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1. Introduction

In [1, §2], Artin describes the basic problem of classifying abstract plane geometries
(viewed as incidence systems of points and lines) as follows: “Given a plane geometry
[. . .] assume that certain axioms of geometric nature are true [. . .] is it possible to find
a field k such that the points of our geometry can be described by coordinates from k
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and lines by linear equations?” Zilber’s trichotomy principle (to be described in more
detail in the next section) can be viewed as an abstraction of the above problem, repla-
cing the “axioms of geometric nature” with a well-behaved theory of dimension (see,
e.g., [39, §1]).

Conjectured in various forms by Zilber throughout the late 1970s, essentially every
aspect of Zilber’s trichotomy, in its full generality, was refuted by Hrushovski [20, 21] in
the late 1980s. Due to Hrushovski’s cornucopia of counterexamples, the conjecture has
never been reformulated. Yet, Zilber’s principle remains a central and powerful theme in
model theory: it has been proved to hold in many natural examples such as differentially
closed fields of characteristic 0, algebraically closed fields with a generic automorphism,
o-minimal theories and more (see [10, 11, 26, 36, 38]). Many of these special cases of
Zilber’s trichotomy have had striking applications in algebra and geometry (see [22, 23,
41]). More recently, in [46], Zilber outlines a model theoretic framework for studying far-
reaching extensions of the Mordell–Lang conjecture. One of the key features of Zilber’s
strategy is the trichotomy theorem for Zariski geometries [26].

The key to the classification of Desarguesian plane geometries (the fundamental the-
orem of projective geometry) is the reconstruction of the underlying field k as the ring
of direction preserving endomorphisms of the group of translations. The reconstruction
of a field out of abstract geometric data is also the essence of Zilber’s trichotomy, and
is the engine in many of its applications. A relatively recent application of one such res-
ult is Zilber’s model theoretic proof [45] of a significant strengthening of a theorem of
Bogomolov, Korotiaev, and Tschinkel [3]. The model theoretic heart of Zilber’s proof is
Rabinovich’s trichotomy theorem for reducts of algebraically closed fields [40]. In the
concluding paragraph of the introduction to [45], Zilber writes: “It is therefore natural to
aim for a new proof of Rabinovich’s theorem, or even a full proof of the restricted tricho-
tomy along the lines of the classification theorem of Hrushovski and Zilber [26], or by
other modern methods [. . .]. This is a challenge for the model-theoretic community.”

The conjecture referred to in Zilber’s text above can be formulated as follows.1;2

Conjecture A. Let M be a strongly minimal non-locally modular reduct of the full Zar-
iski structure on an algebraic curve M over an algebraically closed field K. Then there
exist M-definable sets L, E such that E � L � L is an equivalence relation with finite
classes and L=E with the M-induced structure is a field K-definably isomorphic to K.

Rabinovich [40] proved Conjecture A in the special case where M D A1, and her
result can be extended by general principles to any rational curve. In the present paper,

1The content of Conjecture A is explained for non-experts in Section 2.
2This conjecture is a specialisation of Zilber’s trichotomy to strongly minimal sets interpretable

in algebraically closed fields (though by “the full conjecture” Zilber is referring also to such strongly
minimal sets whose universe of the interpretation could, a priori, be a constructible set of dimen-
sion greater than one). As will be discussed in the concluding paragraphs of this paper, Conjecture A
can be further generalised, and is equivalent to the statement that every non-1-based structure inter-
pretable in an algebraically closed field, K interprets a copy of K, provided the interpretation is
rank preserving.
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we prove Conjecture A. Our approach to the problem follows the well-known strategy
introduced by Zilber and Rabinovich and owes to [30]. Using a standard model theor-
etic technique, Hrushovski’s field configuration (see Section 4.1 for details), the prob-
lem is reduced to showing that tangency is (up to a finite correction) M-definable in
families.

To achieve this goal, we proceed in two steps. In the first step (carried out in Sec-
tion 3), we study slopes of families of branches (at a given point) and their behaviour
under composition of curves and, in the case where the ambient structure is an expansion
of a group, under pointwise addition. This culminates in Proposition 3.15, which is the
key to the definability of tangency, and in Lemma 4.19, providing us with the (algebraic)
group which is the template allowing us to construct the group configuration.

Section 4, where Conjecture A is proved (Theorem 4.36), is dedicated, mainly, to
verifying that the assumptions of the technical result of the previous section can be met in
the reduct. In Section 4.3, we show that our definition of slope is meaningful in suitably
chosen M-definable families of curves (in positive characteristic). In Section 4.4, where
the main step towards proving Theorem 4.36 is carried out, the key difficulty to overcome
is in the application of Proposition 3.15. Specifically, Proposition 3.15 is, in essence,
a delicate combinatorial result allowing to detect tangency by studying the intersection
of pure-dimensional algebraic curves varying in geometrically nice families. In M, we
do not have direct access to the algebro-geometric objects appearing in the assumptions
of the proposition, yet we want to use the conclusions in order to detect tangency. As it
turns out, the main obstacle to achieving this goal is due to isolated points belonging to
generic curves in our M-definable families, that are not (a priori) detectable as such by M.
If such points conspired to interfere with the intersection of tangent curves, masking the
drop in the number of geometric intersection points caused by tangency, our strategy
would collapse. Many of the technicalities arising in the proof are dedicated to showing
that such situations can always be avoided.

1.1. Relation to earlier and later work

As already mentioned, Rabinovich’s work – though widely accepted as one of the first
major breakthroughs in the study of Zilber’s trichotomy (restricted to geometric settings) –
is hard to penetrate, and we know no one who claims to have understood it. For that
reason, it is hard to compare Rabinovich’s work to the present one, and our main source
of inspiration was the result of Marker and Pillay [30] on additive reducts of the complex
field.

Having said that, it is clear that the overall strategy in Rabinovich’s work, as in the
work of Marker–Pillay and the present paper owes much to ideas originating in Zilber’s
school in Kemerovo. So are some of the geometric techniques and tools applied.3 It should

3The approach in [30] is analytic rather than algebro-geometric, our proof was motivated by
those ideas and translated into the language of schemes to accommodate the positive character-
istic case.
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be stressed, however, that we – as well as several experts we have contacted in this regard –
were unable to understand significant parts of Rabinovich’s argument. For that reason,
we cannot pinpoint the reason for the present work being more general, shorter, and tech-
nically simpler.

Let us, however, dwell on one, seemingly, minor technical issue, that is – in reality –
rather significant. The problem of isolated points, discussed in the paragraph conclud-
ing the previous section, was a serious obstacle to overcome here as well as in several
other geometric settings where the reduct gives no direct access to the topology allowing
the detection of such phenomena (e.g., [7, 17]). This is also one of the key problems in
extending the results of the current work to strongly minimal sets whose universe is a con-
structible set of dimension greater than one (see [7, §1] for more details). Anyone looking
into this problem will soon come to realise that it is tightly connected with the problem
of, in Rabinovich’s terminology, common points (i.e., points in the plane that cannot be
effectively separated by a given family of plane curves). Some of the longest and most
technical parts in Rabinovich’s monograph are dedicated to controlling the behaviour of
common points. Though we could not find an explicit explanation in her text for carrying
out these highly technical computations, there is good reason to believe (see, e.g., [40,
Proposition 5.1] and cross-references in the proof) that those are needed to handle the
superfluous (isolated, in our terminology) points.

We point out that Rabinovich’s work is a continuation of an earlier, more restrict-
ive, version (appearing as [9] in her paper), where the problem of common points does
not arise (see [40, §1, especially pp. 2–3]). This suggests (though the earlier text of
Rabinovich is in Russian and, to the best of our knowledge, not publicly available) that
the main novelty in [40] is the treatment of the general case, where common points may
cause problems. It seems that our approach to the problem (showing that isolated points
can be avoided in computations) is more geometric than Rabinovich’s rather combinator-
ial treatment, and as such allows for shorter, less technical proofs. Specifically, we apply
algebro-geometric techniques to families of pure-dimensional curves (Lemma 3.13), cul-
minating in the geometric proof of Proposition 3.15. This result is then invoked twice
(in the proof of Theorem 4.25). First we use it to show that choosing our M-definable
families of curves carefully enough, the intersection-theoretic properties we need are the
same for our M-definable families and the associated pure-dimensional families. Then we
apply Proposition 3.15 to the associated pure-dimensional families, to recover tangency
in M.

From another angle, it is natural to ask (especially, in view of the relevance of the
results to anabelian geometry as in [45]) whether the reconstruction of the field from
the reduct can be obtained, in some sense, canonically. Since it is not clear what is the
right category for considering such a problem, we cannot provide a satisfactory geomet-
ric answer to this question. On the model theoretic side, it has recently been shown by
Castle and the first author, [8, Theorem 4.19], that the field interpreted in M can be taken
;-definable (in M). This is not too hard to show, a posteriori, once we have obtained
a definable family of infinite fields, but seems non-obvious in the process of constructing
(as we do here) some infinite definable field. Thus, our rather free usage of parameters,
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local coordinates and possibly other non-canonical choices does not affect the canonicity
of the ultimate result – at least to the extent to which we know how to formulate it.

Added in proof. After the submission of this paper for publication, Castle [7] announced
the solution of the restricted trichotomy in characteristic 0. Castle’s proof uses a differ-
ent method for identifying tangency in families than the one presented here. He isolates,
however, a technical notion of “the reduct identifying tangency” and shows that this auto-
matically implies the interpretability of an algebraically closed field in the reduct. Castle’s
result gives a new proof of the results presented in this paper in characteristic 0.

In a recent preprint [9], Castle, Ye and the first author extend these techniques to algeb-
raically closed valued fields of all characteristics (using ideas appearing in the present
paper for dealing, in the reduct, with the Frobenius automorphism). Combined with the
Ph.D. thesis of Pinzon culminating in [18], this should give, in particular, a complete proof
of Zilber’s restricted trichotomy for algebraically closed fields in all characteristics.

2. Model-theoretic background

For readers unfamiliar with model theory, we give a self-contained exposition of Conjec-
ture A. In order to keep this introduction as short as possible, we specialise our definitions
to the setting in which they will be applied. We refer interested readers to [43, Chapter 1,
§(1.2)] for a more detailed discussion of structures and definable sets. Readers familiar
with the basics of model theory are advised to only skim through the remainder of the
present section, to keep track of notational and other conventions.

Given an algebraic curve M over an algebraically closed field k, reduced, but not
necessarily irreducible, smooth or projective, the full Zariski structure on M , denoted
by M, is the set of k-rational points, M.k/ equipped with the collection of all Boolean
algebras of constructible sets4 on the Cartesian powers M n.k/. The full Zariski structure
on a curve M is an example of the model theoretic notion of a structure.

A first-order structure or simply a structure, N , is a non-empty set N (called the uni-
verse of N ) equipped with a collection Def.N / of Boolean algebras Defl .N / � P .N l /

for all l > 0, such that Defl .N / contains all diagonals �li;j WD ¹.x1; : : : ; xl / W xi D xj º,
and such that Def.N / is closed under finite Cartesian products and projections of the
form .x1; : : : ; xn/ 7! .x1; : : : ; xn�1/. Somewhat analogously to geometric terminology,
the tuples .x1; : : : ; xn/ 2 S � M l are called points of the definable set S . If A � N is
any set, a subsetX �N l is definable with parameters in A (or A-definable) if there exists
a definable set Y � N nCm (somem � 0) such that Y D Ya WD ¹x 2 N l W .x; a/ 2 Y º for
some a 2 An (some n 2 N). As a rule, if A is a set of parameters, we will use the model
theoretic convention of writing a 2 A as shorthand for “a is a finite tuple from A”. Also,

4Formally, putting a structure on M requires that a language be specified. Toward that end,
a canonical choice would be to take the constructible sets over the field of definition of M . This
choice will not change the class of definable sets, affecting only the use of parameters.
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when no confusion can arise, if A, a and b are parameters, we will write Aa or ab instead
of A [ ¹aº and ¹a; bº, respectively (in such situations, if a is a tuple, we will not distin-
guish – when such a distinction is unimportant – between the tuple a WD .a1; : : : ; an/ and
its image ¹a1; : : : ; anº).

While the above description of first-order structures is very concise, avoiding many
technical details, it does not provide much intuition into what definable sets actually are.
In practice, structures are usually obtained by specifying a universe M and some dis-
tinguished “basic” (or “atomic”) subsets (of Cartesian powers of M ) letting the resulting
structure M be the system of Boolean algebras generated by the atomic sets. A ;-definable
set inM n is then the collection of all n-tuples realising a first-order formula (without para-
meters) in the language consisting of symbols for the atomic sets. Interested readers are
referred to any basic textbook in logic for precise definitions (e.g., [29, §1]).

Over an algebraically closed field k, the Chevalley theorem (see, e.g., [29, Corol-
lary 3.2.8]) asserts that the collection of constructible sets on Cartesian powers of (the
k-rational points of) an algebraic curve M is closed under projections, and therefore the
full Zariski structure M onM is, indeed, a structure in the above sense. It is a well-known
fact (e.g., [26]) that the field k can be reconstructed from M. Let us now explain more
precisely what is meant by that.

A (partial) function f WN l ! N is definable if its graph is. Thus, for example, we
say that a group is definable in N , if there exist a definable set G � N l and a definable
function pWG � G ! G such that .G; p/ is a group (note that the function x 7! x�1 is
automatically definable if .G; p/ is a group). The definability of a field in a structure N

is defined analogously. It is not hard to check (and it follows from the main result of [26])
that if M is the full Zariski structure on an algebraic curveM over an algebraically closed
field k, then a field F is definable in M (and F is isomorphic, definably in the standard
field structure on k, to k).

But we need a somewhat subtler notion than definability. Consider, as a simple ex-
ample, the structure C with universe C � ¹0; 1º, whose definable sets are all those of the
form ¹..x1; i1/; : : : ; .xn; in// W .x1; : : : ; xn/ 2Dº, whereD is a constructible subset of Cn

and ij 2 ¹0; 1º for all 1 � j � n. It is easy to verify that all functions definable in C are
locally constant, and therefore there is no definable field in C . Consider, however, the
equivalence relation x � y (in C ) defined by y 2 .1; 0/ � x (recalling the interpretation
of multiplication in C , this is a C -definable way of saying that x and y have the same
first coordinate). Then � is a C -definable equivalence relation, and C=� is naturally
isomorphic to the full Zariski structure on C.

In model-theoretic terms, the structure C in the previous example interprets a field
definably isomorphic to C. In general, if N is a structure, E is a definable equival-
ence relation on N l and � WN l ! N l=E is the natural projection, the induced structure
on N l=E is the push-forward of the Boolean algebras on powers of N l via � . We say
that N interprets a field if a field is definable in the structure induced onN l=E for some l
and N -definable equivalence relation E on N l .

In the above example, the universe C � ¹0; 1º of C is definable in the full Zariski
structure on C, and every definable set in C is definable in C. But, as we have seen, C
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is not the full Zariski structure on C. The structure C is an example of a reduct of the
full Zariski structure on C. Generally, if M is a structure whose universe is an algebraic
curve M and every M-definable set is M-definable, then M is a reduct of M.

Zilber’s conjecture is concerned with the question of interpreting a field in a reduct M

of the full Zariski structure M on an algebraic curve M over an algebraically closed
field k. Assume that an infinite field F is interpretable in M. Then by [29, Theorem 3.2.20]
the universe F of F can be identified with a constructible subset of kl for some l , and
by [39, Theorem 4.15] k is definably isomorphic to F . Thus, there is a definable finite-
to-finite correspondence ‰ � F �M . It is easy to check that ‰ can be taken to be
M-interpretable (e.g., if F is definable in M, then ‰ can be taken to be the graph of
a projection function, the general case is slightly more delicate and we skip the details).
If we push the family of affine lines in F 2 via ‰, we obtain a two-dimensional construct-
ible subset U of M such that for any p; q 2 U , there is a curve C WD ‰.L/ – for L an
affine line in F 2 – with p; q 2 C . We have thus verified that for M to interpret a field,
it is necessary that there exist a two-dimensional constructible U � M 2 and a definable
set X � M 2Cl such that Xt WD ¹.x; y/ W .x; y; t/ 2 Xº is one-dimensional (or empty)
for all t 2 M l and such that for all p; q 2 U , there exists t 2 M l such that p; q 2 Xt .
The main result of the present work, Theorem 4.36, states that this condition is, in fact,
sufficient.

Definition 2.1. Let M be a reduct of the full Zariski structure M on an algebraic curveM
over an algebraically closed field k. An M-definable ample family of curves inM 2 is a set
X �M 2Cl such that

� dim.Xt / D 1 for all t 2M l such that Xt ¤ ; and

� there exists a two-dimensional U �M 2 such that for all p;q 2 U , there exists t 2M l

with p; q 2 Xt .

In model-theoretic terms, the existence of an ample family as above is equivalent,
[29, Lemma 8.1.13], to non-local modularity of the structure M. The interested reader is
referred to [37, §2] for a more detailed discussion of local modularity and related notions.

Keeping the above notation, if X is an ample family in M 2, we denote by .M;X/ the
smallest reduct of M containing X . We can thus reformulate Conjecture A.

Conjecture B (Zilber’s restricted trichotomy in dimension 1). Let M be an algebraic
curve over an algebraically closed field k. Let X � M 2 � T be the total space of an
ample family in M 2 and some M-definable set T � M l . Then a field K, k-definably
isomorphic to k, is interpretable in M D .M;X/.

