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Building prescribed quantitative orbit equivalence
with the integers

Amandine Escalier

Abstract. Two groups are orbit equivalent if they both admit an action on a same probability space
that share the same orbits. In particular, the Ornstein–Weiss theorem implies that all infinite count-
able amenable groups are orbit equivalent to the group of integers. To refine this notion between
infinite countable amenable groups, Delabie, Koivisto, Le Maître and Tessera introduced a quantit-
ative version of orbit equivalence. They furthermore obtained obstructions to the existence of such
equivalence using the isoperimetric profile. In this article, we offer to answer the inverse problem
(find a group being orbit equivalent to a prescribed group with prescribed quantification) in the case
of the group of integers using the so called Følner tiling shifts introduced by Delabie et al. To do
so, we use the diagonal products defined by Brieussel and Zheng giving groups with prescribed
isoperimetric profile.

1. Introduction

Two groups are orbit equivalent if they admit free measure-preserving actions on a same
standard probability space .X; �/ which share the same orbits. This notion – emerging
from the seminal work of Dye [5, 6] – can be seen as the ergodic version of the famous
measure equivalence introduced by Gromov [8]. A famous result of Ornstein and Weiss
(see Theorem 1.2) implies that all amenable groups are orbit equivalent. In particular,
unlike quasi-isometry, orbit equivalence does not preserve coarse geometric invariants.

To overcome this issue, it is therefore natural to look for some refinements of this
orbit equivalence notion. Assume, for example, that G and H are two finitely generated
orbit equivalent groups over a probability space .X; �/. Recall that we can consider the
Schreier graph associated to the action of G (resp. H ) on X and equip it with the usual
metric dSG (resp. dSH ), fixing the length of an edge to one. A first way to refine the
measure equivalence is to quantify how close the two actions are by studying for all g 2G
and h 2 H the integrability of the two following maps:

x 7! dSG .x; h � x/; x 7! dSH .x; g � x/:

When these two maps are Lp , we say that the groups are Lp-orbit equivalent (see [2] for
more details). In this refined framework, a famous result of Bader, Furman and Sauer [2]
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implies that any group L1-orbit equivalent to a lattice in SO.n; 1/ for some n � 2 is
virtually a lattice in SO.n; 1/. This refinement also led Bowen to prove in the appendix
of [1] that volume growth was invariant under L1-orbit equivalence.

Delabie, Koivisto, Le Maître and Tessera offered in [4] to extend this quantification
to a family of functions larger than ¹x 7! xp; p 2 Œ0;C1�º (see Definition 1.3). They
furthermore showed the monotonicity of the isoperimetric profile under this quantified
measure equivalence definition (see Theorem 1.5). In [3], Brieussel and Zheng managed to
construct amenable groups with prescribed isoperimetric profile called diagonal product.
Considering the monotonicity of the isoperimetric profile, the striking result of Brieussel
and Zheng thus triggers a new question: instead of trying to quantify the equivalence rela-
tion between two given groups, can one find a group that is orbit equivalent to a prescribed
group with a prescribed quantification?

This is the problem we address in this article. Using Brieussel–Zheng’s construction,
we exhibit a group that is orbit equivalent to Z with a prescribed quantification (see The-
orem 1.7). Comparing the obtained coupling to the constraints given by Theorem 1.5, we
show that our coupling is close to being optimal for a sense of “optimal” that we make
precise in Section 1.2.

1.1. Quantitative orbit equivalence

Let us recall some material from [4]. A measure-preserving action of a discrete countable
group G on a measured space .X; �/ is an action of G on X such that the map .g; x/ 7!
g � x is a Borel map, and �.E/ D �.g �E/ for all E � B.X/ and all g 2 G. We will say
that a measure-preserving action ofG on .X;�/ is free if for almost every x 2X , we have
g � x D x if and only if g D eG .

We recall below the definition of orbit equivalence and the quantified version as intro-
duced by Delabie, Koivisto, Le Maître and Tessera [4]. We conclude this section by
studying the relation between isoperimetric profile and orbit equivalence.

Definition 1.1. Let G and H be two finitely generated groups. We say that G and H are
orbit equivalent if there exist a probability space .X; �/ and a measure-preserving free
action of G (resp.H ) on .X;�/ such that for almost every x 2 X we have G � x DH � x.
We call .X; �/ an orbit equivalence coupling from G to H .

By the Ornstein–Weiss theorem [10, Theorem 6] below, all infinite countable amen-
able groups are in the same equivalence class.

Theorem 1.2 ([10]). All infinite countable amenable groups are orbit equivalent to Z.

To refine this equivalence relation and “distinguish” amenable groups, we introduce
the quantified version of orbit equivalence.

Recall that if a finitely generated group G acts on a space X and if SG is a finite
generating set ofG, we can define the Schreier graph associated to this action as being the
graph whose set of vertices is X , and set of edges is ¹.x; s � x/ j s 2 SKº. This graph is
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endowed with a natural metric dSG fixing the length of an edge to one. Remark that if S 0G
is another generating set of G, then there exists C > 0 such that for all x 2 X and g 2 G,

1

C
dSG .x; g � x/ � dS 0G .x; g � x/ � CdSG .x; g � x/:

Definition 1.3 ([4, Definition 2.18]). We say that an orbit equivalence coupling .X; �/
from G toH is .'; /-integrable if for all g 2 G (resp. h 2H ), there exists cg > 0 (resp.
ch > 0) such thatZ
X

'
� 1
cg
dSH .g � x; x/

�
d�.x/ < C1 and

Z
X

 
� 1
ch
dSG .h � x; x/

�
d�.x/ < C1:

We introduce the constants cg and ch in the definition for the integrability to be inde-
pendent of the choice of generating sets SG and SH . If '.x/ D xp , we will sometimes
talk of .Lp;  /-integrability instead of .';  /-integrability. In particular, L0 means that
no integrability assumption is made. Finally, note that every .L1;  /-integrable coupling
is .'; /-integrable for any increasing map 'WRC ! RC. When ' D  , we will say that
the coupling is '-integrable instead of .'; '/-integrable.

Example 1.4 ([4]). (1) There exists an orbit equivalence coupling between Z4 and the
Heisenberg group Heis.Z/ that is Lp-integrable for all p < 1.

(2) Let k 2N�. Their exists an .L1; exp/-integrable orbit equivalence coupling from
the lamplighter group to the Baumslag–Solitar group BS.1; k/.

More examples will be given in Section 3.1. Let us conclude on the quantification by
a remark. We chose to refine orbit equivalence using the integrable point of view. But it
is not the only possible sharpening. For example, Kerr and Li [9] defined Shannon orbit
equivalence: instead of looking at the integrability of distance maps, they consider the
Shannon entropy of partitions associated to the coupling.

1.2. Isoperimetric profile

As stated before, the orbit equivalence does not preserve the coarse geometric invariants.
But the quantified version defined above allowed Delabie et al. [4] to get a relation between
the isoperimetric profiles of two orbit equivalent groups which we describe below.

Recall that if G is generated by a finite set S , the isoperimetric profile of G is de-
fined as1

IG.n/ WD sup
jAj�n

jAj

j@Aj
:

For example, the isoperimetric profile of Z verifies IZ.x/ ' x. Remark that due to the
Følner criterion, a group is amenable if and only if its isoperimetric profile is unbounded.

1We chose to adopt the convention of [4]. Note that in [3], the isoperimetric profile is defined as
ƒG D 1=IG .
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Hence we can see the isoperimetric profile as a way to measure the amenability of a group:
the faster IG tends to infinity, the more amenable G is.

The behaviour of the isoperimetric profile under measure equivalence coupling is
given by the theorem below. Given two real functions f and g, we denote f 4 g if there
exists some constant C > 0 such that f .x/ D O.g.Cx// as x tends to infinity. We write
f ' g if f 4 g and g 4 f .

Theorem 1.5 ([4, Theorem 1]). Let G and H be two finitely generated groups admitting
a .';L0/-integrable orbit equivalence coupling. If ' and t='.t/ are non-decreasing, then

' ı IH 4 IG :

This theorem provides an obstruction for finding '-integrable couplings with certain
functions ' between two amenable groups. For example, for a coupling with H D Z
the integrability has to verify ' 4 IG . This leads the authors of [4] to ask the following
question.

Question 1.6 ([4, Question 1.2]). Given an amenable finitely generated group G, does
there exist an .IG ; L0/-integrable orbit equivalence coupling from G to Z?

We answer the above question for a large family of maps ' in Theorem 1.7. We will
see that the coupling we build to proof the aforementioned theorem answers Question 1.6
up to a logarithmic error.

1.3. Main results

In this paper, we show the following main theorem and its corollary below.

