2
�1

��
E�1I 0;J

��
:

A. Rieffel-type projections and Z2-invariance

A.1. The Rieffel projection in n-dimensional tori

In this section we will give a description of the map  , and the construction of the Rieffel
projection e used in Theorem 3.11.

Let us first write down the Morita equivalence construction of Section 3 explicitly for
p D 1; i.e., when M is the group R � Zq , q D n � 2. As before, write

� D

�
�1;1 �1;2
�2;1 �2;2

�
D

�
�1;1 �1;2
�� t1;2 �2;2

�
2 Tn;

where

�1;1 D

�
0 �12
�21 0

�
D

�
0 �12
��12 0

�
2 T2

is an invertible 2 � 2 matrix. Then consider the matrix

T D

0B@T11 0

0 idq
T31 T32

1CA ;
where T11 D

�
�12 0
0 1

�
, T31 D �2;1, and T32 D

�2;2
2

. Also consider

S D

0B@S0 �S0T
t
31

0 idq
0 T t32

1CA ;
where S0 D

� 0 1
���112 0

�
. Then the equations (3.8), (3.9), (3.10), (3.11) make �.R � Zq/ an

A1
�.�/
� A1

�
Morita equivalence bimodule, where

�.�/ D

 
��11;1 ���11;1�1;2

�2;1�
�1
1;1 �2;2 � �2;1�

�1
1;1�1;2

!
:

Let us denote by U1; U2; : : : ; Un the canonical generators of A� . For A�.�/, we choose
the generators V1; V2; : : : ; Vn such that ıxi 2 C

�.Zn; !�.�// is identified with Vi , for all
i , where xi D .0; : : : ;�1; : : : ; 0/, �1 is at the i th position.
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According to [25, Proposition 2.1], if we can find an f 2 �.R � Zq/ such that

A1
�.�/
hf; f i D 1;

then e D hf; f iA1
�

is a projection of trace �12 in A1
�
� A� , and we have an isomorphism

 W A�.�/ ! eA�e, given by  .a/ D hf; af iA� .
Choose a smooth even function � on R as in the definition of f�12 in [30, Sec-

tion 2.2], assuming �12 2 .1=2; 1/. By using a standard regularization argument as in
[1, Lemma 2.1], we can assume that � is smooth and

p
� is also smooth. We restrict �12

to take values in .1
2
; 1/ just to make sure that the projection e that we are going to construct

is Z2-invariant. In general, one can find such � with the required properties for a general
�12 2 .0; 1/. Note that � is a compactly supported function (with support in Œ�1

2
; 1
2
�) satis-

fying �.x0C �12/D 1� �.x0/ for�1
2
� x0 �

1
2
� �12, � D 1 on 1

2
� �12 � x0 � �12 �

1
2

,
and �.�x0/ D �.x0/ for �1

2
� x � 1

2
.

Now define a function f 2 �.R � Zq/, given by f .x0; l/ D c
p
�.x0/, c D 1p

K�12
(K is as in equation (3.11)), when Zq 3 l D 0 and f .x; l/D 0 otherwise. Let us first show
that A1

�.�/
hf; f i D 1. To this end, from equation (3.11), we have the following:

A1
�.�/
hf; f i.m/ D Ke2�ihS.m/;J

0S.m/=2i

Z
R�Zq

˝
x; S 00.m/

˛
f
�
x C S 0.m/

�
f .x/dx;

formD .m1;m2; : : : ;mn/ 2 Zn, noting that f is real valued. Using the formula of S 0 and
f , it is clear that the above expression is zero for any non-zero values of .m3;m4; : : : ;mn/
2 Zq . Also when m2 ¤ 0, the above expression for m D .m1; m2; 0; : : : ; 0/ 2 Zn is
zero since x C S 0.m/ D .x0 C m2; x1; : : : ; xq/, where x D .x0; x1; : : : ; xq/, and � is
supported in an interval of length one and vanishing at the end points. Finally for an
m D .m1; 0; : : : ; 0/ the expression becomes

Kc2
Z

R
e
�
2�ix0m1
�12 �.x0/dx0 D c

2K�12

Z
R
e�2�ix0m1�.x0�12/dx0

D

Z
R
e�2�ix0m1 z�.x0/dx0;

where z�.x0/ D �.x0�12/. NowZ
R
e�2�ix0m1 z�.x0/dx0 D

yz�.m1/ D ŷ .m1/;

where y denotes the Fourier transform and ˆ is the periodic function defined by ˆ.x0/ DP
n2Z
z�.x0 C n/, x0 2 R. But

P
n2Z
z�.x0 C n/ D

P
n2Z �.�12x0 C �12n/ D 1, using

the defining properties of �, for all x0 2 R. Hence we get A1
�.�/
hf; f i D 1.

