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Twisted conjugacy in SLn and GLn over subrings of Fp.t/

Oorna Mitra and Parameswaran Sankaran

Abstract. Let 'WG ! G be an automorphism of an infinite group G. One has an equivalence
relation�' onG defined as x �' y if there exists a z 2G such that yD zx'.z�1/. The equivalence
classes are called '-twisted conjugacy classes, and the set G=�' of equivalence classes is denoted
by R.'/. The cardinalityR.'/ of R.'/ is called the Reidemeister number of '. We writeR.'/D1
when R.'/ is infinite. We say that G has the R1-property if R.'/D1 for every automorphism '

of G. We show that the groups G D GLn.R/; SLn.R/ have the R1-property for all n � 3 when
F Œt � � R ¨ F.t/, where F is a subfield of Fp . When n � 4, we show that any subgroup H �
GLn.R/ that contains SLn.R/ also has the R1-property.

1. Introduction

Given an endomorphism 'W G ! G of a group G, one has the '-twisted conjugacy
action of G on itself defined by g:x D gx'.g�1/. The orbits of this action are called
the '-twisted conjugacy classes. The cardinality of the orbit space R.'/ is called the
Reidemeister number of ' and is denoted by R.'/. When the orbit space is infinite, we
write R.'/ D 1. One says that G has the R1-property if R.'/ D 1 for every auto-
morphism ' of G.

The notion of Reidemeister number originated in Nielsen fixed point theory in the
1930s. There was renewed interest in Reidemeister numbers of endomorphisms of groups
since the work of Fel’shtyn and Hill [7]. The paper of Levitt and Lustig [21] showed
that non-elementary torsionless Gromov hyperbolic groups have theR1-property. Fel’sh-
tyn [6] extended this to all non-elementary hyperbolic groups. Gonçalves and Wong [14]
found examples of groups having exponential growth which do not have theR1-property,
disproving a conjecture of Fel’shtyn and Hill and also provided examples to show that
R1-property is not a ‘(coarse) geometric property’. They also obtained, in [15], applica-
tions of twisted conjugacy to nilmanifolds. The work of Gonçalves and Wong, motivated
by the work of Fel’shtyn, Hill, Levitt, Lustig, gave impetus to the problem of classification
of groups according to whether or not they have the R1-property. The appellation R1
seems to have been due to Taback and Wong [38]. Many classes of groups have been
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classified according to whether or not they have the R1-property. This is an interest-
ing classification problem because there is no specific method or procedure to decide
whether a given group or class of groups have the R1-property. The tools needed are
to be developed depending on the class of groups under consideration and have often
required results and techniques from different branches of mathematics. We mention as
examples geometric group theory [21], combinatorial group theory [13], Bass–Serre the-
ory [25],†-theory [11], dynamics of PL-homeomorphisms of the intervals, number theory
and †-theory [16], algebraic groups and Lie theory [27], etc.

In this paper, we address this classification problem for the class of general and spe-
cial linear groups, GLn.R/, SLn.R/, n � 3, over an integral domain R such that F Œt � �
R ¨ F.t/, where F is a subfield of Fp , p a prime. We consider only the case n � 3 here.
The groups GL2.R/, SL2.R/ required an entirely different approach, and it was shown
in [25] that GL2.FqŒt �/, GL2.FqŒt; t�1�/, SL2.FqŒt �/ have the R1-property.

We now state our main results.

Theorem 1.1. Let n � 3 and let F be a subfield of Fp . Let R be an integral domain such
that F Œt � � R ¨ F.t/. Then the groups GLn.R/, SLn.R/ have the R1-property.

Theorem 1.2. Let R be as in Theorem 1.1. Suppose that H is any group such that
SLn.R/ � H � GLn.R/. Then H has the R1-property in the following cases:

(a) n � 4,

(b) n D 3 and det.H/ � F �.

We have not been able to decide whether the R1-property holds for H as in The-
orem 1.2 when n D 3 and det.H/ is not contained in F �. See Remark 5.4 (i).

Our proof of Theorem 1.1 relies heavily on some classical results concerning general
and special linear groups over integral domains which are not fields, namely:

(i) the description, due to O’Meara [32], of the automorphisms of SLn.R/ and
GLn.R/, n � 3, which is valid for any integral domain R that is not a field,

(ii) the group SLn.R/, n � 3, is perfect and is generated by elementary matrices
when R is a Euclidean domain, see [35, Theorem 2.3.2],

(iii) some dynamical properties of the action of the group Aut.R/ of automorph-
isms of the ring R on SLn.R/, and, the crucial construction of certain sequence
of elements ¹xmº in SLn.R/ which are used in showing R.'/ D 1 for many
automorphisms ' of considered in our main theorems.

Some of our observations in Section 3.3 concerning Aut.R/ and its action on SLn.R/may
be of independent interest.

We shall prove Theorem 1.1 first for the case when F is a finite field Fq , in Section 4.2.
In this case, we prove that every outer automorphism Œ'� of G.R/ D GLn.R/ or SLn.R/
is represented by a convenient automorphism ' using O’Meara’s theorem. The proof in
this case crucially uses the observation that when ' is induced by an automorphism of
the ring R, it has finite order. We also show that, in this case, the fixed subgroup of '
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contains a subgroup isomorphic to SLn.FpŒt �/. In the more general case, it is not true that
the outer automorphisms are represented by finite order automorphisms. (For example,
automorphisms of G induced by a Frobenius automorphism of the ring R are not of finite
order when F is infinite.) Nevertheless, any automorphism that is induced by an auto-
morphism ' of the ring R restricts to an automorphism of Gq D G \ GLn.Rq/, where
Rq D R \ Fq.t/ for some q D pe . This allows us to extend our proof technique in case
when F is a finite field to the more general case when F � Fq . The proof of Theorem 1.1
in the general case is completed in Section 4.3.

Although the automorphism group of H as in Theorem 1.2 is not known to us, any
automorphism � of H restricts to an automorphism � 0 of SLn.R/. After choosing a con-
venient representative of the outer automorphism class of � , we find a subsequence of the
sequence ¹xmº of elements of SLn.R/ that are in pairwise distinct � 0-twisted conjugacy
classes and show that they remain in pairwise distinct � -twisted conjugacy classes in H ,
under the hypotheses of the theorem. The proof is given in Section 5.

Let P be the set of all prime ideals of F Œt � and let S � P . Denote by Rp the loc-
alization of R at the prime ideal p 2 P . Let K D F.t/ and let RS denote the subring
RS D

T
p2PnS Rp of K.

Let R be any ring such that F Œt � � R ¨ K. It can be seen, using the Euclidean
algorithm, that if f .t/=g.t/ 2 R, where f .t/; g.t/ 2 F Œt � have no common factors, then
1=g.t/ 2 R. So R is generated over F Œt � by a (possibly infinite) set of reciprocals of irre-
ducible polynomials in F Œt �. It follows that R D RS , where S � P consists of prime
ideals p generated by irreducible polynomials which are not invertible in R. Suppose that
F D Fq , S is finite, and R D RS , then SLn.R/ is an S -arithmetic subgroup of SLn.K/
and is a lattice in SLn.K1/ �

Q
p2S SLn.Kp/ when embedded diagonally, where Kp is

the p-adic completion of K for p 2 P and K1 D Fq..t�1//. See [23, p. 63, (3.2.5)].
It was shown in [27] that any irreducible lattice in a connected non-compact semisimple
real Lie group having rank at least 2 and with finite centre has the R1-property. In the
case of rank 1 lattices, the R1-property follows from the works of Levitt–Lustig [21] and
Fel’shtyn [6]. The present work may be viewed as a first step in classifying, according
to the R1-property, lattices in semisimple algebraic groups over complete local fields of
positive characteristics.

Recently, Garge and Mitra [10] have obtained results analogous to those of The-
orem 1.1 for the classical groups SOn.R/, n � 4, Sp2n.R/, n > 1, for any ring R such
that F Œt � � R ¨ F.t/, F � Fp , p � 3.

Our main theorems lend further evidence to the expectation that all non-amenable
S -arithmetic groups should have the R1-property.