Theorem 1.7. For all non-decreasing function �W Œ1;C1Œ! Œ1;C1Œ such that �.1/D 1
and x=�.x/ is non-decreasing, there exists a group G such that

• IG ' � ı log;

• there exists an orbit equivalence coupling from G to Z that is .'"; exp ı�/-integrable
for all " > 0, where '".x/ WD � ı log.x/=.log ı� ı log.x//1C".

Let us discuss the optimality of this result. Consider a .'; L0/-integrable orbit equi-
valence coupling from some group G to Z. By Theorem 1.5, it verifies ' ı IZ 4 IG .
In particular, since IZ.x/ ' x, we cannot have a better integrability than '.x/ ' IG .
Since IG ' � ı log, our above theorem is optimal up to a logarithmic error. We discuss
this in more length in Section 5.

Main ingredients. The main tools of the proof of Theorem 1.7 are Brieussel–Zheng’s
diagonal products (see Section 2) and Følner tiling shifts (see Section 3). We show that
a diagonal product � admits a coupling with Z satisfying Theorem 1.7. To prove it, we
use the integrability criterion given by Theorem 3.5 and involving Følner tiling shifts.

Therefore, we compute in Section 3.2 a Følner tiling shift .†n/n for �. We also
estimate the tiles diameter and the proportion of elements in the boundary. We construct
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a Følner tiling shift for Z in Section 4.1 and show that these two tiling shifts verify The-
orem 3.5.

Let us now consider the possible generalisations of this result to other groups than
the group of integers. To do so, we can use the composition of couplings described in [4,
Section 2].

Given the above theorem, once we have a measure equivalence coupling from Z to
a group H , we can compose the two couplings to obtain a measure equivalence from G

to H . If the growth of the isoperimetric profile of H is close to the one of Z, the integ-
rability of the obtained coupling will be close to the optimal one given by Theorem 1.5.
It is, for example, the case when H D Zd .

Corollary 1.8. Let d 2 N� and " > 0. Let �W Œ1;C1Œ! Œ1;C1Œ be a non-decreasing
function such that �.1/ D 1 and x=�.x/ is non-decreasing. If the map '" defined in The-
orem 1.7 is subadditive and concave, then there exists a group G such that

• IG ' � ı log;

• there exists a .'"; L0/-integrable orbit equivalence coupling from G to Zd .

Structure of the paper. In Section 2, we present the diagonal products introduced by
Brieussel and Zheng. We recall some of the properties shown in [3] and compute Følner
sequences. Section 3 is devoted to Følner tiling shifts. These tools built by Delabie et al. [4]
allow us to construct and quantify an orbit equivalence coupling between two groups.
In this section, we also construct Følner tiling shifts for diagonal products �. We show
our main theorem in Section 4 combining the results of the two previous sections. Finally,
we discuss the limits of this construction and some open problems in Section 5.

2. Diagonal products of lamplighter groups

We recall here the necessary material from [3] concerning the definition of Brieussel–
Zheng’s diagonal products. We give the definition of such a group, recall and prove some
results concerning the range (see Definition 2.7) of an element and use it to identify a Føl-
ner sequence. Finally, we present in Section 2.3 the tools needed to recover such a diagonal
product starting with a prescribed isoperimetric profile.

2.1. Definition of diagonal products

Let us recall that the wreath product of a group G with Z denoted by G o Z is defined as
G o Z WD

L
m2ZG Ì Z. An element of G o Z is a pair .f; t/, where f is a map from Z

to G with finite support and t belongs to Z. We refer to f as the lamp configuration
and t as the cursor. Finally, we denote by supp.f / the support of f which is defined as
supp.f / WD ¹x 2 Z j f .x/ ¤ eGº.

2.1.1. General definition. LetA andB be two finite groups. Let .�m/m2N be a sequence
of finite groups such that each �m admits a generating set of the formAm [Bm, whereAm
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and Bm are finite subgroups of �m isomorphic to A and B , respectively. For a 2 A, we
denote by am the copy of a in Am and similarly for Bm.

Finally, let .km/m2N be a sequence of integers such that kmC1 � 2km for all m. We
define �m D �m o Z and endow it with the generating set

S�m WD ¹.id; 1/º [ ¹.amı0; 0/ j am 2 Amº [ ¹.bmıkm ; 0/ j bm 2 Bmº:

Definition 2.1. The Brieussel–Zheng diagonal product associated to .�m/m2N and
.km/m2N is the subgroup � of .

Q
m �m/ o Z generated by

S� WD ¹..id/m; 1/º [ ¹..amı0/m; 0/ j a 2 Aº [ ¹..bmıkm/m; 0/ j b 2 Bº:

The group� is uniquely determined by the sequences .�m/m2N and .km/m2N . Let us
give an illustration of what an element in such a group looks like. We will denote by g the
sequence .gm/m2N .

Example 2.2. We represent in Figure 1 the element .g; t / of � verifying

.g; t / D ..gm/m2N ; t / WD ..amı0/m; 0/..bmıkm/m; 0/.0; 3/

when km D 2m. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of g0 different from the identity is g0.0/ D .a0; b0/. Now if m > 0, then
the only values of gm different from the identity are gm.0/ D am and gm.km/ D bm.

: : :

0 2 4 2n1 3

Cursor

(a0, b0)g0

a1 b1g1

a2 b2g2

:::

an bngn

Figure 1. Representation of .g; t / D ..amı0/m; 0/..bmıkm/m; 0/.0; 3/ when km D 2m.

2.1.2. The expanders case. In this article, we will restrict ourselves to a particular fam-
ily of groups .�m/m2N called expanders. Recall that .�m/m2N is said to be a sequence
of expanders if the sequence of diameters .diam.�m//m2N is unbounded, and if there
exists c0 > 0 such that for all m 2 N and all n � j�mj=2 the isoperimetric profile verifies
I�m.n/ � c0.

When talking about diagonal products, we will always make the following assump-
tions. We refer to [3, Example 2.3] for an explicit example of diagonal product verify-
ing (H).
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Hypothesis (H)

� .km/m and .lm/m are sub-sequences of geometric sequences;
� kmC1 � 2km for all m 2 N;
� .�m/m2N is a sequence of expanders such that �m is a quotient of A � B ,

and there exists c > 0 such that 1=clm � diam.�m/ � clm for all m 2 N;
� k0 D 0 and �0 D A0 � B0;
� the natural quotient map Am � Bm ! hhŒAm; Bm�iin�m is an isomorphism,

where hhŒAm; Bm�ii is the normal closure of ŒAm; Bm�.

Recall (see [3, p. 9]) that in this case, there exist c1; c2 > 0 such that for all m,

c1lm � c2 � ln j�mj � c1lm C c2: (2.1)

Finally, we adopt the convention of [3, Notation 2.2] and allow .km/m2N to take the
valueC1. In this case,�s is the trivial group. In particular, when k1DC1, the diagonal
product � corresponds to the usual lamplighter .A � B/ o Z.

2.1.3. Relative commutators subgroups. Let �mW�m ! hhŒAm; Bm�iin�m ' Am � Bm
be the natural projection for allm 2 N. Let �Am and �Bm denote the composition of �m with
the projection toAm andBm, respectively. Now letm2N and define � 0m WD hhŒAm; Bm�ii.
If .gm; t / belongs to �m, then there exists a unique g0mWZ ! � 0m such that gm.x/ D
g0m.x/�m.gm.x// for all x 2 Z.

Example 2.3. Let .g; 3/ be the element described in Figure 1. Then the only non-trivial
value of �0.g0/ is �0.g0.0// D .a0; b0/. If m > 0, then the only non-trivial values of
�m.gm/ are �m.gm.0// D .am; e/ and �m.gm.km// D .e; bm/. Finally, for all m we have
g0m D id since there are no commutators appearing in the decomposition of .g; 0/.

Example 2.4. Assume that kmD 2m and consider first the element .f ; 0/ of� defined by

.f ; 0/ WD .0;�k1/..amı0/m; 0/.0; k1/:

Now define the commutator

.g; 0/ D .f ; 0/ � ..bmıkm/m; 0/ � .f ; 0/
�1
� ..b�1m ıkm/m; 0/

and let us describe the values taken by g and the induced maps �m.gm/ and g0m (see
Figure 2 for a representation of g). The only non-trivial commutator appearing in the
values taken by g is g1.k1/ which is equal to a1b1a�11 b�11 . In other words, g0 is the
identity, thus �0D id. Moreover, whenmD 1, we have �1D id, and the only value of g01.x/
different from e is g01.k1/ D a1b1a

�1
1 b�11 (on a blue background in Figure 2). Finally, if

m > 1, then gm is the identity, thus �m D id and g0m D id.

