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Limits of almost homogeneous spaces
and their fundamental groups

Sergio Zamora

Abstract. We say that a sequence of proper geodesic spaces Xn consists of almost homogeneous
spaces if there is a sequence of discrete groups of isometriesGn � Iso.Xn/with diam.Xn=Gn/! 0

as n!1. We show that if a sequence .Xn; pn/ of pointed almost homogeneous spaces converges
in the pointed Gromov–Hausdorff sense to a space .X; p/, then X is a nilpotent locally compact
group equipped with an invariant geodesic metric. Under the above hypotheses, we show that if X
is semi-locally-simply-connected, then it is a nilpotent Lie group equipped with an invariant sub-
Finsler metric, and for n large enough, �1.X/ is a subgroup of a quotient of �1.Xn/.

1. Introduction

We say that a sequence of proper geodesic spaces Xn consists of almost homogeneous
spaces if there is a sequence of discrete groups of isometries Gn � Iso.Xn/ with
diam.Xn=Gn/! 0 as n!1.

Remark 1.1. A sequence of homogeneous spaces Xn does not necessarily consist of
almost homogeneous spaces, since the groups Iso.Xn/ are not necessarily discrete.

Example 1.2. Let Zn be a sequence of compact geodesic spaces with diam.Zn/! 0 as
n!1. If zZn ! Zn is a sequence of regular covers, then the sequence zZn consists of
almost homogeneous spaces.

The goal of this paper is to understand the Gromov–Hausdorff limits of sequences of
almost homogeneous spaces. In the case when the sequence consists of blow-downs of a
single space, the problem was solved by Gromov and Pansu [12, 19].

Theorem 1.3 (Gromov–Pansu). Let .X; p/ be a pointed proper geodesic space, and
G � Iso.X/ a discrete group of isometries with diam.X=G/ <1. If for some sequence
of positive numbers �n !1, one has

lim
n!1

� 1
�n
X;p

�
D .Y; q/
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in the pointed Gromov–Hausdorff sense, then Y is a simply connected nilpotent Lie group
equipped with a Carnot–Carathéodory metric (a Carnot–Carathéodory metric is a special
kind of invariant sub-Finsler metric such that for any � > 0, the space �Y is isometric
to Y ).

When the limit is compact, Turing solved the finite-dimensional case [24], and using
Turing’s result, Gelander solved the infinite-dimensional case [8].

Theorem 1.4 (Turing–Gelander). LetXn be a sequence of almost homogeneous spaces. If
the sequenceXn converges in the Gromov–Hausdorff sense to a compact spaceX , thenX
is a (possibly infinite-dimensional) torus equipped with an invariant metric.

The main result of this paper deals with the case in which the limit is non-compact.

Theorem 1.5. Let .Xn; pn/ be a sequence of pointed almost homogeneous spaces. If the
sequence .Xn; pn/ converges in the pointed Gromov–Hausdorff sense to a space .X; p/,
then X is a nilpotent group equipped with an invariant metric. Furthermore, if X is semi-
locally-simply-connected, then it is a Lie group equipped with a sub-Finsler metric, and
for n large enough, �1.X/ is a subgroup of a quotient of �1.Xn/.

Remark 1.6. The hypothesis of X being semi-locally-simply-connected can be replaced
by X having finite topological dimension, because of the next result (solution to Hilbert’s
fifth problem) by Montgomery and Zippin [17].

Theorem 1.7 (Montgomery–Zippin). Let X be a homogeneous proper geodesic space.
If X has finite topological dimension, then it is homeomorphic to a topological manifold,
and its isometry group is a Lie group.

1.1. Lower semi-continuity of �1

In the context of Theorem 1.5, if X is semi-locally-simply-connected, then �1.X/ is in
some sense not larger than �1.Xn/. This is an instance of a more general phenomenon
(see [13, Section 3E]).

Theorem 1.8 (Folklore). Let Xn be a sequence of compact geodesic spaces. If the se-
quence Xn converges to a compact semi-locally-simply-connected space X , then for n
large enough, �1.X/ is a quotient of �1.Xn/.

This property is further studied by Sormani and Wei in [20–22]. This result fails if
the limit is not compact [22, Example 1.2] or not semi-locally-simply-connected [20,
Example 2.6]. The next example shows that if one works with homogeneous spaces
instead of almost homogeneous spaces in Theorem 1.5, it may happen that �1.Xn/ is
trivial for all n and X is semi-locally-simply-connected, but �1.X/ is non-trivial (see
[13, Examples 3.11.aC]).
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Example 1.9. Let Y be S1 with its standard metric of length 2� and Zn be S3 with
the round (bi-invariant) metric of constant curvature 1=n2. Let Xn be the quotient .Y �
Zn/=S1, where S1 acts on Y �Zn as follows:

z.w; q/ D .wz�1; zq/; z; w 2 S1; q 2 S3:

Then, Xn is isometric to S3 equipped with a re-scaled Berger metric. The sequence Xn
consists of simply connected homogeneous spaces, but its pointed Gromov–Hausdorff
limit is S1 �R2, which is not simply connected.

Under the hypotheses of Theorem 1.5, assuming X is semi-locally-simply-connected,
one may wonder whether �1.X/ is a quotient of �1.Xn/ for n large enough (without
passing to a subgroup) just like in Theorem 1.8. The following example shows that it is
not the case:

Example 1.10. Define a “dot product” R4 �R4 ! R6 in R4 by

.a � b/ WD .a1b2; a1b3; a1b4; a2b3; a2b4; a3b4/; a; b 2 R4:

With it, define a group structure on R4 �R6 by

.a; x/ � .b; y/ WD .aC b; x C y C .a � b//; a; b 2 R4; x; y 2 R6:

Let G be the above group equipped with a left-invariant Riemannian metric. For each n,
define the subgroups K � Kn GGn � G Š R4 �R6 as

K WD ¹0º � Z6;

Kn WD .nZ4/ � Z6;

Gn WD
�1
n

Z4
�
�

� 1
n2

Z6
�
:

The sequence Xn WD G=Kn converges in the pointed Gromov–Hausdorff sense to
X WD G=K. Since the sequence of finite groups Gn=Kn acts on Xn with diam.Xn=
.Gn=Kn//! 0, the sequence Xn consists of almost homogeneous spaces. A direct com-
putation shows that the abelianization of �1.Xn/ D Kn is isomorphic to

Z4 ˚ .Z=n2Z/6:

Then, it is easy to see that �1.X/ D K Š Z6 is not a quotient of �1.Xn/ for any n.

1.2. Existence of the limit

Given a sequence Xn of almost homogeneous spaces, one may wonder which conditions
guarantee the existence of a convergent subsequence. For example, if the spaces Xn are
Riemannian manifolds with Ricci curvature � K and dimension � N for some K 2 R
and N 2 N, the Gromov compactness criterion implies the existence of a convergent
subsequence [13, Theorem 5.3].

Benjamini, Finucane, and Tessera found another sufficient condition for this partial
limit to exist when the spaces Xn are graphs [1].
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Theorem 1.11 (Benjamini–Finucane–Tessera). Let Dn � �n be two sequences going to
infinity, and let .Xn; pn/ be a sequence of pointed graphs. Assume there is a sequence
of discrete groups Gn � Iso.Xn/ acting transitively on the sets of vertices. If the balls of
radius Dn in Xn satisfy

jBXn.pn;Dn/j D O.D
q
n/

for some q > 0, then the sequence of pointed almost homogeneous spaces� 1

�n
Xn; pn

�
has a subsequence converging in the pointed Gromov–Hausdorff sense to a nilpotent Lie
group.

Remark 1.12. Recently, Tessera and Tointon showed that the hypothesis in Theorem 1.11
of the groups Gn being discrete can be removed [23]. Moreover, one could define a
sequence of weakly almost homogeneous spaces to be a sequence of proper geodesic
spaces Xn with groups of isometries Gn � Iso.Xn/ acting with discrete orbits and such
that diam.Xn=Gn/ ! 0. Their results imply that Theorem 1.5 holds under the weaker
assumption that the spaces Xn are weakly almost homogeneous.

1.3. Further problems

There are two natural strengthenings of Theorem 1.5. One could ask if a weaker conclu-
sion holds if one removes the hypotheses of the groups Gn acting almost transitively, or
the limit X being semi-locally-simply-connected.

Conjecture 1.13. Let .Xn;pn/ be a sequence of pointed simply connected proper geodesic
spaces. Assume there is a sequence of discrete groups of isometries Gn � Iso.Xn/ with
diam.Xn=Gn/ � C for some C > 0. If .Xn; pn/ converges in the pointed Gromov–
Hausdorff sense to a pointed semi-locally-simply-connected space .X;p/ for which Iso.X/
is a Lie group, then X is simply connected.

Conjecture 1.14. Let .Xn; pn/ be a sequence of pointed simply connected almost homo-
geneous spaces. If .Xn; pn/ converges in the pointed Gromov–Hausdorff sense to a poin-
ted space .X; p/, then X is simply connected.

1.4. Summary

The proof of Theorem 1.5 consists of three parts. In the first part, we show that X is a
nilpotent group equipped with an invariant metric (Theorem 3.1). In the second part, we
show that if X is semi-locally-simply-connected, then it is a Lie group (Theorem 4.1). In
the third part, we show that ifX is a Lie group, then for large enough n, there are quotients
of �1.Xn/ containing isomorphic copies of �1.X/ (Theorem 5.1).
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In Section 2, we present the relevant definitions and preliminary results required for
the proof of Theorem 1.5. In Section 3, by repeated applications of a Margulis Lemma
by Breuillard–Green–Tao [4], we find almost nilpotent discrete groups of isometries G0n
� Iso.Xn/ acting almost transitively (Lemma 3.2). Combining this with the Gleason–
Yamabe structure theory of locally compact groups [9, 25], and a result of Berestovskiı̆
about groups of isometries of homogeneous spaces [2], we obtain Theorem 3.1. In Sec-
tion 4, we prove Theorem 4.1 using elementary Lie theory and algebraic topology tech-
niques.

Sections 5 to 9 contain the proof of Theorem 5.1, finishing the proof of Theorem 1.5.
In Section 5, we use commutator estimates similar to the ones in [5, 11] to prove that the
groups G0n act “almost by translations” on the spaces Xn (Proposition 5.2). In Section 6,
we use the escape norm from [4] to find small normal subgroups Wn GG0n with the prop-
erty that the spacesXn and Xn=Wn are globally Gromov–Hausdorff close, and the groups
�n WD G

0
n=Wn contain large subsets An without non-trivial subgroups.

In Section 7, we use the space X as a model (as defined by Hrushovski [14]) for the
ultralimit

A WD lim
n!˛

An:

This enables us to find large nice subsets Pn of �n (nilprogressions in C -normal form, as
defined by Breuillard–Green–Tao [4]).

