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Proper proximality among various families of groups
Changying Ding and Srivatsav Kunnawalkam Elayavalli

Abstract. In this paper, the notion of proper proximality (introduced by Boutonnet, loana, and
Peterson [Ann. Sci. Ec. Norm. Supér. (4) 54 (2021), 445-482]) is studied and classified in various
families of groups. We show that if a group acts non-elementarily by isometries on a tree such that,
for any two edges, the intersection of their edge stabilizers is finite, then G is properly proximal.
We show that the wreath product G ? H is properly proximal if and only if H is non-amenable. We
then completely classify proper proximality among graph products of non-trivial groups. Our results
generalize the recent work of Duchesne, Tucker-Drob, and Wesolek classifying inner amenability
for these families of groups. Our results also recover some rigidity results associated to the group von
Neumann algebras by virtue of being properly proximal. A key idea in the proofs of our theorems
is a technique to upgrade from relative proper proximality using computations in the double dual of
the small at infinity boundary.

1. Introduction and statements of main results

The goal of this paper is to provide several new examples of properly proximal groups.
The authors of [1] who introduced this property were motivated by the program of classi-
fying group von Neumann algebras. Proper proximality is a dynamical/geometric property
by nature, so it is independently of interest to group theorists and geometers. One advan-
tage of proper proximality is that it applies to a robust family of non-amenable groups,
including all lattices in non-compact semi-simple Lie groups. This, in particular, allowed
the authors of [1] to demonstrate the first W*-strong rigidity results for compact actions
of higher-rank lattices.

Theorem 1.1 ([1, Theorem 1.1]). For all properly proximal groups G, the group von
Neumann algebra L(G) has no weakly compact Cartan subalgebras in the sense of Ozawa
and Popa [22). Moreover, for any free ergodic probability measure preserving (p.m.p.)
action 0 : G ~, (X, ), the crossed product L*°(X, ) x G admits a weakly compact
Cartan subalgebra A if and only if o is weakly compact, and, in this case, A is unitary
conjugate with L (X, ).

Our first main result proves proper proximality for a family of groups acting on trees.
Unless otherwise mentioned, all groups in this paper are countable.
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Theorem 1.2. Let an infinite countable G act on a countably infinite tree T such that
(1) the action is non-elementary on the Bowditch compactification AT
(2) for any pairs of distinct edges e, f € E(T), one has Stab(e) N Stab( f) is finite.
Then, G is properly proximal.

The most natural examples of groups with the above phenomenon arise from funda-
mental groups of graphs of groups via Bass—Serre theory. Particular cases of these include
amalgamated free products and HNN extensions. Recall that a subgroup H is almost mal-
normal in G if forany g € G \ H one has |gHg ! N H| < co.

Corollary 1.3. If G = Gy xg G, is a countable group such that H is almost malnormal
inGand |Gy : H] > 3, [G, : H] = 2, then G is properly proximal.

Corollary 14. If Gxg..x is an HNN extension of a countable group G over almost
malnormal subgroups H and K and |G : H] > 3, then Gxg .k is properly proximal.

Remark 1.5. A group is said to be a convergence group if it admits a non-elementary
convergence action (see [2]). In [9,21], many amalgamated products and HNN extensions
are shown to be convergence groups and hence properly proximal (see [1, Example 4.6]).
However, the above corollaries include examples that are not non-elementary convergence
groups. For instance, consider G = (G ') xr (G, '), where G and G, are non-trivial
amenable groups and I' is any infinite countable group. Suppose that there exists a non-
elementary convergence action G ~ K on some compact space K; then as Py G; is
infinite amenable for i = 1, 2, there must exist a;, b; € K such that {a;, b;} is fixed by
Pr G set-wise. Since the normalizer of Pr G; is G; : ', we have G; ? T fixing {a;, b;}
as well. Now, taking any infinite sequence in I', we see from north-south dynamics that

{ar, b1} = {az, ba};
hence, G fixes {a1, a,} which contradicts the fact that the action is non-elementary.

Remark 1.6. We would like to point out for the particular cases of groups in Corollar-
ies 1.3 and 1.4, the consequence of Theorem 1.1 is weaker than what is already known
in the literature due to work of Ioana in [17] and subsequently Vaes in [29]. Indeed,
they show the absence of any Cartan subalgebras for these examples, as opposed to just
weakly compact Cartan subalgebras. However, there are additional applications to show-
ing proper proximality that do not follow from existing results, such as classifying the
W*-equivalence classes of inner amenable groups (see [19]).

Our second main result is the following theorem.

Theorem 1.7. Let G be a non-trivial group and H an infinite group. Then, G ! H is
properly proximal if and only if H is non-amenable.

As a consequence of the above theorem (in combination with Theorem 1.1), we deduce
the absence of weakly compact Cartan subalgebras in Bernoulli shift crossed products
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of non-amenable groups. This result is in the flavor of the well-known open question
[18, Problem III] of whether such crossed products have unique Cartan subalgebra up to
unitary conjugation.