Let us study the behaviour of this decomposition under product of lamp configurations.
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(a0a�10 , b0b�10 )

(e, e)

g0

a1b1a
�1
1 b�11

g1

a2a
�1
2 D e b2b

�1
2 D e

g2

0 1 k1 D 2 3 k2 D 4

Cursor

Figure 2. Representation of .g; 0/ defined in Example 2.4.

Claim 2.5. If gm; fmWZ! �m, then .gmfm/0 D g0m�m.gm/f
0
m.�m.gm//

�1.

Proof. Since gm D �m.gm/g0m and fm D �m.fm/f 0m, we can write

gmfm D g
0
m�m.gm/ � f

0
m�m.fm/ D g

0
m�m.gm/f

0
m�m.gm/

�1�m.gm/�m.fm/:

But �m.gm/�m.fm/ takes values in Am � Bm, and � 0m is a normal subgroup of �m, thus
the map g0m�m.gm/f

0
m�m.gm/

�1 takes values in � 0m. Hence the claim.

Combining Lemma 2.7 and Fact 2.9 of [3], we get the following result.

Lemma 2.6. Let .g; t / 2 �. For all m 2 N and x 2 Z,

gm.x/ D g
0
m.x/�

A
m.gm.x//�

B
m .gm.x// D g

0
m.x/�

A
m.g0.x//�

B
m .g0.x � km//:

In particular, the sequence g D .gm/m2N is uniquely determined by g0 and .g0m/m2N .

In the next subsection, we are going to see that we actually need only a finite number
of elements of the sequence .g0m/m2N to characterise g.

2.2. Range and support

In this subsection, we introduce the notion of range of an element .g; t / in � and link it
to the supports of the lamp configurations .gm/m2N .

2.2.1. Range. We denote by �2W�! Z the projection on the second factor and for all
n 2 N denote by l.n/ the integer such that kl.n/ � n < kl.n/C1.

Definition 2.7. If w D s1 : : : sm is a word over S�, we define its range as

range.w/ WD
²
�2

� iY
jD1

sj

� ˇ̌
i D 0; : : : ; n

³
:

The range is a finite subinterval of Z. It represents the set of sites visited by the cursor.
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Definition 2.8. The range of an element ı 2 � is defined as the diameter of a minimal
range interval of a word over S� representing ı.

In what follows, we will consider elements that can be written as a word with range in
an interval of the form Œ0;n�, where n belongs to N. Therefore, when there is no ambiguity,
we will denote this interval by range.ı/, namely, range.ı/ D Œ0; n�.

Example 2.9. Let .g; 0/ 2 � such that range.g; 0/ D Œ0; 6�, that is to say: the cursor can
only visit sites between 0 and 6. Then the map gm can “write” elements of Am only on
sites visited by the cursor, that is to say, from 0 to 6, and it can write elements of Bm only
from km to 6C km. Thus g0 is supported on Œ0; 6� since k0 D 0. Moreover, commutators
(and hence elements of � 0m) can only appear between km and 6, thus supp.g0m/� Œkm; 6�.
In particular, supp.g0m/ is empty when km > 6.

Such a .g; 0/ is represented in Figure 3 for km D 2m.

g1

k1

g2

k2

g3

k3

g0

gn

70

:::
:::

kn

gm.x/ belongs to . . .

A0 � B0 Am �m Bm

Figure 3. An element of �. Recall that gmWZ! �m. If m � l.6/, then gm.x/ belongs to Am if
x 2 Œ0;km � 1�, it belongs to �m if x 2 Œkm; 6�, and toBm if x 2 Œ7;6C km�, and equals e elsewhere.
If m > l.6/, then gm.x/ belongs to Am if x 2 Œ0; 6�, and to Bm if x 2 Œkm; 6C km�, and equals e

elsewhere.

Let us now recall a useful fact proved in [3].

Claim 2.10 ([3, Fact 2.9]). An element .g; t / 2 � is uniquely determined by t , g0 and
the sequence .g0m/m�l.range.g;t//.

Example 2.11. Consider again .g; 0/ 2� such that range.g; 0/D Œ0; 6�, which was illus-
trated in Figure 3. Since k3 D 8 > 6, the element .g; 0/ is uniquely determined by the
data g0 (that is to say, the values read in the bottom line) and the values of g0i for i D 1; 2
(namely, the value taken in the blue area). Figure 4 represents the aforementioned charac-
terising data.
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g01

k1

g02

k2

g03

k3

g0

70

Figure 4. Data needed to characterise g such that range.g/ � Œ0; 6� when km D 2m.

2.2.2. Relation between range and support. Recall that for all m 2 N, we can write
gm.x/ D g0m.x/�

A
m.g0.x//�

B
m .g0.x � km// and that l.n/ denotes the integer such that

kl.n/ � n < kl.n/C1.
To work with the Følner sequence, we compute in Section 2.2.3 and deduce a Følner

tiling shift from it, we will need to link the range of .g; t / in� with the support of g0 and
the sequence of supports of .g0m/m2N . This is what the following lemma formalises.

Lemma 2.12. Let n 2 N and take .g; t / 2 �. Then range.g; t / is included into Œ0; n� if
and only if 8̂̂̂̂

<̂
ˆ̂̂:
t 2 Œ0; n�;

supp.g0/ � Œ0; n�;

supp.g0m/ � Œkm; n� 81 � m � l.n/;

g0m � e 8m > l.n/:

Proof. Let n 2 N and first assume that range.g; t / � Œ0; n�, that is to say: the cursor can
only visit sites between 0 and n. Let .g; t / D

Ql
iD0 si be a decomposition in a product

of elements of S� with range of minimal length. Let m 2 N, then by definition of S�, an
element si can “write” elements of Am only between 0 and n, and it can write elements
of Bm only between km and nC km. Thus g0 is supported on Œ0; n� since k0 D 0. And
commutators can only appear between km and n, hence supp.g0m/ � Œkm; n�. In particular,
if km > n, then g0m � e. Finally, we obtain that t belongs to Œ0; n� by noting that t D
�2.

Ql
jD1 sj /.

Now let us prove the other way round. Considerm 2 Œ1; l.n/�, then g0m.x/ 2 �
0
m. It is

therefore a product of conjugates of commutators of the form Œam; bm�, where am 2 Am
and bm 2 Bm. Applying Example 2.4 with x instead of k1, we can show that we can write
Œam; bm� at gm.x/ without changing any other entry in g (see also Figure 2). In a similar
way, we can write a conjugate of Œam; bm� at gm.x/without changing any other entry in g.
Finally, writing .a0; b0/ at the entry g0.x/ writes am at gm.0/ and bm at gm.km/ (see also
Figure 1). Therefore, using Lemma 2.6, we can obtain .g; 0/ by first considering the word
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in S� that writes all the values of g0, then multiplying it on the left by a word that writes
the value of g01, and continue this process to write all g0m for m � l.n/.

Let us now check that the cursor remains in Œ0; n� when writing g0 and g0m. Take
m 2 Œ1; l.n/�, then km � n and supp.g0m/ is contained in Œkm; n�. Now let x 2 supp.g0m/ �
Œkm; n�. Since � 0m � �m, which is generated by Am � Bm, we can decompose g0m.x/ as
a product of elements in Am and Bm. To write some am 2 Am at the position x, the cursor
needs to visit sites in Œ0; x�. To write some bm 2 Bm, it needs to visit sites in Œ0; x � km�.
Therefore, the cursor remains in Œ0; n� when writing gm.x/ at position x. Finally, for
all x the cursor needs only to visit position x in order to write g0.x/. Since supp.g0/ is
contained in Œ0; n�, then the cursor needs only to visit sites between 0 and n.

Combining what precedes with Lemma 2.6 and the hypothesis that t 2 Œ0; n�, we get
that the cursor needs only to visit cites between Œ0;n� to write .g; t /. Hence the lemma.

2.2.3. Følner sequence. In this subsection, we describe a Følner sequence .Fn/n2N

for �. Recall that l.n/ denotes the integer such that kl.n/ � n < kl.n/C1.