Now we want an explicit expression for the projection

hf; f iA1
�
.m/ D e2�ih�T.m/;J

0T.m/=2i

Z
R�Zq

˝
x;�T 00.m/

˛
f
�
x C T 0.m/

�
f .x/dx:
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Let us write m D .m1;m2; : : : ;mn/, x D .x0; x1; : : : ; xq/ as before. An easy observation
shows that the above expression is zero exactly when m3 D m4 D � � � D mn D 0. This
implies that hf; f iA1

�
2 A�12 � A� , and a direct computation yields

hf; f iA1
�
.m1; m2; 0; 0; : : : ; 0/

D e��i�12m1m2
Z

R
e�2�ixom2

p
�.x0 C �12m1/

p
�.x0/dx0: (A.1)

A.2. Rieffel-type projections in A� Ì Z2

In this section we describe how to construct projections inside A� Ì Z2 using the Rief-
fel projection constructed above, and some other technical results used in the proof of
Proposition 4.7.

Let f 2 �.R � Zq/ be as above. Since, by construction, f is an even function, it
follows from equation (4.3) that f and the projection e D hf; f iA1

�
are Z2-invariant.

Hence the flip-action is a well-defined action on eA�e. Now let us show that the map
 W A�.�/ ! eA�e given by  .a/ D hf; af iA� is flip equivariant. To this end, let us use
equations (4.3) and (4.4) (for A�.�/) to check that  .ˇ.a// D ˇ. .a//. This is easy as
ˇ. .a//D ˇ.hf;af iA� /D hf Tg ; .af /TgiA� D hf Tg ;ˇ.a/.f Tg/iA� D hf;ˇ.a/f iA� D

 .ˇ.a//. Hence we get an isomorphism  WA�.�/ ÌZ2! eA�e ÌZ2, which we denoted
by  again. Then we have the following commutative diagram:

A��
i2 //

 

��

A�� Ì Z2

 

��

eA�e
i2 // eA�e Ì Z2

(A.2)

where i2 is the natural inclusion map.
Next let us understand the image of the projection 1

2
.1C VkW / 2 A�� Ì Z2, for k D

3;4; : : : ; n, under the map . Of course, we have .1/D e 2 eA�e ÌZ2. It is then enough
to compute  .Vk/.

Now from equation (3.10),

.Vkf /.x/ D e
2�ih�S.l/;J 0S.l/=2i

˝
x;�S 00.l/

˛
f
�
x C S 0.l/

�
;

where l D .0; 0; : : : ;�1; : : : ; 0/, �1 at the kth position. Now .Vkf /.x/ is only non-zero
when xk�2 D 1, and xi D 0, for i ¤ 0; k � 2. Then the value is

e
�i

�1k�2k
�12 e

2�ix0
��1k
�12 f .x0 � �2k ; 0; 0; : : : ; 0/:

Now we want an explicit expression for

hf; Vkf iA1
�
.m/ D e2�ih�T.m/;J

0T.m/=2i

Z
R�Zq

˝
x;�T 00.m/

˛
.Vkf /

�
x C T 0.m/

�
f .x/dx:
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Now

.Vkf /
�
x C T 0.m/

�
D .Vkf /.x0 C �12m1; x1 Cm3; x2 Cm4; : : : ; xq Cmn/:

Looking at the integral, it is only non-zero when x1 D x2 D � � � D xq D 0. So for x D
.x0; 0; 0; : : : ; 0/,

.Vkf /
�
x C T 0.m/

�
D .Vkf /.x0 C �12m1; m3; m4; : : : ; mn/:

But from the previous observation, Vkf is only non-zero when mk D 1 and mi D 0 .i ¤
1; k/, and then the value is

e
�i

�1k�2k
�12 e

2�i.x0C�12m1/
��1k
�12 f .x0 C �12m1 � �2k ; 0; 0/:

Finally for m D .m1; m2; 0; : : : ; 1; : : : ; 0/ (1 at the kth position), we have

hf; Vkf iA1
�
.m/ D e2�ih�T.m/;J

0T.m/=2i

Z
R�Zq

˝
x;�T 00.m/

˛
.Vkf /

�
x C T 0.m/

�
f .x/dx

D e�i.��12m1m2C�1km1C�2km2/
Z

R
e�2�ix0m2e

�i
�1k�2k
�12 e

�2�i.x0C�12m1/
�1k
�12

�
p
�.x0 C �12m1 � �2k/

p
�.x0/dx0:

In particular, the above computation shows that the projection  .1
2
.1 C VkW // 2

A�12 Ì Z2 � A� Ì Z2, where Z2 in A�12 Ì Z2 is generated by the self-adjoint unitary
UkW DW W

0, acting on A�12 by the flip action (using Lemma 2.3). In the above formula
of hf; Vkf iA1

�
replacing �1k and �2k by t�1k and t�2k , respectively, for t 2 Œ0; 1�, we

get a homotopy of projections in A�12 Ì Z2 between  .1
2
.1 C VkW // (at t D 1) and

e
2
.1CW 0/ (at t D 0). (Note that we have used the fact that for t D 0, the above expression

of hf; Vkf iA1
�

matches with the same of e D hf; f iA1
�

in equation (A.1).)

B. Strongly totally irrational matrices

This section is essentially [7, Appendix I], but with some modifications at the end. For
completeness we repeat the whole construction.

Let s D ¹siºi be a sequence of integers such that si >
Pi�1
jD1 sj , for all i , with s1 D 1.

We call such a sequence a super-increasing sequence. For ˛ 2 .0; 1/ define the n � n
antisymmetric matrix ‚.n/ by induction: ‚.2/ WD

�
0 ˛s1
�˛s1 0

�
; ‚.n/ij D ‚.n � 1/ij , for

1 < i < j < n, and‚.n/in WD ˛spCi , for i D 1; : : : ; n� 1, where p D .n�1/.n�2/
2

. Hence

‚.3/ D

0@ 0 ˛s1 ˛s2

�˛s1 0 ˛s3

�˛s2 �˛s3 0

1A ; ‚.4/ D

0BB@
0 ˛s1 ˛s2 ˛s4

�˛s1 0 ˛s3 ˛s5

�˛s2 �˛s3 0 ˛s6

�˛s4 �˛s5 �˛s6 0

1CCA :
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Remark B.1. Note that all sub-matrices ‚.n/I (as in Definition 3.1) of ‚.n/ are like
‚.m/, for some m � n, but for a different super-increasing sequence s0 D ¹s0iºi , which is
a subsequence of s.

We then have pf.‚.2// D ˛s1 , and

pf
�
‚.4/

�
D ˛s1Cs6 � ˛s2Cs5 C ˛s4Cs3 :

Note that, using the super-increasing property of s, we have that

s1 C s6 > s2 C s5 > s4 C s3:

Denote by si;j the exponent of ˛ in the ij th entry of ‚.n/. Let sŒn� WD s.n�1/;n D

s n.n�1/
2

. Let us first recall the following recursive definition of pfaffian from [13, p. 116].
Let pf ij .A/ denote the pfaffian of the .n� 2/� .n� 2/ skew-symmetric matrix, which we
call Aij , obtained from A D .ajk/ by removing the i th, j th row and the i th, j th column.
Hence pf ij .A/ D pf.Aij /. Let n be even. Then for a fixed integer j; 1 � j � n, one has
the following recursive definition of pfaffian:

pf.A/ D
X
i<j

.�1/iCj�1aij pf ij .A/C
X
i>j

.�1/iCjaij pf ij .A/:

In particular, when j D 1, we have

pf.A/ D
X
i>1

.�1/iC1ai1 pf i1.A/ D
X
i>1

.�1/ia1i pf1i .A/; (B.1)

and for j D n, we have

pf.A/ D
n�1X
iD1

.�1/iC1ain pf in.A/: (B.2)

Lemma B.2. For an even n we have

pf
�
‚.n/

�
D ˛M.n/1 � ˛M.n/2 C ˛M.n/3 � ˛M.n/4 C � � � C ˛M.n/R.n/ ;

for a strictly decreasing sequence of numbers M.n/1;M.n/2; : : : ;M.n/R.n/, where R.n/
D .n � 1/ŠŠ.1

Proof. We prove this by induction on n. As we have seen the statement is true for
n D 2; 4 for all super-increasing sequences. Now assume that the statement is true for
n � 2, for all super-increasing sequences. Then we must prove that the statement is true
for n, for all super-increasing sequences. Fix a super-increasing sequence s D ¹siºi . From