The proofs of the above two results use the double dual characterization of proper
proximality to upgrade from proper proximality relative to certain malnormal subgroups.

Our third main result is a complete classification of proper proximality for graph prod-
ucts of non-trivial groups. We provide the following algorithm to decide if a graph product
of groups is properly proximal.

Theorem 1.8. Let I be a finite graph, and denote by V(I') the vertex set of T'.
If|V(T)| = 2, then T'(G) is properly proximal if and only if

(1) vy is disconnected to vy and |Gy, | = 3 for some i;
(2) vy is connected to v, and Gy, are properly proximal for each i = 1,2.
If [lV(I)| = 3, T'(G) is properly proximal if and only if one of the following holds:

(1) T isirreducible (i.e., there does not exist a non-empty strict subgraph S such that
forallv € V(S) andu € V(S°), (v,u) € E(I')).

(2) T is reducible, and S is a non-empty strict subgraph S such that, for all v €
V(S) and u € V(S°), (v,u) € E('), and T's(G) and I'sc(G) are both properly
proximal.

Note that since proper proximality implies non-inner amenability, the above theorem
generalizes [13, Theorem 4.14] where the same classification result is obtained in the
context of inner amenability.

Note also that from Theorem 1.8 we immediately deduce the following corollary.

Corollary 1.9. Arbitrarily finite graph products of properly proximal groups are properly
proximal.

Rigidity properties of graph products of groups have gathered considerable interest
recently. For instance, [7] shows primeness results for the group von Neumann alge-
bras associated to many graph products of groups. Also, [6] shows strong solidity and/or
absence of Cartan for classes of Hecke von Neumann algebras associated to some graph
products. As a consequence of Theorem 1.8, we obtain several new examples of groups
satisfying the conclusion of Theorem 1.1.

Moreover, if one has a combination of weak amenability and proper proximality, we
can deduce the absence of Cartan subalgebras and €-rigidity in the sense of [23]' (see
[1, Theorem 1.5]). In [24], Reckwerdt shows that graph products of weakly amenable
groups with Cowling—Haagerup constant 1 continue to be weakly amenable. Therefore,
we obtain the following corollary.

By €-rigidity for G, we mean that L>(X, 1) x G admits a unique Cartan subalgebra up to unitary
conjugation for any free ergodic p.m.p. action 0 : G ~ (X, ). See [23] for more details.
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Corollary 1.10. Let I'(G) be a graph product of groups that is properly proximal, and
further assume that the vertex group G, has Cowling—Haagerup constant 1 for all v €
V(). Then, L(I'(G)) admits no Cartan subalgebras. Moreover, I'(G) is €-rigid.

We ask the following general question in the context of our result above.

Question 1.11. Which graph products of groups do not admit Cartan subalgebras in their
group von Neumann algebras?

After circulating an initial version of this preprint, the second author and I. Chifan
answered the above question in [8].

2. Preliminaries

2.1. Graph products of groups

Throughout this paper, we denote by I' a non-empty finite simple (every edge connects
two distinct vertices) undirected graph, with vertex set V(I") and edge set £(I"). For an
edge e, for convenience, denote by e1, ¢, the endpoints of the edge. For v € V(T'), its link
is S, ={w € V(I') | (v, w) € E(I")}. For any two vertices v, w € V(T'), let d(v, w) €
N U {oo} be the length of the shortest path between v and w. For any subset T C V(I),
denote the induced subgraph on T by I'r.

The radius of a graph I is given by

r(I = Uelgfl") leIJ/I()I‘) d(u,v).
And a graph T is called irreducible if the complement graph I'° (i.e., the graph consisting
of the same vertices, and (u, v) € E(I'°) if and only if (u,v) ¢ E(I")) is connected.
Given I' as a graph and {Gy}yey(r) as a family of countable groups labeled by the
vertex set of I, the graph product denoted by G = I'(G) is the quotient group of the free
product *ycy )Gy, with relations [g,h] = 1 forall g € G, and h € G, with (u,v) € E(T").

Definition 2.1. Consider an amalgamated free product group G| *g G,. Choose 7; as a
transversal for the cosets {H x : x € G;}. A normal word is a word g = ht; -- -1, where
heH,k>0,andt; € T;; \ {1} forsomei; € {1,2}andi; #i;j41forl1 < j <k—1.

In amalgamated free products, it is well known that every element can also be repre-
sented by a unique normal word (see [4, Theorem 3.7]). As is the case for free products,
elements in graph products also admit normal forms.

Definition 2.2 ([15, Definition 3.5]). Let G = I'{Gy }yey(r) be a graph product of groups.
A word g182,...,8n € G is said to be reduced if the following hold.

(1) gi € Gy, foralli € {1,2,...,n}, where v; € V(I').