Proposition 2.13. The following sequence is a Følner sequence of �:

Fn WD ¹.f ; t / j range.f ; t / � ¹0; : : : ; n � 1ºº:

Proof. Let n 2 N and ı WD .f ; t / 2 Fn. Remark that since ı belongs to Fn, Lemma 2.12
implies that t belongs to ¹0; : : : ; n � 1º. Now let s1; : : : ; sl 2 S� such that ı D s1 � � � sl
and take slC1 2 S�. If slC1 D ..amı0/; 0/ for some a 2 A or if slC1 D ..bmıkm/; 0/ for
some b 2 B , then since the cursor of slC1 equals 0,

range.ıslC1/ D
²
�2

� iY
jD1

sj

� ˇ̌
i D 1; : : : ; l C 1

³
D range.ı/:

Thus ıslC1 2 Fn. Finally, denote by Œx; y� the range of ı. Using the same formula as
above, we get

range.ı � .id; 1// � Œx; y C 1� if t D y;

range.ı � .id; 1// � Œx; y� if t < y:

Hence for all t < n� 1, we have range.ı � .id; 1// � Œ0; n� 1�. Now if t D n� 1, then the
cursor of ı.id; 1/ visits the site n, thus range.ı � .id; 1// is not included into Œ0; n � 1� and
therefore ı.id; 1/ does not belong to Fn.

A similar argument shows that ı.0;�1/ belongs to Fn if and only if t ¤ 0. Hence

@Fn D ¹.f ; t / 2 Fn j t 2 ¹0; nºº;

and thus
j@Fnj

jFnj
D
2

n
�!
n!1

0:
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2.3. From the isoperimetric profile to the group

We saw how to define a diagonal product from two sequences .km/m and .lm/m. In this
section, we recall the definition given in [3, Appendix B] of a Brieussel–Zheng group from
its isoperimetric profile. We conclude with some useful results concerning the metric of
these groups.

2.3.1. Definition of �. Recall that in the particular case of expanders (see Section 2.1.2)
a Brieussel–Zheng group is uniquely determined by the sequences .km/m2N and .lm/m2N

(where lm corresponds to the diameter of �m). Thus, starting from a prescribed function �,
we will define sequences .km/m2N and .lm/m2N such that the corresponding � verifies
I� ' � ı log. Let

C WD ¹�W Œ1;C1/! Œ1;C1/ j � continuous; �.1/ D 1;

� and x 7! x=�.x/ are non-decreasingº:

Equivalently, this is the set of functions � satisfying �.1/ D 1 and

8x; c � 1; �.x/ � �.cx/ � c�.x/: (2.2)

So let � 2 C . Combining [3, Proposition B.2 and Theorem 4.6], we can show the follow-
ing result (remember that with our convention the isoperimetric profile considered in [3]
corresponds to 1=I�).

Proposition 2.14. Let �; � � 2. For any � 2 C , there exist a subsequence .km/m2N

of .�n/n2N and a subsequence .lm/m2N of .�n/n2N such that the group � defined in
Section 2.1.2 verifies I�.x/ ' � ı log.

Example 2.15 ([3, Example 4.5]). Let ˛ > 0. If �.x/ WD x1=.1C˛/, then the diagonal
product � defined by km D �m and lm D �˛m verifies I� ' � ı log.

2.3.2. Technical tools. We recall the intermediate functions defined in [3, Appendix B]
and some of their properties.

Let � 2 C , and let f be such that �.x/ D x=f .x/. The construction of a group cor-
responding to the given isoperimetric profile � ı log is based on the approximation of f
by a piecewise linear function xf . For the quantification of orbit equivalence, many of our
computations will use xf and some of its properties. We recall below all the needed results,
beginning with the definition of xf .

Lemma 2.16. Let � 2 C , and let f be such that �.x/ D x=f .x/. Let .km/ and .lm/ be
given by Proposition 2.14, and let � be the corresponding diagonal product. The func-
tion xf defined by

xf .x/ WD

´
lm if x 2 Œkmlm; kmC1lm�;
x

kmC1
if x 2 ŒkmC1lm; kmC1lmC1�

(2.3)

verifies xf ' f . In particular, the map x� defined by x�.x/ D x= xf .x/ verifies x� ' �.



Building prescribed quantitative orbit equivalence with the integers 1019

Example 2.17. If �.x/ D x, then f .x/ D 1 leads to lm D 1 for all m and km D C1 for
all m � 1. In this case, � D .A � B/ o Z.

Remark that both xf and x� belong to C . In particular, they verify equation (2.2), which
is only true when c and x are greater than 1. When c < 1, we get the following inequality.

Claim 2.18. If 0 < c0 < 1 and x0 � 1=c0, then c0x�.x0/ � x�.c0x0/.

Proof. If 0 < c0 < 1, then 1=c0 > 1, thus we can apply equation (2.2) with c D 1=c0 and
x D c0x to obtain

x�.x0/ D x�
� 1
c0
c0x0

�
D x�.cx/ � cx�.x/ D

1

c0
x�.c0x0/:

2.3.3. Metric. We recall here some useful material about the metric of � and refer to [3,
Section 2.2] for more details. First, let .x/C WD max¹x; 0º.

Definition 2.19. For j 2 Z and m 2 N, suppose that Imj WD Œjkm=2; .j C 1/km=2 � 1�.
Let fmWZ! �m. The essential contribution of fm is defined as

Em.fm/ WD km
X

j W range.fm;t/\Imj ¤;

max
x2Imj

.jfm.x/j�m � 1/C:

The following proposition sums up [3, Lemma 2.13, Proposition 2.14].

Proposition 2.20. For any ı D .f ; t / 2 �, we have

j.f ; t /j� � 500

l.range.ı//X
mD0

j.fm; t /j�m ;

j.fm; t /j�m � 9.range.fm; t /CEm.fm//:

3. Følner tiling shifts

We start by recalling some material of [4] about Følner tiling shifts and then construct
such a tiling for diagonal products.

3.1. Følner tiling shifts

The tools we are going to use to build orbit equivalence are Følner tiling shifts.2 These
sequences lead to Følner sequences defined recursively: the term of rank .nC 1/ is com-
posed of a finite number of translates of the n-th term of the sequence.

2Delabie et al. [4] use the term “Følner tiling sequence”. We chose to call .†n/n a tiling shift in order
to avoid confusion with usual Følner sequences.
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Definition 3.1. Let G be an amenable group and .†n/n2N be a sequence of finite subsets
of G. Define by induction the sequence .Tn/n2N by T0 WD †0 and TnC1 WD Tn†nC1.
We say that .†n/n2N is a (left) Følner tiling shift if

• .Tn/n2N is a left Følner sequence, viz. limn!1 jgTnnTnj=jTnj D 0 for all g 2 G;

• TnC1 D
F
�2†nC1

Tn� .

We call †n the set of shifts and .Tn/n2N the tiles.

We can also consider right Følner tiling shifts, that is to say, sequences .†n/n such
that TnC1 WD †nC1Tn defines a right Følner sequence.

Definition 3.2. Let S be a generating part of G. We say that .†n/n2N is an .Rn; "n/-
Følner tiling shift if for all n we have

diam.Tn/ � Rn; jsTnnTnj � "njTnj 8s 2 S:

Delabie et al. obtained in [4] the following two examples.

Example 3.3. If G D Z, the sequence defined by †nC1 WD ¹0; 2nº is a .2n; 21�n/-Følner
tiling shift, and the sequence .Tn/ thus defined verifies Tn D Œ0; 2n � 1�.

Example 3.4. If G D .Z=2Z/ o Z, then the sequence .†n/n2N defined by8̂<̂
:

†0 WD ¹.f; 0/ 2 G j supp.f / � ¹0; 1ºº;

†nC1 WD ¹.f; 0/ 2 G j supp.f / � Œ2n; 2nC1 � 1�º

[ ¹.f; 2n/ 2 G j supp.f / � Œ0; 2n � 1�º

is a right .3 � 2n; 2�n/-Følner tiling shift. Moreover, the tiling .Tn/n2N thus defined verifies

Tn D ¹.f;m/ 2 G j supp.f / � Œ0; 2n � 1�;m 2 Œ0; 2n � 1�º:

In [4], the authors used Følner tiling shifts to build an explicit orbit equivalence coup-
ling between two amenable groups and to quantify its integrability. Indeed, if G admits
a Følner tiling shift .†n/n2N , then we can define X WD

Q
n2N †n and endow it with an

action of G. Up to measure zero, two elements of X will be in the same orbit under that
action if and only if they differ by a finite number of indices. The equivalence relation
thus induced is called the cofinite equivalence relation. Now if G0 admits a Følner tiling
shift .†0n/n2N verifying j†nj D j†0nj for all integer n, then there exists a natural bijection
between X and X 0 WD

Q
n2N †

0
n which preserves the cofinite equivalence relation. That

is to say, G and H are orbit equivalent. Furthermore, they showed that if we know the
diameter and the ratio of elements in the boundary of each tile, then we can deduce the
integrability of the coupling. This is what the following proposition sums up.