Clearly, if M is an arbitrary reduct of the full Zariski structure M on an algebraic
curveM over an algebraically closed field k, and M admits an M-definable ample family
of curves X , then any infinite field interpretable in .M;X/ is also interpretable in M.

In [1, §2.4] not only is the field recovered from the affine geometry, but also the
geometry is recovered as the affine plane over that field. In the present setting, there are
examples due to Hrushovski (see, e.g., [31]) showing that the full Zariski structure of the
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curve M cannot be recovered from M. This can probably be achieved if X is very ample
in the sense of [26] (namely, if the setX in Definition 2.1 the separates points inM 2), but
we do not study this question here.5

3. Tangency

The reconstruction of the field is obtained in two steps. First, we reconstruct a one-
dimensional algebraic group, and then – using the group structure to sharpen the same
arguments – we reconstruct the field. Roughly, the reconstruction of a group is obtained in
three stages: first, we identify a reduct definable familyX ! T of algebraic curves whose
associated family of slopes at some point P D .a; a/ 2 M 2 is a one-dimensional algeb-
raic group under composition. The second and most crucial part of the proof is commonly
dubbed definability of tangency. In its cleanest form this consists in showing that, given
families X ! T and Y ! S as above, the set of all .t; s/ 2 T � S such that Xt is tangent
(in an appropriate sense) to Ys at P is M-definable. Finally, the group is reconstructed
by invoking the group configuration theorem, a well-known model theoretic technique (to
be described in more detail in the next section), using the results of the previous stages.
In the next two subsections, we take care of the two first stages of this strategy.

Before providing the technicalities, let us discuss some of the challenges that motiv-
ated the definitions to be shortly presented. In the implementation of the strategy outlined
above, two difficulties arise.

Firstly, if we consider only the first-order slopes, then due to inseparability issues in
positive characteristic it becomes hard to find a one-dimensional family of curves defin-
able in the reduct such that its associated slopes at some point range in a one-dimensional
set – such a family is needed to construct the first group configuration (Section 4.4). The
solution is to consider tangency information up to any order n and pick the order so that
there are enough slopes. Interestingly – and this was apparent already in [30] – in the
presence of a group structure, the problem does not arise, which is a good coincidence,
since the second group configuration (Section 4.5) has to be built using the first-order
tangency information.

Secondly, we cannot work only with smooth points to define the slope, since the oper-
ations of composition and pointwise addition that are used in the construction of the group
configurations do not preserve smoothness (as smooth points may be mapped onto branch
points). Our approach to this is to track a particular branch of a curve at a particular
point as the operations of composition and pointwise addition are applied: one can then
have control over the slope of a branch, appropriately defined. Note that we use the term
branch (Definition 3.3) in a more restrictive sense than what is usually understood by it:
in a way, our branches are “always smooth” (or, more precisely, “always étale over the
first factorM ofM 2”), so that the notion of a slope always makes sense for them. For any
curve in M 2, the projection either on the first or on the second factor M is going to be

5After the submission of the paper this was, indeed, proved by Castle and the first author in [8].
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generically étale (Lemma 4.14), even in positive characteristic, and so there is going to
be a unique branch at any general enough point on this curve (Lemma 3.4). This state-
ment generalises appropriately to families of curves too. By virtue of Propositions 3.7
and 3.9, the slopes of relevant branches can be tracked as the curves are composed and
pointwise added. All curves and branches that we work with in Section 4 are obtained
this way.

3.1. Slopes and operations on correspondences

Our main objects of interest are definable subsets in a reduct of the full Zariski structure
on a fixed curve M (over a fixed algebraically closed field k), which we intend to study
using algebro-geometric tools. In the present section, we produce these tools. Much of the
work in the next section is dedicated to fitting our model theoretic setting into the scope
of the tools developed here.

Throughout, by varieties we mean schemes of finite type over an algebraically closed
field k. We do not assume varieties to be reduced, though algebraic curves (as already
mentioned), families of algebraic curves, and their parameter spaces can be assumed
reduced. Non-reduced scheme will, however, play a crucial role in our study of the family
of scheme theoretic intersection of families of algebraic curves.

We adopt the following non-standard terminology: we call a constructible subset
Z � M n (for some n > 1) of dimension 1 a curve, even if it is reducible and or has
connected components of dimension 0. If a curve Z does not contain connected compon-
ents of dimension 0, we call Z a pure-dimensional curve. Clearly, every curve contains
a maximal pure-dimensional curve. Throughout, we restrict our attention solely to curves
whose projections on all coordinates are finite to one (see also Section 4.2 for a more
detailed discussion of this point).

In the few situations when we refer to abstract algebraic curves (that is, algebraic
varieties of pure dimension 1 over a fixed algebraically closed field), we will use the term
algebraic curve. We will not distinguish notationally between subsets of M n definable
in a reduct of the full Zariski structure on M and constructible subsets of the varieties
(or even schemes) M n, and in particular between definable curves and their algebro-
geometric counterparts.

Recall that any algebraic variety over a perfect field admits a dense Zariski open
subset that is smooth (see, e.g., [33, corollary to Theorem 30.5]). Let Z �M 2 be a pure-
dimensional curve and a D .a1; a2/ 2 Z be a smooth point of M 2. Since the completion
of the local ring of a smooth point of a variety is a formal power series ring [33, The-
orem 29.7], we can pick isomorphisms

1OM;a1 Š kJxK; 1OM;a2 Š kJyK

inducing an isomorphism 1OM2;a Š kJx; yK, and then 1OZ;a D kJx; yK=.f / for some
f 2 kJx; yK. We call branches of Z at a the factors in the prime decomposition of f of
the form y � g˛ , g˛ 2 kJxK (note that this is different from the standard use of the term,
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but since we will never use the term in its standard meaning in this article, no confusion
will occur). In particular, if the projection of Z onto the first factor M in M 2 is étale in a
neighbourhood of a, by Hensel’s lemma (stated as in [34, Chapter I, §4, Theorem 4.2 (d)]),
the natural morphism kJxK! kJx; yK=.f / is an isomorphism, and therefore f can be
written uniquely as u.y � g/, where u 2 kJxK�, g 2 kJxK. We call the truncation to
the n-th order of the series g˛ the n-th order slope of a branch ˛ of Z. Naturally, the
slope of a branch of a pure-dimensional curve depends on the choice of the isomorphism
1OM2;a Š kJx; yK, but this choice does not affect any of the properties of slopes we will

be interested in.
Let us note that branches of pure-dimensional curves, introduced formally in Defin-

ition 3.3, are formal schemes, but since we need local coordinates for the definition of
slopes, it seemed more transparent, in the present somewhat informal overview, to intro-
duce local coordinates right from the start, and to use them also for a quick definition of
branches.

We view curves inM 2 as finite-to-finite correspondences between the two factorsM .
The purpose of the present section is to study the behaviour of slopes of branches with
respect to two natural operations on correspondences: composition and “pointwise addi-
tion” (see Definition 3.8) when M has a structure of an algebraic group. We will show
that if Z, W are two curves and ˛, ˇ are two branches of Z, W at a D .a1; a2/; b D

.b1; b2/ 2M
2, respectively, and a2 D b1, then the compositionW ıZ has a branch ˇ ı ˛

at .a1; b2/whose slope is the composition of the n-th order slopes of ˛ and ˇ (as truncated
polynomials) whenever the latter are defined. A similar statement can be made about the
slopes of branches of curves that are “pointwise added” if M has a structure of a group.
Later we will construct a group configuration starting from a family of curves definable
in a reduct of a full Zariski structure on M such that the set of its n-th order slopes at
a given point coincides, up to a finite set, with a one-dimensional algebraic subgroup of
Aut.kJxK=.xnC1// (a truncated polynomial f corresponds naturally to the automorphism
of kJxK=.xnC1/ sending x to f ).

Since we will have to work with families of curves, we will also introduce notions
of families of branches and slopes. When the characteristic of the base field is pos-
itive, we will often have to work with curves and families of curves in M �M .pn/,
where M .pn/ is the pull-back of M by the Frobenius endomorphism on k (see Sec-
tion 4.3). For that reason, in the definition below, we do not assume that factors of the
ambient product variety are isomorphic.

Definition 3.1 (Families of curves). If X1, X2 are two algebraic curves, then by a family
of pure-dimensional curves in X1 �X2 we will understand a finite union Z of pure codi-
mension 1 locally closed subsets Zi � X1 � X2 � T , where T is a variety, such that Zt
is a pure-dimensional curve for all t 2 T . By a family of curves, we understand a con-
structible subset Z � X1 � X2 � T , where T is a constructible subset of a variety and
such that Zt is a curve for all t 2 T . If X1 D X2 D M and T � M l for some l and Z
is definable in a reduct of the full Zariski structure on M , we call it a definable family of
curves.
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While families of curves arise naturally in the definable context, in order to apply the
machinery of slopes we need to work with families of pure-dimensional curves. As long
as T is a variety, a family of curves Z � X1 �X2 � T contains a unique maximal family
of pure-dimensional curves. The total space Z of a family of pure-dimensional curves
is not necessarily a variety; while this is a desirable property that will be important in
Section 3.2, we do not include it in the definition so that it can be readily seen that the
operations of composition and pointwise addition preserve the class of families of pure-
dimensional curves. However, as is shown in the next lemma, one can easily ensure that
the total space is a variety at the cost of shrinking the parameter space. The reader is
warned, however, that – as a rule – this can only be achieved in the full Zariski structure.

Lemma 3.2. Let T be a constructible subset of a variety, W � X1 � X2 � T a family
of curves. Then there exists T 0 � T Zariski dense in T that is a variety, and there exists
a maximal locally closed W 0 � W �T T 0 which is a family of pure-dimensional curves.
In particular, W 0 is a variety.

Proof. Let us assume, for ease of notation, that T �M n. It is easily checked using Noeth-
erian induction that any constructible subset of M n contains a Zariski dense subset that
is locally closed in the ambient variety M n. In particular, there exists a dense T0 � T
that is a locally closed subvariety of M n. Without loss of generality, we may assume T0
connected. Then W �T T0 is a union of locally closed sets of the form Wi n Zi , i 2 I ,
where Wi and Zi � Wi are Zariski closed and distinct, and the index set I is finite. Let
I 0 � I be the set of those indices i for which Wi has codimension 1 in M 2 � T . Further
shrinking T0, we may assume that dim.Wi /t D 1, dim.Zi /t D 0 for all t 2 T0 and all
i 2 I 0 (in particular, Zi ¤ ;). We put W 0 D

S
i2I 0 Wi nZi . It now suffices to show that

if W1 n Z1 and W2 n Z2 are as above, then there exists a dense open T 0 � T0 such that
.W1 n Z1/ �T T

0 [ .W2 n Z2/ �T T
0 is locally closed; the statement of the lemma then

follows by induction on the size of I 0.
We have

.W1 nZ1/ [ .W2 nZ2/

D .W1 [W2/ n ..Z1 \Z2/ [ .Z1 \ .W2 nZ2// [ .Z2 \ .W1 nZ1///:

It follows from an easy dimension computation that

dim.Z1 \ .W2 nZ2// < dimZ1; dim.Z2 \ .W1 nZ1// < dimZ2;

so in particular the projections of Z1 \ .W2 nZ2/, Z2 \ .W1 nZ1/ to T0 are not dense.
If T 0 is a dense open set in the complement of the projections, then

.W1 nZ1/ �T T
0
[ .W2 nZ2/ �T T

0
D .W1 [W2/ �T T

0
n .Z1 \Z2/ �T T

0

which is locally closed.

Given a family of pure-dimensional curves Z as above, we would like to be able to
pick branches of the curves Zt depending algebraically on the parameter t 2 T . In this
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case, the local equation ofZ in a formal neighbourhood of ¹aº � T may only exist locally
on T , and in order to capture this idea, we have to phrase the definition in terms of formal
schemes (we refer the reader to [16, Chapter II, Section 9] or any other standard algebraic
geometry reference for the definition of formal schemes).

Definition 3.3 (Branches and families of branches). Let Z � V WD X1 � X2 � T be
a family of pure-dimensional curves, a 2M 2, and assume that a 2Zt for all t 2 T . Let yX1
be the formal completion of X1 � T along ¹a1º � T , and let yZ be the formal completion
ofZ along ¹aº � T . A family of branches ofZ at a is a closed formal subscheme yZ˛ such
that the natural projection yZ˛ ! yX1 is an isomorphism. We will call local generators of
the ideal sheaf that defines yZ˛ local equations of ˛. WhenZ �X1 �X2 is a single curve,
we regard it as a family parametrized by a single point, and we call families of branches
of Z just branches. Given a family of branches ˛, we will denote by ˛t the branch given
by the fibres yZ˛t for all t 2 T .

Remark. If Z � X1 � X2 � T is a family of curves and T is a variety, then in order to
simplify the exposition, we will refer to branches of Z meaning branches of a family of
pure-dimensional curves Z0 � Z.

LetXi be algebraic curves, and let aD .a1; : : : ; an/ 2X DX1 � � � � �Xn be a smooth
point. We say that a local coordinate system at a is picked when an isomorphism 1OXi ;ai Š
kJxiK is picked for each ai ; in this case, we understand that there exists an isomorphism
OX;a Š kJx1; : : : ; xnK induced by these isomorphisms. If local coordinate systems are
picked at aD .a1;a2/2X1 �X2, bD .b1; b2/2X2 �X3, we understand without explicit
mention that local coordinate systems are automatically picked at the points .a1; b2/ 2
X1 � X3, .b2; a1/ 2 X3 � X1 which will be of interest to us later on. Similarly, if X1
has a group structure and a local coordinate system is picked at a point a 2 X1, then we
assume it picked at any point a0 2 X1 via translation. The next lemma gives a sufficient
condition for the existence of a family of branches at a point.

Recall that a morphism of schemes f W X ! Y is called quasi-finite if the fibres
f �1.y/ are finite for all y 2 Y . A quasi-finite morphism f WX ! Y of locally Noeth-
erian schemes is unramified if �X=Y D 0 (see [28, Chapter 6, Corollary 2.3]), where
�X=Y is the module of Kähler differentials of the morphism f . A morphism f locally of
finite type is called étale if it is flat and unramified. Basic properties of these notions will
be recalled in detail and with references in Section 3.2.

Lemma 3.4. If Z � V D X1 � X2 � T is a family of pure-dimensional curves and the
projection Z ! X1 is étale in a neighbourhood of ¹aº � T for some a 2 X1 � X2, then
there exists a unique family of branches of Z at a.

Proof. For any affine open SpecR � X1 � T , let SpecR0 � Z be an affine open étale
over SpecR, let I , I 0 be the ideals vanishing on ¹a1º � T , ¹aº � T , respectively, yR and yR0

their respective completions. Then by [42, Tag 0ALJ], . yR; I / is a Henselian pair and by
[42, Tag 09XI], there exists a unique isomorphism yR0! yR that defines the unique family
of branches.

https://stacks.math.columbia.edu/tag/0ALJ
https://stacks.math.columbia.edu/tag/09XI
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Definition 3.5 (Slope). Let X1, X2 be algebraic curves, Z � V WD X1 � X2 a pure-
dimensional curve, a 2 V a smooth point, a 2Z, and I;ma �OV;a the ideals of functions
that vanish on Z, ¹aº, respectively. Assume that a local coordinate system is chosen at a,
so that lim

 �
OV;a=m

n
a Š kJx; yK. A branch ˛ of Z is therefore defined by a principal

ideal J with the property that the composition kJxK! kJx; yK! kJx; yK=J is an iso-
morphism. The inverse of this isomorphism sends y to f 2 xkJxK, and y � f 2 J . We call
f mod xnC1 2 kŒx�=.xnC1/ the n-th order slope of Z at ˛, denoted by �n.Z; ˛/.

Note that �n.Z; ˛/ depends on the choice of the local coordinate system at a, and that
if an n-th order slope of Z at ˛ is defined, then the slopes of all orders of Z at ˛ are
defined.

Remark. (i) Let f , g be functions on the formal neighbourhood of a point a common
to the pure-dimensional curves Z1, Z2, respectively, and whose respective graphs are
branches ˛, ˇ of Z1, Z2. If �n.Z1; ˛/D �n.Z2; ˇ/ but �nC1.Z1; ˛/¤ �nC1.Z2; ˇ/, then
f � g mod xnC1 and therefore f � g D xnC1 � r for some unit r 2 kJxK, and so

kJx; yK=.y � f; y � g/ Š kJxK=.xnC1/:

In particular, if Z1, Z2 are smooth at a and ˛, ˇ are their unique respective branches
at a, then the intersection multiplicity of Z1 and Z2 at a (as defined in, for example,
[16, Chapter I, Exercise 5.4, p. 36]) is n.

(ii) LetX �M 2 � T , Y �M 2 � S be families of pure-dimensional curves such that
a 2 Xt \ Ys for all t 2 T , s 2 S and Xt \ Ys is zero-dimensional for generic t , s. Let
˛, ˇ be some families of branches of X and Y at a. Then it follows from Krull’s maximal
ideal theorem that there exists a maximal integer n such that

�n.Xt ; ˛t / D �n.Ys; ˇs/

for all t 2 T , s 2 S .