1Double factorial.
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equation (B.2), we have

pf
�
‚.n/

�
D

n�1X
iD1

.�1/iC1�in pf in.‚/

D �.n�1/n pf.n�1/n.‚/ � �.n�2/n pf.n�2/n.‚/

C �.n�3/n pf.n�3/n.‚/ � � � � � �2n pf2n.‚/C �1n pf1n.‚/

D ˛s.n�1/;n pf.n�1/n.‚/ � ˛s.n�2/;n pf.n�2/n.‚/

C ˛s.n�3/;n pf.n�3/n.‚/ � � � � � ˛s2;n pf2n.‚/C ˛s1;n pf1n.‚/:

Now by the induction hypothesis we have that all pf in.‚/; i D 1; 2; : : : ; n � 1, are of the
form as in the statement with R.n � 2/ D .n � 3/ŠŠ. Now if we expand all pf in.‚/; i D
1; 2; : : : ; n � 1, keeping the form, we see that the expression

˛s.n�1/;n pf.n�1/n.‚/ � ˛s.n�2/;n pf.n�2/n.‚/

C ˛s.n�3/;n pf.n�3/n.‚/ � � � � � ˛s2;n pf2n.‚/C ˛s1;n pf1n.‚/

is already of the required form, using the super-increasing property of s, and noting that
the exponents of ˛ in the expressions of pf in.‚/, i D 1; 2; : : : ; n � 1, contain no term of
the form s�;n. Note that the total number of terms (after expanding) in the above expression
is .n � 1/.n � 3/ŠŠ D .n � 1/ŠŠ.

Remark B.3. It is also clear from above, again using the super-increasing property of s,
that M.n/R.n/ > M.n � 2/1.

Lemma B.4. For an even n, we have

0 < pf
�
‚.n/

�
< pf

�
‚.n � 2/

�
< 1:

Proof. Since

pf
�
‚.n/

�
D ˛M.n/1 � ˛M.n/2 C ˛M.n/3 � ˛M.n/4 C � � � C ˛M.n/R.n/ ;

we have that
pf
�
‚.n/

�
> ˛M.n/1 > 0;

using �˛M.n/2i C ˛M.n/2iC1 > 0 (since ˛ 2 .0; 1/). To show pf.‚.n// < pf.‚.n � 2//,
we look at the expression pf.‚.n// � pf.‚.n � 2//, which is

˛M.n/1 � ˛M.n/2 C ˛M.n/3 � � � � C ˛M.n/R.n/ � ˛M.n�2/1

C ˛M.n�2/2 � ˛M.n�2/3 C � � � � ˛M.n�2/R.n�2/ :

Note that M.n/1;M.n/2; : : : ;M.n/R.n/;M.n � 2/1;M.n � 2/2; : : : ;M.n � 2/R.n�2/ is
still a strictly decreasing finite sequence due to the above remark. Now using

˛M.n/i � ˛M.n/iC1 < 0; ˛M.n/R.n/ � ˛M.n�2/1 < 0; ˛M.n�2/2i � ˛M.n�2/2iC1 < 0;

we get the above expression less than zero.
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The last inequality in the statement of Lemma B.4 follows from an argument using
induction on n.

Now let us choose an ˛ 2 .0; 1/ such that ˛2sŒn� > 1
2

. Then from the above, M.n/1 <
2sŒn�. But ˛2sŒn� < ˛M.n/1 . So 1

2
< ˛M.n/1 . So we have, for such ˛,

1

2
< pf

�
‚.n/

�
< pf

�
‚.n � 2/

�
< 1; (B.3)

for an even n.

Corollary B.5. With the notations in Section 3, for an ˛ 2 .0; 1/ such that ˛2sŒn� > 1
2

, we
have

1

2
< pf

�
F j
�
‚.n/I

�
11

�
< 1;

for all I 2 Minor.n/ with 2 � jI j D 2m, and for all j D 0; 1; : : : ; m � 1.

Proof. For any I D .i1; i2; : : : ; i2m/, since sI Œn� WD si2m�1;i2m � s.n�1/;n D sŒn�, we still
have ˛2s

I Œn� > 1
2

. Hence from equation (B.3) (and using Remark B.1),

1

2
< pf

�
‚.n/I

�
< pf

�
‚.n/I 00

�
< 1;

where I 00 is obtained from I by deleting the last two numbers. Now the corollary easily
follows with the explicit expression (using Lemma 3.7) of pf.F j .‚.n/I /11/ in hand.