(2) gi # 1foralli € {1,2,...,n}.
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(3) Foranyi <k < j,if

(8i.8i+1] =[gi. git2]l = =[gi.gx] =1

and
(8k+1. 8] = [8k+2.8/]1 = = [gj-1.8]] =1,
then v; # v;.
Theorem 2.3 ([15, Theorem 3.9]). Let G = I'{Gy }yev(r) be a graph products of groups.

Then, each non-trivial element g € G can be uniquely (up to commuting segments) ex-
pressed as a product

g — gl .o .gn’
where g1 -+ gn is a reduced word.

Graph products decompose naturally as amalgamated free products. We record this
below in the following lemma.

Lemma 2.4. Let I'(G) be a graph product, and let v € V(I'). Then, I'(G) splits as an
amalgamated free product:

['(G) = Ts,uw}(G) *15,(6) Tvanw (G).

2.2. Proper proximality
As stated in the introduction, the family of properly proximal groups is a robust family
including the following classes of groups:
(1) Non-amenable bi-exact groups.
(2) Non-elementary convergence groups.
(3) Lattices in non-compact semi-simple Lie groups.
(4) Groups admitting a proper 1-cocycle into a non-amenable representation.
(5) Groups acting properly non-elementarily by isometries on proper CAT(0) spaces.
(6) Non-elementary mapping class groups.
(7) Groups measure equivalent to any of the above.

Items (1) to (4) are results of [1], items (5) and (6) are results of [16], and item (7) is
due to [19].

We say a sequence {g,}neN € G goes to infinity relative to a countable family of
subgroups {H;};ey, denoted by g, — co/{H;}ies, if for any t;, t, € G and any i € I,
there exists N € N such that foralln > N, g, ¢ t; Hit>.

Consider the C*-subalgebra co(G, §) C £>°(G) consisting of functions f such that
forall g, — 00/S, f(gn) — 0, where S = {H;};<;. It contains the ideal ¢ (G) consisting
of functions vanishing at infinity. Observe also that co(G, §) is globally left and right G
invariant. Therefore, £°°(G)/co(G, §) is isomorphic to C(Xs), where X is a closed left
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and right invariant subset of the Stone—Cech boundary AG \ G and is called the boundary
piece associated to a collection of subgroups §.

Definition 2.5 ([1, Theorem 4.3]). Given a group G and a countable family of subgroups
S, we say G is properly proximal relative to § if one of the following equivalent conditions
holds:
(1) There is an action G ~, K by homeomorphisms on a compact Hausdorff space
K such that there is no G-invariant probability measure on K and there exists a
probability measure 1 € Prob(K) with

k*
Xs =0,G := {weAG\Gl lluim g-n—(gh)-nzOforanyheG}.
gow

(2) There are actions by homeomorphisms G ~, K;,i = 1, ...,k on compact Haus-
dorff spaces K; such that there is no G-invariant measure on any K; and there
exists a probability measure 1; € Prob(K;) with Xg C Uf-;l 0y, G.

(3) There is no left-G invariant state on ({>°(G)/co(G, $))%" (i.e., the right-G invari-
ant subspace of £°(G)/co(G, S)).

(4) There is no left-G invariant state on (((*®(G)/co(G, 8))**)%".

The group G is properly proximal if it is properly proximal relative to the trivial sub-

group.
Note that, from the above definition/theorem, if one has a finite collection of subgroups
{H;}!_, of G such that G is properly proximal relative to {H;} foreachi =1,...,n,

where | J!_; Xg, = AG \ G, then G is properly proximal.

2.3. Groups acting on trees

We say that an action of G on a set X is non-elementary if it does not preserve any set of
cardinality at most 2.

Given a simplicial tree T, let AT denote the compactification introduced in [3] (see
[5, Section 5.2] for details). The compactification AT is defined to be V(T') U 9T as a set,
where 07 is the Gromov boundary. For each x € AT and each finite set F C V(T), set

Ux,F)={y e AT | [x,y]NF = @3} U {x},
where [x, y] denotes the unique geodesic path between x and y. Then,
{U(x, F)| F C V(T) finite}xeaT

forms a basis for the Bowditch topology on AT. AT equipped with this topology is
compact and Hausdorff, and any isometric action G ~, T extends to an action by homeo-
morphisms on AT (see [5, Proposition 5.2.5]).

If G is an amalgamated free product or HNN extension, then we have an action by
homeomorphisms of G ~, AT, where T is the Bass—Serre tree associated to G (see [25]).
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Also note that if 7' is countable, then the topology on AT is second countable, hence
metrizable, as the basis may be taken as {U(x, F) | F C V(T) finite}xcy(r).