Lang [20] has shown that if G is a linear connected algebraic group over an algebra-
ically closed field F of characteristic p > 0 and �WG.F /! G.F / is a Frobenius endo-
morphism, then the map g 7! g�1�.g/ is surjective. See also [37] for a more general result.
Thus, as has been observed in [9], every element is �-twisted conjugate to 1 2 G. Note
that when F is algebraically closed, the Frobenius endomorphism is an automorphism
of the underlying abstract group G.F /. So G does not have the R1-property. How-
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ever, restricting oneself only to algebraic automorphisms of a linear algebraic group G
over any algebraically closed field K, Bhunia and Bose [2] have shown that any connec-
ted non-solvable linear algebraic group has the algebraic R1-property, more precisely,
R.'/ D 1 for any K-automorphism of the algebraic group G. See also [1] for further
results on algebraic R1-property.

TheR1-property for linear groups over fields of characteristic zero was considered by
Nasybullov [29,30] and Fel’shtyn and Nasybullov [9], culminating in the result that a Che-
valley group of classical type over an algebraically closed field F of characteristic zero
has the R1-property if and only if F has finite transcendence degree over Q. When F is
any field of characteristic zero having infinite transcendence degree over Q, Fel’shtyn and
Nasybullov [9] have shown that any Chevalley group over F associated to an irreducible
system has the R1-property.

There is also vast body of work on nilpotent groups, abelian groups, polycyclic groups
etc. See, for example, [4, 5, 15, 33, 38].

Jabara [19, Theorem C] has shown that a finitely generated linear group that admits
a finite order automorphism ' with finite Reidemeister number is necessarily virtually
solvable. His proof makes use of the deep work of Hrushovski, Kropholler, Lubotzky, and
Shalev [18]. It should be noted that typically the groups G D SLn.R/;GLn.R/ with R as
in our main theorem are not finitely generated. See Section 3.1 for more details on finite
generation of G. When G is finitely generated, it is residually finite; see [22, Proposi-
tion 7.11, Chapter III]. When an automorphism ' of G has finite order, then by Jabara’s
theorem, we haveR.'/D1. However, even whenG is finitely generated, not every outer
automorphism is represented by a finite order automorphism.

2. Some basic results on twisted conjugacy

Let 'WG ! G be an automorphism of a group G. We shall denote by Œx�' the '-twisted
conjugacy class of x and by R.'/ the set of all '-twisted conjugacy classes in G.

We collect here some basic results concerning twisted conjugacy and theR1-property
which are relevant for our purposes. Let G be an infinite group (not necessarily finitely
generated) and letK � G be a normal subgroup. Let �WG!H be the canonical quotient
map whereH D G=K. Suppose that 'WG! G is an automorphism such that '.K/ D K
so that we have the following diagram in which the rows are exact and isomorphisms '0, x'
are induced by ':

1 ! K ! G ! H ! 1

# '0 # ' # x'

1 ! K ! G ! H ! 1

(1)

We recall that a subgroup K of G is characteristic in G if every automorphism of G
restricts to an automorphism of K.

The following two lemmas are well known. We refer the reader to [26, Lemmas 2.1
and 2.2] for a proof of Lemma 2.1.



Twisted conjugacy in SLn and GLn over subrings of Fp.t/ 943

Lemma 2.1. Suppose that 'WG ! G is an automorphism of an infinite group such that
the rows in (1) are exact and the homomorphisms '0, x' are isomorphisms. Then

(i) If R.x'/ D 1, then R.'/ D 1. In particular, if K is characteristic in G, then G
has the R1-property if H does.

(ii) Suppose that H is finite. Then R.'/ D 1 if R.'0/ D 1. In particular, if K is
characteristic and has finite index inG, thenG has theR1-property ifK does.

Let g 2 G and let �g WG ! G denote the inner automorphism x 7! gxg�1.
Proof of the following lemma can be found in [8, §3].

Lemma 2.2. If 'WG ! G is any automorphism, then Œx��gı' 7! Œxg�' defines a bijection
R.�g ı '/! R.'/. In particular, R.�g ı '/ D R.'/.

The following lemma can be proved along the same lines as [12, Lemma 2.3]. For the
sake of completeness, we give the proof.

Lemma 2.3. Let � WG ! G be a finite order automorphism. Let r D o.�/. Suppose that
Œx�� D Œy�� . Then

(i)
Q
0�j<r �

j .x/ and
Q
0�j<r �

j .y/ are conjugates in G.

(ii) Further, if x; y 2 Fix.�/, then xr and yr are conjugates in G.

Proof. Suppose that y D zx�.z�1/ for some z 2 G. Applying �j to both sides of the
equality, we obtain that �j .y/ D �j .z/�j .x/�jC1.z�1/. Now taking product in order as
we vary j in ¹0; 1; : : : ; r � 1º, we obtain thatY

0�j<r

�j .y/ D
Y

0�j<r

�j .z/�j .x/�jC1.z�1/ D z
� Y
0�j<r

�j .x/
�
� r .z�1/:

Since � r D id, assertion (i) follows. Assertion (ii) is a special case of the first.

3. Automorphisms of GLn.R/ and SLn.R/

In this section, we recall some properties of the groups SLn.R/ and GLn.R/ as well as
their automorphisms whereR is an integral domain, but not a field, with F Œt �� R ¨ F.t/

and F being a field. Up to the end of Section 3.3, we do not assume that F is a subfield
of Fp . The reader is referred to the book by Hahn and O’Meara [17] for detailed study of
classical groups over integral domains.

3.1. Linear groups over subrings of F.t/

Since F Œt � is a PID, any extension ringR that is contained in F.t/ is a localization of F Œt �
by some multiplicatively closed subset of F Œt �. Moreover, such a ring R is a Euclidean
domain since any localization of a Euclidean domain is again a Euclidean domain; see [36,
Proposition 7].
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Let En.R/ � GLn.R/ denote the subgroup generated by the elementary matrices
eij .�/, � 2 R, 1 � i; j � n, i ¤ j . By definition, eij .�/ is the matrix whose diagonal
entries are 1, the .i; j /-th entry is � and all other entries are zero.

One has the obvious inclusions En.R/ � SLn.R/ � GLn.R/. As R is a Euclidean
domain, we have En.R/ D SLn.R/ for n � 2; see [35, Theorem 2.3.2]. When n � 3,
we also have En.R/ D ŒEn.R/; En.R/�; this follows from the observation that the com-
mutator Œeik.x/; ekj .1/� equals eij .x/ for all x 2 R provided i , j , k are all distinct.
An immediate consequence of this is recorded below as a proposition for easy reference.

Proposition 3.1. Let R be any Euclidean domain and let n � 3. Then SLn.R/ is per-
fect and it equals the derived group ŒH; H�, where H is any subgroup of GLn.R/ that
contains SLn.R/.

Proof. Since ŒGLn.R/;GLn.R/� � SLn.R/D En.R/D ŒEn.R/;En.R/�, we see that for
any subgroup H � GLn.R/ that contains SLn.R/ we have ŒH;H� D SLn.R/.

Let G.R/D SLn.R/ or GLn.R/, n � 3. Suppose that G.R/ is finitely generated, then
it is residually finite; see [22, Proposition 7.11, Chapter III]. It is easily seen that G is also
not virtually solvable. (This is also implied by the above proposition.) If 'WG.R/! G.R/

is a finite order automorphism, then by Jabara’s theorem [19, Theorem C], we have
R.'/ D1.

We give below examples of rings R for which G.R/ are not finitely generated. See
also [17, §4.3].

Example 3.2. (i) If R� is not a finitely generated group, then GLn.R/ is not finitely
generated. This is because the determinant map detWGLn.R/! R� is a surjective homo-
morphism of groups. We claim that R� is finitely generated as a group if and only if R
is finitely generated as a ring. Note that R D F Œt �Œ1=b.t/I b.t/ 2 B�, where B � F Œt � is
the set of all monic irreducible polynomials that are invertible in R. It follows that R is
finitely generated as a ring if and only if F is finite and B is finite. On the other hand, the
group R� is isomorphic to F � � U , where U is a free abelian group of rank equal to the
cardinality of the set B. (See Theorem 5.1 below.) In particular,R� is finitely generated if
and only if F � is finite and B is finite. This proves our claim. Thus GLn.R/ is not finitely
generated if R is not finitely generated as a ring.