In Section 8, we use the Mal’cev Embedding Theorem [16] to find groups z�n iso-
morphic to lattices in simply connected Lie groups, with isometric actions

ˆn W z�n ! Iso.Xn=Wn/:

Using elementary algebraic topology, we show that the kernels Ker.ˆn/ of those actions
are isomorphic to quotients of �1.Xn/: Finally, in Section 9, we find subgroups of Ker.ˆn/
isomorphic to �1.X/, finishing the proof of Theorem 5.1 and, consequently, Theorem 1.5.

2. Preliminaries

2.1. Notation

For subgroups H;K of a group G, we define their commutator subgroup ŒH;K� to be the
group generated by the elements Œh; k� WD h�1k�1hk with h 2 H; k 2 K. Define G.0/

as G, and G.jC1/ inductively as G.jC1/ WD ŒG;G.j /�. If G.s/ D ¹eº for some s 2 N, we
say that G is nilpotent of step � s.

We say that a set A � G is symmetric if A D A�1 and e 2 A. For subsets A1; : : : ; Ak
� G, we denote by A1 � � �Ak the set of all products®

a1 � � � ak j ai 2 Ai
¯
� G;

and by A1 � : : : � Ak the set of all sequences®
.a1; : : : ; ak/ j ai 2 Ai

¯
� Gk :
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If Ai D A for i 2 ¹1; : : : ; kº, we will also denote A1 � � �Ak by Ak , and A1 � : : : � Ak
by A�k .

Let X be a topological space and ˇ; 
 W Œ0; 1� ! X two curves. We denote by
ˇ W Œ0; 1�! X the curve given by ˇ.t/D ˇ.1� t /. In addition, if ˇ.1/D 
.0/, we denote
by ˇ � 
 W Œ0; 1�! X the concatenation

ˇ � 
.t/ D

´
ˇ.2t/ if t � 1=2;


.2t � 1/ if t � 1=2:

If ˇ.1/ ¤ 
.0/, we say that ˇ � 
 is undefined.
In a metric space .X; d/, we will denote the open ball of center p 2 X and radius

r > 0 by BX
d
.p; r/. We will sometimes omit d or X and write B.p; r/ if the metric space

we are considering is clear from the context.

2.2. Groups of isometries

For a pointed proper metric space .X; p/, we equip its isometry group Iso.X/ with the
metric dp0 given by

d
p
0 .h1; h2/ WD inf

r>0

°1
r
C sup
x2B.p;r/

d.h1x; h2x/
±

(2.1)

for h1; h2 2 Iso.X/. It is easy to see that this metric is left-invariant, induces the compact-
open topology, and makes Iso.X/ a proper metric space.

Definition 2.1. Let f W X ! Y be a map between proper geodesic spaces. We say that f
is a metric submersion if for every x 2X and r > 0, the image of the closed ball of radius r
around x is the closed ball of radius r around f .x/.

Lemma 2.2. LetX be a proper geodesic space, andG � Iso.X/ a closed subgroup. Then,
the quotient map f W X ! X=G is a metric submersion.

Proof. Let x 2 X , r > 0, and y 2 X=G with dX=G.f .x/; y/ � r . Since G is closed, the
orbits are closed, and since X is proper, there is z 2 f �1.y/ with d.x; z/ D d.f .x/; y/
� r . This proves that the image of the closed ball of radius r around x contains the closed
ball of radius r around f .x/. The other contention is clear, as f is 1-Lipschitz.

Lemma 2.3. Let f W X ! Y be a metric submersion between proper geodesic spaces,

 W Œ0; 1�! Y a Lipschitz curve, and p 2 f �1.
.0//. Then, there is a curve z
 W Œ0; 1�!X

with f ı z
 D 
; z
.0/ D p, and length.z
/ D length.
/.

Proof. For each j 2N, letDj WD ¹0; 12j ; : : : ;
2j�1
2j

; 1º, and define hj WDj !X as follows:
let hj .0/ D p, and inductively, let hj .x C 1=2j / be a point in f �1.
.x C 1=2j // such
that

dX .hj .x C 1=2
j /; hj .x// D dY .
.x C 1=2

j /; 
.x// for x 2 Dj n ¹1º:
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Using Cantor’s diagonal argument, we can find a subsequence of hj that converges for
every dyadic rational. Since the maps hj are uniformly Lipschitz, we can extend this limit
map to a Lipschitz map z
 W Œ0; 1� ! X . It is easy to check that z
 satisfies the desired
properties.

Lemma 2.4. Let .X; p/ be a pointed metric space, r > 0, and

S WD
®
g 2 Iso.X/ j d.gp; p/ � r

¯
:

Then, for each m 2 N, one has

Sm �
®
g 2 Iso.X/ j d.gp; p/ � mr

¯
:

Proof. For s1; : : : ; sm 2 S , by the triangle inequality, we have

d.s1 � � � smp; p/ �

mX
jD1

d.s1 � � � sjp; s1 � � � sj�1p/ D

mX
jD1

d.sjp; p/ � mr:

Lemma 2.5. Let .X; p/ be a pointed proper geodesic space, and G � Iso.X/ a closed
subgroup. Then, the set

S WD
®
g 2 G j d.gp; p/ � 3 � diam.X=G/

¯
generates G.

Proof. Let g 2G. SinceX is geodesic, there is a sequence of points pD p0;p1; : : : ;pk D
gp 2X such that d.pj ; pj�1/� diam.X=G/ for each j . Choose a sequence g1; : : : ; gk�1
2 G such that d.gjp; pj / � diam.X=G/ for each j , and let g0 WD IdX , gk WD g. From
the triangle inequality, for each j 2 ¹1; : : : ; kº, we have g�1j�1gj 2 S . Then,

g D g1.g
�1
1 g2/ � � � .g

�1
k�1gk/ 2 S

k :

Lemma 2.6. Let X be a proper geodesic space, and H � G � Iso.X/ be closed sub-
groups. Then,

diam.X=H/ � 3ŒG W H� � diam.X=G/:

Proof. Let x 2 X , and define

S WD
®
g 2 G j d.gx; x/ � 3 � diam.X=G/

¯
;

which generates G, by Lemma 2.5. If we have SkC1H D SkH for some k 2 N, then an
inductive argument implies that

SkH D
[
n2N

SnH D G:
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Since there are only ŒG W H� cosets, SkC1H D SkH for k � ŒG W H� � 1. This implies
that S ŒGWH��1 intersects each H -coset.

For any y 2X , there is g 2G with d.x;gy/� diam.X=G/, and by the above analysis,
there is u 2 S ŒGWH��1 with u�1g 2 H . Also,

d.x; u�1gy/ D d.ux; gy/ � d.ux; x/C d.x; gy/

� 3.ŒG W H� � 1/ � diam.X=G/C diam.X=G/;

where we used Lemma 2.4 in the third line. Since x; y 2 X were arbitrary, the result
follows.

Lemma 2.7. Let .X;p/ be a pointed proper geodesic space, G � Iso.X/ a closed group,
and H G G a normal subgroup. If for some " > 0 one has d.hp; p/ � " for all h 2 H ,
then for all h 2 H , x 2 X , one has

d.hx; x/ � "C 2 � diam.X=G/:

In particular, ifH is contained in the stabilizer of p, andG acts transitively onX , thenH
is trivial.

Proof. For x 2 X , there is g 2 G with d.gx;p/ � diam.X=G/. Then, for h 2H , one has
by the triangle inequality

d.hx; x/ D d.ghx; gx/ � d.ghg�1gx; ghg�1p/C d.ghg�1p; p/C d.p; gx/

� diam.X=G/C "C diam.X=G/;

where we used that H is normal in the third line. Since x 2 X , h 2 H were arbitrary, the
lemma follows.

The following result by Berestovskiı̆ concerns groups that act transitively on geodesic
spaces [2, Theorem 1]:

Theorem 2.8 (Berestovskiı̆). Let X be a proper geodesic space and G a closed subgroup
of Iso.X/ acting transitively. If O � G is an open subgroup, then O also acts transitively
on X .

2.3. Lie groups and Hilbert’s fifth problem

Definition 2.9. Let g be a nilpotent Lie algebra. We say that an ordered basis ¹v1; : : : ; vrº
,! g is a strong Mal’cev basis if for all k 2 ¹1; : : : ; rº, the vector subspace Jk � g gen-
erated by ¹vkC1; : : : ; vrº is an ideal, and vk C Jk is in the center of g=Jk .

Theorem 2.10. Let G be a simply connected nilpotent Lie group, g its Lie algebra, and
V D ¹v1; : : : ; vrº ,! g a strong Mal’cev basis. Then,

• exp W g! G is a diffeomorphism.
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• The map  W Rr ! G given by  .x1; : : : ; xr / WD exp.x1v1/ � � � exp.xrvr / is a diffeo-
morphism.

• After identifying g with Rr via V, the maps .logı / W g! g and . �1 ı exp/ W g! g

are polynomials of degree bounded by a number depending only on r .

The proof of Theorem 2.10 can be found in [6, Propositions 1.2.1 and 1.2.7]. Although
the bound on the degree of the polynomials in the third item is not explicitly stated there,
it follows from their proof.

Corollary 2.11. Let G be a connected nilpotent Lie group. Then, �1.G/ is a finitely gen-
erated torsion-free abelian group, and �k.G/ D 0 for all k � 2.

Proof. By Theorem 2.10, the universal cover zG ! G is contractible, so �1.G/ is torsion
free and �k.G/ D 0 for all k � 2 (see [15], for example). Since fundamental groups of
Lie groups are finitely generated and abelian, the result follows.

Lemma 2.12. LetG be a connected nilpotent Lie group andK �G a compact subgroup.
Then, K is central in G.

Proof. Let g be the Lie algebra of G. By Weyl’s unitary trick, we can equip g with an
inner product for which the adjoint action Ad W K ! GL.g/ consists of orthogonal trans-
formations.

For h 2 K, it follows from Engel’s Theorem that Adh W g! g is idempotent (all its
eigenvalues are equal to 1). Since Idg is the only orthogonal idempotent transformation,
Adh D Idg and h commutes with all elements of G. Since h was arbitrary, the lemma
follows.

Corollary 2.13. A connected compact nilpotent Lie group is abelian.

Definition 2.14. We say that a continuous map X ! Y between path connected topolo-
gical spaces has no content, or has trivial content, if the induced map �1.X/! �1.Y / is
trivial. Otherwise, we say that the map has non-trivial content.

Lemma 2.15. Let G be a connected nilpotent Lie group and K a non-trivial connected
compact subgroup. Then, the inclusion K ! G has non-trivial content.

Proof. By Corollary 2.13, K is a torus, so �1.K/ is non-trivial. By Lemma 2.12, K is
central in G, so G=K is a nilpotent Lie group and �2.G=K/ D 0 by Corollary 2.11. From
the homotopy group’s long exact sequence of the fibration G ! G=K, we extract the
portion

�2.G=K/! �1.K/! �1.G/;

from which the lemma follows.
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Lemma 2.16. Let G, zG be connected Lie groups such that zG is a discrete extension
of G (i.e., there is a surjective continuous morphism f W zG ! G with discrete kernel).
Assume G and zG are equipped with invariant geodesic metrics for which f is a local
isometry. Let ı > 0 be such that BG.e; ı/ contains no non-trivial subgroups, and the
inclusionBG.e; ı/!G has no content. Then,B zG.e; ı/ contains no non-trivial subgroups
and the inclusion B zG.e; ı/! zG has no content.