Theorem 3.5 ([4, Proposition 6.6]). Let G and G0 be two discrete amenable groups,
and let .†n/n be an ."n; Rn/-Følner tiling shift for G and .†0n/n be an ."0n; R0n/-
Følner tiling shift for G0. If j†nj D j†0nj, then the groups are orbit equivalent over
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X D
Q
n2N†n. Moreover, if 'WRC!RC is a non-decreasing map such that the sequence

.'.2R0n/."n�1 � "n//n2N is summable, then the coupling from G to G0 is .'; L0/-in-
tegrable.

Using this tiling technique and the above theorem, Delabie et al. [4] obtained the first
item of Example 1.4 and the following two quantifications.

Example 3.6. For all n and m, there exists an orbit equivalence coupling from Zm to Zn

which is .'";  "/-integrable for every " > 0, where

'".x/ D
xn=m

log.x/1C"
;  ".x/ D

xm=n

log.x/1C"
:

Remark that, in particular, for all p < n=m and q < m=n, there exists an .Lp; Lq/-
orbit equivalence coupling from Zm to Zn.

Example 3.7. Letm� 2. There exists an orbit equivalence coupling from Z to Z=mZ oZ
that is .exp; '"/-integrable for all " > 0, where

'".x/ D
log.x/

log.log.x//1C"
:

Note that the above example corresponds to the case when �.x/ D x in our The-
orem 1.7.

3.2. Følner tiling shifts of diagonal products

Let .km/m and .lm/m be two sequences verifying the conditions of (H), and consider �
the associated diagonal product (see Section 2). We define below a Følner tiling shift
for �. Our goal is to obtain a tiling verifying Tn D F�n . After defining the shifts sets †n,
we prove that the sequence .†n/n2N is actually a Følner tiling shift. Finally, we make
this last statement precise by computing .Rn/n2N and ."n/n2N such that .†n/n2N is an
.Rn; "n/-Følner tiling shift (see Definition 3.1).

3.2.1. Definition of the shifts. For any n 2N, let L.n/D l.�n � 1/, that is to say, L.n/ is
the integer such that kL.n/ � �

n � 1 < kL.n/C1. For example, if kn WD �n for all n 2 N,
then L.n/ D n � 1.

Before defining our sequence .†n/n2N , let us show some practical results on L. First,
remark that since .kn/n2N is a subsequence of .�n/n2N , it verifies kn � �n for all n 2 N.
Thus L.n/ � n and

kL.n/ < �
n
� kL.n/C1:

Claim 3.8. Let n � 0, then either L.nC 1/ D L.n/ or L.nC 1/ D L.n/C 1. Moreover,
in this second case kL.nC1/ D �

n.

Proof. Recall that by definition, L.m/ D max¹i 2 N j ki � �m � 1º for all m 2 N.
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Let n 2 N, then L.nC 1/ � L.n/. Moreover, if kL.n/C1 � �
nC1, then L.nC 1/ <

L.n/C 1. That is to say, L.nC 1/ � L.n/ and thus L.nC 1/ D L.n/.
On the contrary, if kL.n/C1 < �nC1, then L.n C 1/ � L.n/ C 1. But, by definition

of L.n/, it verifies kL.n/C1 � �
n, and by construction of .km/m2N we also have kL.n/C2 �

�kL.n/C1, thus kL.n/C2 � �
nC1. Hence L.nC 1/ < L.n/C 2, and the first assertion fol-

lows.
Finally, if L.nC 1/ D L.n/C 1, then by definition of L,

kL.n/ < �
n
� kL.n/C1 D kL.nC1/ � �

nC1
� 1:

But .km/m2N is a subsequence of �m thus the above inequality implies kL.nC1/ D �
n.

Now, let us define the shifts. First, let †0 WD F0, then if n � 0, we distinguish two
cases depending on whether L.nC 1/D L.n/ or L.nC 1/D L.n/C 1, and in both cases
we split the set of shifts †nC1 into � parts.

If L.nC 1/ D L.n/, let for all j 2 ¹0; : : : ; � � 1º,

†
j
nC1 WD ¹.g; j�

n/ 2 � j supp.g0/ � Œ0; j�n � 1� [ Œ.j C 1/�n; �nC1 � 1�;

8m 2 Œ1;L.n/�;

supp.g0m/ � Œkm; j�
n
C km � 1� [ Œ.j C 1/�

n; �nC1 � 1�;

8m … Œ0;L.n/�; supp.g0m/ D ;º:

Now if L.nC 1/D L.n/C 1, we add the condition that g0
L.n/C1

has support contained in
ŒkL.nC1/; �

nC1 � 1�, namely, for all j 2 ¹0; : : : ; � � 1º,

†
j
nC1 WD ¹.g; j�

n/ 2 � j supp.g0/ � Œ0; j�n � 1� [ Œ.j C 1/�n; �nC1 � 1�;

8m 2 Œ1;L.n/�;

supp.g0m/ � Œkm; j�
n
C km � 1� [ Œ.j C 1/�

n; �nC1 � 1�;

supp.g0L.n/C1/ � ŒkL.n/C1; �
nC1
� 1�;

8m … Œ0;L.nC 1/�; supp.g0m/ D ;º:

Finally, in both cases we define †nC1 WD
S��1
jD0†

j
nC1.

Let .g; t / be an element of some †jnC1. We represent in Figure 5 the supports and the
sets where the maps g0; g01; : : : ; g

0
L.nC1/ take their values. The light-blue rectangle with

dotted outline is in †jnC1 if and only if L.nC 1/ D L.n/C 1.
Now that we have the shifts sequence, let us turn to the definition of the tiles.

3.2.2. Tiling. Recall that .Fn/n2N denotes the Følner sequence of � defined in Proposi-
tion 2.13. The aim of this section is to prove the theorem below.

Theorem 3.9. The sequence .†n/n2N defined in Section 3.2.1 is a Følner tiling shift of�.

Before showing that the sequence of tiles .Tn/n2N thus induced verifies indeed the
conditions of Definition 3.1, let us prove the following lemma.
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g01

g02

g0

�nC1j�n .j C 1/�n0

:::
:::

g0
L.n/

g0
L.n/C1

Present if and only if L.nC 1/ D L.n/C 1

Figure 5. Support and values taken by .g; t / 2 †jn.

Lemma 3.10. The sequence .Tn/n2N defined by T0 WD F0 and TnC1 WD †nC1Tn for all
n > 0 verifies

8n 2 N; Tn D F�n :

Let us discuss the idea of the proof. We proceed by induction and use a double inclu-
sion argument to prove the induction step. To show that †nC1Tn is included into F�nC1 ,
we rely on Lemma 2.12, that is to say, we verify that every element of †nC1Tn has range
included into Œ0; �nC1 � 1�. For the reversed inclusion, we consider an element .h; t /
of F�nC1 and make the elements .g; j�n/ of †nC1 and .f ; t 0/ of Tn explicit such that
.h; t / D .g; j�n/.f ; t 0/.

Mind the involved maps here: we study the values of gm and fm instead of the
“derived” functions g0m, f 0m usually considered.

Proof of Lemma 3.10. The assertion is true for T0. Let n � 0 and assume that Tn D F�n .
We show the induction step by double inclusion.

First inclusion. Let us prove that †nC1Tn � F�nC1 . Recall that †nC1 D
S��1
jD0†

j
nC1.

Let .f ; t / 2 Tn and j 2 ¹0; : : : ; � � 1º. Take .g; j�n/ 2 †jnC1, then the following
product

.g; j�n/.f ; t / D ..gmfm.� � j�
n//m; t C j�

n/

verifies t C j�n 2 Œj�n; �n � 1C j�n�which is contained in Œ0;�nC1 � 1� since j � � � 1.
Moreover,

g0.x/f0.x � j�
n/ D

8̂̂<̂
:̂
g0.x/ if x 2 Œ0; j�n� [ Œ.j C 1/�n; �nC1 � 1�;

f0.x � j�
n/ if x 2 Œj�n; .j C 1/�n � 1�;

0 else:
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Thus supp.g0f0.� � j�n// � Œ0; �nC1 � 1�. Furthermore, for all m 2 ¹1; : : : ;L.n/º,

supp.g0m/ � Œkm; j�
n
C km � 1� [ Œ.j C 1/�

n; �nC1 � 1�;

supp.f 0m.� � j�
n// � Œj�n C km; .j C 1/�

n
� 1�;

hence by Claim 2.5, the support of .gmfm.� � j�m//0 is contained in Œkm; �nC1 � 1�.
Now if L.n C 1/ D L.n/ C 1, consider m D L.n/ C 1. In that case, f 0m � e since

m > L.n/. Thus
.gmfm.� � j�

m//
0
D g0n;

whose support is contained in ŒkL.n/C1; �
nC1 � 1�.