(ii) If R is not finitely generated as a ring, then SLn.R/ is also not finitely generated
as a group. Indeed, suppose that g1; : : : ; gk generate SLn.R/. Write gr D .grIi;j .t// 2

SLn.R/, where grIi;j .t/ 2 R. Let E � F be the subfield generated by the coefficients of
the rational functions ¹grIi;j º in F.t/, and let ADEŒgrIi;j I1� i; j � n; 1� r � k��R.
Then E is a finite subfield (since F � Fp) and A is a finitely generated subring of R.
Moreover, SLn.R/ D SLn.A/. This implies that R D A and so R is finitely generated as
a ring.

(iii) Nagao [28] has shown that SL2.FqŒt �/ is not finitely generated.
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That the converse also holds was proved by O’Meara [31], which we state below. His
description of R � Fq.t/ was in terms of valuations of Fq.t/. We have reformulated it
using localization.

Suppose that B is a finite set of irreducible polynomials in FqŒt �. Let

R D FqŒt �Œ1=b.t/I b.t/ 2 B� D FqŒt �Œ1=f .t/�;

where f .t/ D
Q
b.t/2B b.t/. Then SLn.R/, n � 3, is finitely generated. When B D ;,

f .t/ is to be regarded as 1 2 Fp .
See the recent paper of Bux, Köhl, and Witzel [3] for further finiteness properties of

the groups G.R/ in the more general setting of S -arithmetic groups over global function
fields.

Notations. We denote by ı.a1; : : : ; an/ 2 GLn.R/ the diagonal matrix whose .i; i/-entry
equals ai 2 R�, 1 � i � n. Also, we denote by ı.A1; : : : ; Ak/ the block diagonal matrix
whose j -th diagonal block is equal to Aj . We denote by h.a/ the matrix ı.In�1; a/ 2
GLn.R/, where a 2 R�.

3.2. Theorem of O’Meara

Let n � 3 and let G.R/ be one of the groups SLn.R/, GLn.R/, where R is any (com-
mutative) integral domain which is not a field. Let K be the fraction field of R. An auto-
morphism 'WG.R/! G.R/ is called standard if it is in the subgroup generated by the
following four types of automorphisms:

(i) Conjugation: Conjugation by g 2 GLn.K/, denoted by �g WG.R/! G.R/, is de-
fined as x 7! gxg�1. It is inner if g 2 G.R/.

(ii) Ring automorphism: These are automorphisms of G.R/ induced by automorph-
isms of the ring R. We make no distinction in the notation between the automorphism of
the ring R and the induced automorphism of G.R/.

(iii) Homothety: Recall that a homomorphism �D ��WG.R/!G.R/ is a homothety
if there is a character �WG.R/! R� such that ��.x/ D �.x/x. Since x; �.x/x 2 G.R/,
it follows that �.x/In 2 G.R/. Being a scalar matrix, �.x/In belongs to the centre of
the group G.R/. A homothety �� fails to be injective if and only if there exists a central
element zIn 2 G.R/ other than In such that �.zIn/ D z�1.

Suppose�� is an automorphism ofG.R/. Observe that, since SLn.R/D ŒG.R/;G.R/�
is characteristic in G.R/, �� restricts to the identity automorphism on SLn.R/. In partic-
ular, �� D id when G.R/ D SLn.R/.

(iv) Contragredient: The contragredient automorphism "WG.R/! G.R/ is defined
as x 7! tx�1 8x 2 G.R/. Evidently, it is an involution.

O’Meara [32] has shown that for any integral domain R which is not a field, any
automorphism of G.R/ is standard, provided n � 3.
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Theorem 3.3 (O’Meara [32]). LetR be an integral domain with fraction fieldK ¤R, and
let G.R/D GLn.R/ or SLn.R/, where n � 3. Then any automorphism 'WG.R/! G.R/

can be expressed as follows:

' D �� ı � ı �g or ' D �� ı � ı �g ı ";

where �� is a homothety automorphism corresponding to a character �WG.R/! R�,
g 2 GLn.K/, �WG.R/! G.R/ is induced by a ring automorphism denoted by the same
symbol �WR! R and " is the contragredient x 7! tx�1.

Remark 3.4. O’Meara’s theorem is stated in the module-theoretic language. The expres-
sion for an automorphism [32] involves a semilinear automorphismˆg ofM DRn, which
corresponds to the composition � ı �g , where �WK ! K is a field automorphism and
gWKn!Kn is aK-linear isomorphism. Theorem B from [32, §5] states that a semilinear
automorphism of Kn yields an automorphism of M if and only if g.M/ D a:M for an
invertible fractional ideal a of R and �.R/ D R. When R is a PID (as in our case), every
fractional ideal is invertible and moreover a D �R for some � 2 K�.

Theorem C from [32, §5] is the analogous statement when the contragredient is in-
volved. Thus, when R is a subring of Fp.t/ which is not a field, the element g in The-
orem 3.3 may be taken to be in GLn.R/.

The following corollary is immediate from Theorem 3.3 and the above remark.

Corollary 3.5. (i) Any outer automorphism of SLn.R/ is represented by one of the fol-
lowing automorphisms: �h.˛/ ı � ı �, where � 2 h"i, ˛ 2 R� and h.˛/ denotes
ı.In�1; ˛/ 2 GLn.R/.

(ii) Any outer automorphism of GLn.R/ is represented by one of the following
automorphisms: �� ı � ı �, where � 2 h"i and � is a suitable character �W
GLn.R/! R�.

(iii) Every automorphism of SLn.R/ extends to an automorphism of GLn.R/.

3.3. Commutation relations

The ring automorphisms �, the conjugations �g , the homothety automorphisms �� and the
contragredient automorphism " satisfy certain commutation relations that are stated in the
lemma below. These relations will be used in the sequel.

Lemma 3.6. Let G D SLn.R/, or GLn.R/, where R is an integral domain which is not
a field. With the above notations, we have

(i) � ı �g D ��.g/ ı �, �� ı �g D �g ı ��,
(ii) " ı � D � ı ",
(iii) " ı �g D �".g/ ı ",
(iv) �� ı � D � ı �� , where � D ��10 ı � ı �WG ! R�. Here �0WR� ! R� is the

restriction of �WR! R to the group R� of all units of R,
(v) ��� ı " D " ı ��ı", where ��.g/ D �.g/�1 8g 2 G.
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Proof. Proofs of parts (i)–(iii) are straightforward and omitted; we only prove (iv) and (v).
(iv) For any g 2 G, we have

�.��.g// D �.�.g/g/ D �.�.g/In/�.g/ D �.�
�1
0 .�.�.g///In/�.g/

D �.�.g//In�.g/ D ��.�.g//;

which proves the assertion.
(v) Let g 2 G. Then, writing � WD � ı ", we have �.g/ D �.tg�1/ and so ��.g/ D

�.tg�1/Ing. Applying " to both sides, we obtain

".��.g// D ".�.
tg�1/Ing/ D ".�.

tg�1/In/
tg�1 D �.tg�1/�1In

tg�1

D �.".g//�1".g/ D ���.".g//:

This completes the proof.

As an application of the commutation relations, we have the following lemma, which
will be needed in the sequel.

Lemma 3.7. Let �j D �gj ı �j ı ", where gj 2 GLn.R/, j D 1; 2. Then �1 ı �2 D �g ı �
where g D g1�1.tg�12 / and � D �1 ı �2.

Proof. We have

�1 ı �2 D �g1 ı �1 ı " ı �g2 ı �2 ı "

D �g1 ı �1 ı �tg�12
ı " ı �2 ı " (by Lemma 3.6 (iii))

D �g1 ı ��1.tg�12 / ı �1 ı �2 (using Lemma 3.6 (i) and "2 D id)

D �g ı �;

as asserted.

Remark 3.8. We remark that if a 2R� nF �, the automorphism �h.a/ is an automorphism
of SLn.R/ of infinite order.

