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Positive crossratios, barycenters, trees and applications
to maximal representations
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Abstract. We study metric properties of maximal framed representations of fundamental groups of
surfaces in symplectic groups over real closed fields, interpreted as actions on Bruhat–Tits buildings
endowed with adapted Finsler norms. We prove that the translation length can be computed as
intersection with a geodesic current, give sufficient conditions guaranteeing that such a current is
a multicurve, and, if the current is a measured lamination, construct an isometric embedding of the
associated tree in the building. These results are obtained as application of more general results of
independent interest on positive crossratios and actions with compatible barycenters.

1. Introduction

Maximal framed representations in real closed fields

Let † WD �nH2 be the quotient of the Poincaré upper half-plane H2 by a torsion-free
lattice � < PSL.2;R/, and letG be a simple real algebraic group. The aim of higher Teich-
müller theory is to single out and study special components or specific semi-algebraic
subsets of the representation variety Hom.�;G/ that consist of injective homomorphisms
with discrete image; such components thus generalize Teichmüller space, for which G D
PSL.2;R/. Prominent examples are Hitchin components for real split groupsG (for exam-
ple, G D PSL.n;R/ or PSp.2n;R/) [18, 24, 28], maximal representations for Hermitian
groupsG (for example,G D PU.p;q/ or PSp.2n;R/) [12] and‚-positive representations
for G D PO.p; q/ [22], see the end of the introduction for more context.

There have been many issues regarding representation varieties and the related char-
acter varieties that people have been interested in. This is the second of a series of papers
devoted to the study of compactifications of the character varieties (see [10] for an over-
view of the results). Echoing Thurston’s compactification of Teichmüller space, the third
named author defined the so-called Weyl chamber length compactification of a general
character variety. While in many cases this can also be characterized in terms of geodesic
currents [9], from the topological point of view it has in general weak properties, as, for
example, it does not even distinguish among connected components. On the other hand,
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the (closed) real spectrum compactification that we defined in [10,11] has many interesting
properties. For example, it is a compact metrizable Out.�/-space, it contains the charac-
ter variety as an open dense subset and it enjoys a fixed point property à la Brouwer.
Most importantly the real spectrum compactification reflects all the homological proper-
ties of the character variety and it surjects onto the Weyl chamber length compactification.
Despite being defined in terms of prime ideals, its (closed) boundary points come naturally
realized as representations into non-Archimedean real closed fields F that are “small”, that
is with finite transcendence degree over the field of real algebraic numbers, in particular,
admit a canonical order compatible valuation. Interesting enough, going to the boundary
along an ultrafilter ! gives a representation over the Robinson field R!;� , where � is
a well-chosen sequence of scalars (see Section 8.1 and [37]). The Robinson field however
is not small in the above sense, and the two statements can be reconciled by passing to
equivalence classes appropriately defined.

While the above holds true for any simple real algebraic group, more information can
be gathered by looking at higher Teichmüller components. In this context, Hitchin com-
ponents and maximal components present different difficulties and features. For instance,
that the notion of positivity for SL.n;F/-representations leads to positive crossratios and
hence currents is far from elementary (see [17]). A feature differentiating the Siegel space,
the symmetric space associated to PSp.2n;R/, and the symmetric space associated to
SL.n;R/ is that the former has a family of half-dimensional totally geodesic submani-
folds whose intersection pattern has many features in common with that of geodesics in
the hyperbolic plane. This leads to well-behaved barycenters playing a crucial role in our
paper.

In this paper, we study the boundary points of the real spectrum compactification of
the subset of maximal representations �W� ! PSp.2n;R/. To do so, we must exploit the
geometry of the non-standard Siegel upper half-space over F, which admits as canonical
quotient a generalized building on which � acts. To this action we associate a geodesic
current by means of a crossratio that in general is far from being continuous. If the field
generated by the coefficients of the representation has discrete valuation, we show that
the corresponding geodesic current is a multicurve. We also study the case in which the
geodesic current is a measured lamination, and we show that in this case the dual tree
of the measured lamination embeds isometrically and equivariantly in the generalized
building.

Given a representation �W� ! PSp.2n;F/, where F is a general real closed field, hav-
ing a maximal Toledo invariant as defined in [10, Definition 18], admitting a maximal
framing defined on a �-invariant non-empty subset of @H2, or admitting a maximal fram-
ing defined on the set of fixed points of hyperbolic elements are all equivalent conditions
(see [10, Theorem 20] for a precise statement). This paper solely relies upon the third
definition, which we now recall. If F2n is endowed with the standard symplectic form,
let L.F2n/ be the space of Lagrangians in F2n. The Maslov cocycle (see Section 6.4
and [32]) classifies the orbits of PSp.2n;F/ on triples of pairwise transverse Lagrangians.
Such a triple is maximal if the cocycle takes its maximal value n. Let @H2 be the bound-
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ary of the hyperbolic plane, which we endow with the cyclic ordering on triples of points
induced by the orientation of H2.

Definition 1.1. Let H� � @H2 be the set of fixed points of hyperbolic elements of � .
A representation �W � ! PSp.2n; F/ is maximal framed if there is a �-equivariant map
'WH� ! L.F2n/ sending positively oriented triples in H� to maximal triples of La-
grangians.

We assume that the real closed field F admits an order compatible R-valued valuation v
with value group ƒ D v.F�/ < R. Then the group PSp.2n;F/ acts by isometries on a ƒ-
metric space1 Bn

F obtained as quotient of the Siegel upper half-space �nF associated to
PSp.2n;F/ (see Section 6.2 and [10, §3.4]). If FD R, Bn

R coincides with �nR , while if F is
non-Archimedean, then this metric space Bn

F sits naturally inside the Bruhat–Tits building
associated to PSp.2n;F/ as a dense subset.2 The latter relationship will play no role in this
paper, but will be discussed in detail in [11] (see also [10, §2.1] and [27]). The translation
length of an element g 2 PSp.2n;F/ acting on Bn

F induces then the length function

L.g/ WD �2

nX
iD1

v.j�i j/; (1.1)

where �1; : : : ; �n; ��1n ; : : : ; �
�1
1 2 F.

p
�1/ are the eigenvalues of a representative xg 2

Sp.2n; F/ of g 2 PSp.2n; F/ counted with multiplicity and ordered in such a way that
j�1j � � � � � j�nj � 1. Here we denote by j � jWF.

p
�1/! FC the absolute value, that is,

the square root of the norm function on the quadratic extension F.
p
�1/ of F.

In our first result, we construct a geodesic current on † encoding the length func-
tion 
 7! L.�.
// of a maximal framed representation. Recall that a geodesic current is
a �-invariant positive Radon measure on the space .@H2/.2/ of pairs of distinct points
in @H2. The Bonahon intersection i.�; �/ of two geodesic currents � and � extends
the topological intersection number of homotopy classes of curves on †: in fact, a (non-
oriented) closed geodesic c � † gives rise to the current ıc WD 1

2

P
.a;b/ ı.a;b/, where

we sum over the set of oriented geodesics .a; b/ 2 .@H2/.2/ lifting c. For such currents,
i.ıc ; ıc0/ is the topological intersection number of Œc� and Œc0�.

Theorem 1.2. Let F be a real closed field with an order compatible valuation v, and let
�W� ! PSp.2n;F/ be maximal framed. Then there is a geodesic current �� such that, for
any closed geodesic c � † and for every 
 2 � representing c,

i.��; ıc/ D L.�.
//:

The current �� is non-zero if and only if there exists a hyperbolic element 
 2 � with
v.tr.�.
/// < 0.

1In [10] denoted by BPSp.2n;F/.
2Note, however, that the metric that we consider here is only bi-Lipschitz to the restriction of the

CAT(0) metric on the Bruhat–Tits building. See Section 6.2 for the Finsler metric relevant to our purposes.



M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti 802

If nD 1, FDR and �W�! PSL.2;R/ is the lattice embedding, then�� is the Liouville
current [6], that is, the unique PSL.2;R/-invariant geodesic current. If † is compact, the
current �� is unique [36]; if additionally F D R, Theorem 1.2 was proven by Martone–
Zhang [34, Theorem 1.1]. Notice that in the case of SL.2; F/, �� is always a measured
lamination (see Section 8.2).

For the next result, we will need the notion of systole of a maximal framed represen-
tation � (following [9])

Syst.�/ WD inf¹L.�.
// W 
 2 �; 
 hyperbolicº:

The systole of any real maximal framed representation �W � ! PSp.2n;R/ is positive
(see Section 7.3). On the other hand, for non-Archimedean real closed fields F, many
different possibilities can happen: if † is compact, all maximal framed representations
�W � ! SL.2; F/ have vanishing systole (since �� is a measured lamination), while, in
higher rank, there are many examples of non-Archimedean maximal framed representa-
tions with positive systole (see [9, Corollary 1.11]). For these representations, we have the
following.

Corollary 1.3. Assume that † is compact, and that F is non-Archimedean. Let �W � !
PSp.2n;F/ be a maximal framed representation. If Syst.�/ > 0, then for every x 2 Bn

F ,
the orbit map � ! Bn

F , x 7! �.
/x is a quasi-isometric embedding.

We now give a robust criterion guaranteeing that the current �� is atomic. We say
that a geodesic current is a multicurve if it is a finite sum of �-orbits of Dirac masses on
(lifts of) non-necessarily simple closed geodesics and geodesics with endpoints in cusps.

Theorem 1.4. Let �W� ! Sp.2n; F/ be maximal framed, and let Q.�/ < F be the field
generated over Q by matrix coefficients of �. If the restriction of vW F� ! R to Q.�/ is
discrete, then, up to rescaling, the associated current �� is a multicurve.

Using Strubel coordinates, we construct examples of representations to which Theo-
rem 1.4 applies (see Section 8.3). Moreover, we will prove3 that a maximal framed repre-
sentation �W�! Sp.2n;F/ is always conjugate to a representation �0W�! Sp.2n;F1/ for
a finite extension F1 of the field Q.tr.�// generated by the traces of the representation �.
As a result, Theorem 1.4 applies as soon as the field Q.tr.�// generated by the traces of
the representation � has discrete valuation; using this, we will show that multicurves are
dense in both the real spectrum and Weyl chamber length compactifications of character
varieties of maximal representations.

We turn now to the case in which the current �� in Theorem 1.2 is a measured lami-
nation. In this case, we denote by T .��/ the associated R-tree, and by V.��/ its vertex
set (see Section 2.3 for the definition). We have then the following assertion.

3M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti, Real spectrum of maximal character varieties.
2024, in preparation.
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Theorem 1.5. Let F be a non-Archimedean real closed field, and let �W� ! Sp.2n;F/ be
a maximal framed representation. If the associated current �� is a measured lamination,
then there is a �-equivariant isometric embedding

V.��/ ,! Bn
F :

We will see that if Q.�/ has discrete valuation, then V.��/ is the vertex set of a sim-
plicial tree (see Section 7.3 for a general statement).

Currents associated to positive crossratios

The proof of Theorem 1.2 relies on an abstract framework that is applicable to more
general situations and that we shortly describe here. Let X � @H2 be a �-invariant non-
empty subset, such as, for example, the setH� of fixed points of hyperbolic elements in � ,
and let X Œ4� denote the set of positively ordered quadruples in X . A positive crossratio is
a �-invariant function

Œ �; �; �; � �W X Œ4� ! Œ0;1/

that is flip-invariant

Œx1; x2; x3; x4� D Œx3; x4; x1; x2�

and satisfies the property

Œx1; x2; x4; x5� D Œx1; x2; x3; x5�C Œx1; x3; x4; x5�

whenever defined. While the flip invariance of the crossratio guarantees that the associated
geodesic current descends to the space of unoriented geodesics, the interplay with cross-
ratios makes it natural to work, as we do, with oriented geodesics. This is also convenient
since it allows us to name the endpoints of the geodesics.

Our definition is considerably more general than others existing in the literature (see
Remark 3.2 for a comparison). First, we only require our crossratio to be defined on
a dense subset X of the boundary of the hyperbolic plane: this is important for some
of the applications. For example, if the field F is countable, L.Fn/ is also countable, and
thus a maximal framing associated to a representation �W � ! Sp.2n; F/, as well as the
induced crossratio, can only be defined on a countable set. Furthermore, some representa-
tions, as for example, those defined via Fock–Goncharov or shear coordinates, only have
a framing defined on a countable set not including the fixed points of hyperbolic elements.
Second, we do not require any continuity on our crossratio. In many interesting examples,
the crossratios arising from representations over non-Archimedean real closed fields are
integer valued, and thus cannot be continuous. Dropping the continuity assumption on the
crossratio also allows us to encompass the theory of crossratios arising from actions on
trees (see Example 3.5).
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If 
 2 � is hyperbolic and ¹
�; 
Cº � X , the period4 per.
/ of 
 with respect to
Œ �; �; �; � � is defined by

per.
/ WD Œ
�; x; 
x; 
C�;

where x 2 X is any point such that .
�; x; 
x; 
C/ 2 X Œ4�. We show that the following
holds.

Theorem 1.6. Let X � @H2 be a �-invariant non-empty subset and Œ �; �; �; � � a positive
crossratio on X . Then there is a geodesic current � on † such that for all hyperbolic

 2 � ,

per.
/ D i.�; ıc/:

The geodesic current � depends continuously on the crossratio Œ �; �; �; � �.

The theorem has been previously shown by Martone–Zhang under the hypothesis that
X D @H2 and the crossratio is continuous [34]. In general, the crossratio is not uniquely
determined by its periods (see Example 3.4). For the last statement in Theorem 1.6, we
consider the space CRC.X/ of positive crossratios as a closed convex cone in the topolog-
ical vector space of crossratios onX with the topology of pointwise convergence. This last
property will be used in the proof of the continuity of the map which to a point in the real
spectrum compactification of maximal representations associates a geodesic current [11];
see also [10, Theorem 36].