For the benefit of the reader, we explain what data in the Definitions 3.3 and 3.5
specifies families of branches and slopes, specialising the description in the language of
formal schemes to an affine situation. Take Zariski open subsets U � X1 � X2, W � T
such that a 2U . Let S ,R be the rings of regular functions onU ,W , and let Ja;J �R˝S
be the ideals of regular functions that vanish on ¹aº �W ,Z \U �W , respectively. We fix
a local coordinate system at a which gives an isomorphism lim

 �
.R˝ S/=J na Š RJx; yK.

A choice of a family of branches ˛ is a choice of an element f˛ 2RJxK such that y � f˛ 2
RJx;yK generates an ideal (necessarily prime) containing JRJx;yK. The slope �n.Zt ; ˛t /
is the truncated polynomial f˛ ˝ k.t/ mod xnC1 2 kJxK=.xnC1/. From this description,
it is clear that if we regard the n-th order slope of Z at ˛t as a tuple of coefficients of
f˛ ˝ k.t/, then t 7! �n.Zt ; ˛t / is a regular function from W to An.

Note that the notion of slope is invariant under extensions of the base field. Assume
that all objects in the previous paragraph are defined over k, and let k0 � k be a field
extension. Then there exists a family of branches ˛k0 of

Zk0 D Z ˝ k
0
� .X1 ˝ k

0/ � .X2 ˝ k
0/
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and there exists a local coordinate system at a in .X1 ˝ k0/ � .X2 ˝ k0/ such that the
regular function

t 7! �n..Zk0/t ; .˛k0/t /

is defined by the polynomials with the same coefficients as the function

t 7! �n.Zt ; ˛t /:

In model-theoretic terms, this observation implies that once a point a 2 M 2, a local
coordinate system at a, and a family of branches ˛ of Z are fixed, the slope �n.Zt ; ˛t / is
definable in the language of fields over t .

If X1 � � � � �Xn is a product of k-varieties, we denote

pi1:::ik W X1 � � � � �Xn ! Xi1 � � � � �Xik

the natural projections. Although the notion of the composition of correspondences is
standard, we reintroduce it here to fix conventions.

Definition 3.6 (Composition of curves). Let Z � X1 � X2 � T , W � X2 � X3 � S be
families of curves, and let pi1:::ik denote projections on products of the factors of the
space X1 � X2 � X3 � T � S . Define the family W ı Z of compositions of curves from
the families W and Z to be

p1345.p
�1
124.Z/ \ p

�1
235.W //

in X1 � X3 � T � S . Clearly, if Z, W are definable, then so is Z ıW ; on the level of
points:

W ıZ D ¹.x; z; t; s/ 2M 2
� T � S W 9u..x; u; t/ 2 Z ^ .u; z; s/ 2 W /º:

If for all t 2 T , s 2 S , all irreducible components ofZt ,Ws project dominantly onX1,X2,
respectively, then W ıZ is a family of curves parametrized by T � S .

We denote by Z�1 the image of Z under the morphism

X1 �X2 � T ! X2 �X1 � T

permuting the factorsX1 andX2, in both geometric and definable contexts. We regard the
above definitions as applicable to individual curvesZ,W by putting T D S to be a point.

Remark. If Z, W are families of pure-dimensional curves such that for all t 2 T , s 2 S
all irreducible components of Zt , Ws project dominantly on X1, X2, respectively, then
W ıZ is a family of pure-dimensional curves.

The next proposition relates the n-th order slope of the composition of curves with
the n-th order slopes of the original curves. It is key in producing (at this stage, only on
the level of the full Zariski structure) a connection between composition of curves and
a group operation.
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Proposition 3.7. Let Z � X1 � X2 � T and W � X2 � X3 � S be families of pure-
dimensional curves, let ˛, ˇ be families of branches of Z, W at a D .a1; a2/ 2 Z,
b D .b1; b2/ 2 W , respectively, a2 D b1. Then there exists a family of branches ˇ ı ˛
of W ıZ at .a1; b2/ such that for all t 2 T , s 2 S and for all n > 0,

�n.Ws ıZt ; .ˇ ı ˛/.t;s// D �n.Ws; ˇs/ ı �n.Zt ; ˛t /

where the operation “ı” on the right-hand side is composition of truncated polynomials.

Proof. The proof consists essentially in unravelling the definitions. The choice of coordin-
ate systems induces the isomorphisms

3OX1�X2;a Š kJx; yK; 3OX2�X3;b Š kJy; zK:
If the family of branches ˛ is given Zariski locally around t 2 T by an equation y � f ,
f 2 xOT;tJxK, and ˇ is given by z � g, g 2 yOS;sJyK, then let the family of branches
ˇ ı ˛ be given by z � g ı f , g ı f 2 .OT;t ˝OS;s/JxK. Note that the composition g ı f
of the formal power series makes sense and has a zero constant term since both f and g
have this property.

Now let hZ , hW be generators of the kernels of the maps

OX1�X2�T;.a;t/ ! OZ;.a;t/; OX2�X3;.b;s/ ! OW;.b;s/;

respectively, then y � f divides hX and z � g divides hY . The germ of W ı Z around
.a1; b2; t; s/ by Definition 3.6 is cut out by the ideal .hX ; hY / \ kJx; zK, and in order
to show that ˇ ı ˛ is a family of branches of Y ı X at this point, we need to check that
.z � g ı f / contains .hX ; hY / \ .OT;t ˝ OS;s/Jx; zK, and for that it would suffice to
check that

.z � g ı f / D I WD .y � f; z � g/ \ .OT;t ˝OS;s/Jx; zK:

Indeed, it is straightforward to check that for any n > 0,

.z � g ı f / D In WD I=.x
n; zn/

and since I is the inverse limit of In, it follows that .z � g ı f / D I .

Definition 3.8 (Pointwise addition of curves). Let G be a one-dimensional algebraic
group, and let X � G2 � T , Y � G2 � S be families of curves. Let aWG � G ! G

be the group law, let �a � G3 be its graph, and denote by pi1:::ik projections of G �G �
G �G � T � S on the products of factors. We define the family of curvesX C Y of sums
of elements of the families X and Y to be

p1456.p
�1
234.�a/ \ p

�1
124.X/ \ p

�1
135.Y //

in G2 � T � S . Clearly, if X , Y are definable, then so is the family X C Y ; on the level
of points:

X C Y WD ¹.a; b C c; t; s/ W .a; b; t/ 2 X; .a; c; s/ 2 Y º:
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Remark. If X and Y are families of pure-dimensional curves, then so is X C Y . It may
seem from the notation above that G is supposed to be commutative, even though the
definition applies even if this is not the case. In this paper, we will only consider the
operation “+” for curves inside groups whose connected component of the identity is
commutative.

LetG be a one-dimensional algebraic group, then the formal group law ofG is defined
as the image of the topological generator of kJxK Š bOG;e under the morphism bOG;e !
5OG;e ˝OG;e Š kJx; yK induced by the group operation morphism. The truncation to

first order of a one-dimensional formal group law is x C y (see, for example, [27, Part I,
Section 2.4]).

Proposition 3.9. Let G be a one-dimensional algebraic group over an algebraically
closed field k. Let F be the formal group law ofG, and let Fn be its n-th order truncation.
Let X � G � G � T , Y � G � G � S be families of pure-dimensional curves, and let
˛, ˇ be families of branches at a D .a0; a1/, b D .b0; b1/, where b0 D a0, respectively.
Then there exists a family of branches ˛ C ˇ of X C Y at .a0; a1 C b1/ such that

�n.Xt C Ys; ˛t C ˇs/.x/ D Fn.�n.Xt ; ˛t /.x/; �n.Ys; ˇs/.x//

if �n.Xt ; ˛t / and �n.Ys; ˇs/ are defined. In particular, if n D 1,

�1.Xt C Ys; ˛t C ˇs/.x/ D �1.Xt ; ˛t /C �1.Ys; ˇs/:

Proof. As in the proof of Proposition 3.7, this statement follows from the unfolding of
the definitions. Reasoning locally, assume that ˛ is cut out by the equation y � f , f 2
kJxK˝OT;t near t , ˇ is cut out by z � g, g 2 kJxK˝OS;s near s. Then ˛C ˇ is cut out
by y � F.f .x/; g.x// near .t; s/ 2 T � S . Checking that the latter power series indeed
define a family of branches of X C Y is straightforward, and we leave it to the reader.

3.2. Flat families and definability of tangency

In the present section, we prove the main technical result of the paper, Proposition 3.15,
identifying tangency of two generic elements of two families of curves in terms of prop-
erties of the families definable in the reduct M. While we do not give a full definable
characterization of tangency, we prove a standard weakening of this result, which, as we
will see in the concluding section of the paper, is sufficient for our needs.

The key preliminary step is the observation that if X � M 2 � T , Y � M 2 � S are
families of pure-dimensional curves andM , T , S are smooth, then the “family of scheme
theoretic intersections”X �M2 Y ! T � S is flat if restricted to the open subset of T � S
over which it has finite fibres. We refer the reader to any standard exposition of flatness,
such as [34, Chapter I, Section 2], for details, and quickly recall some of the key facts.
All schemes in this section are assumed Noetherian, and by varieties we mean schemes of
finite type over an algebraically closed field k. We identify closed scheme-theoretic points
of varieties with geometric points (that is, morphisms Speck! X that are sections of the
structure map X ! Spec k).
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First, recall that a morphism f WX ! Y is flat if all local rings OX;x are flat OY;f .x/-
modules. In particular, flatness can be checked Zariski locally on the source: if X DSn
iD1 Oi is an open cover and Oi is flat over Y for all i , then X is flat over Y [42,

Tag 01U5].

Fact 3.10 (Generic flatness, [15, Exposé IV, Théorème 6.10, Corollaire 6.11]). Let Y be
an integral scheme, and let f WX ! Y be a dominant morphism of finite type. Then there
exist open subsets O � X , U � Y such that

f jO W O ! Y; f jf �1.U /W f
�1.U /! U

are flat.

Fact 3.11 ([34, Chapter I, Propositions 2.4 and 2.5], [42, Tag 05BC], [42, Tag 02KB]).
We have that

(i) an open immersion is flat;

(ii) a composition of flat morphisms is flat;

(iii) let X ! Y be a flat morphism and let Z! Y be a morphism. Then X �Y Z! Z

is flat;

(iv) let B be a flat A-algebra and consider b 2 B . If the image of b in B=mB is not
a zero divisor for any maximal ideal m of A, then B=.b/ is a flat A-algebra;

(v) a finite morphism f WX ! Y is flat if and only if f is a locally free morphism, that
is, if f�OX is a locally free OY -module;

(vi) ifA is an algebra and I �A is an ideal, then the completion lim
 �

A=I n is flat overA.

Lemma 3.12. Assume that the total space X of a family of pure-dimensional curvesX �
M 2 � T is a variety and that M 2 � T is smooth. Then X is flat over T .

Proof. By definition of a family of pure-dimensional curves, X is open in xX , so by
Fact 3.11 (i) and (ii) suffices to show flatness of xX over T . Passing to a cover of M 2 � T

by affine opens Oi D SpecBi suffices to show flatness of xX \ Oi over T for all i . But
this immediately follows from the definition of a family of pure-dimensional curves and
Fact 3.11 (iv). Specifically, since M 2 � T is smooth, then any Weil divisor is Cartier, i.e.,
it is given, locally, by vanishing of a function.X is of pure codimension-one, hence a Weil
divisor, and hence Cartier. So we may apply Fact 3.11 (iv).

Lemma 3.13. LetM be a smooth algebraic curve, T , S smooth varieties, X �M 2 � T ,
Y � M 2 � S families of pure-dimensional curves, and assume that X , Y are varieties.
Let U � T � S be the set of points u such that dim.X �M2 Y /u D 0, let Z D X �M2

Y \ p�1.U / be the scheme theoretic intersection, where p is the projection onto T � S .
Then the restriction pWZ ! U is flat.

Proof. By Lemma 3.12, X is flat over T . Since M , T , S are smooth and since regular
local rings are unique factorization domains, and Y is pure-dimensional, Y is cut out in
M 2 � S by a principal ideal sheaf (see, for example, [32, §19, Theorems 47, 48]). Since

https://stacks.math.columbia.edu/tag/01U5
https://stacks.math.columbia.edu/tag/05BC
https://stacks.math.columbia.edu/tag/02KB
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X ! T is flat, by Fact 3.11 (iii) X � S Š X �T .T � S/! T � S is flat too. Since X
is pure-dimensional, the natural closed embedding X �M2 Y ! X � S is also cut out by
a principal ideal sheaf I, passing by virtue of Fact 3.11 (i) to a cover of X � S by affine
opensOi D SpecBi and applying Fact 3.11 (iv) to the algebras Bi , this closed subscheme
is flat precisely over the complement of the subvariety of T � S consisting of the points u
such that the local generator of I does not vanish on an irreducible component of the fibre
.X � S/u. In other words, it is flat over the open subset of points u 2 T � S such that
.X �M2 Y /u is zero-dimensional.

Recall now that a morphism f WX ! Y is called finite if for any affine open U D
SpecR � Y , the inverse f �1.U /D SpecS is affine and S is a finiteR-module. A morph-
ism is finite if and only if it is quasi-finite and proper [14, Exposé IV, Corollaire 18.12.4].

Lemma 3.14. Let f WX! Y be a quasi-finite morphism of schemes over an algebraically
closed k. Consider the functions

mW Y.k/! Z; y 7! #.f �1.y//;

wW X.k/! Z; x 7! dimk OX;x ˝ k.f .x//:

Then

(i) w.x/D dimk.x/
bOX;x ˝ k.f .x//, where bOX;x is the completion lim

 �
OX;x=I

n for any
ideal I � OX;x;

(ii) assume that f is flat. Then m is lower semi-continuous and w is upper semi-contin-
uous, that is, the lower level sets of m and the upper level sets of w

¹y 2 Y W m.y/ � nº and ¹x 2 X W w.x/ � nº

are closed; y 7!
P
x2f �1.y/ w.x/ is lower semi-continuous and is locally constant

if f is finite.

Proof. Let J (resp. OJ ) be the ideal of OX;x (resp. bOX;x), generated by the image of the
maximal ideal of OY;f .x/, then OX;x ˝ k.f .x// Š OX;x=J . We have a sequence of iso-
morphisms

OX;x ˝ k.f .x// Š OX;x=J Š bOX;x= OJ Š bOX;x ˝ k.f .x//;

where the first and the third one are tautological, and the second morphism is an iso-
morphism because OJ is the completion of J in the I -adic topology. This proves claim (i).

That m is lower semi-continuous follows from [14, Exposé IV, Proposition 15.5.1 (i)]
and the fact that flat morphisms of finite type are universally open [14, Exposé IV, Théo-
rème 2.4.6]. Upper semi-continuity ofw follows from [42, Tag 0F3D3] and [42, Tag 0F3I]
(note that the definition of w from the statement of the lemma and one from [42] coincide
on the closed scheme theoretic points of a variety over an algebraically closed field).
Lower semi-continuity of

P
x2f �1.u/w.u/ follows from [42, Tag 0F3J], that it is locally

constant if f is finite follows from the definition of a weighting [42, Tag 0F3A].

https://stacks.math.columbia.edu/tag/0F3D
https://stacks.math.columbia.edu/tag/0F3I
https://stacks.math.columbia.edu/tag/0F3J
https://stacks.math.columbia.edu/tag/0F3A
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We can now formulate our main technical result. Roughly, it states that, in suitably
chosen families of curves tangency of two curves is witnessed by a lower number of
intersection points.

Proposition 3.15. We keep the notation and assumptions of Lemma 3.13 and assume
further that there exists a 2M 2 such that Xt , Ys pass through a for all t 2 T , s 2 S . Let
˛, ˇ be families of branches at a of X , Y , respectively, such that for all t 2 T , s 2 S the
slopes of ˛t , ˇs are defined. Define

nmax D max¹n W 8.t; s/ 2 U.k/; �n.Xt ; ˛t / D �n.Ys; ˇs/º;

mmax D max
.t;s/2U.k/

#.Xt \ Ys/:

Then

¹.t; s/ 2 U.k/ W �nmaxC1.Xt ; ˛t / D �nmaxC1.Ys; ˇs/º

� ¹.t; s/ 2 U.k/ W #.Xt \ Ys/ < mmaxº:

Proof. ConsiderZ DX �M2 Y \M 2 �U , let qWZ!M 2 be the natural projection, and
letZD

Sn
iD0Zi be the decomposition into irreducible components, whereZ0 D q�1.a/.

We will first show that whenever p�1.u/ \ Z0 \ Zi ¤ ; for some i ¤ 0, we have
#p�1.u/ < maxu2U #p�1.u/. In order to do that, we will show that the function u 7!
#p�1.u/ \ .

S
i¤0Zi / is lower semi-continuous.