Finally, .gmfm.� � j�m//0 � 0 for all m … Œ0;L.nC 1/�. Hence by Lemma 2.12, the
product .g; j�n/.f ; t / has range included into Œ0; �nC1 � 1� and thus belongs to F�nC1 .

Second inclusion. Let us show that F�nC1 is contained in†nC1Tn. So take .h; t / in F�nC1 .
We want to define .f ; t 0/ 2 Tn and .g; j�n/ 2 †nC1 such that .g; j�n/.f ; t 0/ D .h; t /.
First, remark that t < �nC1 since .h; t / belongs to F�nC1 . Thus there exist t0; : : : ; tn in
Œ0; � � 1� such that t D

Pn
iD0 ti�

i . Let j D tn and t 0 D
Pn�1
iD0 ti�

i . Then j does belong
to Œ0; � � 1� and t 0 to Œ0; �n � 1�. We now have to define f and g such that

..gmfm.� � j�
n//m; t

0
C j�n/ D .h; t /:

We refer to Figure 6 for an illustration of the different supports. Let

f0.x/ WD

´
h0.x C j�

n/ if x 2 Œ0; �n � 1�;

e else,

g0.x/ WD

´
h0.x/ if x 2 Œ0; j�n � 1� [ Œ.j C 1/�n; �nC1 � 1�;

e else.

km j�n j�n C km .j C 1/�n �nC1 �nC1 C km

Support of . . .
�Am.f0.� � j�

n//

�Am.g0/

f 0m

g0m

�Bm .f0.� � j�
n//

�Bm .g0/

Figure 6. Supports.
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One can verify immediately that g0f0.� � j�n/ D h0. Then take m 2 Œ1;L.n/� and let

f 0m.x/ WD

´
h0m.x C j�

n/ if x 2 Œkm; �n � 1�;

e else,

g0m.x/ WD

´
h0m.x/ if x 2 Œkm; j�n C km � 1� [ Œ.j C 1/�n; �nC1 � 1�;

e else.

Now if L.nC 1/ D L.n/C 1, then kL.nC1/ � �
n, and in that case define

g0L.nC1/ D h
0
L.nC1/:

Finally, let f 0L.nC1/ � e, and if m > L.nC 1/, let g0m � e � f 0m.
With the above definitions f and g are uniquely defined. Moreover, by definition

.g; j�n/ belongs to †jnC1, and by Lemma 2.12, we have range.f ; t / � Œ0; �n � 1�, thus

.f ; t 0/ belongs to Tn.
Now, using Lemma 2.6 we verify that gmfm.� � j�n/ D hm, thus .h; t / 2 †nC1Tn.
Hence, combining the first and second inclusions, we get F�nC1 D Tn. This completes

the proof of Lemma 3.10.

We now know that .Tn/n2N is a Følner sequence. To prove Theorem 3.9, we have to
show that .†n/n2N a Følner tiling shift.

Proof of Theorem 3.9. The sequence .Tn/n2N is a Følner sequence by the last lemma.
Thus we only have to show that for all � ¤ z� 2 †nC1, �Tn \ z�Tn D ;. So let us denote
by .h; t / an element of �Tn \ z�Tn. We distinguish two cases.

First, if � 2 †jnC1 and z� 2 †inC1 for some i ¤ j , then the cursor of � is equal to j�n

and the one of z� to i�n. Thus

.h; t / 2 �Tn) t 2 Œj�n; .j C 1/�n � 1�;

.h; t / 2 z�Tn) t 2 Œi�n; .i C 1/�n � 1�:

But since i ¤ j , these two intervals are disjoint, thus �Tn \ z�Tn D ;.
Now fix j 2 ¹0; : : : ; � � 1º and take �; z� 2†jnC1. Let � WD .g; j�n/ and z� WD .zg; j�n/.

Assume that there exist .f ; t /, . zf ; zt / 2 Tn such that .g; j�n/.f ; t / D .zg; j�n/. zf ; zt /.
Then

8m 2 N; 8x 2 Z; gmfm.x � j�
n/ D zgm.x/ zfm.x � j�

n/: (3.1)

First, remark that

�; z� 2 †
j
nC1) supp.g0/; supp.zg0/ � Œ0; j�n � 1� [ Œ.j C 1/�n; �nC1 � 1�;

.f ; t /; . zf ; zt / 2 Tn) supp.f0.� � j�n//; supp. zf0.� � j�n// � Œj�n; .j C 1/�n � 1�:

In other words, the support of g0 (resp. zg0) is disjoint from the one of f0.� � j�n/ (resp.
zf0.� � j�

n/). Combining this with equation (3.1), we obtain that g0 D zg0 and f0 D zf0.
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m D 1

m D 2

m D 0

m D L.n/C 1

�nC1j�n .j C 1/�n�n D kL.n/C10

fm.x/ belongs to . . .

gm.x/ belongs to . . .

A0 � B0

A0 � B0

Am

Am

�m

�m

Bm

Bm

Figure 7. Supports overlap.

Now let m > 0 and let us show that gm D zgm. Due to supports overlap (see Figure 7),
we need to decompose Œ0; �nC1 � 1� into five subintervals, namely,

Œ0; �nC1 � 1� DŒ0; j�n � 1� t Œj�n; j�n C km � 1� t Œj�
n
C km; .j C 1/�

n
� 1�

t Œ.j C 1/�n; .j C 1/�n C km � 1� t Œ.j C 1/�
n
C km; �

nC1
� 1�:

If x � j�n � 1 or x � .j C 1/�n C km, then fm.x � j�n/ D e D zfm.x � j�
n/, and

thus gm.x/ D zgm.x/ by equation (3.1).
If x 2 Œj�n; j�nC km � 1�, then using Lemma 2.6 and the fact that on that subinterval

f0 D zf0, we get

fm.x � j�
n/ D �A0 .f0.x � j�

n// D �A0 .
zf0.x � j�

n// D zfm.x � j�
n/:

Hence by equation (3.1), we get gm.x/ D zgm.x/.
If x belongs to Œj�n C km; .j C 1/�n � 1�, then gm.x/ D zgm.x/ D e, and thus equa-

tion (3.1) implies that fm.x � j�n/ D zfm.x � j�n/, that is to say, fm and zfm coincide
on Œkm; �n � 1�.

Finally, if x 2 Œ.j C 1/�n; .j C 1/�n C km � 1�, then using Lemma 2.6 and the fact
that f0 D zf0 on that subinterval, we get

fm.x � j�
n/ D �B0 .f0.x � j�

n
� km// D �

B
0 .
zf0.x � j�

n
� km// D zfm.x/:

Hence by equation (3.1), we have gm.x/ D zgm.x/.
Thus g D zg and then � D z� , which concludes the proof of the theorem.

3.2.3. Diameter and boundary. Let us now quantify our shifts sequence.

Proposition 3.11. The sequence .†n/n2N defined in Section 3.2.1 is an .Rn; "n/-Følner
tiling shift, where

Rn D CR�
nlL.n/; "n D

2

�n
;

for some strictly positive constant CR.
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First, we prove the following lemma.

Lemma 3.12. There existsCR > 0 depending only on� such that diam.Fn/�CRnll.n�1/
for all n 2 N.

To show this result, we use Proposition 2.20.

Proof. Let n 2 N and .f ; t / 2 Fn. First, take m � l.n � 1/ and let us bound Em by
above. Recall that Imj D Œjkm=2; .j C 1/km=2� 1�. Since .f; t/ belongs to Fn, its range
is included into Œ0; n � 1�, thus

j¹j 2 Z j range.fm; t / \ Imj ¤ ;ºj

�

ˇ̌̌°
j 2 Z

ˇ̌
Œ0; n � 1� \

hjkm
2
;
.j C 1/km

2
� 1

i
¤ ;

±ˇ̌̌
�

ˇ̌̌°
j 2 Z

ˇ̌ jkm
2
� n � 1 and

.j C 1/km

2
� 1

±ˇ̌̌
�
2.n � 2/

km
C 1:

Moreover, remark that jfm.x/j�m � diam.�m/ � clm for all x, thus

Em.fm/ D km
X

j W range.fm;t/\Imj ¤;

max
x2Imj

.jfm.x/j�m � 1/C � km
X

j W range.fm;t/\Imj ¤;

lm

� kmlm

�2.n � 2/
km

C 1
�
D lm.2.n � 2/C km/:

Thus, applying the second part of Proposition 2.20, we get

j.fm; t /j�m � 9.range.fm; t /CEm.fm// � 9.nC lm.2.n � 2/C km//:

But if m � l.n � 1/, then km � n � 1 � n, thus we can bound j.fm; t /j�m by above
by 9n.3lm C 1/. Now remark that l.range.f ; t // � l.n � 1/. Thus, using the preceding
inequality and the first part of Proposition 2.20, we get

j.f ; t /j� � 500

l.range.f ;t//X
mD0

j.fm; t /j�m � 500

l.n�1/X
mD0

9n.3lm C 1/

� 4500n

l.n�1/X
mD0

.3lm C 1/:

Finally, since lm is a subsequence of a geometric sequence, there exists Cl > 0 such thatPl.n�1/
mD0 .3lm C 1/ � Cl ll.n�1/. Denoting CR WD 4500Cl , we get the lemma.