3.4. Ring automorphisms

Let R be a ring such that F Œt � � R ¨ K WD F.t/, where F is a subfield of Fp . Any
ring automorphism �WR! R extends to an automorphism z� of K. Since z� preserves the
set of all elements of finite order in K�, it follows that � restricts to an automorphism
of F . Since F � Fp , �jF is a Frobenius automorphism x 7! xp

r
. The value of r may

depend on x 2 F , when F is infinite. For example, when � is the inverse of the standard
Frobenius automorphism x 7! xp , we have �.x/D xp

r�1
, where o.x/D pr � 1. Note that

any automorphism ' of F extends to a unique automorphism z' of K by setting z'.t/ D t .
Evidently, z' restricts to an automorphism of R, again denoted by z'. We shall refer to
such a z' 2 Aut.R/ as a Frobenius automorphism. If �WR ! R is any automorphism,
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then  �1 ı � DW �1 is an F -automorphism of R, where  is the Frobenius automorphism
of R defined by �jF 2 Aut.F /. (By an F -automorphism of R we mean an F -algebra
automorphism of R.)

Let 
 D
�
a b
c d

�
2 PGL.2; F /. Let M
 2 AutF .K/ be the Möbius automorphism that

defined as M
 .t/ D
atCb
ctCd

. It is convenient to write 
 to also denote the Möbius auto-
morphismM
 . When 
 is a Möbius automorphism ofK that stabilizesR, we say that 
 jR
is a Möbius automorphism and again denote this by 
 . A Möbius automorphism is also
referred to as a Möbius transformation.

Let 'WF ! F be an automorphism. We have the induced automorphism, again denot-
ed by ', on PGL.2; F /. Thus we obtain an action of ˆ D Aut.F / on PGL.2; F /.

We shall denote by AutF .R/ the group of F -automorphisms of R.

Lemma 3.9. (i) Any F -automorphism of K D F.t/ is a Möbius transformation


 W K ! K:

The group Aut.K/ is a semidirect product

AutF .K/ Ìˆ Š PGL.2; F / Ìˆ;

where ˆ D Aut.F / is the group of all automorphisms of F .

(ii) The group Aut.R/ is a semidirect product AutF .R/Ìˆ � Aut.K/. In particular,
any automorphism �WR! R can be expressed uniquely as � D �1 ı ', where '
is a Frobenius automorphism and �1 is a Möbius automorphism of R.

Proof. (i) Let ' 2 ˆ and let z' be its extension to R (or to K) that fixes t . We have the
commutation relation

z' ı 
 D '.
/ ı z';

where 
 is a Möbius automorphism. To see this, we need only note that, writing 
 D
�
a b
c d

�
,

we have that z'.t/ D t and

z' ı 
.t/ D z'
�at C b
ct C d

�
D
'.a/t C '.b/

'.c/t C '.d/
D '.
/.z'.t//;

and that z' ı 
.�/ D z'.�/ D '.�/ 8� 2 F as 
 is an F -automorphism.
We have a split exact sequence

1! AutF .K/! Aut.K/! ˆ! 1;

where Aut.K/! ˆ is the restriction to F . The splitting ˆ! Aut.K/ is given by ' 7! z'
(in the above notation). So, to complete the proof, it suffices to show that any F -automor-
phism � WK ! K is a Möbius automorphism. Let � WK ! K be the inverse of � .

Let �.t/ D f .t/=g.t/ and let �.t/ D h.t/=k.t/, where f .t/; g.t/; h.t/; k.t/ 2 F Œt �
and gcd.f .t/; g.t// D 1 D gcd.h.t/; k.t//. We need to show that deg.f /; deg.g/ < 2.
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Since t 7! 1=t defines an automorphism, we may assume without loss of generality that
m WD deg.f / � deg.g/ DW n.

Suppose n D 0. Then g.t/ 2 F and �.t/ 2 F Œt � is a polynomial of degree at least 1.
If degf .t/� 2, then it is readily seen that t is not in the image of � . Hence, deg f .t/ D 1,
and so � is a Möbius transformation.

By the same argument, if degk.t/D 0, then � is a Möbius transformation, which again
implies that the same is true for � as well. Similarly, degh.t/D 0 implies that � and � are
Möbius transformations.

So, assume that n � 1, deg h.t/ � deg k.t/ ¤ 0 and max¹deg h.t/; deg k.t/º � 2.
Let f .t/ D

P
0�j�m fj t

j and let g.t/ D
P
0�i�n gi t

i , where fj ; gi 2 F . We have
that

t D �.�.t// D �
�f .t/
g.t/

�
D
f .�.t//

g.�.t//
D
f .h.t/=k.t//

g.h.t/=k.t//
D

P
fjh

jk�jP
gihik�i

:

This leads to the following equality in F Œt �:

t
� X
0�i�n

gih
ikm�i

�
D

X
0�j�m

fjh
jkm�j :

Since gcd.f .t/;g.t//D 1D gcd.h.t/; k.t//, at most one of f .t/, g.t/ is divisible by t
and the same assertion holds for h.t/, k.t/. If f0g0¤ 0, then t divides the left-hand side of
the above to a higher power than the right-hand side. If g0 D 0, then f0 ¤ 0 in which case,
h.t/ divides the left-hand side, but not the right-hand side. It remains to consider the case
f0 D 0. Suppose that f0 D 0. Then g0 ¤ 0 and h.t/ divides the right-hand side but notP
0�i�n gih

ikm�i . It follows that h.t/ D at for some a 2 F � and so deg k.t/ � 2 since
max¹deg h.t/; deg k.t/º � 2. Comparing the degrees of the polynomials on both sides,
we obtain that 1 C m deg k.t/ D j C .m � j / deg k.t/, where j is the largest positive
integer such that tj divides f .t/. This is a contradiction. Thus we obtain a contradiction
in all cases, and we are led to the conclusion that � is a Möbius transformation.

(ii) As already noted, every automorphism of F extends to a Frobenius automorphism
of R. Since any F -automorphism of R extends uniquely to an automorphism of K, the
assertion follows from (i).

Remark 3.10. (i) LetKq D Fq.t/ for each finite subfield Fq � F and letRq DR\Kq .
Then R D

S
q Rq where the union is over those values of q such that Fq � F . Indeed,

any f .t/ 2 K D F.t/ has all its coefficient in a finite subfield of F as F � Fq . It follows
that K D

S
q Kq whence R D

S
q Rq .

(ii) When ' 2 Aut.R/ is a Frobenius automorphism, it is clear that ' restricts to an
automorphism 'q ofRq for any q. By Lemma 3.9 applied to F D Fq , we see that Aut.Kq/
is a finite group and so is Aut.Rq/.

(iii) When F is infinite, the Frobenius automorphisms of R are of infinite order and
hence the induced ring automorphism of G.R/ is also of infinite order.
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Corollary 3.11. Let F Œt � � R ¨ K D F.t/, where F � Fq . Let G.R/ D GL.n; R/ or
SL.n;R/.

(i) If � D �1 ı ', where �1 is a Frobenius automorphism of R and ' 2 PGL.2; Fq/
a Möbius transformation, then �q WD �jRq induces an automorphism �q WG.Rq/!
G.Rq/ of finite order.

(ii) If g 2 G.R/, and � 2 Aut.R/, then the orbit of g under the action of the cyclic
group h�i � Aut.G.R// is finite.

Since FqŒt � � Rq for any q, it follows that if Rq is a field, then Rq D Fq.t/. Since
RD

S
q Rq and sinceR is not a field, there exists a q such thatRq is not a field and soR`

is also not a field if Fq � F`.
We set

Rq WD ¹� 2 Aut.R/ j �.Rq/ D Rqº:

We have the restriction homomorphism Rq ! Aut.Rq/.

Corollary 3.12. Let q be such that Rq D R \ Fq.t/ is not a field. There exists an s 2
Rq n F such that �.s/ D s for all � 2 Rq . Also, the subgroup SLn.FpŒs�/ � G.R/ is
element-wise fixed by all � 2 Rq .

Proof. Let � 2 Aut.R/. Write � D �1 ı ', where ' is a Frobenius automorphism of R
and �1 is a Möbius transformation. Then � restricts to an automorphism of Rq if and only
if �1 2 PGL.2;Fq/. Similarly, �.G.Rq// D G.Rq/ if and only if �1 2 PGL.2;Fq/.