The projection pWZ ! U is flat by Lemma 3.13. By [42, Tag 04PW], the closed
embedding Zred ! Z, where Zred is Z endowed with the canonical reduced structure,
is flat. Since the invariant we are interested in does not depend on the scheme structure,
by Fact 3.11 (ii) we may assume Z to be reduced. Furthermore, there exists an open
embedding Z ,! xZ, where xZ is flat and finite over U . Indeed, let xM be a smooth proper
algebraic curve that containsM as a dense subset, and let xX , xY be the closures ofX , Y in
xM 2 � T and xM 2 �S . Let xZD xX � xM2

xY \ xM 2 �U , let xp be the natural projection onU ,
and denote by yp its restriction to yZ D

S
i¤0
xZi , where xZi is the irreducible component

of xZ that contains Zi for each i . By Lemma 3.13, xp is flat.
By Fact 3.11 (v), the morphism xp is locally free. It is readily seen that . xp/�O yZ is

locally free of rank one less than the rank of . xp/�O xZ . Indeed, if W D SpecA � U is
an affine open such that . xp/�1.W / D SpecB and B is a free A-module, we have that
B Š B=p˚ B=q as A-module, where p; q � B are ideals cutting out Z0 \ . xp/�1.W /,
yZ \ . xp/�1.W /, respectively. Since Z0 Š U , in particular Z0 \ . xp/�1.W /ŠW , and we
have that B=p Š A, so B=q is free. By Fact 3.11 (v) again, yp is flat, and by Fact 3.11 (i),
its restriction to yZ \ZD

S
i¤0Zi is flat. We deduce by Lemma 3.14 (ii) that the function

u 7! #p�1.u/ \ .
S
i¤0Zi / is lower semi-continuous.

Note that while Z0 may have non-trivial scheme-theoretic structure, the restriction
pjZ0 W .Z0/red ! U is a homeomorphism, so denote r WU ! Z0 its set-theoretic inverse.
Let wWZ ! Z, w.z/ D dimk OZ;z ˝ k.p.z//. We claim that w is constant on the open
set Z0 D Z0 n

S
i¤0Zi . By Fact 3.11 (i), Z0 is flat over U , and by Fact 3.11 (iii), it is flat

https://stacks.math.columbia.edu/tag/04PW
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over the open p.Z0/ � U . The restriction pjZ0 WZ0 ! p.Z0/ is still a homeomorphism;
we will show that it is a finite morphism.

Note that since U is dense in T � S , it is integral, and since Z0 is dense in U , it
is integral too. The scheme Z0 is of finite type over a field, so clearly quasi-compact,
and p is clearly separated (for example, because it is affine), so Zariski’s main theorem
(see [34, Chapter I, Theorem 1.8]) can be applied to p. Therefore, p factors into a com-
position of an open embedding i WZ0!Z00 and a finite morphism p0WZ00! p.Z0/. Since
zp D predjZ0 WZ

0
red ! p.Z0/ is an isomorphism, the morphism p00 D ired ı zp

�1 ı p0redW

Z00red ! Z00red restricts to the identity morphism on Z0red. If pjZ0 WZ0 ! p.Z0/ is not finite,
then the open embedding i is an isomorphism and p00 is not an isomorphism. Since
passing to a closed subscheme preserves finiteness, we may assume Z0 to be dense
in Z00. The subset of Z00red, where p00 and the identity morphism coincide, is closed and
contains Z0, so must be the whole of Z00, which in turn contradicts p00 not being an iso-
morphism.

Now by Lemma 3.14 (ii),w is upper semi-continuous onZ.k/ and in particular onZ0,
but since Z0 is flat and finite over U , w is constant on Z0.k/. Therefore, w takes the
value wmin;0 D minx2Z0 w.x/ on the latter, and if w.r.u// > wmin;0 for some u 2 U ,
then r.u/ 2 Zi \ Z0 for some i ¤ 0 and therefore #p�1.u/ is not maximal. It follows
that

¹.t; s/ 2 U.k/ W w.r.u// > wmin;0º � ¹.t; s/ 2 U.k/ W #.Xt \ Ys/ < mmaxº:

It is left to prove that

w.r.t; s// > wmin;0 for all t; s such that �nmaxC1.Xt ; ˛t / D �nmaxC1.Ys; ˇs/:

To establish this, it is enough to prove the statement on an affine Zariski open sub-
set SpecR � U �M 2 intersecting Z0 non-trivially. Let f; g 2 R be the equations of
X � S \ SpecR; Y � T \ SpecR, respectively. Let I � R be the ideal of functions that
vanish on q�1.a/, and let yR D lim

 �
R=I n.

Let f D f1 � � � fN , g D g1 � � � gK be decompositions into pairwise coprime factors
in yR, and let f˛ and gˇ be those factors that are local equations of ˛, ˇ. Apply the Chinese
remainder theorem (see [2, Chapter 9, p. 99, Exercise 9]) twice: first, to yR=.f; g/ to get
the decomposition

yR=.f; g/ D

NM
iD1

yR=.fi ; g/;

second, to each direct summand yR=.fi ; g/ to get

yR=.f; g/ D

NM
iD1

KM
jD1

yR=.fi ; gj /:

Both applications are justified: since fi are pairwise coprime in yR (that is, .fi /C .fk/ D
yR for i ¤ k), the ideals .fi ; g/ are pairwise coprime in yR=.g/, similarly, for each i , the
ideals .fi ; gj / are pairwise coprime in yR=.fi ; g/.
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Tensoring with k.u/ and applying Lemma 3.14 (i), we get

w.r.u// D

NX
iD1

KX
jD1

dimk.u/
yR=.fi ; gj /˝ k.u/:

Therefore, if uD .t; s/ 2 U.k/ and �nmaxC1.Xt ; ˛t /D �nmaxC1.Ys; ˇs/, then by the remark
after Definition 3.5,

dimk
yR=.f˛; gˇ /˝ k.u/

takes a value strictly greater than the minimum it achieves on U.k/. By Fact 3.11 (vi),
yR is a flat R-algebra, and by applying Fact 3.11 (iv) twice, as in the proof of Lemma 3.13,
Spec yR=.fi ; gj / is flat over U for all i , j . Since by Lemma 3.14 (ii) for each pair of
prime factors fi , gj , the value dimk

yR=.fi ; gj / ˝ k.u/ is upper semi-continuous in u,
it follows that w.r.t; s// > wmin;0 as soon as slopes of order .nmax C 1/ of ˛t and ˇs
coincide.

4. Interpretation of the field

In the present section, we tie together the results obtained above to produce the main result
of the paper. We start with some additional technicalities and reductions.

4.1. The group configuration

In stable theories – a model theoretic framework encompassing all structures considered
in the present work – certain combinatorial configurations of elements are known to exist
only in the presence of an interpretable group or – in a more restrictive setting – an inter-
pretable field. It is by constructing such configurations – using the “definable intersection
theory” developed in the previous sections – that the main theorem of the present paper is
proved.

Before describing these configurations in more detail, we need some model theor-
etic preliminaries. As in Section 2, we will specialise the definitions to the setting in
which they will be used. As above, we will be working in the full Zariski structure M

on an algebraic curve M over an algebraically closed field k. In order to keep the defini-
tions as simple as possible, we further assume that k is of infinite transcendence degree.
In Lemma 4.8, we explain why this assumption is harmless. We will be mostly con-
cerned with a structure M WD .M; X/, where X � M 2 � T � M 2Cl is the total space
of an ample family (recall that .M; X/ denotes the smallest structure on M.k/ contain-
ing X.k/). Throughout the text, unless explicitly stated otherwise, by definable we mean
“definable with parameters”. When this is not clear from the context, we will write M-
definable or M-definable to stress in which structure we are working.

Definition 4.1. (1) If D is an M-definable set, we let dim.D/ WD dim.cl.D//, where cl
denotes the Zariski closure of D.
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(2) If A is a set of parameters and a 2 M l , we denote dim.a=A/ WD min¹dim.D/ W
a 2 Dº, where D ranges over all subsets of Dl M-definable over A.

(3) We say that a 2M is M-algebraic overA if dim.a=A/D 0. We denote aclM.A/ WD
¹a 2M W dim.a=A/ D 0º.

(4) We say that a is M-generic in D over A if dim.a=A/ D dim.D/.

(5) We say that a is M-independent of B over A if dim.a=A/ D dim.a=AB/.

Remark. Note that dim.D/ is (by definition) the same as the algebro-geometric dimen-
sion of D. This implies that dimM.a=A/ � dimM.a=A/, but there is no need for equality
to hold. In particular, aclM.A/ � acl.A/, where on the right-hand side acl is the field-
theoretic algebraic closure in k. It follows that M-independence (which coincides with
the field-theoretic notion of algebraic independence) implies M-independence, but not
necessarily the other way around.

Definition 4.2. An infinite set D definable (or interpretable) in M is strongly minimal if
every M-definable subset of D is finite or cofinite.

It is an easy exercise to verify that if D is an M-definable set and dim.D/ > 1,
then there are a projection � WD ! M dim.D/�1 and an open U � M dim.D/�1 such that
��1.u/ \D is infinite for all u 2 U . In particular, D is strongly minimal only if
dim.D/ D 1. Thus, D is strongly minimal if and only if it is one-dimensional and can-
not be written as the disjoint union of two one-dimensional M-definable subsets. We say
that M is strongly minimal if M is (as an M-definable set).

Remark. An M-definable setD may be strongly minimal with respect to the structure M

but not with respect to the structure M.

As we will see below, we can easily reduce the proof of our main result to the case
where M is strongly minimal. Under this additional assumption, we can finally introduce
the group configuration:

Definition 4.3 (Group configuration). Let M be as above, and assume that it is strongly
minimal. The set ¹a; b; c; x; y; zº of tuples

x y

z

a

b

c

is a group configuration if there exists an integer n such that

� all elements of the diagram are pairwise independent and dim.a; b; c; x; y; z/ D
2nC 1;
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� dim a D dim b D dim c D n, dim x D dimy D dim z D 1;

� all triples of tuples lying on the same line are dependent, and moreover, dim.a;b; c/D
2n, dim.a; x; y/ D dim.b; z; y/ D dim.c; x; z/ D nC 1;

Two group configurations G1, G2 are inter-algebraic if for any pair of tuples a 2 G1,
a0 2 G2 in the corresponding vertices, aclM.a/ D aclM.a0/.

Assume that G is a connected M-definable group acting transitively on a strongly
minimal definable set X , then one can construct a group configuration as follows: let g, h
be independent generics in G, and let u be a generic of X (we will justify the assumption
that such generics exist later on), then .g;h;g � h;u;g � u;g � h � u/ is a standard group con-
figuration (associated with the action of G on X ). Below (Lemma 4.19), we show that for
a suitably constructed M-definable family of curves passing through a fixed point, the set
of n-th order slopes of curves in the family coincides for some n with a one-dimensional
algebraic group H (viewed as acting on itself by multiplication). Proposition 3.15 will
then allow us to “pull back” a group configuration (in M) associated with this group H
into a group configuration in M. This will, essentially, finish the proof, using the follow-
ing well-known fact.

Fact 4.4 (Hrushovski). Assume that M is a strongly minimal structure, and let G1 D
.a; b; c; x; y; z/ be a group configuration. Then there exists a definable group G acting
transitively on a strongly minimal set X .

This follows from the main theorem of [4] and the fact that infinitely definable groups
in stable theories are intersections of definable groups (see, for example, [39, Theo-
rem 5.18]) and the fact that any group definable in an algebraically closed field is (defin-
ably isomorphic to) an algebraic group (see [39, Theorem 4.13]). The original proofs of
these statements are contained in [19].

To construct a field, we will have to work a little harder. First, we want to relate
the group configuration we started with, with a standard group configuration associated
with the group provided by Fact 4.4. Toward that end, we need to assure that the group
configuration we started with contained only relevant information. This is captured in the
following technical definition.

Definition 4.5. A group configuration .a1; a2; a3; x; y; z/ is minimal if

aclM.Cb.x; y/=a1/ D aclM.a1/;

aclM.Cb.y; z/=a2/ D aclM.a2/;

aclM.Cb.x; z/=a3/ D aclM.a3/:

Remark. We will not go into the definition of canonical bases (see, e.g., [37, p. 19]), but
for the benefit of readers unfamiliar with this model theoretic notion, we mention that

(1) The minimality condition is readily checked to be equivalent to the condition that
whenever there are a0i 2 aclM.ai / such that .a01; a

0
2; a
0
3; x; y; z/ is still a group configura-

tion, then ai 2 aclM.a0i / for all i D 1; 2; 3.
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(2) By dimension considerations, it follows from the previous remark that any group
configuration .a1; a2; a3; x; y; z/ gives rise to a minimal group configuration .a01; a

0
2; a
0
3;

x; y; z/ with a0i 2 acl.ai / for all i . In particular, if dim.ai / D 1 for all i , then .a1; a2; a3;
x; y; z/ is a minimal configuration.

(3) Roughly, Cb..x;y/=a/ is the model theoretic analogue of the field of definition of
the locus of .x; y/ over acl.a/. In the full Zariski structure, this is, in fact, the definition.
To define this in the reduct, we proceed as follows: for M-definable sets, X; Y � M n

(some n) define X � Y if dim.X/ D dim.Y / and dim.X4Y / < dim.X/. Let X be M-
definable over aclM.a/ and minimal containing .x; y/ (i.e., X � .Y \ X/) for all Y M-
definable over aclM.a/ and containing .x;y/. Then Cb..x;y/=a/ is the set fixed pointwise
under all M-automorphisms fixing X=�.

(4) For most purposes in the current paper, it will suffice to know that if X ! T is
a nearly faithful family of curves (see below), then t is (up to inter-algebraicity) a canon-
ical base for x over t for any generic point x ofXt , and if through x1; : : : ; xk there is only
one curve Xt in X , then t is (up to inter-algebraicity) a canonical base of .x1; : : : ; xk/.
For more details on canonical bases in a similar context, we refer the interested reader
to [29, §8.2].

For minimal group configurations, we have the following.

Fact 4.6 ([37, Theorem V.4.5]). If the group configuration in the statement of Fact 4.4
is, additionally, assumed to be minimal, then the action of the group G on X as provided
above can be taken to be faithful, and this group action has an associated group con-
figuration G2 D .g; h; g � h; u; g � u; g � h � u/ inter-algebraic with G1. In particular,
dimG D dim a.

This, finally, allows obtaining a field as follows.

Fact 4.7 (Hrushovski [19]). Let G be an M-definable group acting transitively and faith-
fully on a strongly minimal setX . Then either dim.G/D 1 or there exists a definable field
structure onX and either dim.G/D 2 andG ŠGa Ì Gm, or dim.G/D 3 andG Š PSL2.

An exposition of the above fact can be found in [39, Theorem 3.27]. Establishing
that G is isomorphic to Ga Ì Gm or to PSL2 is the crucial point in the proof of Fact 4.7.
In the present context, whereG andX are definable in an algebraically closed field (rather,
the full Zariski structure on an algebraic curve), this statement can be established using
a simpler direct algebraic proof.

4.2. Some standard reductions

We make some standard simple reductions that will allow us to more easily use the results
obtained in the previous sections as well as the group and field configurations described
above. In model theoretic terms, Chevalley’s theorem and Hilbert’s Nullstellensatz are
quantifier elimination and model completeness (for the theory of algebraically closed
fields). With those, the next lemma is standard.
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Lemma 4.8. We may assume that k is of infinite transcendence degree (over the prime
field).

Proof. Let K � k be an algebraically closed field extension of infinite transcendence
degree. We let M 0 WD M.K/, and for any D M-definable without parameters, we let
D0 WD D.K/. We obtain a structure M0 WD .M 0; X 0/. By model completeness and quan-
tifier elimination (Hilbert’s Nullstellensatz and Chevalley’s theorem, respectively, see,
e.g., [29, Corollary 3.2.8]), X 0 is ample (if U � M is an open set witnessing the fact
that X is ample, then U 0 witnesses that X 0 is). Note also that any set S M0-definable
without parameters is of the form D0 for some M-definable set D.

Assume that a field is interpretable in M0. This means that there are D, E M0-
definable (without parameters) and parameters xa 2 Kl and xb 2 Kn such that Exb is an
equivalence relation (of the correct arity) and such that Dxa=Exb is an infinite field. Let Lxc
and Axd be the graphs of multiplication and addition, respectively, for L, A M0-definable
without parameters.

Consider the set S of all parameters .xx; xy;xz; xw/ such thatExy is an equivalence relation
on Dxx and Lxz , A xw turn Dxx=Exy into an infinite field. We claim that S is M0-definable
without parameters. This is easy since if C �M rCs is any constructible set, then the set
¹jCvj W v 2M

s; jCvj <1º is uniformly bounded, say, by N , and thus the set ¹v 2M s W

jCvj <1º is definable since Cv is infinite if and only if jCvj > N , which is a definable
property (of v). By Hilbert’s Nullstellensatz and Chevalley’s theorem again, S has a point
in k, meaning that an infinite field is interpretable already in k.

In model-theoretic terms, the above lemma only means that interpretability of an
(infinite) field is a first order property, and therefore preserved under the passage to ele-
mentary substructures. The most useful – for our purposes – property of fields of infinite
transcendence degree is the following consequence of Chevalley’s theorem and the com-
pactness theorem of first-order logic.

Fact 4.9. If k is of infinite transcendence degree, then any M-definable setD has generic
points over any finite set of parameters A.

We need the following (weak) version of [44, Theorem B.1.43].

Fact 4.10. If M is strongly minimal and not locally modular, then there exists an ample
definable family of curves X �M 2 �M l with the property that for any t 2M l , the set

Et WD ¹s 2M
l
W jXt \Xsj D 1º

is finite.

For the purposes of the present paper, we call an ample definable family of curves as
above a nearly faithful family of curves. Combined with the (easy) fact that local modu-
larity is preserved under naming parameters [37, Remark IV.1.8], this gives the following.

Fact 4.11. If M is strongly minimal and not locally modular, then there exists a nearly
faithful ample family whose generic members are strongly minimal subsets of M 2.
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It follows immediately from uniform finiteness that if a strongly minimal set M admits
a definable nearly faithful family of curves X �M 2 � T , then it admits a nearly faithful
family of plane curves (defined over the same parameters)X 0�M 2 � T with the property
that for all t 2 T , the curve Xt has finite-to-one projects on both coordinates.