Proof. If there is a group H � B zG.p; ı/, then its image f .H/ is a subgroup of G con-
tained in BG.e; ı/, so f .H/ D ¹eº � G. If there is a non-trivial element h 2 H n ¹eº,
we can take a shortest path 
 W Œ0; 1� ! zG from e to h. The projection f ı 
 would
be a non-contractible loop in G contained in BG.e; ı/, contradicting the hypothesis that
BG.e; ı/! G has no content. Also, we can consider the below commutative diagram.

B
zG.e; ı/ zG

BG.e; ı/ G

f

Since f is a covering map, the right vertical arrow induces an injective map at the level
of fundamental groups, and the bottom horizontal arrow has no content, by hypothesis.
Therefore, the top horizontal arrow has trivial content as well.

Lemma 2.17. Let G be a Lie group, g its Lie algebra, and assume exp W g ! G is a
diffeomorphism. Let g1; : : : ; g` 2 G be such that Œgi ; gj �D e for all i; j 2 ¹1; : : : ; `º, and
the set ¹log.g1/; : : : ; log.g`/º � g is linearly independent. Then, the group

hg1; : : : ; g`i � G

is isomorphic to Z`.

Proof. If G is abelian, the result is trivial, so the goal is to reduce the general case to
the abelian one. For each i 2 ¹1; : : : ; `º, set vi WD log.gi / and let a be the linear span of
¹v1; : : : ; v`º in g. Then, for i; j 2 ¹1; : : : ; `º, one has

exp.vj / D gj D Adgi .gj / D Adgi .exp.vj // D exp.Adgi .vj //:

Hence, gi commutes with exp.tvj / for all t 2 R. A similar argument shows

Œexp.svi /; exp.tvj /� D e for all s; t 2 R:

This implies that a is a commutative Lie algebra, and the result follows from the abelian
case applied to exp.a/.

Hilbert’s fifth problem consists of understanding which locally compact Hausdorff
groups are Lie groups. One satisfactory answer is Theorem 1.7. In a different direction,
Gleason and Yamabe showed that any locally compact Hausdorff group is not far from
being a Lie group [9, 25].
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Theorem 2.18 (Gleason–Yamabe). Let G be a locally compact Hausdorff group. Then,
there is an open subgroup O �G with the following property: for any open neighborhood
of the identity U � O, there is a compact normal subgroup K G O with K � U such
that O=K is a connected Lie group.

The following result by Glushkov implies that the set of compact normal subgroups
with the property that the corresponding quotient is a connected Lie group is closed under
finite intersections [10]:

Theorem 2.19 (Glushkov). Let O be a locally compact Hausdorff group and K1; K2
compact normal subgroups such that both O=K1 and O=K2 are connected Lie groups.
Then, O=.K1 \K2/ is a connected Lie group.

Corollary 2.20. LetG be a locally compact group equipped with a left-invariant geodesic
metric. IfG is not a Lie group, then it contains a sequence of compact, normal, non-trivial
subgroups K1 � K2 � � � � with

1\
jD1

Kj D ¹eº (2.2)

such that G=Kj is a connected Lie group for all j . Moreover, for infinitely many j , the
identity connected component of Kj =KjC1 is non-trivial.

Proof. By Theorems 2.18 and 2.19, we obtain a sequence of compact, normal, non-trivial
subgroups K1 � K2 � � � � satisfying (2.2) and such that Hj WD G=Kj is a connected Lie
group for all j .

Claim. For infinitely many j , the identity connected component of Kj =KjC1 is
non-trivial.

Assume, towards a contradiction, that there is j0 2 N such that Kj =KjC1 is discrete for
all j � j0. Let ı > 0 be small enough so thatBHj0 .e; ı/ contains no non-trivial subgroups,
and BHj0 .e; ı/!Hj0 has no content. By Lemma 2.16 and induction, the balls BHj .e; ı/
contain no non-trivial subgroups for j � j0. From (2.2), there is `0 2 N such that for all
` � `0, we have K` � BG.e; ı/, and

K`=K`C1 � B
H`C1.e; ı/:

This impliesK`DK`C1 for all `� `0, which by (2.2) meansK`0 D 0, a contradiction.

2.4. Gromov–Hausdorff convergence

Definition 2.21. Let X; Y be metric spaces. A function f W X ! Y is called a global
"-approximation if

• For all x1; x2 2 X , one has jd.f x1; f x2/ � d.x1; x2/j � ".

• For all y 2 Y , there is x 2 X with d.f x; y/ � ".
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Definition 2.22. Let .X; p/; .Y; q/ be pointed metric spaces. A function f W X ! Y is
called a pointed "-approximation if d.fp; q/ � " and

• For all x1; x2 2 BX .p; 2="/, one has jd.f x1; f x2/ � d.x1; x2/j � ".

• For all y 2 BY .q; 1="/, there is x 2 BX .p; 2="/ with d.f x; y/ � ".

Definition 2.23. We say a sequence of pointed proper metric spaces .Xn; pn/ converges
in the pointed Gromov–Hausdorff sense to a pointed proper metric space .X;p/ if there is
a sequence of pointed "n-approximations fn W Xn ! X with "n ! 0 as n!1.

The functions fn above are called Gromov–Hausdorff approximations. If a sequence
xn 2 Xn with supn d.xn; pn/ <1 is such that fn.xn/! x 2 X , by an abuse of notation
we say that xn converges to x.

Definition 2.24. Let .Xn; pn/ be a sequence of pointed proper metric spaces conver-
ging in the pointed Gromov–Hausdorff sense to a pointed proper metric space .X; p/, a
sequence of Gromov–Hausdorff approximations fn W Xn ! X . Let there be a sequence
of closed groups Gn � Iso.Xn/ and a closed group G � Iso.X/. Equip Gn with the
metric dpn0 and G with the metric dp0 from (2.1). We say that the sequence Gn con-
verges equivariantly to G if there is a sequence of Gromov–Hausdorff approximations
'n W Gn ! G such that for each R > 0, one has

lim
n!1

sup
g2BGn .IdXn ;R/

sup
x2BXn .pn;R/

d.fn.gx/; 'n.g/.fnx// D 0:

Remark 2.25. Under the conditions of Definition 2.24, it is straightforward to see that if
diam.Xn=Gn/! 0, then G acts transitively on X , and for all R > 0, one has

lim
n!1

sup
g;h2BGn .IdXn ;R/

d
p
0 .'n.gh/; 'n.g/'n.h// D 0: (2.3)

Remark 2.26. If for some " > 0, N 2 N, one has

G.N/n �
®
g 2 Iso.Xn/ j d.gx; x/ � " for all x 2 Xn

¯
for n large enough, then by repeated applications of (2.3), one gets (cf. [1, Corollary 2.1.4])

G.N/ �
®
g 2 Iso.X/ j d.gx; x/ � " for all x 2 X

¯
:

Isometry groups of proper spaces satisfy a compactness property [7, Proposition 3.6].

Theorem 2.27 (Fukaya–Yamaguchi). Let .Xn; pn/ be a sequence of pointed proper met-
ric spaces converging in the pointed Gromov–Hausdorff sense to a pointed proper metric
space .X;p/. Let there be a sequence of Gromov–Hausdorff approximations fn WXn!X ,
and a sequence of closed groups Gn � Iso.Xn/. Then, after taking a subsequence, the
sequence Gn converges equivariantly to a closed group G � Iso.X/.
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2.5. Constructing covering spaces

Definition 2.28. Let " > 0. We say that a covering map zX ! X of geodesic spaces is
"-wide if for every x 2 X , the ball BX .x; "/ is an evenly covered neighborhood of x.

Definition 2.29. If .X;p/ is a pointed geodesic space and " > 0, we denote byG.X;"/ the
quotient of �1.X; p/ by the (normal) subgroup generated by loops of the form ˇ � 
 � ˇ,
with ˇ.0/ D p, ˇ.1/ D 
.0/, and 
 a loop contained in an open ball of radius ".

The following result is obtained via the standard construction of covering spaces [18,
Theorem 77.1]:

Lemma 2.30. Let .X; p/ be a pointed proper geodesic space, G a group, and " > 0.
Then, there is a surjective morphism G.X; "/! G if and only if there is a regular "-wide
covering zX ! X with Galois group G.

The next result by Sormani and Wei implies that if two geodesic spaces are sufficiently
close in the Gromov–Hausdorff sense, then one can transfer regular covers from one to
the other [20, Theorem 3.4].

Theorem 2.31 (Sormani–Wei). Let X; Y be proper geodesic spaces for which there is
a global "=100-approximation between them. Then, there is a surjective map G.X; "=2/
! G.Y; "/. In particular, if there is an "-wide regular cover zY ! Y with Galois group G,
then there is a surjective morphism �1.X/! G.

Now we give a way to construct covering spaces from group actions (cf. [7, Lem-
ma A.19]).

Theorem 2.32. Let .X; p/ be a proper geodesic space and � � Iso.X/ a discrete group
of isometries with diam.X=�/ � � for some � > 0. Define B WD B.p; 2�/ and

S WD
®
g 2 � j d.gp; p/ < 4�

¯
D
®
g 2 � j gB \ B ¤ ;

¯
:

Let z� be the abstract group generated by S , with relations

s D s1s2 in z�; whenever s; s1; s2 2 S and s D s1s2 in �:

If we denote the canonical embedding S ,! z� by .s ! s]/, then there is a unique group
morphism ˆ W z� ! � that satisfies ˆ.s]/ D s for all s 2 S . Equip z� with the discrete
topology, and consider the topological space

zX WD .z� � B/= �;

where � is the minimal equivalence relation such that

.gs]; x/ � .g; sx/ whenever s 2 S; x; sx 2 B: (2.4)

We obtain a continuous map ‰ W zX ! X given by

‰.g; x/ WD ˆ.g/.x/:
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Then, ‰ is a regular �-wide covering map with Galois group Ker.ˆ/.

The proof of Theorem 2.32 is obtained from a sequence of lemmas.

Lemma 2.33. Let .a; x/; .b; y/ 2 z� � B . The following are equivalent:

• There is s 2 S with b D as], x D sy.

• There is t 2 S with a D bt], y D tx.

• .a; x/ � .b; y/.

Proof. The first two conditions are equivalent by taking t to be s�1, and they imply the
third one by definition. Using the fact that the first two conditions are equivalent, the third
condition implies that there is a sequence s1; : : : ; sk 2 S such that

.a; x/ � .as
]
1; s
�1
1 x/ � � � � � .as

]
1 � � � s

]

k
; s�1k � � � s

�1
1 x/ D .b; y/:

This implies that .s�11 /; .s�12 s�11 /; : : : ; .s�1
k
� � �s�11 / 2 S , allowing us to prove by induction

on j that .s1 � � � sj /]s
]
jC1 D .s1 � � � sjC1/

] in z� . This implies the first condition by taking s
to be .s1 � � � sk/ 2 S .