3. Proofs of main theorems

3.1. Proofs of Theorems 1.2 and 1.7

The proof of Theorem 1.2 splits into two steps. The first step is to establish proper prox-
imality relative to the edge stabilizers, and the second step is to upgrade this to proper
proximality using the malnormality condition. The way we accomplish step (1) is by
obtaining a relative north-south dynamics for the action on the Bowditch compactification
of the tree. For step (2), we use the double dual proximal space ((£*°(G)/co(G, 8))**)r
as a filler space to create several right invariant projections that are indexed by left cosets
of the edge stabilizers in §. Under the malnormality assumption, we see that these are
orthogonal projections. From step (1), we see that any G-invariant state vanishes on the
complement of the sum of these projections. To conclude, we G-equivariantly embed
C(AT) into ((£>°(G)/co(G, 8))**)°r along these projections. This contradicts the fact
that G ~ AT is non-elementary. A modification of the above step (2), in combination
with a technical lemma adapted from [5], gives us Theorem 1.7.

We begin by showing the relative north-south dynamics result described above. We
remark that a result in this flavor in the setting of graphs of convergence groups was
recently obtained by R. Tomar in [26, Section 4].

Proposition 3.1. Let G be a group acting on a tree T with |V (T)| = oo by isometries. Set
S ={Stab(e) | e € E(T)}, and suppose that g, — 00/S. Then, there exists a subsequence
(gn,) and points a, b in AT such that, for any x € AT \ {b}, we have limy_,oo8n, X =
a. Furthermore, if the action G ~ AT is non-elementary, then G is properly proximal
relative to S.

Proof. For any such a sequence {g,}, one may pick a vertex o € V(T') such that |{g,0}|
and |{g; 'o}| are infinite. Indeed, for each edge ¢ of T there are only finitely many n € N
with e € g, - [u, v], since n — gye is finite to one for any edge e between two vertices
u and v. Thus, there exists a subsequence {gyn, }x and distinct vertices u and v such that
k + gn,u and k — gp, v are both one to one. Since we also have g;kl — 00/§, the same
argument shows that either |{g;k1u}k| = oo or |{g;k1v}k| = 00.

Now, pick a subsequence {gy, } such that lim g,, 0 = a and lim g, klo =b.

Casel. a e AT\ T.

Since d (o, gn,0) = d(g;klo, 0), b is also in AT \ T. The argument in this case pro-
ceeds similarly to the argument in [28]. Let U, = U(a, {e}) and U, = U(b,{ f}) be basic
open sets in AT, where e and f are edges with endpoints e, e; and f1, f>, respectively.
For v € AT, denote by B, the geodesic from o to v. Denote by (x, y), the Gromov prod-
uct, given by the distance between o and the center of the unique geodesic tripod formed
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by x, y, and o. For all ¢ ¢ Uy, i.e., satisfying [b, c] N [ f1, f2] # 9, we have
Jliminf (B, (m). e (n))o = max{d(o, f1).d(o, f2)} =: di.

Define V(b;2d1) = {x € AT | liminfy, n—oo{Bx(m), Bp(n))o > 2d1}. From the above,
we have Uy C V(b,2d;)°. Now, let ¢ € V(b,2d;). We have

liminf (B, (m), gn, Bc(n))o = min{liminf(B,(m), gu, 0)o,liminf(g,, 0, gn, Bc(1))o}-
m,n—>o0 m—0oQ n—>0o0
Note that limy, o0 (B (1), g4, 0)0 — 00 as k — oo; also,
(8n 0. 8mBe(n))o = <Oa/3c(”))gn—klo — ©

as k — oo since ¢ ¢ V(b,2d;). Thus, VR > 0, there exists Ko(R) such that, for all
k > Ko(R), we have g,, (V(b,2d1)) C V(a, R).

Now, suppose that, for all k > 0, there exists ko > k and ¢ € U such that gy, (c) ¢
U(a, {e}); that is,

Lim nf (Ba (2), g, fe(m))o < min{d (0, e1), d(0, ¢2)} =: ds.

Take R =2d,. Then, gu, (c) £ U(a,{f}),but g,, (c) € V(a,2d,) forall k > K(R), which
is a contradiction. Hence, we have the conclusion in the case thata € AT \ T.

Case 2. a € T.Let x € AT. We claim that limg _, o, g5, (X) = a.
First, suppose that x € T. For any open set U(a, {e}), we have the following:

|{n € N : gyo0,x] > e}| < o0.

Indeed, if the above set was infinite, then there would be an infinite set / C N with g;ile €
[0, x] fori € I. Since [o, x] is a fixed finite-length path, this contradicts the fact that g,
escapes all edge stabilizers. Now, since g,(0) — a, we have that 3N > 0 such that for
alln > N, gno € U(a, {e}). Hence, for n sufficiently large, we have that e is not in the
segment [g,0, g, x] and e is not in the segment [g,0, a]; hence, e is not in the segment
[gnx, a] which gives us what is required.

Suppose that x € 7. We have that {g, 0} is bounded, and hence, let

do = supd(a, gn0).