Finally, we obtain the following lemma.

Lemma 4.12. We may assume thatM is a smooth curve and that M is strongly minimal.

The proof is well known (see, e.g., [37, Lemma IV.1.7] for a much more general
statement). In the present setting, this can easily be shown directly. We leave the details
as an exercise.

Summing up the above discussion, we have shown the following.

Corollary 4.13. To prove Conjecture A, it suffices to prove: Let M be a strongly minimal
reduct of the full Zariski structure M on a smooth algebraic curve M over an algebra-
ically closed field K of infinite transcendence degree. Then either M is locally modular
or M interprets a field K-definably isomorphic to K. Moreover, we may assume that the
lack of local modularity of M is witnessed by a nearly faithful family of curves whose
generic members are strongly minimal.

4.3. Generically unramified projections

In order to apply the machinery of slopes and tangency discussed in Section 3.1, we
need to produce, definably in M, large enough families of curves where these notions
are defined and carry information. Lemma 4.14 below guarantees the former require-
ment, namely that for any curve X � M 2, the slope is defined on a dense open subset
of either X or X�1 (uniformly in parameters). The second requirement is more delic-
ate, as pointed out, for example, in the concluding remarks of [30]. In more technical
terms, the problem pointed out by Marker and Pillay is that if the projection p2WZ !M

is everywhere ramified for a curve Z � M 2 (e.g., the curve cut out by the equation
y D xp in A1 �A1), then even if p2 is dominant, �1.Z; ˛/ D 0 for any branch ˛ at
any point of Z. In Lemmas 4.16 and 4.15, we develop the tools allowing us to con-
struct, definably in M, curves inM 2 whose projections on both factorsM are generically
unramified.

The following lemma ensures that at least one of the projections on a factor M of
a family of curves is generically étale for a general element of the family, which by
Lemma 3.4 implies existence of slopes for a generic element of the family. The fact that
the support of the module of Kähler differentials is closed and Fact 3.10 imply that being
étale and being unramified are open on the source. In particular, in order to check whether
a dominant morphism f WX ! Y is étale on a dense open subset of X it suffices to check
if �k.X/=k.Y / D 0, or equivalently (see [28, Exercise 6.2.9], also [28, Lemma 6.1.13]),
if k.X/ � k.Y / is a separable extension. We refer the reader to any standard algebraic
geometry reference (e.g., [28, Section 6], [16, Chapter II, Section 8 and Chapter IV, Sec-
tion 2]) for the details on Kähler differentials and ramification.
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Lemma 4.14. LetM be an irreducible algebraic curve over a field of any characteristic.
Let X �M 2 � T be a family of pure-dimensional curves, and assume that X and T are
irreducible. Then there exists a dense open subset T 0 � T such that either p1WXt ! M

or p2WXt !M is generically étale for all t 2 T 0.

Proof. Let � be the generic point of T in the scheme-theoretic sense. Denote M� D

M ˝ k.�/, X� D X ˝ k.�/. By slightly abusing notation, denote by p1; p2WX� ! M�

the natural projections.
Let �M�=k.�/, �X�=k.�/ be the sheaves of modules of Kähler differentials on the gen-

eric fibres

M� DM ˝k k.�/ and X� D X ˝k k.�/;

respectively. Since �WX� !M 2
�

is a closed embedding, the pull-back

��W p�1�M�=k.�/ ˚ p
�
2�M�=k.�/ ! �X�=k.�/

is surjective. Taking stalks at the generic point � of X� , we get a surjective map of vector
spaces over the field k.�/ D k.X/

��W p�1�M�=k.�/ ˝ k.�/˚ p
�
2�M�=k.�/ ˝ k.�/! �X�=k.�/ ˝ k.�/:

Each summand on the left is either trivial or one-dimensional. Since i� is surjective,
it follows that at least one of the summands is mapped surjectively on the destination.
Therefore, the stalk at k.�/ of either �X�=k.�/=p

�
1�M�=k.�/ or �X�=k.�/=p

�
2�M�=k.�/

vanishes, and we conclude.

Suppose we have a family of pure-dimensional curves X � M 2 � T such that for
some a, a 2 Xt for all t 2 T , and assume that for all t 2 T the morphism p1WXt ! M

is étale in some neighbourhood of a. Then by Lemma 3.4, there exists a unique branch ˛
of X at a. It might be the case, though, that �n.Xt ; ˛/ vanishes for all n, for all t 2 T ,
if p2 is everywhere ramified on the component of Xt that contains a. The simple, but
crucial, observation below is that in this case one can consider the family X ıX�1 which
does not have this pathology, and p1, p2 are both generically unramified for any of its
members.

Recall that if f WX ! Y is a morphism of schemes over a field of characteristic p,
then Frf WX ! X .p=Y / D X �f;Y;FrY Y , the relative Frobenius morphism, is defined to be
FrX �f , where FrX , FrY are the absolute Frobenius endomorphisms ofX , Y , respectively.
If Y is the spectrum of a field, then X .p=Y / is denoted just X .p/. If X D SpecR, Y D
SpecS , S D RŒr1; : : : ; rn�=I , then X .p=Y / D RŒr 01; : : : ; r

0
n�=I

.p/, where I .p/ D ¹f .p/ DP
J a

p
J .r
0/J W f D

P
J aJ r

J 2 I º (J is a multi-index), and Fr�
X=Y

.r 0i / D r
p
i . On the level

of points, if X ,! Y �An, then

FrX=Y .y; x1; : : : ; xn/ D .y; x
p
1 ; : : : ; x

p
n /:

The natural projection FrX=Y .X/! Y is given by .y; x1; : : : ; xn/ 7! y.
We start with a standard lemma (we give the details for clarity and completeness).
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Lemma 4.15. Let f WX ! Y be a finite morphism of irreducible varieties over a field
of characteristic p > 0, and let F D Frf be the relative Frobenius morphism. Assume
that f is everywhere ramified. Then there exists an n > 0 such that the natural projection
F n.X/ D X �f;Y;F n Y ! Y is generically unramified.

Proof. Since f is everywhere ramified, the field extension k.Y / � k.X/ is inseparable.
Let L be the separable closure of k.Y / in k.X/, then k.Y / � L is a separable extension
and L � k.X/ is a purely inseparable extension. Since L � k.X/ is a finite extension,
there exists a smallest number n such that hp

n
2 L for any h 2 k.X/. We claim that

k.F n.X//�L, which will conclude the proof, as this shows that k.F n.X// is a separable
extension of k.Y /.

To prove the above claim, let X0 � X , Y0 � Y be dense open affine subvarieties such
that X0 is finite over Y0. Then

kŒX0� D kŒY0�Œh1; : : : ; hn�=I and kŒF n.X0/� D kŒY0�Œg1; : : : ; gn�=I
.pn/;

and there is an embedding of rings kŒX0� � k.X0/. It is immediate from the definition of
the relative Frobenius morphism that there exists an injection kŒF n.X0/� ,!L sending gi
to hp

n

i , so F n.X0/ is unramified over Y0, and we conclude.

Finally, the key lemma is the following.

Lemma 4.16. Let X � M 2 � T , Y � M 2 � S be two families of pure-dimensional
curves. Let us denote projections of M �M � T (resp. M �M � S ) on products of
factors by q (resp. q0) with subscripts. Let m > 1 be an integer, and let X 0 D Fmq23.X/,
Y 0 D Fm

q0
23

.Y /. Then

X ı Y �1 D X 0 ı .Y 0/�1:

Proof. Let us denote projections from M �M �M � T � S (resp. M �M .pm/ �M �

T � S ) onto products of factors by r (resp. r 0) with subscripts. After unravelling the
definitions, one observes that

X ı Y �1 D r1345.Z/; X 0 ı .Y 0/�1 D r 01345.Frr1345.Z//

for
Z D r�11245.X � S/ \ r

�1
2345.Y

�1
� T / �M 3

� T � S:

These projections coincide, since by the definition of the relative Frobenius morphism
r 01345 ı Frp1345 D r1345.

For the benefit of the reader, let us consider the situation in Lemma 4.16 at the level of
points. Denote by F WM !M .p/ the Frobenius morphism and assumeM is affine and cut
out by the equation f .x1; : : : ; xn/ in An, then M .p/ is cut out by f .xp1 ; : : : ; x

p
n / D f

p ,
and a point .x1; : : : ; xn/ is sent by F to .xp1 ; : : : ; x

p
n /. The map Frq23 in Lemma 4.16

sends a tuple .x; y; t/ 2M 2 � T to .F.x/; y; t/ and similarly for Frq0
23

. By definition,

.b; a; t/ 2 Y if and only if .F.b/; a; t/ 2 Y 0;

.b; c; s/ 2 X if and only if .F.b/; c; s/ 2 X 0:
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Consider Z D ¹.a; b; c; t; s/ W .b; a; t/ 2 X; .b; c; s/ 2 Y º. Then

X ı Y �1 D ¹.a; c; t; s/ 2M 2
� T � S W 9b ..b; a; t/ 2 Y;

.b; c; s/ 2 X D p1345.Z//º:

Also, Frr1345.a; b; c; t; s/ D .a; F.b/; c; t; s/ and

X 0 ı .Y 0/�1 D ¹.a; c; t; s/ 2M 2
� T � S W 9b ..F.b/; a; t/ 2 Y 0;

.F .b/; c; s/ 2 X D p1345.Frr1345.Z///º:

4.4. Interpretation of a one-dimensional group

In the present section, we construct a group interpretable in M. As already explained, this
will be done by constructing a group configuration in M. In order to construct this group
configuration, a one-dimensional algebraic group (Lemma 4.19)G associated with slopes
is “lifted”, using Proposition 3.15, to a group configuration in M.

Remark. Throughout this section and until the end of this paper, we fix a smooth algeb-
raic curve M over an algebraically closed field K of infinite transcendence degree, and
a reduct M of the full Zariski structure M onM . We assume that the reduct is not locally
modular. By default, the term definable will refer to definability in M. Unless explicitly
stated otherwise, by definable families we mean stationary nearly faithful ample families
of curves, where a family X ! T is stationary if every definable non-empty open subset
of T is dense.

The reader should be advised that, at least a priori, stationarity in the sense of the full
Zariski structure on M need not be the same as stationarity in the reduct, M.

Before proceeding, we need a couple of easy observations.

Lemma 4.17. Let r WEndk.kŒ"�=."nC1//! Endk.kŒ"�=."2// be the map sending an endo-
morphism ' to the unique endomorphism mapping " to '."/ mod "2. Then

Aut.kŒ"�=."nC1// D r�1.Aut.kŒ"�=."2///:

Proof. Straightforward (see a similar statement for formal power series, for example,
in [12, Corollary 7.17]).

The following lemma should be well known to experts.

Lemma 4.18. Let X ! T and Y ! S be one-dimensional nearly faithful definable
families of one-dimensional subsets of M 2. Assume that for all t 2 T , s 2 S , all pro-
jections pi WXt ! M , pi W Ys ! M are dominant. If for generic .t; s/ the set ¹.t 0; s0/ W
jXt 0 ı Ys0 \Xt ı Ysj D 1º is infinite, then M interprets a one-dimensional group.

Proof. Fix .t; s/ generic. Since any curve in X ı Y intersecting Xt ı Ys in an infinite
set must contain (up to a finite set) a strongly minimal component of Xt ı Ys , and since
only finitely many such components exist, it will suffice to show that, unless any such
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component is contained in finitely many curves of the form Xs ı Yt of the composition
family, M-interprets an infinite group.

Let E � Xt ı Ys be strongly minimal. By [13, proof of Lemma 3.20], either M

interprets a one-dimensional group or dimM.CbM.E=;// D 2 (the latter notation can be
interpreted, equivalently, as: there exists an M-definable nearly faithful family of curves
defined over a two-dimensional parameter set, and E is generic in that family). For the
sake of clarity and completeness, we give some details. Our aim is, in the case when
dimM.CbM.E=;// < 2, to construct a group configuration.

For ease of notation, let e WD CbM.E=;/. Since Xt ı Ys has finitely many strongly
minimal components, we see that e 2 aclM.s; t/. Also, .E ı Y �1s / \ Xt is infinite (and
one-dimensional), so by almost faithfulness of X , we get that t 2 aclM.s; e/, and by
symmetry s 2 aclM.t; e/. It follows, since s, t are independent generics that dimM.e/ > 0.
If dimM.e/ D 1, let .x; y/ 2 Xt be generic and z such that .y; z/ 2 Ys and .x; z/ 2 E,
then .s; t; e; x; y; z/ is readily verified to be a group configuration.

If dimM.e/ D 2, then, as e 2 aclM.s; t/ and dim.s; t; e/ D 2, we get by additivity
of dimension that s; t 2 aclM.e/. So there are only finitely many .t 0; s0/ such that E �
Xt 0 ı Ys0 , which is what we had to show.

Remark. Recall that our aim in this section is to interpret in M a strongly minimal
group G. It follows from the previous lemma that one way of achieving this is to find
X ! T and Y ! S one-dimensional definable families of strongly minimal subsets
ofM 2 with the property that ¹.t 0; s0/ W jXt 0 ıYs0 \Xt ıYsj D1º is infinite. In order not to
overload the formulation of the sequel, we will tacitly assume that, whenever Lemma 4.18
is invoked, this is not the case – as otherwise we have found our group, and we can move
on to the next section.

We now proceed to finding the one-dimensional algebraic group of slopes needed for
the construction of the group configuration.

Lemma 4.19. There exist a nearly faithful definable family Y �M 2 � S with S strongly
minimal, an M-definable locally closed irreducible set S0�S , a point aD .a1;a2/2M 2,
a1 D a2, such that a 2 Ys for all s 2 S0, and a family of branches ˇ of Y �S S0 at a such
that for some n > 0 the locally closed set ¹�n.Ys; ˇs/ W s 2 S0º almost coincides with
a one-dimensional connected subgroup H � Aut.kŒx�=.xnC1//.

Proof. Fix some nearly faithful definable familyX �M 2 � T witnessing non-local mod-
ularity of M and such that Xt is strongly minimal for generic t 2 T , as provided by
Fact 4.11. We may further require that the fibres ��1i .a/ for both projections of Xt on the
factors M are finite for all a 2M .

Pick an irreducible component X 0 of X dominant over an irreducible component
T0 � T of maximal dimension, and such that X 0 is a family of curves. Let M0 be the
connected component of M such that M 2

0 � T0 contains X 0. By Lemma 4.14 applied to
the closure of X 0, without loss of generality, we may assume that the restriction of p1
to X 0t is dominant and generically étale for t in a dense subset T1 � T0. By Lemma 4.15,
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there exists a number m such that the restriction of p23 to X 00 D Frmp23.X
0/ \M 2

0 � T1
is generically unramified, and since X 0 is nearly faithful, the projection is also dominant.
In particular, for any t 2 T1 the projection p2WX 00t !M0 is generically unramified.

For each a 2 M 2
0 , consider the set Sa � T1 of t 2 T1 such that a 2 X 00t and denote

Xa D X \M 2 � Sa. Let U � X 00 be the complement of the ramification locus of the
restriction of p23 toX 00. It follows from dimension considerations that there exist a 2M 2

0

and an irreducible locally closed subset S0 � Sa such that dimS0 D 1, ¹aº � S0 \ U is
dense in ¹aº � S0, and a 2 X 00t is smooth for t 2 S0. Because a 2 X 00t is smooth for any
t 2 S0, there exists by Lemma 3.4 a unique family of branches ˛ of X 00 \M 2

0 � S0 at a.
Selecting a generic enough, it follows that �1.X 00t ; ˛t / ¤ 0 for t in a dense open subset
of S0 by the choice of S0. Indeed, since the projection of each X 00t on both coordinates
is finite to one, and since the projection of X 00t onto the second factor M0 is gener-
ically unramified, it follows that �1.X 00t ; a/ ¤ 0 for generic a. Thus, by Lemma 4.17
�n.X

00
t ; ˛t / 2 Aut.kŒx�=.xnC1// for all n � 1 for all t 2 S0. Pick some t0 2 S0 generic

over all the data and let Y D Xa ı X�1t0 . Then by Lemma 4.16, X ı X�1t0 \M
2
0 � S0 D

X 00 ı .X 00t0/
�1 and �1.Yt ; ˛t ı ˛�1t0 / D �1.X

00
t ı .X

00
t0
/�1; ˛t ı ˛

�1
t0
/ 2 Aut.kŒx�=.xnC1//

for t in a dense open subset of S0. Clearly, ˛ ı ˛�1t0 is a family of branches at a point
.a1; a2/ 2M

2
0 such that a1 D a2.

By Krull’s intersection theorem and since S0 has non-zero dimension, there exists
a smallest number n such that j¹�n.Xt ; ˛t / W t 2 S0ºj > 1. If n D 1, then ¹�n.Xt ; ˛t / W
t 2 S0º coincides with a one-dimensional subgroup of Aut.kŒx�=.x2//Š k� up to a finite
set. If n > 1, then the slope �n�1.X 0t ; ˛t / as t ranges in S0 is constant, and therefore
�n�1.Yt ; ˛t ı ˛

�1
t0
/ D 1. Then it follows that �n.Yt ; ˛t ı ˛�1t0 / almost coincides with

Ker.Aut.kŒx�=.xnC1//!Aut.kŒx�=.xn///. In either case, the family Y satisfies the main
part of the lemma over the irreducible component S0. Near faithfulness of Y follows from
Lemma 4.18 applied toXa and .Xa/�1, observing that Y is a subfamily ofXa ı .Xa/�1,
and that a generic member of Y is generic (over a, not over a, t0) in Xa ı .Xa/�1.