The proof of Theorem 1.6 bypasses the possible discontinuities of the crossratio
Œ �; �; �; � � by forcing inner and outer regularity of the current � and using its � -additivity.
As an application of the explicit construction we obtain the following assertion.

Corollary 1.7. If the crossratio Œ �; �; �; � � is integral valued, then the current � is a mul-
ticurve.

To deduce Theorems 1.2 and 1.4 from Theorem 1.6 and Corollary 1.7, we use the
maximal framing to construct a positive crossratio Œ �; �; �; � �� onH� whose periods satisfy
the equality per.
/ D L.�.
//. Then Theorem 1.6 provides a geodesic current with the
required properties.

Maximal representations are not the only class of representations whose length func-
tion is given by the periods of a positive crossratio: this is the case for all positively ratioed
representations [34] (a class that also includes Hitchin representations [29]), representa-
tions satisfying property Hk [2] and ‚-positive representations [3]. Corollary 1.7 can be
used to study asymptotic properties of these representations as well.

Our approach using � -additivity of geodesic currents has interesting applications even
for representations in PSp.2n;R/, for which we cannot always assume that the crossratio
is continuous. The simplest instance is for PSL.2;R/ if � sends an element representing
a cusp of � to a hyperbolic element.

4See Section 3.3 for a more general definition of the period without the restriction that ¹
�; 
Cº � X .
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Corollary 1.8. Let �W� ! PSp.2n;R/ be a maximal representation, and let K � † D
�nH2 be a compact subset. Then there are constants 0 < c1 � c2 such that for every

 2 � representing a closed geodesic c contained in K,

c1`.c/ � L.�.
// � c2`.c/:

In particular, this holds uniformly for all 
 representing simple closed geodesics.

For Anosov representations, such a result follows directly from the more modern def-
initions [4,26]. However, if † is not compact, a maximal representation is not necessarily
Anosov since the images of parabolic elements can be unipotent (see for instance Sec-
tion 8.3).

Actions with compatible barycenters

The proof of Theorem 1.5 is carried out in the framework of actions with compatible
barycenters that we now define. Given an isometric �-action on a metric space .X; d /,
we say that a map

ˇW X .3/ ! X

from the set X .3/ of distinct triples in X to X is a barycenter compatible with the cross-
ratio Œ �; �; �; � � if ˇ is S3-invariant, �-equivariant and for every .a; b; c; d/ 2 X Œ4�, we
have

Œa; b; c; d � D d.ˇ.a; b; d/; ˇ.a; c; d//:

We show then that the following holds.

Theorem 1.9. Let X � @H2 be a �-invariant non-empty subset and Œ �; �; �; � � a posi-
tive crossratio onX . Assume that the geodesic current � associated by Theorem 1.6 to the
positive crossratio Œ �; �; �; � � corresponds to a measured lamination. Then for every isomet-
ric �-action on a metric space X admitting a barycenter compatible with the crossratio
Œ �; �; �; � �, there is an isometric �-equivariant map

V.�/! X:

We will see that Theorem 1.9 always applies to a framed action of � on an R-tree T

if the crossratio Œ �; �; �; � � induced by the action is positive (Proposition 5.8). This cross-
ratio is always positive in the case of the action on B1

F induced by a maximal framed
representation in SL.2;F/ (Theorem 8.1).

When �W� ! Sp.2n; F/ is a maximal framed representation, we will use the geom-
etry of the Siegel space to define a barycenter map associating to every maximal triple
.`1; `2; `3/ of Lagrangians a point B.`1; `2; `3/ 2 Bn

F . Given a representation �W � !
Sp.2n;F/ with maximal framing 'WX ! L.F2n/, we will show that the map

ˇ.a; b; c/ D B.'.a/; '.b/; '.c//
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defines a barycenter compatible with the crossratio Œ �; �; �; � �� previously defined. Thus
Theorem 1.9 applies whenever �� corresponds to a measured lamination. Using [9, Corol-
lary 1.9], we can find a collection of maximal subsurfaces †0 � † such that Theorem 1.9
holds for the restriction of � to †0.

Context of our work

When† is compact, Hitchin defined a component in theG-character variety of � whenG
is simple real split and proved that it is diffeomorphic to RdimG.2g�2/ [24]; Labourie then
introduced the concept of Anosov flow and used it to show that Hitchin representations
are injective with discrete image. Guichard and Wienhard linked Hitchin representations
to geometric structures on appropriate compact manifolds [21] which turn out to fiber
over † [1]. Fock and Goncharov introduced a notion of positivity for G-representations
of � that is stronger than our notion of maximal framing (Definition 1.1) and which for †
compact recovers the Hitchin component [18].

Parallel to the split real case, the notion of maximal representations of � into a group of
Hermitian typeG is present since the 1980’s in the work of Goldman [19] and Toledo [41].
Typically, for given G and †, there are many connected components of maximal rep-
resentations, the question of their number and topology has been initiated in the work
of Bradlow, García-Prada, Gothen [7] and are still topics of current research. That in
general maximal representations are injective with discrete image was shown by Burger–
Iozzi–Wienhard [12], and, when † is compact, the link to Anosov flows was established
in [8].

More recently, Guichard–Wienhard generalized Fock–Goncharov positivity to‚-pos-
itivity, a unifying framework encompassing Hitchin and maximal representations, as well
as some representations in PO.p; q/ and in groups G whose restricted root system is of
type F4 [22]. When † is compact, ‚-positive representations are Anosov [20], and if
additionally the target group is PO.p; q/, they form a union of connected components [3].
Guichard–Wienhard’s notion of positivity depends on a subset ‚ of the simple roots,
which consists of a single root in the case of maximal representations, and is the whole
set of simple roots in the case of Hitchin components.

When † is compact and G is classical, it was shown in [3, 34] that any crossratio
associated to a fundamental weight of a root in ‚ is positive; we expect that the same is
true in general, and for any real closed field F (see [17] for progress on Hitchin represen-
tations). As a result, we expect that Theorems 1.2 and 1.4 admit suitable generalizations
to all representations in all higher Teichmüller spaces. These phenomena are, however,
not limited to higher Teichmüller components: for example, hyperconvex representations
are representations that, in general, do not exhaust components of the character variety,
but have associated positive crossratios [2, 39]. We refer for more context and details
to [38, 42].
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Structure of the paper

In Section 2, we discuss preliminaries on geodesic currents and measured laminations. The
new result is Proposition 2.1 that gives a useful 4-point characterization of measured lam-
inations among geodesic currents that only involves a dense subset of @H2. In Section 3,
we introduce positive crossratios and the associated periods. In Section 4, we construct the
geodesic current associated to such a crossratio. Theorem 1.6 follows directly combining
Propositions 4.3, 4.9 and 4.10, which are proven in this section. Corollary 1.7 follows
from Proposition 4.12. In Section 5, we discuss barycenter maps, and prove Theorem 1.9.
In Section 6, we review the geometry of the Siegel space over real closed fields from [13];
using this, we associate to a maximal framed action on the ƒ-metric space BF

n a positive
crossratio (Proposition 6.5), as well as a compatible barycenter map (Section 6.7). In Sec-
tion 7, we prove the results on maximal framed representations: Theorems 1.2, 1.4, 1.5
and Corollaries 1.3 and 1.8. Section 8 collects interesting examples of maximal framed
representations, illustrating various phenomena.

2. On geodesic currents and measured laminations

In this section, we recall the notions of geodesic currents and their Bonahon intersection
(Section 2.1); then we establish a criterion for the support of a geodesic current to be
a geodesic lamination (Section 2.2); we end by recalling the definition of the tree T .�/

associated to a current � of lamination type in terms of the straight pseudodistance (see [9,
Section 4]) on H2 associated to a general current.

Let † WD �nH2 be a hyperbolic surface of finite area and denote by prWH2 ! † the
covering map. The boundary @H2 of H2 is endowed with the natural cyclic order. For
.a; b/ 2 .@H2/2 with a ¤ b, we will denote the associated open interval in @H2 by

I.a;b/ WD ¹x 2 @H
2
W .a; x; b/ is positively orientedº;

and the left half-open interval I.a;b�, right half-open interval IŒa;b/ and closed interval
IŒa;b� accordingly, so for example,

IŒa;b/ D ¹aº [ I.a;b/:

Given a subset A � @H2, we will denote

AŒ4� WD ¹.x; y; z; t/ 2 A4 W .x; y; z; t/ is positively orientedº:

2.1. Geodesic currents

A geodesic current is a flip-invariant �-invariant positive Radon measure on the set of
(oriented) geodesics in H2, which we identify with

.@H2/.2/ WD ¹.x; y/ 2 .@H2/2 W x ¤ yº:
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Given a (non-oriented) geodesic c � † that is either closed or joining two cusps, ıc will
be the geodesic current given by

ıc WD
1

2

X
.a;b/

ı.a;b/;

where we sum over the set of oriented geodesics .a; b/ 2 .@H2/.2/ lifting c.
Two geodesics .a;b/; .a0; b0/ 2 .@H2/.2/ are transverse if they intersect in a point. The

group PSL.2;R/, hence � , acts properly on the open subset G � .@H2/.2/ � .@H2/.2/ of
transverse pairs of geodesics. The Bonahon intersection i.�;�/ of two geodesic currents�
and � is the (possibly infinite)�� �-measure of any Borel fundamental domain for � in G .
Note that, when � has compact carrier,5 i.�; �/ is finite. In order to simplify notations,
we set

i.�; c/ WD i.�; ıc/

for all closed geodesics c � †. We refer to [6] for more details.

2.2. Measured laminations and �-short geodesics

We refer to [33, §8.3.4] for preliminaries on measured laminations. The equivalence be-
tween (1) and (2) in the next proposition is classical; we establish that the two conditions
are also equivalent to (4), an additional 4-point characterization that uses only a dense
subset of @H2.

Proposition 2.1. Let� be a geodesic current andX a dense subset of @H2. The following
are equivalent:

(1) supp.�/ is a lamination;

(2) i.�; �/ D 0;

(3) �.I.d;a� � I.b;c�/ � �.I.a;b� � I.c;d�/ D 0 for all .a; b; c; d/ in .@H2/Œ4�;

(4) �.I.d;a/ � I.b;c// � �.I.a;b/ � I.c;d// D 0 for all .a; b; c; d/ in X Œ4�.

Such a current will be called of lamination type.6

Proof. We first show (1) implies (2): if i.�; �/ > 0, then there exist open subsets A, B
of .@H2/.2/ with A � B � G and

.� � �/.A � B/ D �.A/�.B/ > 0;

hence �.A/; �.B/ > 0. Then there exist g 2 A \ supp.�/ and g0 2 B \ supp.�/. Since
A � B � G , in particular g and g0 intersect in a point, hence supp.�/ is not a lamination.

5We recall that the carrier of a geodesic current � is the closed subset pr.
S
g2supp.�/ g/ � †. The

hypothesis that � has compact carrier ensures that i.�; �/ <1 and is needed in the proofs of the continuity
of the Bonahon intersection.

6While in the introduction we identified with a slight abuse of notation measured laminations with
currents with zero self intersection, we prefer to keep the objects distinct for the rest of the paper.
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We now prove that (2) implies (3): since i.�;�/D 0, we have .���/.A�B/D 0 for
all transverse Borel subsets A, B of .@H2/.2/ (namely, every pair of geodesics .a; b/ 2 A,
.a0; b0/ 2 B intersects in one point). The claim follows as A D I.d;a� � I.b;c� and B D
I.a;b� � I.c;d� are transverse.

It is clear that (3) implies (4).
Suppose now (4). Let g, g0 be two geodesics in supp.�/. If they are transverse, then

g D .x; y/, g0 D .x0; y0/ with .x; x0; y; y0/ positively oriented. Then by density of X ,
there exists .a; b; c; d/ in X Œ4� such that .x; a; x0; b; y; c; y0; d / is positively oriented.
Then g 2 I.d;a/ � I.b;c/ and g0 2 I.a;b/ � I.c;d/, and as g, g0 are in the support of �, we
have �.I.d;a/ � I.b;c// > 0 and �.I.a;b/ � I.c;d// > 0, a contradiction. Hence supp.�/ is
a lamination, proving (1).

An important concept in [9] was that of �-short geodesic, namely a geodesic not
intersecting in a point any geodesic in the support of �; observe that a geodesic .a; b/ is
�-short if and only if

�.I.a;b/ � I.b;a// D 0:

It follows from Proposition 2.1 that if the current � is of lamination type, its support
consists of �-short geodesics.

2.3. The tree associated to a current of lamination type

We now recall the construction of the tree T .�/ associated to a current � of lamination
type. We chose here a description adapted to our purposes, but this agrees with the standard
construction described, for example, in [35] and [25, §11.12].

Given a geodesic current �, we consider the straight pseudodistance on H2 [9, §4]

d�.x; y/ D
1

2
¹�.G t

Œx;y//C �.G
t

.x;y�/º;

where for a possibly empty geodesic segment I � H2, we define

G t
I D ¹.g�; gC/ 2 .@H

2/.2/ W jg \ I j D 1º

as the set of geodesics g that intersect transversely the geodesic segment I .
If � is of lamination type, then the quotient metric space X� D H2=�, obtained by

identifying points at d�-distance zero, is 0-hyperbolic in the sense of Gromov and can
therefore be canonically embedded in a minimal R-tree T .�/. We will denote by V.�/

the image in T .�/ of the complementary regions R of supp.�/. It corresponds to the set
of branching points of T .�/.

Since � is �-invariant, the group � acts on T .�/ and therefore on V.�/ by isometries.
A direct consequence of the definition of Bonahon intersection is that, for this action,

`T .�/.
/ D i.�; ıc/

for hyperbolic 
 representing a closed geodesic c.
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3. Positive crossratios

In this section, we introduce the notion of positive crossratio Œ �; �; �; � �, prove that its
periods are well defined, and discuss examples.