Given an open set U(a, {e}), let d; = d(a, e1) + 1, where d is the combinatorial metric
onT.Let N =dy+d; + 1. For any n > N, we apply the previous argument to the
point Bx(n) to obtain that e ¢ g,,[(0), Bx(n)] for large m. Moreover, due to the bound
ond(a,e), we have that e ¢ [Bx(n), x].

To show relative proper proximality, consider a sequence {g,} with g, — 0o/S. As
mentioned in [2, Section 2], if G ~ AT is non-elementary, then the limit set is perfect;
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i.e., there exists a compact Hausdorff perfect set inside AT, which implies the existence of
some diffuse measure. Fix a diffuse probability measure n on AT, and leta,b € AT and
{gn, } be as in the above arguments. By [14, Lemma 8.3], forany & € G, limg o0 gn, h1) =
84, and thus, Xs = 9, G. Moreover, there is no G-invariant probability measure on AT
Indeed, if there were a G-invariant probability measure i, then we see from the north-
south dynamics that p({a, b}) = 1, where a and b are some north and south poles. This
contradicts the fact that the action is non-elementary. ]

Applying the above proposition to the Bass—Serre tree associated with an amalgamated
free product, we obtain the following corollary.

Corollary 3.2. Given Gy, G,, and H with H < Gy, i = 1,2. Then, G = Gy *g G, is
properly proximal relative to H if [G; : H] > 3 and [G; : H] > 2 for {i, j} = {1,2}.

Proof. This follows by considering the standard action on the compactification of the
Bass—Serre tree associated to the amalgamated free product. This action is non-elementary
on AT because the boundary is infinite, and orbits of the action on the boundary are
infinite. Moreover, the edge stabilizers are precisely conjugates of H . ]

The following is a direct proof of the above corollary without involving Bass—Serre
theory. We would like to point out that the technical difference between non-inner
amenability and proper proximality is clearly seen in this proof. Indeed, for proper prox-
imality, one is required to establish a paradoxical decomposition on the small at infinity
boundary as opposed to the entire Stone—Cech boundary for non-inner amenability.

Alternative proof of Corollary 3.2. Fix a choice of transversals
T ={e} Ultitier

forcosets {Hx : x € G} and S = {e} U {s;},es for cosets { Hx : x € G,}. Denote by p;
the characteristic function on the set of elements g whose normal form begins with h¢;,
where h € H, i € I; similarly, let p, be characteristic function on the set of elements g
whose normal form begins with hs;, where h € H, j € J.

Claim. p; € ((®(G)/co(G, H))C" fori = 1,2.
Suppose that there exist some g € G and a sequence g, — oo/H such that

lim p1(gn) = p1(gng) 7 0;
n—oo

then we may extract a subsequence, still denoted by (g, ), with
lim pi(gn) — p1(gn8) = 1.
n—>o00

Let gn = hut1,nS1,n + * tk, nSk, ,n b€ the normal form of each g,, where h, € H, t;, €
T\ {e}, and S;, € S\ {e}, with #1 , and s, , possibly being e. Note that since g, —
oo/H, {h; gy | n € N} is an infinite set. Set g = ht151 -+l Sm to be its normal form.
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As limy, 00 p1(gn) — p1(gng) = 1, for large enough n, we have #1, € T \ {e} while
gng ¢ supp(p1). Note that

8&n8 = hntl,nsl,n e '[k,,,nsk,,,nhtlsl “ImSm

= 1¢! U LIRS ! 4 e
= hah't] 4S1 0 Uy Sk 11517 IS,

where 7, € T \ {e}, slf’n € § are obtained as we move 4 to the front. By our assumption,
gng ¢ supp(p1);ie., t{’n would disappear after possible cancelations for all large enough
n; however, g is given, while {/; 1 g, | n € N} is an infinite set, we arrive at a contradiction.
This proves the claim.

Now, take g1,82 € G; \ H and g3 € G; \ H, which is allowed by the assumption that
[G; : H] = 3 and [G; : H] > 2. Notice that g1 p1 + g2p1 < p2, while gz3p, < p; and
p1 + p2 = 1. If there exists a left G-invariant state ¢ on (£°(G)/co(G, H))°", then

2¢0(p1) = ¢(p2) = ¢(p1):
ie., o(p1) = ¢(p2) = 0, while 1 = ¢(p1 + p2), which is a contradiction. ]

Proof of Theorem 1.2. Suppose that G is not properly proximal. Then, there exists a left
G -invariant state ¢ on the space (({>°(G)/co(G))**)% . Let {H;}icr be a family of sub-
groups of G such that

| [{gHig™ | g € G} = {stab(e) | e € E(1)}.
iel
Set pi = \/; seG 11H;s to be a projection in ((£>° (G)/co(G))**)C" . From Proposition 3.1,
we obtain that ¢(p) = 1, where
P = \/ Pi-

iel
Indeed, we have that G is properly proximal relative to § = {stab(e) | e € E(¢)}, and so,
there is no left invariant state on ((£*°(G)/co(G, §))**)° . But observe that

((L°(G)/co(G, §))*)% = (1 = p)(L™(G)/co(G) ",

and hence, ¢(1 — p) =0.Fort € Gandi € I, put

pei = \/ lims € (E°(G)/co(G)*™)7",

seG

and we have \/, . pr,i = pi. Let { F,,} be a sequence of increasing finite subsets such that
U, Fn = G.Foreacht € G, consider projections p; i, = l:m,F, € (£°(G)/co(G))**,
and then lim, o0 Pr,in = p:,i in SOT.