Fix U � X an open ball of radius �. Since ˆ is surjective and diam.X=�/ � �, there
is g0 2 z� such that

V WD ˆ.g�10 /.U / � BX .p; 2�/:

Lemma 2.34. The preimage of U is given by

‰�1.U / D
[

g2Ker.ˆ/

�[
s2S

�
¹g0gs

]
º � ..s�1V / \ B/

��
= � : (2.5)

Proof. By direct evaluation, if g 2 Ker.ˆ/ and x 2 V \ sB , then

‰.g0gs
]; s�1x/ D ˆ.g0g/x D ˆ.g0/x 2 ˆ.g0/.V / D U:

On the other hand, if .h; x/ 2 z� � B is such that ˆ.h/.x/ 2 U , then ˆ.g�10 h/.x/ 2 V ,
and ˆ.h/ 2 ˆ.g0/S , implying that hD g0gs] for some g 2 Ker.ˆ/, s 2 S . Also, s.x/D
ˆ.g�10 g0s

]/.x/ D ˆ.g�10 h/.x/ 2 V , proving that the class of .h; x/ belongs to the right-
hand side of (2.5).

We say that a subset A � z� � B is saturated if it is a union of equivalence classes of
the relation �.

Lemma 2.35. As g ranges through Ker.ˆ/, the sets

Wg WD
[
s2S

�
¹g0gs

]
º � ..s�1V / \ B/

�
� z� � B

are open, disjoint, and saturated.
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Proof. The fact that they are open is straightforward, since .s�1V / \ B is open in B for
each s 2 S . To prove that they are disjoint, assume that

.g0g1s
]
1; x/ � .g0g2s

]
2; y/

for some g1; g2 2 Ker.ˆ/; s1s2 2 S; x 2 .s�11 V / \ B; y 2 .s�12 V / \ B: Lemma 2.33
implies that there is t 2 S with

g0g1s
]
1t
]
D g0g2s

]
2; x D ty: (2.6)

By taking ˆ on both sides of the first equation, we get s2 D s1t and, hence, s]2 D s
]
1t
].

Canceling this in (2.6), we get g1 D g2, proving that the sets Wg are disjoint.
To prove that they are saturated, assume that for some .h; x/ 2 z� � B , g 2 Ker.ˆ/,

s 2 S , y 2 .s�1V /\B , we have .h; x/� .g0gs]; y/. By Lemma 2.33, there is t 2 S with

h D g0gs
]t]; y D tx:

This implies that st.x/ D s.y/ 2 V � B; hence, st 2 S and .st/] D s]t]. Then,

.h; x/ 2 ¹g0g.st/
]
º � ...st/�1V / \ B/;

proving that Wg is saturated.

Lemma 2.36. For each g 2 Ker.ˆ/, the image of Wg in zX is sent homeomorphically
via ‰ onto U .

Proof. Surjectivity is straightforward, sinceˆ.g0g/.V /DU . To check injectivity, assume
that for some s; t 2 S , x 2 .s�1V / \ B , y 2 .t�1V / \ B , we have

ˆ.g0gs
]/.x/ D ˆ.g0gt

]/.y/:

Then, x D s�1ty 2 B , implying that s�1t 2 S and, consequently, .s�1t /] D .s]/�1t].
Hence,

g0gs
].s�1t /] D g0gt

]; x D .s�1t /y;

obtaining injectivity. To check that ‰jWg is open, take O � Wg open and saturated con-
taining the class of

.g0g; x/ 2 ¹g0gº � V:

Then, ‰ sends .¹g0gº � V / \ O to an open neighborhood of ˆ.g0/.x/. Since .g0g; x/
was arbitrary, ‰jWg is open.

Proof of Theorem 2.32. By Lemmas 2.34, 2.35, and 2.36, U is an evenly covered neigh-
borhood. Since U was arbitrary, ‰ is a �-wide covering map.

From (2.4), one sees that left multiplication on z� descends to an action ‚ W z� !
Iso. zX/. For g 2 Ker.ˆ/, h 2 z� , x 2 B , we have

‰.‚.g/.h; x// D ‰.gh; x/ D ˆ.gh/x D ˆ.h/x D ‰.h; x/;
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so ‚jKer.ˆ/ consists of deck transformations. From Lemma 2.35, it is straightforward to
check that for each g0 2 z� , the group Ker.ˆ/ acts on the set of Wg ’s freely and transit-
ively. This shows that ‰ is regular and Ker.ˆ/ is its Galois group, finishing the proof of
Theorem 2.32.

2.6. Local groups

In this section we present the elementary theory of local groups and approximate groups
we will use. We refer the reader to [4, Appendix B] for proofs and further discussion.

Definition 2.37. Let .G; e/ be a pointed topological space. We say that G is a local group
if there are continuous maps ./�1 W G! G and � W�! G for some� � G �G such that

• � is an open set containing .G � ¹eº/ [ .¹eº �G/.

• For all g 2 G, we have g � e D e � g D g.

• For all g 2 G, we have .g; g�1/; .g�1; g/ 2 � and g � g�1 D g�1 � g D e.

• For all g; h; k 2 G such that .g; h/; .gh; k/; .h; k/; .g; hk/ 2 �, we have g.hk/
D .gh/k.

Definition 2.38. We say that a local groupG is a local Lie group if it is a smooth manifold
and the maps ./�1 W G ! G and � W �! G are smooth.

Definition 2.39. LetG be a local group. We say that a subsetA�G is symmetric if e 2A
and g�1 2 A for all g 2 A.

Definition 2.40. Let G and H be two local groups. We say a continuous function � W G
! H is a morphism if the following hold:

• �.e/ D e.

• For all g 2 G, we have �.g�1/ D Œ�.g/��1.

• If g; h 2 G are such that g � h is defined in G, then �.g/ � �.h/ is defined in H , and
�.g � h/ D �.g/�.h/.

Definition 2.41. Let .G; e) be a local group, and U � G a symmetric subset. We say
that U is a restriction of G if when restricting ./�1 to U , and � W � ! G to ¹.g; h/ 2
� \ U � U jgh 2 U º, we obtain a local group structure on U .

Definition 2.42. Let G be a local group, and g1; : : : ; gm 2 G. We say that the product
g1 � � �gm is well defined inG if for each 1� j � k �m, we can find an element gŒj;k� 2G
such that

• For all j 2 ¹1; : : : ; mº, we have gŒj;j � D gj .

• For all 1 � j � k < ` � m, the pair .gŒj;k�; gŒkC1;`�/ lies in �, and gŒj;k� � gŒkC1;`�
D gŒj;`�.

For sets A1; : : : ; Am 2 G, we say that the product A1 � � �Am is well defined if for all
choices of gj 2 Aj , the product g1 � � �gm is well defined.
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Definition 2.43. Let G be a local group. We say that a subset A � G is a multiplicative
set if it is symmetric and A200 is well defined in G.

Definition 2.44. We say that a local group G is cancelative if the following hold:

• For all g; h; k 2 G such that gh and gk are well defined and equal to each other, we
have h D k.

• For all g; h; k 2 G such that hg and kg are well defined and equal to each other, we
have h D k.

• For all g; h 2 G such that gh and h�1g�1 are well defined, then .gh/�1 D h�1g�1.

Definition 2.45. Let G; G0 be local groups such that G0 is a restriction of G. We say
that G0 is a sub-local group of G if there is an open set V � G containing G0 with the
property that for all a;b 2G0 such that ab is well defined in V , we have ab 2G0. If V also
satisfies that for all a 2 G0, b 2 V such that bab�1 is well defined in V , we have bab�1

2 G0, we say that G0 is a normal sub-local group of G, and V is called a normalizing
neighborhood of G0.

Lemma 2.46. Let G be a cancelative group and H be a normal sub-local group with
normalizing neighborhood V . Let W � G be an open symmetric subset such that W 6

� V . Then, there is a cancelative local group W=H equipped with a surjective morphism
� WW !W=H such that, for all g;h 2W , one has �.g/D �.h/ if and only if gh�1 2H ;
and for any E � W=H , one has that E is open if and only if ��1.E/ is open.

Definition 2.47. Let A be a finite symmetric subset of a multiplicative set and C 2 N.
We say that A is a C -approximate group if A2 can be covered by C left translates of A.

Definition 2.48. Let A be a C -approximate group for some C 2 N. We say that A is a
strong C -approximate group if there is a symmetric set S � A satisfying the following:

• .¹asa�1 j a 2 A4; s 2 Sº/10
3C 3 � A.

• If g; g2; : : : ; g1000 2 A100, then g 2 A.

• If g; g2; : : : ; g10
6C 3 2 A, then g 2 S .

Definition 2.49. Let A be a subset of a multiplicative set G. For g 2 G, we define the
escape norm as

kgkA WD inf
° 1

mC 1
j e; g; g2; : : : ; gm 2 A

±
:

In strong approximate groups, the escape norm satisfies really nice properties [4, The-
orem 8.1].

Theorem 2.50 (Gleason–Breuillard–Green–Tao). For each C > 0, there is M > 0 such
that if A is a strong C -approximate group and g1; g2; : : : ; gk 2 A10, then

(i) kg1g2 � � �gkkA �M
Pk
jD1 kgj kA.
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(ii) kg2g1g�12 kA � 10
3kg1kA.

(iii) kŒg1; g2�kA �Mkg1kAkg2kA.

Definition 2.51. Let G be a local group, u1; u2; : : : ; ur 2 G, and N1; N2; : : : ; Nr 2 RC.
The set P.u1; : : : ; ur IN1; : : : ; Nr / is defined as the set of words in the ui ’s and their
inverses such that the number of appearances of ui and u�1i is not more than Ni . We
say that P.u1; : : : ; ur IN1; : : : ; Nr / is well defined if every word in it is well defined
in G. When that is the case, we call it a progression of rank r (a progression of rank 0
is defined to be the trivial subgroup). We say a progression P.u1; : : : ; ur IN1; : : : ; Nr /
is a nilprogression in C -normal form for some C > 0 if it also satisfies the following
properties:

N.1 For all 1 � i � j � r , and all choices of signs, we have

Œu˙1i ; u˙1j � 2 P
�
ujC1; : : : ; ur I

CNjC1

NiNj
; : : : ;

CNr

NiNj

�
:

N.2 The expressions un11 : : : u
nr
r represent distinct elements as n1; : : : ; nr range over

the integers with jn1j � N1=C; : : : ; jnr j � Nr=C .

N.3 One has

1

C
.2bN1c C 1/ � � � .2bNrc C 1/ � jP j � C.2bN1c C 1/ � � � .2bNrc C 1/:

For a nilprogression P in C -normal form and " 2 .0; 1/, the progression P.u1; : : : ; ur I
"N1; : : : ; "Nr / also satisfies Properties N.1 and N.2, and we denote it by "P . We define
the thickness of P as the minimum of N1; : : : ; Nr and we denote it by thick.P /. The set
¹u
n1
1 � � �u

nr
r j jni j � Ni=C º is called the grid part of P , and is denoted by G.P /.