Choose the super-increasing sequence ¹si D 2i�1ºi . When ˛ is a transcendental num-
ber, it is well known that the numbers ˛; ˛2; : : : ; ˛2

i
; : : : as well as any products of these

numbers are linear independent over Q. So we have that ‚.n/ is totally irrational. Then
by using the above corollary, we get the following corollary.

Corollary B.6. Let s be the super-increasing sequence ¹si D 2i�1ºi and let ˛ 2 .0; 1/
be a transcendental number such that ˛2sŒn� > 1

2
. Let ‚.n/ be the n � n antisymmetric

matrix involving ˛ and s. Then we have that ‚.n/ is a strongly totally irrational matrix
for n � 2.

The above corollary gives a large class of examples of strongly totally irrational matri-
ces.

C. Construction of C.Œ0; 1�/ Ì�A Zn

Let n be an even number. For I 2 Min.n/, define �.I / WD i1 C i2 C � � � C i2r for I D
.i1; i2; : : : ; i2r / and �.I / WD 0 for I D ;. Also for I 2 Min.n/, let I co be the element
in Min.n/, I co D .j1; j2; : : : ; jn�2r /, such that ¹i1; i2; : : : ; i2r ; j1; j2; : : : ; jn�2rº D
¹1; 2; : : : ; nº and ¹i1; i2; : : : ; i2rº \ ¹j1; j2; : : : ; jn�2rº D ;. Then we have the pfaffian
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summation formula [28, Lemma 4.2]

pf.AC B/ D
X
jI j�n

.�1/�.I/�jI j=2 pf.AI / pf.BI co/; (C.1)

for A;B 2 Tn.
Recall that for a matrix A 2 Tn a translate of A is any matrix Atr such that A�Atr has

only integer entries. In this section we want to prove the following proposition.

Proposition C.1. Assume that all the pfaffian minors of A D .ajk/ 2 Tn are positive,
where n is any number. Then there exists a translate of A, Atr, such that all the pfaffian
minors of the matrix .1 � t /Atr C tZ are positive for all t 2 Œ0; 1�, where Z is as in
equation (5.1).

Before proving the above proposition, let us try to understand why the above propo-
sition should hold for n D 2; 3; 4. For n D 2 and 3, since all the pfaffian minors of A are
positive, all pfaffian minors of the matrix .1 � t /AC tZ are also clearly positive for all
t 2 Œ0; 1�. Hence we can just take Atr D A. Now for n D 4, if we compute the pfaffian of
.1 � t /AC tZ using the summation formula above, we get

pf
�
.1 � t /AC tZ

�
D t2 C .a12 C a34 � a13 � a24 C a14 C a23/t.1 � t /C .1 � t /

2 pf.A/: (C.2)

Now we can add a large positive integer n to a12 to make a12 C a34 � a13 � a24 C a14 C
a23 greater than zero. Now our required Atr is the matrix obtained by adding0BB@

0 n 0 0

�n 0 0 0

0 0 0 0

0 0 0 0

1CCA
to A.

Let us now consider the matrix .1 � t /AC tZ, for A 2 Tn and n is an even number.
Using the pfaffian summation formula we have

pf
�
.1 � t /AC tZ

�
D

X
jI jD2r�n

.�1/�.I/�r pf.AI /tn=2�r .1 � t /r : (C.3)

For all r such that 2r � n, set

cn;r WD
X
jI jD2r

.�1/�.I/�r pf.AI /:

Then we claim that the coefficient of a12 in cn;r is the coefficient of tn=2�r .1 � t /r in the
expression of pf12..1� t /AC tZ/ (refer to the paragraphs which come after Remark B.1
for the notation pf12). To show this, first note that

pf12
�
.1 � t /AC tZ

�
D

X
jI 0jD2r 0

.�1/�.I
0/�r 0 pf.A12I 0 /t

.n�2/=2�r 0.1 � t /r
0

:
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If we put .n � 2/=2 � r 0 D n=2 � r , we get that r 0 D r � 1. Hence the coefficient of
tn=2�r .1 � t /r in the expression of pf12..1 � t /AC tZ/ isX

jI 0jD2r�2

.�1/�.I
0/�rC1 pf.A12I 0 /:

Now in the expression of cn;r , only for the I ’s which are of the form .1; 2; i3; i4; : : : ; i2r /,
for some i3; i4; : : : ; i2r so that 2 < i3 < i4 < � � � < i2r � n, pf.AI / will contain a term
involving a12. The coefficient of a12 in such pf.AI / is pf.AI 00/, for I 00 D .i3; i4; : : : ; i2r /,
using the recursive definition (equation (B.1)) of the pfaffian. But this I 00 will corre-
spond to I 0 D .i3 � 2; i4 � 2; : : : ; i2r � 2/ in A12. Now, it is clear that .�1/�.I/�r D
.�1/�.I

0/�rC1. Since there are 2r � 2 many choices of I 00 possible, our claim follows.
For two fixed numbers l1; l2, with l1 � l2, let us denote by .l1; l2;�;�; : : : ;�/ any such

J 2Min.n/, whose first two components are l1 and l2, i.e. J D .l1; l2; l3; l4; : : : ; l2r /, for
some r .