Note that [tH;s N Hj| < coforany i, j € I (notnecessarily distinct), s € G,andt € G
such that tH;¢7! # H;; indeed, suppose that there exists some ths € tH;s N H;. Then,
for any th's € tH;s N Hj, we have ths(th’s)™! = thh/~'t~! € tH;1=' N H;, which is
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finite as for any pair of distinct edges e, f € E(T'), Stab(e) N Stab( f) is finite. Therefore,
we have p;;nps.jn = 0 forall ¢, s € G such that tHit=! #£ sHjs*I. Since (py,i,») and

(ps,j,n) are bounded, lim, o0 Pr.in Ps,jn = Pt,iPs,j>1-€., PriDs,j = 0.
Consider a G-equivariant unital embedding

Y LP(V(T)) 38y > Y 8e/2 € L°(E(T)),

ecE,

where E, = {e € E(T) | v € e}. Given e € E(T), there exists a unique i € I/ and some
t € G such that stab(e) = rH;t~'. Thus, p;; is a unique projection corresponding to e,
and we denote it by p(e). Therefore, we obtain an embedding

L LP(E(T)) = ((L®(G)/co(G))**)Cr

given by ((6.) = p(e), and it is easy to check that this embedding is unital and G-
equivariant. Finally, as C(AT) C £*°(V(T)), we have a G-invariant state ¢ o ¢ o ¥ on
C(AT), which contradicts the assumption that G ~, AT is non-elementary. ]

In the above proof, we actually showed the following useful tool.

Lemma 3.3. Let H be a subgroup of G such that G is properly proximal relative to H.
Suppose that H is almost malnormal; then G is properly proximal.

For the convenience of the reader, we extract the argument here: if G is not prop-
erly proximal, there exists a left G-invariant state ¢ on the space ((£°(G)/co(G))**)%".
Setting p = \/, sec 1:Hs to be a projection in ((£®(G)/co(G))**)Cr, we see that

((L(G)/co(G, H))™)% = (1= p)(L>(G)/co(G))",

and hence, ¢(1 — p) = 0 from the relative proper proximality hypothesis. For ¢t € G,
setting

pe = \/ Lis € (L%°(G)/co(G))*) ",

seG

we have \/,.g pr = p. As in the above proof, from the almost malnormality of H, we
see that pg is orthogonal to p, for any g ¢ H. Therefore, we obtain an embedding

L L®(G/H) — p((E®(G)/co(G))**)°

given by 1(§4) = pg, and it is easy to check that this embedding is unital and G-equivariant.
Composing with ¢, we obtain the co-amenability of H < G, which contradicts Lemma
3.3 of [27].

Lemma 3.4. If G is a non-trivial group and H is non-amenable, then
K=G!H

is properly proximal relative to H .
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Proof. We use a trick due to Ozawa which he uses to study bi-exactness of wreath prod-
ucts (see [5, Section 15.3]). Fix a proper length function | - |z on H and a proper length
function | - |g. For yt € G ¢ H, where y € Py G and ¢ € H, define { : K — (1 (H),
given by

min{|p|g. [t 7' pla} + ly(p)le if p € supp(y).

t =
¢y)(p) {0 if p ¢ supp(y).

From [5, Lemmas 15.3.7 and 15.3.8], we see that { satisfies

J§sx0) =Ll _
L]

for all 5,7 € K. Hence, by the first computation in the proof of [5, Lemma 15.2.6], we see
that there exists a K-equivariant u.c.p. map from £*°(K/ @y G) to the relative proximal
space ({*®(K)/co(K, H))X. Hence, if K is not properly proximal relative to H, by com-
posing with this u.c.p. map, we obtain an H invariant state on £>°(K/ Py G) = {>*°(H),
which contradicts the non-amenability of H. ]

Proof of Theorem 1.77. Observe that since G is non-trivial, H is almost malnormal inside
G ! H. Moreover, if H is non-amenable, from Lemma 3.4 and Lemma 3.3, we have that
G ¢ H is properly proximal, since H is never co-amenable inside G ¢ H. Indeed, we
may first identify (G ¢ H)/H with @ H as H-sets. Then, consider the following map
p X (H) — L (P; H) given by