Before proceeding to the construction of a group in M, we need some more prelim-
inary work. First, we fix some ad hoc terminology and notation that will simplify the
discussion.

Notation. Let X ! T be a definable family of curves in M 2. We denote:

(1) For a 2M 2, let T a WD ¹t 2 T W a 2 Xtº and Xa WD ¹Xt W t 2 T aº, the definable
subfamily of all curves incident to the point a.

(2) X0 WD ¹X0t W t 2 T º, where X0t is the union of algebro-geometric 0-dimensional
components of Xt .

(3) X1 � X �T T 0 is a family of pure-dimensional curves for a dense T 0 � T , as
provided by Lemma 3.2.

Note that X0t is M-definable over t , and thus X0 is M-definable. A priori, X0t is
not necessarily M-definable over t , and it is, therefore, not clear whether X0 is M-
definable. We will, of course, not assume this. We merely point out that had we known
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that X0 were M-definable, the proof of our main result would have been considerably
simplified (allowing us to apply Proposition 3.15 for M-definable families of curves).
Point (4) of the definition below will be the key, ultimately allowing us to circumvent this
problem.

Definition 4.20. We say that a nearly faithful M-definable family of curves X ! T sat-
isfies property .a; n/ for a 2M 2 and a positive integer n if

(1) a 2 Xt for all t .

(2) There exists a family ˇ of branches of X at a such that ¹�n.Xt ; ˇt / W t 2 T º is
one-dimensional and contains, up to a finite set, a one-dimensional connected algebraic
group, H .

(3) For all a0 2M 2, if a0 ¤ a, then dim.T a
0

/ D 0.

(4) If p belongs to a zero-dimensional component of Xs ı Xt for s; t 2 T M-inde-
pendent generics, then p is M-generic in M 2 (over ;).

The group H is the group of slopes of X at a (associated with the family of branches ˇ).

To show the existence of families that satisfy property .a; n/ for some a, n, we need
to prove the following lemma.

Lemma 4.21. Let X ! T , Y ! S be stationary families. Then there exists X 0 ! T ,
Y 0 ! S M-definable over aclM.;/ such that

(1) Xt D X 0t , Ys D Y
0
s up to a finite set, for all t 2 T , s 2 S .

(2) If t 2 T , s 2 S are M-independent generics and a 2 Xt ı Ys is such that ¹aº is
contained in a zero-dimensional component, then a is M-generic over ;.

Proof. We may assume that for t 2 T generic, if a is contained in a 0-dimensional com-
ponent of Xt , then a … aclM.;/. Otherwise, note that by stationarity (and genericity of t )
we get that a 2 Xt 0 for all generic t 0 2 T . So a 2 aclM.;/. Since there are at most finitely
many b incident to all but finitely many Xt 0 , we may simply set X 0 WD .X n ¹aº/ � T ,
eliminating the problem in finitely many similar steps.

Similarly, we may assume that if a D .a1; a2/ is contained in a zero-dimensional
component of Xt , then a1; a2 … aclM.;/. Thus, we may assume that both .a1; a2/ are
M-generic over ;. The same is, of course, true of Y .

Denoting byX0t , Y 0s the unions of zero-dimensional components ofXt , Ys and noting
that .Xt ı Ys/0 � X0t ı Ys [ X

t ı Y 0s , we get that for s; t 2 T independent generics any
isolated point of Xt ı Ys is generic over ;.

We have thus shown the following assertion.

Corollary 4.22. There exist a1 2 M , a natural number n > 0 and a one-dimensional
definable family of curves that satisfy property .a; n/ for a D .a1; a1/.

Proof. Clauses (1) and (2) of the definition of property .a; n/ are achieved by taking
a family as provided by Lemma 4.19. Condition (4) is provided by Lemma 4.18, and con-
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dition (3) is obtained by removing finitely many points common to all generic independent
curves in the resulting family.

The same proofs give also the following.

Corollary 4.23. IfX! T is a family that satisfies property .a;n/, then up to – possibly –
finitely many corrections, X ıX and X ıX�1 also satisfy property .a; n/.

Note however that in the above corollary if X is one-dimensional, then the families
X ıX andX ıX�1 will not be one-dimensional. It follows, however, that if t 2 T is gen-
eric, then the one-dimensional families X ıXt and X ıX�1t will satisfy property .a; n/.
The following is a strengthening of the above observation that we will need later on for
technical reasons.

Lemma 4.24. Let X ! T be a family that satisfies property .a; n/. Let H be the group
of slopes ofX at a (associated with some family of branches). Then there exists an infinite
nearly faithful family of generically strongly minimal sets Z ! L such that a 2 Zl for
all l , and there exists a family of branches  atQ such that �n.Zl ; ˇl /D 1 2H for some
M-generic l 2 L.

Proof. By Proposition 3.7, the n-th order slopes of Y WD X ıX at a (associated with the
family of branches ž WD ˇ ı ˇ) also almost coincides withH . LetR parameterise Y , then
there exists an M-irreducible componentW � R such that �n.Yr ; žr / 2H for all r 2 W
(and, in particular, the slope is defined). Let r0 2 W be generic. So there exists some r1
such that �n.Yr1 ; ž1/D �n.Yr0 ; žr /

�1. In fact, by dimension considerations, since (by the
remark following Lemma 4.18) dim.R/ D 2, the set R1 of r1 with the above property
is one-dimensional. So we chose such r1 2 R1 generic over r0. Let Zl0 � Xt1 ı Xt0 be
the M-definable, strongly minimal component containing the branch ˇt1 ı ˇt0 . It follows
that dimM.Cb.Z/l0/ � 1, and so dimM.Cb.Z/l0/ � 1. Let Z ! L be the M-definable
family whose generic member isZl0 . So there is an M-generic subfamily ofZ! L with
the property that �n.Zl 0 ; l 0/ D 1 (see Proposition 3.7) for a family  of branches of Z
at a and for all l 0 in that subfamily.

We are finally ready to prove the main result of this section.

Theorem 4.25. Let M be a non-locally modular reduct of an algebraic curveM over an
algebraically closed field. Then M interprets a one-dimensional group.

Proof. We prove the theorem by constructing a group configuration. By Corollary 4.13,
we may assume that M is smooth, and we identify M with M.K/ for some algebraically
closed fieldK of infinite transcendence degree. We will freely use the remark after Defin-
ition 3.3 and Lemma 3.2, referring to branches of suitable pure-dimensional subfamilies
of definable families of curves when we speak about branches of definable families of
curves.

Let X ! T be a one-dimensional definable family of curves that satisfies property
.a; n/ for some point a D .a1; a1/ as provided by Corollary 4.22,H the associated group
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of slopes for the family of branches ˇ. Absorbing into the language the parameters needed
to define X , we may assume that it is ;-definable.

We fix a standard group configuration

H WD ¹g; h; k; gh; gk; h�1kº

associated with the action of H on itself by multiplication.
According to Lemma 4.19, there exists an irreducible component W � T such that

�n.Xt ; ˇt / 2 H for all generic t 2W . Identifying (up to a finite set) ¹�n.Xt ; ˇt / W t 2W º
with elements of H � Aut.kŒ"�=."nC1//, we get that �n.Xt ; ˇt / is M-inter-algebraic
with t . At the price of replacing W with a (dense) open subset, we may assume that W is
smooth.

Any M-independent points s; t 2W generic over all the data are, in particular, generic
and independent in the sense of the reduct M. Let u 2 T be such that

�n.Xu; ˇu/ D �n.Xs; ˇs/�n.Xt ; ˇt / D �n.Xs ıXt ; ˇs ı ˇt /:

Such a u exists since the relative slopes of Xt and Xs are generic in H , which is
one-dimensional. Since the product of two independent generic elements of H is again
generic in H , we can find such a u.

Getting back to our group configuration H , the above construction gives us a subset
of T ,

TH WD ¹tg ; th; tk ; tgh; tgk ; th�1kº;

such that for every s 2H we have �n.Xts ;ˇts /D s. Our goal is to show that TH is a group
configuration in the sense of M.

We have to verify the three sets of conditions appearing in Definition 4.3. That the
elements of TH are pairwise M-independent follows from the fact that for all s 2 H also
s 2 aclM.ts/ and the elements of H are M-independent. That all elements in TH have
dimension 1 follows from the fact that T is strongly minimal and the elements of TH are
generic in T . So it remains only to verify the third set of conditions, namely, that every
collinear triple of elements in the following diagram is M-dependent:

tk tgk

th�1k

tg

th

tgh

The rest of the proof will be dedicated to that end. Since the situation is symmetric, it will
suffice to show that if s; t 2W are generic independent �.Xu;ˇu/D �n.Xs;ˇs/�.Xt ;ˇt /,
then u 2 aclM.s; t/. Note that since W is M-strongly minimal, u 2 aclM.s; t/.
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To achieve our goal, we would like to apply Proposition 3.15 to the family zE ! R

given by X ıX and the family X ! T , in order to show that the curve Xu intersects the
curve Xs ı Xt in a smaller than generic number of points. The problem is that neither
zE ! R nor X ! T can be assumed to be pure-dimensional families of curves, which

is a crucial assumption in the statement of the proposition. To circumvent this problem,
we will show thatXu \ .Xs ıXt /meets no zero-dimensional components of either curve,
allowing us to apply the proposition with the pure-dimensional families zE1 ! R and
X1 ! T without changing the number of intersection points.

For technical reasons that will be made clear later on, we need to slightly twist the
family zE! R that we are working with. LetZ! L be a nearly faithful family of curves
that satisfies property .a;m/ form > n, let  be a family of branches at a, all as provided
by Lemma 4.24. We let E ! R be zE ıZl0 for some l0 2 L M-generic and independent
over all the data. Note that, by Proposition 3.7 and the choice of the family Z ! L,
we have that

�n.Xs ıXt ; ˇs ı ˇt / D �n.Xs ıXt ıZl0 ; ˇs ı ˇt ı l0/

whenever both sides of the equations are defined. For the sake of clarity, we let ˛ be the
family of branches of E at a. Namely, ˛ D ˇ ı ˇ ı l0 .

It will be convenient to already note at this stage the following slight strengthening of
Lemma 4.18.

Claim 1. We may assume that if r 2 R is generic, then j¹r 0 W zEr \ zEr 0ºj D 1 is finite.

Proof. The claim would follow from Lemma 4.18 if the members of X were strongly
minimal. In the general case, if r 2R is generic and zEr DXs ıXt , then any strongly min-
imal Fr � zEr is contained in Cs ıDt for some strongly minimal Cs � Xs andDt � Xt .
By Lemma 4.18 applied to the families ¹Dt W t 2 T º and ¹Cs W s 2 Sº, we get that
s; t 2 aclM.Cb.Fr //. Since Cb.Fr / 2 acl.Cb.Er //, we conclude that s; t 2 acl.Cb.Er //,
which is what we needed.

Note that the fact that zE is the composition of two copies of X did not play any role
in the proof above, and we could invoke Lemma 4.18 with X and .X ı Zl0/ to get the
same conclusion for the family E WD X ı .X ıZl0/.

Let us fix some additional notation. We have s; t 2 W independent generics, and
u 2 W such that Xs ıXt is n-tangent to Xu at a. We let R.u/ be the set of all r 2 R such
thatEr is n-tangent toXu at a, i.e., �n.Er ;˛r /D �n.Xu;ˇu/. LetE.u/ WD ¹Er W r 2R.u/º.
In other words, R.u/ is the parameter set of all curves in the family E ! R n-tangent to
Xs ıXt at a andE.u/ is the subfamily ofE over the parameter setR.u/. SoE.u/!R.u/

is an M-definable subfamily of E of dimension 1. We denote r D .s; t/ 2 R, so r 2 R.u/
and it is M-generic as such (indeed, u 2 aclM.s0; t 0/ for all .s0; t 0/ 2 R.u/, so the result
follows by genericity of .s; t/ and additivity of dimension). Replacing, if needed, R.u/
with the M-definable strongly minimal component of R.u/ containing r we may assume
that R.u/ is strongly minimal.

The following is the main step in the proof.



A. Hasson, D. Sustretov 36

Claim 2. Assume that u … aclM.s; t/. Let ¹x1; : : : ; xkº D .Xu \ Er / n ¹aº. Then xi is
M-generic in Xu for all i .

Proof. First, note that xi … aclM.;/, because otherwise, since u 2 T is generic, we would
get that dim.T xi / D 1, contradicting clause (3) of Definition 4.20. Note that the exact
same argument shows that xi … aclM.;/. Next, as r 2 aclM.s; t/ and since X is an M-
strongly minimal family, our assumption that u … aclM.s; t/ implies that u is M-generic
over r , and by Lemma 4.18 (and the remark following it) applied to the acl.;/-definable
strongly minimal subsets of Er , we get that

dim.Cb.Er /=;/ D dim.r=;/ D 2:

Now assume that x1 is not M-generic inXu. Since r is M-generic inR.u/ (and, inR),
it follows that dim.R.u/x1/ D 1. Indeed, since dimm.x1=u/ D 0 (by assumption), it fol-
lows that dimM.r=ux1/ D dimM.r=u/, so r is generic in R.u/ over x1, and the strong
minimality of R.u/ implies that x1 2 Er 0 for all generic r 0 2 R.u/. Thus, in fact, R.u/ is
a generic subset of Rx1 . Recall, moreover, that there exists a family ˛ of branches of all
curves in E.u/ at a such that �n.E.u/; ˛r / D �.Xu; ˇu/.

We will show that this leads to a contradiction. We split the argument into cases
according to dimM.x1=;/. The case x1 2 aclM.;/ has already been discarded. If x1 is
non-M-generic in M 2, then there exists a curve F , M-definable over ; such that x1
is generic in F . So u is contained in the set of all u0 such that F \ Xu0 \ Er ¤ ;.
Because F is ;-definable in M, necessarily jEr \ F j < 1 (otherwise, since r is gen-
eric in R, it would follow that all curves in E have a component contained in F , which
is impossible). Thus, by condition (3) of Definition 4.20, there are only finitely many
such u0. So u is M-algebraic over r – contradicting our assumption.

Thus, we may assume that x1 is M-generic in M 2. We will now focus on the family
E ! R. Since x1 is M-generic in M 2, for any r1; r2 2 Rx1 independent generics, m WD
jEr1 \ Er2 j is obtained on an M-generic subset of parameters of R � R. Consider the
M-definable family E1 ! R of pure-dimensional curves associated with E ! R. Note
that for M-generic independent u;w 2 R, we have jEu \Ew j D jE1u \E

1
w j D m.

On the other hand, Lemma 3.13, and hence Proposition 3.15, are applicable to two
copies of the family E1! R, possibly after shrinking R, so as to ensure, using Fact 3.10
that E1 ! R is flat and that R is smooth.

Let W0 � R be the dense open set obtained by shrinking R as in the previous para-
graph, we may further assume that W0 and E \ p�1.W0/ are varieties (see, e.g., Lem-
ma 3.2), so Lemma 3.13 and Proposition 3.15 apply for all .v; w/ 2 W WD W0 � W0,
if �n.E1v ; ˇv/ D �n.E

1
w ; ˇw/, then either dim.E1w \E

1
v / D 1 or #.E1w \E

1
v / < m.

For generic v, the set of w such that .v; w/ 2 W and dim.E1w \ E
1
v / D 1 is finite

by Claim 1. So, for generic .v; w/ 2 W , we see that dim.E1w \ E
1
v / D 0, so necessarily

#.E1w \ E
1
v / < m. We now show that this must imply that E0w \ Er ¤ ; for generic w.

Indeed, since W0 is dense in R and ;-definable, M-genericity of r in R implies that it
is also generic in W0. Since R.u/x1 is generic in Rx1 (in the sense that it contains an
open subset of Rx1 ), we can find some w 2 R.u/ \W0 M-generic and M-independent
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of r (over all the data gathered so far) so that .r; w/ is M-generic in W . Moreover,
by definition of R.u/ we know that �n.E1r ; ˇr / D �n.E

1
w ; ˇw/, and by what we have

just said, this must imply that #.E1w \ E
1
r / < m. Because x1 is M-generic in M 2 and

w; r 2 Rx1 are M-independent generics, they are, in fact, independent generic in R2

over ;. So #.Ew \Er / D m, implying that Ew \E0r ¤ ;.
Finally, asw is M-independent of r and M-generic inR.u/, and sinceE0r � aclM.r/,

we get, precisely as above, that there is some c 2 E0r such that Rc contains R.u/, up to
a finite set. This implies that dimM.c=u/D 0, and hence dimM.c=;/ � dimM.u=;/D 1.
This contradicts Corollary 4.23 (specifically, clause (4) of Definition 4.20).

It follows from Claim 2 that X0u \ Er D ;. We also need to show that Xu does not
meet Er in an isolated point of the latter. It is here that the twist of the family zE ! R by
a generic curve from Z ! L plays its role.

Claim 3. If u … aclM.s; t/, then Xu \E0r D ;.