Definition 2.52. Let P.u1; : : : ; ur IN1; : : : ; Nr / be a nilprogression in C -normal form
with thick.P / � C . Set �P to be the abstract group generated by 
1; : : : ; 
r with relations

Œ
j ; 
k � D 

ˇkC1
j;k

kC1
� � �


ˇ r
j;k
r

whenever j < k, where

Œuj ; uk � D u
ˇkC1
j;k

kC1
� � �u

ˇ r
j;k
r

and jˇl
j;k
j �

CNl
NjNk

. We say that P is good if each element of �P has a unique expression
of the form



n1
1 � � �


nr
r with n1; : : : ; nr 2 Z:

Theorem 2.53 (Mal’cev). For each r 2 N, C > 0, there is " > 0 such that the following
holds: let P.u1; : : : ; ur I N1; : : : ; Nr / be a nilprogression in C -normal form. If thick.P /
is large enough depending on r and C , then P is good and the map uj ! 
j extends to
a product-preserving embedding ] W G."P /! �P : For A � G."P /, we will denote its
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image under this embedding by A]. Furthermore, there is a quasilinear polynomial group
structure (see Definition 2.65)

Q W Rr �Rr ! Rr

of degree � d.r/ such that the multiplication in �P is given by



n1
1 � � �


nr
r 


m1
1 � � �


mr
r D 


.Q.n;m//1
1 � � �
 .Q.n;m//rr for n;m 2 Zr ;

so �P is isomorphic, via 
j ! ej , to the lattice .Zr ; QjZr�Zr /. The polynomial Q is
called the Mal’cev polynomial of P , and .Rr ;Q/ the Mal’cev Lie group of P .

Proof. In [4, Lemma C.3] it is shown that provided thick.P / is large enough, G."P /
embeds in a product-preserving way to �P (see also [5, Section 4.6]). In [5, Section 5.1]
it is shown that if thick.P / is large enough, the product in �P is given by a polynomialQ
that extends to the desired group structure in Rr .

2.7. Ultralimits

In this section we discuss the ultrafilter tools we will use during the proof of Theorem 5.1.
We refer the reader to [1, Section 2.1] and [4, Appendix A] for proofs and further discus-
sions.

Definition 2.54. Let }.N/ denote the power set of the natural numbers and let ˛ W }.N/
! ¹0; 1º be a function. We say that ˛ is a non-principal ultrafilter if it satisfies

• ˛.N/ D 1.

• ˛.A [ B/ D ˛.A/C ˛.B/ for all disjoint A;B � N.

• ˛.F / D 0 for all finite F � N.

Using Zorn’s Lemma, it is not hard to show that non-principal ultrafilters exist. We
will choose one .˛/ and fix it for the rest of this paper. For a property P W N ! ¹0; 1º, if
˛.P�1.1// D 1, we say that “P.n/ holds for ˛-large enough n”.

Definition 2.55. Let An be a sequence of sets. In the product

A0 WD

1Y
nD1

An;

we say that two sequences ¹anºn; ¹a0nºn are ˛-equivalent if

˛
�®
n j an D a

0
n

¯�
D 1:

The set A0 modulo this equivalence relation is called the ultraproduct of the sets An and
is denoted by

A WD lim
n!˛

An:

If the sets An are local groups, then A inherits a local group structure given by ¹anºn �
¹a0nºn WD ¹ana

0
nºn, whenever ¹ana0nºn 2 A.
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Definition 2.56. If An D R for each n, then A is denoted by �R and its elements are
called non-standard real numbers. Elements of R are called standard real numbers, and
there is a natural embedding R ,! �R whose image consists of the constant sequences.

For non-standard real numbers x D ¹xnºn, y D ¹ynºn, we say

• x � y if ˛.¹n 2 Njxn � ynº/ D 1.

• x D O.y/ if there is C 2 R such that x � Cy.

• x D o.y/ if for all c 2 R we have x � cy.

• x is bounded if x D O.1/.

• x is infinitesimal if x D o.1/.

Definition 2.57. Let xn be a sequence in a metric space X . We say that the sequence
ultraconverges to a point x1 2 X if for every " > 0,

˛
�®
n j d.xn; x1/ < "

¯�
D 1:

If this is the case, the point x1 is called the ultralimit of the sequence, and we write
xn

˛
�! x1 or

lim
n!˛

xn D x1:

It is easy to show that if a sequence has an ultralimit, then it is unique. Furthermore,
if X is compact, then any sequence in X ultraconverges.

Definition 2.58. Let An be a sequence of finite multiplicative sets. If there is a C 2 N
such that An is a (strong) C -approximate group for ˛-large enough n, we say that the
ultraproduct AD limn!˛An is a (strong) ultra approximate group. If for ˛-large enough n
the approximate group An does not contain non-trivial subgroups, we say that A is an NSS
(no small subgroups) ultra approximate group.

Definition 2.59. For subsets A0n � A
4
n with the property .A0n/

4 � A4n, we say that the
ultraproduct A0 D limn!˛ A

0
n is a sub-ultra approximate group of A if it is an ultra

approximate group, and there is a constant C 0 2 N such that An can be covered by C 0

many translates of A0n for ˛-large enough n.

Definition 2.60. Let A D limn!˛ An be an ultra approximate group. A good Lie model
for A is a connected local Lie group � together with a morphism � W A8 ! � satisfying
the following:

M.1 The image �.A/ � � is pre-compact.

M.2 There is an open neighborhood U0 � � of the identity with U0 � �.A/ and
��1.U0/ � A.

M.3 For F � U � U0 with F compact and U open, there is an ultraproduct A0 D
limn!˛ A

0
n of finite sets A0n � An with ��1.F / � A0 � ��1.U /.
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Definition 2.61. Let Pn be a sequence of sets. If for ˛-large enough n, Pn is a nilprogres-
sion of rank r in C -normal form for some r 2N, C > 0, independent of n, we say that the
ultraproduct P D limn!˛ Pn is an ultra nilprogression of rank r in C -normal form. We
denote limn!˛ "Pn as "P. If .thick.Pn//n is unbounded, we say that P is a non-degenerate
ultra nilprogression. The ultraproductG.P/ WD limn!˛G.Pn/ is called the grid part of P.

2.8. Ultraconvergence of polynomials

Definition 2.62. Let Qn W Rk ! R` be a sequence of polynomials of bounded degree.
We say that the sequence converges well to a polynomial Q W Rk ! R` if the sequences
of coefficients of Qn ultraconverge to the corresponding coefficients of Q.

Lemma 2.63. For each d 2 N, there is N0 2 N such that the following holds: let IN0 WD
¹�1; : : : ; �1

N0
; 0; 1

N0
; : : : ; 1º, and assume we have polynomials Qn; Q W Rk ! R` of

degree� d such thatQn.x/
˛
�! Q.x/ for all x 2 .IN0/

�k . Then,Qn converges well toQ.

Proof. Working on each coordinate, we may assume that ` D 1. We proceed by induc-
tion on k, the case k D 1 being elementary Lagrange interpolation. Name the variables
x1; : : : ; xk . Since

RŒx1; : : : ; xk � D .RŒx1�/Œx2; : : : ; xk �;

we can consider the polynomialsQn;Q as polynomials zQn; zQ in the variables x2; : : : ; xk
with coefficients in RŒx1�.

If Qn.x/
˛
�! Q.x/ for all x 2 .IN0/

�k , we would have zQn.q; x0/
˛
�! zQ.q; x0/ for all

q 2 IN0 and x0 2 .IN0/
�.k�1/. By the induction hypothesis, if N0 was large enough and

depending on d , the coefficients of zQn, which are polynomials in RŒx1�, ultraconverge to
the coefficients of zQ whenever x1 2 IN0 . By the case k D 1, if N0 was large enough, the
coefficients of Qn ultraconverge to the coefficients of Q.

Lemma 2.64. Let Qn W Rr � Rr ! Rr be a sequence of polynomial group structures
in Rr of bounded degree. Assume Qn converges well to a polynomial group structure
Q W Rr � Rr ! Rr . Then, the corresponding sequence of Lie algebra structures on Rr

converges well to the Lie algebra structure of Q.

Proof. This follows from the fact that the structure coefficients of the Lie algebras depend
continuously on the derivatives of Qn, which, by hypothesis, ultraconverge to the corres-
ponding derivatives of Q.

Definition 2.65. For x D .x1; : : : ; xr / 2 Rr , we define its support as

supp.x/ WD
®
i 2 ¹1; : : : ; rº j xi ¤ 0

¯
:

For x; y 2 Rr , we say that x � y if i � j for every i 2 supp.x/, j 2 supp.y/. We say
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that a polynomial group structure Q W Rr �Rr ! Rr is quasilinear if

Q.x; y/ D Q.x; 0/CQ.0; y/ D x C y

when x � y.

Note that for any quasilinear group structure Q W Rr �Rr ! Rr , the coordinate axes
are one-parameter subgroups, and the exponential map

exp W T0 Rr D Rr ! Rr

is the identity when restricted to such axes. Moreover, by the Baker–Campbell–Hausdorff
formula, for x D .x1; : : : ; xr / 2 Rr , the expression

log.x/ D log.x1e1 C � � � C xier / D log..x1e1/� � �.xrer //

D log.exp.log.x1e1//� � � exp.log.xrer /// D log.exp.x1e1/� � � exp.xrer //

is a polynomial on the variables x1; : : : ; xr , and its coefficients depend continuously on
the structure coefficients of the Lie algebra associated to .Rr ; Q/. This, together with
Lemma 2.64, implies the following result:

Lemma 2.66. Consider quasilinear polynomial nilpotent group structures Qn;Q W Rr �
Rr !Rr of bounded degree. Let logn; log WRr !Rr D T0Rr denote the logarithm maps
for the group structures Qn and Q, respectively. Assume the sequence Qn converges well
to Q, and a sequence xn 2 Rr ultraconverges to a point x 2 Rr . Then,

lim
n!˛

logn.xn/ D log.x/:

3. Nilpotent groups of isometries

In this section, we begin the proof of Theorem 1.5 with the following result:

Theorem 3.1. Let .Xn; pn/ be a sequence of almost homogeneous spaces that converges
in the pointed Gromov–Hausdorff sense to a space .X; p/. Then, X is isometric to a
nilpotent locally compact group equipped with an invariant metric.

By hypothesis, there are discrete groups of isometries Gn � Iso.Xn/ such that
diam.Xn=Gn/ ! 0. To prove Theorem 3.1, we first reduce it to the case when the
groups Gn are almost nilpotent.

Lemma 3.2. Under the hypotheses of Theorem 3.1, there are discrete groups of isometries
G0n � Iso.Xn/ with diam.Xn=G0n/! 0, satisfying that for each " > 0, there is N D N."/
2 N such that

.G0n/
.N/
�
®
g 2 G0n j d.gx; x/ � " for all x 2 Xn

¯
for n large enough.
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This lemma is a consequence of the next result, which is one of the strongest versions
of the Margulis Lemma. It states that if a sufficiently large ball in a Cayley graph can be
covered by a controlled number of balls of half its radius, then the corresponding group is
virtually nilpotent.