2 tesupp(e) S (@)
|supp(€)|
forany f € £*°(H) and § € @, H, and clearly, p is unital and H equivariant.
Conversely, if H is amenable and infinite, then from [13, Theorem 3.9 (1)], we see
that G ¢ H is inner amenable and hence not properly proximal. ]

p(f)E) =

3.2. Proof of Theorem 1.8

The main idea in proving Theorem 1.8 is to consider various amalgamated product decom-
positions in a graph product and obtain relative proper proximality relative to each of these
amalgams. Then, we show that the Stone—Cech boundary of the graph product is filled by
each of these boundary pieces coming from the amalgams, thereby showing proper prox-
imality. The other key step is to show that if a product of groups is properly proximal,
then each of the groups has to be properly proximal. This is obtained by establishing a
natural isomorphism of the proximal spaces at the level of the double dual. The classifica-
tion result is then obtained by a careful analysis of some cases, given by the radius of the
graphs.

Given two subgraphs I';, I'; of a graph I', denote by I'; N I'; the subgraph of I'
generated by the vertex set V(I'1) N V(I'2). As a convention, I'(G) is set to be the trivial
group if V(T") = 0.
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Lemma 3.5. Let I'(G) be a graph product group with graph U and generating groups
{Gy | v e V(I')}. For any subgraphs T'1, I'z of I and g, h € T'(G), we have

T1(G) N gT2(G)h C | ei(T1 N T2)(G)d;

i=1
for some finite subset F = {c;,d; | 1 <i <n} C T'(G).

Proof. Given g,h € T'(G) with g = g1 ---gx and h = hy --- hy, as their reduced words,
respectively, let ' = {c;, d; } be the finite set consisting of words of the form ¢; = []; g;,
and d; =[] ; hi,., where (i) and (ix) are increasing. We claim that F' is the required set.
It suffices to show that, for every i, we have

T1(G) N eiT2(G)d; € | ) ¢j(T1 NT2)(G)d;.
ji=1

We show this by inductiononn(z) = [{t; | 1 < j <1, t; € G, forsome v ¢ I'; N 'z},
where t = t; ---1; is a reduced word in ['2(G) such that g¢h € I'1(G). The claim is true
forn =0, as ¢;jtd; € ¢c;(I'1 NT2)(G)d;.

Suppose that the claim is true forn < K, andletn = K + 1. As

n=| U twit=j<lyeG
v¢V(I‘mI‘2)

we may assume that |{; | 1 < j </,t; € Gy,}| > 1 for some vo ¢ V(I'y N I';). For a word
w, define Ug(w) to be the ordered set of letters in w (ordered by the left-to-right order in
the word w) that do not belong to G,. For an ordered set of letters u, denote by ur(g) the
product of letters of u in I'(G). Denote by w* the reduced word of c¢;?d;, and note that
do(w*)r) = w* as¢;td; € T'1(G).

Claim. f)O(Citdi)F(G) = CitdiI‘(G) =w*.

Denote the word c;td; by p1p2 -+ pn, and suppose that p;,, ..., p;, are letters that
belong to Gy,. Define words wy = py--- pj, -1, w; = Dij_+1--pi—1forl < j < d and
Wg+41 = Piy+1 - Pn. Upon individually reducing these words, we obtain the words w*.
Now, we have

citdirG) = Wy Piy W3 Pir -+ Pig w2+1r(G)'

We may assume that w} . ©) does not commute with G, for some 2 < j < d. Then,
: i i = * : .o . 3
Wi k6 neither commute with @ = wy pi, -+ pi;_; (g, nor with

b= piwii1 Wity
It follows that pjpjy1---pg = 1 and py--- pj—1 = 1. Suppose otherwise, and then

C,'tdip((;) = aw;bF(G),
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while a, b ¢ ker(my,), Where 1y, is the canonical surjection from I'(G) — Gy, . Since w_;.k
does not commute with G, we see that ¢;td; () ¢ '1(G), which is a contradiction. We
proceed recursively to conclude the claim.
Now, it suffices to show 0¢(c;td;) € U;’=1 ¢; ('t N T'2)(G)dj, and this follows from
the inductive hypothesis as
vo(citd;) = cirvo(t)dyr
for some other i/, and n(0y(t)) < n(t) = K + 1. m

Lemma 3.6. Let I" be a graph. Then,

U Xrs, ) = AT(G).
veV(T)

Proof. Set V(I') ={v; |[i =1,...,n}and I'; = sy, for each i. Note that this statement

is equivalent to
n

M o(T'(G).Ti(G)) = co(T(G)).

i=1
and thus, it suffices to show that | (7_, s; [ (G)z;| < oo for any s;, 1 € T'(G).
By Lemma 3.5, "/, siTi(G)t; € Uj_, g5 (i<, Ti)(G)h; for some finite subset
{gj.hj |1 < j <m}of I'(G). Note that ()}, Sy; = @, and thus,

(ﬂny®=wu
i=1

ie., iz, siTi(G)t; is finite. n

Proposition 3.7. Let " be a finite graph with |V (I')| > 3. The following are equivalent.