By our hypothesis on R and on q, there exists an element f 2 Rq which is a non-unit
in Rq . (It is possible to choose f to be in FqŒt � but this is not relevant for our purposes.)
Recall that Aut.Rq/ is finite. Set

s WD
Y

�2Aut.Rq/

�.f /:

Clearly, s 2 Rq and is fixed under all automorphisms in Aut.Rq/. As the action of Rq

on Rq factors through Aut.Rq/, we see that s is fixed under all automorphisms of Rq .
The element s is non-zero and is a non-unit since f .t/ is not invertible. In particular,

it is not in F . So FpŒs� is isomorphic to a polynomial algebra. It is clear that SLn.FpŒs�/
is element-wise fixed by Rq .

4. Proof of Theorem 1.1

We shall first prove Theorem 1.1 for the case when F is a finite field in Section 4.2. The
proof in more general case when F � Fp will be given in Section 4.3. We shall construct,
in Lemma 4.1 below a sequence of elements ¹xkºk�1 in SLn.R/ which will play a crucial
role in our proofs of the main theorems.

When F D Fq , we shall use the notation A, instead of R, for a ring which is such that
FqŒt � � A ¨ Fq.t/.
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4.1. A crucial lemma

Consider the automorphism �WG.A/! G.A/ induced by a ring automorphism �WA! A

where FqŒt � � A ¨ Fq.t/. Let S D FpŒs� � A be as in Corollary 3.12 applied to the
ring A. Then S is contained in the subring Fix.�/ � A and the group G.S/ � G.A/ is
element-wise fixed by �.

Set

xm WD e12.s
m/e21.�s

m/ D

�
1 � s2m sm

�sm 1

�
2 SL2.S/:

We observe that �.xm/D xm D e12.sm/".e12.sm// and that the xm satisfy the polynomial
X2 C .s2m � 2/X C I2 D 0. We regard xm also as an element of SLn.S/ for n � 3 by
identifying it with the block diagonal matrix ı.xm; In�2/. These elements will play an
important role in the our proofs as they will be shown to be in pairwise distinct '-twisted
conjugacy classes for many automorphisms. The following lemma will play a crucial role
in our proof.

Lemma 4.1. Let A be a ring such that FqŒt � � A ¨ Fq.t/. Fix r � 1. With notations as
above, the elements xm D e12.sm/e21.�sm/ 2 SLn.A/ are such that tr.xrm/, m � 1, are
pairwise distinct.

Proof. Let u 2 A be a non-unit and set

x D x.u/ WD e12.u/e21.�u/ D

�
1 � u2 u

�u 1

�
2 SL2.FpŒu�/:

We see that tr.x/ D 2 � u2, tr.x2/ D 2 � 4u2 C u4. As the characteristic polynomial
of x is X2 � .2� u2/X C 1, we obtain the relation tr.xr / D .2� u2/tr.xr�1/� tr.xr�2/
for any r � 3. It follows by induction that tr.xr / is a polynomial in u of degree 2r with
leading coefficient .�1/r 2 Fp .

The above statement still holds when x.u/ is identified with the matrix ı.x.u/; In�2/
and viewed as an element of SLn.FpŒu�/, n � 3. Applying this to the elements xm 2
SLn.A/ defined above, tr.xrm/ 2 S D FpŒs� � A is a polynomial in s of degree 2rm.
Hence tr.xrm/, m � 1, are pairwise distinct.

4.2. Proof of Theorem 1.1 for a finite field F

We shall now prove Theorem 1.1 when F D Fq and n � 3. We shall use A instead of R
to denote a ring such that FqŒt � � A ¨ Fq.t/.

Let G D GLn.A/ or SLn.A/. To show that G has the R1-property, it suffices to
show that R.'/ D 1 for ' 2 � , where � is a complete set of representatives of the outer
automorphisms of G. We take � to be the set consisting of representative automorphisms
as in Corollary 3.5.

We are now ready to prove Theorem 1.1 when F is a finite field.
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Proof. The proof will depend on the type of automorphism as listed in Corollary 3.5. The
symbol � will always denote an automorphism of G induced by a ring automorphism
of A, ", the contragredient, �g , the conjugation by a g 2 GLn.A/, etc.

First we consider the case when G D GLn.A/. We treat separately the cases of a ring
automorphism � and the automorphism � ı ".

Type �: Note that xm 2 Fix.�/. Taking r D o.�/ in Lemma 4.1, we see, according to
Lemma 2.3, that the xrm, m � 1, are in pairwise distinct �-twisted conjugacy classes and
so R.�/ D1.

Type � ı ": Let � D � ı ". Since � ı "D " ı � and since "2D id, we have �2D �2. We shall
show that e12.sk/, e12.sm/ are not in the same � -twisted conjugacy class if m > k � 1.

Suppose e12.sm/D ze12.sk/�.z�1/. Applying � to both sides, we obtain e21.�sm/D
�.z/e21.�s

k/�2.z�1/. Multiplying the two equations and using �2 D �2, we obtain that

xm D e12.s
m/e21.�s

m/ D ze12.s
k/e21.�s

k/�2.z�1/ D zxk�
2.z�1/:

That is, xk , xm are in the same �2-twisted conjugacy class. By what has been shown in
the case of type �, this is a contradiction. It follows that R.�/ D1.

Type �� ı �: Let � D �� ı � and let r D o.�/. We claim that the elements xrm 2 SLn.A/,
m � 1, are in pairwise distinct � -twisted conjugacy classes.

Suppose that xk D zxm�.z�1/ for some z 2 GLn.A/. Note that �.z�1/ D �.z�1/u,
where u WD �.�.z�1//In. Thus xk D zxm�.z�1/u. Since u is in the centre of GLn.A/,
for any j � 1, applying � repeatedly, we obtain that for any j � 0, xk D �j .xk/ D

�j .z/xm�
jC1.z�1/uj for a suitable scalar matrix uj in GLn.A/. Setting r WD o.�/, we are

led to the equation xr
k
D zxrmz

�1v for some scalar matrix v 2 GLn.A/. Writing v D aIn
and taking determinants on the both sides of the above equation, we obtain that an D 1,
i.e., a is a torsion element in A and hence v is a scalar matrix in GLn.Fq/. Now, we take
trace on both sides of the equation xr

k
D zxrmz

�1v and get tr.xr
k
/D a tr.xrm/ 2 FqŒs�. This

contradicts Lemma 4.1 as the degree of tr.xrj / as a polynomial in s equals 2jr . This shows
that R.�� ı �/ D1.

Type �� ı � ı ": The proof thatR.�� ı � ı "/D1 uses e12.sm/ 2 SLn.A/ and is similar
to the proof for the type � ı ", just as the above proof for �� ı � parallels the proof for
type �.

This completes the proof that GLn.A/ has the R1-property for n � 3.
It remains to consider the case of the automorphisms of SLn.A/ as in Corollary 3.5 (i).

Type �h ı �: Consider an automorphism ' of SLn.A/ of the form ' D �h ı � with h D
h.a/ 2 H with a 2 A� as in Corollary 3.5 (i). Suppose that k and m are distinct but xk D
zxm'.z

�1/ D zxmh�.z
�1/h�1. So xkh and xmh are �-twisted conjugates in GLn.A/.

We apply Lemma 2.3 (i) to �. Setting r D o.�/, we obtain that
Q
0�j<r �

j .xkh/ andQ
0�j<r �

j .xmh/ are conjugates in GLn.A/. Since xk and �j .h/ D h.�j .a// commute,
we obtain that

Q
0�j<r �

j .xkh/ D x
r
k
h.
Q
�j .a// and the same holds when k is replaced
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bym. Now, tr.xr
k
h.
Q
�j .a///D n� 3C

Q
�j .a/C tr.xr

k
/ and so tr.

Q
0�j<r �

j .xkh//D

tr.
Q
0�j<r �

j .xmh// implies tr.xr
k
/ D tr.xrm/, contradicting Lemma 4.1.

Type �h ı � ı ": Finally, it remains to consider automorphisms of SLn.A/ of the form
 WD �h ı � ı " with hD h.a/, a 2 A�, as in Corollary 2.3. We assert that e12.sm/,m� 1,
are in pairwise distinct  -twisted conjugacy classes. Suppose that there exist positive
integers k, m such that

e12.s
m/ D ze12.s

k/ .z�1/:

Applying  to both sides of this equation, we obtain

e21.�s
m/ D  .z/e21.�s

m/ 2.z�1/:

Multiplying the two sides of the two equations and using xm D e12.s
m/e21.�s

m/, we
have

xm D zxk 
2.z�1/:

Since, by Lemma 3.7,  2 D �h�.h�1/ ı �
2 D �h.a�.a�1// ı �

2, it is of the previous type,
namely, type �h ı �. So xm, xk are not  2-twisted conjugates unless m D k. Therefore,
we conclude that R. / D1, completing the proof.