Theorem 3.3 (Breuillard–Green–Tao). For C 2 N, there is N.C/ 2 N such that the fol-
lowing holds: let A be a finite symmetric subset of a group G, which is in turn generated
by a finite symmetric set S . If SN � A, and A is a C -approximate group, then there is a
subgroup G0 � G with

• ŒG W G0� � N .

• .G0/.N/ � A4.

Proof. By [4, Corollary 11.2] combined with [4, Remark 11.4], if N.C/ is large enough,
SN � A and A is a C -approximate group, then there are subgroups F G G0 � G with
F � A4, ŒG W G0� � N , such that G0=F is nilpotent of step � N . Since .G0/.N/F=F D
.G0=F /.N/ D ¹eG0=F º, the result follows.

Proof of Lemma 3.2. Fix k 2 N. Since X is proper, there is C 2 N such that B.p; 3=k/
can be covered by C balls of radius 1=k, that is, there are ¹x1; : : : ; xC º 2 X such that

B.p; 3=k/ �

C[
jD1

B.xj ; 1=k/: (3.1)

Since diam.Xn=Gn/! 0, for j 2 ¹1; : : : ; C º, there are gj;n 2 Gn such that gj;npn con-
verges to xj for each j . For each n 2 N, define

Ak;n WD
®
g 2 Gn j d.gpn; pn/ � 1=k

¯
;

which is clearly finite and symmetric.

Claim. A2
k;n
�
SC
jD1 gj;nAk;n for n large enough.

Otherwise, after passing to a subsequence, we get hn 2 A2k;n n
SC
jD1 gj;nAk;n. By Lem

ma 2.4, after passing again to a subsequence, we can assume hnpn converges to a point
x0 2 B.p; 3=k/. By (3.1), there is j0 2 ¹1; : : : ; C º such that x0 2 BX .xj0 ; 1=k/. Set
un WD g

�1
j0;n

hn and compute

d.unpn; pn/ D d.gj0;npn; hnpn/! d.xj0 ; x0/ < 1=k:

Then, un 2Ak;n for n large enough, and hence, hn D gj0;nun 2 gj0;nAk;n, a contradiction.
Let Nk WD N.C/ 2 N be given by Theorem 3.3 and set

Sn WD
®
g 2 Gn j d.gpn; pn/ � 3 diam.Xn=Gn/

¯
;
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which generates Gn, by Lemma 2.5. As diam.Xn=Gn/ ! 0, by Lemma 2.4, one has
S
Nk
n � Ak;n for n large enough, and Theorem 3.3 applies. Using also Lemma 2.6, we

deduce there are subgroups Gk;n � Gn with diam.Xn=Gk;n/! 0 and

G
.Nk/

k;n
�
®
g 2 Gk;n j d.gpn; pn/ � 4=k

¯
(3.2)

for n large enough. By Lemma 2.7, we can upgrade (3.2) to

G
.Nk/

k;n
�
®
g 2 Gk;n j d.gx; x/ � 5=k for all x 2 Xn

¯
(3.3)

for n large enough. Replacing Gn by Gk;n, we can assume the sequence Gn itself sat-
isfies (3.3). Performing the above construction for each k 2 N, one obtains the desired
groups G0n WD Gk.n/;n via a diagonal procedure with k.n/!1 slowly enough.

Remark 3.4. From the proof of Lemma 3.2, it follows that if C can be taken independent
of k (for example, if X is a Riemannian manifold), then N can be taken independent of "
and, moreover, ŒGi W G0i � � N for all i .

Proof of Theorem 3.1. Let G0n be given by Lemma 3.2. After passing to a subsequence,
the groups G0n converge equivariantly to a group � � Iso.X/ acting transitively on X . By
Theorem 2.18, there is an open subgroup O � � with the property that for any neighbor-
hood U � O of IdX , there is a compact normal subgroup K G O with K � U and such
that O=K is a connected Lie group.

Step 1: If K G O is a compact normal subgroup such that O=K is a connected Lie
group, then O=K is nilpotent.

Denote by � W O ! O=K the projection, and let V � O=K be a small open neigh-
borhood of the identity such that any subgroup of O=K contained in V is trivial. Since
��1.V / � O is an open neighborhood of the identity, there is " > 0 such that®

g 2 O j d.gx; x/ � " for all x 2 X
¯
� ��1.V /:

By Remark 2.26, there is N 2 N such that

O.N/
�
®
g 2 O j d.gx; x/ � " for all x 2 X

¯
� ��1.V /I

hence, .O=K/.N/ D �.O.N// � V is trivial.
Step 2: If K GO is a compact subgroup, then ŒO; K� is trivial.
Let U � O be a neighborhood of IdX , and K1 G O a compact normal subgroup with

K1 � U such that O=K1 is a connected Lie group. By Step 1, O=K1 is nilpotent, and
by Lemma 2.12, KK1=K1 � O=K1 is central; hence, ŒO; K� � K1 � U . Since U was
arbitrary, the commutator ŒO; K� is trivial.

Step 3: O is nilpotent.
Take K GO a compact normal subgroup such that O=K is a connected Lie group. By

Step 1, there is N 2 N such that O.N/ � K. By Step 2, O.NC1/ D ŒO;O.N/� � ŒO; K�

D ¹IdXº:
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Step 4: The map O ! X given by g 7! gp is a homeomorphism.
By Theorem 2.8, O acts transitively on X , and hence X Š O=K, where K WD ¹g 2

Ojgp D pº is the stabilizer of p. By Step 2, K is central in O, so by Lemma 2.7, it is
trivial.

Combining Steps 3 and 4, the result follows.

4. Semi-locally-simply-connected nilpotent groups

In this section, we prove the second part of Theorem 1.5, which consists in the following
result:

Theorem 4.1. Let .Xn; pn/ be a sequence of almost homogeneous spaces converging
in the pointed Gromov–Hausdorff sense to a space .X; p/. If X is semi-locally-simply-
connected, then X is a Lie group equipped with an invariant sub-Finsler metric.

Due to the following result of Berestovskiı̆ [3, Theorem 3], all we need to show is
that X is a Lie group:

Theorem 4.2 (Berestovskiı̆). Let X be a proper geodesic space whose isometry group
acts transitively. If X is homeomorphic to a topological manifold, then its metric is given
by a sub-Finsler structure.

For the proof of Theorem 4.1, we require the following elementary observation:

Lemma 4.3. Let X be a proper semi-locally-simply-connected geodesic space. Assume
the inclusion B.x; r/! X has non-trivial content for some x 2 X , r > 0. Then, there is
a non-contractible loop in X based at x of length � 3r .

Proof. By hypothesis, there is a loop ˇ W Œ0; 1� ! BX .x; r/ based at x that is non-
contractible in X . Using the semi-local-simple-connectedness, we can find a Lipschitz
loop 
 W Œ0; 1�!BX .x; r/ homotopic to ˇ by approximating it with piece-wise geodesics.
Let m 2 N be such that length.
 j

Œ k�1m ; km �
/ � r for all k 2 ¹1; : : : ; mº.

For each k 2 ¹0; : : : ; mº, let �k W Œ0; 1� ! BX .x; r/ be a minimizing path from x

to 
. k
m
/. Since 
 is homotopic to the concatenation of the curves �k�1 � 
 jŒ k�1m ; km �

� �k

with k 2 ¹1; : : : ; mº, then at least one of them is non-contractible in X .

Proof of Theorem 4.1. By Theorem 3.1, we can assume X is a connected nilpotent group
with eX D p. By Corollary 2.20, if X is not a Lie group, then it contains a sequence of
non-trivial compact subgroups K1 � K2 � � � � with

1\
jD1

Kj D ¹pº;

such that Hj WD X=Kj is a connected nilpotent Lie group, and the identity connected
component of Kj =Kj�1 is non-trivial for infinitely many j .
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Since X is semi-locally-simply-connected, there is ı > 0 such that the inclusion
BX .p;ı/!X has no content. By our assumption, there is j 2N withKj�1�BX .p;ı=3/,
and the identity connected component of Kj�1=Kj is non-trivial. By Lemmas 2.15
and 4.3, there is a non-contractible loop 
 W Œ0; 1�!Hj based at e, with length.
/� ı. By
Lemma 2.3, there is a lift z
1 W Œ0; 1�! X with z
1.0/D p, � ı z
1 D 
 , and length.z
1/ � ı,
where � W X ! Hj is the natural projection. For each m 2 N, define the curve z
m W Œ0; 1�
! X as

z
m.t/ WD Œz
1.1/�
m�1
z
1.t/:

Observe that z
m.1/ D z
mC1.0/ 2 Kj for each m, so we can define the curves ˇm WD
z
1 � � � � � z
m, and their images lie all in BX .p; ı/.

Since Hj is a Lie group, there is " > 0 such that if two closed curves in Hj are at
uniform distance less than ", then they are homotopic to each other. Let m0 be a positive
integer such that ˇm0.1/ 2B

X .p;"/. It exists asBX .p; ı/ is pre-compact, and ˇn�m.1/D
ˇn.1/ˇm.1/

�1 for all n;m 2 N with n � m.
Let ˇ W Œ0; 1�! BX .p; "/ a minimizing curve from ˇm0.1/ to p. As �1.Hj / has no

torsion and �.ˇm0 � ˇ/ is "-uniformly close to a reparametrization of 
 � � � � � 
 (m0
times), it is non-contractible in Hj . However, it factors through BX .p; ı/, meaning that
the composition BX .p; ı/! X ! Hj has non-trivial content, a contradiction.

5. Almost translational behavior

As stated in the summary, in the remaining sections, we prove the following result, finish-
ing the proof of Theorem 1.5:

Theorem 5.1. Under the conditions of Theorem 4.1, for large enough n there are quo-
tients of �1.Xn/ containing isomorphic copies of �1.X/.

By contradiction, after passing to a subsequence, we can assume that for no n does the
group �1.Xn/ admit a quotient containing an isomorphic copy of �1.X/. Let G0n be the
groups given by Lemma 3.2. After passing further to a subsequence, we can assume the
groups G0n converge equivariantly to a closed group � � Iso.X/, which by Theorems 1.7
and 4.1 is a Lie group. The main result of this section is the following:

Proposition 5.2. � acts freely on X .

Proof. Since � is a Lie group, there is a neighborhood U � � of IdX that contains no
non-trivial subgroups and there is " > 0 such that®

g 2 � j d.gx; x/ � " for all x 2 X
¯
� U:

By Remark 2.26, there is N 2 N such that �.N/ � U , so � is nilpotent of step � N . Let
O � � be the identity connected component, and K � � a compact subgroup.
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Claim. The commutator ŒO; K� is trivial.