(1) T satisfies the following condition: r(I') is at least 2 and there does not exist a
pair of vertices vy, vy € V(I') such that (u,v;) € E(T') forallu € V(I') \ {vy, v2},
andi = 1,2.

(2) For all choices of non-trivial groups G, v € V(I'), the graph product T'(G) is
properly proximal.

Proof of Proposition 3.7. First, we show that (2)=-(1). Suppose that there is a radius 2
graph such that there is a pair of vertices vy, v, satisfying (u, v;) € E(T) for all u €
V(') \ {v1, vz}, and i = 1,2, then one can simply consider

Gy, = 227 = G,.
Since (v, v2) ¢ E(T"), we see that
[(G) = Za % Za X Tyr)\{v;,0}(G)

is inner amenable and therefore not properly proximal by [1, Proposition 4.11].
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For (1)=-(2), observe that, by Lemma 2.4, we have a natural amalgamated free product
decomposition: I'(G) = G, *xg G2, using the same notation. Since I satisfies (1), we have

max{[G; : H],[G> : H]} = oo,

and H is neither G nor G,. Then, it follows immediately from Lemma 3.6 and Corol-
lary 3.2. n

It follows directly that, for an arbitrary choice of non-trivial groups indexed by ver-
tices, I'(G) is properly proximal, provided that I" is an irreducible graph or a graph
satisfying r(I") > 3.

Proposition 3.8. Let " be such that r(I') > 2. Then, I'(G) either is properly proximal or
contains an infinite amenable Cartesian factor.

Proof. The only case to check is if I' has radius 2 and it does not satisfy condition (1)
of Proposition 3.7. That is, there exist vertices vj, v, such that S = V(I') \ {v1, va} is
connected to vy and v,. Then, since v; is not connected to v, (else it violates the radius 2

condition), we have
I'(G) = (Gy, * Gy,) x 's(G).

The left summand is either infinite amenable (Z, * Z,) or properly proximal (since they
are non-trivial free products). The above decomposition can be iterated on S and further
on, using the hypothesis. The result follows from the fact that properly proximal groups
cannot have infinite amenable Cartesian factors because then they are inner amenable
[1, Proposition 4.11]. [

We thank J. Peterson for suggesting the proof of the following proposition. A general-
ization of the result appears in [11].

Proposition 3.9. A direct product G = Gy x G, is properly proximal if and only if G,
and G, are properly proximal.

Proof. One direction is proved in [1, Proposition 4.10]. Define the projection
P ="\ loixig € (G)/co(G)*.
g€Gy

We claim that the following isomorphism holds:

o

P E®G1/co(G1))™ = p(t™®G/co(G))*™,
G2

where the direct sum is equipped with £°°-norm. Indeed, for any finite subset F' C G,
consider the isomorphism

Or : @ LG > (fiher = Jr € 16,xr ™G,
F
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where fF (g,h) = fu(g) for g € G1, h € F. Composing with the quotient map, one has
an isomorphism

OF : @PU®G1/co(G1)) = 1,xr (£°G/co(G)).
F

Furthermore, we may extend this map to a weak™ continuous isomorphism

OF : @(ﬁwGl/Co(Gl))** — 1G,xF(£*G/co(G))™.
F

For each (fh)neG, € @g,¢>*G1/co(G1))**, define O((f»)) to be the SOT limit
point of the net {OF ((f)ner)}F in p(£°G/co(G))**, where F ranges over all finite
subsets of G,; conversely, for pg € p({>®°G/co(G))**, set ©~!(pg) to be the weak*
limit of {@;l(lglxpg)}F in @Pg,¢*G1/co(G1))**. Thus, © implements the required
isomorphism, which is also G-equivariant by construction.

Now, by taking the G-right invariant subspaces in both sides, we have

0 Gy
((£®G1 /co(G1))**) V" = (EB(@“Gl/co(G))**) ~ p((£%G/co(G))™)".

G2

Now, suppose that there is a left G;-invariant state ¢ on ((£*°G1/co(G1))**)C'r, then
¢ 0 O~ ! is aleft G-invariant state on p((£*°G/co(G))**)%". Set

Y(f) =900 (pf)

for f € (L®G/co(G))**)Or, and we obtain a G-invariant state, which contradicts the
proper proximality of G. =

Proof of Theorem 1.8. In the case |I'| = 2, it follows directly from the fact that non-
amenable convergence groups are properly proximal [1] and Proposition 3.9.

In the case |V(I")| > 3, note that if " is irreducible, then r(I") > 2. The rest follows
from Propositions 3.7 and 3.9. ]

Remark 3.10. In [16] (see also [12, Remark 4.12]), it is shown that proper CAT(0)
cubical complex groups are properly proximal. Graph products admit natural actions on
CAT(0) cube complexes due to [10,20]; however, these actions are in general, not proper.
Thus, Theorem 1.8 cannot be deduced directly from [16].
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