Let us now prove the wanted proposition.

Proof of Proposition 3.11. First, remark that by the proof of Proposition 2.13, we have

"n D
j@Tnj

jTnj
D
j@F�n j

jF�n j
D

2

�n
:

Now by Lemma 3.12, we have diam.Tn/ D diam.F�n/ � CR�
nlL.n/.



A. Escalier 1028

4. Coupling with Z

Our aim in this section is to prove Theorem 1.7. What we actually show is that a diagonal
product� admits a coupling with Z satisfying Theorem 1.7. We start by defining a Følner
tiling shift for Z in Section 4.1. We compute in Section 4.2 an estimate of the diameter
of such tiles, namely, the cardinal jTnj. We conclude by showing the integrability of the
coupling using the criterion given by Theorem 3.5. And then show that� thus considered
satisfies Theorem 1.7.

4.1. Tiles for Z

We will denote by .†0n/n2N a Følner tiling shift of Z and by .T 0n/n the corresponding tiles.
Consider .†n/n and .Tn/n as defined in Section 3.2.1 and Lemma 3.10, respectively.

In order to use Theorem 3.5 to get an orbit equivalence coupling between Z and �, we
need †nC1 and †0nC1 to have the same number of elements. We thus define´

†00 D Œ0; jT0j � 1�;

†0nC1 WD ¹0; jTnj; 2jTnj; : : : ; .j†nC1j � 1/jTnjº 8n 2 N:
(4.1)

It induces a sequence .T 0n/n2N defined by T 00D†
0
0 and T 0nC1D†

0
nC1T

0
n for all n� 0.

We are going to prove that .†0n/n2N is a Følner tiling shift for Z.

Proposition 4.1. The sequence .†0n/n2N defined by equation (4.1) is an .R0n; "
0
n/-Følner

tiling shifts for Z with

R0n D jTnj; "0n D
2

jTnj
:

Moreover, the induced sequence .T 0n/n2N verifies T 0n D Œ0; jTnj � 1� for all n 2 N.

Proof. Let .†0n/n2N be as defined by equation (4.1), and recall that the induced tiling
.T 0n/n2N is the sequence defined by T 00 WD †

0
0 and T 0nC1 D †

0
nC1T

0
n for all n 2 N. One

can easily prove that for all n � 0,

T 0n D Œ0; jTnj � 1�:

It is now immediate to check that diam.T 0/n D jTnj and j@T 0nj=jT
0
nj D 2=jTnj. Further-

more, note that if �; � 0 2 †0nC1 such that � ¤ � 0, then dZ.�; �
0/ � jTnj D diam.T 0/n.

Thus for such � and � 0, we get �T 0n \ �
0Tn D ;. Therefore, .†n/n2N is a Følner tiling

shift, and the proposition follows from the above quantifications on Tn.

4.2. Estimates: Diameter and boundary

The integrability of the coupling between Z and � depends on .Rn; "n/ and .R0n; "
0
n/ but

by the above proposition, that last couple depends on the value of the cardinality of the
tiles .Tn/n2N . The aim of this section is to give estimates of jTnj involving only terms
of .km/m2N and .lm/m2N . First, let us make the value of jTnj precise.
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Lemma 4.2. The sequence .Tn/n defined in Theorem 3.9 verifies

jTnj D �
n.jAjjBj/�

n
L.n/Y
mD1

j� 0mj
�n�km :

Proof. Recall that Tn D F�n D ¹.f ; t / j range.f ; t / � ¹0; : : : ; �n � 1ºº for all n 2 N.
We use here Lemma 2.12 linking range and supports. Let n 2 N and take .f ; t / 2 Tn,
then there are exactly �n values of t possible. Moreover, f is uniquely determined by f0
and f 01 ; : : : ; f

0
L.n/

(see Lemma 2.6). But f0 is supported on Œ0; �n � 1� which is a set of
cardinal �n, so there are exactly .jAjjBj/�

n
possible values for f0. Moreover, if m > 0,

then remark that f 0m is supported on Œkm; �n � 1�which has �n � km elements, so there are
exactly j� 0mj

�n�km possible values for f 0m. Thus the number of elements in Tn is

�n.jAjjBj/�
n

L.n/Y
mD1

j� 0mj
�n�km :

Now let us bound jTnj, so that the bounds depend only on .�m/m2N and .lm/m2N .

Proposition 4.3. There exist two constants C2; C3 > 0 such that for all n 2 N,

C2�
n�1lL.n/ � ln jTnj � C3�nlL.n/:

Before showing the above proposition, let us give an estimate of the right factor of the
expression of jTnj.

Lemma 4.4. There exist two constants C1; C2 > 0 such that for all n 2 N,

C2�
n�1lL.n/ � ln

� L.n/Y
mD1

j� 0mj
�n�km

�
� C1�

nlL.n/:

Proof. Recall that by equation (2.1), there exist c1, c2 > 0 such that for all m,

c1lm � c2 � ln j�mj � c1lm C c2:

Since � 0m � �m, we thus have

ln
� L.n/Y
mD1

j� 0mj
�n�km

�
�

L.n/X
mD1

.�n � km/ ln j�mj �
L.n/X
mD1

.�n � km/.c1lm C c2/:

But we can bound �n � km from above by �n, and since .lm/m2N is a subsequence of
a sequence having geometric growth, the sum

PL.n/
mD1.c1lm C c2/ is bounded from above

by its last term up to a multiplicative constant. That is to say: there exists C1 > 0 such that

ln
� L.n/Y
mD1

j� 0mj
�n�km

�
� C1�

nlL.n/:
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Hence the upper bound. Now, using that Œ�m W � 0m� D jAjjBj, we have

ln
� L.n/Y
mD1

j� 0mj
�n�km

�
D

L.n/X
mD1

.�n � km/ ln j� 0mj D
L.n/X
mD1

.�n � km/ ln
�
j�mj

jAjjBj

�
:

Bounding the sum from below by its last term and using once more equation (2.1), we get

ln
� L.n/Y
mD1

j� 0mj
�n�km

�
� .�n � kL.n// ln

�
j�L.n/j

jAjjBj

�
� .�n � kL.n//.c1lL.n/ � c2 � ln.jAjjBj//

� C2.�
n
� kL.n//lL.n/

for some C2 > 0. We get the wanted inequality by noting that �n � kL.n/ � �
n�1.

Proof of Proposition 4.3. Applying Lemma 4.4 to the cardinal of Tn given by Lemma 4.2,
we obtain that there exists C3 > 0 such that ln jTnj � C3�nlL.n/. Hence the upper bound.
The minoration comes immediately from Lemma 4.4.

Equipped with these bounds on jTnj, we can now show the wanted integrability for
the coupling.

4.3. Integrability of the coupling

We will show that � is the group satisfying Theorem 1.7, but first let us quantify the
integrability of the orbit equivalence coupling with Z induced by the Følner tiling shifts
we built. Recall that C denotes the set of non-decreasing functions �W Œ1;C1Œ! Œ1;C1Œ

such that x=�.x/ is non-decreasing.

Theorem 4.5. Let � 2 C and take � to be the Brieussel–Zheng diagonal product defined
from �. Let " > 0 and ‰ WD exp ı�, and let

'".x/ WD
� ı ln.x/

.ln ı� ı ln.x//1C"
:

There exists an orbit equivalence coupling from � to Z that is .'"; ‰/-integrable.

Let us discuss the strategy of the proof. The demonstration is based on Theorem 3.5,
thus we first prove that .‰.2Rn/"0n�1/n is summable and then that .'".2R0n/"n�1/n is.
In both cases, we use Proposition 4.3 to get upper bounds. So far, we have the following
quantifications:

Rn D CR�
nlL.n/; R0n D jTnj;

"n D 2�
�n; "0n D

2

jTnj
:
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Proof of Theorem 4.5. Let � 2 C and take� to be the diagonal product defined from � as
described in Section 2.3.