For the proof of this claim, we use the commutator estimates of [5, Section 3.3]. Let g be
the Lie algebra of � . By Weyl’s unitary trick, we can equip g with an inner product h�; �i
for which the adjoint action Ad W K ! GL.g/ consists of orthogonal transformations. If
the claim fails, there is h 2 K for which Adh W g! g is not the identity. Then, there is an
h�; �i-orthonormal basis®

a1; b1; : : : ; ak1 ; bk1 ; c1; : : : ; ck2 ; d1; : : : ; dk3
¯
,! g

and angles
�1; : : : ; �k1 2 S1 n ¹1º

such that k1 C k2 > 0 and

Adh.aj / D cos �jaj C sin �j bj ;

Adh.bj / D � sin �jaj C cos �j bj ;

Adh.cj / D �cj ;

Adh.dj / D dj :

We deal first with the case k1 > 0. By the Baker–Cambell–Hausdorff formula, for every
" > 0, there is ı > 0 such that

d.log.exp.ıa1/ exp.x//; x C ıa1/ � "ı (5.1)

and
d.log.h exp.x/h�1/;Adh.x// � "ı (5.2)

for all x 2 Bg
d
.0; 100N2N ı/, where d is the metric induced from h�; �i. Iterating estim-

ates (5.1) and (5.2), one can find C.N/ > 0 such that

d.log.Œh; Œh; : : : Œh; exp.ıa1/� : : :��„ ƒ‚ …
stepN commutator

/; .Idg�Adh�1/
N .ıa1// � C"ı: (5.3)

Since �.N/ D ¹IdXº, the step N commutator Œh; Œh; : : : Œh; exp.ıa1/� : : :�� is trivial. On the
other hand, a direct computation shows

j.Idg�Adh�1/
N .ıa1/j D j1 � �1j

N ı;

contradicting (5.3) if " is small enough (depending onC; N; and j1� �1j). The case k1D 0
is similar, but using c1 instead of a1.

Let K WD ¹g 2 � j gp D pº be the stabilizer of p and let x 2 X . By Theorem 2.8, O

acts transitively on X , so there is g 2 O with gp D x. By the claim above, gKg�1 D K;
hence, hx D x for all h 2 K. Since x was arbitrary, K is trivial and � D �=K Š X .
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6. Getting rid of small subgroups

In this section we identify and get rid of the small subgroups of G0n, using the escape
norm and the Gleason lemmas from [4]. Let 'n W G0n ! � be the Gromov–Hausdorff
approximations given by Definition 2.24. Since � is a Lie group, there is "0 > 0 such
that B�.IdX ; 103"0/ contains no non-trivial subgroups and the inclusion B�.IdX ; 103"0/
! � has no content.

Let B be a small open convex symmetric set in the Lie algebra g of � such that
exp.B/ � B.IdX ; "0/. Notice there is C 2 N depending only on the dimension of � such
that if B is small enough, then one can cover exp.3B/ by C translates of exp.B/. With
this B � g and C 2 N, define the sets

‚n WD B
G0n.IdXn ; 10

2"0/;

yTn WD
®
g 2 ‚n j 'n.g/ 2 exp.B/

¯
;

y†n WD
®
g 2 ‚n j 'n.g/ 2 exp.B=105C 3/

¯
;

Tn WD yTn [ yT
�1
n ;

†n WD y†n [ y†
�1
n :

If B was chosen small enough, by the Baker–Campbell–Hausdorff formula and (2.3), one
has ®

asa�1 j a 2 T 4n ; s 2 †n
¯
� †2n

for n sufficiently large, and all three conditions of a strong global approximate group hold
(see [4, Proposition 7.3] for further details).

Lemma 6.1. For n sufficiently large, the set Tn (thanks to the set †n) is a strong C -
approximate group.

Lemma 6.1 and Theorem 2.50(i)–(ii) imply that for n sufficiently large, the set

Wn WD
®
g 2 ‚n j kgkTn D 0

¯
is a subgroup of G0n normalized by Tn.

Remark 6.2. From (2.3) and the fact that B�.IdX ; 103"0/ has no non-trivial subgroups,
it is not hard to prove that for any choice of wn 2 Wn, one has 'n.wn/! IdX .

Proposition 6.3. The quotient maps Xn ! Xn=Wn are global "n-approximations with
"n ! 0 as n!1.

Proof. By Proposition 5.2, there is ı0 > 0 such that ¹g 2 � j d.gp;p/ � ı0º � exp.B=2/.
Hence, ¹g 2 G0n j d.gpn; pn/ � ı0º � Tn for n large enough, and by Lemma 2.5, Tn
generates G0n for n large enough. Then,Wn is a normal subgroup of G0n, so by Lemma 2.7
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and Remark 6.2, one has

lim
n!1

sup
h2Wn

sup
x2Xn

d.hx; x/ D 0;

and the result follows.

Set �n WD G0n=Wn and An WD �.Tn/, and let � W G0n ! �n be the quotient map and A
be the ultraproduct limn!˛ An.

Proposition 6.4. A is an NSS ultra approximate group.

Proof. Since Tn are C -approximate groups, so are the sets An. For Œg� 2 An n ¹eº; we
have kgkTn ¤ 0, so gm is not in T 2n � TnWn for some m. Hence, Œg�m D �.gm/ does
not belong to An. This shows that An does not contain non-trivial subgroups for n large
enough.

We still have the map
'n W �n ! �

given by
'n.Œg�/ WD 'n.g/:

Of course, to make this map well defined, we have to choose one representative from each
class in �n. However, different choices of representatives only change the value of 'n
by an error which goes to 0 as n!1. More precisely, if one considers two sequences
gn; g

0
n 2 ‚n with gnWn D g0nWn, then there is a sequence wn 2 Wn with gn D g0nwn for

all n and by Remarks 2.25 and 6.2, one has

lim
n!1

d.'n.gn/; 'n.g
0
n// D 0:

Consequently, for all an; a0n 2 A
8
n, we have

lim
n!1

d.'n.ana
0
n/; 'n.an/'n.a

0
n// D 0: (6.1)

Consider the map � W A8 ! � given by the metric ultralimit

�.¹gnºn/ WD lim
n!˛

'n.gn/:

From (6.1) and the fact that the maps 'n are Gromov–Hausdorff approximations, one has
the following:

Proposition 6.5. The pair .�; �/ is a good model for A.

Let z� be the universal cover of � . By our choice of "0, the balls B z�.e; 103"0/ and
B�.IdX ; 103"0/ are naturally identified, so for large enough n, we have maps z'n W �.‚n/
! z� with z'n.g/ 2 B

z�.e; 103"0/ and ˆ.z'n.g// D 'n.g/ for all g 2 �.‚n/, where ˆ W
z� ! � is the natural projection.
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7. The nilprogressions

In this section, we apply a short basis procedure by Breuillard, Green, and Tao to find a
large ultra nilprogression in A (cf. [4, Theorem 9.3]).

Theorem 7.1. Let AD limn!˛ An be an NSS ultra approximate group. Assume there is a
good Lie model � W A8 ! � . Then, A4 contains a non-degenerate ultra nilprogression P
of rank r WD dim.�/ in C -normal form for some C > 0 with the property that for all
standard " 2 .0; 1/, there is an open set U" � � with ��1.U"/ � G."P/.

Proof. The proof is done by induction on r . If r D 0, then � is a trivial group and the setU0
from Definition 2.60 equals � . Property M.2 implies that A8 D ��1.�/D ��1.U0/ � A.
Hence, for ˛-large enough n, An is a group, which is trivial by the NSS property and
there is nothing to show. For the induction step with r � 1, we follow step by step the
construction of [4, Section 9].

Let B be a small open convex symmetric set in g, the Lie algebra of � . Let A000 �
A00 � A0 � A be subultra approximate groups of A such that

��1.exp.B// � A0 � ��1.exp..1:001/B//;

��1.exp.ıB// � A00 � ��1.exp..1:001/ıB//;

��1.exp.ıB=10// � A000 � ��1.exp..1:001/ıB=10//;

where ı 2 .0; 1/ will be chosen later (their existence is guaranteed by Property M.3).
Notice that if B was chosen small enough, then A0, A00, A000 are strong ultra approximate
groups.

Let u 2 A0 n ¹eº be such that kukA0 Dmin¹kvkA0 j v 2 A0 n ¹eºº (in this setting, k � kA0

is a non-standard real number). Then, by Theorem 2.50(iii), if ı was chosen small enough,
for all x 2 .A00/10, we have

kŒu; x�kA0 D O.kukA0kxkA0/ < kukA0 :

Since kukA0 was minimal, u commutes with every element in .A00/10. Consequently, if we
define

Z WD
®
uk j k 2 �N; jkj � 1=kukA0

¯
;

then every element of Z will commute with every element of .A00/10. Since .A00/6 is well
defined, by Lemma 2.46, we can form the quotients A00=Z and A000=Z.

Lemma 7.2. The image �.Z/ is of the form �.Œ�1; 1�/, with �.t/ WD exp.tv/, for some
non-zero v in the center of g. If ı is small enough, after taking a small open neighborhood
of the identity U � � and the quotient U=�.Z/, one can guarantee that

(i) U=�.Z/ is a connected local Lie group of dimension r � 1.

(ii) A00=Z and A000=Z are NSS ultra approximate groups.
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(iii) � W .A00=Z/8 ! U=�.Z/ is a good model, where � comes from the composition
.A00/8 ! U ! U=�.Z/.

Proof. This is the content of [4, Lemma 9.4(i)–(ii)] and its proof.

We can then apply the induction hypothesis to A000=Z and deduce that there is a non-
degenerate ultra nilprogression P WD P .u1; : : : ; ur�1IN1; : : : ; N r�1/ in C -normal form
with C > 0, uj 2 A00=Z,Nj 2 �R for j 2 ¹1; : : : ; r � 1º such that P� .A000=Z/4 � A00=Z
and having the property that for all standard " > 0, there is an open set V" � U=�.Z/ with
.�/�1.V"/ � G."P/.

For � > 0, construct P WD P.u1; : : : ; ur I N1; : : : ; Nr /, where uj 2 A00 is a lift of uj
that minimizes kuj kA00 for j 2 ¹1; : : : ; r � 1º,Nj WD �Nj for j 2 ¹1; : : : ; r � 1º, ur WD u,
Nr WD �=kukA00 . By [4, Lemma 9.4(iii)] and its proof, if � is small enough, P is a non-
degenerate ultra nilprogression in C -normal form for some C > 0.