3.1. Positive crossratios

Let † D �nH2 be a finite area hyperbolic surface, and let � < PSL.2;R/ be its funda-
mental group realized as a torsion-free lattice in PSL.2;R/.

Definition 3.1. Let X � @H2 be a �-invariant non-empty subset. A crossratio on X is
a real valued function Œ �; �; �; � � defined on X Œ4� satisfying the following properties:

(CR1) it is �-invariant;

(CR2) Œx; y; z; t � D Œz; t; x; y� for all .x; y; z; t/ 2 X Œ4�;

(CR3) Œx; y; z; t � C Œx; z; w; t � D Œx; y; w; t � whenever .x; y; z; w; t/ is positively
oriented.

The crossratio is in addition positive if

(CR4) Œx; y; z; t � � 0 for all .x; y; z; t/ 2 X Œ4�.

Remark 3.2. There are many different non-equivalent notions of crossratio available in
the literature, and there is no standard choice of the order of the arguments of the function
Œ �; �; �; � �. More specifically,

• If B.�; �; �; �/ is a crossratio according to [34, Definition 2.4] (which agrees with [31,
Definition 1.f]), then

Œa; b; c; d � D B.a; d; c; b/

is a crossratio according to Definition 3.1. However, we do not require continuity, and
our crossratio is defined only on a smaller set.

• If Cr.�; �; �; �/ is a crossratio according to [23, p. 1], then

Œa; b; c; d � D log Cr.b; c; d; a/

is a crossratio according to Definition 3.1. However, in [23, p. 1] the crossratio is
Hölder continuous.

• If B.�; �; �; �/ is a crossratio according to [29, p. 1], then

Œa; b; c; d � D log B.a; c; d; b/

is a crossratio according to Definition 3.1. However, the definition in [29, p. 1] requires
Hölder continuity and a much stronger positivity than what we impose, namely the
strict inequality in (CR4).

As a direct consequence of (CR3), positive crossratios have the following monotonic-
ity property, illustrated in Figure 1.
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I.x04;x
0
1/

I.x02;x
0
3/

x3

x2

x4

x1

x03

x02

x04

x01

Figure 1. The configuration of points in
Lemma 3.3.

z

w

y

x

t

Figure 2. The additivity corresponding to
CR3.

Lemma 3.3. For all .x1; x2; x3; x4/ and .x01; x
0
2; x
0
3; x
0
4/ in X Œ4� such that

I.x4;x1/ � I.x04;x
0
1/

and I.x2;x3/ � I.x02;x
0
3/
;

we have
Œx1; x2; x3; x4� � Œx

0
1; x
0
2; x
0
3; x
0
4�: (3.1)

To gain some intuition on the properties (CR2) and (CR3), we recall that if x; y; z; t 2
@H2 D R [ ¹1º and

Œx; y; z; t � D ln
.x � z/.y � t /

.x � y/.z � t /

is the logarithm of the usual crossratio, the Liouville measure L has the property that

L.I.t;x/ � I.y;z// D Œx; y; z; t �: (3.2)

Thus (CR2) corresponds to the flip-invariance of L,

L.I.t;x/ � I.y;z// D L.I.y;z/ � I.t;x//

and (CR3) to additivity (see Figure 2)

L.I.t;x/ � I.y;w// D L.I.t;x/ � I.y;z//CL.I.t;x/ � I.z;w//

since
L.I.t;x/ � ¹zº/ D 0:

3.2. Examples

There are two natural crossratios associated to a geodesic current.

Example 3.4. If � is a current, it is easily checked that

Œa; b; c; d �C� WD �.I.d;a� � I.b;c�/
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defines a positive crossratio on @H2. Similarly,

Œa; b; c; d ��� WD �.IŒd;a/ � IŒb;c//

defines a positive crossratio on @H2. Note that these two crossratios may be different (for
example, this is the case if �D ıc for some closed geodesic c), but have the same periods.

Framed actions on trees give other fundamental examples of crossratios.

Example 3.5. If T is a real tree, we denote by Œ �; �; �; � �T the usual crossratio on the
boundary @1T of the tree T : for every pairwise distinct .a; b; c; d/ 2 @1T 4, Œa; b; c; d �T
is the signed distance, on the oriented geodesic from a to d , from the orthogonal projec-
tion ˇT .a; b; d/ of b to the orthogonal projection ˇT .a; c; d/ of c. Note that

jŒa; b; c; d �T j D d.ˇT .a; b; d/; ˇT .a; c; d//; (3.3)

where d denotes the distance in T .

A framed action of � on T is an action by isometries �W � ! Isom.T / admitting
an injective equivariant map (a framing) 'WX ! @1T , where X is some �-invariant
non-empty subset of @H2. Then the crossratio Œ �; �; �; � �T on @1T induces a crossratio
Œ �; �; �; � �' on X defined by

Œx1; x2; x3; x4�' WD Œ'.x1/; '.x2/; '.x3/; '.x4/�T

for every .x1; x2; x3; x4/ 2 X Œ4�.

Example 3.6. An example of such situation is given by the �-action on the R-tree T .�/

associated to a current of lamination type. Let X � @H2 be the set of fixed points of
hyperbolic elements whose axis are transverse to the geodesic lamination supp.�/. Then
for every such 
 2 � with ¹
�; 
Cº �X , the element 
 acts on T .�/ with strictly positive
translation length

`T .�/.
/ D i.�; ıc/

(see Section 2.3) and has thus an attractive fixed point '.
C/ and a repulsive one '.
�/
in @1T .�/. Then 'WX ! @1T .�/ is a framing and it follows from the definition of the
distance on T .�/ that

�.IŒx4;x1� � IŒx2;x3�/ D Œ'.x1/; '.x2/; '.x3/; '.x4/�T :

It follows from the discussion recalled in Section 2.2 that the crossratio is positive.

Example 3.5 inspires the following definition.

Definition 3.7. We say that a crossratio is ultrametric if it satisfies

(CRU) Œa; b; c; d � � Œb; c; d; a� D 0 for all .a; b; c; d/ in X Œ4�.

The following is clear.
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Proposition 3.8. The crossratio induced by a framed action on an R-tree is ultrametric.

The following is a corollary of Proposition 2.1.

Proposition 3.9. The crossratio

Œa; b; c; d � WD �.I.d;a� � I.b;c�/

associated to a lamination type current � is ultrametric.

3.3. The periods of the crossratio

Let now Œ �; �; �; � � be a positive crossratio defined onX � @H2, and let 
 2� be hyperbolic
such that ¹
�; 
Cº � X . The additivity property (CR3) of the crossratio implies that the
value Œ
�; x; 
x; 
C� is independent of x 2 I.
�;
C/ \X . This justifies the following.

Definition 3.10. If Œ �; �; �; � � is a positive crossratio on X and 
 2 � is hyperbolic such
that ¹
�; 
Cº � X , the period of 
 is defined by

per.
/ WD Œ
�; x; 
x; 
C�

for one (any) x 2 I.
�;
C/ \X .

The purpose of this section is to extend the definition of the period of a crossratio
defined on a �-invariant set X � @H2 to hyperbolic elements 
 2 � whose endpoints do
not necessarily belong to the set X .

This is achieved by the following.

Proposition 3.11. Let Œ �; �; �; � � be a positive crossratio on X , and let 
 2 � be a hy-
perbolic element. Choose monotone sequences .xn/; .x0n/ � X with limit 
� and .yn/,
.y0n/ � X with limit 
C. Assume furthermore that .x0n; 
�; xn; yn; 
C; y

0
n/ is positively

oriented. Then, for all x 2 X ,

lim
n!1

Œxn; x; 
x; yn� D lim
n!1

Œx0n; x; 
x; y
0
n�:

Proof. Up to passing to a subsequence, we can and will assume that .x0; x; 
x; y0/ is
positive (see Figure 3). Since by (CR2) and (CR3), we have

Œxn; x; 
x; yn� D Œxn; x; 
x; x
0
n�C Œx

0
n; x; 
x; y

0
n�C Œy

0
n; x; 
x; yn�;

it is enough to show that
lim
n!1

Œxn; x; 
x; x
0
n� D 0 (3.4)

and the analogous statement for Œy0n; x; 
x; yn�.
Since the crossratio is positive (CR4), the limit in equation (3.4) is monotone. Since

both xn and 
�nx0 tend to 
�, it is in turn enough to show that

lim
n!1

Œ
�nx0; x; 
x; 

�nx00� D 0:
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x0n


�

xn

y0n


C

yn

x 
x

Figure 3. The configuration in Proposition 3.11.

This follows since, for every N ,

1 > Œx0; x; y
0
0; x
0
0� � Œx0; x; 


Nx; x00�

�

N�1X
jD0

Œx0; 

jx; 
jC1x; x00�

D

N�1X
jD0

Œ
�jx0; x; 
x; 

�jx00�:

Here in the last equality, we used the fact that the crossratio is �-invariant. The claim for
Œy0n; x; 
x; yn� follows analogously.

Thanks to Proposition 3.11, we can extend Definition 3.10 to the following.

Definition 3.12. If Œ �; �; �; � � is a positive crossratio on X and 
 2 � is hyperbolic, the
period of 
 is

per.
/ WD lim
s;t2X
s!
�
t!
C

Œs; x; 
x; t �

for one (any) x 2 I.
�;
C/ \X .

4. The geodesic current associated to a positive crossratio

In this section, we prove Theorem 1.6 and Corollary 1.7. The proof of Theorem 1.6 is car-
ried out in three steps: in Section 4.1, we use a crossratio to construct a geodesic current
�Œ �; �; �; � �; in Section 4.2, we relate the periods of the crossratio Œ �; �; �; � � and the inter-
section of curves with �Œ �; �; �; � �; in Section 4.3, we conclude the proof of Theorem 1.6 by
showing that �Œ �; �; �; � � depends continuously on the crossratio Œ �; �; �; � �. The fact that an
integer valued crossratio leads to a multicurve (Corollary 1.7) is shown in Section 4.4.
We conclude the section discussing in Section 4.5 how crossratios and geodesic currents
can be restricted to subsurfaces; this is for future reference and will be used in the study
of the real spectrum compactification of maximal representations.



Positive crossratios, barycenters, trees and applications to maximal representations 815

4.1. Construction of the current

The aim of this section is to show that a positive crossratio always leads to a geodesic
current. This is done in Proposition 4.3. The strategy of the proof is first to associate to the
crossratio a finitely additive set function r defined on the family of proper rectangles with
vertices inX Œ4� (Proposition 4.1), and then to build a canonical Radon measure � out of r .

Fix a �-invariant non-empty subset X � @H2, and a positive crossratio

Œ �; �; �; � �W X Œ4� ! Œ0;1/:

A rectangle in .@H2/.2/ is the productRD I � J of two disjoint intervals I;J � @H2.
It is called proper if its closure in .@H2/.2/ is compact, that is, xI \ xJ D ¿, and I and J
have non-empty interior. The vertices of R are then the unique positively oriented 4-tuple
.a; b; c; d/ in .@H2/Œ4� such that d , a are the endpoints of I , and b, c are the endpoints
of J , equivalently,

I.d;a/ � I.b;c/ � R � IŒd;a� � IŒb;c�:

For A� @H2, we denote by R.A/ the family of all proper rectangles with vertices in AŒ4�.
If R is a proper rectangle with vertices .a; b; c; d/ in X Œ4�, we define

r.R/ D Œa; b; c; d �;

the crossratio of the rectangle R. It follows directly from the additivity property (CR3)
of the crossratio that this defines a finitely additive positive function on the family R.X/

of all proper rectangles with vertices in X Œ4�.

Proposition 4.1. The function r WR.X/! R satisfies the following:

(1) If a rectangleR 2R.X/ is the unionRDR1 tR2 of two rectangles with disjoint
interior in R.X/, then

r.R/ D r.R1/C r.R2/:

(2) For all R, R0 in R.X/, if R � R0, then r.R/ � r.R0/.

Remark 4.2. The function r WR.X/! R may not be � -additive, even restricting to the
family of left half-open rectangles I.d;a� � I.b;c� with .a; b; c; d/ 2 X Œ4�. For example,
setting

Œa; b; c; d � WD ıe.IŒd;a/ � IŒb;c//

for a closed curve e corresponding to some hyperbolic 
 2 � , we get a positive crossratio
Œ �; �; �; � � onX Œ4�D .@H2/Œ4� whose associated function r is not � -additive on R.X/. Take
a, c such that .a; 
C; c; 
�/ 2X Œ4� and IŒ
�;a� � IŒ
C;c� contains no other point of the orbit
of .
�; 
C/. Let dn # 
� in I.
�;a/ and bn # 
C in I.
C;c/. LetRn D I.dn;a� � I.bn;c�. Then
R D I.
�;a� � I.
C;c� is the increasing union of the Rn, and r.Rn/D Œa; bn; c; dn�D 0 for
all n whereas r.R/ D Œa; 
C; c; 
�� D 1, contradicting � -additivity. The problem is due
to the fact that this crossratio is not continuous at .a; 
C; c; 
�/.
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We now construct the measure �. Recall that for a rectangle R 2 R.X/ with vertices
.a; b; c; d/, we set r.R/ D Œa; b; c; d �. Furthermore, we denote by VR (resp. xR) the open
(resp. closed) rectangle with the same vertices as R.

Proposition 4.3. There exists a unique positive Radon measure � on .@H2/.2/ satisfying
one of the following equivalent conditions:

(1) �. VR/ � r.R/ � �. xR/ for any (proper) rectangle R 2 R.X/.

(2) For any (proper) rectangles R;R0 2 R.X/ with R0 � VR, we have �.R0/ � r.R/
and r.R0/ � �.R/.

(3) For all (proper) open rectangles R 2 R.@H2/,

�.R/ D sup¹r.R0/ W R0 2 R.X/ and R0 � Rº:

(4) For all (proper) closed rectangles R 2 R.@H2/,

�.R/ D inf¹r.R0/ W R0 2 R.X/ and R � VR0º:

Definition 4.4. We call the measure � in Proposition 4.3 the geodesic current associated
to the positive crossratio Œ �; �; �; � �WX Œ4� ! R, and denote it by �Œ �; �; �; � � if we want to
emphasize the dependence on Œ �; �; �; � �.