Proof. Recall that Er D Xs ı Xt ıZl0 . Assume that there exists some xi 2 Xu \ .Xs ı
Xt ıZl0/

0. By Lemma 4.21 applied to zE.u/! R.u/ andZ! L, if r 0 2 R.u/ is generic
and l 2 L is generic independent of r 0, then any xi 2 .Er 0 ı Zl /0 is either M-generic
over ; or contained in one of finitely many sets of the form ¹aº �M and M � ¹aº for
a 2 aclM.;/. ButXu \ .M � ¹aº [ ¹aº �M/� aclM.u/, so xi 2 aclM.u/, contradicting
the previous claim.

The conclusion of the discussion, up to this point, is that if u … aclM.s; t/, then Er \
Xu D E

1
r \X

1
u . This allows us to conclude the following.

Claim 4. The parameter u is M-algebraic over t , s.

Proof. Let us assume that this is not the case. By Proposition 3.7, �n.Xt ıXs ıZl0 ; ˇt ı
ˇs ı l0/ D �n.Xt ; ˇt / ı �n.Xs; ˇs/. Let m D maxxt ;xs;xu2T #.Xxt ı Xxs ı Zl0 \ X xw/, then
by Lemma 3.14, m D #..Xt ı Xs ı Zl0/ \ Xu/ for .t; s; u/ generic in T � T � T . Let
zT � T be as provided by Lemma 4.19. By Lemma 3.13 and Proposition 3.15, the set of
parameters w 2 zT such that �n.X1w ; ˇw/ D �n.X

1
t ; ˇt / ı �n.X

1
s ; ˛s/ is contained in

W1 WD ¹w 2 T W dim.Xt ıXs \Xw/ D 1 or #..Xt ıXs ıZl0/
1
\X1w/ < mº:

By strong minimality of T , the set ¹w W #.Xt ı Xs ı Zl0 \ Xw/ < mº is finite. Also,
for M-generic w, we have .Xt ı Xs ı Zl0/

1 \ X1w D Xt ı Xs ı Zl0 \ Xw . So the set
of w such that #..Xt ıXs ıZl0/

1 \X1w/ < m is finite. Since X satisfies property .a; n/,
by Lemma 4.18 the set ¹w W dim.Xt ı Xs ı Zl0 \ Xw/ D 1º is finite. So W1 is finite.
Similarly,

W WD ¹w 2 T W dim.Xt ıXs ıZl0 \Xw/ D 1 or #.Xt ıXs ıZl0 \Xw/ < mº

is finite, and moreover, W is M-definable. Our assumption that u … aclM.s; t/ allows us
to apply Claim 2 combined with Claim 3 to get that Xs ı Xt ı Zl0 \ Xu D .Xs ı Xt ı
Zl0/

1 \X1u . Since u 2 W1, it follows that u 2 W , proving that in fact u 2 acl.s; t/.
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Claim 4 shows that, indeed, HT is an M-group configuration, and the desired conclu-
sion is obtained by applying Fact 4.4.

The following proposition can be proved in greater generality (and follows, essen-
tially, from [25, Section 3]), but we only need a simpler result. We thank B. Castle for
suggesting the following simplification of the Hrushovski–Pillay argument suitable for
our needs.

Proposition 4.26. In the notation of the previous proof, assume that the group H almost
coinciding with ¹�n.Yt ; ˛t / W t 2 zSº is isomorphic to Ga. Then the connected component
of the identity of the group provided by Theorem 4.25 is not M-isomorphic to Gm.

Proof. First, we point out that there are no one-dimensional subgroups of Ga �Gm pro-
jecting dominantly on both factors. Indeed, if such a group G existed, then the kernel H
of its projection to Ga would be finite (since G is one-dimensional), say jH j D n. Repla-
cing G by ¹.x; yn/ W .x; y/ 2 Gº, we may assume that, in fact, H is trivial. So the
projection of G onto Gm is a definable group homomorphism from Ga onto Gm, but
such cannot exist (e.g., because Gm has unbounded torsion).

Thus, it will suffice to show that any inter-algebraic group configurations for the
groups Ga and Gm would give rise to a non-trivial subgroup of Ga � Gm. So assume
towards a contradiction that

G1 D ¹a; b; aC b; x; x C a; x C bº and G2 D ¹e; f; e � f; y; e � y; f � yº

are group configurations for the groups Ga and Gm, respectively, and

acl.a/ D acl.e/; acl.b/ D acl.f /; acl.aC b/ D acl.ef /:

Note that

dim.b; aC b; ef / D 2 > dim.aC b; ef / D 1;

so b is generic independent over .aC b; ef /.
Consider the types

p WD tp.a; e/; q WD tp.b; f / and r WD tp.aC b; ef /:

By what we have just said, for any realisation .b0; f 0/ of q generic over .aC b; ef /, there
is a field automorphism fixing .a C b; ef / and mapping .b; f / to .b0; f 0/ and .a; e/ to
some .a0; e0/. It follows that

a0 D aC b � b0 and e0 D ef=f 0:

So .b � b0; f =f 0/ is in the stabiliser of p (under the action of K �K� on itself). Clearly,
as we vary b0, .b � b0; f =f 0/ varies in an infinite set, and similarly when varying f 0.
Thus, the stabiliser of p is an infinite non-trivial definable (necessarily one-dimensional)
subgroup of K �K�, a contradiction.
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4.5. Interpretation of the field and proof of the main theorem

In this section, we interpret the field K in the reduct M, concluding the proof of the main
theorem of this paper. The results of the previous subsection allow us to replace M by an
algebraic group G, interpretable in M (we only have to verify that the induced structure
is non-locally modular). As in the previous subsection, the interpretation of the field boils
down to the construction of a field configuration. The construction of the field configur-
ation will depend on whether the (connected component of the) group G is isomorphic
(in K) to Ga, Gm or to an elliptic curve. The question to address is how to find an M-
definable strongly minimalZ � G2 whose set of 1-slopes ¹�1.Z; z/ W x 2 Zº (see below)
is infinite. The easiest is the case of an elliptic curve.

Lemma 4.27. Let E be an elliptic curve and Z a closed one-dimensional irreducible
subset of G D E2. Identify TgG with T0G via the isomorphism d�g W T0G ! TgG for
�g.x/ D g � x. Suppose that for any z 2 Z, the tangent space TzZ � T0G is constant.
Then Z is a coset of a closed subgroup of G.

Proof. Since Z is a projective curve with a trivial tangent bundle, it is an elliptic curve
itself by the Riemann–Roch formula. Since any morphism between Abelian varieties with
finite fibres, which preserves the identity, automatically preserves the group structure by
the rigidity lemma (see [35, p. 43]), Z is a coset of an Abelian subvariety of G.

To obtain the analogous results for Ga, we first need a couple of technical lemmas.
We thank S. Pinzon for pointing out a mistake in an earlier version of the proof. The
current proof builds on Pinzon’s proof of an analogous statement in the theory of algeb-
raically closed valued fields of positive characteristic p (ACVFp).

We start with some notation and terminology. Let M be an algebraic curve, and con-
sider a curve Z � M 2. For every point z 2 Z such that p1 is étale in a neighbourhood
of z, there exists by Lemma 3.4 a unique branch at z, call it ˛z . We will use the notation

�n.Z; z/ WD �n.Z; ˛z/:

For any group .G; �/ with identity e 2 G, for any a D .a1; a2/ 2 G
2, define the maps

taWG
2 ! G2

ta.x1; x2/ D .a
�1
1 � x1; a

�1
2 � x2/;

and for any one-dimensional locally closed subset Z � G2, define

sn.Z/ D ¹�n.tz.Z/; .e; e// W z 2 Zº � kŒx�=.x
nC1/;

where z ranges in those points of Z for which the n-th order slope is well defined. Identi-
fying kŒx�=.xnC1/ with the affine n-space, we observe that the set sn.Z/ is constructible.

If Z � G2
a is an irreducible locally closed one-dimensional set that is not a dense

subset of a coset of a subgroup, then s1.Z/ is clearly a one-dimensional set when the char-
acteristic of the ground field is 0. In positive characteristic, s1.Z/might be 0-dimensional
for various reasons.
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If Z is a coset of a subgroup of G, then all of its translates coincide on an open dense
set and therefore slopes of all orders at .e; e/ are constant. In particular, dim sn D 0 for
all n� 1. If, however,Z is not a coset, tz.Z/ are distinct for different z 2Z and therefore
by Krull’s maximal ideal theorem for some n, �n.tz.Z/; .e; e// will vary depending on
z 2 Z. The following quantity is then well defined,

N.Z/ D min¹n � 1 W dim sn.Z/ D 1º:

Lemma 4.28. Let X � G2
a � T be a family of curves parametrized by a curve T , and

assume that zaD .a1; a2/ 2Xt for all t in some neighbourhood of a3 2 T . Let x1, x2, t be
a choice of local coordinates of G2

a � T at aD .a1; a2; a3/ 2X such that x1, x2 are local
coordinates of G2

a at za. Let f 2 kJx1; x2; tK be the local equation of X in G2
a � T at a.

Then �n.Xt ; za/ is constant for t in a neighbourhood of a3 if and only if f � f0 mod xnC11

for some f0 2 kJx1; x2K.

Proof. Let I be the ideal generated by x1, x2 in the ring R WD Œx1; x2�˝OT;a3 , and let J

be the ideal of the same ring consisting of functions vanishing at the point a. Then

yR WD lim
 �

R=In D kJx1; x2K˝OT;a3 and lim
 �

R=Jn Š kJx1; x2; tK

for some formal parameter t , and the ideal of functions vanishing on X in R generates an
ideal . xf /� yR. SinceR is a Noetherian local ring, the natural mapsR! yR! kJx1;x2; tK
are injective. Let f 2 kJx1; x2; tK be the image of xf . By the definition of slopes, �n.Xt ; za/
depends only on xf .t/ modulo xnC11 . In particular, �n.Xt ; za/ is constant for t in a neigh-
bourhood of a3 if and only if xf � xf0 mod xnC11 for some xf0 2 kJx1; x2K � yR. Let f0
be the image of xf0 in kJx1; x2; tK, then clearly, f0 2 kJx1; x2K. Since the map yR !
kJx1; xt ; tK is injective, f � f0 mod xnC11 if and only if xf � xf0 mod xnC11 , and the
statement follows.

Lemma 4.29. Assume that the ground field is of positive characteristic p. Let Z � G2
a

be an irreducible pure-dimensional curve that is not contained in a coset of a subgroup
of G2

a. Assume further that .0; 0/ 2 Z, and that the projection of a neighbourhood of
.0; 0/ 2 Z on the first Ga is étale, so Z has a local equation y � f , where

f D
X
j>0

bjx
j
2 kJxK:

Then we have

(1) N.Z/ D min¹pi W 9bj ¤ 0; j D m � pi ; m ¤ 1; p − mº;
(2) there exists an open subset U � Z such that

�N.Z/�1.Z � tz.Z/; .0; 0// D 0; N.Z � tz.Z// D N.Z/

for all z 2 U and

dim¹�N.Z/.Z � tz.Z/; .0; 0// W z 2 U º D 1:
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Proof. Let the closure of Z be cut out in G2
a by a polynomial equation P.x; y/. Pick

coordinates x, y, u, v on each of the factors of G4
a. Let Z0 � G4

a be the set cut-out
by the equation P.u; v/, and let Z00 � Z0 be cut out in Z0 by the equation P.x � u;
y � v/. A fibre of Z00 over .u0; v0/ 2 G2

a is thus the closure of t.u0;v0/Z. We identify
the completion of the local ring of Z0 at .0; 0; 0; 0/ with kJx; y; uK via the projection
on the first three coordinates. One readily sees that the local equation of Z00 in Z0 at
.0; 0; 0; 0/ is

g D y � f .x � u/C f .u/ 2 kJy; x; uK:

By Lemma 4.28, if dim sn.Z/ D 1 and dim sm.Z/ D 0 for all m < n, then a monomial
of the form ulxn for some l > 0 occurs with a non-zero coefficient in g. Substituting the
expression for f into the above expression for g, we get

g D y �
X
j>0

bj

� X
0<k�j

�
j

k

�
.�1/j�kuj�kxk

�
;

If f contains a term axn, then its contribution to g are the terms

�a

�
n

1

�
uxn�1; a

�
n

2

�
u2xn�2; : : : ; a

�
n

n � 1

�
.�1/n�1un�1x;

and if nD pj , then the coefficients vanish in a characteristic p field since
�
pj

k

�
� 0 mod p

for k < pj . Raising to pj -th power is additive modulo p, so if p −m, then .x C u/mp
j
�

..x C u/m/p
j

mod p, and since
�mpj
lpj

�
is the coefficient of ulxm�l in .x C u/m raised to

the power pj ,
�mpj
lpj

�
D
�
m
l

�pj .
In particular, if n D mpj and p − m, then

�mpj
pj

�
D mp

j
6� 0 mod p, so the term

up
j
x.m�1/p

j
has a non-zero coefficient in g, which proves the first claim (and, more

generally,
�mpj
lpj

�
6� 0 mod p if p − m; l).

Now let W be the closed subvariety of G2
a � Z � G4

a such that the fibre of W over
a point z 2 Z is Z � tz.Z/. Applying the reasoning from the proof of Proposition 3.9,
we get that the local equation of W is

h D y � f .x � u/C f .u/C f .x/;

Arguing as above, we see that by Lemma 4.28 to prove the second claim it suffices to
show that a monomial of the form ujxN.Z/, j > 0, occurs in h with a non-zero coeffi-
cient while no monomials of the form ujxn, j � 0, occur in h with non-zero coefficients
for n < N.Z/ (so that h � y mod xN.Z/) and for n D mpj , p − m, pj < N.Z/ (so that
N.Z � tz.Z// D N.Z/).

Since the term xmN.Z/ occurs in f with a non-zero coefficient, its contribution to
f .x � u/ � f .u/ � f .x/ consists of the terms ulN.Z/xN.Z/, 0 < l < m with non-zero
coefficients. And since by definition of N.Z/, xn occurs in f with a non-zero coefficient
if and only if n D pj or n D mpj and pj � N.Z/, the statement from the previous
paragraph is fulfilled.
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Lemma 4.30. Assume that the ground field is of positive characteristic p. Let G be an
algebraic group such that the connected component of the identityG0 is isomorphic to Ga.
Let Z � G2 be a curve that is not a Boolean combination of cosets of subgroups of G2.
Then there exist a family of pure-dimensional curves W � G2 � Z definable in .G; Z/,
and an irreducible component Z0 � Z \G20 of dimension 1, such that

dim¹�1.Wz ; .0; 0// W z 2 Z0º D 1:

Proof. Replacing Z by a shift and swapping coordinates, if needed, we may assume that
there exists a pure-dimensional irreducible curve Z0 � Z such that .0; 0/ 2 Z0, Z0 is not
contained in a coset, and such that the projection on the first coordinate in G2

a is étale in
a neighbourhood of .0; 0/ 2Z. Consider the definable family of curves Y �G2 �Z with
the fibres

Yz D Z � tz.Z/; z 2 Z:

For z 2 Z0, the slope of Yz at .0; 0/ is well defined. By Lemma 4.29,

dim¹�N.Z/.Yz ; .0; 0// W z 2 Z0º D 1;

and �N.Z/�1.Yz ; .0; 0// D 0 for z in a dense subset of Z0. It follows that there exists
z0 2Z0 such that �N.Z/.Yz0 ; .0; 0//¤ 0. It also follows from the characterization ofN.Z/
in Lemma 4.29 that the local equation of Yz is an N.Z/-th power of a power series, and
therefore p2WG4

a ! Ga restricted to Y 0 D Frmp2.Y / is generically unramified, where m is
such that pm D N.Z/.

In particular, for generic z 2 Z0, the restriction of the projection on the second coor-
dinate of G2

a to Y 0z is generically unramified and

dim¹�1.Y 0z ; .0; 0// W z 2 Z0º D 1:

Define the family W by putting Wz D Yz ı Y �1z0 . Then by Lemma 4.16, Wz D Y 0z ı
.Y 0z0/

�1 for z in a dense subset of Z0 and

�1.Wz ; .a2; b2// D �1.Y
0
z ; a/ ı .�1.Y

0
z ; b//

�1

for all points aD .a1;a2/;bD .b1; b2/2 Yz such that a1D b1 and such that the right-hand
side makes sense. The statement of the lemma follows.

Lemma 4.31. Let G be a one-dimensional algebraic group whose connected component
of the identity G0 is isomorphic to Gm. Let Z � G2 be a curve that is not a Boolean
combination of cosets of subgroups of G2. Then either there exists an irreducible pure-
dimensional curve Z0 � Z such that dim s1.Z0/D 1, or there exists a group definable in
.G;Z/ whose connected component of the identity is not isomorphic to Gm.

Proof. Pick a local coordinate systems on Gm, uniformly, as in the proof of Lemma 4.30.
Assume that dim s1.Z/ D 0, and so s1.Zi / is a singleton for each one-dimensional irre-
ducible component Zi � Z. Let Z0 be one of the irreducible components of Z that is
not contained in a coset, then there exists a smallest n > 1 such that dim sn.Z0/ D 1.
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Then, by the same reasoning as in the proof of Lemma 4.19, we may consider the family
Y �G2 �Z by putting Yz D tz.Z/ ı .tz0.Z//

�1 for some z0 2Z0, so that ¹�1.Yz ; .0;0// W
z 2 Z0º almost coincides with

Ker.Aut.kŒx�=.xnC1///! Aut.kŒx�=.xn// Š Ga:

The definable family Y can be used to construct a group configuration as in the proof
of Theorem 4.25, and therefore a group is interpretable in .G; Z/. By Proposition 4.26,
the connected component of the identity of this group is not isomorphic to Gm.