The only thing left to prove is that for all " > 0, there is an open set U" � � such that
��1.U"/� G."P/. By contradiction, assume that for some " > 0, there is x 2 A00 nG."P/
with �.x/D e� . If that is the case, �.xZ/D eU=�.Z/, and by our induction hypothesis, for
all standard �> 0, we have �.x/ 2G.�P/, where � WA00!A00=Z is the natural projection.
Therefore, x D un11 � � �u

nr
r , with

jnj j � �Nj =C for j 2 ¹1; : : : ; r � 1º; jnr j � kurkA0 :

By [4, Lemma 9.5], one has kuj kA00 DO.kuj kA00=Z/ for j 2 ¹1; : : : ; r � 1º. Combining this
with the fact that Nj D O.1=kuj kA00=Z/ for each j 2 ¹1; : : : ; r � 1º and Theorem 2.50(i),
we get

ku
n1
1 : : : u

nr�1
r�1 kA00 D O

�r�1X
jD1

ku
nj
j kA00

�
D O

�r�1X
jD1

jnj jkuj kA00
�

D O
�
�

r�1X
jD1

Nj kuj kA00=Z

�
D O.�/:

Since � was arbitrary, we obtain that kun11 � � �u
nr�1
r�1 kA00 is infinitesimal. Then, again by

Theorem 2.50(i),
kunrr kA00 D O.kxkA00 C ku

n1
1 � � �u

nr�1
r�1 kA00/:

This implies that kunrr kA00 is infinitesimal, so jnr j D o.Nr / � "Nr=C . Also, since � was
arbitrary, jnj j � "Nj =C for j 2 ¹1; : : : ; r � 1º. Therefore, x 2 G."P/, which is a contra-
diction.
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Remark 7.3. From the proof of Theorem 7.1, the group � is nilpotent and the basis
¹v1; : : : ; vrº of g given by

exp.tvj / D �.u
btNj =C c

j / for t 2 Œ0; 1� (7.1)

is a strong Mal’cev basis (see also [4, Proposition 9.6]).

8. Mal’cev theory

By Propositions 6.4 and 6.5, Theorem 7.1 applies to A. Let r WD dim.�/ and let P D
P.u1; : : : ; ur IN1; : : : ;Nr /, and C > 0 be given by Theorem 7.1, and let ¹v1; : : : ; vrº � g

be the Mal’cev basis given by (7.1). With these parameters, let " > 0 be given by The-
orem 2.53. By [4, Remark C.4], there is ı > 0 such that G.ıP/2 � G."P/. We fix these
choices of C , ", and ı for the rest of this paper. Let z� be the universal cover of � . By
Theorem 2.10, the map  W Rr ! z� given by

 .x1; : : : ; xr / WD exp.ıx1v1/� � � exp.ıxrvr / (8.1)

is a diffeomorphism.

Lemma 8.1. The group structure Q W Rr �Rr ! Rr given by

Q.x; y/ WD  �1. .x/ .y//

is a quasilinear polynomial of degree � d.r/. We will denote the group .Rr ;Q/ by H .

Proof. By the Baker–Campbell–Hausdorff formula, after identifying g with Rr via the
basis ¹v1; : : : ; vrº, the map Rr �Rr ! Rr given by

.x; y/! log. .x/ .y//

is polynomial of degree � r . Also, by Theorem 2.10, the map Rr ! Rr given by

x !  �1.exp.x//

is a polynomial of degree bounded by a number depending only on r . Therefore, the
composition is also a polynomial of degree � d.r/. Quasilinearity is immediate from the
definition.

By Theorem 2.53, for ˛-large enough n, the nilprogressions Pn are good with Mal’cev
polynomials yQn and define the groups z�n WD�Pn D .Z

r ; yQnjZr�Zr /. LetN0 2N be given
by Lemma 2.63 with d.r/ given by Lemma 8.1 and Theorem 2.53, and define � W N ! N
by

�.n/ WD N0

j ın

CN0

k
: (8.2)
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For n 2 N, consider �n W Rr ! Rr given by

�n.x1; : : : ; xr / WD .x1�.N1;n/; : : : ; xr�.Nr;n//;

where Nj D ¹Nj;nºn for j 2 ¹1; : : : ; rº. Let Hn be the group .Rr ; Qn/, where Qn W
Rr �Rr ! Rr is the group structure given by

Qn.x; y/ WD �
�1
n . yQn.�n.x/; �n.y///:

Proposition 8.2. The sequence of quasilinear polynomial group structuresQn converges
well to Q.

Define � � Rr by

� WD
°
�1; : : : ;

�1

N0
; 0;

1

N0
; : : : ; 1

±�r
:

Consider the maps !˛ W �! z� and !n W �! z�n defined by !˛ WD  j� and

!n.x1; : : : ; xr / WD 

x1�.N1;n/

1 � � �

xr�.Nr;n/
r : (8.3)

We also define maps '[n W G."Pn/
] ! � and z'[n W G."Pn/

] ! z� by

'[n.x
]/ WD 'n.x/ and z'[n.x

]/ WD z'n.x/: (8.4)

Consider the following diagram:

� �� .G.ıPn/
]/�2 G."Pn/

] Rr

� �� z� � z� z� Rr

!n

Id

�

z'[n z'[n

��1n

Id

!˛ �  �1

The first row of the diagram is the polynomial Qn, while the second row is the polyno-
mial Q. Commutativity of the diagram does not hold in general, but it holds in the limit,
as the next proposition (and its proof) shows.

Lemma 8.3. For every x; y 2 �,

lim
n!˛

��1n .!n.x/!n.y// D  
�1.!˛.x/!˛.y//:

Proof. If x D .x1; : : : ; xr / 2 �, one has

!˛.x/ D exp.ıx1v1/� � � exp.ıxrvr /

D lim
n!˛
z'[n.


x1�.N1;n/

1 /� � � lim
n!˛
z'[n.


xr�.Nr;n/
r /

D lim
n!˛
z'[n.!n.x//; (8.5)



S. Zamora 794

where we used (8.1) on the first line, (7.1) and (8.2) on the second one, and (6.1) and (8.3)
on the third one. On the other hand, for any sequence x]n 2 G."Pn/] � z� , we can decom-
pose it as

xn D x1;n � � � xr;n;

with xj;n D u
pj;n
j;n ; jpj;nj � "Nj;n=C for each j 2 ¹1; : : : ; rº. Then, we have

lim
n!˛
z'[n.x

]
n/ D lim

n!˛
z'n.x1;n/� � � lim

n!˛
z'n.xr;n/

D exp
�

lim
n!˛

Cp1;n

N1;n
v1

�
� � � exp

�
lim
n!˛

Cpr;n

Nr;n
vr

�
D  

�C
ı

lim
n!˛

� p1;n
N1;n

; : : : ;
pr;n

Nr;n

��
D  . lim

n!˛
��1n .x]n//; (8.6)

where we used (6.1) in the first line, (7.1) on the second one, (8.1) on the third one,
and (8.2) on the fourth one. Then, we conclude

!˛.x/!˛.y/ D lim
n!˛
z'[n.!n.x// lim

n!˛
z'[n.!n.y//

D lim
n!˛
z'[n.!n.x/!n.y//

D  
�

lim
n!˛

��1n .!n.x/!n.y//
�
;

where we used (8.5) on the first line, (6.1) on the second one, and (8.6) on the third one.

Proof of Proposition 8.2. Apply Lemmas 2.63 and 8.3.

By Proposition 5.2 and Theorem 7.1, there is � > 0 such that

Sn WD
®
g 2 �n j d.gŒpn�; Œpn�/ < �

¯
� G.ıPn/ (8.7)

for ˛-large enough n. Let z� 0n be the abstract group generated by Sn, with relations

s D s1s2 2 z�
0
n whenever s; s1; s2 2 Sn and s D s1s2 in �n:

From Theorem 2.53, for ˛-large enough n, we have z� 0n D z�n, and by Theorem 2.32, there
is a regular .�=4/-wide covering map zXn ! Xn=Wn whose Galois group is the kernel of
the canonical map ˆn W z�n ! �n. From Proposition 6.3 and Theorem 2.31, we also get
the following result:

Proposition 8.4. For ˛-large enough n, Ker.ˆn/ is a quotient of �1.Xn/.

Remark 8.5. From (8.7), if n is ˛-large enough, then for every g 2 z�n such that
d.ˆn.g/Œpn�; Œpn�/ < �; there is a uniquew 2G.ıPn/] with gw 2 Ker.ˆn/. In particular,
Ker.ˆn/ \ S

]
n D ¹ez�nº.
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9. Almost torsion elements

In this last section we finish the proof of Theorem 5.1 (and consequently, Theorem 1.5)
with the following result:

Proposition 9.1. For ˛-large enough n, Ker.ˆn/ contains an isomorphic copy of �1.X/.

Proof. Let ˆ W z� ! � denote the canonical projection. By Corollary 2.11, Ker.ˆ/
D �1.�/ Š �1.X/ is a finitely generated torsion-free abelian group. Let ¹�1; : : : ; �`º
be a basis of Ker.ˆ/ as a free abelian group. Pick M 2 N large enough so that the M -th
roots of the �j ’s lie in the ball B z�.e; �/, with � given by (8.7). For each j 2 ¹1; : : : ; `º,
pick a sequence

�j;n 2 G.ıPn/
]
� z�n

with
lim
n!˛
z'[n.�j;n/ D �

1=M
j : (9.1)

For each j 2 ¹1; : : : ; `º, we have

lim
n!˛

'n.ˆn.�
M
j;n// D

�
lim
n!˛

'n.ˆn.�j;n//
�M

D
�

lim
n!˛

'[n.�j;n/
�M

D ˆ.�
1=M
j /M

D e� ;

where we used (6.1) in the first line, (8.4) in the second one, and (9.1) in the third one. By
Remark 8.5, for ˛-large enough n and all j 2 ¹1; : : : ; `º, there are wj;n 2 G.ıPn/] with

lim
n!˛
z'[n.wj;n/ D ez� and �Mj;nwj;n 2 Ker.ˆn/:

Consider the morphisms \ W z�n ! Hn and \ W z� ! H given by g\ WD ��1n .g/ for
g 2 z�n, and g\ WD  �1.g/ for g 2 z� . These identifications allow us to have all these
group structures in the same underlying set Rr . SinceQn converges well toQ, we deduce
from (9.1) that

lim
n!˛

Œ�Mj;nwj;n�
\
D �

\
j :

Then, by Lemma 2.66,

lim
n!˛

logn
�
Œ�Mj;nwj;n�

\
�
D log.�\j / for each j 2 ¹1; : : : ; `º;

where logn; log; denote the logarithm maps with respect toHn andH , respectively. There-
fore, for ˛-large enough n, the set®

logn.Œ�
M
1;nw1;n�

\/; : : : ; logn.Œ�
M
`;nw`;n�

\/
¯
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is linearly independent. Also, for j; k 2 ¹1; : : : ; `º,

lim
n!˛

Œ�Mj;nwj;i ; �
M
k;nwk;i �

\
D
�

lim
n!˛

�Mj;nwj;n; lim
n!˛

�Mk;nwk;n
�\

D .��1j ��1k �j�k/
\

D eH : (9.2)

Since Œ�Mj;nwj;i ; �
M
k;n
wk;i � 2 Ker.ˆn/, (9.2) and Remark 8.5 imply that

Œ�Mj;nwj;n; �
M
k;nwk;n� D ez�n

for ˛-large enough n. Then, by Lemma 2.17, the group

h�M1;nw1;n; : : : ; �
M
`;nw`;ni � Ker.ˆn/

is isomorphic to �1.X/.

Proof of Theorem 5.1. As stated at the beginning of Section 5 we can assume, working
by contradiction and after passing to a subsequence, that for no n does the group �1.Xn/
admit a quotient containing an isomorphic copy of �1.X/. Combining this assumption
with Propositions 8.4 and 9.1 yields a contraction.
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