To begin, let us recall some preliminary results about �. Remember that �' x�, where x�
is defined below equation (2.3). By definition of L.n/, we have kL.n/lL.n/ � �

nlL.n/ �

kL.n/C1lL.n/, thus by equation (2.3),

x�.�nlL.n// D �
n: (4.2)

Now let us show that the coupling from Z to � is ‰-integrable. To do so, we prove
that .‰.2Rn/"0n�1/ is summable. First, note that by Proposition 4.3, we have the following
lower bound on jTn�1j:

jTn�1j � exp.C2�n�2lL.n�1//: (4.3)

Moreover, recall that Rn D CR�
nlL.n/ and "0n�1 D 2=jTn�1j. Thus by the inequality

above,

‰.2Rn/"
0
n�1 D expŒ�.2CR�nlL.n//�

2

jTn�1j

� 2 expŒ�.2CR�nlL.n// � C2�n�2lL.n�1/�:

But remember that � ' x�. Thus using equations (2.2) and (4.2), we get

�.2CR�
nlL.n// ' x�.2CR�

nlL.n// � 2CRx�.�
nlL.n// D 2CR�

n: (4.4)

Combining the above result with the previous inequality, we get

‰.2Rn/"
0
n�1 4 2 expŒ2CR�n � C2�n�2lL.n�1/� D 2 expŒ�n�2.2CR�2 � C2lL.n�1//�;

which is summable. Indeed, lL.n/ tends to infinity, and thus .2CR�2 � C2lL.n�1// < �1
for n large enough. Hence by Theorem 3.5, the orbit equivalence from Z to � is ‰-
integrable.

Now, let us show that for all " > 0 the coupling from� to Z is '"-integrable. Based on
Theorem 3.5, we only have to prove that '".2R0n/"n�1 is summable. Recall thatR0n D jTnj
and "n�1 D 2=�n�2, and remark that by both the lower and upper bounds given in Pro-
position 4.3, we have

'".2R
0
n/"n�1 D

2� ı ln.2jTnj/
.ln ı� ı ln.2jTnj//1C"�n�1

�
2�.2C3�

nlL.n//

.ln ı�.2C2�n�1lL.n///1C"�n�1
:

Let us give a lower bound for �.2C2�n�1lL.n//. Recall that �' x�; furthermore, if 2C2 � 1,
then by equation (4.2) and since x� is non-decreasing,

�n�1 D x�.�n�1lL.n// � x�.2C2�
n�1lL.n// ' �.2C2�

n�1lL.n//:

Now if 2C2 < 1 using Claim 2.18 with c0 D 2C2 and x0 D �n�1lL.n/, we get (for n large
enough)

2C2�
n�1
D 2C2x�.�

n�1lL.n// � x�.2C2�
n�1lL.n// ' �.2C2�

n�1lL.n//:
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Hence, in both cases �n�1 4 �.2C2�
n�1lL.n//. Finally, replacing CR by C3 in equa-

tion (4.4), we can show that �.2C3�nlL.n// � 2C3�n. Thus, combining the two preceding
results, we obtain

'".R
0
n/"n�1 �

2�.C3�
nlL.n//

.ln ı�.C2�n�1lL.n///1C"�n�1

4
�n

.ln.�n�1//1C"�n�1
D

�

..n � 1/ ln.�//1C"
;

which is a summable sequence. Hence by Theorem 3.5, the orbit equivalence coupling
from � to Z is '"-integrable.

Remark 4.6. This result is stated in the general case, that is to say, for an abstract �. Non-
etheless, for some particular functions � the quantification can be improved. For example,
the case where kn D 2n and ln D 2˛n corresponds to �.x/ ' x1=.1C˛/. In that case,
L.n/ D n � 1, and we can show that the coupling from Z to � is exp-integrable (instead
of exp ı�-integrable). Indeed, let c' < C2=.CR2

3C˛/ and ‰.x/ WD exp.c'x/, then by
equation (4.3),

‰.2Rn/"
0
n�1 D expŒc'2CRknln�1�

2

jTn�1j

� 2 expŒc'2CR2n2˛.n�1/ � C22n�22˛.n�2/�

D 2 expŒ2n�22˛.n�2/.c'CR23C˛ � C2/�;

which is summable by choice of c' .

Remark 4.7. We can verify that the integrability obtained for the coupling from � to Z
is “almost” optimal. Indeed, if the coupling from � to Z is '-integrable, then by The-
orem 1.5 we have

' ı IZ 4 I�;

where we recall that IZ.n/ ' n and I�.n/ ' � ı ln.n/. Thus using the inequality above,
we get '.n/ 4 � ı ln.n/. Hence the quantification of Theorem 4.5 is optimal up to a log-
arithmic factor.

It is now easy to prove our first main theorem.

Proof of Theorem 1.7. Let � 2 C , and let � be the group defined in Proposition 2.14.
By the aforementioned proposition, it verifies I� ' � ı log. Moreover, by Theorem 4.5,
there exists an orbit equivalence coupling from� and Z that is .'"; exp ı�/-integrable for
all " > 0.

To prove Corollary 1.8, we use the composition of couplings introduced in [4]. We
recall below the proposition concerning the integrability of this composition and refer
to [4, Sections 2.3 and 2.5] for more details on the construction of the corresponding
coupling.
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Proposition 4.8 ([4, Propositions 2.9 and 2.26]). Let '; WRC! RC be non-decreasing
subadditive maps with ' moreover concave. If .X1; �1/ (resp. .X2; �2/) is a .'; L0/-
integrable (resp. . ; L0/-integrable) orbit equivalence coupling from � to ƒ (resp. ƒ
to†), the composition of couplings gives a .' ı ;L0/-integrable orbit equivalence coup-
ling from � to †.

Let us now show Corollary 1.8 concerning the coupling with Zd .

Proof of Corollary 1.8. Let d � 1. Let � 2 C , and let � be the group defined in Proposi-
tion 2.14, in particular, it verifies I� ' � ı log. Assume moreover that the map '" defined
by '".x/ WD � ı log.x/=.log ı� ı log.x//1C" is subadditive and concave.

Since d D 1 is precisely the case of Theorem 1.7, we only have to treat the case
of d � 2. For such a d recall (see Example 3.6) that for all p < d and all q < 1=d

there exists an .Lp;Lq/-integrable orbit equivalence coupling from Z to Zd . In particular,
taking p D 1 and q D 0 gives an .L1; L0/-integrable orbit equivalence coupling from Z
to Zd . Hence, using the composition of couplings described in [4], we can deduce from
Theorem 1.7 and Proposition 4.8 that there exists a .'"; L0/-integrable orbit equivalence
coupling from � to Zd . Hence the corollary.

Remark 4.9. We make the hypothesis that '" is subadditive and concave only in order to
use Proposition 4.8 and the composition of couplings. Building directly a coupling from�

to Zd (instead of transiting via Z) might allow to remove the aforementioned assumption.

5. Conclusion and open problems

Let us conclude with some questions and remarks.

5.1. Optimality and coupling building techniques

The tiling technique – though inspiring – is not always usable to get orbit equivalence
couplings. Indeed, the condition that the two Følner tiling shifts must have at each step the
same cardinality is very restrictive. Furthermore, this technique does not seem to produce
couplings with the best quantification: whether it is our coupling with Z or the one built
in [4] (Examples 3.6 and 3.7), the integrability is always optimal up to a logarithmic
factor. One can thus ask: is the optimal integrability reachable? Is the logarithmic error
due to the building technique?

5.2. Inverse problem

We studied here the inverse problem for the group of integers (Question 1.6) but one can
also ask the same question for other groups than Z.

Question 5.1. Given a function ' and a groupH , is there a groupG such that there exists
a .'; L0/-measure equivalent from G to H? Can G be chosen such that ' ı IH ' IG?
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In [7], we study this question when H is a diagonal product, in particular, H can be
a lamplighter group. This coupling is obtained with another building technique than the
tiling process.

Notations index

4,' See Theorem 1.5.
jX j Cardinal of the set X .
@F Boundary of the set F .
� See Definition 2.1.
�m See Section 2.1.
Fn Følner sequence of �.
g The sequence of maps .gm/m2N .
g0m See Section 2.1.3.
� 0m Normal closure of ŒAm; Bm�.
IG Isoperimetric profile of G.
Rn Diameter of Tn.
R0n Diameter of T 0n.
range.f ; t / The range of .f ; t /, see Definition 2.8.
SG A generating set of the group G.
†n Følner tiling shifts (of �).
†0n Følner tiling shifts of Z.
Tn Tile of � defined by Tn D

Qn
iD0†i .

T 0n Tile of Z defined by T 0n D
Qn
iD0†

0
i .

�Am.fm/ Natural projection of fm on Am, see Section 2.1.3.
�Bm .fm/ Natural projection of fm on Bm, see Section 2.1.3.
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