Proposition 4.3 implies the following “outer and inner” continuity properties of the
current.

Proposition 4.5. Let .a; b; c; d/ be a positively oriented quadruple in .@H2/Œ4�. Let
.an; bn; cn; dn/n�1 be a sequence in X Œ4� converging to .a; b; c; d/. Then

(1) If dn; an 2 I.d;a/ and bn; cn 2 I.b;c/ for all n � 1, then �.I.d;a/ � I.b;c// D
limnŒan; bn; cn; dn�.

(2) If an; bn 2 I.a;b/ and cn; dn 2 I.c;d/ for all n � 1, then �.IŒd;a� � IŒb;c�/ D
limnŒan; bn; cn; dn�.

Proof. We prove the first assertion (the second is similar). We have by (3)

�.I.d;a/ � I.b;c// D sup
®
Œa0; b0; c0; d 0� W a0; d 0 2 I.d;a/; b

0; c0 2 I.b;c/

and .a0; b0; c0; d 0/ 2 X Œ4�
¯
: (4.1)

Let .a0; b0; c0; d 0/ 2 X Œ4� with a0; d 0 2 I.d;a/ and b0; c0 2 I.b;c/. For n large enough, we
have

IŒd 0;a0� � IŒdn;an� and IŒb0;c0� � IŒbn;cn�;

and hence

Œa0; b0; c0; d 0� � Œan; bn; cn; dn�;

which by (4.1) implies (1).



Positive crossratios, barycenters, trees and applications to maximal representations 817

Proof of Proposition 4.3. We begin by proving that the conditions are equivalent. Let �
be any positive Radon measure on .@H2/.2/.

It is clear that (1) implies (2).
We now prove that (2) implies (3). Consider an open rectangle R in R.@H2/. First

observe that for every R0 in R.X/ such that R0 � R, we have by (2) that r.R0/ � �.R/,
hence

sup¹r.R0/ W R0 2 R.X/ and R0 � Rº � �.R/:

By density of X in @H2, we can now take an increasing sequence of rectangles Rn
in R.X/ with union R such that Rn � VRnC1. We have by (2) that

�.Rn�1/ � r.Rn/ � �.RnC1/;

in particular, by � -additivity of � we have �.R/ D limn �.Rn/ D limn r.Rn/.
We now prove that (3) implies (4). Consider a proper closed rectangle R in @H2.

For every R00 in R.X/ such that R � VR00, there is an open R0 in R.X/ such that R � R0

and R0 � VR00. Then we have �.R/ � �.R0/ � r.R00/ by (3). Hence

�.R/ � inf¹r.R00/ W R00 2 R.X/ and R � VR00º:

Let now Rn be a decreasing sequence of open rectangles in R.X/ with intersection R,
such that RnC1 � Rn. Then �.R/ D limn �.Rn/, and by (3) we have r.Rn/ � �.Rn�1/
and

�.Rn/ D sup¹r.R0/ W R0 2 R.X/ and R0 � Rnº � r.Rn/:

hence �.R/ D limn r.Rn/.
We finally check that (4) implies (1). Consider any rectangle R in R.X/. As r.R/ �

r.R0/ for all R0 containing R, taking infimum on R0 containing xR in their interior, we get
by (4) that r.R/ � �. xR/. Now write the open rectangle VR as an increasing union VR D
[ " Rn of closed rectangles Rn in R.X/ with Rn � VRnC1. Then by (4), we have that
�.Rn/ � r.RnC1/ � r.R/. As �.Rn/! �. VR/ by � -additivity, we deduce �. VR/ � r.R/.

We now prove the existence of � satisfying (2). The strategy of the construction of �
is to use the finitely additive function r to define the integral of compactly supported con-
tinuous functions. This leads by the Riesz representation theorem to a Radon measure �.

A simple function is a linear combination g D
Pn
iD1 ˛i�Ri of characteristic functions

of rectangles Ri in R.X/. Define E.g/ by

E.g/ WD

nX
iD1

˛ir.Ri /:

The additivity property of r on R.X/ (Proposition 4.1) shows that E.g/ is independent
of the representation of g as linear combination of characteristic functions of proper rect-
angles in R.X/. It implies that if g1 and g2 are simple functions, then

E.g1 C g2/ D E.g1/CE.g2/:

This property also shows that if g1, g2 are simple and g1 � g2, then E.g1/ � E.g2/.
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If now f � 0 is a continuous function on .@H2/.2/ with compact support, define

IC.f / WD sup¹E.g/ W 0 � g � f; g is simpleº;

I�.f / WD inf¹E.g/ W f � g; g is simpleº:

Then by uniform continuity of f and density ofX , we have I�.f /D IC.f /DW I.f /. The
additivity of I on positive continuous functions with compact support then follows from
the fact that I� is super-additive, and IC is subadditive. Then I extends to all continuous
functions with compact support as a positive linear functional on the space of continuous
functions with compact support, hence corresponds to a Radon measure �.

We now prove that � satisfies (2). Let R, R0 be rectangles with R0 � VR. As there is
a continuous function f with compact support such that �R0 � f � �R, we have �.R0/�
I.f /�E.�R/D r.R/wheneverR 2R.X/, and r.R0/DE.�R0/� I.f /��.R/when-
ever R0 2 R.X/.

Uniqueness comes from (3), as the class of proper open rectangles in .@H2/.2/ is
stable under finite intersection and generates the Borel � -algebra.

Remark 4.6. It follows from Proposition 4.3 (4) that also for all pencils P D ¹aº � IŒb;c�,

�.P / D inf¹r.R0/ W R0 2 R.X/ and P � VR0º:

Proposition 4.7. If a positive crossratio is ultrametric, then the associated current � is of
lamination type.

Proof. By Proposition 2.1, it is enough to prove that, for all .a; b; c; d/ 2 X Œ4�,

�.I.d;a/ � I.b;c// � �.I.a;b/ � I.c;d// D 0:

Let .a;b;c;d/ inX Œ4�. As the crossratio is ultrametric, we have either Œa;b;c;d �D 0 or
Œb; c; d; a�D 0. As �.I.d;a/ � I.b;c//� Œa; b; c; d � and �.I.a;b/ � I.c;d//� Œb; c; d; a� (see
Proposition 4.3 (1)), this implies that �.I.d;a/ � I.b;c// D 0 or �.I.a;b/ � I.c;d// D 0.

4.2. Periods and intersections

We now turn to the problem of identifying the periods of a positive crossratio with the
intersections of the corresponding current. Let then Œ �; �; �; � � be a positive crossratio
defined on X , and let 
 2 � be hyperbolic. Recall from Section 3.3 the definition of the
period of 
 with respect to the crossratio Œ �; �; �; � �.

In the following proposition, we will use the well-known fact that if 
 is a hyperbolic
element representing a closed geodesic c � †, � is a geodesic current, and x 2 @H2 is
any fixed point distinct from 
C and 
�, then the intersection i.�; ıc/ can be computed as

i.�; ıc/ D �.I.
C;
�/ � I.x;
x�/:

Indeed, I.
C;
�/ � I.x;
x� is a Borel fundamental domain for the h
i-action on I.
C;
�/ �
I.
�;
C/ because .
�; 
C/ is the disjoint union of the h
i-translates of .x; 
x�.
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We will also need that geodesic currents do not weight pencils based at fixed points
of hyperbolic elements and not containing their axis. To be more precise, let H� denote
the subset of @H2 consisting of the fixed points of hyperbolic elements in � . For every
a 2 H� , we choose 
 such that a D 
� and denote by xa the point 
C.

Lemma 4.8 ([33, Proposition 8.2.8]). Let � be a geodesic current, a 2H� and I � @H2

be a closed interval with ¹a; xaº \ I D ¿. Then �.¹aº � I / D 0.

Proposition 4.9. Let� be the geodesic current associated to a positive crossratio Œ �; �; �; � �,
and let c be a closed geodesic represented by a hyperbolic element 
 2 � . Then

per.
/ D i.�; ıc/:

Proof. As in Proposition 3.11, we choose monotone sequences .xn/; .x0n/ � X with lim-
it 
� and .yn/; .y0n/ � X with limit 
C, and assume that .x0n; 
�; xn; yn; 
C; y

0
n/ is

positively oriented (see also Figure 3). We have that

per.
/ D lim
n!1

Œxn; x; 
x; yn� (4.2)

and also
per.
/ D lim

n!1
Œx0n; x; 
x; y

0
n�; (4.3)

where x 2 I.
�;
C/ \X is arbitrary.
For any x 2 I.
�;
C/ \X and n 2 N, we have

i.�; ıc/ D �.I.
C;
�/ � I.x;
x�/

D �.I.
C;
�/ � I.x;
x//C �.I.
C;
�/ � ¹
xº/

� Œxn; x; 
x; yn�C �.I.
C;
�/ � ¹xº/;

where the inequality follows from Proposition 4.3 (1). By (4.2), this implies that

i.�; ıc/ � per.
/C �.I.
�;
C/ � ¹xº/:

Next we have

i.�; ıc/ D �.I.
C;
�/ � I.x;
x�/ D �.I.
C;
�/ � IŒx;
x�/ � �.I.
C;
�/ � ¹xº/:

Using Lemma 4.8, this equals

�.IŒ
C;
�� � IŒx;
x�/ � �.I.
C;
�/ � ¹xº/;

which, again by Proposition 4.3 (1), implies

i.�; ıc/ D �.IŒ
C;
�� � IŒx;
x�/ � �.I.
C;
�/ � ¹xº/

� Œx0n; x; 
x; y
0
n� � �.I.
C;
�/ � ¹xº/:
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Then it follows from (4.3) that

i.�; ıc/ � per.
/ � �.I.
�;
C/ � ¹xº/

and thus
ji.�; ıc/ � per.
/j � �.I.
C;
�/ � ¹xº/

for any x 2 I.
�;
C/ \X .
Now fix a closed interval IŒa;b� � I.
�;
C/ with non-empty interior. ThenX

x2X\Œa;b�

�.I.
C;
�/ � ¹xº/ � �.I.
C;
�/ � IŒa;b�/ <1

and since X \ Œa; b� is infinite, this implies the existence of a sequence .xn/n�1 in X \
Œa; b� with

lim
n!1

�.I.
C;
�/ � ¹xnº/ D 0;

which implies that i.�; ıc/ D per.
/.

4.3. The current depends continuously on the crossratio

The vector space CR.X/ of crossratios on X is a topological vector space for the topol-
ogy of pointwise convergence, and the space CRC.X/ of positive crossratios is a closed
convex cone in it. We observe moreover that the map

CRC.X/! C.†/; Œ �; �; �; � � 7! �Œ �; �; �; � �

from positive crossratios to the space C.†/ of geodesic currents is surjective. In fact, if �
is a geodesic current, one verifies using the regularity of � that �Œ �; �; �; � �C� D � for the
crossratio Œ �; �; �; � �C� of Example 3.4.

Recall from Section 4.2 that H� denotes the subset of @H2 consisting of the fixed
points of hyperbolic elements in � , and for a 2 H� , we denote by xa the other fixed point
of any element fixing a.

We call a �-invariant subset S� � H� symmetric if x� 2 S� whenever � 2 S� .

Proposition 4.10. Let S� � H� be a �-invariant symmetric subset such that ¹.�; x�/ W
� 2 S�º is dense in .@H2/2. Then the map

CRC.S�/! C.†/; Œ �; �; �; � � 7! �Œ �; �; �; � �

is continuous.

Observe that Proposition 4.10 applies to the subset S� DH� in particular. In the proof
of Proposition 4.10, we will focus on a special subset of S Œ4�� : we say that a quadruple
.a; b; c; d/ 2 S

Œ4�
� is good if ¹xa; xdº \ IŒb;c� D ¿ and ¹xb; xcº \ IŒd;a� D ¿.
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Lemma 4.11. Let Œ �; �; �; � � 2 CRC.S�/, and let � be the associated current. For every
good quadruple .a; b; c; d/ 2 S Œ4�� , we have

�.I.d;a/ � I.b;c// D �.IŒd;a� � IŒb;c�/ D Œa; b; c; d �:

Proof. This follows immediately from the inequalities in Proposition 4.3 (1) and Lem-
ma 4.8 applied to ¹dº � IŒb;c�, ¹aº � IŒb;c�, IŒd;a� � ¹bº and IŒd;a� � ¹cº.

Proof of Proposition 4.10. Let Œ �; �; �; � �n and Œ �; �; �; � � be positive crossratios on S�
and �n, � the associated geodesic currents. Assume that

lim
n
Œ �; �; �; � �n D Œ �; �; �; � �:

We have to show that for every positive continuous function f on .@H2/.2/ with compact
support, limn!1�n.f /D�.f /. Using a finite partition of unity, we may assume that the
support supp.f / is contained in some rectangle IŒd;a� � IŒb;c� with .a; b; c; d/ positive.

Fix an interval IŒa0;b0� � I.a;b/ and observe that for every open set J � I.b0;a0/, the set

SJ WD ¹� 2 J \ S� W x� 2 IŒa0;b0�º

is dense in J . Choose then a0 2 S.a;a0/, b
0 2 S.b0;b/, ¹c

0; d 0º � S.c;d/ with .a0; b0; c0; d 0/
positive and observe that the quadruple .a0; b0; c0; d 0/ is good (see Figure 4).

aa0
a0

b0

b0

b
c

c0

d 0
d

Figure 4. The configuration of points in the proof of Proposition 4.10.