4.3. Completion of the proof of Theorem 1.1

Let R be a ring such that F Œt � � R ¨ K WD F.t/, where F is a subfield of Fp and t is
a variable.

LetG.R/ denote one of the groups GLn.R/, SLn.R/, n� 3. The proof of Theorem 1.1
for F � Fp is similar to the special case when F D Fq . In fact, most of the proof in the
general case reduces to the special case. For this reason, we shall omit most of the details.

Let � 2 Aut.R/. As noted in Lemma 3.9, we have � D �1 ı ', where �1 is a Möbius
transformation and ' is a Frobenius automorphism. Also, �1 is defined over Fq for some q.

By our choice of q, if Fq � F` � F , we see that R` WD R \ F`.t/ � F.t/ is stable
under �. Also, since R is not a field, we may (and do) assume that R` is not a field. Recall
that R D

S
`R` where the union is over such values of ` that R` is not a field.

Consequently, the groupsG` WDG.R`/ 2 ¹GLn.R`/;SLn.R`/º are stable under �, and
Theorem 1.1 holds for each of them. We observe that G.R/ is the union of the groups G`.

We are now ready to prove Theorem 1.1 in the general case.

Proof of Theorem 1.1. As observed already, with notations from Corollary 3.5, we need
only to consider the automorphisms ' D �� ı �, �� ı � ı " when G.R/ D GLn.R/, and,
whenGD SLn.R/, the automorphisms 'D �h ı �, �h ı � ı ", where hD h.a/D ı.In�1;a/
in GLn.R/ and a 2 R�.

Let � 2 Aut.R/ be defined over Fq for some q. Let s 2 Rq be as in Corollary 3.12
and xm D e12.sm/e21.�sm/ 2 Gq D GLn.Rq/, wherem � 1 and Rq D R \ Fq.t/, be as
in Lemma 4.1. Then xm 2 Fix.�/. Suppose that there exists an element z 2 G such that
xk D zxm�.z

�1/ with k ¤ m. There exists ` D qd D pde , where q D pe , a sufficiently
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large power of q such that F`�F and xk ; xm; z2G`. Then �N jG` D id, where N WDde.
This implies, by Lemma 2.3, that xNm and xN

k
are conjugates in G`. This contradicts

Lemma 4.1, and we conclude thatR.�/D1. The proof for � ı " is similar to the proof of
the corresponding type of automorphism in Theorem 1.1 for n � 3 given in Section 4.2.

Now let ' D �� ı �.
Suppose that xk �' xm for some k ¤ m. Let z 2 G such that xk D zxm'.z

�1/ D

zxm�.z
�1/uIn, where u D �.�.z�1// 2 R�. Then there exists an ` D qd D pde for

a sufficiently large d so that z 2 G`. Then �dejG` D id. Applying � repeatedly to both
sides of this equation, we obtain

xk D �
j .z/xm�

jC1.z�1/ � uj In

for j � 1 for suitable uj 2 R�. Multiplying these equations in order for 0 � j < de and
using the fact that �de.z�1/ D z�1, we obtain that

xdek D zx
de
m z
�1
� vIn

for some v 2 R�. First taking determinant on both sides of the equation, we observe
that v is a torsion element of R and so v 2 F �. Now taking trace on both sides, we get
tr.xde

k
/ D v tr.xdem /. This is a contradiction since v 2 F and the degrees of traces of xde

k
,

xdem as polynomials in s are 2kde, 2mde, respectively, which are unequal if k ¤m. Hence
we conclude that R.'/ D1 in this case.

The proof is similar when ' D �� ı � ı ". This completes the proof when G D
GLn.R/.

When G D SLn.R/, we need to show that R.'/ D 1 when ' D �h ı �, �h ı � ı ",
where h D h.a/ D ı.In�1; a/, a 2 R�. We choose q D pe so that � restricts to Gq and
hence to G` for all ` D qr . We choose ` so that R` is not a field. The rest of the proof is
as in the proof of Theorem 1.1 for the automorphisms of SLn.R`/ of the corresponding
types, given in Section 4.2. The details are left to the reader.

5. Proof of Theorem 1.2

We begin by describing the multiplicative group R� of all invertible elements of R and
the action of Aut.R/ on it. Since R is a localization of the polynomial algebra F Œt �, R is
a Euclidean domain. See [36, Proposition 7]. In particular, R is a unique factorization
domain.

Let B be the set of all monic irreducible polynomials in F Œt � which are invertible
in R. Then R D F Œt �Œ1=b.t/Ib.t/ 2B�. The following result, which is an analogue of the
Dirichlet unit theorem, is perhaps well known to experts. The case when B is finite and
F D Fq is treated in [34, Proposition 14.2]. We give an elementary proof as we could not
find a reference.
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Theorem 5.1. (i) Any f .t/ 2 R� n F has a unique factorization f .t/ D af n11 � � � f
nk
k

with elements fj 2 B, nj non-zero integers, and a 2 F �.

(ii) R� is isomorphic to F � � U , where U is a free abelian group with basis B.

(iii) Any automorphism of the groupR� preserves F � and induces an automorphism
of R�=F � Š U .

Proof. Let f .t/ 2 R�. Write that f .t/ D g.t/=h.t/, where g.t/; h.t/ 2 F Œt � with
gcd.g.t/; h.t// D 1. We claim that g.t/; h.t/ 2 R�. It suffices to show that g.t/ 2 R�

since h.t/ D g.t/=f .t/. Since gcd.g.t/; h.t// D 1, we have u.t/; v.t/ 2 F Œt � such that
g.t/u.t/C h.t/v.t/ D 1. Multiplying both sides by f .t/, we obtain that

f .t/ D f .t/g.t/u.t/C f .t/h.t/v.t/ D g.t/.f .t/u.t/C v.t//:

Since f .t/ 2 R�, we conclude that g.t/ – and hence h.t/ – are units in R. The asserted
factorization of f .t/D g.t/ � .h.t//�1 follows immediately by factoring g.t/ and h.t/ into
irreducible polynomials. Since g.t/, h.t/ are units in R, so are their irreducible factors.
This proves (i). Now (ii) follows immediately from (i). Assertion (iii) follows since F �

equals the torsion subgroup of R� as F � Fp .

There is a bijective correspondence between subgroups D � R� and subgroups
H.D/ � GLn.R/ that contain SLn.R/, where H.D/ D ¹g 2 GLn.R/ j detg 2 Dº.

Recall from Proposition 3.1 that SLn.R/ D ŒH.D/; H.D/� D ŒGLn.R/; GLn.R/�.
Hence SLn.R/ is characteristic in H.D/ for all D � R�. Recall that h.c/ denotes the
diagonal matrix ı.In�1; c/ 2 GLn.R/ for c 2 R�. Setting

h.D/ WD ¹h.c/ 2 H.D/ j c 2 DºŠ D;

we have
H.D/ D SLn.R/ � h.D/ Š SLn.R/ ÌD:

Lemma 5.2. Suppose that g 2 H D H.D/ commutes with every element of SLn�1.R/.
Then g D ah.b/ D ı.aIn�1; ab/ for some a; b 2 R� with det.g/ D anb 2 D.

Proof. Suppose that g is not a diagonal matrix, say g D .gij / with gkm ¤ 0, where
k ¤ m. Then e1k.1/ge1k.�1/ ¤ g ¤ e1m.1/ge1m.�1/. Since at least one of k, m is less
than n, we get a contradiction. Now suppose that g is a diagonal matrix gD ı.a1; : : : ; an/.
If ai ¤ aj for some i < j < n, then geij .1/g�1 ¤ eij .1/ and the lemma follows.