Proof of Proposition C.1. Our aim is to show that there exists a translate of A, Atr, such
that all pfaffian minors of the matrix pf...1� t /Atr C tZ/J / > 0, for all J 2Minor.n/. In
fact we will show that there exists a Atr such that each individual coefficient cjJ j;r , 2r �
jJ j, is greater than zero in the expression of pf...1� t /Atr C tZ/J / for all J 2Minor.n/,
coming from equation (C.3). We do this by induction on the length of J . Now clearly
the statement is true for all J such that jJ j D 2, since all the entries of A are positive.
Assume that the statement is true for any J , such that jJ j � 2m� 2. In this case we get a
translate Atr, which we call by A again, with required properties. We will now show that
the statement is true for any J , such that jJ j � 2m. Now any such J so that jJ j D 2m
will be of the form .l1; l2; : : : ; l2m�2; l2m/, where 1 � l1 � l2 � n� 2mC 2. We perform
the following algorithm to get our desired Atr.

Set l1 D n � 2mC 1, l2 D n � 2mC 2.

Step 1. Consider any J D .l1; l2; �; �; : : : ; �/ so that jJ j D 2m. Use the formula equa-
tion (C.3) for pf..1 � t /AJ C tZJ / and the observation made just before this proof to
note that in the coefficients of tm�r .1 � t /r ; r D 1; 2; : : : ; m, the coefficients of al1l2 are
positive using the induction hypothesis. By adding a number to al1l2 we can make sure
that the coefficients of tm�r .1� t /r ; r D 1; 2; : : : ;m, are positive. We can do this for each
J D .l1; l2; �; �; : : : ; �/ and hence can add a sufficiently large number to al1l2 such that
the coefficients of tm�r .1� t /r ; r D 1; 2; : : : ;m, are positive in all pf..1� t /AJ C tZJ /,
for all J D .l1; l2; �; �; : : : ; �/. Thus by altering al1l2 as above, we get a translate of A,
which we call by A again. If l1 > 1, then set l1 WD l1 � 1; l2 WD l2, and if l1 D 1, then set
l1 WD l2 � 2; l2 WD l2 � 1. Now if l1 D 1, l2 D 2, go to Step 3. Otherwise, go to Step 2.

Step 2. As in Step 1 add a sufficiently large number to al1l2 , such that the coefficients
tm�1�r .1� t /r ; r D 1; 2; : : : ;m� 1, are positive in all pf..1� t /AJ C tZJ /, for all J D
.l1; l2;�;�; : : : ;�/ such that jJ j D 2m � 2. Then repeat this for J D .l1; l2;�;�; : : : ;�/
such that jJ j D 2m � 4 and continue the process until we reach such J ’s so that jJ j D 4.
After the above alterations, we get a translate ofA, which we call byA again. Go to Step 1.
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Step 3. Again, as before, add a sufficiently large number to a12, such that tm�r .1 � t /r ,
r D 1; 2; : : : ; m, are positive in all pf..1 � t /AJ C tZJ /, for all J D .1; 2; �; �; : : : ; �/
such that jJ j D 2m.

After the above step, we end up with a translate Atr of A. Now we claim that
pf..1� t /Atr

J C tZJ / is positive for all jJ j � 2m. Let J D .l1; l2;�;�; : : : ;�/ be fixed such
that jJ j � 2m. If l2 > n� 2mC 2, jJ j � 2m� 2. In this case, no entries of AJ have been
altered in the above algorithm, and hence pf..1 � t /Atr

J C tZJ / D pf..1 � t /AJ C tZJ /
is positive by the induction hypothesis. If l2 � n � 2mC 2, after one alteration of al1l2
(let us call the translate A0 so that we have pf..1� t /A0J C tZJ / > 0), no alterations have
been occurred for the entries of A0J except possible alterations of al1l2 which still keep
pf..1 � t /A0J C tZJ / > 0. Hence pf..1 � t /Atr

J C tZJ / > 0.
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