Fix some distance inducing the topology on .@H2/.2/, fix " > 0, and let ı > 0 be such
that if R � .@H2/.2/ is any closed rectangle of diameter diam.R/ < ı, then

max
R
f �min

R
f < ":

Fix now a cover of supp.f / by closed rectangles Ri D IŒxi ;yi � � IŒzi ;wi �, for i D
1; 2; : : : ; N , such that

(1) diam.Ri / < ı;
(2) the interiors of the rectangles are pairwise disjoint;
(3) Ri � I.d 0;a0/ � I.b0;c0/I
(4) ¹xi ; yiº � S.d 0;a0/ and ¹zi ; wiº � S.b0;c0/.
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Observe that for every 1 � i � N , the quadruple .xi ; zi ; wi ; yi / is good. As a result, we
have (see Lemma 4.11)

(5) �.Ri / D Œxi ; zi ; wi ; yi �, �n.Ri / D Œxi ; zi ; wi ; yi �n;

(6) �.Ri \Rj / D 0, �n.Ri \Rj / D 0 for all i ¤ j .

It follows then thatˇ̌̌̌ Z
f d�n �

NX
iD1

.min
Ri
f /�n.Ri /

ˇ̌̌̌
�

NX
iD1

"�n.Ri / � "�n.IŒd 0;a0� � IŒb0;c0�/

D "Œa0; b0; c0; d 0�n

and similarly, ˇ̌̌̌ Z
f d� �

NX
iD1

.min
Ri
f /�.Ri /

ˇ̌̌̌
� "Œa0; b0; c0; d 0�:

From these inequalities, the assumption that limnŒ �; �; �; � �n D Œ �; �; �; � � and (5), we deduce
that

lim
n!1

ˇ̌̌̌ Z
f d� �

Z
f d�n

ˇ̌̌̌
� 2"Œa0; b0; c0; d 0�;

and hence
lim
n!1

Z
f d�n D

Z
f d�:

4.4. Integral crossratios

The goal of the section is to prove the following assertion.

Proposition 4.12. If the positive crossratio

Œ �; �; �; � �W X Œ4� ! Œ0;1/

takes values in the non-negative integers N D ¹0; 1; 2; : : :º, then the associated current
corresponds to an integral geodesic multicurve.

Proof. We first show that � is purely atomic. It follows from Proposition 4.3 (3) and (4)
that �.R/ 2 N for all proper open and proper closed rectangles. Let g 2 supp.�/ �
.@H2/.2/, and let Rn be a decreasing sequence of open rectangles with \Rn D ¹gº. Since
�.Rn/ 2 N, we have either

(1) �.Rn/ � 1 for all n � 1 and �.¹gº/ � 1 or

(2) there exists n0 such that �.Rn/ D 0 for all n � n0.

The second case cannot happen since g is in the support of �. As a result, � is purely
atomic with N-valued atoms.

We now show that all geodesics in the support of � are either closed or connect two
cusps. Let .a; b/ 2 .@H2/.2/ be such an atom. Then � � .a; b/meets every compact subset
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of .@H2/.2/ in only finitely many points. As a result, if g �H2 is the geodesic connecting
.a; b/, pr.g/ � † is a closed subset, where, as always, prWH2 ! † denotes the universal
covering map. Thus either g corresponds to a periodic geodesic or pr.g/ is a geodesic
connecting two cusps.

There is a compact subset K � † such that every biinfinite geodesic, as well as every
closed geodesic, meets K. Thus if A denotes the set of atoms of �, there is a compact
subset C � .@H2/.2/ such that for all a 2 A, � � a \ C ¤ ¿. This implies that

� D
X
c2F

ncıc ;

where F is a finite set of geodesics either periodic or connecting to cusps, ıc is the
geodesic current corresponding to c, and nc 2 N�.

4.5. Restriction to a subsurface

We conclude the section discussing how the construction of the geodesic current associ-
ated to a positive crossratio behaves with respect to restriction to subsurfaces. This will be
useful in the study of maximal representations.

Let†0 � † be a subsurface with geodesic boundary. Let G .†0/ � .@H2/.2/ be the set
of geodesics whose projection lies in the interior V†0 of†0. If� is a current on†, we define
�j†0 2 C.†/ by

�j†0 WD �G .†0/�;

where �G .†0/ is the characteristic function of G .†0/.
We write i.�; @†0/D 0 when i.�; c/D 0 for every boundary component c of†0. This

is the case precisely when no geodesic in the support of � intersects @†0; thus in that case,
we have

i.�; c/ D i.�j†0 ; c/

for every closed geodesic c contained in †0.
We now choose a finite area hyperbolization †0 D �0nH2 of V†0 and a corresponding

identification hW�0! �1.†
0/ < � . We denote by �W@H2! @H2 an injective, monotone

h-equivariant map. This is a quasi-conjugacy that opens all the cusps corresponding to
geodesic boundary components of †0. The preceding discussion leads to the following
result.

Proposition 4.13. Let � be a current on †. Then

�0.A/ WD �..� � �/.A//

defines a current �0 D ��� on †0, that we will call the current induced by � on †0.
We have the following properties:

(1) ��� D ���j†0 .

(2) If �0
j†0

has compact carrier included in V†0, then �0 has compact carrier in †0.
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(3) Let �, � be currents on †. Assume that �j†0 and �j†0 have compact carrier
included in V†0. Then

i.�j†0 ; �j†0/ D i.�0; �0/:

(4) We have
i.�0; 
/ D i.�j†0 ; h.
//

for all hyperbolic 
 2 �0. In particular, if i.�; @†0/ D 0, then

i.�0; 
/ D i.�; h.
//

for all hyperbolic 
 2 �0.

(5) Assume that i.�; @†0/ D 0. If � is the current associated to a positive crossratio
b 2CR.H�/, then�0 is the current associated to the positive crossratio b0D��b
in CR.H�0/.

5. Equivariant tree embeddings

In this section, we discuss barycenter maps compatible with positive crossratios and prove
Theorem 1.9. In Section 5.2, we discuss a first class of actions to which Theorem 1.9
applies: framed actions on trees.

5.1. Actions with compatible crossratio and barycenter

Let �W� ! Isom.X/ be an action by isometries on a metric space .X; dX/ andX � @H2

be a non-empty �-invariant subset.

Definition 5.1. (1) A X-valued barycenter map on X (or just a barycenter map if the
context is clear) is a map

ˇW X .3/ ! X

defined on the set X .3/ of triples of distinct points in X that verifies

(a) ˇ is S3-invariant;

(b) ˇ is �-equivariant.

(2) A barycenter map is compatible with a positive crossratio Œ �; �; �; � � defined on X
if, whenever .a; b; c; d/ 2 X Œ4�,

Œa; b; c; d � D dX.ˇ.a; b; d/; ˇ.a; c; d//:

Condition (2) is inspired by the construction of a crossratio induced by a framed action
on a tree, as in Example 3.5. Indeed, we have the following.

Example 5.2. Let �W� ! Isom.T / be a framed action of � on a real tree T with framing
'WX ! @1T . Then the usual barycenter BW@1T .3/! T induces a barycenter map onX
compatible with the positive crossratio Œ �; �; �; � �' .
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The goal of the section is to prove the following assertion.

Theorem 5.3. Let �W� ! Isom.X/ be an isometric action. Assume that there are a pos-
itive crossratio on X and a compatible barycenter map, that the geodesic current �
associated to the positive crossratio is of lamination type, and let V.�/ be the set of
vertices of the R-tree T .�/ associated to�. Then there is an equivariant isometric embed-
ding

V.�/ ,! X:

In order to define the embedding, we will show that each complementary region of
the geodesic lamination zL WD supp.�/ leads to a well-defined barycenter. In this section,
we will work with complementary regions R of the lamination zL, namely connected
components of the complement of zL in H2. Given such a complementary region R, we
will show in Proposition 5.5 that the map that to three points a;b; c 2 .@H2 XR.1//\X

associates their barycenter is constant if the points are in different connected components
of @H2 XR.1/. Here R.1/ is the intersection of @H2 with the closure of R in H2.
In Lemma 5.7, we show that the obtained map is isometric.

As a first step in the proof of Proposition 5.5, we show that the crossratio of 4-tuples
separated by the lamination vanishes.

Lemma 5.4. Let R be a complementary region of zL, and let .a; b; c; d/ be positively
oriented such that ¹a;b;c;dº � @H2 XR.1/ and ¹a;bº, as well as ¹c;dº, are in different
connected components of @H2 XR.1/. Then

�.IŒd;a� � IŒb;c�/ D 0:

In particular, if in addition .a; b; c; d/ 2 X Œ4�,

Œa; b; c; d � D 0:

Proof. Since supp.�/ D zL, we have that �..@H2/.2/ X zL/ D 0. Thus it suffices to show
that under the hypotheses of the lemma,

IŒd;a� � IŒb;c� � .@H
2/.2/ X zL:

Assume there is a geodesic g 2 zL connecting IŒd;a� to IŒb;c�. Then R must be contained in
one of the half-planes determined by g, and hence either ¹a; bº or ¹c; dº are contained in
the same connected component of .@H2/.2/ XR.1/, contradicting the hypothesis. The
second statement follows directly from Proposition 4.3 (1).

With the use of Lemma 5.4, we proceed to define the barycenter of a complementary
region of zL.

Proposition 5.5. Let R be a complementary region of zL. Then ˇ.a; b; c/ is independent
of the choice of ¹a; b; cº � X , provided a, b, c lie in three distinct connected components
of @H2 XR.1/.

Proof. We split the proof in three easy steps.
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Step (1). Given three connected components I1, I2, I3 of @H2 XR.1/, ˇ.a; b; c/ is
independent of the choices a 2 I1 \X , b 2 I2 \X and c 2 I3 \X .

Indeed, given ¹a; a0º � I1 \ X , we may assume, modulo exchanging b and c, and
also a and a0, that .c; a; a0; b/ 2 X Œ4�. By Lemma 5.4, we have then that

dX .ˇ.c; a; b/; ˇ.c; a
0; b// D Œc; a; a0; b� D 0:

Thus ˇ.a; b; c/ D ˇ.a0; b; c/.
Given now b0 2 I2 \ X and c0 2 I3 \ X , we conclude, using the S3-invariance of ˇ,

that
ˇ.a0; b0; c0/ D ˇ.a0; b0; c/ D ˇ.a0; b; c/ D ˇ.a; b; c/:

Step (2). Let I1, I2, I3, I4 be distinct components of @H2 XR.1/, ¹a;b; c; c0º �X with
a 2 I1, b 2 I2, c 2 I3 and c0 2 I4. Then ˇ.a; b; c/ D ˇ.a; b; c0/.

We distinguish two cases.
(2a) If c, c0 are in the same connected component of @H2 X ¹a; bº, then possibly upon

permuting a, b and c, c0, we may assume that .b; c; c0; a/ 2 X Œ4�. By Lemma 5.4, this
implies that

dX .ˇ.b; c; a/; ˇ.b; c
0; a// D Œb; c; c0; a� D 0:

Thus ˇ.b; c; a/ D ˇ.b; c0; a/.
(2b) If instead c, c0 are in distinct connected components of @H2 X ¹a; bº, we may

assume, possibly permuting a, b and c, c0, that .a; c0; b; c/ is positively oriented. Us-
ing (2a) in the second and fourth equalities, we obtain

ˇ.a; b; c0/ D ˇ.a; c0; b/ D ˇ.a; c0; c/ D ˇ.c; a; c0/ D ˇ.c; a; b/ D ˇ.a; b; c/;

which shows the assertion.

Step (3). We finish now the proof of the proposition. Let ¹a; b; c; a0; b0; c0º � X with
a 2 I1, b 2 I2, c 2 I3, a0 2 I 01, b0 2 I 02 and c0 2 I 03, where I1, I2, I3 and I 01, I 02, I 03 are
distinct connected components of @H2 XR.1/. We can assume, up to reordering the
indices that Ij ¤ Ik for j ¤ k. Then it follows from (1) and (2) that

ˇ.a; b; c/ D ˇ.a0; b; c/ D ˇ.a0; b0; c/ D ˇ.a0; b0; c0/:

Definition 5.6. The barycenter ˇ.R/ of a complementary region R of zL is the point
ˇ.a; b; c/ for any choice ¹a; b; cº � X of points lying in distinct components of @H2 X

R.1/.

Taking into account the discussion in Section 2.3, the following lemma concludes the
proof of Theorem 5.3.

Lemma 5.7. For the distance d� on the set V.�/ of complementary regions of zL, we
have

dX.ˇ.R1/; ˇ.R2// D d�.R1;R2/

for all R1;R2 2 V.�/.
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R1

y1

x1

l1

l2

y2

x2

R2

a

b

c

d

p1 p2

Figure 5. The proof of Lemma 5.7.

Proof. Let .x1; y1/ be the endpoints of the geodesic in @R1 separating R1 from R2

and .x2; y2/ the endpoints of the geodesic in @R2 separating R2 from R1, ordered so
that .x1; y1; x2; y2/ 2 X Œ4�. Choose a; b 2 I.x1;y1/ in different connected components
of @H2 XR1.1/ and c;d 2 I.x2;y2/ in different connected components of @H2 XR2.1/

in such a way that .a; b; c; d/ 2 X Œ4� (see Figure 5).
Then

dX.ˇ.R1/; ˇ.R2// D dX.ˇ.a; b; d/; ˇ.a; c; d// D Œa; b; c; d �:

Since the geodesics bounding R1 and R2 are all �-short, we have

�.¹aº � IŒb;c�/ � �.I.l1;l2/ � I.l2;l1// D 0;

where ¹l1; l2º is the geodesic in @R1 separating a from R1, and similarly

�.¹dº � IŒb;c�/ D 0:

As a result, from Proposition 4.3 (1) we have the equality

�.IŒd;a� � IŒb;c�/ D Œa; b; c; d � D �.I.d;a/ � I.b;c//:

If now pi 2Ri , the set of leaves in zL that intersect the segment .p1; p2/ is exactly the set
of leaves in zL that separate R1 from R2. This is also the same as the set of leaves in zL that
connect IŒd;a� to IŒb;c�. The assertion then follows from the above considerations, recalling
that d�.R1;R2/ is the measure of this set,

dX.ˇ.R1/; ˇ.R2// D Œa; b; c; d � D �.IŒd;a� � IŒb;c�/

D d�.R1;R2/:
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5.2. Framed actions on trees

Theorem 5.3 applies to framed actions on trees.