Let H D H.D/ and let � WH ! H be an automorphism. Then � restricts to an auto-
morphism � 0W SLn.R/ ! SLn.R/. Replacing � by � ı �g for a suitable g 2 SLn.R/ if
necessary, we may (and do) assume that � 0 D �h ı � ı �, where h D h.a/ D ı.In�1; a/,
a 2 R�, �W SLn.R/! SLn.R/ is induced by an automorphism �WR ! R of the ring R
and � belongs to the cyclic group h"iŠ Z=2Z. Then � 0.SLn�1.R//DSLn�1.R/. By
Corollary 3.5 (iii), � 0 extends to an automorphism 'WGLn.R/!GLn.R/. Any extension '
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equals �� ı �h.a/ ı � ı �, where �� is a homothety automorphism associated to a charac-
ter �WGLn.R/! R�. It is not clear that � 2 Aut.H/ admits an extension 'WGLn.R/!
GLn.R/. When it does, following proposition guarantees that R.�/ D1.

Proposition 5.3. Let � 2 Aut.H/ and suppose that � D 'jH for some ' 2 Aut.GLn.R//.
Then R.�/ D1.

Proof. We keep the above notation. By the previous discussion, we need only consider the
case � 0D �h.a/ ı � ı " or �h.a/ ı � in Aut.SLn.R//. First suppose that � 0D �h.a/ ı �. Choose
a non-zero, non-unit element s 2 R fixed by �. Such an element exists by Corollary 3.12.
Choose q so that s 2 Rq D R \ Fq.t/. Let r be the order of the automorphism �jRq .
Since the commutation relation �� ı �h D �h ı �� holds by Lemma 3.6 (i), we have ' D
�� ı �h.a/ ı � D �h.a/ ı  , where  WD �� ı �.

Consider the elements xm D e12.sm/e21.�sm/, m � 1. We claim that xk and xm are
in distinct � -twisted conjugacy classes if k ¤ m. Assume that Œxm�� D Œxk �� . It follows
that Œxk �' D Œxm�' . This implies that Œxkh.a/� D Œxmh.a/� . Proceeding as in the case
of type �� ı � in the proof of Theorem 1.1 for finite fields, we obtain that

xrmh.u/ D zx
r
mvh.u/z

�1;

where v 2 R�, u D
Q
0�j<r �

j .a/. Taking determinants on both sides, we obtain that
uD vnu and so vn D 1. Raising to the n-th power, we obtain xrnm h.u

n/D zxrnm h.u
n/z�1.

Taking trace on both sides of the last equality, we obtain that tr.xrnm / D tr.xrn
k
/. This

contradicts Lemma 4.1 if k ¤ m. Hence R. / D1.
The proof in the case when  D �� ı � ı " is similar and omitted.

Write �D �1 ı ', where �1 is anF -automorphism and ' is a Frobenius automorphism.
We choose q so that �1 is defined over Fq and that a 2 Fq . We further assume that Rq D
R \ Fq.t/ is not a field. All these conditions can be met so long as q is sufficiently large
(and Fq � F ).

Recall that Rq � Aut.R/ denotes the subgroup ¹� 2 Aut.R/ j �.Rq/D Rqº. As noted
in Remark 3.10 (ii), if � 2 Rq , then �jRq has finite order and so the same is true for the
induced automorphism of SLn.Rq/.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let � 2 Aut.H/. Replacing � by �g ı � if necessary, we may as-
sume that � 0 D � jSLn.R/ equals �h.a/ ı � or �h.a/ ı � ı ", where a 2 R�, � 2 Aut.SLn.R//
is a ring automorphism �WR! R and " is the contragredient. We first consider the case
� 0 D �h ı �, where h D h.a/. We choose q so that Rq is not a field and � restricts to an
automorphism of Rq .

Let xm 2 SLn.Rq/ � H , m � 1, be as in Lemma 4.1. Suppose that m > k � 1 and
that

xm D zxk�.z
�1/: (2)
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Write z D yh.c/, where c D det.z/ 2 D and y D zh.c/�1 2 SLn.R/. Substituting z D
yh.c/, we obtain

�.z/ D � 0.y/�.h.c// D h.a/�.y/h.a�1/�.h.c//:

Since h.c/ commutes with the elements of SLn�1.R/, Lemma 5.2 implies that �.h.c// D
b1h.c1/ for some elements b1 and c1 in R�. Taking determinants on both sides of equa-
tion (2), we obtain det.z/ D det.�.z// which implies �.h.c// D b1h.b�n1 �.c//.

Since det.xm/ D det.xk/ D 1 D det.y/, (2) implies that c D det.z/ D det.�.z// D
bn1 :b

�n
1 �.c/ and so �.c/ D c. It follows that �.h.c// D b1h.b�n1 c/.

Since xk commutes with h.b/ for all b 2 R�, we get

zxk�.z
�1/ D yh.c/xkb

�1
1 h.bn1c

�1/� 0.y�1/

D yh.c/xkb
�1
1 h.bn1c

�1/h.a/�.y/h.a�1/

D yxkb
�1
1 h.abn1 /�.y/h.a

�1/:

Hence we obtain that
xmh.a/ D b

�1
1 yh.abn1 /xk�.y

�1/:

Applying �j to both sides and using

�.xk/ D xk ; �.xm/ D xm; �.h.u// D h.�.u//;

we get
xmh.�

j .a// D �j .b�11 /�j .y/h.�j .abn1 //xk�
jC1.y�1/:

Replacing Fq by a finite extension field contained in F if necessary, we may (and do)
assume that c, a, b1 are all in Rq . Multiplying these successively as j varies from 0 to
r � 1, where r WD o.�jRq /, we obtain that

xrm

Y
0�j<r

h.�j .a// D
Y

0�j<r

�j .b�11 /y
� Y
0�j<r

h.�j .abn1 //
�
xrky

�1 (3)

since �.xk/ D xk , �.xm/ D xm.
To simplify notations, we set

ˇ WD
Y

0�j<r

�j .b�11 /; u WD
Y

0�j<r

�j .a/; and v WD
Y

0�j<r

�j .abn1 / D ˇ
�nu 2 Rq :

Equation (3) says that the matrices xrmh.u/ and ˇxr
k
h.v/ are similar since ˇIn and y

commute. Therefore, their characteristic polynomials are equal. Note that these are block
diagonal matrices with block sizes 2; 1; : : : ; 1. Recall the definition

xm D e12.s
m/e21.�s

m/ D ı.Am; In�2/; where Am D
�
1 � s2m sm

�sm 1

�
:
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The characteristic polynomials of xrmh.u/ and ˇxr
k
h.v/ are .X2 ��mX C 1/.X� 1/n�3�

.X � u/ and .X2 � ˇ�kX C ˇ2/.X � ˇ/n�3.X � ˇv/, respectively, where �m D tr.Arm/.
We have

.X2 � �mX C 1/.X � 1/
n�3.X � u/ D .X2 � ˇ�kX C ˇ

2/.X � ˇ/n�3.X � ˇv/:

If at least one of .X2 � ˇ�k C ˇ2/ or .X2 � �mX C 1/ is irreducible (in R), then so is
the other and the two must be equal. Any root in R of the polynomial on the one side must
also occur as a root of the polynomial on the other side with the same multiplicity. The
rest of the proof will make repeated use of this observation.

Suppose X2 � �mX C 1 is irreducible. Then X2 � �mX C 1 D X2 � �kˇX C ˇ2,
and so, by comparing coefficients of the polynomials, we must have ˇ D ˙1 and
�m D ˙�k . The last equality contradicts Lemma 4.1. It follows that X2 � �mX C 1 (and
hence X2 � �kˇX C ˇ2) have their roots in R.

Let ˛˙1
k

, ˛˙1m be the eigenvalues of Ak , Am, respectively. We do not assume that these
eigenvalues are in R. However, by what was noted above, ˇ˛r

k
, ˇ˛�r

k
, ˛rm, ˛�rm are all

in R. Since ˇ 2 R�, we have ˛r
k
; ˛�r
k
2 R. By Lemma 4.1, ˛r

k
¤ ˛�r

k
and ˛rm ¤ ˛

�r
m .

Suppose that ˇ 2 R� is a torsion element. Say, ˇ` D 1. Then we may raise to the `-th
power both sides of equation (3) and obtain the same equation in which r is replaced by r`
and ˇ by 1. Consequently, we obtain that traces of Ar`m and Ar`

k
are equal, contradicting

Lemma 4.1. So, we must have that ˇ … F �.
We shall denote a (finite) multiset by an unordered sequence where each element in it

is repeated as many times as its multiplicity. We shall write �.r/ to denote that � occurs r
times. The multiset of eigenvalues of xrmh.u/ is M D ˛rm; ˛

�r
m ; 1.n�3/; u, and that of

ˇxr
k
h.v/ is K D ˇ˛r

k
; ˇ˛�r

k
; ˇ.n�3/; ˇv. The fact that M DK will be exploited to force

a contradiction. The rest of the proof will involve case considerations, depending on the
value of n.