We can finally interpret the field.

Theorem 4.32. LetG be a one-dimensional algebraic group over an algebraically closed
field, Z � G2 a one-dimensional constructible subset that is not a Boolean combination
of cosets. Then .G; �; Z/ interprets a field.

Proof. Let G0 be the connected component of the identity e of G. If G0 D Ga or G0 is
an elliptic curve, then by Lemmas 4.27, 4.30, there exist a definable family Y � G2 � S
of curves, S strongly minimal, and an irreducible locally closed set S0 � S such that
there is a unique family of branches ˛ of Y0 D Y \ S0 at .e; e/ 2 G2, and such that
�1.Ys; ˛s/ is not constant as s ranges in S0. If G D Gm, by Lemma 4.31, either such
a family exists, or a definable one-dimensional group G0 with the connected component
of the identity not isomorphic to Gm (and therefore isomorphic to either Ga or to an
elliptic curve) is interpretable in .G; �;Z/, and we may prove the theorem for the structure
induced onG0. We, therefore, may continue with the assumption that such a family exists.
Clearly, Y0 ! S0, and we may assume that S0 is smooth at the price of possibly shrink-
ing S0. Further shrinking S0, we can ensure Y0 ! S0 to be flat (by Fact 3.10). Let K be
a field of infinite transcendence degree over the base field k. We identify first order slopes,
which are truncated polynomials inKŒ"�=."2/ divisible by ", withK, and we will use mul-
tiplicative notation for composition. We will freely use the remark after Definition 3.3 and
Lemma 3.2, referring to branches of suitable pure-dimensional subfamilies of definable
families of curves when we speak about branches of definable families of curves.

From this point on, modulo Proposition 3.15, the argument is standard.
Take a1; a2; b1; b2; u 2 S0.K/ generic and pairwise independent. Let c1; c2 2 S0.K/

be such that

�1.Yc1 ; ˛c1/ D �1.Ya1 ; ˛a1/�1.Yb1 ; ˛b1/;

�1.Yc2 ; ˛c2/ D �1.Ya2 ; ˛a2/�1.Yb1 ; ˛b1/C �.Yb2 ; ˛b2/:

This is possible since the image of the function s 7! �1.Ys; ˛s/ for s ranging in S0 is of
dimension 1, and the values of slopes on the right-hand side of the equations above are
generic in End.kŒx�=.x2// for generic pairwise independent values of parameters. There-
fore,

�1.Ya1 ; ˛a1/�1.Yb1 ; ˛b1/ and �1.Ya2 ; ˛a2/�1.Yb1 ; ˛b1/C �1.Yb2 ; ˛b2/
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are generic, and c1, c2 as required can be found in S0.K/. Let z, v be such that

�1.Yz ; ˛z/ D �1.Ya1 ; ˛a1/�1.Yu; ˛u/C �1.Ya2 ; ˛a2/;

�1.Yv; ˛v/ D �1.Yb1 ; ˛b1/
�1�1.Yu; ˛u/ � �1.Yb2 ; ˛b2/:

By a similar reasoning, z, v are generic. It also follows from the way c1, c2, z, v were
defined that

�1.Yz ; ˛z/ D �1.Yc1 ; ˛c1/�1.Yv; ˛v/C �1.Yc2 ; ˛c2/:

We will now show that .c1; c2/ is algebraic over .a1; a2/ and .b1; b2/ in the sense of
.G; �; Z/. By Propositions 3.7 and 3.9,

�1.Ya1 ı Yb1 ; ˛a1 ı ˛b1/ D �1.Ya1 ; ˛a1/�1.Yb1 ; ˛b1/;

�1.Ya2 ı Yb1 C Yb2 ; ˛a2 ı ˛b1 C ˛b2/ D �1.Ya2 ; ˛a2/�1.Yb1 ; ˛b1/C �1.Yb2 ; ˛b2/:

Let l1 Dmaxc1;a1;b12S0 #.Yc1 \ .Ya1 ı Yb1// and l2 D #.Yc2 �G2 .Ya2 ı Yb1 C Yb2//
for a1; a2; b1; b2; c1; c2 2 S0 generic and independent. Since the number of intersection
points is a .G; �; Z/-definable property, it does not matter what particular parameters ai ,
bi , ci we take as long as they are generic and independent (in the sense of .G; �; Z/).
By Lemma 3.13 and Proposition 3.15, the .M;X/-definable set

¹w 2 S0 W dim.Yw \ .Ya1 ı Yb1// D 1 or #.Yw \ .Ya1 ı Yb1// < l1º

contains c1 and by definition of l1 is finite. By Lemma 3.13 and Proposition 3.15 again,
the .M;X/-definable set

¹w 2 S0 W dim.Yw \ .Ya2 ı Yb1 C Yb2// D 1 or #.Yw \ .Ya2 ı Yb1 C Yb2// < l2º

contains c2 and by definition of l2 is finite.
Arguing similarly, by application of Lemma 3.13 and Proposition 3.15, we deduce

that for all lines in the diagram

z u

v

.a1; a2/

.b1; b2/

.c1; c2/

each vertex is in the algebraic closure of two other collinear vertices, and so this consti-
tutes a group configuration. Therefore, by Fact 4.4, there exists a two-dimensional group
definable in .G; �; Z/ that acts transitively on a one-dimensional set.

The conditions of the Fact 4.6 are verified as well: for instance, for the uppermost
line, B D ¹�1.Ya1 ; ˛a1/; �1.Ya2 ; ˛a2/º is by construction a canonical base of the type
tp.�1.Yz ; ˛z/; �1.Yu; ˛u/=B/ in the full Zariski structure. Since the natural morphism
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S0! Aut.kŒ"�=."2//; s 7! �1.Ys; ˛s/ has finite fibres, a canonical base of tp.z; u=a1; a2/
is inter-algebraic with ¹a1; a2º in the full Zariski structure. Since passing to the reduct
can only enlarge a canonical base, the canonical base of tp.z; u=a1; a2/ is inter-algebraic
with ¹a1; a2º. The same argument applies to tp.u; v=b1; b2/ and tp.z; v=c1; c2/.

By Fact 4.7, the group G is isomorphic to the affine group Ga.k/ Ì Gm.k/ of an
infinite definable field k.

In order to apply the above results, we need the following, which is a well-known
model theoretic folklore (see, [8, Theorem 7.2]). We give a proof specialised to the case
where we need it.

Lemma 4.33. Let G be a strongly minimal group interpretable in M. Then there exists
a strongly minimalZ � G2 that is not a finite Boolean combination of cosets of definable
subgroups.

Proof. To simplify the discussion, let us call, for the purposes of this proof only, subsets
of G that are finite Boolean combinations of cosets of Gn (any n) G-linear. By strong
minimality, G is in finite-to-finite correspondence with M (this follows, in general, from
the fact that M is unidimensional. In the present setting, G can be assumed to have been
obtained from Theorem 4.4 using a one-dimensional group configuration, so the existence
of a finite-to-finite correspondence follows from the statement). It follows that G is not
locally modular, as the image of any ample family of one-dimensional subsets of M 2

under this finite-to-finite correspondence is an ample family in G2.
Since G is not locally modular, it admits by [13, Proposition 3.21] a nearly faithful

ample family of generically strongly minimal curves X ! T � G2 � T of dimension 3
(i.e., dim.T / D 3). Let G0 denote the M-connected component of G. Let t 2 T and
x0 2 G

0 be independent M-generics. Let y0 be such that .x0; y0/ 2 Xt and assume that
y0 2 gG

0 for some g 2 G (that we can choose independent of .x0; y0/). Then Xt Œg� WD
¹.x; y/ W .x; gy/ 2 .G0/2 \Xtº is an M-definable curve in .G0/2 and XŒg� WD ¹Xt Œg� W
t 2 T º is a definable family of curves in .G0/2. Since G=G0 is finite and X is nearly
faithful, the correspondence Xt 7! Xt Œg� is finite-to-one and on a generic subset of T .
Therefore,XŒg� is readily checked to be a three-dimensional, nearly faithful ample family
of curves in .G0/2. Moreover, if Xt is G-linear (for some t 2 T ), then so is Xt Œg�. So it
will suffice to show that X can be chosen so that Xt Œg� is not G-linear for generic t 2 T .

If G0 is M-definably isomorphic to either Gm or to an elliptic curve, E , then for
generic t 2 T , Xt Œg� is not G-linear, since there are no definable families of subgroups
of G2

m or of E2. Let us elaborate: assume towards a contradiction that for generic t 2 T
the curve Xt is G-linear. So Xt Œg� is also G-linear for all such t . In this setting, there
are finitely many ;-definable one-dimensional subgroups H1; : : : ;Hk of .G0/2 such that
Xt Œg� coincides, up to a finite set, with a union of cosets of the Hi . Since .G0/2=Hi is
one-dimensional for all i , near faithfulness of XŒg� implies that XŒg� is, at most, one-
dimensional, a contradiction.

So we are reduced to the case where G0 is M-definably isomorphic to Ga. This case
is dealt with in Lemma 4.35.
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Lemma 4.34. Let X � Gn
a be a hypersurface, let a D .a1; : : : ; an/ 2 X be a general

enough point, and let x1; : : : ; xn be local coordinates on Gn
a near a. For a value b 2 Ga

and a fixed coordinate i , consider the level set

Xb D ¹.y1; : : : ; yi�1; yiC1; : : : ; yn/ 2 Gn�1
a W .y1; : : : ; b; : : : ; yn/ 2 Xº:

Assume that a belongs to a unique irreducible component of Xai . If Xb contains an irre-
ducible component that is a coset of a subgroup of Gn�1

a for all b in a neighbourhood
of ai , then the local equation of X at a has the form

f D
X
j¤i

X
l>0

X
m�0

cjlmx
l
i x
pm

j

for some coefficients cjlm 2 k.

Proof. The proof is similar to the proof of Lemma 4.28. Choose a curve Z � X contain-
ing a. Consider the following commutative diagram:

X 0 WD X �Ga Z
//

� _

��

X� _

��

Gn�1
a �Z // Gn

a ;

where Ga is the i -th factor in Gn
a . Consider formal completions of the elements of the

diagram along Z:
yX 0 //� _

��

yX� _

��

yY 0 // yY :

Since a is general enough, 1OZ;a is isomorphic to a power series ring, and also the image
of Z under some power of a relative Frobenius is generically étale over the i -th Ga.
Choose local coordinates x1; : : : ; xn on Gn

a at a and introduce local coordinates on
Gn�1
a �Z at a as follows: let xx1; : : : ; xxi�1; xxiC1; : : : ; xxn be obtained from x1; : : : ; xi�1,

xiC1; : : : ; xn by translation, and let z be such that zp
M
D xi , where M is the degree of

inseparability of the field extension k..z// W k..xi //. Then

kJx1; : : : ; xnK � kJxx1; : : : ; xxi�1; z; xxiC1; : : : ; xxnK;

and we have

xxj D xj � zj ; for some zj 2 kJxiK:

The formal scheme yX 0 is cut out in Gn�1
a �Z by

xf 2 kJxx1; : : : ; yxi ; : : : ; xxnK˝ kŒZ�:
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If all level sets Xb for b in a neighbourhood of ai are cosets of a subgroup of Gn�1
a , then

the evaluation of xf at such points b is an additive polynomial. In particular, the image
of xf in kJxx1; : : : ; yxxi ; : : : ; xxnK˝OZ;a is of the formX

j¤i

X
m�0

xcjmxx
pm

j ; xcjm 2 OZ;a:

Then yX is cut out in yY by the image f of . xf /p
m

in kJx1; : : : ; xnK. After the change of
coordinates, one has

f D
X
j¤i

X
m�0

xc
pM

jm .xj � zj /
pmCM ;

and the statement of the lemma follows.

Lemma 4.35. Let G be an algebraic group such that the connected component of the
identity ofG is isomorphic to Gn

a . IfX �Gn is a constructible set which is not a Boolean
combination of cosets of subgroups ofGn, then there exists a one-dimensional setW �G2

definable in M WD .G;X/ that contains a locally closed irreducible subset W0 that is not
a coset of a subgroup of G2

a.

Proof. We proceed by downward induction on n.
We may assume that X is M-stationary. We may further assume that there is no M-

component X 0 � X with dim.X/ D dim.X 0/ whose closure is a coset of a subgroup
of Gn

a . Indeed, ifGC a almost coincided withX 0, we would get that the generic stabiliser
of X , Stab�.X/ WD ¹g W dim..X C g/4X/ < dim.X/º (where4 denotes the symmetric
difference) is M-definable, this group coincides with G and is M-definable. Therefore,
X n G C a is M-definable, is not a Boolean combination of cosets of subgroups, and
dim.X nG C a/ < dim.X/, so we may conclude by a further induction on dimension.

Let X0 � X be a locally closed subset of maximal dimension that is not a coset of
a subgroup. By what we have just said, dim.X0/ D dim.X/.

Consider the projections of X on various products Gn�1
a of the factors of the direct

product Gn
a . If the image of any of these projections is not a coset of a subgroup, we con-

clude by induction. Otherwise, images ofX0 under all such projections are cosets of some
subgroups. Since X0 is not a coset, the fibres of all these projections restricted to X0 are
finite, so the image is a coset of a subgroup H such that dimH D dimX0 D m. Assume
for definiteness that H is the image of the projection Gn

a ! Gn�1
a that forgets the last

coordinate. Consider now an M-definable � WH ! Gm
a with finite fibres. By quantifier

elimination for algebraically closed fields, � has the form

� D .�1; : : : ; �m/W H ! Gm
a ; �i D Fr�ai ı�i ;

where ai are positive integers and �i are morphisms of algebraic groups (for some choice
of identification of H with a closed subgroup of Gn

a ). In particular, if � D .�1; : : : ; �m/,
then .� � id/.X/, where id is applied to the last coordinate, is not a coset, and all the more
.� � id/.X0/ is not one. Indeed, if .� � id/X0 were a cosetH 0, then X0 would have to be
one of the irreducible components of the pre-image .� � id/�1H 0, which are all cosets.



A. Hasson, D. Sustretov 48

Since X0 is a top-dimensional irreducible component in X , �.X0/ is an irreducible
component of the image of X under a definable projection Gn ! Gm. Therefore, unless
m D n � 1, we may also make an induction step.

So we are reduced to the case where X0 is a hypersurface in Gn
a . Pick a generic point

a D .a1; : : : ; an/2X0. Let f 2kJx1; : : : ; xnK be the generator of the ideal cutting out the
germ ofX0 in the completed local ring 1OGna ;a. SinceX0 is not a coset, f is not an additive
series, that is, it does not consist only of monomials containing only pj -th, j � 0, powers
of variables. By Lemma 4.34, there exists a coordinate i such that level sets .X0/b with
respect to this coordinate are not cosets for b in an open neighbourhood of ai – if it were
not the case, f would be an additive series.

Clearly, the level set of X0 is contained in the corresponding level set of X , which is
M-definable and contained in Gn�1. This finishes the induction step.

Remark. In the above proof, it is not hard to see that if we obtain a two-dimensional
nearly faithful family X ! T such that each Xt contains (up to a finite set) a curve of the
form atx C bt , then X can be used directly to construct a field configuration.

We can now sum up everything to obtain the main result of this paper.

Theorem 4.36. Let M be an algebraic curve, and let X � M 2 � T � M 2 �M l be an
ample family of curves. Then M D .M;X/ interprets a field.

Proof. By Corollary 4.13, we may assume that M is smooth, that k is of infinite tran-
scendence degree and that X is a nearly faithful family of generically strongly min-
imal sets. Thus we can apply Theorem 4.25, allowing us to conclude that M interprets
a strongly minimal groupG. By [39, Theorem 4.13],G is an algebraic group. The groupG
is in an M-definable finite-to-finite correspondence with M , so it is a one-dimensional
algebraic group. Moreover, any M-definable ample family of curves inM 2 maps through
this correspondence into an ample family of curves in G2 of the same dimension. So G
is not locally modular. By [24, Theorem 4.1 (b)], there is some definable Z � Gn that is
not a finite Boolean combination of cosets. By Lemma 4.33, we may assume that, in fact,
Z � G2. Therefore, we may apply Theorem 4.32 to get the desired conclusion.

Remark. The field obtained in the conclusion of our main theorem is definably iso-
morphic to k by [39, Theorem 4.15]. In particular, since k is a pure field, so is the field
we reconstruct.

As a corollary, we obtain a standard generalisation.

Corollary 4.37. Let M be a constructible set in an algebraically closed field K. Let M

be a rank-preserving reduct of the full Zariski structure M , i.e., RMM.X/ D RMK.X/

for all M-definable X � M n (any n). Then M interprets a definably isomorphic copy
of K if and only if M is not 1-based.

Proof. Since M is a rank-preserving reduct, any strongly minimal structure interpretable
in M is one-dimensional. By our main theorem, it is enough, therefore, to show that M is
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not 1-based if and only if it interprets a non-locally modular strongly minimal type. This
follows readily form Beuchler’s dichotomy, [5], combined with [6]. The only point to note
is that because M is interpretable in K, it has finite Morley rank (in fact, RMM.M/ �

RMK.M/, by the very definition of Morley rank), and since K is strongly minimal, also
the K-U-rank of M is finite, and thus also the U-rank of M is finite.
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