Proposition 5.8. Let �W� ! Isom.T / be an action by isometries on a real tree T with
a framing 'WX ! @1T . Suppose that the associated crossratio Œ �; �; �; � �' is positive,
and denote by �� the associated geodesic current. Then �� corresponds to a measured
lamination, and there is a �-equivariant isometric embedding

T .��/ ,! T :

In particular, for all hyperbolic 
 2 � ,

`T .�.
// D i.��; 
/:

Proof. By Proposition 3.8, the crossratio Œ �; �; �; � �' is ultrametric, hence by Proposi-
tion 4.7, the current �� is of lamination type.

The barycenter ˇ.x; y; z/ of .x; y; z/ 2 X .3/ is the point ˇT .x; y; z/ in the tree T

which is barycenter of .'.x/; '.y/; '.z//. Then ˇ is by construction an equivariant bary-
center map compatible with the crossratio (by (3.3) in Example 3.5 and S3-invariance
of ˇT ), hence induces an equivariant isometry

‰W V.��/ ,! T

of the vertices of the dual tree T .��/ by Theorem 5.3. Since T is uniquely geodesic,
we can extend ‰ to T .��/. Then for all 
 2 � , we have `T .�.
// D `‰.T .��//.
/ as
‰.T .��// is a convex subset of T , and `‰.T .��//.
/D `T .��/.
/ as‰ is isometric. Now
for hyperbolic 
 representing a closed geodesic c, we have `T .��/.
/ D i.��; ıc/, hence
`T .�.
// D i.��; 
/.

6. The geometry of the Siegel spaces over real closed fields

The goal of this section is to recall facts about the geometry of Siegel spaces over real
closed fields needed to show that maximal framed actions give rise to a positive crossratio
and admit a compatible barycenter (Lemma 6.6 and Proposition 6.7).

6.1. Real closed fields

Recall that an ordered field is a field F endowed with a total order relation � satisfying

(1) if x � y, then x C z � y C z for all z 2 F;

(2) if 0 � x and 0 � y, then 0 � xy.

The fields Q and R with their usual order are examples of ordered fields; while some fields
admit no ordering, like C, others admit many, like R.X/.
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Example 6.1. The orders on R.X/ admit the following description for " 2 ¹�;Cº:

(1) >"1: if f 2 R.X/, f >"1 0 if f .t/ > 0 for t ! "1.

(2) >a" for a 2 R: we say that f >aC 0 if there exists � D �.f / 2 R, � > 0, with
f .t/ > 0 on the interval .a; a C �/, and f >a� 0 if f .t/ > 0 on the interval
.a � �; a/.

A basic fact is that every ordered field F admits a real closure xFr, that is, a maximal
algebraic extension of F to which the order extends. Such a real closure is then unique up
to a unique F-isomorphism. An ordered field F is then real closed if the ordering does not
extend to any proper algebraic extension. Two useful characterizations are the following:

(1) the field F is ordered and F.{/ is algebraically closed, with { D
p
�1;

(2) the field F is ordered, every positive element is a square and any odd degree poly-
nomial has a root.

An important consequence of (2), which is implicit in most of the geometric properties
of the Siegel space we use, is that any symmetric matrix with coefficient in a real closed
field is orthogonally similar to a diagonal one.

An R-valued valuation is a map

vW F! R [ ¹1º;

where vW .F�; �/! .R;C/ is a group homomorphism, v.0/ D 1, and if we define the
norm of x 2 F by kxkv WD e�v.x/ if x ¤ 0 and k0kv WD 0, then

kx C ykv � kxkv C kykv:

An important valuation to keep in mind is � ln.j � j/WR! R [ ¹1º. Indeed, valuations
offer a replacement for the logarithm in more general real closed fields. The valuation
is order compatible if jxj � jyj implies that v.x/ � v.y/, and it is non-Archimedean if
v.x C y/ � min¹v.x/; v.y/º, that is if kx C ykv � max¹kxkv; kykvº.

Example 6.2. The following are examples of ordered fields:

(1) The field R of real numbers and the field xQr of real algebraic numbers; both are
real closed.

(2) Let ! be a non-principal ultrafilter on N. The quotient R! of the ring RN by
the equivalence relation .xn/ � .yn/ if !.¹n W xn D ynº/ D 1, ordered in such
a way that positive elements are the classes of the sequences .xn/ such that
!.¹n W xn > 0º/D 1, is a real closed field called the field of the hyperreals. It does
not admit any order compatible R-valued valuation.

(3) Let � 2 R! be a positive infinitesimal, that is, � can be represented by a sequence
.�n/n�0 with lim �n D 0 and �n > 0. Then

O� WD ¹x 2 R! W jxj < ��k for some k 2 Zº
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is a valuation ring with maximal ideal

	� D ¹x 2 R! W jxj < �k for all k 2 Zº:

The quotient R!;� WD O�=	� is a real closed field, called the Robinson field.
It admits an order compatible valuation

v.x/ D lim
!

ln jxnj
ln �n

;

where .xn/n�0 represents x, that leads to a non-Archimedean norm

kxkv WD e
�v.x/:

(4) Let G be a totally ordered Abelian group, and let

H .G/ WD
°
f D

X
�2G

a�X
�
W a� 2 R and supp.f / � G is well ordered

±
be the set of formal power series with exponents inG and coefficients in R, where
supp.f / WD ¹� 2 G W a� ¤ 0º. This is an R-vector space, and the restriction on
supports allows one to define a ring structure that extends the ordinary multipli-
cation on the group ring RŒG� of G. In fact, H .G/ turns out to be a field, called
the Hahn field with exponents G. It is ordered by setting f > 0 if a�0 > 0, where
�0 D min.supp.f // and it admits a G-valued compatible valuation v.f / D �0.
Moreover, H .G/ is real closed if G is divisible. For all of the above statements,
see [14, Theorem 2.15].

(5) (Compare with Section 8.3) If ˛ 2 R XQ, then the ring morphism

RŒx; y�! H .R/; P 7! P.x; x˛/

extends to R.x; y/. In this way, we obtain an order on R.x; y/ for which P 2
R.x; y/ is positive if and only if for some " > 0, P.t; t˛/ > 0 for all t 2 .0; "/.

6.2. The Siegel upper half-space and the space Bn
F

Let F be a real closed field, and { be a square root of�1. Endow V D F2n with the standard
symplectic form ��

x1
y1

�
;

�
x2
y2

��
WD

tx1y2 �
tty1x2;

where xi ; yi 2 Fn. The vector space Symn.F/ of symmetric matrices admits a partial order
defined by setting

X � Y if Y �X is positive definite.

The Siegel upper half-space is the semi-algebraic set

�nF WD ¹Z D X C {Y W X; Y 2 Symn.F/ and Y � 0º
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on which

Sp.2n;F/ WD
²
g D

�
A B

C D

�
W
tAD � tCB D Id; tAC D tCA; tBD D tDB

³
acts by fractional linear transformations

g�Z WD .AZ C B/.CZ CD/
�1; (6.1)

transitively. Of course, this action descends to an action of PSp.2n; F/. The stabilizer
of {Idn 2 �nF in Sp.2n;F/ is

K D Sp.2n;F/ \ O.2n/ D
²�

A B

�B A

�
W
tAAC tBB D Idn; tAB is symmetric

³
:

If FDR, then �nR is the symmetric space associated to PSp.2n;R/. If, instead, the real
closed field F is endowed with an order compatible non-Archimedean valuation v, then
PSp.2n;F/ acts by isometries on a v.F/-metric space Bn

F : a metric quotient of �nF whose
construction we now recall. See [10, 11] for generalizations of this construction.

On �nF , we define a multiplicative F-valued distance function as follows. Since F is real
closed, any pair .Z1;Z2/ with Zi 2 �nF , for i D 1; 2, is PSp.2n;F/-congruent to a unique
pair .{ Idn; {D/, where D D diag.d1; : : : ; dn/, d1 � � � � � dn � 1 in F. We then set

D.Z1; Z2/ WD

nY
iD1

di :

Proposition 6.3. The function D is a PSp.2n;F/-invariant multiplicative distance func-
tion on �nF , namely, for all Z1; Z2; Z3 2 �nF ,

(MD1) D.Z1; Z2/ 2 F�1, with equality of and only if Z1 D Z2;

(MD2) D.Z1; Z2/ D D.Z2; Z1/;

(MD3) D.Z1; Z2/ � D.Z1; Z3/D.Z3; Z2/.

Proof. (MD1) and (MD2) are clear. We consider the standard action of Sp.2n;F/ onW DVn
.F2n/, endowed with the standard scalar product, which isK-invariant asK � O.2n/.

For a D diag.a1; : : : ; an; a�11 ; : : : ; a�1n / with a1 � � � � � an � 1 in F, we easily see that

max
w2W;w¤0

kawk

kwk
D

nY
iD1

ai

(the biggest eigenvalue of a in W ). For g 2 Sp.2n; F/, the operator norm of g on W is
given by

jkgkj WD max
w2W;w¤0

kgwk

kwk
:
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Since g D kak0 for some k, k0 in K and a as before (by the Cartan decomposition), and

D.{Idn; g�{Idn/ D D.{Idn; a�{Idn/ D 2jkakj D 2jkgkj;

(MD3) follows from submultiplicativity of the operator norm and transitivity of the action
of Sp.2n;F/.

On �nF , we define an associated pseudodistance d1 as follows:

d1.Z1; Z2/ WD �v.D.Z1; Z2// D �

nX
iD1

v.di /: (6.2)

The triangle inequality for d1 comes from (MD3). We denote by Bn
F the metric quotient

of �nF with respect to the pseudodistance d1. We will not need it, but note in passing
that Bn

F can be identified with the quotient PSp.2n;F/=PSp.2n;U/, where U WD ¹x 2 F W
kxkv � 1º.

6.3. Embedding in K-Lagrangians

In the classical case, the Borel embedding of �nR into the complex Grassmannian provides
a way to endow �nR with structures defined on the Grassmannian, such as, for example,
a crossratio. We recall from [13] the analogous picture in the case of a general real closed
field.

Let K D F.{/ be the algebraic closure of F, and let us also denote by h ; i the K-linear
extension of the standard symplectic form to K2n and by � WK2n!K2n the complex con-
jugation. Given matricesZ1;Z2 2Mn.K/, we will denote by h.Z1Z2 /i the subspace of K2n

generated by the column vectors. We denote by L.K2n/ the submanifold of Grn.K2n/

consisting of subspaces that are isotropic for the form h ; i. The map

Symn.K/! L.K2n/; Z 7!

��
Z

Idn

��
gives a bijection between Symn.K/ and the subset of L.K2n/ of all Lagrangians trans-
verse to

`1 WD

��
Idn
0

��
:

This map intertwines the action of PSp.2n;K/ on Symn.K/ by fractional linear transfor-
mations (6.1) and the standard action on L.K2n/. This bijection maps �nF to the projective
model

DF WD ¹L 2 L.K2n/ W �{h �; �. � /ijL�L � 0º

and sends Symn.F/ to

¹`˝K W ` 2 L.F2n/; ` is transverse to `1º:
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6.4. Maximal triples and intervals

We associate to a triple .`1; `2; `3/ of pairwise transverse Lagrangians in L.F2n/ the
quadratic form Q.`1;`2;`3/ on `1 defined by

Q.`1;`2;`3/.v/ WD hv; v
0
i;

where v0 2 `3 is the unique vector such that v C v0 2 `2. If ` D h. XIdn /i and `0 D h. X 0Idn /i

are pairwise transverse, then in the coordinates

Fn ! `; w 7!

�
X

Idn

�
w; (6.3)

the quadratic form Q.`;`0;`1/ is represented by X 0 �X .
Two triples of pairwise transverse Lagrangians .`1; `2; `3/ and .m1; m2; m3/ are

PSp.2n; F/-congruent if and only if the associated quadratic spaces .`1; Q.`1;`2;`3//

and .m1; Q.m1;m2;m3// are isomorphic or, equivalently, if and only if Q.`1;`2;`3/ and
Q.m1;m2;m3/ have the same signature [13, Proposition 2.5]. The value of the Maslov cocy-
cle on .`1; `2; `3/ is the signature of Q.`1;`2;`3/

�.`1; `2; `3/ WD signQ.`1;`2;`3/:

The triple .`1; `2; `3/ is maximal if �.`1; `2; `3/ D n, the maximal value the Maslov co-
cycle can take. Similarly, we say that a triple .`1; `2; `3/ is minimal if �.`1; `2; `3/ D �n;
it is easy to verify that .`1; `2; `3/ is maximal if and only if .`2; `1; `3/ is minimal. The
group PSp.2n; F/ acts transitively on pairs of transverse Lagrangians in L.F2n/ and on
maximal triples.

Given `; `0 2 L.F2n/, we define the interval

I.`;`0/ WD ¹m 2 L.F2n/ W .`;m; `0/ is maximalº:

Lemma 6.4 (Compare [13, Lemma 2.10]). Let ` D h. XIdn /i and `0 D h. X 0Idn /i. If the triple
.`; `0; `1/ is maximal, then

I.`;`0/ D

²��
Y

Idn

��
W X � Y � X 0

³
:

Proof. Let m D h. YIdn /i. Using the maximality of .`; `0; `1/, the cocycle relation applied
to the quadruple .`;m; `0; `1/ reads

�.m; `0; `1/C �.`;m; `1/ D �.`;m; `
0/C n:

From this relation, it follows that .`; m; `0/ is maximal if and only if .m; `0; `1/ and
.`;m; `1/ are both maximal, that is, Y � X 0 and X � Y .