Case 1: Suppose that n D 3. By hypothesis, D � F � and so det z D c 2 F �. It follows
that b1, c1 are also in F � and so ˇ 2 F �, contradicting our earlier conclusion that ˇ … F �.
This shows that xk , xm are not � -twisted conjugates and so R.�/ D1.

Case 2: Suppose that n � 5. Since 1 occurs in M with multiplicity at least 2, it occurs
in K with the same multiplicity. Since ˇ˛r

k
¤ ˇ˛�r

k
, at most one of them can be equal

to 1. So we must have ˇ D 1 or ˇv D 1. Since ˇ … F �, we have that ˇv D 1.
Since v D uˇ�n, we have u D ˇn�1. Since 1 occurs in M with multiplicity at least 2,

we must have ˇ˛r
k
D 1 or ˇ˛�r

k
D 1. In either case, we have K D 1; ˇ2; ˇ.n�3/; 1. Since

˛rm:˛
�r
m D 1, there should be two terms of K which are reciprocals of each other. This

implies that ˇ D 1 or ˇ2 D 1 or ˇ3 D 1 and so ˇ 2 F �, a contradiction.

Case 3: Suppose that n D 4. Since ˇ ¤ 1 and since 1 occurs in M, one of the following
must hold: (i) ˇv D 1, or (ii) ˇ˛r

k
D 1, or (iii) ˇ˛�r

k
D 1.

Subcase (i): Suppose that ˇv D 1. It follows that u D ˇn�1 D ˇ3. Since ˇ occurs in K ,
it should occur in M. Since ˇ … F �, we have u ¤ ˇ, and so we must have ˛rm D ˇ
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or ˛�rm D ˇ. In any case, we have M D ˇ; ˇ�1; 1; ˇ3. It follows that ¹ˇ˛r
k
; ˇ˛�r

k
º D

¹ˇ3; ˇ�1º. So we have tr.Ar
k
/ D ˛r

k
C ˛�r

k
D ˇ2 C ˇ�2 and tr.˛rm/ D ˛rm C ˛

�r
m D

ˇ C ˇ�1. This leads to the relation .tr.Arm//
2 � tr.Ar

k
/ � 2 D 0. Since tr.Arm/; tr.A

r
k
/ 2

F Œs� are polynomials in s of degree 2mr , 2kr , respectively, and since m > k, the last
equation cannot hold. So we are led to the conclusion that ˇv ¤ 1.

Subcase (ii): Suppose that ˇ˛r
k
D 1. Then ˇ˛�r

k
D ˇ2 and K D 1; ˇ2; ˇ; ˇv. Since

˛rm; ˛
�r
m 2 K and ˛rm ¤ 1, the product of some pair of elements of ¹ˇ2; ˇ; ˇvº should

be equal to 1. If ˇ3 D 1, then ˇ 2 F �, a contradiction. Then there are two possibilities:
¹˛rm; ˛

�r
m º D ¹ˇ;ˇvº or ¹˛rm; ˛

�r
m º D ¹ˇ

2; ˇvº. If ¹˛rm; ˛
�r
m º D ¹ˇ;ˇvº, then ˛rmC ˛

�r
m D

ˇCˇ�1. Since ˇ˛r
k
Cˇ˛�r

k
D 1Cˇ2, we obtain that ˛r

k
C˛�r

k
Dˇ�1 C ˇD˛rmC˛

�r
m .

Thus tr.Arm/ � tr.Ar
k
/ D 0 in F Œs�, again a contradiction as m > k. If ¹˛rm; ˛

�r
m º D

¹ˇ2; ˇvº, then ˛rm C ˛
�r
m D ˇ

2 C ˇ�2. Again, we have ˛r
k
C ˛�r

k
D ˇ�1 C ˇ. The last

two equations imply that .tr.Ar
k
//2 � tr.Arm/ � 2 D 0. Since tr.Arm/, tr.Ar

k
/ 2 F Œs� are

polynomials in s of degree 2mr , 2kr , respectively, we have m D 2k. This is a contradic-
tion if we choose m, k to be arbitrary odd positive integers.

Subcase (iii): Suppose that ˇ˛�r
k
D 1. Then ˇ˛r

k
D ˇ2 and so K D 1; ˇ2; ˇ; ˇv. Rest of

the proof is exactly as in subcase (ii).

This completes the proof in the case when � 0 D � jSLn.R/ D �h ı �.
Next consider the case � 0 D �h ı � ı ", where hD h.a/, a 2 R�, � is induced by a ring

automorphism �WR! R, and " is the contragredient. As in the proof of Theorem 1.1 for
the type �h ı � ı ", we consider the sequence of elements ¹e12.sm/ºm�1 and show that
infinitely many terms of the sequence are in pairwise distinct � -twisted conjugacy classes.
Here again, s 2 R is a non-zero non-invertible element fixed by �.

Suppose that m > k � 1 and the following holds:

e12.s
m/ D ze12.s

k/�.z�1/; (4)

where z D yh.c/ with c D det.z/ 2 D and y D zh.c/�1 2 SLn.R/. Applying � to both
sides of the above equation, we get

e21.�s
m/ D �.z/e21.�s

m/�2.z�1/: (5)

We multiply each side of equations (4) and (5) to obtain, using e12.sm/e21.�sm/ D xm,

xm D zxk�
2.z�1/:

From Lemma 3.7, we have ' WD �2 D �h.a�.a�1// ı �2.
Therefore, we obtain that xm and xk are '-twisted conjugates.
Suppose that n � 4 or D � F �. By what has been established already, the sequence

¹xkºk�1 contains an infinite subsequence whose terms are in pairwise distinct '-twisted
conjugacy classes. Therefore, the sequence ¹e12.sk/ºk�1 contains an infinite subsequence
whose terms are in pairwise distinct � -twisted conjugacy classes. This completes the proof
of Theorem 1.2.



O. Mitra and P. Sankaran 960

We end this section with the following remarks.

Remark 5.4. (i) Let n D 3. Suppose that u D ˇv. Since v D ˇ�3u, we obtain that
u D ˇ�2u and so ˇ2 D 1, a contradiction. There remains the following four possibilities:

(a) u D ˇ˛r
k

, ˛rm D ˇv, ˛�rm D ˇ˛
�r
k

,

(b) u D ˇ˛�r
k

, ˛rm D ˇv, ˛�rm D ˇ˛
r
k

,

(c) u D ˇ˛r
k

, ˛rm D ˇ˛
�r
k

, ˛�rm D ˇv,

(d) u D ˇ˛�r
k

, ˛rm D ˇ˛
r
k

, ˛�rm D ˇv.

Each of these possibilities appears to be consistent with the relation v D ˇ�3u and we
have not been able to show that R.�/ D1 in these cases when D � R� is arbitrary.

(ii) Suppose that R� contains infinitely many irreducible elements of F Œt �. For exam-
ple, when F is infinite, let � be the linear polynomials t C �; � 2 F . When F D Fq , we
take � to be the set the polynomials of ¹tq

r
� t C 1 j r � 1º. For any proper infinite subset

B � � , we take R to be the localization F Œt �Œ1=f .t/If .t/ 2B� so that F Œt � � R ¨ F.t/.
Then R� D F � � U , where U is isomorphic to the free abelian group with basis B.
(See Theorem 5.1.) For any subset B � B, we take D D D.B/ � R� to be the subgroup
generated by B . Since B is countably infinite, there are @1 many such subgroupsD �R�

that are pairwise distinct, although D.B/ and D.B 0/ are isomorphic if B , B 0 have the
same cardinality. The corresponding collection H WD ¹H.D/º of subgroups of GLn.R/
consists of pairwise distinct subgroups of GLn.R/. When n � 4, each of them has the
R1-property. It seems plausible that there is a subcollection of H having cardinality @1
whose members of are pairwise non-isomorphic.
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