For X;X 0 2 Symn.F/ with X � X 0, we will also denote by I.X;X 0/ the set

I.X;X 0/ WD ¹Y 2 Symn.F/ W X � Y � X 0º

and by I.X;1/ the set

I.X;1/ WD ¹Y 2 Symn.F/ W X � Y º:



M. Burger, A. Iozzi, A. Parreau, and M. B. Pozzetti 834

6.5. Crossratios

In this subsection, we recall the endomorphism valued crossratio from [13, §4.1] on
quadruples of Lagrangians. This, together with a maximal framing, will allow us in Sec-
tion 7.1 to associate to any maximal framed representation � a positive crossratio as in
Section 3.

Given a quadruple of Lagrangians .`1; `2; `3; `4/ in L.F2n/ with `1 \ `2 D `3 \

`4D ¹0º, their crossratio is the endomorphism of `1 given by

R.`1; `2; `3; `4/ D pk`2
`1
ı pk`3

`4
j`1 ;

where pk`i
j̀

denotes the projection of F2n to j̀ parallel to the complementary space `i .
One verifies that for all g 2 Sp.2n;F/,

R.g`1; g`2; g`3; g`4/ D gR.`1; `2; `3; `4/g
�1;

and hence
detR.`1; `2; `3; `4/

is PSp.2n;F/-invariant. If, for j 2 ¹1; 2; 3; 4º, j̀ \ `1 D ¹0º, then j̀ D h.
Xj
Idn
/i for some

Xj 2 Symn.F/. By [13, Lemma 4.2], the matrix representing R.`1; `2; `3; `4/ in the basis
of `1 given by (6.3) is

.X1 �X2/
�1.X2 �X4/.X3 �X4/

�1.X1 �X3/: (6.4)

We will denote such matrix by R.`1; `2; `3; `4/, with an abuse of notation.

Proposition 6.5 (Compare [13, Lemma 4.4]). Let `1, `2, `3, `4, `5 be pairwise transverse
Lagrangians. Then

(1) R.`1; `2; `4; `5/ D R.`1; `2; `3; `5/R.`1; `3; `4; `5/.

(2) R.`1; `2; `3; `4/ is conjugate to R.`3; `4; `1; `2/.

(3) We have that detR.`1; `2; `4; `5/ D detR.`1; `2; `3; `5/ detR.`1; `3; `4; `5/ and
detR.`1; `2; `3; `4/ D detR.`3; `4; `1; `2/.

(4) If .`1; `2; `3; `4/ is a maximal quadruple, then all eigenvalues of R.`1; `2; `3; `4/
belong to F and are strictly larger than one. In particular, detR.`1; `2; `3; `4/ > 1.

Proof. (1) The right-hand side of the identity equals

pk`2
`1

pk`3
`5

pk`3
`1

pk`4
`5
j`1 :

Using that F2nD `1C `3, one verifies that pk`3
`5

pk`3
`1
j`5 D Id`5 , which implies the assertion.

(2) This was shown in [13, Lemma 4.4 (3)].

(3) These are immediate consequences of (1) and (2).
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(4) Since Sp.2n;F/ acts transitively on maximal triples, we may assume that

`1 D

��
0

Idn

��
; `2 D

��
Idn
Idn

��
; `3 D

��
Y

Idn

��
and `4 D `1:

By maximality, Idn � Y (see Lemma 6.4). A computation gives R.`1; `2; `3; `4/ D Y ,
which concludes the proof.

6.6. F-tubes and orthogonal projections

If `; `0 2 L.F2n/, the F-tube determined by `, `0 is the semi-algebraic subset of �nF given
by the equation

Y`;`0 WD

²
Z 2 �nF W R

�
`;

��
Z

Idn

��
;

��
xZ

Idn

��
; `0
�
D �Idn

³
;

where xZ is the complex conjugate of Z, see [13, §4.2].
If F D R and n D 1, the R-tube Y`;`0 is the geodesic between ` and `0 while, for

n � 1, Y`;`0 is a symmetric subspace of �nR . The R-tube Y`;`0 is a Lagrangian submanifold
and is isometric to the symmetric space associated to GL.n;R/. In general, for all g 2
PSp.2n;F/,

Yg`;g`0 D g.Y`;`0/; (6.5)

and if we denote

`0 WD

��
0

Idn

��
;

then
Y`0;`1 WD ¹{Y W Y 2 Symn.F/; Y � 0º:

We will often write Y0;1 for Y`0;`1 .
If .`1; `2; `3; `4/ is a maximal quadruple, then Y`1;`3 and Y`2;`4 meet exactly in one

point. Such F-tubes are called orthogonal if

R.`1; `2; `3; `4/ D 2 Idn

(see [13, Proposition 4.7 and Definition 4.14]). If F D R, the tubes are orthogonal if and
only if they are orthogonal as submanifolds of the Riemannian manifold �nR . Given any
point p 2 I.`1;`3/ [ I.`3;`1/, there exists a unique F-tube Y`2;`4 orthogonal to Y`1;`3 “with
endpoint p” in the following sense:´

`2 WD p if p 2 I.`1;`3/;

`4 WD p if p 2 I.`3;`1/:

In this way, we obtain a map

prY`1;`3
W I.`1;`3/ [ I.`3;`1/ ! Y`1;`3

called the orthogonal projection.
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In the case of Y0;1, the map prY0;1
is given by

prY0;1
.Y / D

´
{Y if Y 2 I.`0;`1/;

�{Y if Y 2 I.`1;`0/:

In view of (6.5), this implies in particular that the restrictions of prY`1;`3
to I.`1;`3/ and

I.`3;`1/ are both bijective.

Lemma 6.6. Assume .`; `1; `2; `0/ is maximal. Then for the pseudodistance d1 on �nF
(see (6.2) in Section 6.2), we have

d1.prY`;`0
.`1/; prY`;`0

.`2// D �v.detR.`; `1; `2; `0//:

Proof. We may assume that ` D `0 and `0 D `1, and set j̀ WD h.
Yj
Idn
/i for j D 1; 2.

Then we have 0� Y1� Y2, and in particular the eigenvalues r1; : : : ; rn of the symmetric
matrix Y �1=21 Y2Y

�1=2
1 are all greater than 1. By invariance of the distance d1, we have

d1.{Y1; {Y2/ D d
1.{Idn; {Y

�1=2
1 Y2Y

�1=2
1 / D

nX
jD1

�v.rj / D �v

� nY
jD1

rj

�
D �v.det.Y �11 Y2// D �v.detR.`; `1; `2; `0//;

where the last equality uses (6.4). This proves the lemma.

6.7. Barycenters

Assume that F is non-Archimedean. If the triple of Lagrangians .`1; `2; `3/ is either max-
imal or minimal, then `2 2 I.`1;`3/ [ I.`3;`1/. We define

b.`1; `2; `3/ WD prY`1;`3
.`2/ 2 �nF :

The barycenter of the triple .`1; `2; `3/ is the point

B.`1; `2; `3/ D �.b.`1; `2; `3//;

where � W �nF ! Bn
F is the metric quotient introduced in Section 6.2. Our goal is to show

the following (cf. [13, Lemma 7.5]).

Proposition 6.7. The point B.`1; `2; `3/ is invariant under permutation of the arguments.

First we need to establish a formula for the (pseudo-)distance in �1F .

Lemma 6.8. If z1 D x1 C {y1, z2 D x2 C {y2 2 �1F , then

d.z1; z2/ D max
°
�v
� .x1 � x2/2

y1y2

�
;�v

�y1
y2

�
;�v

�y2
y1

�±
:
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Proof. Recall that for a general real closed field F, if z1; z2 2 �1F ,

d.z1; z2/ D ln kT C
p

T 2 � 1kv;

where T D 1C jz1�z2j
2

2y1y2
. Since F is non-Archimedean, then for a; b 2 F, a � 0, b � 0,

we have
kaC bkv D kmax¹a; bºkv:

Hence
kT C

p

T 2 � 1kv D kT kv and d.z1; z2/ D ln kT kv:

Since

T D 1C
jz1 � z2j

2

2y1y2
D
.x1 � x2/

2

2y1y2
C

y1

2y2
C

y2

2y1
;

then

kT kv D max
°


 .x1 � x2/2

y1y2





v
;



y1
y2





v
;



y2
y1





v

±
;

where we took into account that knkv D 1 for any n 2 Z n ¹0º.

Proof of Proposition 6.7. As PSp.2n;F/ acts transitively on maximal and minimal triples,
we may assume that .`1; `2; `3/ WD .`0; h.

Y
Idn /i; `1/, where Y D ˙Idn, depending on

whether .`1; `2; `3/ is maximal or minimal. A computation then gives

prY0;1
.˙Idn/ D {Idn; prY`1;`2

.0/ D .˙1C {/Idn; prY`2;`0
.1/ D

˙1C {

2
Idn:

Observe that if Z D diag.z1; : : : ; zn/, W D diag.w1; : : : ; wn/ 2 �nF , then

d1.Z;W / D

nX
iD1

d.zi ; wi /:

Thus in order to compute the distances between various projections, we just have to com-
pute the following in �1F :

d.{; { ˙ 1/ D ln max¹k1kv; k1kv; k1kvº D 0;

d
�
{;
�1C {

2

��
D ln max

°


1
2





v
;



1
2





v
; k2kv

±
D 0:

This concludes the proof.

7. Applications to maximal framed representations

In this section, we prove Theorems 1.2 and 1.5, as well as Corollaries 1.3 and 1.8 from
the introduction.
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7.1. The geodesic current �� and Theorem 1.2

Let �W � ! PSp.2n; F/ be a maximal framed representation with maximal framing 'W
H� ! L.F2n/. Define then for every .x1; x2; x3; x4/ 2 H�Œ4�,

Œx1; x2; x3; x4�� WD �v.detR.'.x1/; '.x2/; '.x3/; '.x4///:

It follows from Proposition 6.5 that Œ �; �; �; � �� is a positive crossratio on H� , and hence
(Propositions 4.3 and 4.9) there is a geodesic current �� such that per.
/ D i.��; ıc/ for
every closed geodesic c represented by a hyperbolic element 
 2 � .

Next, for the computation of per.
/, recall that g 2 Sp.2n;F/ is called Shilov hyper-
bolic if there is a g-invariant decomposition F2n D `C ˚ `� into Lagrangians such that
all eigenvalues of gj`� have absolute value strictly smaller than one (and thus all eigenval-
ues of gj`C have absolute value strictly larger than one) [13, Definition 2.12]. An element
g 2 PSp.2n;F/ is Shilov hyperbolic if any of its lifts to Sp.2n;F/ is. Of course, the decom-
position is uniquely determined by g and does not depend on the lift. We will need the
following assertion.

Lemma 7.1 ([13, Lemma 7.9]). Let g 2 Sp.2n;F/ be Shilov hyperbolic, and let �1; : : : ;�n
be the eigenvalues of gj`C . Then for any ` 2 I.`�;`C/, we have

detR.`�; `; g`; `C/ D
� nY
iD1

�i

�2
:

Proof. We may assume by transitivity of the action of Sp.2n; F/ on pairs of transverse
Lagrangians that .`�; `C/ D .`0; `1/. Furthermore, g D .A 0

0 tA�1
/, where A is the matrix

of gj`C . Then ` corresponds to a matrix X 2 Symn.F/ with X � 0, and (6.4) gives

R.`�; `; g`; `C/ D X
�1AXAt :

This implies that
detR.`�; `; g`; `C/ D .detA/2;

hence the lemma.

Let 
 2 � be hyperbolic with attractive and repulsive fixed points 
C and 
�. It fol-
lows from [13, Theorem 1.9] that �.
/ is Shilov hyperbolic with corresponding decom-
position F2n D '.
�/ ˚ '.
C/. In particular, the maximal framing 'WH� ! L.F2n/
(recall Definition 1.1) is uniquely determined by the representation �. Furthermore, if
�1.
/; : : : ; �n.
/ are the eigenvalues of �.
/ with j�1.
/j � � � � � j�n.
/j � 1, then
Lemma 7.1 implies that given x 2 I.
�;
C/,

per.
/ D �v.detR.'.
�/; '.x/; �.
/'.x/; '.
C///

D 2

nX
iD1

�v.�i .
// D L.�.
//

for the length function LWPSp.2n;F/! R introduced in equation (1.1).
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If there is a hyperbolic element 
 2 � with �v.tr.�.
/// > 0, then necessarily �.
/
has an eigenvalue with the same property and thus per.
/ > 0. Vice-versa, if �� is non-
zero, there exists a proper closed rectangle R D IŒa;b� � IŒc;d� with ��.R/ > 0. Since � is
a lattice, we find a hyperbolic element 
 2 � with 
C 2 I.b;c/, 
� 2 I.d;a/. For such 
 , the
intersection i.��; ı
 / > 0, and thus per.
/ > 0, which implies that k�1.
/ : : : �n.
/kv>1.
Observe that the coefficients of the characteristic polynomial of

Vn
�.
/ are symmet-

ric functions in the eigenvalues of �.
/ and hence polynomials with rational coefficients
of tr.�.
 s//, s 2 N; if now we assume by contradiction that �v.tr.�.
 s/// � 0 for all
s 2 N, that is tr.�.
 s// belong to the ring O WD ¹x 2 F W kxkv � 1º, we conclude since
Q � O that the coefficients of the characteristic polynomial of

Vn
�.
/ belong to O as

well. But �1.
/ : : : �n.
/ 2 F is a root of this monic polynomial, and since O � F is
a valuation ring, it is integrally closed in F (see [16, Theorem 3.1.3 (1)]). This implies
k�1.
/ : : : �n.
/kv � 1, a contradiction, that concludes the proof of Theorem 1.2.

7.2. Displacing representations and Corollary 1.3

Assume that † is compact, and let �W� ! PSp.2n;F/ be a maximal framed representa-
tion. If

Syst.�/ WD inf

¤e

L.�.
// > 0;

it follows from Theorem 1.2 that the associated geodesic current �� has Syst.��/ > 0;
hence there exist c1, c2 such that for every 
 2 � ,

c1`.
/ � L.�.
// � c2`.
/; (7.1)

where `.
/ is the hyperbolic length of 
 [9, Theorem 1.3]. The �-action on Bn
F induced

by � is displacing by (7.1). It follows then from [15, Theorem 2.0.2 and Lemma 2.0.1]
that for every x 2 Bn

F , the map 
 7! �.
/x is a quasi-isometric embedding. This proves
Corollary 1.3.

7.3. Maximal representations in PSp.2n;R/ and Corollary 1.8

If† is not necessarily compact, the inequalities in (7.1) do not necessarily hold. However,
applying [9, Corollary 1.5 (2)] to the current ��, we deduce the following.

Corollary 7.2. Let �W� ! PSp.2n;F/ be a representation admitting a maximal framing
defined on H� . Assume that Syst†.�/ > 0. Then for every compact subset K � †, there
are constants 0 < c1 � c2 such that

c1`.c/ � L.�.
// � c2`.c/

for every 
 2 � representing a closed geodesic c contained inK. In particular, there exist
constants c1, c2 such that this holds for all 
 representing simple closed geodesics.

Assume now that FDR, and let �W�! PSp.2n;R/ be a maximal representation. Then
there is a maximal framing ' defined on @H2 [12, Theorem 8] and hence, by Theorem 1.2,
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a geodesic current �� with i.��; ıc/ D L.�.
//, for every closed geodesic c represented
by a hyperbolic element 
 2 � . The collar lemma [13, Theorem 1.9] then implies that
if 
 , � are intersecting hyperbolic elements,

.e.L.�.
///=n � 1/.e.L.�.�///=n � 1/ � 1:

This implies that, if 
 is self-intersecting,

L.�.
// � n.ln 2/;

and that there are at most 3g � 3C p conjugacy classes of hyperbolic elements 
 with
L.�.
// � n.ln 2/. In particular, Syst.��/ > 0. Corollary 1.8 then follows from Corol-
lary 7.2.

7.4. Lamination type currents and Theorem 1.5

Let F be non-Archimedean. Given a maximal framed representation, as above, and with
the notation of Section 6.7, define the barycenter of .x; y; z/ 2 H�.3/

ˇ�.x; y; z/ WD B.'.x/; '.y/; '.z// 2 Bn
F :

It follows from Proposition 6.7 that ˇ is indeed a barycenter according to Definition 5.1
and from Lemma 6.6 that it is compatible with the crossratio Œ �; �; �; � �� defined in Sec-
tion 7.1.

If now �� is of lamination type, we deduce from Theorem 5.3 that there is a well-
defined equivariant isometric embedding

V.��/ ,! Bn
F

from the set of vertices V.��/ of the R-tree T .��/ associated to �� into the metric
space Bn

F .

7.5. The value group of Œ �; �; �; � �� and Theorem 1.4

Let �W � ! Sp.2n; F/ be maximal framed with framing 'WH� ! L.F2n/, and set as
always

Œx1; x2; x3; x4�� WD �v.detR.'.x1/; '.x2/; '.x3/; '.x4///:

Theorem 7.3. Let ƒ WD v.Q.�// be the value group of the field Q.�/ generated over Q
by the matrix coefficients of �. Then

Œx1; x2; x3; x4�� 2
1

.8n/Š
ƒ

for all .x1; x2; x3; x4/ 2 H
Œ4�
� .
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Proof. We might assume that F is the real closure of Q.�/. Let .x1;x2;x3;x4/ 2H
Œ4�
� , and

let 
i be hyperbolic with .
i /� D xi . If c
1 , c
2 , c
3 , c
4 are the characteristic polynomials
of �.
1/, �.
2/, �.
3/, �.
4/, then c
i 2Q.�/ŒX�. Since FŒi � is algebraically closed, �.
i /
splits in FŒi �. If L is the splitting field in FŒi � of c
1c
2c
3c
4 2 Q.�/ŒX�, then

ŒL W Q.�/� � .8n/Š:

Observe that the field L depends on �.
1/, �.
2/, �.
3/, �.
4/.
It is now easy to see that the Lagrangians '.xi / � F2n are defined over L \ F, as

a result we can represent them by h. XiIdn
/i with Xi 2 Symn.L \ F/, which implies that

detR.'.x1/; '.x2/; '.x3/; '.x4// 2 .L \ F/�. We conclude using [30, Chapter XII, §4,
Proposition 12] which says that the index of ƒ in v..L \ F/�/ is at most .8n/Š. This
concludes the proof.

In particular, if Q.�/ has discrete valuation, we can assume, up to rescaling the valua-
tion, that the crossratio Œx1; x2; x3; x4�� is integer valued. Theorem 1.4 is therefore a direct
application of Proposition 4.12.

8. Examples of maximal framed representations

In this section, we collect several interesting examples of maximal framed representations
over non-Archimedean real closed fields.

8.1. Ultralimits of representations and asymptotic cones

Let .�k/k�1 be a sequence of maximal representations into Sp.2n;R/ and ! a non-prin-
cipal ultrafilter on N. This gives rise to a representation �! W�! Sp.2n;R!/, where R!
is the field of hyperreals and �!.�/ � Sp.2n;O� /, where the infinitesimal � is defined
below. Denote by R!;� the Robinson field. The representation �!;� obtained by compos-
ing �! with the projection

Sp.2n;R!/! Sp.2n;R!;� /

is a maximal framed representation of � into Sp.2n;R!;� / [13, Corollary 10.4]; its fram-
ing is defined on @H2, and Theorem 1.2 applies.

This construction is closely related to asymptotic cones, as we now recall. Denoting
by d the Sp.2n; R/-invariant Riemannian distance on the Siegel n-space, we say that
a sequence of scales .�k/k2N 2 .R>0/N is adapted (to the sequence .�k/k2N) if for one,
and hence every, finite generating set S � �

lim
!

max
2S d
�
�k.
/{Idn; {Idn

�
�k

< C1:

We obtain then an action !��W � ! Isom.!X�/, on the asymptotic cone !�� of the se-
quence of pointed metric spaces given by .�nR; {Idn;

d
�k
/.
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If we set � WD .e��k /k�1 2 R! , then the asymptotic cone !X� can be identified with
the metric space Bn

R!;� and, under this identification, !�� corresponds to �!;� (see, for
example, [37]).

8.2. Maximal representations in SL.2 ;F/

Let F be a real closed field with an order compatible non-Archimedean valuation, and
let T F � B1

F be the R-tree associated to SL2.F/. Then P1.F/ identifies with a subset
of @1T F and the restriction to P1.F/ of the crossratio of @1T F is the standard crossratio
Œ �; �; �; � �F in P1.F/.

Therefore, any representation �W� ! SL.2; F/ with framing 'WH� ! P1.F/, gives
a framed action on T F. Note that the associated crossratio

Œx1; x2; x3; x4�' D Œ'.x1/; '.x2/; '.x3/; '.x4/�F

is positive if the framing ' is maximal.
Proposition 5.8 implies the following.

Theorem 8.1. Let F be a real closed field with an order compatible non-Archimedean
valuation. Let �W � ! SL.2; F/ be a representation with a maximal framing 'WH� !
P1.F/. Denote by �� the geodesic current associated to the positive crossratio induced
by ' on X . Then �� corresponds to a measured lamination, and there is a �-equivariant
isometric embedding

V.��/ ,! T F:

In particular, for all hyperbolic 
 2 � , `.�.
// D i.��; 
/.

8.3. Unipotent representations of the thrice punctured sphere

Let � < PSL.2;R/ be the (unique up to conjugation) lattice such that � nH2 is the thrice
punctured sphere. Then � admits a presentation

� D hc1; c2; c3 W c3c2c1i;

where c1, c2, c3 are parabolic elements representing the three inequivalent cusps of � .
Already, in this elementary example we are able to illustrate interesting features. For every
˛ 2 R, we construct maximal framed representations �˛W�! Sp.4;H .R//, where H .R/
is the Hahn field with exponents R (see Example 6.2 (4)), that have the following pro-
perties:

(1) for ˛ � 1=2, the corresponding length functions 
 7! L.�˛.
// are not propor-
tional, and hence the corresponding currents ��˛ are distinct in the space of pro-
jectivized currents;

(2) for ˛ 2 Q, the associated geodesic current ��˛ is a multicurve.
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To this end, we use the explicit coordinates obtained by Strubel on the set of Sp.2n;R/-
conjugacy classes of maximal representations of � into Sp.2n;R/. Namely, let

xB WD ¹A 2 GL.n;R/ W spec.A/ � ¹z 2 C W jzj � 1ºº;

where spec.A/ denotes the set of eigenvalues of A, and

R D ¹.X1; X2; X3/ 2 xB
3
W X3

tX�12 X1 is symmetric positive definiteº:

Then, given X WD .X1; X2; X3/ 2 R, the formulas

�X .c1/ D

�
X1 0

X1 CX
�1
2

tX3
tX�11

�
;

�X .c3/ D

�
tX�13 �tX�13 �X

�1
1

tX2
0 X3

�
determine a representation � ! Sp.2n;R/ that is maximal [40, Theorem 2]. Moreover,
every maximal representation of � into Sp.2n;R/ is conjugate to a �X for X 2 R and
Sp.2n;R/-conjugacy classes of maximal representations correspond to O.n/-conjugacy
classes in R for the diagonal conjugation action of O.n/.

If now F is a real closed field, we set

xBF D
®
A 2 GL.n;F/ W spec.A/ � ¹z 2 F.

p
�1/ W jzj � 1º

¯
and

RF WD ¹.X1; X2; X3/ 2 xB
3
F W X3

tX�12 X1 is symmetric positive definiteº:

The following gives a source of maximal framed representations over any real closed
field F.

Proposition 8.2. For everyX WD .X1;X2;X3/ 2RF, the formulas for �X .c1/ and �X .c3/
define a maximal framed representation �X W� ! Sp.2n;F/.

The proof of Proposition 8.2 is beyond the scope of this paper. We just mention that it
is an easy application of the Tarski–Seidenberg principle (see [5, Proposition 5.1.3]) and
the fact that R parametrizes a semi-algebraic subset of Hom.�; Sp.2n;R//; the principle
implies that since �X W � ! Sp.2n;R/ is maximal framed for any X 2 R, for any real
closed field F containing R and any X 2 RF, the representation �X W � ! Sp.2n; F/ is
maximal framed as well (see [11] for further applications of the Tarski–Seidenberg prin-
ciple to representation varieties).

We are interested in the case in which �X .c1/, �X .c2/ and �X .c3/ are all unipotent,
which is equivalent toX1, �X2,X3 being unipotent. This is never the case if nD 1 as one
can see from the above formulas, while already for Sp.4;R/ there are interesting examples
with unipotent boundary holonomy. We restrict here to the subset of R consisting of triple
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.X1; X2; X3/ such that X1, �X2, X3 are unipotent and X3tX�12 X1 D Id. The quotient by
O.2/-conjugation of such triples can be parametrized by´�

1 4
x

0 1

�
;

 
�3C y �x
.y�2/2

x
1 � y

!
;

 
1C y y2

x

�x 1 � y

!
; x > 0; y 2 R

µ
:

The corresponding matrices are then

�X .c1/ D

�
X1 0

X1 CX
�1
2

tX3
tX�11

�
D

0BB@
1 4

x
0 0

0 1 0 0

2 4
x

1 0

�
4
x

2 �
4
x

1

1CCA ;

�X .c3/ D

�
tX�13 �tX�13 �X

�1
1

tX2
0 X3

�
D

0BBB@
1 � y x �2 �x � y2

x

�
y2

x
1C y x C y2

x
�2

0 0 1C y y2

x

0 0 �x 1 � y

1CCCA :
The above formulas allow us to consider �X as a representation of � with coefficients in
the ring RŒx; 1

x
; y�. Now for every ˛ 2 R, we consider the ring morphism of RŒx; 1

x
; y�

into the Hahn field H .R/ defined by sending x to x and y to x˛ . In this way, we obtain
for every ˛ 2 R a representation �˛W� ! Sp.4;H .R//. It is easy to verify that the triple
X D .X1; X2; X3/ with y D x˛ is in RH.R/ and it follows from Proposition 8.2 that �˛
is maximal framed. For the computation of the length function L, it is not difficult to see
that if g 2 Sp.4; F/, where F is real closed non-Archimedean with an order compatible
valuation, then

L.g/ D �v.T .g//;

where T .g/ D .trg/2 � trg2 � 4. In our case, we obtain

T .�˛.c
�1
1 c3// D 4.4x

2
C 32x�4C4˛ C .18C 8x2˛/C 4x�2.16C 12x2˛ C x4˛//;

T .�˛.c
�1
1 c2// D 4.50C 4x

2
C 8x2˛ C 4x�2.16C 12x2˛ C x4˛//;

therefore

v.T .�˛.c
�1
1 c3/// D min.�2;�4C 4˛;�2C 2˛/ D

´
�2; ˛ � 1

2
;

�4C 4˛; ˛ � 1
2
;

v.T .�˛.c
�1
1 c2/// D min.�2;�2C 4˛;�2C 2˛/ D

´
�2; ˛ � 0;

�2C 4˛; ˛ � 0:

We deduce that for ˛ � 1=2, the length functions 
 7! L.�˛.
// are distinct even when
considered up to positive scaling. It is easy to verify that

Q.�˛/ D

8̂̂<̂
:̂

Q.x˛/ if ˛ 2 Q X ¹0º;
Q.x/ if ˛ D 0;

Q.x; x˛/ if ˛ … Q:
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As a result, the image of the valuation is

v.Q.�˛// D

8̂̂<̂
:̂
˛Z if ˛ 2 Q X ¹0º;
Z if ˛ D 0;

ZC ˛Z if ˛ … Q;

which implies by Theorem 1.4 that the geodesic current corresponding to �˛ is a multic-
urve if ˛ 2 Q.
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